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Abstract

Multi-view cluster analysis, as a popular granular computing method, aims to partition sample 

subjects into consistent clusters across different views in which the subjects are characterized. 

Frequently, data entries can be missing from some of the views. The latest multi-view co-

clustering methods cannot effectively deal with incomplete data, especially when there are mixed 

patterns of missing values. We propose an enhanced formulation for a family of multi-view co-

clustering methods to cope with the missing data problem by introducing an indicator matrix 

whose elements indicate which data entries are observed and assessing cluster validity only on 

observed entries. In comparison with the simple strategy of removing subjects with missing 

values, our approach can use all available data in cluster analysis. In comparison with common 

methods that impute missing data in order to use regular multi-view analytics, our approach is less 

sensitive to imputation uncertainty. In comparison with other state-of-the-art multi-view 

incomplete clustering methods, our approach is sensible in the cases of missing any value in a 

view or missing the entire view, the most common scenario in practice. We first validated the 

proposed strategy in simulations, and then applied it to a treatment study of heroin dependence 

which would have been impossible with previous methods due to a number of missing-data 

patterns. Patients in a treatment study were naturally assessed in different feature spaces such as in 

the pre-, during-and post-treatment time windows. Our algorithm was able to identify subgroups 

where patients in each group showed similarities in all of the three time windows, thus leading to 

the recognition of pre-treatment (baseline) features predictive of post-treatment outcomes.
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1. Introduction

Granular computing, as defined in [3], is a computational principle for effectively using 

granules in data such as subsets or groups of samples, or intervals of parameters to build an 

efficient computational model for complex systems with massive quantities of data, 

information and knowledge. It provides an umbrella to cover any theories, methodologies, 

techniques, and tools that make use of granules- components or subspaces of a space - in 

problem solving [42]. It can consist of a structured combination of algorithmic abstraction of 

data and non-algorithmic, empirical verification of the semantics of these abstraction [3, 43]. 

Cluster analysis is such an important technique aiming to identify subgroups in a population 

so that subjects in the same group are more similar to each other than to those in other 

groups. It has been extensively used in computer vision [29, 45], natural language 

processing [6, 24, 7] and bioinformatics [21, 26]. In this paper, we propose a method to 

identify the cluster granules in a patient population to analyze treatment study data where 

missing values occur. In particular, we take into account the nature of the treatment studies, 

i.e., multiple views of input variables with incomplete data to model treatment effects.

Multi-view data exist in many real-world applications. For instance, a web page can be 

represented by words on the page or by all the hyperlinks pointing to it from other pages. 

Similarly, an image can be represented by the visual features extracted from it or by the text 

describing it. Multi-view data analytics aims to make the full use of the multiple views of 

data, and has attracted wide interests in recent years such as in those works of semi-

supervised learning with unlabeled data [4, 2, 11], or unsupervised multi-view data analytics 

[9, 35, 10, 20, 8]. In this paper, we focus on the unsupervised multi-view clustering methods 

[41, 44, 18, 28, 15, 14], specifically multi-view co-clustering [35, 33, 34]. Consider a dataset 

in which data matrices have rows representing subjects and columns representing features. 

They share the same set of subjects but each matrix has a different set of features. Multi-

view co-clustering is a technique to cluster the rows (subjects) consistently across multiple 

data matrices (sets of features). A family of such methods [35, 33, 34] can find subspaces in 

each different view (rather than using all features in each view) to group subjects 

consistently across the views. However, the existing multi-view co-clustering methods 

cannot deal with incomplete datasets. Subjects with missing values often need to be removed 

or imputation has to be done before clustering. Eliminating data weakens the results by 

reducing the sample size. On the other hand, imputation may bring a separate layer of 

uncertainty, especially when some data are missing at random but others are not.

The issue of missing value is common in real-world applications. Data may be missing at 

random or due to selection bias. For example, in the study of an asthma education 

intervention [27], some missing values were caused by the participants who forgot to visit 

the school clinic to fill out the form; some were caused by the students whose asthma was 

too serious to visit the school clinic to report. The former values are missing at random and 

the latter are not. According to different reasons, the strategies to handle missing values are 

different. If the data are missing at random, researchers either use only the samples with 

complete variables [40] or impute the missing values [12] from the available data; if the data 
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are missing systematically, there can be a variety of difficulties for researchers to recognize 

and capture the missing patterns.

In longitudinal studies [16], the missing patterns are very complicated and difficult to deal 

with. A prospective treatment study usually begins with a baseline assessment and follows 

up through time, and missing values are commonly encountered because study subjects may 

not be available at all time points. Just as in our heroin treatment case study, both random 

and non random missing values exist. Based on such mixing missing pattern situation, we 

choose a simple yet effective strategy to handle this problem: introducing an indicator matrix 

to indicate which feature is observed for which subjects and then ignoring the loss in the 

corresponding missing locations while clustering. Since the missing values is unknown, 

imputation cannot guarantee the right values. Ignoring the loss in the missing locations 

should be a better choice.

In multi-view data, if there are many missing values in different views, then it is useful but 

challenging to make the different views compensate each other on the missing information 

to obtain consistent subject grouping. The most recent multi-view co-clustering methods 

cannot handle incomplete data that potentially occur in all of the views. Moreover, although 

imputation methods have been studied for decades, our simulation studies show that even the 

latest imputation method might not effectively handle the nature of mixed missing patterns, 

and create another layer of uncertainty in the imputed data. A few recent methods handle 

incomplete data [37, 30, 22, 31], but they commonly assume that there is at least one 

complete view for all the sample subjects or each subject should have one or more complete 

views, which is however not the case in treatment studies (we can have incomplete features 

in every view).

For each view of the data, all the methods mentioned so far require either having the 

complete features in the view or having no features in the view. Two kernel based methods 

[37, 31] borrowed the idea of graph Laplacian to complete the incomplete kernel matrix. The 

partial multi-view clustering (PVC) method [22] reorganized the data into three parts (in the 

case of two views): subjects with both complete views, subjects with complete view 1, and 

subjects with complete view 2, and then projected them into a latent space and finally 

conducted a standard clustering algorithm in the latent space. When multiple incomplete 

views are present, clustering via weighted nonnegative matrix factorization with L21 

regularization (the so-called WNMF21) is the most similar to our method which also 

introduces an indicator matrix. That method used only one weighted matrix to indicate 

which instance misses which view while we introduce an indicator matrix for each view to 

indicate the observed entries in the corresponding view. Among all the multi-view clustering 

methods with incomplete data, only ours is not restricted to any specific missing data 

pattern. In comparison with the common strategy of removing subjects with missing values, 

our approach can use all observed data in a cluster analysis. In comparison with common 

methods that impute missing values and then use regular multi-view analytics, our approach 

is less sensitive to the imputation uncertainty. In comparison with other state of the art multi-

view incomplete clustering methods, our approach is applicable to any pattern of missing 

data. We first validate the proposed algorithm in a simulation study, and then use it in a 
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longitudinal treatment study to better understand the differential responses of heroin users to 

the medication naltrexone.

The main contributions of our work include the following two aspects:

1. In terms of methodology, we propose an enhanced multi-view co-clustering 

algorithm that is capable of dealing with complex patterns of incomplete data, 

and validate its performance by comparing against other state of the art methods.

2. In terms of application, we have successfully applied the proposed method to a 

heroin treatment study and identified meaningful patient subgroups, which would 

be implausible otherwise. By analyzing the study data, we produce an important 

finding that features such as changes in craving for heroin in response to cues at 

baseline could be a useful predictor for patient adherence to naltrexone.

The rest of this paper is organized as follows: we describe the longitudinal multi-view data 

collected in our treatment study in Section 2; an enhanced multi-view co-clustering method 

is introduced in Section 3 to deal with missing values; Section 4 presents the performance 

comparison on the synthetic datasets and the statistical analysis results in the case study; we 

then conclude and discuss in Section 5.

2. Incomplete Data in Treatment Study

Heroin addiction is a resurgent public health problem in the United States due to the low 

cost and availability of heroin as a cheap substitute for other opioid painkillers [36]. There 

exist three Food and Drug Administration (FDA) approved medications for the treatment of 

opioid use disorder in general and heroin addiction in particular. Two of these options are 

opioid agonists, acting on the principle of opioid substitution and one - naltrexone, is an 

opioid antagonist. Naltrexone is an important treatment option because it is 

pharmacologically analogous to abstinence. However, the clinical efficacy of oral naltrexone 

is limited by non-adherence [23]. To address this limitation, an injectable extended-release 

preparation of naltrexone (XRNTX) has been developed. In the following section we briefly 

describe a prospective study of XRNTX in heroin addicted individuals [38] and the missing 

values encountered in this study.

2.1. Subjects and Assessment

Thirty-two opioid-dependent individuals who used intravenous heroin were recruited. 

Heroin was a drug of choice in all participants. Most of the patients also used other drugs, 

such as cocaine and marijuana. All of them smoked tobacco cigarettes. Although the sample 

size is relatively small, it represents the common sample size in a treatment study that 

includes repeated magnetic resonance imaging (MRI) tests. Participants received up to three 

monthly injections of XRNTX (manufactured by Alkermes, Cambridge, MA, USA). The 

urine drug screens (UDSs) and the beck depression inventory (BDI) survey were 

administered and assessed weekly. Plasma concentrations of naltrexone and 6-beta-naltrexol 

(an active metabolite) were measured 13 ± 7 days after the first injection, 22 ± 13 days after 

the second injection and 21 ± 5 days after the third injection with established liquid 

chromatography and tandem mass spectrometry techniques described in an early study [19].
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To measure the level of craving for heroin and other drugs such as cocaine, MRI sessions 

were conducted before, during and after the XRNTX treatment. Two comparable sets of 

previously reported cue reactivity tasks [19, 38] were presented in each MRI session and 

counter-balanced across participants. For the cue reactivity task, a stimuli set comprised 48 

heroin-related and 48 neutral pictures. Stimuli were separated by a variable interval (0 – 18s) 

during which a crosshair was displayed. Presentation software (Neurobehavioral Systems, 

San Francisco, CA, USA) was used to present the stimuli in a random, event-related fashion. 

Subjects were asked to rate their craving for heroin and other drugs on a scale of 0 (not at 

all) to 9 (extremely), before and after the cue reactivity task. Post-session craving was 

managed clinically by debriefing and “talk down” until craving was fully subsided.

To explore the correlations between different types of variables, and evaluate if baseline 

variables correlate with any variables during or after treatment, we introduce two ways to 

organize the views. The data variables were naturally grouped into three views by variable 

type:

• View 1 - survey variables: The study collected participants’ responses to a set of 

surveys, resulting in craving scores for heroin (Cra_Heroin), heroin withdrawal 

symptoms (WD_Heroin), feeling high for heroin (high_Heroin), as well as 

craving scores (Cra_Oth), other drugs withdraw symptoms (WD_Oth), and 

feeling high for other drugs (high_Oth). Besides these, three other survey 

instruments: BDI, timeline followback (TLFB) measures for smoking and 

subjective opiate withdrawal scale (SOWS) also provided a set of variables. We 

used prefix Pre, On, and Post, to represent the three periods of pre-, during-, and 

post-treatment. We computed the difference between the two craving scores 

before and after the cue exposure for each of the three sessions. The resultant 

variables were named in a specific format. For instance, ∆Pre_Cra_Heroin 
referred to the change in self-reported craving ratings for heroin after exposure to 

drug-related stimuli (i.e. ∆Pre_Cra_Heroin = Post exposure craving – Pre 

exposure craving). We similarly computed the differences from all the raw 

craving variables.

• View 2 - lab test variables: consisted of naltrexone (Nal) and 6-beta-naltrexol 

plasmas (Beta) and qualitative urine test results for opioid (OPI), 

teltrahydrocannabinol (THC), cocaine (COC) in the three different sessions. The 

variables were named as follows. For instance, On_OPI_2nd represents the urine 

test result for the opioid level after the 2nd XRNTX injection. Note that the 

prefix “On” indicates that it is during the treatment sessions and distinguished by 

the 1st, 2nd, or 3rd injection periods. We also had these variables measured at 

pre-treatment (also known as baseline) and post-treatment time points.

• View 3 - vital sign variables: We computed the difference of vital signs, such as 

heart rate (HR), systolic pressure (SP), mean arterial pressure (MAP) between 

before and after the cue exposure during the MRI tests for all of the three 

sessions. For instance, ∆Pre_HR specified the heart rate difference after exposure 

to visual drug-related cues at baseline.

The data variables could also be categorized into three views according to the time windows:
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• Window 1 - baseline variables: all the variables obtained at baseline formed this 

view of data for a patient. For instance, Pre_BDI measured the depression level 

at baseline. Other variables included Cra_Heroin, WD_Heroin, high_Heroin, 

Cra_Oth, WD_Oth, high_Oth, HR, SP, MAP, SOWS, OPI, THC, COC, BDI, and 

TLFB. We included “Pre” in the names of these variables to denote that they 

were measured at baseline.

• Window 2 - variables collected during treatment: were used in this view. For 

instance, ∆On_Cra_Heroin represented craving elevation for heroin after drug-

related cues at a time point within the treatment period. Besides the variables 

described in Window 1, this view had additional variables: Nal and Beta which 

were naltrexone plasma levels measured at a time point after each injection. 

Therefore, some variables in this view may include 1st, 2nd, or 3rd in their 

names. Note that Nal and Beta were collected only during and after treatment, 

not at baseline.

• Window 3 - post-treatment variables: were collected at a follow-up time point 

after the treatment. For instance, ∆Post_WD_Oth referred to the difference in 

withdrawal levels for other drugs (Post cue exposure – Pre exposure) after the 

treatment process was terminated. These variables included “Post” in their 

names.

Note that if we use time windows to define the views, each view could have some variables 

that are not related to cue exposure, thus these variables are not the difference ∆ variables. 

Readers can refer to a supplemental table available at https://healthinfo.lab.uconn.edu/mvbc-

incomplete/ for a complete list of variables included in this study. One of the fundamental 

questions in treatment studies is that how the variables are related, e.g., whether a lab test 

result is associated with a heroin withdrawal score in a subgroup of patients, and whether 

any baseline variable could be predictive of a post-treatment outcome in a subgroup of 

patients. These questions motivated us to group variables into views according to two 

settings by variable type or by time.

2.2. Missing Data

Missing values are commonly encountered in treatment studies. In this heroin treatment 

study, there existed mixed types of missing values where some were clearly associated with 

an event, e.g. drop-out from the study, but for others, the cause was unknown. Fig.1 

demonstrates a pie chart of the data distribution, showing 44% of total missing values.

There were two types of non-random missing values in this study. When a patient dropped 

out of the treatment study, all of the variables collected afterwards would be missing for this 

patient. For instance, nine subjects decided that they would not tolerate naltrexone and hence 

received no injection, so there were only baseline variables for these subjects. After the 1st 
injection period, five other subjects dropped out, so they missed values for the remaining 

treatment variables. After the 2nd injection, three more subjects left. Totally, fifteen subjects 

received all three injections. The number of injections each patient received served as a good 

overall treatment outcome measure, especially because XRNTX provides a pharmacological 

abstinence state regardless of whether subjects attempt to use heroin. In such cases, UDS 
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would be positive for opioids but patient remains abstinent. Furthermore, the variables for 

some subjects might have missing values due to the “obligated missing” situation. For 

instance, some patients might not pass the naloxone challenge test before receiving an 

injection, so the missing values related to that injection follow the “obligated missing” 

pattern. Table 1 provides a more comprehensive view of the non-random missing values 

spanning across different views and windows.

In this heroin treatment study, you cannot ignore the subjects with missing values since 

almost all of the subjects have missing values. It may not be a good choice to impute data 

before the multi-view cluster analysis, because there exist both random and non-random 

missing patterns. In such a situation, it will be a better option to ignore just the missing 

values rather than remove the entire record of a subject with missing values that will result in 

a reduced sample size. In the following section, we will develop a multi-view co-clustering 

algorithm that can ignore missing values.

3. Multi-view Co-clustering with Incomplete Data

Multi-view co-clustering aims to group subjects in the same way across multiple views and 

identify the important variables from each view. In other words, multi-view co-clustering 

can group the subjects into some subgroups and at the same time the selected variables from 

different views play an important role in the grouping process. Since the selected variables 

from different views identify the same subject groups, the characteristics of each group helps 

show the correlation of the variables between different views. Although such a method is 

desirable, the first step is to extend it to incomplete data. Next, we introduce the proposed 

multi-view co-clustering method for incomplete data.

3.1. The optimization formulation

Given the data matrices Xk ∈ ℛn × dk k = 1, ⋯, m  which can describe the same set of n 

subjects from m different views. For each matrix Xk, two vectors uk and vk can be obtained 

by a rank-one matrix approximation, i.e., Xk ≈ ukvkT
. If we require both u and v to be 

sparse, then rows in Xk corresponding to non-zero components in uk form a subject cluster 

and columns in Xk corresponding to non-zero components in vk are the selected variable 

from the k-th view. However, in a multi-view setting, uk’s from the different views do not 

guarantee to form the same subject cluster. To create subject clusters consistent across 

different views, in a recent work [35], a binary vector ω is introduced to make the clusters 

across different views consistent where each component of uk is multiplied by the 

corresponding component of ω, i.e., uik = uikωi. If ωi = 0, regardless the value of the i-th 

component of every uk, the i-th row will be excluded from the cluster in all views. Hence, to 

get the subject cluster, rather than finding sparse uk’s, the method seeks a sparse ω. After 

identifying the subject cluster, we will deflat the data matrix by Xk = Xk − diag(ω)ukvkT
 and 

then seek for the next subject cluster and iterate this process untill no subjects are left. Our 

method is similar to the power method with deflation [13] that sequentially finds each pair 

of singular vectors at a time and then deflates the data matrix to compute next eigenvectors.
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Thus, the optimization problem is formulated as follows:

min
ω, uk, vk, k = 1, ⋯, mk = 1

m 1
2 Xk − diag ω ukvkT

F
2

subject to   ω 0 ≤ sw,     vk 0 ≤ svk,
k = 1, ⋯, m,
ω ∈ ℬn .

(1)

where the objective function measures the approximation error in terms of the Frobenius 

norm of the difference matrices in every view, and ⋅ 0 is the so-called ℓ0 vector norm 

(which is not really a vector norm) that returns the number of non-zeros in a vector. The set 

ℬn contains all binary vectors of length n, and sω and svk‘s are hyper-parameters that are 

pre-chosen to determine, respectively, how many subjects in a group and how many 

variables will be selected from each view.

This multi-view co-clustering algorithm provides a sensible way to analyze the heroin 

treatment data, but in practice it cannot be applied because of the missing values. To create a 

general strategy to recover cluster structure from the observed data, we introduce an 

indicator matrix Ak whose entry Aij
k  indicates whether Xij

k  is observed, i.e.,

Aij
k =

1 Xij
k   is   observed

0 Xij
k   is   missing .

(2)

The indicator matrix prompts the clustering algorithm to ignore the missing values. This way 

we can use more information than ignore the subjects with any missing value, and can be 

better if there are non-random missing values and imputation quality is not desirable.

Now, to minimize the error only occurred on the observed entries, the loss function of Eq. 

(1) becomes

k = 1

m 1
2 Ak ⊙ Xk − diag ω ukvkT

F

2
(3)

where ⊙ computes the Hadamard (element-wise) product of two matrices and returns a 

matrix of the same size as Xk (or Ak). When Aij
k = 0, the algorithm does not care about the 

actual value of the term ωiuikvjk because we do not observe Xij
k  and thus the difference on this 

item should not be penalized. Note that for different views, the loss in Eq. (3) can be 

weighed so that it can deal with different views differently, herein we simply treat each view 

equally because the variable number in each view of our data set is more or less in the same 

quantity. Eq. (3) is equal to the following formula:

ℎ ω, uk, vk =
k = 1

m 1
2 Ak ⊙ Xk − Ak ⊙ diag ω ukvkT

F

2
,
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and then the optimization problem becomes:

min
ω, uk, vk, k = 1, ⋯, m

ℎ ω, uk, vk

subject to  f ω ≤ sw, g vk ≤ svk,
k = 1, ⋯, m,

ω ∈ ℬn .

(4)

where f ω = ω 0, and g vk = vk 0. In Eq. (4), the objective function consisting of a 

Frobenius norm is smooth, and convex with respect to each group of variables ω, uk, and vk 

(k = 1, … , m), but the two constraints ω 0 ≤ sω and vk 0 ≤ svk are nonconvex and 

nonsmooth. In addition, ℓ0 vector norm constraints make Eq. (4) NP-hard.

3.2. The optimization algorithm

We adopt a proximal alternating linearized minimization (PALM) algorithm [5] to solve Eq. 

(4). It has been established that each bounded sequence generated by the PALM globally 

converges to a critical point of the problem (4).

Our algorithm alternates between optimizing each block of the variables ω, u’s and v’s (see 

Algorithm 1). The central idea is to, for each block of variables, perform a gradient step on 

the smooth part, but a proximal step on the nonsmooth part. Let ωt, (uk)t and (vk)t be the 

current values at iteration t. For instance, to optimize ω, the algorithm minimizes a 

linearized approximation of the objective function, which is the gradient step 

< ω − ωt, ∇ωℎ > where ∇ωℎ is the partial derivative of h with respect to ω. Then, 

argmin < ω − ωt, ∇ωℎ > +
γωLω

2 ω − ωt 2: ω 0 ≤ sω  is a well-defined proximal map for f 

where γω > 1 is a pre-chosen constant and Lω is the Lipschitz modulis of ∇ωℎ.

Note that all partial derivatives of the objective function h are Lipschitz continuous so there 

exists a Lipschitz modulis. If ∇ωℎ ω1 − ∇ωℎ ω2 ≤ Lω ω1 − ω2  for some constant Lω ≥ 0 

and any ω1 and ω2, then ∇ωℎ is Lipschitz continuous and Lω is called the Lipschitz modulis 

of ∇ωℎ.

Given the values of uk, vk and ω at the iteration t, we now describe the procedure to update 

the variables at the iteration t + 1 as follows:

(a) Compute (uk)t+1 using ωt, (uk)t and (vk)t—Because the update of u’s are 

independent from each other, each (uk)(t+1) can be calculated separately. Let ∇ukℎ be the 

partial derivative of h at point (ωt, (uk)t, (vk)t) with respect to uk, In order to calculate ∇ukℎ, 

we denote the i-th rows of the matrices Ak and Xk, and vectors (uk)t and ωt by A i, ⋅
k , X i, ⋅

k , 

uik, and ωit. Then each entry of ∇ukℎ can be calculated by
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∇uikℎ = uikωitA i, ⋅
k ⊙ vk tT − A i, ⋅

k ⊙ X i, ⋅
k

ωit A i, ⋅
k ⊙ vk tT T (5)

The Lipschitz modulis of ∇ukℎ can be calculated using the following proposition.

Proposition 1. Let Luk be the Lipschitz modulis of ∇ukℎ as defined in Eq. (5), then

Luk = ‖ ω1
t2 A 1, ⋅

k ⊙ vk tT
2

2
, ⋯, ωnt

2
A n, ⋅

k ⊙ vk tT
2

2

2
.

Proof. For any two given vectors u1
k and u2

k, we can have

∇ukℎ u1
k − ∇ukℎ u2

k
2 =

‖
ω1  t2 ‖A 1, ⋅

k ⊙ vk tT
2

2
⋯ 0

⋮ ⋯ ⋮

0 ⋯ ωnt
2‖A n, ⋅

k ⊙ vk tT
2

2

u11
k − u21

k

⋮
u1n

k − u2n
k

‖2

≤ ‖(ω1
t2‖A 1, ⋅

k ⊙ vk tT
2

2
, ⋯, ωnt

2 A n, ⋅
k ⊙ vk tT

2

2
)‖2‖u1

k − u2
k

2

(6)

According to the definition of the Lipschitz moduli, 

Luk = ‖ ω1
t2‖A 1, ⋅

k ⊙ vk tT
2

2
, ⋯, ωnt

2‖A n, ⋅
k ⊙ vk tT

2

2

2
, is the Lipschitz moduli of 

function ∇ukℎ.

We compute (uk)t+1 by solving the following optimization problem:

min
uk

< uk − uk t, ∇ukℎ > +
γuLuk

2 uk − uk t
2 .

where γu > 1 is a constant and note that there is no nonsmooth part due to no regularizer on 

u’s. This problem has an analytical solution as:

uk t + 1 = uk t − 1
γuLuk ∇ukℎ (7)

(b) Compute (vk)t+1 using ωt, (uk)t+1 and (vk)t—Similarly, each vk can also be 

computed separately. Let A ⋅ , i
k  and X ⋅ , i

k  denote the i-th columns of the matrices Ak and 

Xk. Following a similar derivation to that in (a), we compute each entry of the partial 

derivatives ∇vkℎ and the Lipschitz modulis Lvk as follows:
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∇vikℎ = A ⋅ , i
k ⊙ diag ωt uk t + 1 T

vik
T

A ⋅ , i
k ⊙ diag ωt uk t + 1 − A ⋅ , i

k ⊙ X ⋅ , i
k

and Lvk = l1, ⋯, ldk 2 where ls = A ⋅ , s
k ⊙ diag ωt uk t + 1

2
2
 for s = 1, … , dk. In order to 

obtain the update for vk, we solve the proximal map:

min
vk

< vk − vk t, ∇vkℎ > +
γvLvk

2 vk − vk t
2

subject to vk 0 ≤ svk .

Let δsvk x :ℝd ℝ be a step function defined by:

δsvk x =
0 x 0 ≤ svk

+∞ x 0 > svk . (8)

The above minimization problem can be converted to:

min
vk

< vk − vk t, ∇vkℎ >

+
γvLvk

2 vk − vk t
2 + δ svk vk .

This problem can be proved to be equivalent to the following problem:

min
vk

γvLvk
2 vk − vk t − 1

γvLvk ∇vkℎ
2

+ δ svk vk .
(9)

Let

vk t + 1 = vk t − 1
γvLvk ∇vkℎ .

It can be shown that the optimal solution to Eq.(9) is the vector that keeps the original values 

in vk t + 1
 at the positions whose absolute values are among the largest svk of them. For 

instance, if svk is 3, we rank the components in vk t + 1
 in descending order according to 

their absolute values, and then choose the top three to maintain their values and set the rest 

to 0. We denote the corresponding threshold by α which is the minimum value among the 

svk largest absolute values in vk t + 1
, and compute (vk)t+1 as follows:
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vk
i
t + 1 =

vk
i
t + 1 vk

i
t + 1 ≥ α,

0 vk
i
t + 1 < α .

(10)

(c) Compute ωt+1 using ωt, (uk)t+1 and (vk)t+1—We compute each entry of the 

partial derivatives ∇wℎ and the Lipschitz modulis Lω as follows:

∇ωiℎ =
k = 1

m
uik

t + 1 ωiA i, ⋅
k ⊙ vk t + 1 T

−A i, ⋅
k ⊙ X i, ⋅

k uik
t + 1 A i, ⋅

k ⊙ vk t + 1 T T
,

and Lω = l1, ⋯, ln 2 where ls =
k = 1

m
usk

2 t + 1
A s, ⋅

k ⊙ vk t + 1 T
2

2
 for s = 1, … , n. 

We solve the following optimization problem for ωt + 1:

min
ω

< ω − ωt, ∇ωℎ > +
γωLω

2 ω − ωt 2

subject to    ω 0 ≤ sω .

By introducing the indicator function δ as in Eq. (8), and following the process for solving 

vk, we get the update formula for ω

ωt + 1 = ωt − 1
γωLω

∇ωℎ .

Let β be the minimum value among the largest sω absolute values in ωt + 1. We compute 

ωt+1 as follows:

ωi
t + 1 =

ωi
t + 1 ωi

t + 1 ≥ β

0 ωi
t + 1 < β .

(11)

Algorithm 1 summarizes the above steps. By applying this algorithm, we obtain a set of row 

and column clusters. The rows corresponding to non-zero values in ω indicate a subject 

cluster and the columns corresponding to non-zero values in each vk indicate the selected 

variables in the k-th view. In order to obtain the next set of row and column clusters, we 

need to deflate the data matrix by removing the rows corresponding to the subjects already 

identified in a row cluster. We then repeat Algorithm 1 on the updated data matrix. There are 

other ways to deflate the data matrix, such as computing X – diag(ω)uvT for each view, 

which will however create clusters with overlapping subjects.
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Algorithm   1   Multi‐view co‐clustering with incomplete data

Input:   Xk: = 1, ⋯, m, sw and svk: = 1, ⋯, m
Output:ω, ui and vi for i = 1, ⋯, m

1. Initialize ω0,  and  vk 0, uk 0 for all k = 1, ⋯, m and calculate the indica‐

tor matrix Ak: = 1, ⋯, m from Xk: = 1, ⋯, m .

2. Compute  uk t, ∀k = 1, ⋯, m according to Eq . 7 .

3. Compute  vk t, ∀k = 1, ⋯, m according to Eq . 10 .

4. Compute ωt according to Eq . 11

Repeat steps 2‐4 until convergence  e . g . , until  ωt + 1 − ωt ≤ ε, uk t + 1 −

uk t ≤ ε,  and  vk t + 1 − vk t ≤ ε .

The computational complexity of Algorithm 1 at each iteration is O(nmd) where d is the 

maximum of d1, … , dm. Since this computational complexity is in a linear order of the 

problem dimensions, it is very efficient. Due to the independence in calculating the updates 

of uk and vk, Algorithm 1 is ready to be parallelized and distributed if more processors are 

available. Compared with the objective function of problem (1), the additional indicator term 

Ak in the objective function of problem (4) is a known constant matrix that does not affect 

the convergence property of Algorithm 1. Algorithm 1 still globally converges to a critical 

point of the problem (4).

4. Experiments

We validated the proposed approach in both simulation studies and the analysis of the 

clinical data collected in our heroin treatment study.

4.1. Simulations

We generated three sets of data. We first created a dataset without missing values, and 

removed data values in a way that simulated the missing patterns observed in the treatment 

data. Then for the incomplete dataset we created, we used an imputation method to impute 

the removed entries. In this paper, we adopted a widely used multiple imputation method in 

[32] where it was compared against and outperformed a suite of other algorithms.

We generated a dataset with implanted diagonal block structures that corresponded to row 

and column clusters. Two views of data for 1000 subjects were created. There were 12 

variables in view 1, and 15 variables in view 2. The data matrix of each view was created by 

randomly setting an entry to 0 or 1 with different probabilities that were determined 

according to the prefixed block structures. Precisely, we started from a data matrix of all 

zeros. Then we reset data entries inside and outside the blocks to 1 with a probability of 0.8 

and 0.2, respectively. For better illustration, we aligned the subjects in the two views and 

indexed them from 1 to 1000; and indexed the variables using consecutive numbers starting 

from 1. Fig. 2 demonstrates the block structures in the two views. View 1 was designed to 

have two blocks. The first block consisted of subjects from 1 to 400 and variables from 1 to 
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3. The second block included 200 subjects indexed from 481 to 680 and the 4th to the 6th 

variables. Three blocks were included in view 2. The first block contained subjects from 1 to 

240 and was associated with the first three variables. The second block consisted of subjects 

from 241 to 480 and was associated with the 4th to the 6th variables. The last block included 

320 subjects indexed from 481 to 800 and was relevant to the 7th to the 9th variables. By 

comparing the two views, there would be three consistent clusters (i.e. containing the same 

subjects) across the two views.

We created an incomplete data matrix by removing some entries from the synthesized full 

data matrix. We removed the data on the features 4–12 for the subjects 1 to 400 and the data 

on the features 7–12 for the subjects 481 to 680 in the first view. For the second view, we 

removed data on the features 4–15 for the subjects 1–240, and data on the features 7–15 for 

the subjects 241–480, and data on the features 10–15 for the subjects 481–800. These steps 

created non-random missing patterns. We then removed ρ% (ρ = 10, 20, 30, 40, and 50) of 

entries from the remaining data randomly (with a uniform distribution over the remaining 

data), which created data of missing at random. In the subsequent experiments, for each ρ 
value, we repeated the data removal process five times and reported the average performance 

of each algorithm.

We used the multiple imputation methods discussed in [32] to impute the missing values for 

the incomplete synthetic data. Overall, three types of datasets were created in our 

simulations: (1) the full synthetic data matrix; (2) the incomplete data matrix; and (3) the 

data matrices where missing values were imputed from the incomplete matrix by multiple 

imputation. The multi-view co-clustering method in [35] was applied to the full and imputed 

data matrices to identify clusters whereas our proposed method - Algorithm 1 - that can 

directly handle missing values, was applied to the incomplete data matrix. We set each 

method to returning three clusters, and used three standard metrics to evaluate the clustering 

performance.

• Normalized Mutual Information (NMI). For two random variables X and Y, 

the NMI is defined as:

NMI X,Y = I X,Y
H X H Y (12)

where I(X, Y) is the mutual information between X and Y, while H(X) and H(Y) 

are the entropies of X and Y, respectively. Clearly, NMI takes the value from [0, 

1], the higher NMI means the better the clustering performance.

• Accuracy (Acc). Accuracy discovers the one-to-one relationship between 

clusters and classes and measures the extent to which each cluster contained data 

points from the corresponding class. It sums up the whole matching degree 

between all pair class-clusters.

Acc = 1
N max

Xi, Y j
N Xi, Y j (13)
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where Xi denotes the i-th cluster in the final results, and Yj is the j-th class (true 

cluster) in the synthetic data. N (Xi, Yj) is the number of entities which belong to 

class j but are assigned to cluster i. Accuracy computes the maximum sum of N 
(Xi, Yj) for all pairs of clusters and classes, and these pairs have no overlaps. The 

greater clustering accuracy means the better clustering performance.

• Rand Index. Rand index can be considered as an alternative to the information-

theoretic interpretation of clustering NMI, it views clustering as a series of 

decisions, one for each of the n(n – 1)/2 pairs of subjects in the sample. We want 

to assign two subjects to the same cluster if and only if they are similar. A true 

positive (TP) decision assigns two similar subjects to the same cluster, a true 

negative (TN) decision assigns two dissimilar subjects to different clusters. There 

are two types of errors we can commit. A (FP) decision assigns two dissimilar 

subjects to the same cluster. A (FN) decision assigns two similar subjects to 

different clusters. Rand index measures the percentage of decisions that are 

correct.

RI = TP + TN
TP + FP + TN + FN (14)

Due to the randomness in the data creation process, we generated five datasets following the 

above procedure to evaluate if the comparison was consistent. Tables 2, 4, 6 summarize and 

compare the performance of our method on the incomplete datasets against the multi-view 

co-clustering method after imputation. For each of the five datasets, we reported the mean 

NMI, Acc, RI values and the standard deviations for each different ρ value. The five 

synthetic datasets corresponded to the columns of Tables 2, 4, 6. Since obviously the best 

results were obtained on the full dataset, we highlighted the second best results with bold 

font. We can find that, in terms of the NMI measure, the proposed method worked better on 

the incomplete data than the multi-view co-clustering method on the imputed data by 

multiple imputation in all of the comparison settings except when ρ = 0.1. In terms of the 

Acc measure, for ρ = 0.1, 0.2, 0.3, our proposed method performed better than multi-view 

co-clustering on the data after multiple imputation, but for some cases in ρ = 0.4 or 0.5, our 

method did not demonstrate its superiority, this may be because the useful information 

available was too limited. In terms of RI measure, our method outperformed the counterpart 

in every noise level. In summary, for the three metrics, they performed almost consistently 

and our method demonstrated its effectiveness.

Furthermore, we compared our approach against three recent multi-view incomplete 

clustering methods including PVC [22], WMNF21 [31], and the method of clustering on 

multiple incomplete datasets via collective kernel learning (CoKL) [30]. These methods 

were run on the above generated incomplete datasets. Since all of the three methods could 

not deal with the case of missing any number of values in each view, we imputed data for 

half of the subjects to have both views, a quarter of them to have one of the views using 

multiple imputation [32]. On the same dataset (Trial 5), we reported the NMI values of all 

these methods in Tables 3, 5, 7. Compared with PVC, WMNF21, and CoKL, we see that our 

method performed consistently the best over all choices of ρ in terms of the metrics NMI 
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and RI. In terms of the Acc measure, CoKL performed better than our method when ρ = 0.1 

and 0.4, but the margin was rather small. Since PVC, WMNF21 and CoKL required the 

complete feature sets in a view, they performed even worse than just running the multi-view 

co-clustering with imputed data (i.e., MI).

4.2. Case study: XRNTX treatment of heroin use disorder

We performed two experiments using our XRNTX treatment dataset: one with the views 

defined by variable types, and the other with the views defined via time windows as 

discussed in Section 2. For each experiment, we will discuss subject characteristics in the 

resultant clusters and the features selected by our algorithm for each cluster. We first 

grouped all features in the dataset according to variable types in order to study the 

connections and correlations between survey variables, lab test results and vital signs. In the 

second experiment, variables were grouped by different time window to study if baseline or 

during treatment variables had connections to the outcomes observed in the post-treatment 

window.

In both experiments, we set sω = 15 and svk = 3 for all 1 ≤ k ≤ m in Eq. (1) by a cross 

validation tuning process using half of the sample. We initialized ω0, (uk)0, and (vk)0 in a 

way such that all entries were equal to 1 for all 1 k ≤ m. In each experiment, two clusters 

were generated by our algorithm. One of the widely-used ways to define the XRNTX 

adherence [39] is to evaluate if the number of injections a participant received is out of the 

maximum available. The concurrent validity of the clusters was validated in terms of the 

number of injections which was not used as a basis of the cluster analysis. In our study, the 

subjects who received three total injections were considered highly adherent to the treatment 

comparing to those who received less.

4.2.1. Connections between different variable types—We partitioned the subjects 

jointly on the basis of three views: surveys variables, lab test results, and vital signs. The 

first cluster we obtained consisted of 15 subjects, all of whom happened to receive all three 

injections whereas the second cluster consisted of 17 subjects, none of them finished up the 

three injections as shown in Fig. 3. We hence named the two clusters, respectively, the high 

adherence group (HA) and the low adherence group (LA).

From the variables that we used as the basis of cluster analysis, our algorithm automatically 

selected the most relevant ones in each of the views. We plotted the mean values of the 

selected variables in each view for each group in Fig. 4. We observed that subjects in the HA 

group increased their craving level for other drugs (∆Pre_Cra_Oth) after the cue exposure at 

baseline whereas subjects in LA group craved less instead. Although it was the only variable 

selected in this view, meaning that this variable itself was enough to distinguish the two 

clusters in this view, we also observed that subjects in the HA group increased their craving 

for heroin (∆Pre_Cra_Heroin) (by a rating of 2.93 on average) more than the subjects in the 

LA group (by a rating of 1.07 on average) after exposing to cues. In the lab test view, 

subjects in the HA group showed on average higher teltrahydrocannabinol (Pre_THC) and 

cocaine (Pre_COC) levels in the urine drug screen at baseline. This result demonstrated that 

subjects in HA group tended to take these two drugs as well. In the vital signs view, the HA 
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subjects showed decreased mean arterial pressure (∆Pre_MAP) after the cue exposure at 

baseline. A study with a larger sample may be needed to validate these observations.

To further examine whether or not the selected variables had statistical significance in 

distinguishing between categories of XRNTX treatment adherence, we performed an 

additional association test. Because most of these variables were categorical variables, we 

first applied the multiple correspondence analysis (MCA) [1] to all the selected variables to 

reduce dimension and identify the first principal component. MCA is similar to the principal 

component analysis that is applicable to continuous variables, but it is able to cope with 

categorical variables with missing values. We then used the resultant principal dimension as 

the predictor to predict whether a subject would complete all three injections, and we 

observed a p value of 0.0258, which demonstrated that the association was statistically 

significant.

4.2.2. Connections between different time windows—We then identified 

consistent clusters across the three time windows: Pre-treatment (baseline), On-treatment, 

and Post-treatment. It happened that the first cluster also contained 15 subjects, 13 of them 

receiving all three injections. There were two subjects in this group who only finished one 

injection. The second cluster contained two subjects with three injections and the remaining 

subjects did not finish all injections. We hence still named these two clusters as the HA 

group and the LA group, respectively, without notation confusion (although they were two 

different clusters from those in the first setting).

To study the variables used in the analysis, we plotted the mean values of the selected 

variables in the different time windows in Fig. 6. Four variables in the Pre-treatment 

window, two variables in the On-treatment window, and two variables in the Post-treatment 

window, were selected. Subjects in the HA group increased their craving level for heroin 

(∆Pre_Cra_Heroin) after exposing to cues at baseline but decreased their subjective heroin 

withdrawal scale (∆Pre_SOWS). Similar to the first setting, we also observed that the HA 

subjects showed elevated craving for other drugs (∆Pre_Cra_Oth), and elevated withdrawal 

scores for other drugs (∆Pre_WD_Oth), after cues at baseline. However, these subjects 

showed decreased craving (∆On_Cra_Oth) and withdrawal scores (∆On_WD_Oth) for other 

drugs once the treatment began. At post-treatment, subjects in the HA group showed a lower 

average level of telrahydrocannabinol (Post_THC) in their urine tests than that in the LA 

group, and they felt less “high” for heroin when exposing to cues after completing the 

treatment. Although not shown in Fig. 6, for the subjects in the HA group, craving for heroin 

was increased by 2.93 after exposing to stimuli at baseline but only by 1.18 at post-

treatment.

To gain more insights into whether the selected variables were statistically significantly 

associated with the XRNTX treatment adherence, we first applied the MCA to identify the 

first principal component of these variables and used it as the predictor to predict if a subject 

would finish all three injections in a logistic regression association test. We obtained a p 
value of 0.00829, showing the statistical significance of these selected variables as a whole. 

Because in this setting, we were more interested in finding if baseline variables can predict 

treatment outcome at the post-treatment stage, we performed another set of association tests. 
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In particular, we carried out a t-test on all the individual variables between the HA and LA 

subjects. Table 8 shows the top five variables together with their corresponding p values. 

Based on this table, the difference in craving for heroin after cue exposure at baseline 

(∆Pre_Cra_Heroin) was significantly different between the subjects in the HA group and 

those in the LA group at a significance level of p <0.05, demonstrating that changes in 

craving for heroin in response to cues at baseline could be a useful predictor for patient 

adherence to XRNTX.

5. Discussion and Conclusion

As data acquisition technologies advance, more and more data collected in real-world 

applications are from heterogeneous sources, resulting in multi-view datasets. Different 

views may provide complementary information. Cluster analysis in any single view may 

miss important cluster characteristics from other views. Simply concatenating all views 

together cannot guarantee to find clusters recognizable in individual views. To exploit such 

multiple view information, we have adopted the much-needed multi-view learning methods.

A challenge in practical multi-view applications comes from missing values in the different 

views. It is common that there are missing values in each view of the data. Usually 

researchers use imputation methods [27] such as simple ones that use mean value or zero to 

complete the data. Among the existing imputation methods, multiple imputation [12] is a 

popular choice. In our simulation study, we have compared the multiple imputation method 

with our generalized multi-view co-clustering method that can directly cluster subjects based 

on incomplete data. We observed that when very few missing values were present, multiple 

imputation performed as well as or even better than our method. However, when the number 

of missing values increases, our method clearly showed its superiority. Another way to deal 

with an incomplete dataset is to simply ignore subjects (or samples) with missing values. 

However, this method dramatically reduces the available sample size, causing insufficient 

data for subsequent clustering, which was the case in both our synthetic datasets and our 

heroin treatment study. There would be none left for analysis if we had removed subject with 

any missing values in the heroin treatment dataset. Most state-of-the-art multi-view 

incomplete clustering methods [22, 31, 30] can only deal with the situation where the 

subjects miss some of the views entirely rather missing any number of variables in one view. 

Hence, the proposed method can be a better alternative.

In the heroin treatment study, the newly proposed method has helped us to determine that the 

difference in craving for heroin after exposure to visual heroin cues at baseline can be a 

good predictor of whether a patient will adhere to the treatment. Besides the change in 

craving for heroin, craving for other drugs can be another important feature to predict 

adherence to heroin treatment. These features may have combined effects on adherence to 

XRNTX. When studying the connections between features in the pre-, during- and post- 

treatment time windows, we found that subjects who tended to complete the treatment 

actually had elevated craving and withdrawal scores when exposing to cues at baseline but 

they decreased these features after cue exposure once the treatment started. This finding 

might be counter-intuitive against medical practice where it is recognized that the patients 
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who have less craving tend to adhere to XRNTX, thus warranting further investigations 

using larger samples in independent studies.

By cross referencing the post-stimuli craving for heroin at baseline and at post-treatment, we 

observed that XRNTX can effectively reduce craving if patients adhere to the treatment. 

Furthermore, the adherent patients showed increased withdrawal scores after stimuli at 

baseline but once treatment started, their withdrawal scores became decreased after stimuli. 

These observations agree with prior findings such as in [36] where XRNTX shows efficacy 

for decreasing craving, maintaining abstinence, improving retention, and preventing relapse 

among opioid dependent patients following detoxification. Prior studies also show that 

concurrent use of cocaine is quite common in opioid dependent individuals [38, 25, 17]. In 

our experiments, we found that craving for other drugs (e.g., cocaine) at baseline was a 

major predictor for XRNTX treatment adherence, which may reflect the concurrent use of 

these drugs.

One of our previous studies used the current dataset to identify neural correlates of XRNTX 

treatment adherence [38]. There were two major differences between the present and prior 

studies. We used an advanced multi-view cluster analysis method that was able to explore 

which baseline variables were predictive of the adherence beforehand by concurrently 

grouping subjects at the three time windows. The second difference was that we proposed a 

new multi-view method which could directly handle the significant amount of missing data 

entries commonly encountered in treatment studies, which might provide a powerful 

alternative to coping with incomplete data in future investigations.

In conclusion, we proposed and tested a novel multi-view co-clustering formulation that can 

handle incomplete data by introducing an indicator matrix to the original formulation 

without the need of data imputation. This enhanced multi approach has been carefully 

evaluated in simulation studies, showing advantages over several other alternative methods 

such as removing incomplete samples or multiple imputation. Then this approach was 

applied to the incomplete data collected in the heroin treatment study. We used the proposed 

approach in two separate settings: in three variable-type views as well as in three time 

window views, and obtained very similar patient groupings. In each setting, a group of 

subjects that were highly adherent to the XRNTX treatment was identified. We found several 

variables, such as craving for heroin in response to visual drug stimuli at baseline, that were 

predictive of patient adherence. These results come with some limitations. Although the size 

of our sample is common in treatment studies, especially with repeated brain imaging, it is 

relatively small, which might limit the statistical power of many analytics. With larger 

samples, taking into account the gender, race, age of patients may give us more insights into 

the predictors of patient adherence to XRNTX and possibly other treatments of heoin 

dependence. Other related factors may also be included as variables in our proposed 

analysis, such as monetary and nonmonetary incentives as reported in [17] that incentives for 

naltrexone adherence increased opiate abstinence in heroin-dependent adults.
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Figure 1. 
The distribution of the missing values in the heroin treatment dataset.
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Figure 2. 
The simulated block data structure, the numbers in the vertical axis represent the associated 

variables, the number in the horizontal axis represent the subject index.
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Figure 3. 
The adherence characteristics of the two clusters (high adherence (HA) versus low 

adherence (LA)) obtained by our algorithm when variables were grouped in the three views 

according to variable type.
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Figure 4. 
The mean values of the selected variables by cluster when data were grouped in the three 

views according to variable type. Abbreviation: ∆Pre_Cra_Oth, change in craving for other 

drugs after cue exposure at baseline; Pre_THC, tetrahydrocannabinol level in urine drug 

screen at baseline; Pre_COC, cocaine level in urine drug screen at baseline; ∆Pre_MAP, 

change in mean arterial pressure after cue exposure at baseline.
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Figure 5. 
The adherence characteristics of the two clusters (high adherence (HA) versus low 

adherence (LA)) obtained by our algorithm when variables were grouped in three time 

windows.
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Figure 6. 
The mean values of the selected variables by cluster when data were grouped in three time 

windows. Abbreviation: ∆Pre_SOWS, change in the subjective opioid withdrawal scale 

after cue exposure at baseline; ∆Pre_Cra_Oth, change in craving for other drugs after cue 

exposure at baseline; ∆Pre_WD_Oth, change in withdrawal for other drugs after cue 

exposure at baseline; ∆Pre_Cra_Heroin, change in craving for heroin after cue exposure at 

baseline; ∆On_Cra_Oth, change in craving for other drugs after cue exposure during 

treatment; ∆On_WD_Oth, change in withdrawal for other drugs after cue exposure during 

treatment; Post_THC, tetrahydrocannabinol urine drug screen after treatment; 

∆Post_high_Heroin, change in feeling “high” for heroin after cue exposure after treatment.
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Table 3:

Comparison of clustering performance in terms of the normalized mutual information (NMI) measure with 

different ρ values. “Full” indicates the result obtained on the full data matrix, “MI” indicates the clustering 

results on imputed data, “InCo” corresponds to the results of our method on the incomplete data, “PVC” 

indicates the result of partial multi-view clustering, “WMNF21” indicates the result of multiple incomplete 

views clustering via weighted nonnegative matrix factorization with L2, 1 regularization, CoKL indicates the 

result of clustering on multiple incomplete datasets via collective kernel learning. Note the digits before / 
indicate the NMI values (%) while the digits after / indicate the standard deviations (%).

Full 44.85

ρ MI InCo PVC WMNF21 CoKL

0.1 37.38/1.68 40.64/2.62 28.10/7.13 29.60/6.25 26.26/6.43

0.2 28.03/1.47 39.32/1.61 24.81/3.23 28.98/6.26 30.23/2.77

0.3 26.96/1.97 39.07/1.96 20.60/0.51 22.62/3.85 25.15/6.13

0.4 24.42/1.45 36.76/1.74 17.23/4.11 21.57/0.83 19.96/5.89

0.5 17.41/1.92 31.01/4.00 13.52/1.59 14.09/1.77 24.01/2.07

Inf Sci (N Y). Author manuscript; available in PMC 2020 August 28.

I I I I I 



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chao et al. Page 32

Ta
b

le
 4

:

C
om

pa
ri

so
n 

of
 c

lu
st

er
in

g 
pe

rf
or

m
an

ce
 in

 th
e 

ac
cu

ra
cy

 m
ea

su
re

 w
ith

 d
if

fe
re

nt
 ρ

 v
al

ue
s.

 “
Fu

ll”
 in

di
ca

te
s 

th
e 

re
su

lt 
ob

ta
in

ed
 o

n 
th

e 
fu

ll 
da

ta
 m

at
ri

x,
 “

M
I”

 

in
di

ca
te

s 
th

e 
cl

us
te

ri
ng

 r
es

ul
ts

 o
n 

im
pu

te
d 

da
ta

, “
In

C
o”

 c
or

re
sp

on
ds

 to
 th

e 
re

su
lts

 o
f 

ou
r 

m
et

ho
d 

on
 th

e 
in

co
m

pl
et

e 
da

ta
. N

ot
e 

th
e 

di
gi

ts
 b

ef
or

e 
/ i

nd
ic

at
e 

th
e 

ac
cu

ra
cy

 v
al

ue
s 

(%
) 

w
hi

le
 th

e 
di

gi
ts

 a
ft

er
 / 

in
di

ca
te

 th
e 

st
an

da
rd

 d
ev

ia
tio

ns
 (

%
).

T
ri

al
 1

T
ri

al
 2

T
ri

al
 3

T
ri

al
 4

T
ri

al
 5

F
ul

l
43

.2
44

.5
44

.7
45

.5
44

.8
0

ρ
M

I
In

C
o

M
I

In
C

o
M

I
In

C
o

M
I

In
C

o
M

I
In

C
o

0.
1

32
.8

3/
0.

57
34

.5
0/

5.
5

32
.0

0/
0.

68
34

.1
2/

5.
74

33
.3

4/
0.

69
38

.3
4/

5.
58

30
.8

0/
0.

83
38

.5
8/

1.
42

33
.5

8/
0.

75
40

.2
0/

1.
29

0.
2

34
.3

0/
0.

74
37

.2
1/

1.
81

33
.7

4/
1.

43
34

.3
6/

5.
67

31
.9

2/
0.

84
38

.3
6/

5.
36

33
.0

4/
1.

16
36

.5
8/

4.
97

33
.3

9/
0.

98
39

.7
2/

1.
04

0.
3

32
.4

5/
0.

20
32

.5
2/

5.
66

32
.3

9/
2.

14
33

.6
8/

5.
21

32
.6

4/
2.

75
38

.3
0/

5.
44

32
.5

0/
2.

57
37

.8
0/

4.
98

33
.2

5/
1.

43
37

.9
8/

5.
19

0.
4

33
.9

3/
0.

42
29

.3
2/

4.
22

33
.7

2/
2.

87
33

.8
4/

4.
78

30
.3

2/
4.

38
33

.1
1/

1.
97

32
.1

8/
3.

94
33

.8
6/

4.
98

33
.0

6/
3.

82
32

.8
8/

5.
71

0.
5

32
.6

7/
1.

10
32

.9
2/

4.
71

32
.6

0/
1.

23
32

.7
2/

5.
80

30
.6

2/
5.

19
35

.0
3/

2.
06

33
.7

0/
1.

89
33

.5
8/

3.
93

31
.8

8/
1.

59
33

.9
6/

5.
51

Inf Sci (N Y). Author manuscript; available in PMC 2020 August 28.

------ --

------ --

------ --

,__ -- --

------ --



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chao et al. Page 33

Table 5:

Comparison of clustering performance in terms of the Acc measure with different ρ values. “Full” indicates 

the result obtained on the full data matrix, “MI” indicates the clustering results on imputed data, “InCo” 

corresponds to the results of our method on the incomplete data, “PVC” indicates the result of partial multi-

view clustering, “WMNF21” indicates the result of multiple incomplete views clustering via weighted 

nonnegative matrix factorization with L2, 1 regularization, CoKL indicates the result of clustering on multiple 

incomplete datasets via collective kernel learning. Note the digits before / indicate the Acc values (%) while 

the digits after / indicate the standard deviations (%).

Full 44.85

ρ MI InCo PVC WMNF21 CoKL

0.1 33.58/0.75 40.20/1.29 21.71/6.56 40.26/1.23 40.73/3.37

0.2 33.39/0.98 39.72/1.04 18.93/3.08 38.93/6.29 38.83/2.74

0.3 33.25/1.43 37.98/5.19 15.13/0.98 35.03/5.88 37.53/5.32

0.4 33.06/3.82 32.88/5.71 12.31/3.40 31.60/1.99 32.96/4.88

0.5 31.88/1.59 33.96/5.51 10.56/1.31 30.93/2.24 32.10/1.13
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Table 7:

Comparison of clustering performance in terms of the RI measure with different ρ values. “Full” indicates the 

result obtained on the full data matrix, “MI” indicates the clustering results on imputed data, “InCo” 

corresponds to the results of our method on the incomplete data, “PVC” indicates the result of partial multi-

view clustering, “WMNF21” indicates the result of multiple incomplete views clustering via weighted 

nonnegative matrix factorization with L2, 1 regularization, CoKL indicates the result of clustering on multiple 

incomplete datasets via collective kernel learning. Note the digits before / indicate the accuracy values (%) 

while the digits after / indicate the standard deviations (%).

Full 76.35

ρ MI InCo PVC WMNF21 CoKL

0.1 67.38/0.54 74.34/1.46 54.75/7.46 71.10/3.67 68.7¼.14

0.2 67.51/0.95 73.62/0.88 53.54/4.42 70.58/2.49 66.86/0.79

0.3 67.70/0.65 73.55/2.41 47.18/4.39 68.78/1.37 65.88/0.53

0.4 67.41/2.23 70.60/2.44 44.26/2.99 67.63/0.67 65.77/1.01

0.5 66.88/0.70 70.55/3.02 44.10/1.22 65.10/1.18 63.94/0.38
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Table 8:

The statistical test results of the top five significant (the smallest 5 p values) variables between the two groups 

for the time window setting.

The top 5 variables p value

Change in craving for heroin after cue exposure at baseline 0.0316

Beck depression inventory at baseline 0.1020

Change in feeling high for other drugs after cue exposure at baseline 0.1857

Change in subjective opioid withdrawal scale after cue exposure at baseline 0.2501

Change in craving for other drugs after cue exposure at baseline 0.2737

Inf Sci (N Y). Author manuscript; available in PMC 2020 August 28.


	Multi-View Cluster Analysis With Incomplete Data to Understand Treatment Effects
	Original Publication Citation
	Authors

	Abstract
	Introduction
	Incomplete Data in Treatment Study
	Subjects and Assessment
	Missing Data

	Multi-view Co-clustering with Incomplete Data
	The optimization formulation
	The optimization algorithm
	Compute (uk)t+1 using ωt, (uk)t and (vk)t
	Compute (vk)t+1 using ωt, (uk)t+1 and (vk)t
	Compute ωt+1 using ωt, (uk)t+1 and (vk)t+1


	Experiments
	Simulations
	Case study: XRNTX treatment of heroin use disorder
	Connections between different variable types
	Connections between different time windows


	Discussion and Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:
	Table 6:
	Table 7:
	Table 8:

