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Abstract
Asynchronous iterative methods may improve the
time-to-solution of their synchronous counterparts on
highly parallel computational platforms. This paper
considers asynchronous iterative linear system solvers
that employ non-uniform randomization and develops
a new implementation for such methods. Experiments
with a two-dimensional finite-difference discrete
Laplacian problem are presented. The new finer grain
implementation is compared with an existing block-
based one and shown to be superior in terms of the
convergence speed and accuracy. In general, using
non-uniform distributions in selecting components to
update may lead to faster convergence. In particular,
the new implementation converges up to 10% faster
when it uses a non-uniform distribution.

1 Introduction
Asynchronous iterative methods describe a class of
parallel iterative algorithms where each computing el-
ement is allowed to perform its task without waiting
for updates from any of the other processes. These
methods are often applied to the parallel solution of
fixed-point problems and have been used in a wide va-
riety of applications including: the fault-tolerant solu-
tion of linear systems (Anzt, Dongarra, & Quintana-
Ortı́, 2019), the preconditioning of linear solvers
(Chow & Patel, 2015), and optimization (Recht et al.,
2011), among many others. These solvers tend not to
converge to high precision as quickly as their Krylov
subspace counterparts; however, they can converge
very quickly to a low level of accuracy (Avron, Druin-
sky, & Gupta, 2015). This loss of accuracy may cause

the use of asynchronous linear solvers to be subopti-
mal for some applications, but the fact that they are
able to reach an approximate solution quickly opens
up several other application areas. Possible use cas-
es include preconditioning to a Krylov method, solv-
ing systems that may not need a high level of accuracy
(e.g., big data and machine learning), or smoothing a
multigrid method.

Here we study asynchronous iterative methods for
solving linear systems of the form 𝐴𝑥 = 𝑏, such as
asynchronous Jacobi. One way to attempt to improve
the performance of asynchronous linear solvers is to
have each processor select randomly the (block of)
components it updates next, as opposed to fixing an
update order a priori. This approach has been studied
previously by Avron, Druinsky, and Gupta (2015) for
the case where the random selection is done uniformly.
Our work continues to investigate the potential perfor-
mance increase of dynamically weighting the random
selection of the next component to update. In the syn-
chronous case, weighting the selection using the norm
of the row of 𝐴 associated with the selected compo-
nent has been done previously (Strohmer & Vershynin,
2009; Leventhal & Lewis, 2010; Griebel & Oswald
2012). However, the idea employed here is to peri-
odically sort and rank the residuals associated with
each component and make the random selection using
a non-uniform distribution that is more likely to select
components with a larger contribution to the residual.
This is motivated by the success of weighted stationary
solvers, such as the Southwell iteration, which typical-
ly converge in fewer iterations than traditional Jacobi
or Gauss-Seidel relaxation schemes (see e.g., South-
well (1946) and Wolfson-Pou and Chow (2017)).
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In a previous work, we have already studied the
use of non-uniform distributions for selecting com-
ponents to update (Coleman, Jensen, & Sosonkina,
2019). The present work extends that work by making
the following new contributions:

• Propose a new row-based randomized asynchro-
nous linear solver with a significantly different
approach to the selection of components to up-
date;

• Develop an alternative component ordering cri-
terion that uses component differences instead of
residuals;

• Observe experimentally that new row-based
solver exhibits convergence in fewer component
relaxations than serial Gauss-Seidel;

• Compare the performance of the block- and row-
based solvers and demonstrates that the proposed
new row-based solver improves upon the block-
based one.

The structure of the rest of the paper is as follows.
Section 2 provides information on related studies. Sec-
tion 3 gives an overview of asynchronous iterative
methods. Section 4 provides the design of randomized
asynchronous iterative solvers that use non-uniform
distributions. Section 5 presents the experimental re-
sults of the two implementations considered in this
work and their comparisons. Section 6 concludes and
proposes some future works.

2 Related Work
The Department of Energy has commissioned two
very detailed reports about the progression towards ex-
ascale level computing; one from a general computing
standpoint conducted by Ashby et al. (2010), and a re-
port aimed specifically at applied mathematics for ex-
ascale computing by Dongarra et al. (2014); both of
which emphasize the importance of developing scal-
able algorithms moving forward towards exascale
platforms. Development of scalable applications on a
large scale starts with modifying algorithms that form
the basis for those applications, and the stationary iter-
ative methods examined here (e.g., Jacobi, Gauss-Sei-
del, block variants) form an important aspect of many
preconditioning techniques for Krylov subspace meth-
ods, as well as commonly acting as smoother in multi-
grid methods.

Several recent studies focus on improving scalabil-
ity by attempting to remove the synchronization delay:
a fine-grained algorithm for computing incomplete LU
factors for the purposes of preconditioning of linear
solvers was created by Chow and Patel (2015), an op-
timization technique based upon an asynchronous ap-
proach to stochastic gradient descent was created by
Recht et al. (2011), and the efficacy of asynchronous
multigrid smoothers was explored for Computational
Fluid Dynamics (CFD) applications in (Kashi, Van-
gara, & Nadarajah, 2018).

Algorithm 1 General Computational Model
1: for each processing element do
2: for until convergence do
3: Read from shared memory
4: Compute for all

5: Update in common memory with

for all
6: end for
7: end for

The use of randomization in linear algebra has
found use in a variety of areas including transforming
linear systems using Random Butterfly Transforma-
tions to eliminate (with probability 1) the need for piv-
oting. This has been used to aid in the performance
of direct solvers for dense matrices by Parker (1995),
and later adopted for sparse matrices by Baboulin, Li,
and Rouet (2015). Other examples include the ran-
dom component selection in stochastic gradient de-
scent methods, including an early study in Srivastava
and Nedic (2011) that incorporates asynchronous com-
putation. More pertinent to the topic studied here, ran-
domized linear relaxation based solvers have been
studied in the past by Strikwerda (2002) who extend
the original asynchronous model presented by Chazan
and Miranker (1969) to allow component choice and
(theoretical) delay to be based upon probability distri-
butions.

The present work follows a greedy approach, sim-
ilar in spirit to the Southwell iteration. Wolfson-Pou
and Chow (2017) extend a Southwell-oriented ap-
proach to the case of parallel asynchronous solvers,
whereby an equation is relaxed if it has the largest
residual among all coupled equations.

3 Overview of Asynchronous Iterative
Methods
In asynchronous computation, each part of the prob-
lem is updated such that no information from other
parts is needed while each individual computation is
performed. This allows each processor to act indepen-
dently. The model that is shown here to provide a ba-
sis for asynchronous computation comes mainly from
Frommer and Szyld (2000). To start, consider a fixed
point iteration with the function, 𝐺: 𝐷→ 𝐷. Given a fi-
nite number of processors 𝑃1, 𝑃2, …, 𝑃𝑝 each assigned
to a block 𝐵 of components 𝐵1, 𝐵2, …, 𝐵𝑚, the com-
putational model can be stated as shown in Algorithm
1.

If each processor (𝑃𝑙) waits for the other proces-
sors to finish each update, then the model describes a
parallel synchronous form of computation. If no order
is established for the processors, then the computation
is asynchronous.

At the end of an update by processor 𝑃𝑙, the com-
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ponents associated with the block 𝐵𝑃𝑙 will be updated.
This results in a vector,

, where 𝑠𝑙(𝑘) indi-

cates how many times component 𝑙 has been updated,
and 𝑘 is a global iteration counter that is updated every
time that any processing element makes an update. A
set of indices 𝐼𝑘 contains the components that were up-
dated on the 𝑘th iteration. Given these definitions, the
three following conditions provide a framework for
asynchronous computation:

Definition 1. If the following three conditions hold

1. , i.e., only components that have
finished computing are used in the current ap-
proximation.

2. , i.e., the newest updates
for each component are used.

3. , i.e., all components

will continue to be updated.

Then given an initial , the iterative update
process defined by,

where each uses the latest updates available, is
called an asynchronous iteration.

This basic computational model provided by the
combination of Algorithm 1 and Definition 1 allows
for many different results on fine-grained iterative
methods. In particular, our earlier work (Coleman,
Jensen, & Sosonkina, 2019) introduced a block-based
randomized asynchronous linear solver that uses non-
uniform distributions for dynamically prioritizing
components to update.

Relaxation methods have been the focus of many
studies related to asynchronous iterations starting with
Chazan and Miranker (1969). They are typically used
to solve linear systems of the form 𝐴𝑥 = 𝑏 and can be
written as fixed point iterations that can be expressed
as

where 𝐶 is the 𝑛 × 𝑛 iteration matrix, 𝑥 is an 𝑛-dimen-
sional vector that represents the solution, and 𝑑 is an-
other 𝑛-dimensional vector that can be used to help de-
fine the particular problem at hand. The Jacobi method
is a relaxation method that can be used in an asynchro-
nous manner and the update for a given component 𝑥𝑖
can be expressed as

This iteration can give successive updates to the 𝑥𝑖
component in the solution vector. In synchronous com-
puting environments, each update to an element of the
solution vector, 𝑥𝑖, is computed sequentially using the
same data for the other components of the solution
vector (i.e., the values for 𝑥𝑗 in Equation (2)). Con-
versely, in an asynchronous computing environment,
each update to an element of the solution vector occurs
when the computing element responsible for updating
that component is ready to write the update to memory
and the other components used are simply the latest
ones available to the computing element. Expressing
Equation (2) in a block form similar to Equation (1)
gives an iteration matrix of 𝐶 = –𝐷–1(𝐿 + 𝑈) where 𝐷
is the diagonal portion of 𝐴, and 𝐿 and 𝑈 are the strict-
ly lower and upper triangular portions of 𝐴 respective-
ly. Convergence of asynchronous fixed point methods
of the form presented in Equation (1) is determined by
the spectral radius of the iteration matrix, 𝐶.

Theorem 1. For a fixed point iteration of the form
given in Equation (1) that adheres to the asynchronous
computational model provided by Algorithm 1 and De-
finition 1, if the spectral radius of 𝐶, ρ(|𝐶|) , is less
than one, then the iterative method will converge to the
fixed point solution.

If 𝑥* is the fixed point of the iteration defined by
the matrix 𝐶, then convergence is given by ensuring
that the error at a given iteration, ‖ 𝑥(𝑚) – 𝑥* ‖, is suffi-
ciently small. In practice, this is accomplished by ver-
ifying that the residual, 𝑟(𝑘) = 𝑏 – 𝐴𝑥(𝑘), is beneath a
given threshold. Asymptotic results such as this, i.e.,
that guarantee eventual convergence but offer no guar-
antee as to the rate of that convergence, exist for many
variants of the iteration described above (see Frommer
and Szyld (2000) for a summary).

3.1 Randomized Linear Solvers
The use of randomization in asynchronous linear
solvers allows for the possibility of statements con-
cerning the rate of convergence to be made. A random-
ized Gauss-Seidel method was introduced by Leven-
thal and Lewis (2010) building off of the randomized
Kaczmarz algorithm proposed by Strohmer and Ver-
shynin (2009), whereby the decrease in the expected
value of the error at each step is bounded. The analy-
sis was generalized by Griebel and Oswald (2012) who
also added a new parameter that allows for both over
and under relaxation. Both of these studies weight the
random selection of row 𝑖 by the size of the element
𝑎𝑖𝑖 ∈ 𝐴. In the case that 𝐴 has unit diagonal this sim-
plifies to a uniform distribution. More recently, Avron,
Druinsky, and Gupta (2015) build upon the analysis by
Leventhal and Lewis (2010) and Griebel and Oswald
(2012) and explicitly analyze the case of asynchronous
computation with a uniform distribution.

All of the methods select the vector component to
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update from a random distribution instead of either se-
quentially looping through the available components
or by tying the updates for a single component to a
particular processor (see Equation (2)). In a tradition-
al parallelization of either a synchronous or asynchro-
nous linear solver, processor 𝑗 is responsible for up-
dating component 𝑗; the asynchronous variant allows
processor 𝑗 to continue to compute relaxations for the
component assigned to it regardless of the state of the
other processors. The use of randomization in the se-
lection of which component to update allows for the
possibility of any processor updating any component.
In a randomized asynchronous linear solver, when a
processor finishes computing an update to a compo-
nent, it writes the update to the shared memory and
then randomly draws the next component to update
from the list of all available components. In the ran-
domized asynchronous linear solvers proposed by oth-
ers to date, this random selection is always done us-
ing either uniform random number generation, or with
a probability proportional to a row norm of the matrix
𝐴. Leventhal and Lewis (2010) cite Fourier analysis as
an application area that can benefit from this type of
weighting; however, there is no reason not to expect
improved behavior for an arbitrary problem. The au-
thors have proposed in Coleman, Jensen, and Sosonk-
ina (2019) to use the non-uniform distributions in the
asynchronous Jacobi iterative method. In this work,
efficient implementations of such an iterative method
are investigated.

3.2 Southwell Algorithm
The Southwell algorithm (Southwell, 1946) works
similarly to Jacobi by relaxing a single equation at a
time, but chooses the equation with the largest local
contribution to the residual. For a given row 𝑖, this lo-
cal contribution is defined to be

at iteration 𝑘. This difference allows the Southwell al-
gorithm to often converge in fewer iterations than Ja-
cobi, but raises the expense of computing an update
since the local residuals need to be stored and ranked
at each iteration. After a given iteration, the Southwell
algorithm chooses the component that contributes the
most to the global residual; thus, the algorithm ranks
the residuals from largest to smallest. Using the insight
from the Southwell algorithm, the idea behind the ran-
domized linear solvers developed here is for each
processor to select the next component for updating
randomly, using a distribution that more heavily
weights selection of components that contribute more
to the global residual. Pseudo-code for a randomized
variant is provided in Algorithm 2. The key difference
of the present work is that here non-uniform distribu-
tions in Line 3 of Algorithm 2 are investigated.

In an effort to simulate the effect of the Southwell
algorithm using randomized asynchronous solvers, the

Algorithm 2 Generic Randomized Linear Solver
1: for each processing element do
2: for until convergence do
3: Pick using a given prob-

ability distribution
4: Read the corresponding entries of
5: Perform the relaxation for equation
6: Update the data for
7: end for
8: end for

local residuals associated with each equation (or block
of equations) are ranked and sorted, and the selection
of the next equation (i.e., component) to update is per-
formed using a non-uniform distribution that forces
the random selection to pick components with larger
local residuals more frequently. The goal behind the
proposed modification is that relaxing the components
with a more significant contribution to the global
residual may reduce the total number of iterations re-
quired. Motivation for this comes from a myriad of
different studies, see for instance Nutini et al. (2015)
that shows that for some cases (Gauss-)Southwell se-
lection can converge faster than uniform random se-
lection for coordinate descent. In general, the improve-
ment in convergence will have to be shown to be sig-
nificant enough to offset the extra computational and
communication cost associated with storing and rank-
ing all of the local residuals. To help offset the in-
creased computational expense, the periodicity with
which the sorting and ranking procedures are done is
experimented with since it contributes directly to the
overall efficiency of the algorithm.

4 Asynchronous Solver Design with
Non-Uniform Distributions
The focus here is initially on the potential performance
of different randomized asynchronous linear solvers
through a series of tests in MATLAB® (Section 4.2),
followed by the descriptions of two shared-memory al-
gorithms, a block-based (Section 4.3) and a novel row-
based (Section 4.4).

4.1 Problem Description
This work examines the asynchronous Jacobi relax-
ation algorithm for solving finite-difference discretiza-
tions of Partial Differential Equations (PDEs) on a reg-
ular grid. In science and engineering, PDEs mathemat-
ically model systems in which continuous variables,
such as temperature or pressure, change with respect
to two or more independent variables, such as time,
length, or angle (Smith, 1985). The specific problem
under study here is Laplace equation in two dimen-
sions:
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(a) 2D problem (5-pt stencil, 10 × 10 grid). (b) 3D problem (27-pt stencil, 10 × 10 × 10
grid).

Figure 1. Residual (𝑟 / 𝑟0) progression for the first 10,000 iterations of four stationary methods solving the 2D
(a) and 3D (b) Laplacian.

where the two-dimensional finite-difference dis-
cretization uses Dirichlet boundary conditions. This
PDE, which is a fundamental equation for modeling
equilibrium and steady state problems, is also used in
more complex problems based on PDEs. Equation (3)
may be discretized such that a finite difference oper-
ator computes difference quotients over a discretized
domain. For example, the two-dimensional discrete
Laplace operator

approximates the two-dimensional continuous Lapla-
cian using a five-point stencil (Lindeberg, 1990). From
this, a discretized version of the Jacobi algorithm

may be applied to solve a two-dimensional sparse lin-
ear system of equations (Strikwerda, 2004). Indices 𝑙,
𝑚, and 𝑘 define discrete grid nodes in two dimensions
and the iteration number, respectively, for updating the
discretized solution vector 𝑣.

In the particular instance of this 2D Laplacian
problem, as solved with the Jacobi method here, the
grid of 800 × 800 is used to obtain experimental re-
sults, the Dirichlet boundary conditions are 100, 0, 75,
and 50 for the top, bottom, left, and right boundaries,
respectively; the solution vector 𝑣 is initilalized to 0 in
each non-boundary grid point, and the right-hand side
vector 𝑏 is equal to the initial 𝑣.

4.2 Proof-of-Concept
Preliminary experiments are performed using MAT-
LAB® to demonstrate the improvement in conver-
gence with Southwell and with non-uniform compo-
nent selection, compared with Jacobi and with uniform
component selection, for the problem tested in this
work. As an example of potential convergence rates,
Figure 1 shows the progression of the residuals over
the first 10,000 iterations when solving the two- and
three-dimensional finite-difference discretizations of
the Laplacian over a 10 × 10 and 10 × 10 × 10 grids,
respectively. Here, the four solution methods used are
the traditional synchronous Jacobi algorithm, a tradi-
tional Southwell algorithm, and two randomized linear
solvers: one choosing the component to update using
a uniform random distribution, and another using an
exponential random number distribution with the pa-
rameter λ = 2. Note that the convergence of the ran-
domized linear solver using the uniform distribution is
slightly inferior to traditional solvers and to the one
with exponential distribution. The latter performs on
par with the Southwell, both in the 2D (Figure 1a) and
3D (Figure 1b) cases.

4.3 Block-based Algorithm
The following block-based algorithm design has been
introduced in Coleman, Jensen, and Sosonkina (2019)
and is provided here as the reference for a wider per-
formance analysis and comparison with the novel,
row-based, algorithm. In the task-based asynchronous
solver, a thread chooses a block of grid rows to update
by sampling from a distribution. The number it draws
corresponds to an index in a list of blocks, ranked in
order of descending component residuals. For exam-
ple, if a thread draws the number zero from the dis-
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Figure 2. Block assignment used in the 800 × 800
grid of the example problem. The blocks consist of all
components in a five-row section of the grid. This in-
corporates 4000 of the 640,000 grid points into each
block resulting in blocks.

tribution, it will update the block-row of components
with the largest residual, assuming that block is not be-
ing updated by another thread. In the case that a thread
selects a block that is already being worked on by an-
other thread, the selecting thread searches sequentially
either up or down in the rankings until it finds an avail-
able block.

Initially, block residual rankings are assigned via
a natural ascending ordering (see Figure 2). A single
thread, denoted the residual ranking thread, is tasked
with computing the component residuals, sorting the
residual rankings, and updating the global ranking list
that all the threads use to select blocks for updating.
Note that using a single thread leads to a more accurate
global ranking list and does not result in a bottleneck
for a moderate number of threads. For large-scale dis-
tributed implementations, a different ranking proce-
dure has to be developed.

In this work, the residual ranking thread performs
ranking and list-updating after every five iterations of
the linear system solver. Essentially, Algorithm 2 may
be modified to include ranking periodicity τ as shown
in Algorithm 3. This ranking period needs to be cho-
sen judiciously, depending on several factors, such as
the number 𝑚 of relaxations performed, the number of
threads used, and the number of block-rows to rank.
Here, τ = 5 was found experimentally to mitigate the
ranking overhead for the obtained number of iterations
to convergence, while the number of relaxations was
varied. A more detailed investigation of the ranking
periodicity is warranted and left as future work.

Algorithm 3 Block Variant of Randomized Linear
Solver

1: Input: ranking period , number of block-rows
, number of block-relaxations , probability dis-
tribution function

2: Set counter for all block relaxations
3: for each thread do
4: for until convergence do
5: if thread is master and

then
6: Rank and sort block residuals
7: end if
8: Pick using
9: Perform relaxations on block

10: Update the data for
11:

12: end for
13: end for

4.4 Row-based Algorithm
Algorithm 4 illustrates a novel row-based method.
Similarly to Algorithm 3, the master thread periodical-
ly, every τ relaxations, ranks and sorts the rows (line
20). However, there are several important distinctions
between the two algorithms, due to which Algorithm
4 exhibits better performance. In line 10, a thread uses
a probability distribution function 𝑓 to select a single
target row to relax instead of a block of rows shown
in Algorithm 3, and then transitions from the current
(start) row r ̃ to the target row 𝑟𝑣 by relaxing all the
rows between r ̃ and 𝑟𝑣 in their natural ordering, instead
of jumping to the target row to relax next as done in the
block-based implementation (Algorithm 3). Further-
more, while making this transition, a thread may move
inward the domain or toward its top or bottom bound-
ary rows, depending on the direction of the shortest
distance 𝑑𝑣 from the current start row to the target (see
Equation (4)).

where 𝑛 is the total number of rows in the subdomain,
and the direction of progression to the target is toward
and across the boundary if the first term in Equation
(4) is taken as 𝑑𝑣; otherwise, the boundary is not
crossed. The former is also chosen when the terms are
equal. Then, in line 13, the nextr function assigns
the next row number to consider by decrementing or
incrementing the row number r ̃ for the boundary or
non-boundary progression direction, respectively; and
performing circular shift of the row numbers if they
reach the boundary. Note that fewer than 𝑑𝑣 rows may
be relaxed if certain rows in the path towards the tar-
get row are not free, i.e., they are already being relaxed
by another thread at the time of their consideration,
as specified by the conditional statement in line 14. A
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Table 1. Comparison of the row difference method rank with the row residual rank,
for all rows, at various row ranking iterations during the calculation. Correlation coef-
ficient 𝑅 quantifies magnitude and direction of relationship.

Row Ranking Iteration 0 20𝑒3 40𝑒3 60𝑒3 80𝑒3 100𝑒3 120𝑒3 1400𝑒3

𝑅 0.99 0.99 0.96 0.95 0.97 0.96 0.97 0.98

Algorithm 4 Row-Based Variant of Randomized Lin-
ear Solver

1: Input: probability distribution function , ranking
period , number of rows

2: Set row-sum differences
, where

is row-sum difference between adjacent relax-
ations of row and is the largest double-
precision number

3: Set row ranking as ascending natural ordering
4: Set sorted rows
5: Set counter for all row relaxations
6: for each thread do
7: Set for initial thread tar-

get row
8: for until convergence do
9: Set previous target as new start row

10: Set target row from sorted rows using

11: Compute shortest distance as in Equation
(4)

12: for do
13: Assign next row as

described in Section 4.4
14: if is free then
15: Perform a relaxation of
16: Update the data for
17: Compute row-sum difference as in

Equation (5)
18: Set
19: if thread is master and

then
20: Update ranking and sorted rows

based on
21: end if
22: end if
23: end for
24: end for
25: end for

shared array of size 𝑛 maintains row availability, in
which a threads "locks" the row number while it relax-
es that row and releases the lock upon finishing the op-
erations in lines 15–20.

The use of the shortest distance is motivated by an
attempt to adhere to the ranking order of rows while

also relaxing in the neighborhood of the target row;
thereby, making the transition to the target smoother.
Additionally, in a distributed-memory environment,
the ability to more frequently relax boundary rows
may facilitate a better data movement among subdo-
mains possibly leading to a faster convergence. Anoth-
er distinction between the block-based implementation
and the row-based one is that the row-based performs
the ranking of rows using row-sum differences instead
of residuals. In particular (see line 17), after every row
r ̃ relaxation, a thread performs a summation σr ̃ of the
absolute values of all the components in r ̃ and updates
the row-sum difference σr ̃

where is the sum taken after the previous relax-
ation of r.̃ This difference σr ̃ is assumed to be decreas-
ing between the two adjacent relaxations and arbitrar-
ily small when the algorithm has converged. A strong
linear relationship has been observed between the row
difference method rank and the row residual rank dur-
ing the entire convergence process. Table 1 presents a
small sample of representative correlation coefficients
𝑅 at regular intervals throughout a sample calculation,
which quantify the magnitude and direction of this re-
lationship. Of the hundreds of thousands of comput-
ed correlation coefficients, the minimum and mean co-
efficients are 0.77 and 0.96, respectively, with a stan-
dard deviation of 0.02. Using this difference instead
of residuals decreases the computational overhead of
ranking the rows. In particular, finding the row differ-
ence requires about 7 times fewer floating point oper-
ations per iteration than when using the row residual
for this problem. Note, that, while it is shown that the
difference-ranking method works for this sample prob-
lem, it has not been tested with other types of prob-
lems.

5 Implementation Results
The block-based and row-based algorithms are imple-
mented and tested on two shared-memory computing
platforms. For both platforms and both implementa-
tions, results show that the calculation time decreas-
es using non-uniform distributions, compared with a
uniform distribution. Additionally, the row-based im-
plementation shows a decrease in iterations, compared
with Gauss-Seidel.
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Table 2. Experiment parameters for Block-based and Row-based implementations run
on Rulfo and Wahab platforms (column Hardw). The number of OpenMP® threads is
shown in column Thrds. The problem (grid) size is shown in column Grid. The number
of rows considered by a thread at a time is given in column Block. Input tolerance for
the algorithm convergence is provided in column Tol, while the ranges of the normal (μ,
σ) and exponential λ distribution parameters are provided in columns Norm and Expo, re-
spectively.

Hardw Thrds Grid Block Tol Norm Expo

Block-based Rulfo 63 800 × 800 5 1𝑒-3 (16–54,8) 0.01–0.8

Block-based Wahab 40 800 × 800 5 1𝑒-3 (16–40,8) 0.01–0.8

Row-based Wahab 40 800 × 800 1 1𝑒-3 (80–400,40) 0.002–0.16

5.1 Experimental Design
The experiments using OpenMP® are conducted on
two computing platforms at Old Dominion Univer-
sity1. The Rulfo system has an Intel® Xeon Phi™

Knight's Landing 7210 model processor with 64 cores
running at 1.30 GHz and 112 GB of DDR4 physical
memory used as DRAM in these experiments. One
thread per core is utilized, with one core reserved for
interfacing with the operating system, resulting in 63
computational threads for the experiments in Section
5.2. On the Wahab system, a single node of the cluster
is utilized, containing two Intel® Xeon Gold 6148
CPUs each with 20 physical cores and 376 GB of
DDR4 memory. The code uses standard C++ routines
for sorting residuals and generating random numbers,
with the default parameters and the built-in distribu-
tions. Experimental parameters are presented in Table
2.

5.2 Block-based Implementation on Rulfo
For block selection, three different distributions are
tested. The uniform distribution is used as a control;
a thread may select any block with equal probability.
The normal distribution is used to examine the effects
of targeting different segments of blocks in the rank-
ings, i.e., blocks with lower ranks and higher residuals
versus blocks with higher ranks and lower residuals.
This is achieved by varying the mean parameter μ
while keeping the standard deviation σ fixed in the
normal distribution. The exponential distribution, with
the mode λ close to zero, will tend to sample lower-
ranked blocks.

For both normal and exponential distributions, the
algorithm convergence may be observed in Figure 3
and Figure 4, respectively. In the figures through-
out Section 5, the term Recording Iteration points out
that the data is recorded by a thread every 1,000 it-
erations. For the normal distribution, it may be ob-
served in Figure 3a that the convergence rate depends
strongly on μ: Its smaller values (up to μ = 46) lead to
rapid convergence whereas, at μ = 46, the convergence

Figure 5. BBI convergence history comparisons
among distributions in the best case.

sharply deteriorates. This may be also observed when
considering the time-to-solution in Figure 3b. Due to
very slow convergence, at large μ values, the normal
distribution becomes extremely non-competitive with
the uniform distribution, which timing is shown as red
dashed line in Figure 3b. Figure 4a shows that the pa-
rameter λ for the exponential distributions does not
have as much an impact on performance as the para-
meter μ does so for the normal distribution runs. As
λ moves farther away from zero, however, it hinders
convergence and the exponential distribution results in
slower timings than those obtained with the uniform
distribution as seen in Figure 4b. Once the best para-
meter choices are found for normal and exponential
distributions, their performances compare favorably to
the uniform distribution (Figure 5), and up to 10% and
13% fewer iterations are observed, respectively.

Figure 6 provides a more detailed explanation for
performance differences based on the selection of μ.
In particular, Figure 6a and Figure 6b depict that the
ordered component residual values for μ equal to 16
and 44 are nearly indistinguishable. However, when μ
increases to 48 (Figure 6c) and then again to 52 (Fig-

Randomized Asynchronous Linear Solvers

6:8 / 6:18

'C - --------;==========;-' 
~ 1 o5 Dist., Param. 
ca - Norm., µ=16 
6- - Expo,>..=0.02 
tn - Uniform 
iu 
:::, 
'C 10° ·;;; 
Cl) 
a: 
iu 
.Q 
0 a rn-5 

L__ __ ~---~-- ______:-,,"""---- :::--..._ __J 

0.2 0.4 0.6 0.8 

Recording Iteration ( x 104) 



(a) Convergence history. For a given μ, '-1',
…, '-5' enumerate the runs.

(b) Time-to-solution: minimum, average,
and maximum timings over 5 runs.

Figure 3. BBI convergence for normal distribution.

(a) Convergence history. (b) Time-to-solution: minimum, average,
and maximum timings over 5 runs.

Figure 4. BBI convergence for exponential distribution.

ure 6d) residuals of the lowest-ranked blocks decrease
slowly while the residuals of all other blocks decrease
more quickly. Note that all the block-based implemen-
tation (BBI) experiments use 8 for σ, which is appro-
priate for all the chosen μ ranges of 16 to 54 on Rulfo
and 16 to 40 on Wahab.

Figure 7a and Figure 7b show that, for the mini-
mum and maximum values of λ, respectively, the com-
ponent residual decrease is balanced among the com-
ponent ranks as iterations progress.

5.3 Row-based Implementation on Wahab
The results of the BBI show that non-uniform proba-

bility distribution functions may be used to efficiently
select components to update, leading to convergence
for the sample problem used in this work. However,
relaxing blocks of rows asynchronously tends to clus-
ter errors on block boundaries, and thereby hindering
convergence. A row-based implementation (RBI) has
been introduced to mitigate this problem. Here, the
RBI solves the same sample problem in shared mem-
ory as BBI (see Section 5.2). Recall that RBI does
not consider blocks of rows to be relaxed by a single
thread. Instead, a thread selects only a single row to re-
lax at a time.

For row selection, as with the BBI, the same three
distributions are tested. Again, the uniform distribu-
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(a) μ = 16 (b) μ = 44

(c) μ = 48 (d) μ = 52

Figure 6. Block-row residuals for calculations using normal distributions.

tion is used as a baseline for comparison with the nor-
mal and exponential distributions. Similar to the BBI
experiments, the normal and exponential distributions
are geared to consider different ranges of row num-
bers by, respectively, keeping the standard deviation
σ parameter fixed and the parameter λ close to zero.
Figure 8a shows the diminishing row differences as
the system converges, and the disparity between the
rows with the least and greatest differences decreases.
In Figure 8b, initially the lowest-index rows have the
greatest differences since these are the boundary rows,
and in effect, the greatest discontinuity initially is be-
tween the top boundary and the first row of grid points
(see Section 4.1). Conversely, the least discontinuity
initially is between the bottom boundary and the last
row of grid points. These respective discontinuities are
reflected in the row component differences of consecu-
tive iterations, i.e., the top row initially changes quick-
ly, while the bottom row changes slowly. However, as
the calculation progresses, the change in the first rows

decreases. For most of the calculation, the middle rows
experience the most change.

For the normal distribution, Figure 9 shows the
effects of choosing appropriate and excessively large
values of the normal distribution mean parameter μ,
values of 80 and 400, respectively. Note that the nor-
mal distribution standard deviation parameter σ is kept
at 40, which is appropriate for the range of μ values
considered for RBI here. Compared with Figure 9a,
Figure 9b shows increased iterations, greater row-dif-
ference disparity between bottom and top-ranked
rows, and increasing row differences for ranks
300–400 during the first 1,000 iterations.

Similarly to Figure 8b, Figure 10 shows the rank
changes during the convergence processes albeit here
for the normal distribution for the same parameters as
in Figure 9. In Figure 10a with μ = 80, the middle rows
are targeted so frequently that the ranks of the rows
with the greatest differences are pushed outward, to-
ward the first and last ranks, much more than what
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(a) λ = 0.01 (b) λ = 0.8

Figure 7. Block-row residuals for calculations using exponential distributions.

(a) Row Differences. (b) Row Rankings.

Figure 8. Progression of row differences and rankings using a uniform distribution.

is observed for the uniform and normal with μ = 400
distributions (cf. Figure 8b and Figure 10b, respective-
ly). For μ = 400, because the lower-difference rows
are targeted more often, the group of high-ranked rows
(shown as the middle yellow band) does not shift ranks
to the extent seen with the uniform distribution in Fig-
ure 8b, and hence, is updated fewer times, which leads
to inferior convergence. This pattern is expected to
continue for μ > 400.

For the exponential distribution, Figure 11 and
Figure 12 show the progression of row differences and
rankings, respectively. Here, both small and large val-
ues of λ provide similar results and are equally effec-
tive, on par with good values of μ when using the nor-
mal distribution. The convergence history is present-

ed in Figure 13 for the three distributions and their re-
spective parameter choices considered for RBI. As ex-
pected, for the exponential distribution and the nor-
mal distribution with smaller μ of 80, the residual de-
creases more quickly than with the uniform distribu-
tion, whereas with the normal distribution parameter μ
= 400, the residual decreases the most slowly (see Fig-
ure 13).

5.4 Performance Comparison of Block-
and Row-based Implementations
Here, block- and row-based implementations are mu-
tually compared on the same platform, Wahab, as to
their number of relaxations and time to converge for a
range of non-uniform distribution parameters μ and λ,
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(a) μ = 80 (b) μ = 400

Figure 9. Progression of row differences using normal distributions.

(a) μ = 80 (b) μ = 400

Figure 10. Progression of row rankings using normal distributions.

as shown in Table 2.
Note that the distribution parameters in the row-

based implementation differ from those used by the
block-based one, which reflects the sorted array sizes
and different convergence behavior of the implemen-
tations. In particular, for the given test problem, the
BBI has 160 entities (blocks) to sort, while there are
800 entities (rows) to sort in the case of RBI. The dif-
ference in convergence behavior is especially evident
when comparing results from the two implementations
when both use normal distributions to select compo-
nents. In Figure 14a, for BBI, there is a distinct differ-
ence in results for μ = 44 and μ = 46. For RBI, Fig-
ure 14b shows a smoother transition between good and
poor normal distribution parameters. Note that good

and poor, respectively, are termed so because they
yield the calculation times faster and slower than those
for the uniform distribution test cases. In particular, the
poor distribution parameters are those starting with the
first μ that yields a significant jump in the calculation
time; and this percentage increase for RBI is taken to
be comparable with the one in BBI. By comparing the
results for the μ values in Figure 14a and Figure 14b,
it is seen that the RBI tolerates a much higher relative
value for μ than the BBI does so before significantly
degrading the performance. For example, while μ = 46
is already a poor choice for the BBI, μ = 230 (which is
equal to 46 × 5 rows in a block) is still well within the
range of good parameters for the RBI.

In addition, Figure 14a and Figure 14b compare
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(a) λ = 0.02 (b) λ = 0.16

Figure 11. Progression of row differences using exponential distributions.

(a) λ = 0.02 (b) λ = 0.16

Figure 12. Progression of row rankings using exponential distributions.

the block- and row-based implementation iterations
with the iterations of serial Gauss-Seidel (shown as red
horizontal lines), respectively, to converge for the sam-
ple problem. The BBI cannot converge in fewer than
serial Gauss-Seidel component relaxations even with
the best distribution parameters. The RBI, however,
converges in about 10% fewer component relaxations
than serial Gauss-Seidel, using non-uniform distribu-
tions with appropriate parameters. This happens con-
sistently, although it has been shown theoretically that
more component relaxations may be required when
threads update components asynchronously (Avron et
al., 2015). A better convergence in the RBI compared
with that in BBI may be attributed to the (fine-grained)
ranking of rows rather than blocks and to relaxing

all the rows on the path from the current and the se-
lected target one. Such a relaxation process leads to
a smoother transition between rows and possibly to
relaxations of more rows by a thread at a time than
those contained in a block of the BBI. Although the
row-based implementation ranks and sorts more en-
tries than the BBI does so, the former has faster time-
to-solution (see Figure 18) and is not hindered at large
scales—where distributed implementations are a
must—because ranking and sorting will be performed
within each node independently.

Complementing the convergence comparisons of
BBI and RBI from Figure 14, Figure 15 demonstrates
(as vertical lines in each bar) a greater variability in
how often each block in BBI may be relaxed compared
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(a) Block-based implementation. (b) Row-based implementation.

Figure 14. The total number of all the grid-component relaxations until convergence, for different probability
distributions and parameters. The red lines refer to the number of component relaxations for serial Gauss-Seidel.

(a) Block-based implementation. (b) Row-based implementation.

Figure 15. The average number of (a) block and (b) row relaxations required to converge for different probabili-
ty distributions and parameters for the two implementations. The vertical lines in each bar show the standard de-

viation of the number of row relaxations among all rows.

with each row relaxation in RBI. This metric bears
significance for the non-uniform distributions since
they may "neglect" certain components to relax often
enough to hinder convergence, as has been shown ear-
lier in Section 5, and thereby making a proof of con-
vergence more difficult.

Figure 16 and Figure 17 compare BBI and RBI as
to which parts of the problem grid are relaxed more
times when good or poor μ is used, respectively. For
the former, Figure 16 shows not only that both im-
plementations emphasize the relaxation of the middle
rows, away from the fixed top and bottom boundaries,
but also that the RBI places greater emphasis on the

rows near the top and bottom boundaries, and less em-
phasis on the middle rows, compared to the BBI. In
particular, about 15% of component selections result in
a boundary-crossing event in the row based implemen-
tation, which provides for relaxing all the rows more
uniformly. With poor distribution parameters, Figure
17 shows a different behavior of the RBI from the
one in Figure 16. Now, the RBI relaxes boundary rows
more frequently than it does so for the innermost rows.
In particular, some of the inner rows are now relaxed
about as many times as for good μ but the boundary
rows are relaxed more frequently leading to an over-
all higher number of iterations to converge. Generally,
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Figure 16. The number of block (a) or row
(b) relaxations required to converge with
good normal distribution parameters.

Figure 17. The number of block (a) or row
(b) relaxations required to converge with
poor normal distribution parameters.

Figure 13. Change in residual throughout the calcula-
tion, for each distribution.

the RBI permits more frequent relaxation of boundary
rows, compared with the BBI. Note that the frequen-
cy of boundary-row relaxation stays low for BBI given
either value of μ (cf. Figure 16 and Figure 17). Such
a beneficial behavior of RBI is expressed in line 13
of Algorithm 4, in which the nextr function directs
a thread to or from a boundary row according to the
shortest distance (line 11) as determined by Equation
(4).

Figure 18 shows that RBI decreases calculation
time (Figure 18b) compared with BBI (Figure 18a)
for all the distributions on the Wahab cluster. Further-
more, a 10% convergence-time reduction is observed
for the row-based implementation using normal and
exponential distributions with good parameter choic-
es, as compared to a uniform distribution. Figure 18b
shows a gradual increase in calculation time for in-
creasing values of μ beyond 200, similar to the gradual

increase in numbers of relaxations seen in Figure 14b
and Figure 15b. For BBI on the Wahab platform (Fig-
ure 18a), the results show a jump in calculation time
when the normal distribution is used, which is also
observed on Rulfo (cf. Figure 3b) albeit at a larger
μ value of 46. On Wahab, the BBI threshold μ is
40, which suggests that, for the normal distribution
shared-memory implementation, good parameter se-
lection is platform-dependent, as expected. In particu-
lar, having more threads results in smaller size blocks,
which may mitigate poor μ selection in the BBI.

In addition to the performance benefit seen with
the row-based implementation, Figure 19 and Figure
20 illustrate that the RBI produces a solution with the
residual values more uniformly dispersed among all
components. For each implementation, the plots dis-
play the two runs with the smallest and largest maxi-
mum component residuals, out of a set of ten runs that
use the exponential distribution with λ = 0.05 for BBI
and λ = 0.01 for RBI. The BBI gives a mean maxi-
mum component residual of 4.3𝑒-11, with a standard
deviation of 2.2𝑒-11, while the row-based implementa-
tion gives a mean of 1.0𝑒-11 and a standard deviation
of 1.6𝑒-12. Note that the largest maximum component
residual produced by the RBI, as seen in Figure 20b, is
about half the size of the smallest component residual
produced by the BBI, as seen in Figure 19a. Observe
also that the variations between runs are less for RBI
than they are for BBI.

6 Summary and Future Work
This paper develops and tests a novel implementation
of a randomized asynchronous iterative solver that us-
es non-uniform distributions. Complementing a tradi-
tional approach of block-row updates, this implemen-
tation blends aspects of different solvers and relies
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(a) Block-based implementation. (b) Row-based implementation.

Figure 18. Wahab calculation times for each implementation and all three distributions. Note the λ-labeled axis
pertains to the exponential distribution trajectory while the μ-labeled axis refers to the normal distribution trajec-
tory.

(a) Smallest. (b) Largest.

Figure 19. BBI solution component residual values from the runs with the smallest and largest maximum com-
ponent residuals, for exponential distribution, λ = 0.05.

on a finer granularity (row-based) of grid component
updates. As a result, the row-based implementation
(RBI) improves on the block-based one in multiple
aspects: solution quality, the number of iterations re-
quired for convergence, and the calculation time. The
RBI also supports a wider range of parameters that
yield fast convergence for the normal distribution.

For the two asynchronous randomized solver im-
plementations, block-based and novel row-based, this
paper demonstrates a benefit of using a non-uniform
distribution in prioritizing component updates. Both
BBI and RBI with non-uniform distributions converge
10% faster than their counterparts with the uniform

distribution do so. The row-based implementation may
also converge with 10% fewer iterations than serial
Gauss-Seidel, which is not observed for the block-
based implementation.

A further investigation into the ranking periodicity
and technique for sorting the residuals is warranted in
the scope of studying the overall efficiency of future
randomized asynchronous linear solver variants. Con-
tinuing to optimize the implementations will improve
their ability to be used either in a standalone capacity
or as part of another solution scheme, such as precon-
ditioners for Krylov subspace methods or as smoothers
in multigrid methods. Additionally, testing on a more
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(a) Smallest. (b) Largest.

Figure 20. RBI solution component residual values from the runs with the smallest and largest maximum com-
ponents residuals, for exponential distribution, λ = 0.01.

diverse problem set may reveal further benefits to the
solver by dynamically focusing on the components
that are furthest from convergence.
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