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ABSTRACT

MEASUREMENT OF THE PHOTON BEAM ASYMMETRY
IN γP → K+Σ0 AT Eγ = 8.5 GEV WITH GLUEX

Nilanga Indrajie Wickramaarachchi
Old Dominion University, 2020
Director: Dr. Moskov Amaryan

In this work the photon beam asymmetry Σ for the reaction γp→ K+Σ0(1193) is mea-

sured using the GlueX experiment in Hall D at Jefferson Lab. The analysis used data that

were collected using a linearly polarized photon beam in the energy range (8.2 - 8.8) GeV

incident on a liquid hydrogen target. The beam asymmetries are measured as a function of

the Mandelstam variable t and as a single value for the low u region. These are the first

exclusive measurements of the photon beam asymmetry Σ in this reaction at energies above

the baryon resonance region. For the t-channel, results are close to unity and show that the

reaction is dominated by the natural-parity exchange of the K∗(892) Regge trajectory as

predicted by theoretical models. A value of Σ = 0.410±0.090 is obtained for the u-channel

and suggests the exchange of both Σ(J = 1/2) and Y ∗(J = 3/2) trajectory contributions to

the production of K+Σ0.
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CHAPTER 1

INTRODUCTION

The state K+Σ0 belongs to the so-called KY final states which have a kaon (a pseu-

doscalar meson) and a hyperon Y with one strange quark. Photoproduction is an inter-

esting reaction to generate these states since there are no strange quarks initially in the

system therefore a strange (s) anti-strange (s̄) quark pair should be formed to conserve the

strangeness. Polarization observables extracted using these reactions would be helpful to

understand the production mechanisms dominating such processes. The work of this thesis

is done using data from the GlueX experiment for photoproduction from a proton target:

γp→ K+Σ0.

The Σ0 has a mean lifetime of (7.4 ± 0.7) × 10−20 s and instantaneously decays to Λ0γ.

The branching fraction for this decay mode is 100%.

High statistics measurements of differential cross sections and polarization observables

for the reaction γp→ K+Σ0 have been done by collaborations like CLAS [1, 2], SAPHIR [3],

GRAAL [4] and LEPS [5] at lower energies. A list of these measurements can be found in the

SAID database [6]. The highest beam energy measurements for differential cross section and

polarized-photon asymmetry for γp → K+(Λ,Σ0) have been made by SLAC at 16 GeV [7]

and the individual asymmetries for K+Λ and K+Σ0 have been only determined based on

cross section measurements.

Figure 1 shows Feynman diagrams for the different channels that can contribute to the

reaction γp→ K+Σ0. The s, t and u-Mandelstam variables for the reaction are defined as:

s = (pγ + pT )2, (1)

t = (pγ − pK)2, (2)

u = (pT − pK)2, (3)

where pγ, pT and pK are four-momenta of the incoming photon beam, the target proton and

the produced K+ meson respectively. For the lower photon beam energies, s-channel contri-

bution is expected to dominate the production mechanism where the proton gets excited in

the intermediate state. At higher energies above the resonance region (≥ 4 GeV) the t- and

u-channel exchanges contribute to the production with the exchange of K+ or K∗+ for the
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t-channel and baryons like Λ, Σ and Y ∗ for the u-channel respectively. In the case where the

incoming photon beam is polarized, the study of beam asymmetry allows us to determine

which type of exchange is happening during the reaction.

FIG. 1: Different channels contributing to the reaction γp→ K+Σ0.

1.1 STRUCTURE OF THE THESIS

The structure of the thesis is organized as follows. Chapter 2 gives an overview of the

theory. Starting with the standard model and then the quark model, a brief description is

given about Regge theory and helicity amplitudes.

An overview of the detector components used in the GlueX experiment is presented in

Chapter 3.

The data analysis primarily focusing on the event selection and the MC simulation is

described in Chapter 4.

Chapters 5 and 6 explain how the beam asymmetry has been extracted and outlines

studies to estimate different sources of systematic uncertainties.

Chapter 7 is devoted to comparison of experimental data with the model predictions and

explains physics conclusions obtained from this comparison.
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CHAPTER 2

THEORY

2.1 THE STANDARD MODEL

In the standard model, the fundamental particles of matter are divided into two cate-

gories. They are fermions that have half-integer spin and bosons with integer spins. Fermions

obey Fermi-Dirac statistics while bosons obey Bose-Einstein statistics. The interactions be-

tween particles are considered to come through four fundamental forces: the strong, the

electromagnetic, the weak and the gravitational force. Although the gravity is the much

easier force to be observed in the world, in the high-energy physics, it is considered to be

negligible.

Fermions are further divided into two types: quarks and leptons which have spin 1/2.

Quarks carry fractional electric charge and six types of them are observed: up (u), down

(d), charm (c), strange (s), top (t) and bottom (b). These are known as quarks of different

flavors. Similarly there are six types of leptons: electron (e−), muon (µ−), tau (τ−) and their

corresponding neutrinos (νe, νµ and ντ ). Neutrinos don’t have electric charge. Furthermore

each quark and lepton has its anti-particle which has opposite electric charge and the same

mass. Figure 2 shows the fundamental particles of the standard model.

Quarks can not be observed as individual free states. They combine to form hadrons

which can be either mesons or baryons depending on how the quarks and (or) anti-quarks

are combined. A quark anti-quark pair forms a meson which in turn has spin 0 or 1 making

them bosons. A baryon is a combination of three valence quarks (qqq). The proton (uud)

and neutron (ddu) are examples of baryons. Baryons have half-integer spins and therefore

are fermions. One of the important feature about quarks is that only they can carry the color

charge, the Quantum Chromo Dynamics (QCD) equivalent of the electric charge. Because of

this, only quarks are involved in the strong interactions. Hadrons are formed as color-neutral

states. For this criteria to be satisfied anti-quarks are assumed to have anti-colors.

Leptons can interact via electromagnetic or weak forces depending on whether they are

charged or not. Neutrinos are mainly found in radioactive decays like β decay of atomic

nuclei or hadrons.
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FIG. 2: Fundamental particles in the Standard Model. Quarks and leptons are arranged as
columns corresponding to their generations.

Quarks and leptons are further classified as three generations. The u- and d-quarks and

the electron and electron-neutrino are considered as the first generation. The c- and s-quarks

and µ and νµ form the second generation while the t- and b-quarks and τ and ντ form the

third generation. When going from lower to higher generation, particle masses increase by

orders of magnitude. Because of their lower masses, hadrons made out from u, d and s

quarks are the ones that are extensively studied in experiments.

The four forces are considered to occur through exchange of particles called gauge-bosons

between the interacting fermions. These mediators of forces have spin 1 so making them

types of bosons. Each force can be described by an associated Quantum Field Theory

(QFT). Quantum Electrodynamics (QED) explains the electromagnetic force between two

charged particles via the exchange of a virtual photon. In the QCD, force between two

quarks is described to occur through the exchange of a gluon. Both photon and gluon are

massless. Contrary to these gauge bosons, the weak force is exchanged by massive W and
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Z bosons. Weak charged-current interaction is mediated by the W+ and W− bosons while

the weak neutral-current interaction is mediated by the neutral Z boson. Weak interactions

are unique in a sense that they can change the flavor of a quark from one to another. For

example, a neutron can decay to a proton by the β− decay and a down quark in the neutron

changes to an up quark with the emission of a W− boson. The electroweak theory unifies

electromagnetic and weak interactions.

Additionally there is a scalar boson (boson with spin 0) called Higgs boson which is con-

sidered to give masses to the particles that interacts with the so-called Higgs field. The Higgs

boson was discovered by the ATLAS and CMS experiments at the Large Hadron Collider

(LHC) in 2012. It has a mass of approximately 125 GeV.

2.2 THE QUARK MODEL

The quark model is based on the work by Murray Gell-Mann [8, 9], Yuval Ne’eman [10]

and George Zweig [11]. It’s a classification scheme where hadrons are made out of quarks

and (or) antiquarks.

In quantum mechanics, for each symmetry of the Hamiltonian, we can find a conserved

observable quantity. Mathematically, this deals with a unitary operator Û which commutes

with the Hamiltonian, i.e. [Ĥ,Û ] = 0. This unitary operator can be associated with a

Hermitian generator Ĝ which also commutes with the Hamiltonian and has real eigenvalues.

This can be used to model hadrons with a symmetry group consideration.

It was proposed by Heisenberg that the nuclear force is approximately charge independent

and neutron and proton can be considered as two states of the nucleon. The concept of isospin

was introduced and the proton and neutron were assumed to have a total isospin I = 1/2 and

third component of isospin I3 = 1/2 and I3 = −1/2 respectively. Similar to the spin-states

of an electron this can be written as,

p =

(
1

0

)
n =

(
0

1

)
(4)

Assuming up, down quark masses to be same, the strong interaction can be incorporated

with a u,d flavor symmetry. Following the way proton and neutron was written in isospin
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space, then the u and d quarks are written as states in flavor space,

u =

(
1

0

)
d =

(
0

1

)
(5)

In group theory terms, this allows to find the generators of the unitary operator which

makes the QCD interaction to be invariant under transformation in u,d flavor space as,

Û = exp(iαiĜi) (6)

where αi is an infinitesimal transformation. Three of the generators form a special uni-

tary SU(2) group and the Pauli spin-matrices given below are chosen that gives conserved

observables.

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
(7)

The isospin components can be written using Pauli matrices as,

T̂i =
1

2
σ̂i (8)

The total isospin is defined as T̂ 2 = T̂ 2
1 + T̂ 2

2 + T̂ 2
3 and commutes with each of the isospin

component. This allows to write u and d quarks as states φ(I, I3) since the eigenvalue

equation is given by,

T̂ 2φ(I, I3) = I(I + 1)φ(I, I3) (9)

The up and down quarks are written in terms of isospin as,

u =

(
1

0

)
= φ

(1

2
,+

1

2

)
and d =

(
0

1

)
= φ

(1

2
,−1

2

)
(10)

Then, combinations of two quark states can be formed by u and d quarks considering the

rules of adding I and I3. Adding another u or d quark allows to make 8 possible combinations

uuu, uud, udu, udd, duu, dud, ddu and ddd. The flavor wavefunctions of these states can

be found using isospin arguments and isospin ladder operators for u and d quarks. This
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gives a I = 3
2

quadruplet and two I = 1
2

doublets. This can be written using SU(2) group

representation as,

2⊗ 2⊗ 2 = 4⊕ 2⊕ 2 (11)

with the three quark combinations are represented as isospin doublets. Similarly, spin

wavefunctions can be constructed for three quarks and will have the same form since isospin

and spin are analogous. The total wavefunction of three quark bound state has extra terms

for color and spatial wavefunctions, but it can be found that the product of flavor and spin

wavefunctions should be symmetric for the case with zero orbital angular momentum, i.e.

L = 0. This comes from the fact that the total wavefunction should be antisymmetric under

interchange of any two quarks.

The up and down antiquarks (ū and d̄) are written as a doublet in the following way so

that they transform the same way as the quarks. This gives two SU(2) doublets for quarks

and antiquarks as,

q =

(
u

d

)
q̄ =

(
−d̄
ū

)
(12)

Using this isospin representation, four states of mesons can be formed by up and down

quarks and antiquarks. Written as states of φ(I, I3) they are, [12]

φ(1,−1) = dū

φ(1, 0) =
1√
2

(uū− dd̄)

φ(1,+1) = −ud̄

φ(0, 0) =
1√
2

(uū+ dd̄) (13)

So, this gives an isospin-1 triplet and an isospin-0 singlet and represented as,

2⊗ 2̄ = 3⊕ 1 (14)

Extending this procedure to include the s quark, an SU(3) representation can be de-

veloped to associate a uds flavor symmetry of the Hamiltonian. This is only approximate,

as the strange quark mass is much higher than masses of u, d quarks but this difference is

small compared to binding energies of hadrons. The u,d and s quarks are reprented in SU(3)
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reprentation as,

u =


1

0

0

 d =


0

1

0

 s =


0

0

1

 (15)

There are eight generators in SU(3) symmetry called Gell-Mann matrices defined as,

T̂i =
1

2
λi (16)

Only two of them (T̂3 and T̂8) commute. Therefore, in SU(3), hadrons are descibed in

terms of the third component of isospin (I3) and hypercharge (Y ) with operators,

T̂3 =
1

2
λ3 , Ŷ =

1√
3
λ8 (17)

Similar to the case of SU(2), the addition of I3 and Y components of quarks leads to

formation of hadrons. The corresponding ladder operators are used to determine the flavor

wavefunctions. A quark (u,d or s) and an antiquark is combined to give nine possible

combinations which are decomposed into an octet and a singlet as,

3⊗ 3̄ = 8⊕ 1 (18)

The singlet state is a linear combination of uū, dd̄ and ss̄ and its flavor wavefunction is

written as,

ψs =
1√
3

(uū+ dd̄+ ss̄) (19)

A hadron state is usually represented by its quantum numbers as JPC . Here, J = L+ S

is the total angular momentum found by adding orbital and spin angular momenta quantum

numbers. P and C are called parity and charge conjugation and they can be found by

P = (−1)L+1 and C = (−1)L+S respectively. The L = 0 meson states are the simplest case

and are called light mesons. Since the qq̄ pair can give spin S = 0 or S = 1, this gives a

nonet with J = 0 pseudoscalar mesons and another nonet with J = 1 vector mesons. They

have parities of -1. Figures 3 and 4 show the corresponding mesons and Table 1 represents

the JPC assignments for mesons with L < 2.
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FIG. 3: Nonet of pseudoscalar mesons. S and Q indicate the strangeness and the electric
charge of the mesons.

The combination of three quarks gives total of 27 flavor states in SU(3) representation.

These baryons are decomposed to a symmetric decuplet, two mixed symmetry octets and an

antisymmetric singlet state as,

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 (20)

Figures 5 and 6 show the observed octet and decuplet of L = 0 light baryons.
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FIG. 4: Nonet of vector mesons. S and Q indicate the strangeness and the electric charge
of the mesons.

L S J P C JPC Type Examples
0 0 0 - + 0−+ Pseudoscalar π, η, η′, K
0 1 1 - - 1−− Vector ρ, ω, φ,K∗

1 0 1 + - 1+− Pseudovector b1, h1, h
′
1, K1

1 1 0 + + 0++ Scalar a0, f0, f
′
0, K

∗
0

1 1 1 + + 1++ Axial Vector a1, f1, f
′
1, K1

1 1 2 + + 2++ Tensor a2, f2, f
′
2, K

∗
2

TABLE 1: JPC assignments for mesons.
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FIG. 5: Observed octet of baryons. S and Q indicate the strangeness and the electric charge
of the baryons.

FIG. 6: Observed decuplet of baryons. S and Q indicate the strangeness and the electric
charge of the baryons.
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2.3 THE REGGE MODEL

In the Regge model the scattering amplitude of a two particle collision is written as a func-

tion of a complex angular momentum variable. It was proposed as an alternative approach

to the quantum mechanical treatment of potential scattering. At high energies the poles

of the scattering amplitude correspond to the exchange of the Regge trajectories. A Regge

trajectory consists of a family of resonances with identical internal quantum numbers but

different total angular momenta J . Members of such a family are related approximately by

the linear relation Ji = α(m2
i ) between their total angular momenta and squared masses [13].

Regge trajectories for K(494) and K∗(892) families and Λ,Σ and Σ? families are shown in

Figs. 7 and 8 respectively.

FIG. 7: Chew-Frautschi plots for the K(494) and K∗(892) trajectories [14].

The amplitude for γp→ KY reaction is written considering the exchange of entire Regge

trajectories rather than a finite selection of individual particles. For the forward scattering

angles, K∗ trajectories are exchanged in the t-channel while Y ∗ trajectories are exchanged

in the u-channel for backward scattering angles.
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FIG. 8: Chew-Frautschi plots for the Λ,Σ and Σ? trajectories [15].

A linear meson trajectory has the following form,

αX(t) = αX,0 + α′X(t−m2
X) (21)

where mX and αX,0 are the mass and spin of the lightest member in the trajectory. The

slope of the trajectory is given by α′X .

The amplitude can then be written by replacing the Feynman propagator with the Regge

propagator:

1

t−m2
X

→ PXRegge[s, αX(t)]. (22)

Then the Regge amplitude is presented as

MX
Regge(s, t) = PXRegge[s, αX(t)]× βX(s, t), (23)

where βX(s, t) is the residue of the original Feynman amplitude calculated from the interac-

tion Lagrangians at the γKX and pXY vertices in the reaction p(γ,K)Y with X exchange

particle.
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Following this method, the general Regge propagator can be formed as shown in the

Ref. [14].

PX
Regge(s, t) =

( s
s0

)αX(t)−αX,0

sin(παX(t))

{
1

e−iπαX(t)

}
πα′X

Γ(1 + αX(t)− αX,0)
(24)

where s0 is a scale factor fixed at 1 GeV2.

For fixed s, |PX
Regge(s, t = 0)| increases with decreasing |αX(0)− αX,0| = α′Xm

2
X . Slopes

α′X for all meson trajectories are nearly the same, therefore trajectories with lowest mass

first member of the corresponding family are expected to dominate the exchange. Because

of this, for the γp→ KY channel, K(494) and K∗(892) exchanges dominate.

2.4 RPR MODEL

In this model, a contribution from the resonance region is added to the Regge part of

the amplitude to generate the “Regge-Plus-Resonance” model. Figure 9 shows the RPR

amplitude for γp → KY process in the forward-angle region. According to this the kaon

trajectories are exchanged in the t-channel and individual baryon resonances are also con-

tributing in the s-channel. For photon energies greater than about 4 GeV, the s-channel

contributions vanish by construction and only the Regge part of the amplitude is considered.

FIG. 9: General forward-angle RPR amplitude for the γp→ KY process [14].

Using Eqn. 24, Regge propagators for K(494) and K∗(892) exchange can be written.

When the interaction Lagrangian for γp→ K+Σ0 process is used, the high energy amplitude

contains only three parameters related to the coupling constants

gK+Σ0p , G
v,t
K∗+(892) =

egv,tK∗+(892)Σ0p

4π
κK+K∗+(892). (25)
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Here, gv,tK∗+(892)Σ0p are the strong vector and tensor couplings to the K∗+(892) vector meson

trajectory. Additionally, the phase of the trajectory is chosen to be constant or rotating.

These parameters are used in the RPR model to predict the values for polarization observ-

ables, in particular the t-dependence of beam asymmetry.

2.5 HELICITY AMPLITUDES

The helicity of a particle is defined as the projection of its spin ~s along the direction of

linear momentum ~p :

H =
~s · ~p
|~s · ~p|

(26)

Depending on whether the spin and momentum vectors are aligned in the same direction

or in opposite directions, the helicity can be positive or negative respectively.

The photoproduction amplitude can be written in terms of functions which are related

to the helicities of incoming and outgoing particles. These functions are called “helicity

amplitudes” and provide information about the exchange mechanisms during the process.

For a photoproduction of a spin zero meson and a nucleon, these have the amplitude written

in general form fabcd where a,b,c and d are the helicities of the incoming photon, target

proton, produced spin zero meson and the nucleon.

In 1964, P. Stichel developed a theorem relating the photoproduction amplitude for γ +

N → π+N channel and the parity of the exchange particle πj [16]. In brief, the theory goes

as follows.

Let ~k and ~q be the momenta of the incoming photon and the outgoing pion in the center of

mass system for the process γ+N → π+N . In the Coloumb gauge we have the transversality

condition ~ε · ~k = 0 where ~ε is the polarization vector of the photon. Then the differential

cross section maybe written as [17]:

dσ

dΩ
=
q

k
|Xf F Xi|2 , (27)

where the photoproduction amplitude F is a 2×2 matrix in spin space and Xi and Xf are the

Pauli spinors for the initial and final nucleon spin states. The general form of F is written

as:

F = i sin φ [C1 (~σ · k̂) + C2 (~σ · n̂× k̂)] + cos φ [C3 + i (~σ · n̂) C4] , (28)

where φ is an angle which describes the orientation of ~ε in a plane orthogonal to k̂ :

~ε = − cos φ n̂+ sin φ (n̂× k̂) (29)
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with n̂ ≡ k̂ × q̂. The ~σ are the Pauli spin matrices and the Ci are functions of Mandelstam

variables s and t.

When summed over the nucleon spin states, Eqn. 27 gives,

dσ

dΩ
=
q

k
[sin2 φ (|C1|2 + |C2|2) + cos2 φ (|C3|2 + |C4|2)] (30)

The Stichel theorem says,

“Provided that to the amplitude F (φ) for γ + N → π + N only exchange of particles or

particle-systems with total angular momenta j and either parity πj = (−1)j+1 or πj = (−1)j

in the crossed channel γ + π → N + N̄ contributes, then the φ-dependence of F (φ) at high

energies s and small momentum transfer t becomes:

a) F (φ) ∼ sinφ for πj = (−1)j+1 resp.

b) F (φ) ∼ cosφ for πj = (−1)j ” [16].

The theorem has been proved by writing functions Ci in terms of helicity amplitudes

and considering which amplitudes are non-vanishing for the cases πj = (−1)j+1 (unnatural

parity) and πj = (−1)j (natural parity). The theorem can be extended to complex angular

momenta in the case that πj denotes a Regge trajectory exchanged in the t-channel.

Stichel theorem can also be used for the reaction γp→ K+Σ0 and in Ref. [18] a relation

between the photon beam asymmetry Σ and exchanged parity is given. There a set of s-

channel helicity amplitudes with definite parity in the t-channel are defined to leading order

in s as:

f1 = f1+,0+,

f2 = f1+,0−,

f3 = f1−,0+,

f4 = f1−,0−, (31)

Then the following combinations can be formed:

f±1 =
1

2
(f1 ± f4),

f±2 =
1

2
(f2 ∓ f3), (32)

where the superscript +(−) indicates natural (unnatural) parity exchange in the t-channel.

The polarized photon asymmetry is given by

Σ =
[dσ⊥
dt
−
dσ‖
dt

]/[dσ⊥
dt

+
dσ‖
dt

]
=

(|f+
1 |2 + |f+

2 |2 − |f−1 |2 − |f−2 |2)

(|f+
1 |2 + |f+

2 |2 + |f−1 |2 + |f−2 |2)
, (33)
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where dσ⊥
dt

(
dσ‖
dt

) is for the cross section with a photon beam polarized perpendicular (parallel)

to the reaction plane.

Using a linearly polarized photon beam allows us to study about the type of parity

exchanged in the t-channel. Since beam asymmetry Σ is a measure of the difference between

contributions from perpendicular and parallel polarized photons to the cross section, it can

be used to distinguish the relative contribution of natural and unnatural parity exchange.
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CHAPTER 3

GLUEX SPECTROMETER

The GlueX spectrometer is located in Hall D at the Thomas Jefferson National Accelera-

tor Facility (JLab) in Newport News, Virginia. The Continuous Electron Beam Accelerator

Facility (CEBAF) (shown in Fig. 10) in JLab provides a continuous wave 12 GeV electron

beam to Hall D. A high frequency laser is used in the CEBAF to produce electrons. The

laser is incident on a GaAs photocathode and produce a highly polarized electron beam.

The electron bursts are distributed as evenly spaced beam bunches (pulses) and accelerated

by superconducting radiofrequency (RF) cavities before reaching the experimental halls [19].

The Nb RF cavities produce standing electromagnetic waves which are matched with the

phase and frequency of the electron bunch. The cavities are designed with an accelerating

frequency of 1497 MHz. The electron beam produced should match this frequency but to

operate four halls simultaneously four lower frequency lasers are used providing 4 distinct

electron beams to the halls A, B, C and D. The electron beams are accelerated due to the

gradient from the standing waves in the cavities and run through the accelerating sections in

the CEBAF up to five passes. Each pass provides energy of 2.2 GeV to the electron beam.

Halls A, B and C receives the electron beam after 1-5 passes through the accelerator. A

249.5 MHz electron beam is delivered to Hall D and arrives the hall after 5.5 passes through

the accelerator. This gives the potential to have a 12 GeV electron beam delivered to the

Hall D and in turn allows to be used for many physics interests.

The electron beam hits a diamond radiator and produces a linearly polarized photon

beam. The photon beam then reaches a liquid hydrogen target and produces many particles

and showers after the interaction. The GlueX detector is a nearly 4π hermetic detector and

allows to identify all the particles in the final state of the reaction. The GlueX spectrometer

consists of many detector components as shown in Fig. 11 and each of the major components

are briefly described in this chapter.
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FIG. 10: CEBAF at the Jefferson Lab. Figure from Ref. [20].
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FIG. 11: The GlueX spectrometer.
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3.1 BEAMLINE

The GlueX beamline consists of components that are used to create a linearly polarized

photon beam and to measure the energy, polarization and the flux of the photon beam. The

main components of the beamline are shown in Fig. 12.

FIG. 12: Schematic of the GlueX beamline components and the spectrometer. Figure from
Ref. [21].

3.1.1 DIAMOND RADIATOR

The 12 GeV electron beam from CEBAF enters the Tagger Hall that houses the ra-

diator and the photon tagging system. The electron beam is incident on a thin (58 µm)

diamond wafer and produces a photon beam. The photon beam is created using the co-

herent Bremsstrahlung technique [22, 23]. The electron beam transfers momentum to a

struck nucleus in the diamond radiator and forms a continuum of momentum transfer and

the momentum values are averaged to give the incoherent component of the Bremsstrahlung

process. The coherent component is obtained by allowing the momentum transfer to match

with the reciprocal lattice vectors of the diamond. A goniometer device is used to hold the

diamond radiator in order to align it precisely to achieve the desired coherent photon beam

spectrum. The coherent spectra occurs at certain energy ranges of the photon beam but the

nominal GlueX configuration uses the main coherent peak set around 9 GeV.
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3.1.2 PHOTON TAGGING SYSTEM

The GlueX photon tagging system primarily consists of dipole magnets and two scin-

tillation detectors called Tagger Hodoscope (TAGH) and Tagger Microscope (TAGM). The

energy of the photon (Eγ) is “tagged” by measuring the energy of the scattered electron (Ee)

from the diamond radiator and using the precisely known incoming electron beam energy

(E0). It can be written as Eγ = E0−Ee. Figure 13 shows a schematic of the photon tagging

system.

FIG. 13: Schematic of the photon tagging system. Red dotted lines indicate the scattered
electron trajectories and k/E0 is the ratio of the photon and incoming electron beam en-
ergy. Blue dotted lines indicate the three layers of hodoscope counters. Blue shaded region
indicates the TAGM active volume. Figure from Ref. [21].

The scattered electrons are deflected by the tagger magnet which is a dipole magnet.

When the electrons have only small amount of energy lost due to the Bremsstrahlung process,

or are not interacted with the radiator, they are deflected by 13.4◦ into the electron beam

dump. The electrons that lose more than 25% of the initial energy are deflected by the magnet

and detected in TAGH or TAGM which lie on the focal plane on the magnet. Depending on

the energy the scattered electrons are deflected by smaller or larger angles and go through

the scintillating fiber bundles of TAGH or TAGM and read out by photomultipliers (PMTs).

Those having large energies are bent less and those with smaller energies bend more. The

tagger microscope detects scattered electrons with energies between 3.0 and 3.6 GeV and as

a result tags the coherent photons between 8.4 and 9.0 GeV. It has counters that provide

width of 9.1 MeV to 11.2 MeV and has a 0.1% energy resolution and timing resolution of

200 ps. The tagger hodoscope detects scattered electrons with energies from 0.22 GeV to
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9.0 GeV and tags the photons from 3.0 GeV to 11.7 GeV. It has coarse counters with 8.5

MeV to 30 MeV energy width.

3.1.3 COLLIMATORS

The active collimator is located before the primary collimator. It consists of a large

tungsten plate divided into two radial rings and four quadrants. The active collimator is

used to monitor the photon beam position. The deviations of the beam from the nominal

position are detected by studying the induced currents on the tungsten plates from particle

showers caused by the photons.

The primary collimator is used to increase the fraction of linearly polarized photons

delivered to the target. It is located 75m downstream of the radiator and is shielded by lead.

It is used with a 3.4 mm or 5.0 mm aperture. The coherent part of the photon spectrum

produced from the diamond radiator has the maximum polarization and has a lower angular

spread compared to the incoherent part. The coherent spectrum is usually spread within 25

µrad from the beam direction. Additionally there is a secondary collimator and a sweeping

magnet after the primary collimator. These are used to prevent the secondary photons and

charged particles produced in the primary collimator being delivered any further.

3.1.4 TRIPLET POLARIMETER

The triplet polarimeter (TPOL) is used to determine the degree of polarization of the

photon beam after the collimation. The TPOL works based on the “triplet photoproduction”

process [24, 25] where the photon beam interacts with an atomic electron in a Be target foil

in front of a Silicon Strip Detector (SSD). A high energy e+e− pair is produced and the

atomic electron recoils with enough momentum to leave the atom. The recoil e− is detected

by the SSD which contains 32 azimuthal sectors and 24 concentric rings. By measuring the

azimuthal angular distribution of the recoil e−, the degree of polarization of the photon beam

can be found. The cross section for triplet photoproduction is given by,

σt = σ0[1− PΣ cos(2φ)] , (34)

where σ0 is the unpolarized cross section, P is the polarization of the photon beam, Σ

the beam asymmetry for the process and φ the azimuthal angle of the recoil e− from the

polarzation plane of the incident photon beam. Σ is calculated using QED [26]. Recoil

electrons passing through the Be converter can also produce δ-rays so instead of triplet

beam asymmetry Σ, the TPOL measures the analyzing power ΣA which is a combination
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of triplet production and δ-ray production. By fitting the yield of azimuthal distribution of

recoil e− with

f(φ) = A[1−B cos(2φ)] = σ0[1− PΣA cos(2φ)], (35)

P can be found as B/ΣA. The analyzing power for different photon beam energies can be

found by simulation [26].

In Fig. 14 the beam polarization is shown for different diamond orientations as a function

of the incoming photon beam energy. Table 2 shows the corresponding polarization values

for each diamond orientation. They are obtained from polarimeter measurements [26].
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FIG. 14: Photon beam polarization as a function of the beam energy for different diamond
orientations, as measured by the triplet polarimeter.



25

Diamond orientation Polarization Statistical uncertainty
0◦ 0.3536 0.0100
45◦ 0.3484 0.0102
90◦ 0.3472 0.0098
-45◦ 0.3513 0.0102

TABLE 2: Photon beam polarization for different diamond orientations from TPOL mea-
surements.

3.1.5 PAIR SPECTROMETER

The Pair Spectrometer (PS) is used to measure the energy and the flux of photons after

the collimation and also provides identification of the electron beam bunch corresponding to

events with a coincidence hit in PS and TAGH/TAGM. The incoming beam photon produces

a e+e− pair after interacting with the Be foil in front of the TPOL. This lepton pair is bent by

a dipole magnet and detected by two scintillator detectors: a high-resolution hodoscope (PS)

and a course hodoscope (PSC) as shown in Fig. 15. The high-resolution hodoscope reads

out the light signals using Silicon Photomultipliers (SiPMs). Light from the PSC counters

is read out by PMTs. Each detector has two arms positioned symmetrically with respect to

the photon beamline and covers a momentum range between 3.0 GeV/c and 6.2 GeV/c of

the lepton pair. This allows to reconstruct photons between energy 6.0 GeV to 12.4 GeV.

PSC trigger helps to reduce the background originating from interactions of leptons in the

magnet. PS hodoscope has energy resolution of about 25 MeV. PSC counters have timing

resolution of about 120 ps. The pair spectrometer can also be used for energy calibration of

the TAGH and TAGM.
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FIG. 15: Schematic of the pair spectrometer [27]. The blue and purple dashed lines indicate
the trajectories of e− and e+ after being bent by the dipole magnet. PS and PSC indicate
the high-resolution hodoscope and the coarse hodoscope.
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3.2 MAIN SPECTROMETER

The GlueX main spectometer is shown in Fig. 16. The photon beam is incident on a

liquid hydrogen target housed in a superconducting solenoid magnet. It provides a 2 T

magnetic field and contains the start counter, central and forward drift chambers and the

barrel calorimeter. The start counter is used to measure primary interaction time. Drift

chambers detect charged particles while the barrel calorimeter is for detection of neutral

showers. The forward calorimeter (FCAL) provides detection for forward photons and the

time-of-flight is used for particle identification.

Start

Solenoid

BCAL

CDC

Target

Counter

390 cm

FDC

FCAL

TOF

FIG. 16: Schematic of the main GlueX spectrometer.

3.2.1 LIQUID HYDROGEN TARGET

Figure 17 shows a schematic of the GlueX target. It’s a cryogenic target and consists of

a kapton cell containing liquid hydrogen (LH2). The target is unpolarized and 30 cm long

and has a diameter around 2 cm. The target is kept at a temperature and pressure around

20 K and 19 psi.

3.2.2 START COUNTER

The Start Counter (ST) surrounds the 30 cm long liquid hydrogen target and provides

∼ 90% of 4π solid angle coverage relative to the target center (Fig. 18.) The start counter
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FIG. 17: Schematic of the GlueX liquid hydrogen target. Figure from Ref. [28].

consists of an array of 30 scintillator paddles. These are arranged in a cylindrical shape and

have pointed ends bending towards the beamline at the downstream end. Light sensing is

done by SiPM detectors which are not affected by the 2 T magnetic field produced by the

GlueX solenoid magnet. The ST is primarily used for the identification of the photon beam

bunch associated with the primary interaction with the target. The time of the interaction is

compared with the RF beam bunch timing to select the main beam bunch. The ST operates

at tagged photon rates of up to 108 γ/s. The start counter has an average measured timing

resolution of 550 ps (FWHM) which considerably surpasses its design resolution of 825 ps

(FWHM) [29]. The ST also can be used in particle identification by comparing hit times of

particles in other sub detectors with the measured ST time.



29

Scintillator 
Paddles

Rohacell Support 
Structure

Target Chamber

LH2 Target

SiPM pre-Amplifier and 
Bias Voltage 
Distribution

Tedlar Cover

FIG. 18: Start counter surrounding the LH2 target. The beam direction is from left to right
down the central axis of the ST. Figure from Ref. [29].
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3.2.3 TIME OF FLIGHT DETECTOR

The Time-of-flight (TOF) detector is located about 5.5 m downstream from the target.

It consists of an array of scintillator paddles aligned perpendicular to each other as shown

in Fig. 19. Most of the paddles are 252 cm long and 6 cm wide with a thickness of 2.54

cm. There is a 12 × 12 cm2 square hole in the center of the TOF that matches the beam

hole in the forward calorimeter to allow photon beam to travel to the beam dump. The

TOF covers polar angles from 0.6◦ to 13◦ and has a timing resolution of around 100 ps. It

is used for the particle identification for forward going charged particles. There are PMTs

to read out energy and time of those particles that have hits in the TOF. Flight time of a

particle is taken as the difference between measured arrival time in the TOF and the time

of the corresponding RF beam bunch. Figure 20 shows the relativistic velocity β measured

using the TOF vs momentum for different charged particles. As can be seen from the bands

on the plot, it allows to separate proton from other lighter particles up to 3 GeV/c in the

momentum. Pion-kaon separation is possible only up to around 2 GeV/c as the kaon band

tends to merge with the pion and positron bands for higher momenta.

FIG. 19: Design of the GlueX TOF wall. Figure from Ref. [30].
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FIG. 20: Relativistic velocity β measured using TOF vs momentum for positively charged
particles. Positron, pion, kaon and proton bands are labelled as e,π,K and p respectively.
The horizontal band around β ≈ 0.8 is due to an accidentally-tagged photon beam bunch.
Figure from Ref. [30].

3.2.4 CENTRAL DRIFT CHAMBER

The Central Drift Chamber (CDC) is a cylindrical straw-tube drift chamber surrounding

the target and the start counter. The CDC is primarily used to track charge particles in the

polar angle range 6◦ to 168◦ and has the optimum coverage for polar angles between 29◦ and

132◦. The CDC consists of 3522 straws that are 1.5 m long and 1.6 cm in diameter. Each

tube has a gold-plate tungsten wire of 20 µm diameter as the anode. The straw tube walls are

made of several layers of kapton with a innermost layer of aluminum forming the cathode.

A 50:50 mixture of argon and CO2 gases flows through the straws. A charged particle

travelling through a straw ionizes the gas and electrons drift towards the anode while ions

drift towards the cathode. The CDC measures the drift time that is the time the ionization

electron generated closest to the wire takes to reach the wire. This is measured using high-

resolution flash Analog-to-Digital Converters (fADCs). The drift time is converted into a
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distance from the wire and using the information from adjacent straw tubes charged particle

tracks can be reconstructed. The straw tubes are arranged as 12 layers of axial (along the

beam direction) and 16 layers of stereo (with a ±6◦ offset from axial) orientations as shown

in Fig. 21. The offset of stereo layers improves the reconstruction of a tracks z-position. The

CDC provides position measurements with a resolution in z of 2mm and 150 µm resolution

in the rφ plane.

FIG. 21: Drawing of the CDC straw positions. Black dots represent axial straws, red and
blue dots represent stereo straws that are offset by ±6◦ respectively. Figure from Ref. [31].

The CDC also provides a method of particle identification. For this the fADC is used to

measure dE/dx, the amount of energy lost by the charged particle per unit distance in the

gas. Figure 22 shows a plot of CDC dE/dx vs momentum for positively charged particles

and it shows a clear separation of curved proton band from the horizontal band of other

lighter particles for momenta below 1 GeV/c.
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FIG. 22: Energy loss dE/dx in the CDC as a function of proton momentum. The curved

band is for the proton candidates while the horizontal band is for lighter charged particles

such as e+, π+ and K+.

3.2.5 FORWARD DRIFT CHAMBER

The Forward Drift Chamber (FDC) system is located downstream of the CDC and within

the solenoid magnet. It is used for the track reconstruction of forward going charged particles

in the polar angle range from 1◦ to 20◦. The FDC consists of 24 planar drift chambers of 1m

diameter. These are grouped into 4 identical packages each containing 6 chambers. Each

chamber contains of 1 “U” and 1 “V” plane of cathode wire strips and a plane of anode

wires between the two cathode planes as shown in Fig. 23. The two cathode strip planes are

oriented at ±75◦ with respect to the anode wires. Each chamber is rotated by 60◦ relative

to the previous one.

A gas mixture of CO2 and Ar with ratio of 40:60 is filled in a chamber and the ionization

of the gas by traversing charged particles is used for the track reconstruction process. The

two cathode strip planes provide reconstruction of the avalanche/hit position along the wire.

The drift times from the anode wires are used to reconstruct the hit position perpendicular

to the wire. Each chamber thus provides a three-dimensional space point of the track. By

combining the information from the chambers the track can be reconstructed. The FDC can
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reconstruct tracks with a position resolution better than the design resolution of 200 µm.

FIG. 23: (a) Front view of an FDC package. Anode wires are shown as red vertical lines.
The thick green lines represent the u-strips and the thick blue lines represent the v-strips.
The cathode strip planes are oriented at ±75◦ with respect to the anode wires. (b) Side view
of a six-chamber package. The red-dashed lines represent the anode wires and the solid-green
lines represent the cathode planes. Figure from Ref. [32].

3.2.6 BARREL CALORIMETER

The barrel calorimeter (BCAL) is an electromagnetic calorimeter located within the

solenoid magnet surrounding CDC and FDC. It’s cylindrically shaped with a length of 390

cm and inner and outer radii of 65 cm and 90 cm respectively. The BCAL can detect photon

showers with energies between 0.05 GeV and few GeV. It has angular coverage of 11◦− 126◦

in polar angle and 0◦ − 360◦ in azimuthal angle. The BCAL is made as a lead-scintillating

fiber matrix. The 0.5 mm thick grooved lead sheets produce electromagnetic showers while

the 1.0 mm diameter scintillating fibers collect the light. The fibers run parallel to the

cylindrical axis. The particle showers deposit energy in the fibers. The fibers re-emit light

with an amount that is directly proportional to the energy deposited.

Figure 24 shows the geometry of the BCAL and readout segmentation. The BCAL con-

tains 48 trapezoidal modules with a single module having 4 layers that are radially oriented.

The containment of showers is a function of the angle of the photon incidence. It is 15.3

radiation lengths for particles entering normal to the BCAL face and 67 radiation lengths

for 14◦ incidence. At the each end of a module, the light guides collect the light from the
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fibers and transport to silicon photomultipliers (SiPMs). The SiPMs have the advantage of

being insensitive to the magnetic field.

Each of an upstream and downstream end of a BCAL module contains 40 SiPMs so

there are 3840 SiPMs in total. The SiPMs within a layer are arranged such that there are 16

readout channels at a single end of a module resulting in a total of 1536 readout channels.

The elecronic signal from a SiPM is delivered to a flash ADC (fADC). These readouts provide

information about the energy, position and timing of the corresponding shower. In general,

the showers can be produced by photons or charged tracks. The position information from

the calorimeter hits are compared with the charged track information from drift chambers

to find out if the showers are caused by the charged particles. The energy resolution of the

BCAL is found to be σE/E = 5.2%
√
E(GeV) ⊕ 3.6%. The timing resolution of BCAL is

σ = 150 ps at 1 GeV.
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FIG. 24: (a) Schematic view showing dimensions of the BCAL. (b) Top-half cutaway of a
BCAL module showing its polar angle coverage and position with respect to the hydrogen
target. (c) End view of the BCAL showing 48 azimuthal modules. (d) End view of a
single module showing the 40 SiPMs and the layer-wise orientation producing the 16 readout
channels. Figure from Ref. [33].
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3.2.7 FORWARD CALORIMETER

The forward calorimeter (FCAL) is located 5.6 m downstream from the GlueX target.

It can detect photon showers in the energy range 100 MeV to 5 GeV and has a polar angle

coverage of θ < 12◦ [34]. The FCAL contains 2800 lead-glass blocks stacked in a circular

array that has a radius of 1.2 m as shown in Fig. 25. The PMTs attached to lead-glass blocks

detect the Cherenkov light emitted from the charged particles in the electromagnetic showers

caused by the particles traveling through the blocks. The amount of light produced depends

on the energy deposited by the initial particle. This can be caused by a charged particle or a

neutral shower and is distinguished by matching calorimeter hits to charged tracks. Usually

a shower will deposit energy in multiple blocks so they are grouped as clusters during the

shower reconstruction process. Using the cluster information the energy, position and timing

of the incident particle can be determined. The photon energy resolution of FCAL is found

to be σE/E = 5.931%
√
E(GeV)⊕3.656% from the studies of reconstruction of the π0 → γγ

decay as shown in Fig. 26.

The FCAL also provides a method for separating electrons from charged hadrons. The

E/p ratio of energy deposited in the calorimeter and the momentum of the charged track

matched to that shower can be used for this purpose. Figure 27 shows an example plot of

E/p versus the track polar angle and the electrons have values close to 1 because of their

lighter mass compared to the charged hadrons.
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FIG. 25: View of front face of the FCAL [35].

FIG. 26: Photon energy resolution in FCAL. Figure from Ref. [36].
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FIG. 27: Ratio of energy measured by the FCAL and the momentum of the charged track
versus polar angle of the track. Figure from Ref. [37].
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CHAPTER 4

DATA ANALYSIS

4.1 SPRING 2017 DATASET

In this analysis the beam asymmetry was measured with the data collected from the

GlueX experiment during spring of 2017. The CEBAF provided a 11.6 GeV electron beam

into Hall D. The data used corresponds to the first run period with physics data production

and is about 20% of the GlueX phase I data set. Figure 28 shows a brief overview of the run

conditions relevant to this data which is available in Ref. [38].

FIG. 28: Summary of the beam current and the detector conditions for spring 2017 GlueX

data as a function of run number.

The analysis was done with the data taken with JD70-100 58µm thickness diamond

radiator. The data corresponds to a total luminosity of 20.8 pb−1 in the photon beam

energy range 8.2 to 8.8 GeV. The trigger signal was generated for events that deposited

sufficient energy in FCAL and BCAL.

Two sets of polarization directions of beam were used in this analysis. One set contains

φ = 0◦ as PARA and φ = 90◦ as PERP where φ denotes the polarization plane of the beam

with respect to the lab floor. The other set is φ = −45◦ as PARA and φ = 45◦ as PERP.
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The complete list of runs that was approved for physics analysis purposes for each diamond

orientation is given in Appendix A.

The ROOT [39] trees used in this work were generated with the REST version 03 of 2017

data. The REST files consists of special format of files that are produced from the raw data

of the runs after calibrations and monitoring and by the use of GlueX reconstruction code.

These files were then converted to tree format to use with ROOT for physics analysis and

the channel specific files were created in the analysis launch version 26.

4.2 EVENT SELECTION

The selection of γp→ K+Σ0 was performed using the standard analysis software frame-

work [40], using the standard JANA plugin, ReactionFilter. It produced ROOT trees con-

taining the particle combinations for the channel. Then, using the DSelector software [41],

these TTrees were analyzed.

The following standard cuts were used by the analysis library.

• Number of extra charged tracks ≤ 3

• Number of photons ≤ 15

• Event timing: 4 beam bunches before and after primary bunch (-18.036 ns < tvertex −
tRF < 18.036 ns)

• Particle timing cuts (Table 3)

• Standard CDC dE/dx cuts [42]

• Cut around Λ mass Mπ−p = 1.0 - 1.2 GeV/c2

Additionally, a cut on BCAL energy > 50 MeV was used to keep events having low energy

final photons.

Samples of K+Σ0 and K+Λ Monte-Carlo (MC) events were generated using genr8 soft-

ware and they were compared with real data after detector simulation and reconstruction to

study the validity of cuts applied and the sources of background. Parameters used for MC

simulation are given in Appendix B.

4.2.1 PLUGIN REQUIREMENTS

In the ReactionFilter plugin, candidate particles were selected to match the reaction

under study. This is known as a “combo” or a “combination”. It was required to have at
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least one tagged beam photon, two reconstructed positively charged tracks (K+ and proton),

one negatively charged track (π−) and a neutral shower (γ) in calorimeters.

The reaction tag 1 14 1 11 18 B4 M18 was used for the ReactionFilter plugin. The

output TTree was called “gkplamb B4 M18 Tree” according to the final state particles it

had. So, the reaction was reconstructed as two steps.

1. γp→ γK+Λ

2. Λ→ π−p

The π−p mass spectrum was not constrained just to the Λ mass region (with the use of

M18 flag) in order to study if there’s any background under the Λ peak.

A kinematic fit was applied satisfying 4-momentum conservation and constraining the

event vertex. Then, two charged tracks for the particles coming from Λ decay were required

to come from a secondary vertex. At the plugin level, the kinematic fit was required to

converge (Confidence Level > 0).

The resulting reconstructed event was required to have a missing mass squared, MM2 =

(pi − pf )2, be of magnitude less than 0.1 (GeV/c2)2, where

pi − pf = (pbeamγ + ptargetproton)− (pγ + pK+ + pπ− + pproton) (36)

where pbeamγ , ptargetproton, pγ, pK+ , pπ− and pproton are the 4-momentum of the tagged beam photon,

target proton at rest, measured final state photon, measured final state tracks of kaon, pion

and proton respectively.

Two cuts were applied for particle identification (PID). The first cut applied is on dE/dx

in order to distinguish between the final state proton and other positively charged particles.

Although the reaction doesn’t have any π+ or e+on it, a positively charged track in the

combination can satisfy four hypotheses (K+,π+,e+ and proton). The energy deposited in

the drift chambers by charged tracks can be used to distinguish these. The cut applied is

dE/dx > e(−4.0×x+2.25)+1.0 [42] and is effective for particle momenta ≤ 1.0 GeV/c. Figure 29

shows the energy loss dE/dx as a function of proton momentum after the cut.

The second cut used for particle identification is for particle timing. For each candidate

particle, track flight time from the track vertex to each detector was calculated assuming

the mass of the hypothesis. Then, the time difference (∆t) between this vertex time and RF

beam bunch was used to identify particles. These cuts are shown in Table 3 [42].
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FIG. 29: Energy loss dE/dx in the Central Drift Chamber (CDC) as a function of proton
momentum. Red curve represents the loose cut on dE/dx for proton identification.

Particle Type BCAL cut TOF cut FCAL cut
Proton |∆t| < 1.0 |∆t| < 0.6 |∆t| < 2.0
K+ |∆t| < 0.75 |∆t| < 0.3 |∆t| < 2.5
π− |∆t| < 1.0 |∆t| < 0.5 |∆t| < 2.0
γ |∆t| < 1.5 - |∆t| < 2.5

TABLE 3: Timing cuts (∆t) for different particles in the BCAL, TOF and FCAL. Times
are in ns.
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4.2.2 COMBINATION SELECTION

The γp→ γK+Λ candidate combinations were selected at the DSelector stage using the

following cuts:

• Beam energy: 8.2 GeV < Ebeam < 8.8 GeV

• Measured missing mass squared: |MM2| < 0.08 (GeV/c2)2

• Kinematic fit confidence level (CL) > 10−4 (Corresponds to χ2/ NDF (number of

degrees of freedom) < 5)

• K+ vertex z position: 51.2 cm < z < 78.8 cm

• K+ vertex radial position: r < 1.0 cm

• FCAL shower quality > 0.5

The quantities plotted were found using kinematically fit 4-vectors except for the mea-

sured missing mass squared.

The coherent peak energy range of 8.2 GeV < Ebeam < 8.8 GeV was chosen for the events,

because the beam polarization is maximum in that energy range and to match the TPOL

analysis of polarization values.

Figure 30 shows the time difference ∆t = tvertex − tRF between the event vertex time, as

measured with the final state particles and projected back to the vertex, and the RF time.

The electron beam provided from the accelerator comes as bunches that are in 4 ns intervals.

The region between the blue lines indicates the signal region (−2.004 ns < ∆t < 2.004 ns)

consisting of a single RF bunch. The red lines indicate the sample of out of time RF

bunches used as accidentals. Contribution from this accidentally tagged beam photons as a

background must be estimated and subtracted. It will be discussed further in Sec. 4.2.3.

Figure 31 shows the measured missing mass squared distribution. It should be peaking

around zero since the reaction under study is exclusive (all final particles are detected). A

loose cut on the magnitude of the missing mass squared was applied to be less than 0.08

(GeV/c2)2 (as shown by red dashed lines).
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FIG. 30: Time difference between event vertex and RF time. The dashed blue lines indicate
the in-time beam photons and the dashed red lines indicate the out-of-time beam photons
that will be used for accidental subtraction.
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FIG. 31: Missing mass squared distribution for the reaction γp→ γK+π−p

As can be seen in Appendix E, the loss of signal events is only 0.7% when tightening the

cut to 0.08 (GeV/c2)2 from the default analysis library cut at 0.1 (GeV/c2)2. Furthermore,

Fig. 32 shows the missing mass squared distribution in log scale with all the other cuts
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applied and MΛγ within the Σ0 peak. It clearly shows that the reduction of signal events

due to the cut at 0.08 (GeV/c2)2 is negligible. The effect of loosening and tightening of the

cut on beam asymmetry results will be shown in Sec. 5.5.1.

2)2Missing Mass Squared (GeV/c
0.1− 0.08− 0.06− 0.04− 0.02− 0 0.02 0.04 0.06 0.08 0.1

2 )2
 C

ou
nt

s 
/ 2

 (
M

eV
/c

1−10

1

10

210

310

FIG. 32: Missing mass squared distribution in log scale for the reaction γp→ γK+π−p with

events selected in the Σ0 peak.

The kinematic fit was introduced in Sec. 4.2.1. A cut of CL > 10−4 was used in order to

remove the background. A very loose cut was not applied on the confidence level as it results

in similar statistical errors for yield asymmetry fits described in Sec. 5.3 but giving much

higher value for χ2/NDF of the kinematic fit. (For an example CL > 10−10 corresponds

to a χ2/NDF < 10.6 and an example plot of yield asymmetry fits for this cut is given in

Appendix E.) Figure 33 shows the kinematic fit confidence level distribution and the applied

nominal cut is indicated by red dashed line. This cut corresponds to a cut on χ2/NDF < 5

and is shown in Fig. 34.

Since the K+ track should be originating from the target region, cuts were applied on

the z and r vertex positions of the reconstructed kaon’s distance of closest approach to the

beamline. A study was done to find the resolution in target z using K+Σ0 t-channel MC and

the relevant figures are shown in Appendix D.1. A 3σ cut was made for the target windows

from positions at z=50.3 cm and z=79.6 cm. Based on this studies the K+ vertex z position

is required to be between 51.2 and 78.8 cm (Fig. 35) in order to avoid events that can be
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produced from the target windows. The vertex radius r was required to be less than 1.0 cm

(Fig. 36) consistent with the radial size of the liquid hydrogen target.
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FIG. 33: Kinematic fit confidence level distribution for data. X-axis is in the log scale.
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FIG. 34: Kinematic fit χ2/ NDF distribution.
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FIG. 35: Vertex position along the beamline for K+.
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FIG. 36: Radial vertex position for K+.

Figure 37 shows the invariant mass of π−p after the cuts mentioned above. Λ0(1116)

peak is clearly seen with some background remaining above the Λ mass range. However, it’ll

be shown that Λ’s from the Σ0 peak don’t have any background under it.
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FIG. 37: The accidental subtracted histogram for invariant mass of π−p after the cuts

applied.

Figure 38 shows the fit to accidental subtracted histogram of Mπ−p. Analogous Gaussian

width (σ) was found as 3 MeV using the full width half maximum (FWHM) of the Voigtian

(σ = FWHM / (2
√

2 ln2)). Events within the range |Mπ−p −MΛ| < 3σ were selected

and invariant mass of Λγ was constructed. Figure 39 shows this and according to this, a

considerable amount of background is underneath the Σ0(1193) peak.
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FIG. 38: Invariant mass of π−p distribution fitted with the Voigtian function for a signal (red

dot dashed curve) plus first order Chebychev polynomial for the background (green dashed

curve). The blue solid curve is a result of the total fit. The fit gives a χ2/NDF = 314.50/66

= 4.77. Dashed vertical lines represent the region of Λ events selected for the analysis.
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FIG. 39: The accidental subtracted histogram for invariant mass of Λγ.

There can be split-off showers that produced from charged hadrons interacting with

calorimeters. These are not matched to charged tracks and can be mis-identified as photons.
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So, the shower quality is used as a kinematic topology to study any correlation to this

background.

The shower quality variable is a new method introduced by GlueX FCAL group [43].

It is included in the ROOT trees as NeutralHypo ShowerQuality. It gives a quality score

between 0 and 1 to a neutral shower in FCAL using machine learning techniques. So, it can

be used to remove uncorrelated showers.

Figure 40 shows the invariant mass of Λγ versus shower quality in FCAL. It is evident

that the background with higher masses above the Σ0 region and the lower mass peak is

associated with lower quality values of the shower (close to 0). Furthermore it was found

from simulation that K+Λ t- and u-channel events combined with a neutral shower form this

background.

Shower Quality
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)2
 (

G
eV

/c
γ

Λ
M

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1−10

1

10

FIG. 40: Invariant mass of Λγ vs FCAL shower quality.

A cut of FCAL shower quality > 0.5 was used to get rid of this background. Effect of

this cut on invariant mass of Λγ spectrum can be seen in Fig. 41. Figures 42 and 43 show

that the shower quality cut eliminates the background coming from K+Λ channel.
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FIG. 41: Invariant mass of Λγ before (blue solid circles) and after shower quality > 0.5 cut

(red open circles).
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FIG. 42: Comparison of K+Λ t-channel events before (blue solid circles) and after (red open

circles) shower quality > 0.5 cut (MC).
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FIG. 43: Comparison of K+Λ u-channel events before (blue solid circles) and after (red open

circles) shower quality > 0.5 cut (MC).

Figure 44 shows a fit to the accidental subtracted histogram of invariant mass of Λγ

after all the cuts including FCAL shower quality > 0.5. The width (σ) of Σ0 peak is about

8 MeV. Events within the range |MΛγ −MΣ| < 3σ were selected for the beam asymmetry

analysis. Background under the Σ0 peak was found to be ∼2%. The fractions of background

under the Σ0 peak for different −t bins and the −u bin used in the analysis are shown in

Appendix D.3.
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FIG. 44: Invariant mass of the Λγ distribution fitted with a Voigtian function for the signal

(red dot dashed curve) plus first order Chebychev polynomial for the background (green

dashed curve). The blue solid curve is a result of the total fit. The fit gives a χ2/NDF =

249.31/56 = 4.45. Dashed vertical lines represent the region of Σ0 events selected for the

analysis.

Using the MC for K+Σ0 reaction, a study was done about the photon polar angle (θγ)

distribution. Figures 45 and 46 show θγ distributions for K+Σ0 t-channel and u-channel.

Events were selected in the range 1.169 GeV/c2 < MΛγ < 1.217 GeV/c2 to match with the

mass region selected for data. From this, we see that almost all photons in the t-channel go

to BCAL (θγ > 11◦) while most photons in the u-channel go to FCAL (fraction of photons

in the range 1◦ − 11◦ from Fig. 46 is 67%.)
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FIG. 45: Photon polar angle distribution for K+Σ0 t-channel MC.
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FIG. 46: Photon polar angle distribution for K+Σ0 u-channel MC.

In addition to this, the effect of the shower quality > 0.5 cut on Σ0 yield was also

investigated using MC. This is shown in Fig. 47. It appears that there is almost no effect on

the t-channel Σ0 events. For the u-channel, the fraction of signal events lost is negligible, on

the order of a few percent as one can see from Fig. 48 .
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FIG. 47: Comparison of K+Σ0 t-channel yield before (blue solid circles) and after (red open

circles) shower quality > 0.5 cut (MC).
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FIG. 48: Comparison of K+Σ0 u-channel yield before (blue solid circles) and after (red open

circles) shower quality > 0.5 cut (MC).

Figure 49 shows the −t distribution after all the cuts for events selected within range
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of 1.169 GeV/c2 < MΛγ < 1.217 GeV/c2. Figure 50 shows the −u distribution with the

same cuts. The two peaks in low and high −t(−u) regions suggest both t and u-channel

contributions for the reaction. Here, Mandelstam variables t and u were calculated using

four-momenta of particles in the following way.

t = (pbeam − pK+)2 and u = (ptarget − pK+)2.

From Fig. 50, we see that there are few events with −u < 0. This is physically possible

if the mass is transferred along with momentum, in particular, if a proton is replaced by

a lighter kaon. It was decided to keep these events for beam asymmetry analysis in the

u-channel.
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FIG. 49: K+Σ0 −t distribution after all the cuts.
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FIG. 50: K+Σ0 −u distribution after all the cuts.

In order to understand the large gap between events in the low −t and −u regions, a

MC sample was generated with a very flat t slope of 0.01 (GeV/c)−2 and the acceptance

was found in the entire range of t between 0 and 16 (GeV/c)2. Figure 51 shows the thrown

and accepted −t distributions for this case and Fig. 52 shows the corresponding acceptance.

The acceptances for low |t| and low |u| regions were also found using simulations with

corresponding t(u) slopes and are shown in Appendix D.2.

The acceptance was calculated as:

Acceptance =
Number of reconstructed events

Number of generated events
(37)

It can be seen that the acceptance is very low (by 3 orders of magnitude) in the mid −t
region between low −t and −u regions leading to the gap observed in the distribution in

data.
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FIG. 51: K+Σ0 thrown (left) and accepted (right) -t distributions for a t-slope of 0.01

(GeV/c)−2.
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line), −t distribution from data is shown by solid circles.
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4.2.3 ACCIDENTAL SUBTRACTION

The contribution of accidentally tagged beam photons to the yield was introduced in

Sec. 4.2.2. As shown in Fig. 30, a sample of accidentally tagged combos with 6.012 ns< |∆t| <
18.036 ns was used to estimate this contribution to the K+ φ distributions used in the beam

asymmetry analysis. The accidental distributions were scaled by a factor of 1/6 because

they contain 6 accidental RF bunches. Then, they were subtracted from the distribution for

main RF bunch.

4.2.4 NUMBER OF COMBINATIONS PER EVENT

In GlueX reconstruction there are more than one combination for an event. This is done

to prevent the efficiency from getting too low. But after all the cuts in the analysis, number

of combinations per event should be close to 1 (Exactly 1.0 is the ideal case) which means

majority of combos are for true signal. So the following was done to estimate the number of

combinations per event.

Figure 53 shows the number of events that was in the TTree after the full event selection.

Figure 54 shows the number of combinations for “IsComboCut” was flagged as true (1) or not

(0). The combinations which survive the event selection are those with flag=0. Combinations

with different beam photons were excluded by selecting combinations only in the primary

beam bunch.
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FIG. 53: The number of events after the full event selection.
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FIG. 54: Combinations that were flagged as cut or uncut.

Then, number of surviving combos per event is,

combos not cut

number of events
=

25930

22511
= 1.15 (38)

4.2.5 BACKGROUND UNDER THE SIGNAL PEAK

In Sec. 4.2.2, it was mentioned that there is some background under the Λ peak in the

Mπ−p spectrum (Fig. 37). This should be accounted for while doing the beam asymmetry

analysis. Figure 55 shows the invariant mass of π−pγ vs that of π−p. Figure 56 shows

the Mπ−p spectrum for events within the range of 1.169 GeV/c2 < Mπ−pγ < 1.217 GeV/c2.

As one can see the Λ peak has no background and only the 2% background under the Σ0

peak was considered while estimating the beam asymmetry from background as described

in Sec. 5.5.7.



62

)2 (GeV/c-πpM
1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

)2
 (

G
eV

/c
γ- πp

M

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1

10

210

FIG. 55: Invariant mass of π−pγ vs invariant mass of π−p (data).

)2 (GeV/c p-πM
1.08 1.1 1.12 1.14 1.16 1.18

2
 C

ou
nt

s 
/ 1

 M
eV

/c

0

500

1000

1500

2000

2500

3000

FIG. 56: Invariant mass of π−p within the Σ0 region (data).
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CHAPTER 5

BEAM ASYMMETRY MEASUREMENT (t-CHANNEL)

5.1 BEAM ASYMMETRY METHOD

For the photoproduction of psuedoscalar mesons using a linearly polarized photon beam

and an unpolarized target, the polarized cross section is given by,

σpol(φ, φlin) = σunpol[1− PγΣ cos(2(φ− φlin))]. (39)

Where σunpol is the unpolarized cross section, φ is the angle between plane parallel to the

lab floor and K+ production plane. It is equivalent to the azimuthal angle of K+ in the lab

frame. The magnitude of the photon beam polarization is given by Pγ. Figure 57 shows the

relevant angles in the lab frame.

The beam asymmetry Σ is a measure of the difference between cross sections with two

mutually perpendicular polarizations.

Σ =
σ⊥ − σ‖
σ⊥ + σ‖

(40)

Where σ⊥ and σ‖ are cross sections for the two mutually perpendicular polarization

directions which we call “PERP” and “PARA”. PARA is normally taken to be when the

polarization plane of the beam is parallel(0◦) to the lab floor (x− z plane) and PERP when

it is perpendicular(90◦). Another set with PARA=-45◦ and PERP=45◦ is chosen to allow

an independent check of systematics for the two sets.

Cross sections for each orientation can be found using the following relations:

σ‖(φ) = σpol(φ, φlin = 0) = σunpol(1− P‖Σ cos 2φ), (41)

σ⊥(φ) = σpol(φ, φlin = 90) = σunpol(1 + P⊥Σ cos 2φ). (42)

Here P‖ and P⊥ are the magnitude of the photon beam polarization in the PARA and

PERP orientations, respectively.



64

FIG. 57: Illustration of the angles used for the beam asymmetry analysis in the lab frame.

Figure from Ref. [44].

The event yield in each orientation is given by

Y‖(φ) ∼ N‖
[
σunpolA(φ)

(
1− P‖Σ cos 2φ

)]
, (43)

Y⊥(φ) ∼ N⊥ [σunpolA(φ) (1 + P⊥Σ cos 2φ)] (44)

where:

• A(φ) is an arbitrary function for the φ-dependent detector acceptance and efficiency,

• N⊥(‖) is the flux of photons in the PERP (PARA) orientation.

If there is no background, a polarization-dependent yield asymmetry S(φ) can be defined

as

S(φ) =
Y (φ)⊥ − FRY (φ)‖
Y (φ)⊥ + FRY (φ)‖

=
σ(φ)⊥A(φ)− σ(φ)‖A(φ)

σ(φ)⊥A(φ) + σ(φ)‖A(φ)
. (45)

The φ-dependent acceptance, A(φ) cancels if it is the same for both PARA and PERP modes.

FR = N⊥
N‖

is the ratio of the integrated photon flux for PERP and PARA for a given data

set. Then, measured yield asymmetry can be fit by the following function [45]

f(φ) =
(P⊥ + P‖)Σ cos 2(φ− φ0)

2 + (P⊥ − P‖)Σ cos 2(φ− φ0)
. (46)
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A phase shift φ0 was added to allow for the misalignment of polarization of the beam and

will be discussed in Sec. 5.3. Measurements of P⊥ and P‖ are found using TPOL data as

mentioned in Sec. 3.1.4. Then, from the only fit parameter, beam asymmetry Σ can be

obtained.

5.2 RELATIVE FLUX NORMALIZATION

Using the PS hits in coincidence with a hit in the TAGM or TAGH, the integrated

photon flux was determined. As explained in Sec. 4.2.3, accidentally tagged photons were

subtracted. Here ∆t is the time difference between the PS pair and the tagger hit. The ratio

of tagged flux for PARA and PERP data sets in the beam energy range 8.2 < Eγ < 8.8 GeV

is shown in Table 4.

Data Set PARA Integrated Flux PERP Integrated Flux FR
0/90 4.18800×1012 4.34682×1012 1.03792

-45/45 4.09501×1012 4.07606×1012 0.99537

TABLE 4: Flux normalization ratios (FR) for different polarization directions.

5.3 EXAMPLE FIT TO THE Σ0 SAMPLE (t-CHANNEL)

Using the relative flux ratio, the φ-dependent yields were fit to extract the Σ beam

asymmetry. A set of example fits is shown in Figs. 58 and 59 for the Σ0 event sample

integrated over the entire t region used for this analysis (0.1 (GeV/c)2 < −t < 1.4 (GeV/c)2).

The upper plots are fits to the PARA (left) and PERP (right) yields independently. There

are two free parameters in these fits of the form

f(φ) = C[1 + PΣ cos(2(φ− φ0))] (47)

with p0 = C for normalization and p1 = PΣ.

The phase constant φ0 allows for the PARA (PERP) polarization plane orientation to not

be exactly parallel to the x− z (x− y) plane in the lab. Phase constants were obtained from

a study of ρ(770) decay asymmetries and are given in Table 5 [46]. The value φ0 = 3.13◦

was used for fitting yield asymmetry in each individual bins of −t for 0/90 data set. The

value φ0 = 3.16◦ was used for fitting the yield asymmetry in the -45/45 data set.
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Nominal φ φ0 statistical systematic
0◦ 1.77 ±0.04 ±0.56
90◦ 4.50 ±0.04 ±0.50

Asymmetry 3.13 ±0.03 ±0.14
45◦ 2.85 ±0.05 ±0.53
-45◦ 3.43 ±0.04 ±0.59

Asymmetry 3.16 ±0.03 ±0.17

TABLE 5: Deviation of polarization plane orientation with uncertainties.

The lower left plot in Fig. 58 is a fit to the normalized yield asymmetry S(φ) (Eqn. 45)

according to the fit function in Eqn. 46.

The fit results for the two beam orientation sets in the individual −t bins are shown in

Appendix C.1. The lower right plot in Fig. 58 is relevant for understanding of the impact of

instrumental asymmetries and is discussed in Sec. 5.5.2.
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FIG. 58: Polarization direction set to 0/90. Fits to the φ distributions in the beam energy
range 8.2 < Eγ < 8.8 GeV, integrated over the entire t range. Upper row: fits to the
PARA (left) and PERP (right) distributions independently. Lower row (left): fit to the
asymmetry (Eqn. 45). Lower row (right): fit to the sum Y (φ)⊥+FRY (φ)‖, which is sensitive
to instrumental asymmetries.
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FIG. 59: Polarization direction set to -45/45. Fits to the φ distributions in the beam energy
range 8.2 < Eγ < 8.8 GeV, integrated over the entire t range. Upper row: fits to the
PARA (left) and PERP (right) distributions independently. Lower row (left): fit to the
asymmetry (Eqn. 45). Lower row (right): fit to the sum Y (φ)⊥+FRY (φ)‖, which is sensitive
to instrumental asymmetries.
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5.4 SUMMARY OF FIT RESULTS

Figure 60 shows the beam asymmetry results obtained from fitting the yield asymmetry

histograms for individual −t bins.
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FIG. 60: The beam asymmetry Σ for γp→ K+Σ0 in the t channel. The black solid circles

correspond to polarization direction set to 0/90, red open circles correspond to polarization

direction set to -45/45 (-t coordinates are shifted by 0.02 (GeV/c)2 to the right for clarity).

Vertical error bars represent statistical uncertainties while horizontal error bars are drawn

to indicate the RMS widths of −t bins used.

5.5 SYSTEMATIC STUDIES

5.5.1 EVENT SELECTION

By varying the parameters of the event selection described in Sec 4.2.2, the systematic

dependence of the asymmetry on the event selection criteria was studied. The list of nominal

cuts and the looser and tighter cuts that were used for this purpose are given in Table 6.

For each variation of the cut, the asymmetry was extracted in bins of −t.
Figures 61 and 62 show the values of the asymmetry as a function of −t , where each

parameter is represented by an individual color and two marker shapes for tighter and looser

cuts. The asymmetry for the default cut parameters is shown by the open black circles.
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Looser Cut Nominal Cut Tighter Cut
50.9 cm < z < 79.1 cm 51.2 cm < z < 78.8 cm 51.5 cm < z < 78.5 cm
r < 1.2 cm r < 1.0 cm r < 0.8 cm
|MM2| < 0.1 GeV2 |MM2| < 0.08 GeV2 |MM2| < 0.06 GeV2

CL > 10−5 CL > 10−4 CL > 10−3

|Mπ−p−MΛ| < 0.012 GeV |Mπ−p−MΛ| < 0.009 GeV |Mπ−p−MΛ| < 0.006 GeV
|MΛγ−MΣ0| < 0.032 GeV |MΛγ−MΣ0| < 0.024 GeV |MΛγ−MΣ0 | < 0.016 GeV
shower quality > 0.3 shower quality > 0.5 shower quality > 0.7

TABLE 6: Variation of the event selection cut parameters to study systematic impact on
the asymmetry.

All the data points associated with cut systematics are within the 1σ statistical error of the

nominal data points. Colors for different cut variations are as shown in Fig. 63.
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FIG. 61: Σ asymmetry measured for each of the cut parameter variations, shown as different

colored points in each −t bin for the 0/90 orientation. Full circles represent tighter cuts and

triangles represent looser cuts. The open circles and vertical error bars are the asymmetry

values and statistical errors using the nominal cut parameters.
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FIG. 62: Σ asymmetry measured for each of the cut parameter variations, shown as different

colored points in each −t bin for the -45/45 orientation. Full circles represent tighter cuts and

triangles represent looser cuts. The open circles and vertical error bars are the asymmetry

values and statistical errors using the nominal cut parameters.

Nominal cuts
 vertex z (Tighter)+K
 vertex z (Looser)+K
 vertex r (Tighter)+K
 vertex r (Looser)+K

Missing mass squared (Tighter)
Missing mass squared (Looser)
KinFit CL (Tighter)
KinFit CL (Looser)

p mass (Tighter)-π
p mass (Looser)-π
 mass (Tighter)γΛ
 mass (Looser)γΛ

shower quality (Tighter)
shower quality (Looser)

FIG. 63: Legend for cut systematics plots (Figs. 61 and 62).
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Tables 7 and 8 give systematic uncertainties for each cut variation for 0/90 and -45/45

orientation sets. Here the uncertainty was calculated as the difference between asymmetry

obtained from the cut variation and the nominal cut. For each cut variable, errors associated

with looser and tighter values were averaged. Then, systematic uncertainties due to cuts

were calculated by adding uncertainties due to each cut variable in quadrature. The total

uncertainty due to the cut systematics is obtained as follows.

δCUTSY S =

√√√√ N∑
n=1

δ2
n , (48)

where δn is the average uncertainty of the cut variable ‘n’ and N is the number of cut

variables.

Tables 9 and 10 give the calculated systematic uncertainties for 0/90 and -45/45 beam

orientations respectively.

-t (GeV/c)2

cut variation 0.10-0.35 0.35-0.50 0.50-0.70 0.70-1.40
K+ vertex z loose 0.001 0.040 0.018 0.010
K+ vertex z tight 0.010 0.024 0.004 0.038
K+ vertex r loose 0 0 0.001 0.002
K+ vertex r tight 0 0 0 0.001
Missing mass squared loose 0.001 0.004 0.002 0.004
Missing mass squared tight 0.002 0.019 0.002 0.010
KinFit CL loose 0.028 0.028 0.009 0.003
KinFit CL tight 0.016 0.030 0.029 0.024
Mπ−p loose 0.020 0.017 0.007 0.001
Mπ−p tight 0.011 0.053 0.029 0.016
MΛγ loose 0.006 0.031 0.011 0.002
MΛγ tight 0.026 0 0.012 0.004
FCAL shower quality loose 0.008 0.003 0.004 0.006
FCAL shower quality tight 0 0.002 0.004 0.007

TABLE 7: Systematic uncertainty for each cut variation for individual −t bins for 0/90
orientation.
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-t (GeV/c)2

cut variation 0.10-0.35 0.35-0.50 0.50-0.70 0.70-1.40
K+ vertex z loose 0.006 0.007 0.007 0.005
K+ vertex z tight 0.005 0.035 0.004 0.010
K+ vertex r loose 0 0 0 0
K+ vertex r tight 0 0.003 0 0
Missing mass squared loose 0.027 0.002 0.003 0.002
Missing mass squared tight 0.027 0.025 0.005 0.005
KinFit CL loose 0.002 0.014 0.007 0.026
KinFit CL tight 0.001 0.009 0.001 0.016
Mπ−p loose 0.001 0 0.004 0.007
Mπ−p tight 0.046 0.002 0.023 0.016
MΛγ loose 0.037 0.015 0.017 0.002
MΛγ tight 0.035 0.040 0.032 0.018
FCAL shower quality loose 0.021 0.005 0.022 0.019
FCAL shower quality tight 0.004 0.001 0.002 0.004

TABLE 8: Systematic uncertainty for each cut variation for individual −t bins for -45/45
orientation.

−t bin [(GeV/c)2] Systematic uncertainty
0.10 < −t < 0.35 0.032
0.35 < −t < 0.50 0.059
0.50 < −t < 0.70 0.031
0.70 < −t < 1.40 0.031

TABLE 9: Cut dependence systematic uncertainty on Σ for individual −t bins for 0/90
orientation.

−t bin [(GeV/c)2] Systematic uncertainty
0.10 < −t < 0.35 0.053
0.35 < −t < 0.50 0.039
0.50 < −t < 0.70 0.031
0.70 < −t < 1.40 0.030

TABLE 10: Cut dependence systematic uncertainty on Σ for individual −t bins for -45/45
orientation.
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5.5.2 INSTRUMENTAL ASYMMETRY

Any instrumental asymmetries not canceled by the PERP - PARA subtraction described

in Sec. 5.1 can be seen in the sum Y⊥(φ) + FRY‖(φ). For every −t bin, fits to the sum of

yields were done using the functional form

finst(φ) = C[1 + Ainst cos 2(φ− φ0)]. (49)

There are two free parameters, p0 = C for normalization and p1 = Ainst. The same value

was used for the phase constant of the fit φ0 as for the fits to the yield asymmetry S(φ).

Figure 64 shows the measured instrumental asymmetries as a function of −t from the fits

to the sum of yields shown in Figs. 65 and 66. From the fits, we see that instrumental

asymmetry is close to zero for both 0/90 and -45/45 modes. So, a systematic uncertainty

will not be assigned due to the instrumental asymmetry. Additionally, a linear fit was done

for the sum of yields to compare χ2 values with that for cosine fit. Linear fits are shown in

Figs. 67 and 68. Both type of fits seem to have similar χ2 values.
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FIG. 64: Instrumental asymmetry for 0/90 orientation (top) and -45/45 orientation (bottom)
as a function of −t.
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FIG. 65: Cosine fits to the sum Y (φ)⊥ + FRY (φ)‖ for 0/90 orientation.
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FIG. 66: Cosine fits to the sum Y (φ)⊥ + FRY (φ)‖ for -45/45 orientation.
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FIG. 67: Linear fits to the sum Y (φ)⊥ + FRY (φ)‖ for 0/90 orientation.
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FIG. 68: Linear fits to the sum Y (φ)⊥ + FRY (φ)‖ for -45/45 orientation.
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5.5.3 PHASE DEPENDENCE

While extracting beam asymmetry values, we chose to fix the phase parameter φ0 in the

fits to the yield asymmetry for all −t bins. The linear polarization axis cannot change with

−t. But, any sensitivity to fixing of this phase is studied with fitting the yield asymmetry

allowing phase constant to be a free parameter. Figures 69 and 70 show yield asymmetry

plots with phase parameter being free. Figure 71 shows the measured asymmetry values

along with the nominal results.
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FIG. 69: Yield asymmetry plots for allowing the phase to be a free parameter in the fit for
0/90 orientation. The φ0 values on which fits converge are given in the text boxes inside
plots.

Using the standard deviation of histograms for differences between floating φ0 fit asymme-

tries and nominal asymmetries, a systematic error of 0.11% was assigned to 0/90 orientation

and an error of 0.70% was assigned to -45/45 orientation.
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FIG. 70: Yield asymmetry plots for allowing the phase to be a free parameter in the fit for
-45/45 orientation. The φ0 values on which fits converge are given in the text boxes inside
plots.
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FIG. 71: Σ asymmetry measured while allowing the phase to be a free parameter in the fit
(red closed point) in the 0/90 orientation (top) and -45/45 orientation (bottom). The open
black circles and error bars are the asymmetry values and statistical errors using the fixed
phase.
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5.5.4 FLUX NORMALIZATION DEPENDENCE

To estimate the sensitivity of the measured Σ values to the flux normalization determined

by PS yields, asymmetries were measured again by changing the nominal flux ratio by ±5%.

The measured asymmetries with the varied flux normalization are shown in Fig. 72. The

deviations of the red and blue points from the nominal asymmetry values were computed for

all −t bins and standard deviations of histograms were taken as the systematic uncertainty

of the flux normalization. The average deviation for the 0/90 orientation is 0.002 while the

maximum deviation is 0.011. The average deviation for the -45/45 orientation is 0.002 while

the maximum deviation is 0.008. A systematic error of 0.496% was assigned to the 0/90

orientation and an error of 0.38% was assigned to the -45/45 orientation respectively.
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FIG. 72: Σ asymmetry measured after changing flux normalization by±5% (red closed points
for +5% and blue closed points for -5%) in the 0/90 (top) and -45/45 (bottom) orientations.
The open circles and error bars are the asymmetry values and statistical errors using the
nominal flux normalization.
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5.5.5 FINITE φ BIN SIZE DEPENDENCE

The effect of the bin width of φ distribution was studied analytically based on the method

of Ref. [47]. The correction function to the binned data is defined as (using Table 1 of

Ref. [47])

R =
1
2
α∆

sin 1
2
α∆

. (50)

where α = 2 and ∆ = 2π
20

is the bin width used in φ histogram. The correction function is a

constant as shown in Fig. 73 and has a value of 1.0166. The beam asymmetry values of each

set (0/90 and -45/45) were multiplied by this factor for the final results shown in Sec 7.1.
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FIG. 73: Correction function R defined in Eqn. 50 for a bin width of ∆ = 2π
20



83

5.5.6 MINIMUM PHOTON ENERGY DEPENDENCE

The reaction under study involves low energy radiated photons from Σ0 decay. The BCAL

energy threshold was lowered to 50 MeV while making the ROOT TTrees. Figure 74 shows

the photon energy (Eγ) distribution in the lab frame for events with 0.1 (GeV/c)2 < −t <
1.4 (GeV/c)2. It was estimated that 63% of the total events are below 100 MeV.
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FIG. 74: Eγ distribution in the lab frame for 0.1 (GeV/c)2 < −t < 1.4 (GeV/c)2.

To estimate the sensitivity of the measured Σ values to the minimum photon energy

in the final state, asymmetries were measured again using the minimum photon energy 55

MeV and 60 MeV. The measured asymmetries with the varied photon energies are shown

in Fig. 75. The deviations of the red and blue points from the nominal asymmetry value

were computed for all −t bins and the standard deviations of histograms were taken as the

systematic uncertainty on minimum photon energy. Average deviation for 0/90 orientation

is -0.004 while the maximum deviation is 0.048. Average deviation for -45/45 orientation is

0.012 while the maximum deviation is 0.079. A systematic error of 2.648% was assigned to

0/90 orientation and an error of 2.866% was assigned to -45/45 orientation respectively.

The impact of this cut variation on the total number of signal events was estimated using

the distribution shown in Fig. 74. It was found that 8.4% of signal is lost when applying a

minimum photon energy cut at 60 MeV.



84

]2-t [(GeV/c)
0.2 0.4 0.6 0.8 1

Σ

0.6

0.7

0.8

0.9

1

1.1

1.2

]2-t [(GeV/c)
0.2 0.4 0.6 0.8 1

Σ

0.6

0.7

0.8

0.9

1

1.1

1.2

FIG. 75: Σ asymmetry measured after changing minimum photon energy (red closed points
for 55 MeV and blue closed points for 60 MeV) in the 0/90 (top) and -45/45 (bottom)
orientations. The open circles and error bars are the asymmetry values and statistical errors
using the nominal minimum photon energy (50 MeV).
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5.5.7 ASYMMETRY FROM THE BACKGROUND

In order to find the systematic uncertainty from the 2% background under the Σ0 peak

the beam asymmetry was found using a sideband region of the invariant mass of Λγ. Events

were selected in the region 1.23 GeV/c2 < MΛγ < 1.4 GeV/c2 where the Λ events were in

the range 1.107 GeV/c2 < Mπ−p < 1.125 GeV/c2.

The relation between measured asymmetry, Am and asymmetry of the signal, As and the

background, Ab is as follows:

Am = As · fs + Ab · fb, (51)

that leads to

As =
Am − Ab · fb

fs
(52)

where fs and fb are the fractions of signal (0.98) and background (0.02) events. Due to

the low number of events in the sideband region, we made a sample of events by combining

the two data sets 0/90 and -45/45 and found the beam asymmetries from the background

in the entire t range used in the analysis. Figure 76 shows the fit to the yield asymmetry in

the chosen MΛγ sideband region.
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FIG. 76: Fit to the yield asymmmetry in the region 1.23 GeV/c2 < MΛγ < 1.4 GeV/c2 for
0.1 (GeV/c)2 < −t < 1.4 (GeV/c)2.

From the fit parameter the beam asymmetry was extracted and after finite bin correction
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we obtained a value Ab = 0.814±0.076. For the average measured asymmetry we calculated

the statistical weighted mean of the values given in Table 33 and it was found to be Am =

1.000. Then, using Eqn. 52, we obtained As = 1.004 therefore a systematic uncertainty of

0.004 was included as the uncertainty associated with the background for the t-channel.

5.5.8 NON-UNIFORMITY OF ACCEPTANCE

For the fit function given by Eqn. 46 we were only considering the beam asymmetry Σ as

the polarization observable in the yields for a given orientation. In general for an experiment

with a linearly polarized photon beam and an unpolarized target, when the polarization of

the recoiling hyperon can be determined via a weak decay asymmetry, the differential cross

section is given by,

dσ

dΩ
=
( dσ
dΩ

)
0
{1− P γΣ cos 2φ+ α cos θxP

γOx sin 2φ

+ αP cos θy − α cos θyP
γT cos 2φ

+ α cos θzP
γOz sin 2φ}

(53)

where
(
dσ
dΩ

)
0

is the unpolarized cross section, P γ is the polarization of the beam and

P ,T ,Ox and Oz are polarization observables. The direction cosines cos θx,y,z indicate the

direction of the decay proton in the hyperon (Σ0) rest frame and α is the weak decay

asymmetry [48].

Figure 77 shows the definition of axis used. The three axes x̂, ŷ and ẑ are defined in the

center of mass frame as,

ẑ =
~pγ
|~pγ|

, ŷ =
~pγ × ~pK
|~pγ × ~pK |

, x̂ = ŷ × ẑ (54)

where ~pγ and ~pK are momenta of the incoming photon beam and the outgoing kaon.

Then the angles θx, θy and θz are measured from the axes x̂, ŷ and ẑ after boosting to the

Σ0 rest frame and using the final proton momentum vector in the Σ0 frame.

In the standard analysis method it is assumed that the acceptances in θx, θy and θz are

flat and we can try to derive a general formula for the yield asymmetry in the case where

acceptances A(θx), A(θy) and A(θz) are not uniform. Then we can make an estimation to

see how much uncertainty will be due to this non-uniform acceptance.

Using Eqn. 53 the event yields for ‖ and ⊥ photon beam polarization orientations can
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FIG. 77: The definitions of the axes used in the study. Figure is from Ref. [49].

be written as,

Y‖(φ, θx, θy, θz) ∝ A(φ, θx, θy, θz)[1− P‖Σ cos 2φ+ α cos θxP‖Ox sin 2φ

+ αP cos θy − α cos θyP‖T cos 2φ

+ α cos θzP‖Oz sin 2φ]

(55)

Y⊥(φ, θx, θy, θz) ∝ A(φ, θx, θy, θz)[1 + P⊥Σ cos 2φ− α cos θxP⊥Ox sin 2φ

+ αP cos θy + α cos θyP⊥T cos 2φ

− α cos θzP⊥Oz sin 2φ]

(56)

if P‖ = P⊥ = Pγ , the yield asymmetry will be

Y (φ)⊥ − Y (φ)‖
Y (φ)⊥ + Y (φ)‖

=
−αPγOz sin 2φ

∫
A(θx)d(cos θx)

∫
A(θy)d(cos θy)

∫
A(θz) cos θz d(cos θz)

+αPγT cos 2φ
∫
A(θx)d(cos θx)

∫
A(θy) cos θy d(cos θy)

∫
A(θz)d(cos θz)

−αPγOx sin 2φ
∫
A(θx) cos θx d(cos θx)

∫
A(θy)d(cos θy)

∫
A(θz)d(cos θz)

PγΣ cos 2φ
∫
A(θx)d(cos θx)

∫
A(θy)d(cos θy)

∫
A(θz)d(cos θz)

+αP
∫
A(θx)d(cos θx)

∫
A(θy) cos θy d(cos θy)

∫
A(θz)d(cos θz)

∫
A(θx)d(cos θx)

∫
A(θy)d(cos θy)

∫
A(θz)d(cos θz)

(57)
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This can be written as,

Y (φ)⊥ − Y (φ)‖
Y (φ)⊥ + Y (φ)‖

=
+αPγT cos 2φ

∫
A(θy) cos θy d(cos θy)∫

A(θy)d(cos θy)
− αPγOz sin 2φ

∫
A(θz) cos θz d(cos θz)∫

A(θz)d(cos θz)

PγΣ cos 2φ− αPγOx sin 2φ
∫
A(θx) cos θx d(cos θx)∫

A(θx)d(cos θx)

1 + αP
∫
A(θy) cos θy d(cos θy)∫

A(θy)d(cos θy)

(58)

If we consider Rx =
∫
A(θx) cos θx d(cos θx)∫

A(θx)d(cos θx)
,Ry =

∫
A(θy) cos θy d(cos θy)∫

A(θy)d(cos θy)
, Rz =

∫
A(θz) cos θz d(cos θz)∫

A(θz)d(cos θz)

and calculate the integrals in cos θi from -1 to 1 we can find the contribution coming from

the asymmetry of events in the corresponding angle.

Tables 11-13 show the calculated integrals and the corresponding ratios for each −t bin

used in the analysis. The values from integrals contained more significant figures and are

used to find the ratio but the values given in tables are rounded. Acceptance plots in angles

θx, θy and θz are shown in Appendix F. The acceptance histograms were fitted with a 4th

order polynomial and the acceptance functions were found for use in the integrals.

Additionally, 2d plots were made for recoil angles θx, θy and θz vs. K+ lab φ angle from

t-channel MC and corresponding acceptances are shown in Appendix F. Acceptances are

uniform in φ.
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−t bin [(GeV/c)2]
∫
A(θx)d(cos θx)

∫
A(θx) cos θx d(cos θx) Rx

0.10 < −t < 0.35 0.026 0.010 0.385
0.35 < −t < 0.50 0.073 0.031 0.419
0.50 < −t < 0.70 0.084 0.030 0.362
0.70 < −t < 1.40 0.082 0.022 0.266

TABLE 11: The integrals associated with the asymmetry of events in recoil angle θx for
t-channel

−t bin [(GeV/c)2]
∫
A(θy)d(cos θy)

∫
A(θy) cos θy d(cos θy) Ry

0.10 < −t < 0.35 0.026 0.004 0.148
0.35 < −t < 0.50 0.073 0.009 0.127
0.50 < −t < 0.70 0.084 0.011 0.126
0.70 < −t < 1.40 0.082 0.011 0.138

TABLE 12: The integrals associated with the asymmetry of events in recoil angle θy for
t-channel

−t bin [(GeV/c)2]
∫
A(θz)d(cos θz)

∫
A(θz) cos θz d(cos θz) Rz

0.10 < −t < 0.35 0.026 0.00009 0.003
0.35 < −t < 0.50 0.073 -0.005 -0.075
0.50 < −t < 0.70 0.084 -0.008 -0.090
0.70 < −t < 1.40 0.082 -0.007 -0.083

TABLE 13: The integrals associated with the asymmetry of events in recoil angle θz for
t-channel

Writing Eqn. 58 in terms of Rx,Ry and Rz gives,

Y (φ)⊥ − Y (φ)‖
Y (φ)⊥ + Y (φ)‖

=
+αPγT cos 2φRy − αPγOz sin 2φRz

PγΣ cos 2φ− αPγOx sin 2φRx

1 + αP Ry

(59)

This can be written in the following form,

Y (φ)⊥ − Y (φ)‖
Y (φ)⊥ + Y (φ)‖

=
Pγ[(Σ +B) cos 2φ+ C sin 2φ]

1 +D
(60)
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where B = αTRy, C = −(αOxRx + αOzRz) and D = αPRy.

In order to find the constants B,C and D we used α = 0.750 [50] and the RPR-2007

model [14] predictions for P ,T ,Ox and Oz. Figure 78 shows the predictions for those polar-

ization observables and beam asymmetry Σ for the t-channel. Values found for B,C and D

are given in Table 14.
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FIG. 78: RPR-2007 predictions for polarization observables for γp → K+Σ0 at Eγ = 8.5
GeV for the t-channel.

−t [(GeV/c)2] B C D
0.268 0.0305994 0.00828148 0.0308824
0.424 0.0229152 0.0368844 0.0233467
0.593 0.0183028 0.0376789 0.0188395
0.912 0.00917362 0.0173528 0.00963026

TABLE 14: Constants B, C and D for the mean values of −t bins used in the analysis.

Then we can use the new fit function given in Eqn. 60 and find the beam asymmetry

values (only fit parameter) to compare with the nominal fit results. Tables 15 and 16 show

the values from the fits and the differences.
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−t [(GeV/c)2] nominal fit value new fit value difference
0.268 1.100 1.104 0.004
0.424 1.001 1.002 0.001
0.593 1.057 1.058 0.001
0.912 0.9263 0.9267 0.0004

TABLE 15: Comparison of Σ after the new fit with the nominal values for 0/90 orientation
set.

−t [(GeV/c)2] nominal fit value new fit value difference
0.268 0.8191 0.8141 0.0050
0.424 1.0144 1.0159 0.0015
0.593 0.9612 0.9611 0.0001
0.912 0.9530 0.9521 0.0009

TABLE 16: Comparison of Σ after the new fit with the nominal values for -45/45 orientation
set.

This suggests that the maximum systematic uncertainty due to non-uniform acceptance

is ∼0.5% for the t-channel. However as can be seen in Fig. 78, P and T have almost same

values from the model prediction. This can be due to some theoretical constraints on the

polarization observables the model has used and we did another study to find the systematic

uncertainty using more conservative values for P and T .

The values used are,

(i) T = 0 and P = 0.25

(ii) T = 0.25 and P = 0.1.

Ox and Oz were assumed to be zero.
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Case (i): T = 0,P = 0.25 and Ox = Oz = 0

−t [(GeV/c)2] B C D
0.268 0 0 0.02775
0.424 0 0 0.0238125
0.593 0 0 0.023625
0.912 0 0 0.025875

TABLE 17: Constants B, C and D for the mean values of −t bins used in the analysis for
T = 0 and P = 0.25.

−t [(GeV/c)2] nominal fit value new fit value difference
0.268 1.100 1.131 0.031
0.424 1.001 1.025 0.024
0.593 1.057 1.081 0.024
0.912 0.926 0.951 0.025

TABLE 18: Comparison of Σ values after the new fit with the nominal values for 0/90
orientation set for T = 0 and P = 0.25.

−t [(GeV/c)2] nominal fit value new fit value difference
0.268 0.819 0.842 0.023
0.424 1.014 1.038 0.024
0.593 0.961 0.984 0.023
0.912 0.953 0.977 0.024

TABLE 19: Comparison of Σ values after the new fit with the nominal values for -45/45
orientation set for T = 0 and P = 0.25.
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Case (ii): T = 0.25,P = 0.1 and Ox = Oz = 0

−t [(GeV/c)2] B C D
0.268 0.02775 0 0.0111
0.424 0.0238125 0 0.009525
0.593 0.023625 0 0.00945
0.912 0.025875 0 0.01035

TABLE 20: Constants B, C and D for the mean values of −t bins used in the analysis for
T = 0.25 and P = 0.1.

−t [(GeV/c)2] nominal fit value new fit value difference
0.268 1.100 1.085 0.015
0.424 1.001 0.987 0.014
0.593 1.057 1.043 0.014
0.912 0.926 0.910 0.016

TABLE 21: Comparison of Σ values after the new fit with the nominal values for 0/90
orientation set for T = 0.25 and P = 0.1.

−t [(GeV/c)2] nominal fit value new fit value difference
0.268 0.819 0.801 0.018
0.424 1.014 1.000 0.014
0.593 0.961 0.947 0.014
0.912 0.953 0.937 0.016

TABLE 22: Comparison of Σ values after the new fit with the nominal values for -45/45
orientation set for T = 0.25 and P = 0.1.

From Tables 18 - 22 we can see that the systematic uncertainties range from ∼1% - 3%.

We chose to include 3% as a more conservative systematic uncertainty due to the non-uniform

acceptance for the t-channel.
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5.5.9 BEAM POLARIZATION

The beam polarization values used for beam asymmetry analysis and their statistical

uncertainties were given in Table 2. We see that for each orientation polarization P is close to

0.35 while the statistical uncertainty is around 0.01. This gives δP
P
≈ 0.03. This uncertainty

will shift beam asymmetry measurements by an overall scale factor. Systematic uncertainties

on TPOL measurements also contribute to this normalization uncertainty. The systematic

uncertainty from TPOL is estimated to be 1.5% [26]. Since the final beam asymmetry

result contains statistically weighted result from four orientations, the statistical uncertainty

must be scaled by a factor of 4. The total normalization uncertainty on the final beam

asymmetry result is therefore,
√

(0.03)2

4
+ (0.015)2 = 2.1%. This will not be combined with

other systematic uncertainties.

5.5.10 SYSTEMATICS SUMMARY

A summary of systematic uncertainties on the Σ beam asymmetries obtained for the

t-channel is presented in Table 23. Total systematic uncertainty for each orientation set

was found by adding individual contributions given in Table 23 in quadrature. As men-

tioned in Sec. 5.5.9, the uncertainty from the beam polarization was not combined with this

systematics.

Study 0/90 Systematic Error -45/45 Systematic Error
Event selection 0.031-0.059 0.030-0.053

Phase dependence 0.001 0.007
Flux normalization dependence 0.005 0.004

Minimum photon energy 0.026 0.029
Background 0.004 0.004

Non-uniform acceptance 0.030 0.030
Total 0.051-0.071 0.052-0.068

TABLE 23: Summary of systematic uncertainties from the studies described in Sec. 5.5.
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CHAPTER 6

BEAM ASYMMETRY MEASUREMENT (u-CHANNEL)

6.1 FITS TO THE Σ0 SAMPLE

Figures 79 and 80 show the fits used for the Σ0 event sample integrated over the entire

u region used for the analysis (−u < 2.0 (GeV/c)2). The upper plots are fits to the PARA

(left) and PERP (right) yields independently. There are two free parameters in these fits of

the form f(φ) = C[1 +PΣ cos(2(φ−φ0))], with p0 = C for normalization and p1 = PΣ. Fits

to the sum of yields were done using the functional form given in Eqn. 49.

Same phase constant values were used for φ0 which were given in Sec. 5.3.

From the yield asymmetry plots, beam asymmetry values were obtained for −u < 2.0

(GeV/c)2 and they are,

Σ = 0.428±0.099 for 0/90 orientation,

Σ = 0.338±0.099 for -45/45 orientation

where uncertainties are statistical errors from the fits.

Additionally, a linear fit was done for the sum of yields to compare χ2 values with that

for cosine fit. Linear fits are shown in Figs. 81 and 82. Both types of fits seem to have similar

χ2 values.
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FIG. 79: Polarization direction set to 0/90. Fits to the φ distributions in the beam energy

range 8.2 < Eγ < 8.8 GeV, integrated over the entire u range. Upper row: fits to the

PARA (left) and PERP (right) distributions independently. Lower row (left): fit to the

asymmetry (Eqn. 45). Lower row (right): fit to the sum Y (φ)⊥+FRY (φ)‖, which is sensitive

to instrumental asymmetries.
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FIG. 80: Polarization direction set to -45/45. Fits to the φ distributions in the beam energy

range 8.2 < Eγ < 8.8 GeV, integrated over the entire u range. Upper row: fits to the

PARA (left) and PERP (right) distributions independently. Lower row (left): fit to the

asymmetry (Eqn. 45). Lower row (right): fit to the sum Y (φ)⊥+FRY (φ)‖, which is sensitive

to instrumental asymmetries.
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FIG. 81: Linear fit to the sum Y (φ)⊥ + FRY (φ)‖ for 0/90 orientation.
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FIG. 82: Linear fit to the sum Y (φ)⊥ + FRY (φ)‖ for -45/45 orientation.
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6.2 SYSTEMATIC STUDIES

6.2.1 EVENT SELECTION

By varying the parameters of the event selection described in Sec. 4.2.2, the systematic

dependence of the asymmetry on the event selection criteria was studied. The list of nominal

cuts and the looser and tighter cuts that were used for this are same as those in Table 6.

For each variation of the cut, the asymmetry was extracted for the −u bin.

Figure 83 shows the values of the asymmetry where each parameter is represented by an

individual color, and the asymmetries for the nominal cut parameters are shown by the open

black circles. All the filled data points are within the 1σ statistical error of the nominal cut

value points. Colors for different cut variations are the same as shown in Fig. 63.
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FIG. 83: Σ asymmetry measured for each of the cut parameter variations, shown as different

colored points for the 0/90 (top) and -45/45 (bottom) orientations. The open circles and

vertical error bars are the asymmetry values and statistical errors using the nominal cut

parameters.

Table 24 gives the systematic uncertainties for each cut variation for 0/90 and -45/45

orientation sets.

The total systematic uncertainty due to the cut variation is 5% for 0/90 orientation and
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cut variation 0/90 uncertainty -45/45 uncertainty
K+ vertex z loose 0.015 0.007
K+ vertex z tight 0.003 0.016
K+ vertex r loose 0 0
K+ vertex r tight 0 0

Missing mass squared loose 0.004 0.025
Missing mass squared tight 0.013 0.008

KinFit CL loose 0.029 0.014
KinFit CL tight 0.049 0.006
Mπ−p loose 0.018 0.004
Mπ−p tight 0.006 0.011
MΛγ loose 0.011 0.021
MΛγ tight 0.013 0.018

FCAL shower quality loose 0.017 0.007
FCAL shower quality tight 0.030 0.043

TABLE 24: Systematic uncertainty for each cut variation for 0/90 and -45/45 orientations.

4% for -45/45 orientation.

6.2.2 PHASE DEPENDENCE

Any sensitivity that can be due to fixing of the phase parameter φ0 was studied with

fitting the yield asymmetry allowing phase constant to be a free parameter. Figures 84

and 85 show yield asymmetry plots with phase parameter being free. Figure 86 shows the

measured asymmetry values along with the nominal results.

Using the difference of beam asymmetry values from nominal, a systematic error of 2.2%

was assigned to 0/90 orientation and an error of 2.1% was assigned to -45/45 orientation.



102

 / ndf 2χ  19.25 / 8

Prob   0.01356

p0        0.0986± 0.4499 

p1        0.1053± 0.2093 

(rad)+
K

φ
3− 2− 1− 0 1 2 3

Y
ie

ld
 A

sy
m

m
et

ry

0.5−

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

0.4

0.5
 / ndf 2χ  19.25 / 8

Prob   0.01356

p0        0.0986± 0.4499 

p1        0.1053± 0.2093 
°6.04± = 11.99

0
φ

FIG. 84: Yield asymmetry allowing the phase to be a free parameter in the fit for 0/90
orientation. The φ0 value on which fit converge is given in the text box inside the plot.
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FIG. 85: Yield asymmetry allowing the phase to be a free parameter in the fit for -45/45
orientation. The φ0 value on which fit converge is given in the text box inside the plot.
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FIG. 86: Σ asymmetry measured while allowing the phase to be a free parameter in the fit
(red closed point) in the 0/90 orientation (top) and -45/45 orientation (bottom). The open
black circle and error bar are asymmetry value and statistical error using the fixed phase.
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6.2.3 FLUX NORMALIZATION DEPENDENCE

To estimate the sensitivity of the measured Σ values to the flux normalization determined

by PS yields, asymmetries were measured again by changing the nominal flux ratio by ±5%.

The measured asymmetries with the varied flux normalization are shown in Fig. 87. Using

the difference between the measured asymmetries from the nominal, a systematic error of

0.6% was assigned to 0/90 orientation and an error of 0.2% was assigned to -45/45 orientation

respectively.
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FIG. 87: Σ asymmetry measured after changing flux normalization by±5% (red closed points
for +5% and blue closed points for -5%) in the 0/90 (top) and -45/45 (bottom) orientations.
The open circles and error bars are the asymmetry values and statistical errors using the
nominal flux normalization.
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6.2.4 FINITE φ BIN SIZE DEPENDENCE

The effect of the bin width of φ distribution was studied analytically using Eqn. 50.

∆ = 2π
10

was used as the bin width. The correction function is a constant as shown in Fig. 88

and has a value of 1.069. Values of Σ shown in Sec. 6.1 were multiplied by this number and

the corrected beam asymmetry values are given in Sec. 7.2.
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FIG. 88: Correction function R defined in Eqn. 50 for a bin width of ∆ = 2π
10

6.2.5 MINIMUM PHOTON ENERGY DEPENDENCE

In Sec. 5.5.6, it was shown that there is a large fraction of photons from Σ0 decay with

energy below 100 MeV for the t-channel. Figure 89 shows the photon energy (Eγ) distribution

in the lab frame for events with −u < 2.0 (GeV/c)2. It was estimated that only 5% of the

total events are below 100 MeV. So, the event sample in the low |u| region is insensitive to

the minimum shower energy around 50 MeV. Therefore a systematic uncertainty was not

estimated for the u-channel due to minimum photon energy.
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FIG. 89: Eγ distribution in the lab frame for −u < 2.0 (GeV/c)2.

6.2.6 ASYMMETRY FROM THE BACKGROUND

Following the method used in Sec. 5.5.7 for the t-channel, beam asymmetry was calculated

for the background using the region 1.23 GeV/c2 < MΛγ < 1.4 GeV/c2 for −u < 2.0

(GeV/c)2. Figure 90 shows the fit to the yield asymmetry.
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FIG. 90: Fit to the yield asymmmetry in the region 1.23 GeV/c2 < MΛγ < 1.4 GeV/c2 for
−u < 2.0 (GeV/c)2.
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From the fit parameter the beam asymmetry was extracted and the finite bin correction

gave a value Ab = 0.199± 0.300. The average measured asymmetry was found to be Am =

0.410. Then, using Eqn. 52, we obtained a value of As = 0.414 therefore a systematic

uncertainty of 0.004 was included as the uncertainty associated with the background for the

u-channel.

6.2.7 NON-UNIFORMITY OF ACCEPTANCE

Similar to the method shown in Sec. 5.5.8 the non-uniformity of acceptance in recoil

angles of the decay proton were estimated for the u-channel. Corresponding histograms are

shown in Appendix F.

Additionally, 2d plots were made for recoil angles θx, θy and θz vs. K+ lab φ angle from

u-channel MC and the corresponding acceptances are shown in Appendix F. Acceptances

are uniform in φ.

−u bin [(GeV/c)2]
∫
A(θx)d(cos θx)

∫
A(θx) cos θx d(cos θx) Rx

−u < 2.0 0.2159 -0.0008 -0.0039

TABLE 25: The integrals associated with the asymmetry of events in recoil angle θx for
u-channel.

−u bin [(GeV/c)2]
∫
A(θy)d(cos θy)

∫
A(θy) cos θy d(cos θy) Ry

−u < 2.0 0.2158 0.0058 0.0268

TABLE 26: The integrals associated with the asymmetry of events in recoil angle θy for
u-channel.

−u bin [(GeV/c)2]
∫
A(θz)d(cos θz)

∫
A(θz) cos θz d(cos θz) Rz

−u < 2.0 0.2159 -0.0073 -0.0340

TABLE 27: The integrals associated with the asymmetry of events in recoil angle θz for
u-channel.

In order to find the uncertainty using the ratios Ri, we made predictions for other po-

larization observables for a beam asymmetry value of Σ = 0.4. Based on the Ref. [51], the

following constraint equations were used while calculating the observables.
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|[ΣP − (CxOz − CzOx)]− T | < 0.005 (61)

|[O2
x +O2

z + C2
x + C2

z + Σ2 − T 2 + P 2]− 1| < 0.0001 (62)

O2
x +O2

z + Σ2 < 1 (63)

|T − P | ≤ 1− Σ (64)

|T + P | ≤ 1 + Σ (65)

Figure 91 show the relations between B,C and D and Fig. 92 shows P vs. T for 1000

possible values for P ,T ,Ox,Oz,Cx and Cz satisfying the above constraint equations. From

the plot of D vs. B values for two extremes were used in the fit function given by Eqn. 60

while keeping C = 0.

The values used are,

(i) B = 0.008 and D = 0.018

(ii) B = −0.018 and D = −0.008
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FIG. 91: Plots of the ratios C vs. B (left), D vs. C (middle) and D vs. B (right) found for

Σ = 0.4.
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FIG. 92: P vs. T for Σ = 0.4.

Case (i):B = 0.008 and D = 0.018

orientation set nominal fit value new fit value difference
0/90 0.4282 0.4284 0.0002

-45/45 0.3378 0.3358 0.0020

TABLE 28: Comparison of Σ values after the new fit with the nominal values for B = 0.008
and D = 0.018.

Case (ii):B = −0.018 and D = −0.008

orientation set nominal fit value new fit value difference
0/90 0.4282 0.4432 0.0150

-45/45 0.3378 0.3530 0.0152

TABLE 29: Comparison of Σ values after the new fit with the nominal values for B = −0.018
and D = −0.008.

From Tables 28 and 29 we can see that the maximum systematic uncertainty due to the

non-uniformity of acceptance is ∼ 1.5% for the u-channel.
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6.2.8 SYSTEMATICS SUMMARY

A summary of systematic uncertainties on the Σ beam asymmetries obtained for the

u-channel is presented in Table 30. Total systematic uncertainty for each orientation set was

found by adding individual contributions given in Table 30 in quadrature.

Study 0/90 Systematic Error -45/45 Systematic Error
Event selection 0.050 0.040

Phase dependence 0.022 0.021
Flux normalization dependence 0.006 0.002

Background 0.004 0.004
Non-uniform acceptance 0.015 0.015

Total 0.057 0.048

TABLE 30: Summary of systematic uncertainties from the studies described in Sec. 6.2.
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CHAPTER 7

RESULTS

7.1 t-CHANNEL

Figure 93 shows the results for Σ beam asymmetry for γp → K+Σ0 as a function of -t

for 0/90 and -45/45 orientation sets. Total uncertainties for each orientation set were found

from adding statistical and systematic uncertainties in quadrature. Results are compared

with previous SLAC 16 GeV results and RPR-2007 model prediction at 8.5 GeV.
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FIG. 93: The beam asymmetry Σ for γp → K+Σ0 in the t channel. The black solid circles
correspond to the polarization direction set to 0/90, magenta open circles correspond to the
polarization direction set to -45/45 (-t coordinates are shifted by 0.02 (GeV/c)2 to the right
for clarity), vertical error bars represent total uncertainties while horizontal error bars are
to indicate the RMS widths of the −t bins used. Red squares are previous SLAC [7] results
at Eγ = 16 GeV and the blue dotted curve represents predicted values from RPR-2007
model [14] at Eγ = 8.5 GeV.
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Figure 94 shows the final result found by combining results of 0/90 and -45/45. We used

a conservative approach and the larger systematic uncertainty from the two data sets were

used as the average systematic uncertainty for each −t bin. Combined beam asymmetry

values and statistical uncertainties were found by using statistical errors of the two data sets

as weights as given below following the method in Ref. [52].

The weighted average asymmetry is given by,

µ̂ =

∑
xi/σ

2
i∑

1/σ2
i

(66)

where xi are measured beam asymmetry values for 0/90 and -45/45 orientation sets for

a given −t bin and σi are their statistical uncertainties.

The average error on the weighted beam asymmetry was found as,

σ(µ̂) =

√
1∑
1/σ2

i

(67)

Then, total uncertainties of the combined results were found by adding the combined

statistical and systematic errors in quadrature. In addition to the prediction from RPR-

2007 model we added a curve (red, dashed) for the model prediction from Guidal et al. [53].

Both models use Regge theory and give similar prediction for beam asymmetry as a function

of −t for energies beyond resonance region.

Tables 31 - 33 summarize the Σ beam asymmetry results for individual orientation sets

and the average result for the t-channel.
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FIG. 94: Beam asymmetry Σ for γp → K+Σ0 in the t channel. The black solid circles
correspond to combined results from 0/90 and -45/45 data sets in this analysis, vertical
error bars represent total uncertainties while horizontal error bars are to indicate the RMS
widths of the −t bins used. Gray triangles are previous SLAC results [7] at Eγ = 16 GeV
and the curves show predicted values from RPR-2007 [13, 14] (blue, solid) and Guidal et
al. [53] (red, dashed) at Eγ = 8.5 GeV respectively.
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−t bin [(GeV/c)2] Σ Stat. uncert. Syst. uncert. Total uncert.
0.10 < −t < 0.35 1.118 0.100 0.051 0.112
0.35 < −t < 0.50 1.018 0.097 0.071 0.120
0.50 < −t < 0.70 1.075 0.092 0.051 0.105
0.70 < −t < 1.40 0.941 0.092 0.051 0.105

TABLE 31: Summary of Σ beam asymmetry for the 0/90 orientation.

−t bin [(GeV/c)2] Σ Stat. uncert. Syst. uncert. Total uncert.
0.10 < −t < 0.35 0.833 0.114 0.068 0.133
0.35 < −t < 0.50 1.031 0.102 0.058 0.117
0.50 < −t < 0.70 0.977 0.100 0.053 0.113
0.70 < −t < 1.40 0.969 0.098 0.052 0.111

TABLE 32: Summary of Σ beam asymmetry for the -45/45 orientation

−t bin [(GeV/c)2] Σ Stat. uncert. Syst. uncert. Total uncert.
0.10 < −t < 0.35 0.994 0.075 0.068 0.101
0.35 < −t < 0.50 1.024 0.070 0.071 0.100
0.50 < −t < 0.70 1.030 0.068 0.053 0.086
0.70 < −t < 1.40 0.954 0.067 0.052 0.085

TABLE 33: Summary of average Σ beam asymmetry for the t-channel
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7.2 u-CHANNEL

Tables 34-36 show the results for Σ beam asymmetry for K+Σ0 in the u-channel. Com-

bined asymmetry values and uncertainties were found the same way as explained in Sec. 7.1.

−u bin ((GeV/c)2) Σ Stat. uncert. Syst. uncert. Total uncert.
−u < 2.0 0.458 0.099 0.057 0.114

TABLE 34: Summary of Σ beam asymmetry for the 0/90 orientation.

−u bin ((GeV/c)2) Σ Stat. uncert. Syst. uncert. Total uncert.
−u < 2.0 0.361 0.099 0.048 0.110

TABLE 35: Summary of Σ beam asymmetry for the -45/45 orientation

−u bin ((GeV/c)2) Σ Stat. uncert. Syst. uncert. Total uncert.
−u < 2.0 0.410 0.070 0.057 0.090

TABLE 36: Summary of average Σ beam asymmetry for the u-channel

7.3 CONCLUSION

The measurement for t-channel is the first measurement done exclusively for K+Σ0 beam

asymmetry above the resonance region. As shown by Fig. 94, the beam asymmetry values

for t-channel are close to 1. According to Eqn. 33 this implies that only the perpendicular

polarized photon beam contributes to the production of K+Σ0 in the t-channel. Also, it

tells that the natural parity exchange dominates presumably with the K∗(892) meson as

discussed in Sec. 2.3. Results are consistent with the predictions from RPR-2007 [13, 14]

and Guidal et al. [53] at Eγ = 8.5 GeV. Our results have much precise statistical precision

than the previous SLAC results at Eγ = 16 GeV. The SLAC measurement was done using

the cross section ratios for K+Λ and K+Σ0 reactions to get the individual beam asymmetries

for the two reactions. This is because they only detected the K+ in the final state so their

measurement of asymmetry included the sum of K+Λ and K+Σ0.
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The u-channel beam asymmetry for K+Σ0 has never been measured before. As shown

in Table 36 an average value of approximately 0.4 is obtained for the low −u region (−u <
2.0 (GeV/c)2) measured. It indicates that in this kinematic domain, u-channel hyperon

exchanges of both Σ(J = 1/2) and Y ∗(J = 3/2) trajectories contribute to the production

of the K+Σ0 final state. There is no model prediction for beam asymmetry in the low −u
region yet. The measurement in this work will provide valuable information for theorists

to understand the exchange mechanisms contributing to kaon and in general pseudoscalar

meson photoproduction.
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APPENDIX A

LIST OF GLUEX SPRING 2017 RUNS

A.1 0/90 PARA (69 RUNS)

31031 31000 30999 30998 30964 30963 30954 30953 30924 30923 30893 30890 30844 30843

30833 30830 30829 30813 30812 30802 30801 30780 30779 30743 30742 30736 30731 30694

30686 30677 30672 30658 30654 30649 30637 30627 30622 30621 30611 30598 30597 30587

30580 30579 30568 30494 30486 30474 30466 30461 30451 30441 30429 30428 30424 30422

30408 30380 30355 30345 30343 30329 30327 30323 30322 30321 30283 30282 30279

A.2 0/90 PERP (78 RUNS)

31046 31029 30996 30995 30962 30961 30952 30951 30947 30920 30903 30902 30891 30889

30859 30858 30842 30841 30840 30827 30826 30824 30811 30810 30809 30800 30797 30796

30778 30770 30741 30740 30735 30730 30701 30693 30684 30676 30668 30657 30653 30648

30636 30626 30625 30620 30610 30596 30595 30586 30578 30577 30567 30499 30493 30490

30485 30473 30465 30460 30450 30447 30446 30442 30432 30431 30410 30409 30383 30381

30361 30346 30344 30330 30326 30324 30281 30280

A.3 -45/45 PARA (74 RUNS)

31032 31002 31001 30966 30965 30956 30955 30927 30926 30896 30895 30848 30847 30835

30834 30816 30815 30804 30803 30784 30783 30745 30744 30737 30733 30732 30696 30695

30688 30687 30679 30678 30673 30659 30655 30650 30638 30630 30629 30623 30612 30607

30602 30600 30590 30589 30582 30581 30570 30496 30495 30487 30480 30477 30468 30467

30463 30462 30453 30452 30448 30433 30420 30411 30404 30403 30385 30384 30349 30347

30331 30299 30285 30284

A.4 -45/45 PERP(69 RUNS)

31034 31004 31003 30994 30993 30958 30957 30929 30928 30899 30898 30856 30855 30838

30836 30821 30818 30807 30805 30787 30785 30754 30749 30738 30734 30697 30690 30680

30675 30674 30666 30660 30656 30651 30643 30642 30641 30639 30633 30632 30624 30616
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30614 30608 30592 30591 30571 30497 30488 30484 30482 30481 30470 30469 30464 30454

30449 30434 30421 30402 30401 30387 30386 30350 30348 30332 30300 30298 30286
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APPENDIX B

PARAMETERS FOR MC

• software version set: version recon-2017 01-ver03 8.xml

• halld recon software version: recon-2017 01-ver03 hdr

• halld sim software version: 4.2.0

• generator used: genr8

• random trigger background input: Random:recon-2017 01-ver03

• run range: 30274-31057

• no of events generated: 10 million

• Geant version: 3 and 4 (version 3 was used for all the figures in this thesis. Version 4

was used for comparison of acceptance.)

• photon beam energy: 8.2 GeV - 8.8 GeV

• t-slopes used are, (extracted from data)

– K+Σ0 t-channel = 3.654

– K+Σ0 u-channel = 3.21

– K+Λ t-channel = 3.792

– K+Λ u-channel = 3.064

• After reconstruction, ReactionFilter plugin was applied with the version set ver-

sion 4.3.0.xml in order to get FCAL shower quality values into the tree.
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APPENDIX C

FIT RESULTS

C.1 FIT RESULTS FOR t-CHANNEL

Figures 95-102 show the fit results for each individual −t bin, with panels for the PARA

(upper left), PERP (upper right), asymmetry (lower left) and sum (lower right) as described

for Fig. 58.
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FIG. 95: Polarization direction set to 0/90. Fits to the φ distributions for 0.10 GeV2 < −t <
0.35 GeV2. The orientation of the plots is the same as Fig. 58.
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FIG. 96: Polarization direction set to 0/90. Fits to the φ distributions for 0.35 GeV2 < −t <
0.50 GeV2. The orientation of the plots is the same as Fig. 58.
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FIG. 97: Polarization direction set to 0/90. Fits to the φ distributions for 0.50 GeV2 < −t <
0.70 GeV2. The orientation of the plots is the same as Fig. 58.
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FIG. 98: Polarization direction set to 0/90. Fits to the φ distributions for 0.70 GeV2 < −t <
1.40 GeV2. The orientation of the plots is the same as Fig. 58.
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FIG. 99: Polarization direction set to -45/45. Fits to the φ distributions for 0.10 GeV2 <
−t < 0.35 GeV2. The orientation of the plots is the same as Fig. 58.
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FIG. 100: Polarization direction set to -45/45. Fits to the φ distributions for 0.35 GeV2 <
−t < 0.50 GeV2. The orientation of the plots is the same as Fig. 58.
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FIG. 101: Polarization direction set to -45/45. Fits to the φ distributions for 0.50 GeV2 <
−t < 0.70 GeV2. The orientation of the plots is the same as Fig. 58.
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FIG. 102: Polarization direction set to -45/45. Fits to the φ distributions for 0.70 GeV2 <
−t < 1.40 GeV2. The orientation of the plots is the same as Fig. 58.
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C.2 LINEAR FITS TO u-CHANNEL YIELD ASYMMETRY
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FIG. 103: Polarization direction set to 0/90. Linear fit to the yield asymmetry.
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FIG. 104: Polarization direction set to -45/45. Linear fit to the yield asymmetry.
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C.3 FITS TO YIELD ASYMMETRY FROM COMBINED DATA SET

In order to cross check the average beam asymmetry results obtained from the 0/90 and

-45/45 sets we made an event sample combining the events from all 4 orientations. The

following fits were done with Eqn. 46 for the −t bins and the −u bin in this event sample.

Average values of polarization and flux ratio were used and they are,

P‖ = 0.3525

P⊥ = 0.3478

FR = 1.01689
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FIG. 105: Fits to yield asymmetry from combined data set from 0/90 and -45/45 for t-
channel. Beam asymmetry values and statistical uncertainties are consistent with the average
asymmetry results given in Table 33.
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FIG. 106: Fit to the yield asymmetry from combined data set from 0/90 and -45/45 for u-
channel. Beam asymmetry value and statistical uncertainty are consistent with the average
asymmetry result given in Table 36.
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APPENDIX D

ADDITIONAL PLOTS
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FIG. 107: Distribution of photon energy in the Σ0 rest frame.

Σ0 → Λγ

So, in the Σ0 rest frame, (pΣ − pγ)2 = p2
Λ

=⇒ M2
Σ − 2EγMΣ = M2

Λ

=⇒ Eγ =
M2

Σ−M
2
Λ

2MΣ
= 74.5 MeV

The mean value of distribution in Fig. 107 is consistent with the calculated value.
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D.1 K+ Z-VERTEX STUDY

FIG. 108: K+∆z vs. z event by event, where ∆z = zrecon − zgen is the difference between

the thrown and reconstructed z positions.

FIG. 109: A Gaussian fitted to the projection from z = 48 − 52 cm region. The resolution

is σ=0.308±0.003 cm.
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FIG. 110: A Gaussian fitted to the projection from z = 78 − 82 cm region. The resolution

is σ=0.283±0.003 cm.
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D.2 ACCEPTANCE FROM MC

Distributions for accepted events were made with the thrown P4 vectors. Geant4 shows

a higher acceptance than Geant3 for both K+Σ0 and K+Λ reactions, in the entire −t range

(Fig. 112 and Fig. 116) for the t-channel. For u-channel, the higher acceptance in Geant4 is

seen in the region −u < 0.5 (GeV/c)2 (Fig. 114 and Fig. 118).

D.2.1 K+Σ0 t-CHANNEL
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FIG. 111: K+Σ0 t-channel thrown (left) and accepted (right) -t distributions.
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FIG. 112: Acceptance for K+Σ0 t-channel.
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D.2.2 K+Σ0 u-CHANNEL
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FIG. 113: K+Σ0 u-channel thrown (left) and accepted (right) -u distributions.
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FIG. 114: Acceptance for K+Σ0 u-channel.
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D.2.3 K+Λ t-CHANNEL

For K+Λγ accepted −t distribution plots of K+Λ reaction, cuts on MΛγ and shower

quality were not used as this is the background reaction for K+Σ0.
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FIG. 115: K+Λ t-channel thrown (left) and K+Λγ accepted (right) -t distributions.
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FIG. 116: Acceptance for K+Λγ t-channel.
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D.2.4 K+Λ u-CHANNEL
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FIG. 117: K+Λ u-channel thrown (left) and K+Λγ accepted (right) -u distributions.
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FIG. 118: Acceptance for K+Λγ u-channel.
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D.3 BACKGROUND UNDER THE Σ0 PEAK FOR DIFFERENT

BINS OF t AND u
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FIG. 119: The fraction of background under Σ0 peak ( BΣ

SΣ+BΣ
) for the −t bins used in

the analysis. BΣ and SΣ are background and signal yields within the range 1.169 GeV/c2

< MΛγ < 1.217 GeV/c2 respectively.
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analysis.
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APPENDIX E

CUT STUDY
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FIG. 121: Invariant mass of Λγ for different values of kinematic fit confidence level cut. SΣ

and BΣ are signal and background yields within the range 1.169 GeV/c2 < MΛγ < 1.217
GeV/c2.
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FIG. 122: Invariant mass of Λγ for different values of measured missing mass squared cut.
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FIG. 123: Invariant mass of Λγ for different values of K+ vertex radial position cut.
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FIG. 124: Invariant mass of Λγ for different values of K+ vertex z position cut.
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FIG. 125: Invariant mass of Λγ for different values of FCAL shower quality cut.
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FIG. 126: Invariant mass of Λγ for different values of minimum photon energy cut.
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FIG. 127: Fits for yield asymmetry for -t bins for -45/45 orientation with kinematic fit
confidence level > 10−10 cut.
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APPENDIX F

ACCEPTANCE OF RECOIL ANGLES
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FIG. 128: Acceptance for angular distributions of the proton for 0.10 (GeV/c)2 < −t < 0.35
(GeV/c)2. Histograms are for three angles θx (top), θy (middle) and θz (bottom).
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FIG. 129: Acceptance for angular distributions of the proton for 0.35 (GeV/c)2 < −t < 0.50
(GeV/c)2.
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FIG. 130: Acceptance for angular distributions of the proton for 0.50 (GeV/c)2 < −t < 0.70
(GeV/c)2.
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FIG. 131: Acceptance for angular distributions of the proton for 0.70 (GeV/c)2 < −t < 1.40
(GeV/c)2.
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FIG. 132: Acceptances for decay angular distributions of the proton vs. φ lab angle of K+

from t-channel MC.
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FIG. 133: Acceptance for angular distributions of the proton for −u < 2.0 (GeV/c)2.
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FIG. 134: Acceptances for decay angular distributions of the proton vs. φ lab angle of K+

from u-channel MC.
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