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Abstract

TWO ESSAYS ON THE MICROSTRUCTURE OF THE

HOUSING MARKET: AGENTS’ DIFFUSED EFFORT AND

SELLERS’ BEHAVIOR BIAS

Zhaohui Li
Old Dominion Univerisity, 2020

Director: Dr. Mohammad Najand

For the first essay, we generalize the classic Williams [1998 RFS] brokerage model
by introducing the diffused effort. That is, the agent can cross-utilize effort spend-
ing on one listing to another one. Besides, the agent can manage heterogeneous
housing assets. One counterintuitive finding in Williams’ paper is the absence
of the agency problem. As a special case in our model, we recover the agency
problem. We examine the positive externality due to the diffused effort and show
that it depends on the agent’s inventory size. Hence there exists a trade-off be-
tween agents’ effort spending on existing listings and on finding a new listing.

For the second essay, we model a home seller’s pricing decision under a gen-
erally defined prospect value function. We show a simple disposition effect is
caused by reference dependence, but it only exists when the agent is risk neutral.
Diminishing sensitivity will lead to a two-way disposition effect by generating a
local reverse disposition effect, a range in which the seller’s asking price decreases
with increasing potential loss. Loss aversion tends to magnify the disposition ef-
fect and hence mitigates the reverse disposition effect. One direct implication
is that acclaimed tests on loss aversion such as Genesove and Mayer [2001] and
Pope and Schweitzer [2011] are likely invalid. We present evidence consistent
with the model by using multiple listing service data from Virginia. Our findings
suggest that studies which predominantly focus on a one-way disposition effect
can be overly simplistic and misleading as it depends on the strong assumption
of risk neutrality.
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Chapter 1

Introduction of the Housing Market
Real estate assets account for a significant part of the capital market. According to

Geltner et al. [2014], in the United States, they amount to about 42% of the total market
value of all assets and generate over 25% of US gross domestic product (GDP). Also, the
housing market generates nearly 70% of local government revenue from property tax and
creates nearly 9 million jobs within the US. Moreover, the housing market is the largest
element of a household’s portfolio; more than 22% of total households asset is housing. With
housing’s large capital and high riskiness, it has become an essential driver of the business
cycle. During recent years, housing has played an especially large and unhappy role in the
global recession.

Unlike the stock market, three aspects of housing are most important in our study. First,
houses are heterogeneous. It is a naturally localized monopoly because of no substitute.
Also, this is true because of many characteristics of housing (i.e., square feet, lot size, num-
ber of bedrooms, bathrooms, and age) and the neighborhood amenities and local public
goods that jointly impact housing prices. Second, housing transactions could be taken under
uncertainty. The search-bid system under the housing market is taken within a narrow local
market, and the mismatch is quite often. Thus, both buyer and seller have to spend much
effort on each other. Even when they meet, the buyer and seller are likely unable to make a
successful agreement of price. As most participants in the housing market are individuals,
their decision-making process is full of bias and uncertainty. Third, the housing market has
many significant market frictions. The search cost under the housing market is economically
costly. Besides, transaction costs, including brokerage commission fees, moving costs, title
insurance, and taxes, are also costly. Thus, unlike the perfectly competitive market, the
housing market needs time to clear the price and inventory.

In this study, we will focus on the microstructure of housing markets. Figure 1.1 present
a general framework of all the related studies involved in this study. Unlike other perfect
competitive markets, broker (or agent)1 plays an important role in the final transaction

1In this study, we are using the term “broker" and “agent" interchangeably. It is widely used for many
housing market studies. In fact, under the formal legal definition, the licensing process for brokers are more
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Figure 1.1: Microstructure of the Housing Market

 

Broker 

Price + Liquidity 

Seller Buyer Search + Bargain 

Source: Han, Lu, and William C. Strange. “The Microstructure of Housing Markets: Search, Bargaining, and
Brokerage." Handbook of Regional and Urban Economics. Vol. 5. Elsevier, 2015. 813-886.

price and liquidity, often measured by time-on-market (TOM). Most studies focus on how
these outcomes are affected by a range of market and strategic forces, including market
conditions, house characteristics, and strategic decisions by sellers and buyers. Besides, the
broker’s performance, which may be affected by ownership types, compensation plans, and
incentive structures.

The analysis of housing markets must begin with the fact that housing is a unique good.
This means that the analysis of other markets cannot simply be brought into the housing
market without modification. For the first essay, we focus on an economic model of principal-
agency problem, and an agent’s externality called diffused effort. We show that the results
from Williams [1998 RFS] are wrong. We find both agent problems and diffused effort
have a significant impact on housing market prices and liquidity. For the second essay, we
focus on the sellers’ behavior bias. We find that sellers are pricing their assets under three

strict. The broker is required for both additional experiences as an agent and additional education.
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major assumptions of prospect theory: reference dependence, marginal diminishing, and
loss aversion. We build a model and show that the asking price is highly related to these
factors. Our empirical and calibration results also confirm this. Also, we show that, unlike
the studies in the stock market (Barberis and Xiong [2009, 2012]), reference dependence
alone can generate a disposition effect.
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Chapter 2

Essay 1: Diffused Effort and Real Estate
Brokerage

2.1 Introduction

In the real estate market, brokers play a key role in facilitating transactions. A 2016
report from the National Association of Realtors (NAR) documents that brokers sell 88 %
of single-family dwellings 1. Rutherford et al. [2005] report that total brokerage commission
fees add up to more than $65.5 billion a year. Real estate brokers are specialists in collecting
and sharing market information, providing financial expertise, and marketing properties.

There is a vast body of theoretical literature that looks at the commission structure
and the principal-agent relationship in real estate brokerage2. Comprehensive reviews on
brokerage literature can be found in Yavas [1994] and Zietz & Sirmans [2011]. Most of the
papers in the literature consider three commission systems: fixed commission percentage,
flat fee, and net listing. The general conclusion is that none of the systems perfectly aligns
the broker’s interest with those of sellers and that the industry is inefficient (Han & Hong
2011; Barwick & Pathak 2015). However, Williams [1998] has pointed out that little research
has considered interactions of externalities driven by multiple key characteristics in broker-
age: multiple brokers, each with multiple tasks; the costly search for both buyers and new
tasks (sellers); and the competitive equilibrium among brokers. As a result, he proposes a
search model that explicitly incorporates these aspects. Contradicting the findings in most
papers, Williams [1998] claims that the agent’s optimal search effort and reservation price
are independent of the commission rate. Hence, there is no agency problem under this com-
pensation structure. Despite the absence of agency problem, Williams shows that an agent
who commits (dilutive) effort to searching for new clients generates a negative externality to
the existing sellers; hence, the perfectly competitive equilibrium without an agency problem

1https://www.nar.realtor/reports/highlights-from-the-profile-of-home-buyers-and-sellers
2An incomplete list includes Yinger [1981]; Zorn & Larsen [1986]; Miceli [1989,1991]; Anglin & Arnott

[1991]; Arnold [1992]; Geltner, Kluger & Miller [1992]; Yavas [1995a, 1995b]; Williams [1998]; Miceli, Pancak
& Sirmans [2007]; Fisher & Yavas [2010]; Han & Hong [2016], etc.
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is not the first-best.

In a different setting, Fisher & Yavas [2010] study a “winner-takes-all" externality in
brokerage. The idea is that in the multiple listing service, as brokers pool their listings, mul-
tiple brokers can commit competing for the effort to the same listing. However, only those
brokers who ensure a successful transaction get compensated eventually. The authors show
that competition among brokers can induce each broker to commit more marketing efforts.
Nevertheless, in the Fisher & Yavas model, unlike in the Williams [1998] model, a less than
100% commission rate still induces the broker to spend insufficient effort on selling a house.
They continue and show that under a unique set of parameters, these two competing forces
can offset and bring back the first-best outcome.

In this paper, we extend Williams’ brokerage model by introducing a new type of diffused
effort externality. The original Williams’s model, as well as most of the brokerage models,
assumes that an agent’s effort committed to different houses is mutually exclusive. For ex-
ample, for each listing property, a broker spends efforts to find a potential buyer. However,
if an agreement is not reached, the buyer then exits, and the effort spending dissipates. In
our paper, with a positive probability, we allow the broker to have the same buyer subse-
quently visit other listing properties that are available in the network of the same broker with
no additional cost. Unlike the “winner-takes-all" externality, where multiple agents commit
competing effort towards the same task, the diffused effort externality discussed in this paper
emphasizes the potential for an agent to (partially) cross-utilize effort on one listed house to
other listings because of the close substitutability.

This diffused effort externality is different from what is modeled in the common agency
literature, such as in Bernheim and Whinston [1986] and Laussel and Le Breton [2001], etc.
The common agency models often focus on how the principals cooperatively attempt to in-
fluence the decision of a common agent. In the housing market, such cooperation among
multiple sellers is rarely seen. Instead, our model focuses on the brokers’ optimal choice
under multiple tasks. As shown in this paper, the fact that the effort committed on one task
(listing) can potentially benefit others generates a positive but size-dependent externality
that improves the expected payoff to both principals and agents. Furthermore, we demon-
strate a trade-off for the agent between utilizing diffused effort among the existing listings
and the potential to increase network size (i.e., by finding another seller), and we examine
its property in great detail in the paper.
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In addition to diffused effort, we further generalize the Williams model by incorporating
asset heterogeneity. That is, we allow brokers to manage two different types of assets at
the same time. The scope of asset heterogeneity considered in our study is flexible. For
example, we allow an agent to simultaneously sell a pool of listings from customers (with
the commission rate less than 1) and for herself (with a commission rate of 1) while holding
other characteristics the same. This allows us to examine the agency problem in a way that
is close to reality. Alternatively, we can make buyer arrival process type-dependent in order
to model for potential heterogeneous demand; or to assume heterogeneous bidding distribu-
tions as proxies for different classes of housing assets.

Regarding the commission rate, one counterintuitive finding in Williams [1998] is the ab-
sence of agency problem, as the author shows that the broker’s effort level and the expected
selling proceeds are independent of the commission rate. As our model embeds Williams’s
model as a special case, we investigate his model and show that part of the proof and conse-
quently, the major conclusions in Williams [1998] turn out to be problematic. In particular,
within Williams’s original setting on a single type asset, our model reveals positive relations
between an agent’s effort/reservation price and commission rate. The positive relation con-
tinues to hold when we allow two types of assets that have different commission rates to be
simultaneously managed by a broker.

Our findings are consistent with much of the documented empirical evidence offered by
previous research. For example, several studies find that agents are able to sell their own
houses (hence a higher implied commission rate) at a premium compared to otherwise similar
houses from their clients (Rutherford et al. [2005, 2007]; Levitt & Syverson [2008]; Bian et
al. [2017]). With respect to the expected time to sell, our model predicts that it is neg-
atively related to the commission rate. Notably, Jia & Pathak [2010] finds that a higher
commission rate is associated with a higher likelihood of a sale, and it also reduces days on
the market. Bian et al. [2017] also find that client properties competing with agent-owned
properties remain on the market 30% to 46% longer. These findings are in tune with the
prediction from our paper: due to the lower commission, a broker tends to deliver a longer
time on the market and a lower transaction price for a client’s property than for her property.

On-demand strength, we show that, compared to the other type of asset, for the asset
that is easier to solicit potential buyers, a broker tends to commit lower search effort on an
existing listing. Nevertheless, a broker commits more effort on finding a new listing in order
to increase the network size, in order to strengthen the diffused effort externality. At the
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same time, a broker tends to set a higher reservation value and experience a bigger selling
likelihood.

Finally, we examine the impact of the valuation heterogeneity driven by either variance
or mean of the underlying bidding distribution. Our model shows that when diffused effort
externality is weak, an agent may focus more on low variance assets and deliver a better
payoff for the sellers of this type. When diffused effort externality is strong enough, high
variance assets will become more attractive to the agent. That is because as agent’s reser-
vation value will go above the mean of the bidding distribution, and the likelihood of sale
is higher for high variance type due to the fatter upper tail. Regarding the level of average
willingness to pay, we show that when valuation distribution of one type stochastically dom-
inates the other, a broker tends to ask for a higher price, commits more efforts that increase
the likelihood of sale, and also commit more effort on finding a new listing on the high-value
type asset.

We organize the paper as follows. Section 2.2 first briefly restates the Williams model
and then extends the Williams model to allow for diffused effort and heterogeneous assets.
Section 2.3 presents our major findings. Section 2.4 discusses our model limitations and
suggest potential directions for future extension. We conclude the paper in section 2.5. To
help readers in comparing Williams’s [1998] work and this paper, whenever possible, we
adopt the same symbolic conventions that were used in the original Williams [1998] paper
whenever relevant.

2.2 Model Set Up

2.2.1 Williams Model

Consider a large market with a countably infinite number of brokers competing for busi-
ness. These brokers are homogeneous in the sense that they have the same productivity in
searching for both potential buyers and new sellers, which will be discussed later. However,
they may not have the same number of clients at a given time. Once a broker successfully
solicits a new seller, she will sign an exclusive contract with the seller3. This contract has

3The model implicitly assumes that it is always optimal for a seller to hire a broker with full delegation.
It can be satisfied by suitably assume the outside option of a seller and a broker’s production function of
search. See Williams [1998] for a detailed discussion on it.
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infinite maturity, and the contractual compensation is a common, constant percentage4 of
the asset’s sale price, payable upon sale. All properties are ex-ante identical in the model.

To sell a property, a broker must commit effort to searching for a potential buyer, who
arrives in an independent Poisson process. For broker i with n clients, we define the time
spent for client j’s property as xijn. During the time window of ∆t, a buyer arrives with
the probability of F (xijn, x)∆t, where x refers to the average search effort across all brokers.
Given this setup, no buyer arrives with the probability of 1 − F (xijn, x)∆t, and more than
one buyer arrives with a probability of smaller than the order of ∆t. The function F has the
following properties. First, it is twice continuously differentiable everywhere. Second, F is
increasing and strictly concave in xijn, and decreasing in x. The former assumption implies
decreasing marginal productivity on the broker’s searching ability. The latter assumption
reflects the negative externality of searching buyers due to competition among brokers. To
prevent corner solutions, we also assume F (0, ·) = 0 and F ′(0, ·) ≡ ∂F (x,x)

∂x
|x=0 = ∞. In a

large market with many brokers and assets, the interaction between effort spent on current
assets and the market average is minimal5. Third, F is homogeneous. It implies a constant
elasticity of the broker’s own effort: xijnF

′(xijn, x)/F (xijn, x) = η > 0. To guarantee a
positive reservation price in equilibrium, we set its value at 0 < η < 1.

The new seller’s arrival rate also follows an independent Poisson process. Let n be
the concurrent number of average clients per broker and y be the average search effort ex-
pended on new clients across all brokers. During the time window of ∆t, a new seller arrives
with the probability of αn(yin/y)∆t, where yin refers to the time spent by broker i with
n current clients. In this case, the chance of no new seller arriving has the probability of
1− αn(yin/y)∆t, and the chance of more than one new sellers arriving has a probability of
smaller than the order ∆t. As pointed out by Williams [1998], the proportionality of the
average number of assets is consistent with the arrival rate of buyers. In the steady state,
the average arrival rates of both new sellers and buyers are proportional to the aggregate
number of assets in the market. This implies the independence of the arrival rate of buyers
and the proportionality of the average arrival rate of new sellers. yin/y measures the relative
allocation of time to new clients. Because we assume the broker’s time spent on searching for
new sellers is purely dissipative, the number of new sellers in the market will not depend on
the total searching time spent by all brokers. Besides, competition among brokers requires

4Based on the Federal Trade Commission’s (FTC) 2007 report, the real estate commission rate in the US
is around 5% to 6% of the sale price. More recently, Jia & Pathak [2010] finds that there is little variation
in commission rates over time despite the increased penetration of the internet and new technologies.

5See Williams [1998] appendix (page 247) for a detailed discussion on why it must be the case.
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that the marginal productivity of the search must be constant across time. As a result,
the arrival rate of new clients is homogeneous on degree zero on yin and y. Therefore it is
reasonable to assume the arrival rate is proportional to yin/y.

For broker i with n current clients, the total fraction of time spent on searching is
win =

∑n
j=0 xijn + yin. The time not spent on searching is spent on leisure. During a

time window of ∆t, the working time incurs a cost of θH(win)∆t. θ is a positive scaling
factor and must satisfy some technical requirement to generate the competitive equilibrium
results6. As is typical in agency models, we assume function H to be twice differentiable,
increasing, and strictly convex in xin. Furthermore, we assume H ′(0) = 0 and H ′(1) = ∞
to prevent any corner solutions. A usual assumption is that xin is not verifiable, and hence
the contract cannot be enforced upon the effort level.

Once a potential buyer arrives for property j, he inspects this property only and deter-
mines the quality of match to his own preference. Depending on the matching quality, the
buyer offers a price of pijn. We assume pijn is a random draw from some distribution G. If
there is no match at all, pijn = 0. If there is a perfect match, pijn = 1. Therefore, G has a
finite support [0,1]. Furthermore, we assume the buyer’s final offer is independent of other
possible offers that may come from other buyers, other units, and a different time. The
distribution of G could be very general. The only requirement is that the hazard function,
g/(1−G) is nondecreasing everywhere. Here we do not consider the uncertain nature of the
housing market. Hence G does not shift over time. The broker chooses a reservation price
rijn for the jth property. If pijn ≥ rijn, the transaction is closed, and the seller pays pijn.
Thus, the probability of a successful agreement is 1 − G(r). As argued by Williams [1998],
this simple matching mechanism can be motivated from a model of sequential search and
bilateral bargaining game, which is seen in Williams [1995].

Based on the model we have thus far introduced, for broker i with n current clients, her
6See Williams [1998] for detail.
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objective function is to solve the following problem:

V (n) = max︸︷︷︸
rijn,xijn,yin

e−ι∆t

{
n∑
j=1

F (xijn, x
∗)

∫ 1

rijn

b∗pdG(p)∆t

+
n∑
j=1

F (xijn, x
∗)[1−G(rijn)]V (n− 1)∆t

+ αn∗(yin/y
∗)V (n+ 1)∆t− θH(

n∑
j=1

xijn + yin)∆t

+
[
1−

n∑
j=1

F (xijn, x
∗)[1−G(rijn)]∆t− αn∗(yin/y∗)∆t

]
V (n)

}
+ o(∆t), (2.1)

Subject to V (0) = γ, 0 ≤ rijn ≤ 1, xijn, yin ≥ 0, and
∑n

j=1 xijn + yin ≤ 1 for j = 1, ..., n and
i, n = 0, 1....

In Equation (2.1), ι is the discount rate, and b∗ is the common commission rate on the
market. Here n∗, x∗ and y∗ are average values of the market equilibrium counterparts, and
we assume that in a large and steady market, each broker correctly regards b∗, n∗, x∗ and
y∗ as fixed values that do not depend on her own choices. Over the time interval of ∆t, the
broker maximizes the discounted expected payoff from the following decision problem. First,
it is possible that one buyer will arrive and bid a higher price than rijn. In that case, the ex-
pected commission benefit forms the first summation term. The second term in the brackets
reflects the possibility that the broker may successfully find a new seller. This will increase
the current number of clients by 1. The broker will thus face a similar decision problem with
state variable n+ 1. The third term measures the total search cost spent by broker i. In the
fourth term,

∑n
j=1 F (xijn, x

∗)[1 − G(rijn)]∆t refers to the probability of successfully selling
one property. This will decrease the current number of clients by 1. Finally, the probability
of remaining in the current state is 1−αn∗(yin/y∗)∆t−

∑n
j=1 F (xijn, x

∗)[1−G(rijn)]. In this
case, the broker will repeat the current decision problem V (n), as shown by the last term in
the brackets. We should note that the terms in the brackets correctly consider all possible
events that could happen during the period ∆t. The other events can occur only with the
probability of a smaller order than ∆t. For example, the probability of both selling one
current property and finding a new seller is

∑n
j=1 F (xijn, x

∗)[1 − G(rijn)] ∗ αn∗(yin/y∗)∆t2.
Those terms are collected as o(∆t), which is neglectable in the maximization.
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Equation (2.1) has three desirable features. First, it reflects the multiple tasks of agency
nature in real estate brokerage. Multiple sellers must compete for the broker’s exclusive
search effort. Second, it explicitly models the fact that a broker has the freedom to search
for new principals (sellers). Third, as Williams [1998] shows, Equation (2.1) implies that
under the steady state, the likelihood of sale must equal to the speed of finding new clients :

α = F (x∗, x∗)[1−G(r∗)] (2.2)

The proof is straightforward. In the steady state, the expected rate of changing as-
set’s size from n to n + 1 is the same as from n to n − 1, i.e., E(∆n = 0). Thus,
E
{∑n

j=1 F (xijn, x
∗)[1−G(rijn)]

}
= E {αn∗(yin/y∗)}. On the market average, as all the

assets are identical, Equation (2.2) must hold.

There are two technical conditions for V . First, we assume a fully competitive market
for brokerage. As a result, the supply for brokerage has infinite elasticity. Suppose the entry
cost for a broker is γ. In equilibrium, the entry profit for a new broker must be equal to the
cost of entrance. As a result, V (0) = γ. In addition, to keep the stationary nature of the
value function, the common transversality condition implies that lim

n→∞
V (n+ 1)− V (n) ≤ δ

for some positive and finite δ.

We refer to Equation (2.1) as the benchmark case. The next section extends this model
to allow for diffused effort and heterogeneous assets. We then characterize the equilibrium
and discuss whether agency problems exist.

2.2.2 Extended Model with Diffused Effort and Heterogeneous

Assets

The benchmark model assumes that an agent’s effort committed to competing tasks is
mutually exclusive with each other. This can be seen in Equation (2.1), in which the spent
effort xijn benefits only the task j (i.e., to solicit a potential buyer for house seller j). As
a result, if pijn < rijn, no transaction occurs, and the potential buyer for house j exits the
model.

This can be an extreme assumption. In reality, if the buyer is not satisfied with the house
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that is shown first7, very likely, the broker will bring her to another house in the broker’s
network without extra search cost, and this sequential touring process will end either when
a transaction is realized for some house down the road or when she has visited all of the
houses in the broker’s inventory in which the buyer might have an interest.

Motivated by this phenomenon, we introduce ρ, a new parameter that ranges from 0 to
1, as the probability that the solicited buyer will continue to look at another house with
the broker if the current visit fails to yield a transaction. The direct implication from this
extension is that a potential buyer could have multiple bids within one round of search8.
As a result, the total arrival rate for a buyer looking for asset j, F (xijn, x), now changes
to the F (xijn, x) plus the sum of all the other arrival rate diffused from the other assets.
For example, one buyer comes for the asset j with the agent’s effort xijn, the arrival rate is
F (xijn, x). And then, if this buyer is not satisfied with the price and the transaction is closed
(the probability is G(rijn)), the agent could introduce the buyer with the second asset j′,
with the probability of ρ. Moreover, if this buyer is still not satisfied with the price and the
transaction is closed (the probability is G(rij′n)), the agent could introduce the buyer with
the third asset, with total probability of F (xijn, x̄

∗)× [1 + ρG(rijn) + ρ2G(rijn)G(rij′n)]. So
on and so forth, the original effort on the asset j could be diffused to all the rest of n − 1

asset with a diffusion coefficient. With the same story, efforts from all the other assets j′ 6= j

could finally transfer to the asset j with other diffusion coefficients. As all the assets are
identical, rijn = rin, this coefficient is actually ρG(rin). Thus, the effective arrival rate for
the asset j is as following:

F (xijn, x̄
∗)×

[
1 + ρG(rin) + ...+ (ρG(rin))n−1

]
=F (xijn, x̄

∗)× 1− [ρG(rin)]n

1− ρG(rin)
(2.3)

In the similar spirit, agent’s final selling probability for house j changes from [1 −
G(r)]V (n− 1)∆t to [1−G(r)]1−[ρG(rin)]n

1−ρG(rin)
V (n− 1)∆t.

7The unsatisfaction is equivalent to a low willingness to pay, which implies pijn < rijn.
8As we assume all houses are identical, so a buyer’s offering price is a random draw of the bidding

distribution G.
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Incorporating diffused effort, Equation (2.1) is now generalized to :

V (n) = max︸︷︷︸
rijn,xijn,yin

e−ι∆t

{
n∑
j=1

F (x, x∗)
1− (ρG)n

1− (ρG)

∫ 1

rijn

b∗pdG(p)∆t

+ αn∗(y/y∗)V (n+ 1)∆t− θH(win)∆t

+
n∑
j=1

F (x, x∗)(1−G)
1− (ρG)n

1− (ρG)
V (n− 1)∆t

+

[
1− αn∗(y/y∗)∆t−

n∑
j=1

F (x, x∗)(1−G)
1− (ρG)n

1− (ρG)
∆t

]
V (n)

}
+ o(∆t) (2.4)

Compared with Equation (2.1), Equation (2.4) has two new features. First, it contains
the original Williams model as a special case when we turn off the effort diffusion by setting
ρ = 0. Second, the network size (total assets number n) plays a more direct effect. That is
because searching for a new seller, while costly, is also beneficial as it improves the arrival
rates on existing listings. Thus, there is a trade-off between the efforts on the current assets
and the effort on finding a new listing.

Further, we can extend the diffused effort model by introducing two types of assets.
Consider a broker i who has n1 type 1 assets and n2 type 2 assets. The maximization
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problem now becomes:

V̂ (n1, n2) = max︸︷︷︸
r1ijn,x1ijn,y1in,r2ijn,x2ijn,y2in

e−ι∆t

{
n1∑
j=1

F1(x1ijn, x1
∗)

1− (ρG1)n1

1− (ρG1)

∫ 1

r1ijn

b1
∗pdG1(p)∆t

+

n1∑
j=1

F1(x1ijn, x1
∗)[1−G1(r1ijn)]

1− (ρG1)n1

1− (ρG1)
V̂ (n1 − 1, n2)∆t

+

n2∑
j=1

F2(x2ijn, x2
∗)

1− (ρG2)n2

1− (ρG2)

∫ 1

r2ijn

b2
∗pdG2(p)∆t

+

n2∑
j=1

F2(x2ijn, x2
∗)[1−G2(r2ijn)]V̂ (n1, n2 − 1)∆t

+ α1n1
∗(y1in/y1

∗)V̂ (n1 + 1, n2)∆t+ α2n2
∗(y2in/y2

∗)V̂ (n1, n2 + 1)∆t

− θH(

n1∑
j=1

x1ijn +

n2∑
j=1

x2ijn + y1in + y2in)∆t

+
[
1−

n1∑
j=1

F1(x1ijn, x1
∗)(1−G1)

1− (ρG1)n1

1− (ρG1)
∆t− α1n1

∗(y1in/y1
∗)∆t

−
n2∑
j=1

F2(x2ijn, x2
∗)(1−G2)

1− (ρG2)n2

1− (ρG2)
∆t− α2n2

∗(y2in/y2
∗)∆t

]
V̂ (n1, n2)

}
+ o(∆t) (2.5)

subject to 0 ≤ r1ijn, r2ijn ≤ 1, x1ijn ≥ 0, x2ijn ≥ 0, and
∑n1

j=1 x1ijn +
∑n2

j=1 x2ijn + y1in +

y2in ≤ 1. Here the asset type can be differentiated by one or more of the following char-
acteristics: commission rate b∗, buyer search efficiency η, and valuation distribution G(r).
This set up offers a flexible structure to better match empirical patterns. For example, the
literature testing agency problem often looks at the case when a broker sells his/her own
house while selling for clients’. To model this phenomena, we can simply set b∗1 < 1, b∗2 = 1,
n2 = 1 and y2 = 0, but maintain a common buyer arrival process and bidding distribution.
The existence of agency problem will be evidenced if we can show that r∗b=1 > r∗b=0.06 and
x∗b=1 > x∗b=0.06 both hold.
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2.3 Results

2.3.1 Williams Model: a Revisit

As the purpose of this paper is to examine the potential agency issue associated with
real estate brokerage, we re-solve Williams [1998] model (i.e., Equation 2.1) for benchmark
comparison.

In the steady state and under some boundary condition of θ, a unique set of constant,
symmetric solution exists for Equation (2.1), by applying the modified Blackwell sufficiency
condition in Stockey & Lucas [1989], Theorem 4.12 9. Meanwhile, the value function for the
broker is in the form:

V (n) = γ + nb∗r∗ (2.6)

For completeness, and to facilitate comparison, we first re-produce all findings that we
agree with Williams [1998] in Proposition 0. For parts that we observe a discrepancy, they
are summarized in Proposition 1, and we offer detailed discussions on why we believe the
original findings proposed in Williams paper is incorrect.

Proposition 0. In the steady state with delegation, with 0 < η < 1, θ = θ∗, r∗ijn = r∗,
x∗ijn = x∗ = x∗ and y∗in = w∗ − nx∗, the solution of Equation (2.1) satisfies the following
conditions:

S1 :
r∗[1−G(r∗)]∫ 1

r∗
[1−G(p)]dp

− α

ι
(1− η) = 0 (2.7)

S2 :
1− η
ηι

x∗θ∗H ′(w∗)− b∗r∗ = 0 (2.8)

S3 : α− F (x∗, x∗)[1−G(r∗)] = 0 (2.9)

S4 : w∗θ∗H ′(w∗)− θ∗H(w∗)− γι = 0 (2.10)

S5 :
ηι

ηι+ (1− η)α
w∗ − n∗x∗ = 0 (2.11)

9See page 272 in Williams [1998] for more discussion on it.
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For i = 1, ...; j = 1, ..., n; and n = 0, 1..., n∗ = [w
∗

x∗
] = [n

∗

π
]. Here, n∗ is the largest integer

not bigger than the real value w∗

x∗
. Hence, y∗n > 0 when n ≤ n∗ − 1; y∗n∗ ≥ 0 if n = n∗ = [w

∗

x∗
];

and y∗n∗+1 = 0.

The proof is in Appendix A.

One counter-intuitive conclusion from Williams [1998] is the absence of the agency prob-
lem, i.e., r∗b=1 = r∗b=0.06 and x∗b=1 = x∗b=0.06. What leads Williams [1998] to “prove" the absence
of an agency problem? The spirit of his argument on no agency problem is that, from Equa-
tion (2.7), we agree that you can solve the r∗. Furthermore, take this r∗ into Equation
(2.9), you can also solve x∗, and these two equations have no b∗ inside. Thus, r∗ and x∗ are
not related to the commission rate10, which indicates no agency problem. Economically, as
discussed in Han & Strange [2015], no agency under Williams [1998] implies that the agent’s
marginal productivity of marketing effort, which is equal to the marginal productivity of
searching for new listings, must be proportional to the commission rate. Only in this case,
the optimal effort per listing can be independent of b∗.

It turns out that, mathematically, Williams [1998] misuses the regular partial derivative
argument when variables are non-independent. Although there is no b∗ appears in Equation
(2.7) and (2.9), these two equations still have another common parameter α. Williams’s
conclusion would be correct only if we could meaningfully take ∂r∗

∂b∗
and ∂x∗

∂b∗
, by holding other

factors (i.e., α, ι, η and γ) constant.11 Unfortunately, it is impossible. To see it note that the
claim of no agency problem would imply that α, the likelihood of sale, must be independent
of the buyer’s arrival process (η), agent’s discount rate (ι), entry cost (γ) and commission
rate (b∗). That is unrealistic and would directly contradict the steady state conditions out-
lined by Equations (2.7) to (2.11) 12.

Chiang & Wainwright (2005, Chapter 8) discuss the correct way to conduct comparative-
static analysis under this circumstance; hence our treatment follows their procedure. Given
five conditions in the steady state, in addition to x∗, r∗ and y∗ (hence w∗), we need to find
two more free parameters to make the system compatible. Due to the homogeneity of F (x)

and discount rate, η and ι should be constant. Thus, we let α (related to agent’s marketing
efficiency and the likelihood of sale via Equation (2.9)) and γ (related to the entry barrier

10See the first paragraph on page 258 in Williams [1998].
11For a non-technical discussion, see MIT course lecture: Partial Differentiation with Non-independent

Variables, Example 1, available at https://bit.ly/2PBwqkY.
12For a rigorous proof on such a contradiction, see the first paragraph of Appendix B.
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of brokerage industry) vary when conducting comparative statics analysis on b∗ (the equi-
librium compensation level). As a result, throughout the paper, we adopt this choice and
choose α and γ as free parameters. We now take ∂r∗

∂b∗
and ∂x∗

∂b∗
by holding other factors like

discount rate (ι) and arrival elasticity (η) constant.

Given the system of equations (2.7) to (2.11), and by the property of comparative-static
analysis of general function model (Chiang & Wainwright (2005, Chapter 8)), because they
all have continuous partial derivatives with respect to all variables, the following Jacobian
determinant |J | is nonzero.

|J | =
∣∣∣∣∂(S1, S2, S3, S4, S5))

∂(r∗, x∗, α, w∗, γ)

∣∣∣∣ 6= 0 (2.12)

Under the condition of the Jacobian determinant |J | is nonzero, by Cramer’s rule, we can
obtain the first-order derivative. With all technical details in the Appendix B, the following
proposition characterizes the equilibrium effort and the reservation price in the steady state.

Proposition 1. In the steady state with delegation, we have the following:

∂r∗

∂b∗
>0 (2.13)

∂x∗

∂b∗
>0 (2.14)

∂w∗

∂b∗
>0 (2.15)

For some integer N ≥ n,
∂y∗

∂b∗

> 0 n ≤ N

≤ 0 n > N
(2.16)

∂α

∂b∗
=
∂{F (x∗, x∗)[1−G(r∗)]}

∂b∗
> 0 (2.17)

The proof is in the Appendix B.
Proposition 1 bring back the agency problem. In particular, the partial derivative of r∗ with
respect to b∗ is positive. This prediction is consistent with Rutherford et al. [2005, 2007] and
Levitt & Syverson [2005], who find that brokers tend to sell their own houses at a premium
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range between 3 and 7% compared with when they sell on behalf of their clients.

Equation (2.14) implies that a broker will also spend more effort on marketing her own
property than her clients. Because F (x) is concave, it must be the case that F (x∗)b=1 >

F (x∗)b=0.06 and F ′(x∗)b=1 < F ′(x∗)b=0.06. On the other hand, Equation (2.16) shows that
the incentive/disincentive of soliciting additional seller depends on the current network size.
When the existing network size is not too large (i.e., when n ≤ N), and when the commission
rate increases, the agent will commit more effort to searching for a new seller. In contrast,
when an agent’s existing network is big enough, increasing compensation to the agent tends
to disincentivize her from finding a new seller.

Another prediction is about the time on the market (TOM). Based on Equation (2.17),
the likelihood of sale, F (x∗, x∗)[1−G(r∗)], is the probability of buyers’ arrival rate multiplied
by the probability of successful matching. On the one hand, with a higher commission rate, a
broker will commit more effort in searching for potential buyers, which increases the buyers’
arrival rate. On the other hand, a broker will also ask for a higher price, which reduces the
matching probability. Overall, it turns out that the first force always dominates and hence
leads to a higher likelihood of selling. Because the TOM is the inverse of the likelihood of
sale, the model predicts that the TOM and hence expected duration would be shorter when
the commission rate increases.

Several recent empirical studies support our theoretical predictions. For example, Turn-
bull & Dombrow [2007] conduct a direct test on ∂r∗

∂b∗
> 0. Using single-family transaction

data in Baton Rouge, Louisiana, they find that the realized transaction price is 2.3% higher
when a single broker is both the listing and selling agent.13 Jia & Pathak [2010] find that
likelihood of sale is positively related to the agent’s commission and that TOM is negatively
related. Bian et al. [2017] document that when clients’ assets compete with agent-owned
assets, properties remain on the market, 30% to 46% longer and are sold for 1.8% less. These
findings also provide indirect evidence on the marketing effort that is consistent with the
prediction that ∂x∗

∂b∗
> 0. As discussed before, given a bidding distribution G, a higher price

per se implies a lower matching likelihood. Therefore, the only way to get a shorter TOM
comes from a more intensive search for potential buyers.

13And hence captures the whole 6% commission rather than splitting it with another agent.



19

2.3.2 Model Results with Diffused Effort

We now consider the general case with diffused effort, which gives a potential buyer a
certain probability to have sequential bids within a ∆t period before either a successful match
or the exhaustion of all inventory. This extension complicates the tractability of the model,
because of the [ρG(r)]n term in Equation (2.4). Here we impose a similar assumption as is
used by Williams [1998], i.e.,∆Vn = ∆Vn−1. This assumption in turn implies [ρG(r)]n ∼ 0.
Given this assumption, Equation (2.4) can be simplified to:

V (n) = max︸︷︷︸
rijn,xijn,yin

e−ι∆t
{ n∑
j=1

F (x, x∗)
1

1− (ρG)

∫ 1

rijn

b∗pdG(p)∆t

+ αn∗(y/y∗)V (n+ 1)∆t− θH(win)∆t

+
n∑
j=1

F (x, x∗)(1−G)
1

1− (ρG)
V (n− 1)∆t

+

[
1− αn∗(y/y∗)∆t−

n∑
j=1

F (x, x∗)(1−G)
1

1− (ρG)
∆t

]
V (n)

}
+ o(∆t)

(2.18)

In the steady state, the likelihood of sale, although it is still equals to α, changes to the
following form:

α =
F (x∗, x∗)[1−G(r∗)]

1− ρG(r∗)
(2.19)

Recall that in the case without diffused effort, α = F (x∗, x∗)[1−G(r∗)]. The denominator
in Equation (2.19) reflects the positive impact from the diffused effort externality on selling
likelihood.

Solving the maximization problem on r∗, x∗, y∗ in the case of diffused effort yields similar
relations between the key variables and b∗. In addition, new results on relations between these
key variables and diffused effort via ρ emerge. We summarize the results in the following
proposition and the subsequent simulations.

Proposition 2. In the steady state with delegation and for 0 ≤ ρ ≤ 1, we have the following:

∂r∗

∂b∗
> 0 (2.20)
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∂x∗

∂b∗
> 0 (2.21)

∂w∗

∂b∗
> 0 (2.22)

For some integer N(ρ) ≥ n,
∂y∗

∂b∗

> 0 n ≤ N(ρ)

≤ 0 n > N(ρ)
(2.23)

∂α

∂b∗
=
∂{F (x∗,x∗)[1−G(r∗)]

1−ρG(r∗)
}

∂b∗
> 0 (2.24)

∂r∗

∂ρ
> 0 (2.25)

The proof is in the Appendix C.
Equation (2.20) to (2.24) re-affirm that all the previous findings on the existence of the
agency problem without diffused effort (i.e., ρ = 0 ) pass to an arbitrary ρ that is between
0 and 1. Equation (2.25) further shows that the fact that an agent’s effort on one task can
potentially benefit others provides a network externality that encourages agents to increase
the reservation price.

Solving Equation (2.18) enables us to obtain the relation between x∗ and ρ and y∗ and
ρ as well. Unfortunately, the messier mathematical form makes its directional implications
unclear. As a result, from now on, we make our model more parameterized. In particular,
we assume that the bidding distribution g(r) = G′(r) = 6r − 6r2 follows the symmetric
Beta(2,2) function, as plotted in Figure 2.1.

We first examine whether the existence of diffused effort improves the expected selling
proceeds, which in turn generates a Pareto-improvement on both the seller and agent welfare.
With details of proof abstracted in Appendix C, Equation (2.26) shows that the expected
gross proceeds from each asset, which equals to the likelihood of sale multiplied by the
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Figure 2.1: The Density Function of Beta (2,2)
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reservation price, increases as the diffused effort externality becomes bigger. 14

∂αr∗

∂ρ
=
∂{F (x∗,x∗)[1−G(r∗)]

1−ρG(r∗)
r∗}

∂ρ
> 0 (2.26)

Thus far, we have shown that diffused effort generates a positive externality that in-
centivizes agent to mark up the reservation price (Equation 2.25) and improves the welfare
for both the seller and agent (Equation 2.26). We now explore the relations between the
diffused effort (ρ) and the effort on creating a new task y∗ = y∗(ρ), the effort on existing
task x∗ = x∗(ρ), and the likelihood of sale α = α(ρ). Hereafter we assume F (x, x) = xη

and H(w) = 1 −
√

1− w2. Furthermore, we fix the parameter values by setting b∗ = 0.06,
ι = 0.02, θ = 1 and n = n = 20.

The parameter that warrants special attention is η, the elasticity of the buyer’s arrival
function F (x) = xη. It measures the ease of soliciting a potential buyer in the market. Thus,
given the same effort level, a smaller value of η would lead to a higher arrival rate. Hence η
can serve as a proxy for demand strength. We plot the numerical results in Figure 2.2.

There are several major takeaways from Figure 2.2. First, a stronger diffused effort ex-
ternality stimulates agents to commit more effort on searching for new sellers (y∗). The
intuition is that, when effort pooling becomes easier, the extent of this positive externality
not only depends on ρ but also depends on n, the network size. Hence it is in an agent’s
self-interest to enlarge the size of the network to maximize the potential gains from cross-

14Although we cannot prove the validity of Equation (2.26) for the whole family of Beta functions for
G, our case by case algebraic proofs show that it holds for a wide class of Beta functions, in addition to
Beta(2,2). These additional results are available upon request.
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Figure 2.2: Other Comparative Statics on Diffused Effort (ρ)
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utilizing efforts from other tasks.

Second, as ρ becomes larger, an agent’s marketing effort on each existing task (x∗) tends
to decrease in a stronger arrival market, but an increase in a weaker arrival market. Hence,
in a strong market, diffused effort externality seems to lead agents to shift more effort to find
a new seller at the expense of existing customers. However, as shown in Equation (2.26),
existing customers can indirectly benefit from the larger network size, and their expected
payoffs still increase in ρ. Regarding total effort w∗, although not displayed, it can be shown
that in both cases, a stronger diffused effort externality motivates the agents to commit more
w∗, which equals nx∗ + y∗.

Third, while diffused effort greatly improves the matching efficiency hence increases the
arrival rate, it does not always lead to a shorter TOM. As seen from Panel B, when the arrival
process is weak, the likelihood of a sale first declines (despite increasing marketing effort)
with ρ, then increases with ρ when it continues to increase. The reason a higher arrival rate
is not sufficient to shorten TOM is that TOM is jointly determined by the arrival (hence x∗)
and reservation price (r∗). Furthermore, our numerical results show that, in a weak market,
the impact from ∂r∗

∂ρ
> 0 can dominate and hence increase TOM.

We now turn our attention to the impact of network size (n) on agent behavior. We
assume a moderate diffused effort potential by setting ρ = 0.5 and maintain the same values
as we did for the other parameters. The results are plotted in Figure 2.3.

First, note that for both cases, the optimal reservation price r∗ initially increases with
network size, and it quickly converges to a stable level with a moderate network size. The
relation between the optimal y∗ and n is interesting. Based on Panel A, in a strong arrival
market, the time allocated by the agent on searching for new sellers tends to increase when
the network size is relatively small, then decreases as the size of inventory further grows. The
rationale for the initial increase in y∗ is that, given the smallest network size of n = 1, the
immediate benefit on y∗ is low as there is no diffusion externality. In the meantime, with a
strong market arrival process, the immediate benefit of finding a buyer on the existing listing
is high. Hence, the agent is more willing to trade away some effort on y∗ for x∗. When n=2,
the potential benefit of further increasing network size is bigger, hence agent is willing to
spend more time to create a new task and hence expand the network size for the future.
With a weak arrival process, the incentive to trade y∗ on x∗ becomes less when n is small,
as it is harder to find a buyer anyway, and it is beneficial to have a larger network size for
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Figure 2.3: The Effect of Network Size n
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the future by committing more y∗. It is worth noting that this differential effect of network
size on y∗ can only happen when n is small. That is because, with large n, as w and x∗

become stable along n, and as y∗ = w∗−nx∗, the ∂y∗

∂n
tends to converge to a negative constant.

Regarding the effort spent per task (x∗), we observe a huge drop when n increases from
1 to 2, reflecting a dilution effect. With strong arrival, x∗ continues and quickly converges to
its steady state level as n further grows; and it first increases and then decreases gradually
when the arrival process is weak. For the total effort of w∗ = nx∗ + y∗, we find that they
all increase dramatically when n is small. Meanwhile, for a strong arrival case, it seems
to converge faster. However, the average cost function H(w∗)/n is decreasing dramatically
when n is small, which leads to the great cost advantages on the economies of scale. When
n is large, the average costs are all converge to the constant levels, which means that this
benefit is marginal diminishing.

In terms of overall marketing outcome, the common pattern is that as n grows, the
likelihood of sale tends to decline and converges to the steady-state level; additionally, the
reservation price tends to increase and converge to the steady-state level. Finally, there is
a significant increase in the expected revenue (αr∗) per unit when n is small and growing,
which also converges to its steady-state value as n further grows. Recall that much of our
discussion in this section is based on the assumption that [ρG(r)]n ∼ 0. The fast conver-
gence rate (around n=10) observed in Figure 2.3 suggests that it reasonably characterizes
the majority of the cases.

The relevant studies in the literature on the agent’s network size are Brastow et al. [2012]
and Bian et al. [2015]. Bian et al. [2015] show that taking on additional inventory results in
the dilution of an agent’s selling effort. Furthermore, they document empirical evidence that
a larger inventory tends to lead to longer TOM, which is equivalent to a lower likelihood of
sale. These two findings are consistent with our model. Nevertheless, these authors also find
empirically that larger agent inventory tends to reduce the selling price, whereas our model
predicts either a positive (when n is small) or insignificant (moderate to large n) association.
We defer the discussion on the likely cause of this discrepancy in a later section on model
limitation and extension.
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2.3.3 Model Results with Heterogeneous Assets

Thus far, we focus on the single type asset case. Now let us allow a broker to hold two
different types of listings at the same time, as specified by Equation (2.5), and examine her
effort allocation and pricing strategy.

As previously discussed in section 2.2.2, the empirical literature testing agency problem
typically looks at the case when a broker sells for clients’ houses (type 1) while selling for her
own (type 2). According to Equation (2.5), it is equivalent to the case when b∗1 < 1, b∗2 = 1,
n2 = 1 and y2 = 0. To maintain an apple to apple comparison with the original Williams
model, we set ρ as 0 for now. Hence, Equation (2.5) with two asset types collapses to the
Williams model with n+1 listings when we set b∗1 = b∗2. The following proposition re-affirms
the existence of the agency problem.

Proposition 3. In the heterogeneous assets model as specified by Equation (2.5), assuming
type 1 and type 2 assets are otherwise identical except that b∗1 < 1, b∗2 = 1. Further assume
n2 = 1, y2 = 0 and ρ = 0. Then,

r̂∗ > r∗ (2.27)

x̂∗ > x∗ (2.28)

where r∗, x∗ are optimal solutions for b∗1 < 1 assets, and r̂∗, x̂∗ are optimal solutions for
b∗2 = 1 asset.

The proof is in the Appendix D.

Proposition 3 re-affirms the existence of the agency problem in a more realistic setting
than Proposition 1. That is because, in Proposition 1, we implicitly assume that all assets
have the same commission rate, and then look at the agency problem from a comparative
static perspective on how effort may change when market-wide commission rate increases.
Here, we show that given a level of market commission rate (say, b∗1 = 0.06), as it must be
smaller than 1, a broker will always commit more search effort and ask for a higher price
when she sells her own property.

We now consider asset heterogeneity on other dimensions, and with diffused effort. In
the following numerical simulation, we maintain the same parameter values for two assets
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on b∗ = 0.06, ι = 0.02, θ = 1, and n1 = n1 = n2 = n2 = 20. First, we look that the
heterogeneity on-demand strengthen, as measured by the buyer arrival rates. We examine
how the key parameters respond differently to the presence of diffused effort externality. As
discussed before, a smaller value of η reflects a stronger buyer arrival process. We plot the
results in Figure 2.4:

Figure 2.4: Asset Heterogeneity on η
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Notes: We set b∗ = 0.06, ι = 0.02, θ = 1, n1 = n2 = n = 20, and ρ = 0.5. Solid lines refer to assets with η = 0.2,
and dashed lines refer to assets with η = 0.3.

For a given asset type, the patterns of the key parameters along diffused effort externality
is similar to Figure 2.2. Hence, our major focus now is on the impact of the heterogeneous
arrival processes. Here we assume the level of ρ is common for both types of assets.15 When
a broker simultaneously manages two types of listings, she asks for a high price and spends
more total effort on the assets that have stronger demand, which should be intuitive. Inter-
estingly, the model reveals that at the individual level, the effort committed to an existing
listing is less for a high demand type. Therefore, relatively speaking, the broker has a much
stronger incentive to increase the network size of the high type. While the marketing effort

15We can easily relax and allow each type to have its own level of ρ, but we will have to plot a 3-d surface
to observe the pattern. The current choice on a common ρ allows us to isolate the impact from η alone.
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on an existing listing is lower for the high type, the selling likelihood and the expected payoff
are still higher, because of the stronger arrival process and diffused effort externality.

Another type of heterogeneity is the valuation distribution of the assets. We first consider
bidding distribution heterogeneity caused by variance differences only. As an example, we
assume type 1 assets have Beta (2,2) bidding distribution, and type 2 assets have Beta (4,4)
distribution. In Figure 2.5, we plot the density function (i.e., g(r)) and selling likelihood
function (i.e., 1−G(r)) for both distributions.

Figure 2.5: Bidding Distribution Heterogeneity on the Variance
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As seen in Figure 2.5, both valuation distributions have the same mean of 0.5, but the
variance for type 1 asset is larger (0.05) than type 2 (0.028). Using the same parameter
settings, we plot the simulation results in Figure 2.6.

According to Figure 2.6, for low variance asset, an agent always asks for a lower price.
Interestingly, for low variance type and when diffused effort externality is relatively weak
(i.e., a small ρ), although the agent also always commits less marketing effort on existing
listings, she may spend more total effort and deliver a higher expected payoff. Hence the
higher total effort is driven by the incentive of finding a new seller (y∗). With stronger
diffused effort externality, the agent starts to allocate more effort to high variance assets.
The graph on reservation price in Figure 2.6 sheds some light on the reason for the shifting
focus by the agent. When diffused effort externality is weak, the optimal reservation price
for low variance asset turns out to be smaller than the mean of the valuation distribution.
Given a reservation price that is smaller than the mean, as seen from Panel B of Figure 2.5,
lower variance distribution actually has a high selling likelihood. Hence it incentivizes the
agent to spend more total effort on this type of asset. However, as diffused effort externality
gets stronger, the optimal reservation price for low variance assets eventually will bypass
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Figure 2.6: Valuation Heterogeneity on the Variance

0.2 0.4 0.6 0.8
ρ

0.50

0.55

0.60

0.65

0.70

0.75

r

0.2 0.4 0.6 0.8
ρ

0.15

0.16

0.17

0.18

0.19

y

0.2 0.4 0.6 0.8
ρ

0.00058

0.00060

0.00062

0.00064

X

0.2 0.4 0.6 0.8
ρ

0.16

0.17

0.18

0.19

0.20

W

0.2 0.4 0.6 0.8
ρ

0.080

0.085

0.090

0.095

α

0.2 0.4 0.6 0.8
ρ

0.04

0.05

0.06

0.07

αr

Notes: We set b∗ = 0.06, ι = 0.02, θ = 1, n1 = n2 = n = 20, ρ = 0.5 and η = 0.25. Solid lines: Beta(2, 2), with
variance of 0.05. Dashed lines: Beta(4, 4), with variance of 0.028. Both of bidding distributions have the same
mean 0.05.

the mean, beyond which it loses its comparative advantage on selling likelihood. Hence,
eventually, agents will switch the preference and focus more on the high variance assets.

Bidding valuations can also differ on the mean. To isolate the effect from mean difference
only, we require that the valuation distribution with high mean stochastic dominates the one
with low mean, and both distributions have the same variance. As a numerical example, we
set the bidding distribution as beta(2, 3) for low mean (0.4) type, and as beta(3, 2) for high
mean (0.6) type. It is easy to verify that these two distributions satisfy the retirements. All
baseline parameters remain the same as before. We plot the results in Figure 2.7:

The impact of the heterogeneity on the means of valuation distributions is straightfor-
ward. As high mean distribution stochastic dominates the low mean distribution, holding
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Figure 2.7: Valuation Heterogeneity on the Mean
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Notes: We set b∗ = 0.06, ι = 0.02, θ = 1, n1 = n2 = n = 20, ρ = 0.5 and η = 0.25. Solid lines: Beta(3, 2), with
mean is 0.6. Dashed lines: Beta(2, 3), with mean is 0.4. Both of bidding distributions have the same variance 0.04.

other factors the same, it is always more beneficial for the agent to focus more on high mean
assets. Hence agent’s optimal response is to ask for a higher price and to commit more effort
on both existing listings and new sellers on high mean assets.

2.4 Limitations and Future Extensions

While we have presented a model that supports a range of empirical findings documented
in the literature, there are some serious limitations remained.

First, one prediction from our model is that the network size of an agent is positively
associated with reservation price. This turns out to be opposite to what is found in some
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empirical studies. A likely reason is that our model ignores the potential interactions among
agents. In a completely different setting, Deng, Seiler, and Sun [2019] build a model demon-
strating that in a bigger brokerage firm, two agents are more likely to engage in an internal
transaction, which lowers the transaction price. Hence agent heterogeneity and interaction
could play important roles in shaping their trading strategies.

Second, as pointed out by Piazzesi, Schneider, and Stroebel [2020], housing search models
and empirical studies often ignore the buyer side, partially due to data constraint. Our model
is no exception as we put little structure on the buyer in the search process, except for an
exogenous arrival process. It is unrealistic to assume that a buyer is equally likely to search
all the houses in a market. Also, it is unlikely that an agent will find a buyer who is willing
to look at all the assets from the entire agent’s network. More likely, buyers will perform
their pre-screening based on the information from the advertisement, and they would only
search within a sub-market which meets their preference. Nowadays, the most important
source of information can be found relatively easily on the Internet. Typically, buyers do
the initial search on-line and learn about the house and neighborhood from websites like
Zillow.com, etc. As a result, buyers who come to the agents for physical searches often focus
mainly on features that are unobservable from the web sites. It would be very interesting to
incorporate this kind of buyer heterogeneity and clientele effect into the search model.

Third, when the seller’s broker receives the commission fee, under the MLS guidelines,
her then (equally or not equally) splits the commission fee with the cooperating broker as the
buyer’s side. This is because historically, the cooperating broker was viewed as a subagent of
the seller and represented the seller’s interest. Nowadays, in some cases, the broker working
with the buyer is no longer a subagent of the seller, but rather a separate broker of the buyer.
However, Miceli et al. (2000) suggested that such an arrangement still has not addressed
the agency problems associated with buyer brokers being compensated based on the sales
price. Moreover, this agency’s incentive issues become severe when buyers and sellers are
represented by the same brokerage firm or even the same person. This is so called in-house
transaction or dual agency transaction. Han and Hong [2016] claims that about 20% of
residential real estate transactions in North America are in-house transactions, for which the
same brokerage represents buyers and sellers. Many studies have tested the effect of dual
agency: For example, Gardiner et al. (2007) find that dual agency reduced the sales price
and the time-on-market. Besides, they find that both reduction effects were weaker after
law enforcement in Hawaii in 1984 that required full disclosure of dual agency. Our model
has the potential to include the dual agency scenario into consideration. Suppose the sellers’
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broker has two different assets, type 1 is the normal houses, but type 2 is the dual agency
houses. Thus, compared with type 1 houses, type 2 houses should have a higher arrival rate
function (as the broker have incentives to sell the type 2 houses first), a larger ρ (as the
in-house transaction makes sequential visit process more easily) and, a lower commission fee
(as the broker does not need to split it).

2.5 Conclusion

Real estate brokerage forms a very special principal-agent relationship. First, a broker
executes multiple tasks on behalf of a group of sellers as principals. Second, the broker’s
limited effort is split among the existing tasks and on finding new sellers to achieve the
desired network size. Third, the compensation structure is typically a constant commission
rate upon the realized sale price. Williams [1998] proposes a brokerage model that incorpo-
rates all of the above features. Building upon his model, we propose a multiple tasks agency
model with both diffused effort and asset heterogeneity

Because our general model setup embeds the Williams model as a special case, we first
revisit the benchmark Williams model. One of Williams’ major conclusions is that there is
no agency problem (i.e., an agent’s marketing effort and reservation price are independent
of the commission rate), and it is counter-intuitive. It turns out that part of the proof in
Williams [1998] is incorrect. We first prove that in equilibrium, agency problem does exist
in the original Williams model. For example, a broker will set a lower reservation value and
spend less effort on marketing when the commission rate declines. We further show that the
agency problem remains with the presence of diffused effort and asset heterogeneity.

Next, we examine the properties of diffused effort. In particular, we show that the exis-
tence of diffused effort generates a positive but size-dependent externality, which motivates
the agent to ask for a higher price and yields a higher likelihood of a sale. Furthermore, a
stronger diffused effort potential also stimulates agents to spend more resources on expand-
ing network size. Regarding the impact of network size on agent’s behavior, we find that in
general, with the existence of diffused effort, a larger network size tends to dilute an agent’s
marketing effort on the existing listing and also reduce her incentive to further expand the
size of the network. Nevertheless, a larger network improves marketing outcomes by yielding
a quicker sale at a higher price and hence improves the welfare of both brokers and sellers.
The marginal impact of network size is stronger when the initial size of the network is small.
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Finally, our model shows that asset heterogeneity can play a significant role in shaping
a broker’s trading strategies, and we explore the impacts driven by different sources of het-
erogeneities such as commission rate, demand strength, and valuation distribution.
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Chapter 3

Essay 2: Prospect Theory and a
Two-way Disposition Effect: Theory and

Evidence from the Housing Market
3.1 Introduction

The seminal works on prospect theory by Kahneman and Tversky [1979] and Tversky and
Kahneman [1991, 1992] propose three major components to help explain the decision-making
process of individuals under uncertainty. The first component is reference dependence, in
which people derive utility over gains and losses relative to a reference value such as a prior
acquisition price or an initial endowment. In the second component, diminishing sensitivity,
the marginal value of both gains and losses declines with size. In this setting, people will
be risk averse in the domain of gains but risk seeking in the domain of losses. In the third
component, the loss aversion effect, people treat losses and gains asymmetrically in their
value functions. In particular, a loss looms larger than an equal-sized gain. Barberis [2013]
offers a comprehensive review of the broad applications of prospect theory in economics.

Although conceptually intuitive, much evidence that supports prospect theory comes
from experimental studies (e.g., Kahneman, Knetsch, and Thaler [1991], Tversky and Kah-
neman [1991], Knetsch, Tang and Thaler [2001], Haigh and List [2005] and Imas [2016]).
Not surprisingly, finding non-experimental evidence is an active research topic. Pope and
Schweitzer [2011] find that golfers make their birdie putts 2% points less often than they
make comparable par putts. They argue that the finding is consistent with loss aversion
in the sense that players invest more focus when putting for par to avoid encoding a loss
than putting for a birdie to achieve an “equal size" gain. Ellen et al. [2016] investigate
bunching behavior from the marathon data and find strong evidence that marathon runners
have reference points of round number finishing times.

As a classic study based on transactional data, Genesove and Mayer [2001] examine the
home seller’s behavior and find a disposition effect. That is, compared to potential gainers,
a seller subject to a larger potential loss, as measured by realization utility, sets a higher
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asking price, exhibits lower sales hazard, and obtains a higher transaction price if the house
is sold. They further find that the marginal mark-up on price declines with the size of a
seller’s potential loss exposure. Genesove and Mayer interpret the disposition effect as a test
of the loss aversion effect and the latter finding as a test of diminishing sensitivity. Their
proposed connection between prospect theory and seller behavior has become popular in the
literature. Follow-up studies using either the home listing or transaction prices to test loss
aversion include Bokhari and Geltner [2011] and Anenberg [2011]. Both find similar results
as in Genesove and Mayer [2001] and view them as evidence of loss aversion. Chan [2001] and
Engelhardt [2003] test the loss aversion effect by examining factors that influence household
mobility. Both find that potential losses have a negative relation with a household’s mobility,
which is consistent with the behavior that a seller subject to a larger potential loss will set
a higher price when selling a house. Beggs and Graddy [2009] test the loss aversion effect
using painting auction data and fail to find significance in a regression of auction price on
seller’s loss exposure, suggesting there is no loss aversion.

Field evidence supporting prospect theory is also documented in the finance literature.
Many studies document a similar disposition effect: relative to the purchase price, investors
have a higher propensity to sell stocks that have risen in value rather than those that have
fallen (e.g., Shefrin and Statman [1985], Odean [1998], Grinblatt and Keloharju [2001], Feng
and Seasholes [2005], Linnainmaa [2010], and Chang, Solomon and Westerfield [2016]). How-
ever, there is an active debate concerning which component of prospect theory drives the
observed disposition effect in the stock market (Barberis [2013]). Barberis and Xiong [2012]
show that reference dependence under realization utility can generate the disposition effect if
the discount rate is sufficiently positive. Bodnaruk and Simonov [2016] find that mutual fund
managers with a higher degree of loss aversion tend to exhibit a stronger disposition effect.
As their paper does not discuss much on reference dependence and diminishing sensitivity, it
seems to echo Genesove and Mayer [2001] that it is loss aversion that drives the disposition
effect. Some researchers, however, argue that it is diminishing sensitivity that generates
the disposition effect (e.g., Shefrin and Statman [1985], Li and Yang [2013]). Contrary to
Bodnaruk and Simonov [2016], the simulation results from Li and Yang [2013] suggest that,
in general, loss aversion tends to mitigate the disposition effect. Ingersoll and Jin [2013]
also argue that an S-shaped utility function does not create the disposition effect; it actually
reduces it.

The review above clearly shows the split views in the literature on the relation between
the components of prospect theory and empirical trade patterns. This paper aims to examine
how prospect theory affects agents’ trading behavior. We illustrate this by building a simple
search-match model in an asset (housing) market under heterogeneous valuations, which
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incorporates a generally defined prospect utility as a special case. We choose the housing
market over the stock market as a modeling device for several reasons. First, the subject
under prospect theory is easier to contextualize in the housing market than in the stock
market, which makes model implications more clearly. As stocks are constantly traded in
and out of portfolios, it is less clear what the unit of analysis should be (i.e., the portfolio as
a whole or each stock individually?). The basis for the reference value is also unclear because
the same company’s stock can be purchased at different time and prices (Meng and Weng
[2017]). Another challenge concerns the interactions of stocks within a portfolio. If an agent
draws prospect utility from each stock individually1, how will the response from one stock
interact with that from another stock in a portfolio context? The popular measure used in
the stock market on loss/gain positions, as proposed in Odean [1998], makes a simplifying
assumption and essentially counts the proportion of losing stocks in a portfolio as a measure
of the loss/gain position faced by an agent. This measure, while easy to construct and
conceptually intuitive, is dichotomous (i.e., an overall incidence of gain or loss), and it
overlooks the extent of gain/loss2. In contrast, the subject of analysis is easier to define
in the housing market due to the capital-intensive and indivisible nature of housing assets.
In reality, we seldom observe an individual home seller attempting to buy and sell multiple
houses simultaneously. The second reason is that a model based on the housing market
allows us to compare our results with Genesove and Mayer [2001] in order to obtain direct
insights into the potential conceptual mismatch discussed above. Finally, owner-occupied
housing units totaled approximately $27 trillion in 2017Q1, making residential real estate
one of the most important asset classes in the United States3.

This study contributes to the literature by isolating each component of prospect theory
and its unique empirical implication. As discussed below, our model offers a wide range of
empirical predictions and helps reconcile some seemingly contradicting findings documented
in the literature that cause confusion and debate. In parallel with Barberis and Xiong [2012],
we are among the first to independently show in a model that reference dependence alone

1See Barberis and Xiong [2009] for one such example.
2According to Odean [1998], for a stock in the investor’s portfolio on the day that is sold, a “realized gain”

is counted if the stock price exceeds the average price at which the shares were purchased, and a “realized
loss” is counted otherwise. Similarly, for a stock in the investor’s portfolio on the day that is not sold, a
“paper gain” is counted if the stock price exceeds the average price at which the shares were purchased, and
a “paper loss” is counted otherwise. Hence, we can define RealizedGains

RealizedGains+PaperGains = Proportion of Gains
Realized (PGR) and RealizedLosses

RealizedLosses+PaperLosses = Proportion of Losses Realized (PLR). Then, for investors
in a trading period, if they experience two realized gains and two paper gains, PGR=1/2. If they experience
one realized loss and two paper losses, PLR=1/3. In this case, as PGR > PLR, people then interpret the
finding as supporting the disposition effect.

3See Table B.100 entitled “Balance Sheet of Households and Nonprofit Organizations" in the Federal
Reserve’s Flow of Funds Report, which can be found at http://www.federalreserve.gov/releases/z1/current/.
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generates the disposition effect.4 However, our result is more general than Barberis and Xiong
[2012]. Unlike the simulation-based study in Barberis and Xiong [2012], we adopt a generally
characterized prospect value function equivalent to Wakker and Tversky [1993] and prove
analytically that reference dependence alone generates the disposition effect. Moreover, their
model requires a discount rate to be high enough to generate the disposition effect, while
ours has no such restriction. Furthermore, Barberis and Xiong [2012] run their simulation
under a realization utility framework, which requires the reference value to be the initial
purchasing price. There is no such requirement in our model as the reference value is just a
generic parameter according to the prospect theory.

The finding that reference dependence alone is enough to generate disposition effect offers
profound empirical insights. For example, it implies that, contrary to the argument made
in Genesove and Mayer [2001], their empirical findings do not have a direct relation with
loss aversion. In fact, we show that what they find can be perfectly compatible with a value
function that is loss neutral and has a marginally increasing sensitivity in both the gain
and loss domains. Hence there seems to be a conceptual mismatch in Genesove and Mayer
[2001] between the two stylized findings and their theoretical counterparts. A clarification
on this point is much needed because, as reviewed above, many subsequent studies perceive
the effect of loss aversion in the same way as in Genesove and Mayer [2001].

Regarding the component of diminishing sensitivity, we show that it distorts the dispo-
sition effect to two-way by inducing a local reverse disposition effect. In particular, when
a seller is subject to a range of moderately sized losses, her asking price will be decreas-
ing when the potential loss is increasing. Therefore, our model implies a non-monotonic
(up-down-up) pricing curve along with agents’ potential gain/loss positions, with the non-
monotonicity arising only in the loss range. It is worth noting that Barberis and Xiong [2012]
focus exclusively on a linear value function and predict a one-way disposition effect only. In-
terestingly, in a different context, Barberis and Xiong [2009] examine an investor’s portfolio
choice problem under a prospect value function with marginal diminishing sensitivity. When
they match using Odean [1998] data, they indeed find a reverse disposition effect when the
expected return is high. However, the authors view this finding as somewhat unexpected and
propose using an alternative choice of reference point to recover the disposition effect. Our
model offers a potential explanation as to why there seems to be a contradiction between
the findings in these two papers.

While relatively rare, there have been findings documented in the literature of a reverse
4To our knowledge, the earliest draft that leads to Barberis and Xiong [2012] was presented in October

2007 at NYU Stern Five-Star Conference on Research in Finance. An earlier draft of our paper was presented
in January 2018 at the ASSA-AREUEA conference by one of the co-authors. A slightly newer 2008 draft can
be found in chapter 2 from https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0066841.
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disposition effect. However, the proposed causes, if any, vary and are often against using
prospect theory to explain the disposition effect. For example, many studies simply cite
Barberis and Xiong [2009]’s finding on reverse disposition effect as an example of the weak
relation between prospect theory and the disposition effect (see An [2015], Birru [2015],
Heimer [2016] and Bian et al. [2017]). In the seminar study of Odean [1998], although the
author shows a robust presence of a disposition effect, he also reports that stock trading
in December behaves oppositely and exhibits a reverse disposition effect. Odean attributes
this fact to tax-loss selling. Ben-David and Hirshleifer [2012] find a reverse disposition effect
for buying additional shares without any realization conditions. They suggest that prospect
theory is not the key to the (reverse) disposition effect. Cici [2012] and Lu, Sugata, and
Teo [2016] find that fund managers show a tendency towards a reverse disposition effect
and argue that it arises because these professional managers serve as potential mitigators of
distortions caused by the behavioral biases of retail investors who are more likely subject to
a prospect value function.

Our study helps reconcile the literature by showing that, as gain/loss positions change,
the disposition effect and the reverse disposition effect can co-exist. We show it is the
diminishing sensitivity, hence the underlying risk seeking behavior of the agent, that leads
to such a two-way disposition effect. This finding also suggests studies that predominantly
focus on a one-way disposition effect can be overly simplistic and misleading.

On loss aversion, we show that it tends to magnify the disposition effect. This offers a
theoretical foundation supporting the findings of Bodnaruk and Simonov [2016]. This result
also echoes Ray, Shum, and Camerer [2015], which examines asymmetric demand elasticity
around a reference price. Although merely a discussion, the authors argue that it is the
reference dependence effect that causes asymmetric demand elasticity, while loss aversion
magnifies this asymmetry. As loss aversion intensifies the disposition effect, we show that
it also mitigates the reverse disposition effect and suppresses the range of the reverse effect
among potential losers.

Jointly, our model further predicts that the price dispersion in a cold market is higher
than in a hot one. This is because in a cold market, there will be more home sellers subject
to potential losses, and as discussed above, loss aversion will come into play and magnify
the disposition effect, leading to more heterogeneous asking prices among sellers of similar
homes. Finally, as more sellers ask for extreme prices in a distressed market, the selling
hazard rate declines, which further reduces the transaction volume. Hence, our model helps
to explain the positive price-volume relation observed in housing markets. Using multiple
listing service data from Virginia, we find evidence mostly consistent with the predictions
made by prospect theory.
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The remainder of the paper is structured as follows. Section 3.2 provides an exposition of
our model of a house seller’s decision problem, which incorporates a generally characterized
prospect utility as a special case, and discusses its implications. The empirical predictions
are tested in section 3.3. Section 3.4 continues to conduct calibration exercises that shed
light on the parameter values of the prospect value function. We conclude the paper in
section 3.5. All the other materials are given in Appendix E, F, G , H and, I. which contains
the proofs of Proposition 4 and 5, results of price-dispersion effect, calibration of the vary α,
and some supplemental tables.

3.2 Model Setup and Results

We propose a simple search/match model of a home seller’s pricing strategy under a
prospect value function.

3.2.1 General Setup

Consider a large housing market with a countably infinite number of potential sellers5.
Each seller has an ex-ante identical house for sale. To sell it, she must commit an effort to
search for a potential buyer, who arrives via an independent Poisson process. For seller i,
we define the proportional time spent on searching as ti, which ranges from 0 to 1. During
time window ∆t, a buyer arrives with probability B(ti)∆t. As a result, no buyer arrives with
probability 1−B(ti)∆t, and more than one buyer arrives with a probability that is smaller
than the order of ∆t. When a potential buyer arrives due to seller i’s search effort, the buyer
inspects i’s house and decides whether the quality matches his preference. Depending on
the matching quality, the buyer decides the highest possible price of pi that he is willing
to pay. We assume that pi is a random draw from distribution G. If there is no match,
pi = 0. If there is a perfect match, pi = 1, which is only a normalization. Therefore, G
has a finite support [0,1]. Furthermore, we assume that pi is independent across buyers,
houses, and time. The distribution of G could be very general in this regard. One typical
assumption is that (1−G)/g, the inverse of the hazard function, is both non-increasing and
marginally non-decreasing. The seller chooses an asking price of ri for her house. If pi ≥ ri,
the transaction is closed and the seller pays ri.

During time window ∆t, the search effort incurs a cost of H(ti)∆t. We assume that the
arrival function B has the following properties. First, it is twice continuously differentiable
everywhere. Second, B is increasing and strictly concave in ti. This assumption implies a

5Our model of the search/match process shares some features with that of Williams [1998].



40

marginally decreasing productivity of a seller’s searching ability. To prevent corner solutions,
we also assume that B(0) = 0, B′(0) =∞. Consistent with the literature, we further assume
the search cost function H to be twice differentiable, increasing, and strictly convex in ti.
Next, we assume that H ′(0) = 0 and H ′(1) =∞ to prevent any corner solutions. To match
the normalization on G, we assume that H(t) also has a domain of [0, 1].

Collectively, seller i’s objective is to solve the following maximization problem:

U vi,ci = max︸︷︷︸
ti,ri

e−β∆t{B(ti)[1−G(ri)]∆tW (ri, vi)−H(ti)∆t

+[1−B(ti)[1−G(ri)]∆t](U
vi,ci − ci∆t)}+ o(∆t) (3.1)

subject to 0 ≤ ti ≤ 1 and o ≤ ri ≤ 1, for i = 1, 2......

In Equation (3.1), β is a positive discount rate, and ci reflects the per-period net cost of
staying in the current house, possibly due to the disutility of not being able to sell the house
in the current period. A positive value of ci means that the seller has an incentive to move
sooner due to some attractive outside option. However, we acknowledge the possibility that
for some sellers, ci could be negative, which implies that remaining in the current house is
more attractive than moving. This idea generates the positive effect of spatial lock-in. In
this case, fishing by asking a higher than expected market price is a natural response for
sellers, since they must ask potential buyers to compensate for giving up the benefit from
superior matching. To rule out this trivial case, henceforth, we only consider the case in
which ci is non-negative.

Conditional on a successful sale, seller i draws utility as measured by value function
W (ri, vi). To minimize structural restriction, we adopt a general characterization ofW (ri, vi)

according to Wakker and Tversky [1993]6.

Def 1: W is a value function that has the following properties:
(1.1) Reference dependence: W (ri, vi) = W (x) with x = ri − vi and W (0) = 0. W (x) is

continuous everywhere, except possibly at zero, W ′(x) exists and is positive.
(1.2) Marginal diminishing sensitivity : W ′′(x) ≤ 0 for all x > 0 and W ′′(x) ≥ 0 for all

x < 0.
(1.3) Loss aversion: W (x) is steeper for losses than for gains. That is, for all x1 > x2 ≥ 0,

W (x1)−W (x2) ≤ W (−x2)−W (−x1).7

While prospect theory proposes marginal diminishing sensitivity, for completeness, we
6Also see Tversky and Kahneman [1992] and Loewenstein and Prelec [1992] for similar characterizations.
7Kahneman and Tversky [1979] suggest loss aversion is defined as for all x > 0, W (x) ≤ −W (−x), which

is more restrictive than as defined here.
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define in a similar way the marginal increasing sensitivity as:
(1.2’) Marginal increasing sensitivity : W ′′(x) ≥ 0 for all x > 0 and W ′′(x) ≤ 0 for all

x < 0.

We now discuss the implication outlined in Equation (3.1). Over the time interval ∆t, the
seller maximizes the discounted expected payoff from the following decision problem. First,
it is possible that one buyer will arrive who is willing to pay ri. The first term in brackets
in Equation (3.1) measures this effect. Similarly, the second term measures the total search
cost expended by seller i. In the third term, 1−B(ti)[1−G(ri)]∆t, refers to the probability
of remaining in the current state. In this case, the seller incurs a waiting cost, ci∆t , and
will repeat the current decision problem U vi,ci . It should be noted that the terms in brackets
correctly consider all possible and non-trivial events that could occur during the period ∆t.
The other events can only occur with a probability of a smaller order than ∆t. Those terms
are collected as o(∆t).

By Taylor expansion on e−β∆t, Equation (3.1) can be rewritten as:

0 = max︸︷︷︸
ti,ri

{B(ti)[1−G(ri)]∆t[W (ri, vi) + ci∆t− U∗vi,ci ]

−H(ti)∆t− ci∆t} − βU∗vi,ci∆t (3.2)

Dividing the above Equation by ∆t, taking the limit as ∆t→ 0 and re-organizing the terms
yields:

U vi,ci =
B(ti)[1−G(ri)]W (ri, vi)−H(ti)− ci

B(ti)[1−G(ri)] + β
(3.3)

Taking the first-order condition with respect to ti and ri yields:

B′(t∗i )[1−G(r∗i )][W (r∗i , vi)− U∗vi,ci ]−H ′(t∗i ) = 0 (3.4)

[1−G(r∗i )]Wri(r
∗
i , vi)− g(r∗i )[W (r∗i , vi)− U∗vi,ci ] = 0 (3.5)

where the subscript directs us to take the partial derivative with respect to the corresponding
variable. By replacing U∗vi,ci with (3.3), equations (3.4) and (3.5) fully characterize the
equilibrium solutions, since we have two equations to solve for two unknowns: t∗i and r∗i . A
proof of the existence and a unique solution for this type of searching problem can be found
in Williams [1998].
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3.2.2 Results

3.2.2.1 Comparative Statics

Although the solving process is straightforward, equations (3.4) and (3.5) are too gen-
eral to provide any clear implications of the relation between a seller’s asking price and
the reference value. First, let’s only assume reference dependence in the value function.
Hence W (r, v) = W (x), where x = r − v and Wr = Wx. To obtain more concrete results,
substituting equations (3.3) into Equation (3.4) and (3.5) yields:

W (x) +
H(t∗) + c

β
− F (r∗)W ′(x) = 0 (3.6)

B′(t∗) [βW (x) +H(t∗) + c]−H ′(t∗)
[
B(t∗) +

β

1−G

]
= 0 (3.7)

Here, we define F (r∗) = (1−G)
βg

[B(1 − G) + β] to simplify the expression. As B(t) and G(r)

are positive, [B(1 − G) + β] is decreasing in r. Coupled with the fact that (1 − G)/g is
non-increasing in r, we can show that F ′(r∗) < 0. Further note that the asking price has a
functional form of r∗ = r∗(vi, ci) and effort has a functional form of t∗ = t∗(vi, ci). Recall
that vi and ci are independent, and W ′(x) 6= 0 because of reference dependence. Use the
formula for derivative of implicit function on Equation (3.6) and (3.7) separately. While we
leave the technical details for the Appendix E, after some re-arrangeing, we show that:

∂t∗

∂v
=

−βB′W ′(x)

−B′′ [βW (x) +H + c] +H ′′(B + β
1−G)

< 0 (3.8)

∂r∗

∂v
=

1− F (r∗)W
′′(x)

W ′(x)

1− F (r∗)W
′′(x)

W ′(x)
− F ′(r∗)

(3.9)

From Equation (3.8), as B′ > 0, W ′ > 0, B′′ < 0, and H ′′ > 0, ∂t∗

∂v
< 0 always holds. It is

clear from Equation (3.9) that ∂r∗

∂v
is non-zero, in general. As W ′(x) > 0, the sign of this

comparative static depends on the sign of W ′′(x), or the risk attitude of the agent.
First, let us consider the impact of reference dependence only by turning off the marginal

diminishing (or increasing) sensitivity. This implies a linear value function with W ′′(x) = 0.
Then, we could see that ∂r∗

∂v
= 1

1−F ′(r∗) > 0.
Second, with marginally diminishing sensitivity as an incremental component of W , we

further have W ′′(x) ≤ 0 for all x > 0 and W ′′(x) ≥ 0 for all x < 0. Thus, in the gain area
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where x > 0, ∂r∗

∂v
> 0. The sign can be indefinite in the loss area, as it depends on the

magnitude of F ′(r∗) and F (r∗)W
′′(x)

W ′(x)
.

We now summarize the comparative statics on v in the following proposition.

Proposition 4. For a value function W that satisfies reference dependence (Def. 1.1), and
diminishing sensitivity (Def. 1.2) or increasing sensitivity (Def. 1.2’) when relevant, we
have ∂t∗

∂v
< 0. Meanwhile, ∂r∗

∂v
has the following property:

∂r∗

∂v Gain Loss
Risk Neutral > 0 > 0

Marginal Diminishing Sensitivity > 0 Non-monotonic: +/-/+
Marginal Increasing Sensitivity Non-monotonic: +/-/+ > 0

The proof of Proposition 4 is provided in the Appendix E.
There are several major takeaways from this proposition. First, as Proposition 4 holds

without using the property of Def 1.3, loss aversion plays no role in determining the sign
of ∂r∗

∂v
. Indeed, with reference dependence but without marginal diminishing (or increasing)

sensitivity, ∂r∗

∂v
= 1

1−F ′(r∗) > 0 always holds. Hence a positive association between a seller’s
asking price and the reference value, which is essentially the key finding in Genesove and
Mayer [2001]8, which has no direct connection with loss aversion. Nevertheless, the dispo-
sition effect is a valid test of reference dependence. If this were not the case, then from
Equation (3.3), we would know that U∗vi,ci is no longer a function of vi. Therefore, it must
be the case that ∂r∗

∂v
= 0 for all vi. The link between the disposition effect and reference

dependence is intuitive. If the reference value plays no role in affecting seller utility, it
should not have any predictive power for the optimal asking price a seller chooses. Recall
that Barberis and Xiong [2012] show that with a sufficiently positive discount rate, linear
reference-dependent realization utility can generate the disposition effect. Here we have
proven it in a more general setting as there is no restriction on the magnitude of the positive
discount rate, and we have not made any additional assumption on whether the reference
value needs to be the initial purchasing price, which is how the realization utility is defined.

Although the risk neutral case provides direct insight into the potential disconnection
between the empirical test of loss aversion in Genesove and Mayer [2001] and its theoretical
counterpart, its strong assumption on a linear value function may not be realistic. We now
consider the general case with marginal diminishing (or increasing) sensitivity.

Without risk neutrality, the optimal asking price depends on the agent’s loss/gain ex-
posure. In particular, with marginally diminishing sensitivity, when an agent is subject to

8To be more precise, Genesove and Mayer [2001] find a positive relation between the asking price and a
seller’s potential loss exposure, vi − P , where P means the expected market price. However, as P is ex-post
fixed in our theory, this finding is equivalent to a positive relation between r∗i and vi.
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a higher potential loss (i.e., as vi increases), the optimal asking price first increases, then
declines and eventually increases again. This phenomenon suggests that the agent’s risk
attitude can generate a local reverse disposition effect, a range in which the optimal asking
price is decreasing when the reference value is higher. Moreover, it holds independent of
loss aversion. The fact that the non-monotonicity of ∂r∗

∂v
is only observed in the loss range

with marginally diminishing sensitivity and only in the gain range with marginally increas-
ing sensitivity suggests that it is the risk seeking behavior that generates the local reverse
disposition effect. According to the prospect theory, only potential losers are risk seeking.
Hence, the finding that the reverse disposition effect only occurs among potential losers can
serve as evidence to rule out marginally increasing sensitivity.

To gain additional insights on the two-way disposition effect, and to obtain the compar-
ative statics over loss aversion, we need to add more concrete parametric structure to the
value function. From now on, we incorporate a functional form W (ri, vi) as suggested by
Tversky and Kahneman [1992]:

W (ri, vi) =

(ri − vi)α if ri − vi ≥ 0,

−λ(vi − ri)α if ri − vi < 0
(3.10)

where λ, α > 0. This parametric characterization is flexible. On the one hand, when vi = 0

for all i and α = λ = 1, Equation (3.1) reduces to the traditional search model in which
risk-neutral sellers attempt to maximize the expected selling proceeds. On the other hand,
W (ri, vi) also incorporates Kahneman and Tversky’s prospect utility as a special case when
vi 6= 0 (reference dependence), 0 < α < 1 (marginal diminishing sensitivity) and λ > 1 (loss
aversion). As loss aversion refers to a behavior where a loss looms larger than an equal-sized
gain, it is clear that λ > 1 measures this asymmetric response. It is easy to verify that
(3.10) is compatible with the generally characterized prospect value function from Def. 1.
Kahneman and Tversky [1979] and Tversky and Kahneman [1992] define λ as the coefficient
of loss aversion. Their studies propose that λ should be approximately 2.25 and α near 0.88.

Plugging in (3.10) and (3.6) into Equation (3.9), under the α < 1 and the loss (vi−r∗ > 0)
scenario, it yields:

∂r∗

∂vi
=

1− (H+c)(1−α)
βλ

(vi−r∗)−α

1− (H+c)(1−α)
βλ

(vi−r∗)−α − αF ′(r∗)
(3.11)

Let us define ρ(r∗) ≡ 1
1−αF ′(r∗) . It can be shown that for different values of loss (vi− r∗),

the numerator and denominator of Equation (3.11) have no definite signs. That leads to
a non-monotonic relation between the asking price and reference value. In particular, as
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shown in the Appendix E:

∂r∗

∂vi
=


> 0 if 0 < λ(vi−r∗)α < ρ(r∗) (H+c)(1−α)

β

< 0 if ρ(r∗) (H+c)(1−α)
β

< λ(vi−r∗)α < (H+c)(1−α)
β

> 0 if λ(vi−r∗)α > (H+c)(1−α)
β

(3.12)

Equation (3.12) shows that the reverse disposition arises when the magnitude of agent’s
value functionW (r∗, vi) = λ(vi−r∗)α is within the loss range of

[
ρ(r∗) (H+c)(1−α)

β
, (H+c)(1−α)

β

]
.

Recall that ρ(r∗) ≡ 1
1−αF ′(r∗) < 1 is a factor related to the marginal arrival rate. Moreover,

arrival rate is decreasing in r∗, or F ′(r∗) < 0 implies that ρ < 1. Further, H + c is the sum
of searching and waiting costs, β is the discount rate, and (1 − α) is related to the agent’s
risk preference. Thus, (H+c)(1−α)

β
is a measure of the discounted total cost multiply by the

level of risk seeking.
Intuitively, ρ(r∗) (H+c)(1−α)

β
demonstrates the trade-off between the cost of not selling and

potential benefit of marking-up the asking price r∗. On the one hand, for sellers subject
to potential loss, asking a higher price could mitigate the loss if the house is successfully
sold. On the other hand, a higher asking price will also reduce the probability of realizing
a sale, increase the time on the market, and incur a cost to the seller. Equation (3.12)
reveals that, when the loss is relatively small, the benefit of asking for a higher price (and
hence improving the value function if realized) dominates, and the agent will first exhibit
the disposition effect by asking for a higher price with a larger loss. However, when the
loss further increases beyond ρ(r∗) (H+c)(1−α)

β
, the second effect could dominate the first due

to the non-trivial waiting costs and marginally diminishing sensitivity to loss. Because of
the already high asking price, the selling hazard rates for these sellers, should they choose
to increase the asking price further, could be too low. As a result, the effective benefit of
asking for more is relatively trivial when it is unlikely to result in a sale. In this range, the
agent would rather ask for a lower price in exchange for avoiding the high cost of not selling.
Finally, when the potential loss to house seller is large enough, successfully selling at a “low”
price in the current period is itself painful to a seller. When a home seller perceives that
the magnitude of the prospect (loss) valuation function is greater than risk-adjusted total
cost, she attempts to avoid realizing this loss and again exhibits the disposition effect by
marking-up the price. Further, observe that in the following Equation (3.12), λ appears as
the multiplier in the prospect loss valuation function. Hence, among potential losers, greater
loss aversion (hence, a larger λ) leads to a narrower range of the reverse disposition effect.

We present the comparative statics on the waiting cost c and loss aversion λ in the fol-
lowing proposition:
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Proposition 5. Given the prospect value function as defined in (3.10), we find ∂r∗

∂c
< 0 and

∂t∗

∂c
> 0. Meanwhile, within the loss range, ∂r∗

∂λ
> 0, ∂t∗

∂λ
< 0, and ∂2r∗

∂v∂λ
> 0.

The proof of Proposition 5 can be found in Appendix F.
Regarding the waiting cost, the optimal asking price r∗ is negatively associated with the

waiting cost c. This is intuitive because when an agent faces a higher cost of waiting, she has
the incentive to lower down the asking price and spend more effort, as doing so will increase
the likelihood of being able to sell the house in the current period.

The fact that ∂r∗

∂λ
> 0 implies that, among potential losers, more loss aversion always

leads to a higher asking price. Further, ∂2r∗

∂v∂λ
> 0 indicates that compared with the loss

neutral case, loss aversion leads to a steeper slope of the pricing curve, hence to a stronger
disposition effect. Conversely, because of the upward force generated by both ∂r∗

∂λ
> 0 and

∂2r∗

∂v∂λ
> 0, loss aversion tends to mitigate the extent of the reverse disposition effect.

While it is conceptually appealing to benchmark on the loss neutral case to discuss loss
aversion, Proposition 5 sheds much light on the empirical challenge of testing the loss aversion
effect directly. This is because loss aversion itself only carries an incremental effect on asking
price. When λ is positive, ∂r∗

∂λ
> 0 and ∂2r∗

∂v∂λ
> 0 always hold, and the property of ∂r∗

∂v
remains

the same. Hence, there is nothing unique about whether λ < 1, λ = 1, or λ > 1 as far as the
trading strategy is concerned. Empirically, we can only say that as λ increases, the agent
becomes less loss tolerating (which is not equivalent to loss aversion), her asking price tends
to be higher, and the disposition effect tends to be stronger. This is very different from a test
on whether an agent is loss averse. Unless the counterfactual for when λ = 1 is observable,
loss aversion will be empirically untestable given the relative nature of the impact by λ .

3.2.2.2 The Case of Costly Search: Simulation

In this section, we conduct a series of simulations to help visualize and better understand
Propositions 1 and 2. We first parameterize our model by specifying the functional forms
of search productivity B(t), cost H(t), the distribution of potential buyers’ valuations G(r),
and the joint distribution of sellers’ reference values and net waiting costs F (v, c). Hereafter,
we will assume:

B(t) =
√

2t− t2 (3.13)

H(t) = 1−
√

1− t2 (3.14)

Both B(t) and H(t) are quarter portions from unit circles. A convenient feature of this
specification is that it satisfies all the assumptions we make concerning the productivity
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and cost functions. The terms are both monotonically increasing and twice continuously
differentiable. Furthermore, we can easily verify that they also satisfy our curvature as-
sumptions. Furthermore, we assume the vi and ci are independent variables. In other words,
the reference value and net waiting cost for individual sellers are uncorrelated.

A more realistic assumption concerning potential buyers’ bidding distribution should have
a greater central tendency than the uniform distribution. Since g(r) has a finite support of
[0,1], we cannot assume the usual normal distribution for g(r). Specifically, we use the
Beta(2, 2) (quasi-triangular) distribution:G(r) = 3r2 − 2r3

g(r) = 6r − 6r2 for 0 ≤ r ≤ 1
(3.15)

Similar to a normal distribution, a Beta(2, 2) distribution is also symmetric and peaked at
its center. The simulation results presented below are based on this inverse-U shape curve
distribution. However, when conducting parallel studies on a uniform distribution, we obtain
very similar results.

Equipped with specifications for G(r), B(t), and H(t), we can substitute them into equa-
tions (3.4) and (3.5). For a given set of vi, ci, β, α and λ, we can solve the system numerically
to obtain t∗i and r∗i . In particular, we assume that β is 5 percent and ci is 0.19. Hereafter,
we maintain these parameter values unless stated otherwise. To show that finding one from
Genesove and Mayer [2001]’s abstract has no necessary relation with the loss aversion effect,
we set λ = 1. We also assume that α = 1 to rule out any potential effects from diminishing
sensitivity in the value function. Hence, W (ri, vi) = ri − vi.

First, we examine the relations among a seller’s asking price, search effort, and reference
value. The results are presented in Figure 3.1. In both cases, a seller’s asking price is
increasing in the reference value, which is consistent with finding one in Genesove and Mayer
[2001]’s abstract. Since we set λ = 1, we can confirm the prior conclusion that finding one
has minimal power when testing the loss aversion effect. The impact obtained from reference
dependence is intuitive. Because the reference value is regarded as an un-sunk cost by sellers,
the higher the reference value is, the more compensation the seller will ask for because the
higher the reference value, the more likely the seller is to realize a loss when selling. Another
finding is that with more heterogeneous valuations by potential buyers (uniform case), a
seller tends to increase her asking price, ceteris paribus. This is true for all possible reference
values. The intuition is that because potential buyers are more heterogeneous in terms of

9We also considered other cases in which ci is random and found very similar results. The advantage of
using a constant ci is that, conditional on it, we can examine the relation among a seller’s asking price, her
reference value, and the expected market price.
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their preferences, the probability of meeting a buyer who is willing to pay higher matching
premium increases. As a result, it is more attractive for a seller to ask for a higher price
in the market. Finally, we find that the search effort decreases with the asking price. This
implies that, on the one hand, a seller may want to fish in the market by asking for a higher
price. On the other hand, she may also choose to spend less effort in searching for potential
buyers. One obvious force that helps to generate this finding is the role of the reference value.
The higher the reference value is, the higher the asking price because they are conditional
on a given holding cost. Since the reference value is also a cost component in addition to
searching, an increase in the reference value may depress the seller’s search incentive.

Figure 3.1: Asking Price, Search Effort and Reference Value (λ = 1)
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In Genesove and Mayer [2001], and many other studies, a seller’s asking price is examined
with respect to her potential loss exposure, which is the difference between a seller’s reference
value and the expected market price. To make a more direct comparison, we need to define
the expected market price.

Equations (3.4) and (3.5) show that the equilibrium conditions are functions of vi and ci.
Suppose that the C.D.F of its joint distribution is F (v, c) and that conditional on F (v, c),
the expected market price can be defined as the average of all transaction prices, weighted
by the probability of realizing such sales. As a result,

P =

∫∫
r∗(v, c)B(t∗i (r

∗
i ))[1−G(r∗i )]fv,c(v, c)dvdc∫∫

B(t∗i (r
∗
i ))[1−G(r∗i )]fv,c(v, c)dvdc

(3.16)

In the simulation, we assume that the seller’s reference values are distributed uniformly
in [0,1]. Each time we randomly draw 1,000 sellers from this distribution and calculate the
expected market price following Equation (3.16). We then define Lossi = vi − P , consistent
with extant empirical studies.

To isolate the unique predictions of prospect theory, we consider three types of value
functions in our simulation. We first set α = 1.2, implying an increased sensitivity in
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contrast to prospect theory. We then set α = 1, implying a risk-neutral case. Finally, we
set α = 0.8810, as proposed by Kahneman and Tversky in prospect theory. Within each α
setting, we compare cases both with and without loss aversion. Based on equations (3.4)
and (3.5), by introducing the distribution function G(r) and assigning the parameters the
same values, we can identify the relation between r and loss exposure (Loss = vi − P ) at
different values of λ. Figures 3.2 and 3.3 show the results.

Figure 3.2: Asking Price with Different Value Functions α = 1.2 and α = 1
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Figure 3.3: Asking Price with Different Value Functions (α = 0.88)
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Genesove and Mayer [2001] conclude that sellers subject to a greater potential loss ask for
a higher price, and they find that the marginal mark-up declines as the size of the potential

10Results are qualitatively similar when choosing other values of α.
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loss increases. They interpret the first finding as evidence of loss aversion (i.e., λ > 1) and
the second finding as evidence of a marginal diminishing effect (i.e., α < 1). It is now clear
why Genesove and Mayer [2001] lack testing power for both claims. From the left graph of
Figure 3.2, we can see that for losers (i.e., vi − r∗ > 0), ∂r∗

∂v
> 0 and ∂2r∗

∂v2
< 0 both hold for

home sellers with λ = 1 and α > 1. Therefore, these findings serve neither as evidence that
loss aversion exists nor as evidence that there is a marginal diminishing effect.

Thus, what are the real impacts generated by loss aversion and marginal diminishing
sensitivity? According to Proposition 5, ∂2r∗

∂v∂λ
> 0 for all positive α. Hence, if the loss

aversion effect holds (i.e., λ > 1 if v − r∗ > 0), we anticipate that the pricing curve along v
is steeper than when agents are loss neutral (i.e., λ = 1) under the loss area. Thus, it is the
stronger disposition effect, not the disposition effect itself, that is linked to the loss aversion
effect. Our simulation further shows that the slope run-up starts when the seller is subject
to a small perceived gain, which is the difference between P and v. Further, as discussed
after Proposition 5, as loss aversion incentivizes potential losers to ask for higher prices, it
partially suppresses the reverse disposition effect. Figure 3.3 reveals that an agent with loss
aversion exhibits a more moderate reverse disposition effect, as reflected by a less negative
slope of the pricing curve. Moreover, the reverse disposition effect also appears in a narrower
range in the presence of loss aversion.

To test diminishing sensitivity (i.e., α < 1), we first notice from Proposition 4, Figure
3.2 and Figure 3.3 that the non-monotonicity of the pricing curve only holds when agents
are not risk neutral (i.e., α 6= 1). Furthermore, if α < 1, ∂r∗

∂v
becomes non-monotonic

only for losers (i.e., vi− r∗ > 0). The prediction reverses when the agent exhibits marginally
increasing sensitivity α > 1, in which non-monotonicity will arise only for gainers. Therefore,
diminishing sensitivity uniquely predicts a universal disposition effect for gainers and a mix
of a disposition and local reverse disposition effect among potential losers, due to the non-
monotonic pricing strategy.

The fact that the reverse disposition effect is guaranteed to exist when agents are not
risk-neutral and that where it appears depends on whether α is above or below 1 is very
interesting. We discussed some economic intuition for this after Proposition 4. Another
factor that influences a seller’s pricing behavior is the waiting cost. Clearly, a higher waiting
cost makes the price mark-ups less attractive, since fishing will decrease the hazard rate of
selling a home. Eventually, if the waiting cost is high enough, the stress of selling a home
will dominate the incentive to fish and earn higher conditional proceeds. Therefore, the
asking price should decrease in the waiting cost. To verify this intuition, we apply several
waiting costs and plot the results in Figure 3.4. To isolate the waiting cost effect from the
loss aversion (λ) effect, we present the findings with a Beta(2, 2) bidding distribution by
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holding λ = 1.

Figure 3.4: Asking Prices When Waiting Costs Are Different
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Consistent with our intuition and Proposition 4, we find that the asking price tends to
decrease when the waiting cost increases. Moreover, the slope becomes flattered when the
cost is higher, which indicates the weakening effect of a reference value, as sellers will want
to ask a price that facilitates a sale as soon as possible.

3.2.2.3 The Impact of Valuation Heterogeneity on the Asking Price

In the previous section, our primary focus is a fixed bidding distribution like Beta(2, 2).
An interesting perspective is the spread of the bidding distribution. In particular, what is its
impact on a seller’s optimal asking price when we hold the mean of the bidding distribution
constant but vary the bidding heterogeneity among buyers? To answer this question, we now
introduce a series of Beta functions with equal mean but different variances. Specifically,
we use Beta functions from Beta(1, 1) (a uniform distribution) to Beta(7, 7) as plotted in
Figure 3.5.

We observe that as parameters of the Beta distribution increase, its tail becomes thinner,
which means that buyers tend to have less heterogeneous house valuations and hence a
smaller likelihood of receiving an offer that is significantly above the mean. We then plug
in different Beta functions and solve for optimal asking prices. The parameter setting is the
same as in the previous section. We next compute the average asking price, r, out of 1,000
randomly selected reference values, vi, and plot the results in Figure 3.6.

Figure 3.6 shows that as the variance increases, so does the optimal asking price. The
intuition is that when potential buyers have a bidding distribution with higher variance, the
probability of receiving an upper-tail offer increases, which encourages sellers to be consistent
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Figure 3.5: Beta Functions with the Same Mean but Different Variances
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Figure 3.6: Variance of Bidding Distribution and the Asking Price
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with their asking prices. To confirm that our finding is not driven by the loss aversion (λ)
effect, we also consider a loss “neutral" case (λ = 1) and find a similar result.

One stylized finding in the housing market is a strong positive correlation between home
prices and transaction volume. The heterogeneity of pricing behavior between sellers with
low versus high reference values naturally leads to a positive price-volume relation. The
intuition is simple. Conditional on a given distribution of reference values, when the market
becomes hot, the willingness to pay off potential sellers will increase. As a result, in a hot
market, the proportion of sellers who have low reference values relative to the market price
increases. Because these sellers are not subject to potential equity loss, the incentive for
them to mark-up the price is relatively low. As increasingly more sellers in the market
choose to sell at a moderate price, as reflected by the lower and flatter asking price curve, it
is clear that the probability of a successful sale will increase, which in turn generates a higher
transaction volume. Furthermore, a flatter asking price curve for sellers with low reference
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values may shed light on the extent of price dispersion under different market conditions.
As previously mentioned, when a market becomes hot, the proportion of sellers who have
low reference values relative to market price increases. With a high market price, as more
and more sellers cluster in the range of low reference values, differences among their asking
prices becomes smaller. In aggregate, we should expect that ceteris paribus, in a hot market,
the observed transaction prices will be less dispersed with respect to the expected market
price than in a cold market. We refer the readers to Appendix G for more technical details
on how our model generates these predictions.

3.3 Empirical Tests

We first list the four key findings from the model: 1) As shown in Figure 3.3, the three
components of prospect theory jointly predict a non-monotonic (up-down-up) pricing curve
along with a seller’s potential loss/gain exposure, with a local reverse disposition effect
appearing in the loss range; 2) the asking price decreases when the waiting cost increases; 3)
the asking price tends to increase with greater bidding heterogeneity. In this section, we test
these three hypotheses using a comprehensive housing transaction dataset from Hampton
Roads, a region of southeastern Virginia composed of several counties and eight cities such
as Virginia Beach, Norfolk, Portsmouth, Chesapeake, Hampton, Newport News, Suffolk, and
Williamsburg.

3.3.1 Data

Our housing transaction data are based upon the complete record of single-family trans-
actions in Hampton Roads over the period 1993(Q1)-2013(Q1), as provided by the Real
Estate Information Network (REIN). Due to the strength of the data, which includes de-
tailed records of housing characteristics in terms of structure and neighborhood information,
we can obtain a more accurate estimate of the expected market price when using a hedo-
nic model. We drop observations with missing hedonic characteristics, resulting in 226,389
listing and selling records during the sample period. Within the data, 31,969 observations
reflect transactions involving homes with at least two selling records. Hence, we can use these
repeat sales for subsequent tests. Besides of the hedonic variables, we generate a Vintage
dummy for houses with more than 120 years. For each quarter, we generate the price index
based on the 1993Q1. The results are shown in Figure 3.7. From the figure, we can see that
Hampton Roads experience a great price recession after 2008 and the housing market is still
under recovery after 2010.



54

Table 3.1: Summary Statistics for Key Variables

Count Mean SD Min Max
Asking Price 226389 12.01019 .6963668 4.976734 16.75467
Selling Price 156790 11.95246 .6555323 9.220291 15.73243
Moving Hazard 225022 8.051885 4.996146 1.08e-31 47.56719
Lag Volatility 226389 .0944664 .0742729 0 .3353927
Price Index 226223 172.9299 59.69367 95.19187 264.5465
Last Residue 31933 -.0615411 .2883628 -2.689037 2.098295
Loss 31969 -.2916937 .4099128 -3.126657 2.071548
Age 225213 25.96711 23.84644 0 181
Vintage 226389 .0073193 .0852392 0 1
Baths_Full_ 226389 1.907712 .7062155 0 12
Baths_Half_ 226389 .5412321 .5373087 0 14
Bedrooms_ 226389 3.371745 .8254281 1 16
Fireplaces_Number_ 226389 .7319834 .6586105 0 14
Square_Feet_Approx_ 226389 1899.852 938.0276 100 55000
Stories_Number_ 226389 1.615913 .5337507 1 4
Waterdummy 226389 .084907 .2787438 0 1
ATTdummy 226389 .157998 .3647399 0 1
PoolDummy 226389 .0591239 .235857 0 1
SewerDummy 226389 .8880555 .3152988 0 1
Heater_EleDummy 226389 .5639055 .4959004 0 1
WaterCityDummy 226389 .9182248 .2740225 0 1

3.3.2 Methodology

Define Vit as unit i’s expected log market value at time t:

Vit = Xiβ + δt (3.17)

where Xi is a vector of hedonic characteristics, and δt is a time dummy for period t.
However, in reality, we cannot observe this expected market value. Instead, what we observe
is the selling price at time t, in log form Pit, which we express as:

Pit = Xiβ + δt + eit = Vit + eit (3.18)

Where the additional component eit is the amount that is over- or under-paid by the
buyer. In the theory section, we assumed that housing units are ex-ante identical in terms
of structural characteristics and quality. That is, all housing units should have the same
expected market price. To control for quality differences in real data, we perform a two-
stage process. In stage 1, we estimate a hedonic regression through which we can generate
the expected market price for each unit. In stage 2, using the log of the asking price Lit as our
dependent variable, we then regress it on the seller’s loss/gain exposure, after controlling for
the expected market prices of different housing units. One key prediction from our theory is
that Lit depends on the potential loss/gain exposure, which reflects the seller’s heterogeneous
reference value. We measure it using a variable called Lossist, to be consistent with Genesove
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and Mayer [2001]. The relation is specified as:

Lit = αVit + f(Lossist) + φcit + γσt + εit (3.19)

Where εit is the error term with the usual assumptions, cit refers to the seller’s waiting
cost upon the sale, and σt measures the perceived period t bidding heterogeneity in the
market. As is typically done in the literature, we use the original log purchase price Pis at
time s as a reference value, and hence, Lossist is defined as the difference between the log
prior transaction price and the log of the currently expected value11:

Lossist = Pis − Vit = δs − δt + eis (3.20)

Substituting Equation (3.20) into Equation (3.19) yields our ideal econometric specifica-
tion:

Lit = αVit + f(δs − δt + eis) + φcit + γσt + εit (3.21)
11In Genesove and Mayer [2001], the authors censor the potential gainer’s loss exposure at zero and

only examine the behavior of the potential losers. However, the theoretical justification for this censoring
treatment is unclear. As our model covers a full range of potential losses (loss > 0) and gains (loss < 0),
here, we choose to conduct our empirical test without censoring. Hence, a negative value of Lossist indicates
a potential gain to house seller i.
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Our theory in section 1 predicts that the coefficient associated with the holding cost, φ,
should be negative. One difficulty in testing the waiting cost effect is that one is unable to
observe an individual seller’s moving pressure. Nevertheless, holding other factors constant, a
smaller waiting cost should imply less stress with regard to moving and longer duration in the
current home. Fortunately, for each repeat-sale seller, we have information on the length of
time between her initial purchase and her next move, so we can measure tenure in the current
house before a successful sale is realized. Ideally, if we were able to observe the demographic
information of home sellers, we could use it to estimate the moving pressure conditional
on this demographic information. However, such information is unavailable in our data.
Because we have detailed information on housing characteristics, we use it as a proxy for
household characteristics and can derive the systematic relations between housing attributes
and a household’s expected duration time. Accordingly, we conduct a Cox proportional
hazard model to estimate a seller’s hazard rate of moving, conditional on the given housing
characteristics that are used in our hedonic regression. We then use the predicted hazard
rate as a proxy for the underlying holding cost of each seller. Since a higher hazard rate
implies a greater likelihood of moving and a higher holding cost, we should expect a negative
coefficient when we regress the realized transaction price on this rate. The results from the
first-stage hedonic and Cox proportional hazard regressions are reported in the Appendix I.

With regard to the perceived time t bidding heterogeneity, σt, we construct a measure
using a GARCH model. In particular, from our stage-one hedonic model, we first generate
a quarterly return index for the overall Hampton Roads housing market with 1993Q1 as
the base quarter. We then estimate a simple GARCH (1,1) model on the return series
and use the implied volatility as the proxy for σ. The intuition is that when the implied
market return volatility is higher, there is a greater chance of observing extreme values, an
indication of greater bidding heterogeneity. To ensure that our measure of perceived bidding
heterogeneity is forward-looking, we use the lag of volatility throughout our analysis. Our
theory predicts a positive impact of bidding heterogeneity on the asking price; thus, we
anticipate the coefficient associated with our implied volatility measure to be positive.

In the second-stage regression, as shown in Equation (3.21), in order to remove outliers,
we drop 1.25 percent of the loss/gain observations at both tails. Furthermore, we omit the
observations that have more than one sale within a year to rule out potential home flippers.
This screening leaves 27,564 observations for use in stage 2 of the analysis.
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3.3.3 Estimation Results

3.3.3.1 OLS Analysis

We first perform a simple two-stage analysis using Ordinary Least Squares (OLS). Our
empirical second-stage regression Equation is Lit = αVit+f(Lossist)+φcit+γσt+ψControlit+

eit. The difference between the empirical second stage and the ideal specification in Equation
(3.21) is that we add additional control variables (via the vector Controlit) to account for
empirical irregularities caused by unobserved housing quality, general market price level
and neighborhood effects. Table 3.2 presents our stage 2 result on the relation between
the asking price and a seller’s potential loss and other control variables. Here, we use a
polynomial functional form F (Lossit) =

∑n
j=1 γjLoss

j
ist, where n is 1, 2 and up to 7 in the

regression.

Table 3.2: Asking Price and Loss Exposure
OLS Regressions, Dependent Variable: Log of Asking Price

Explanatory Variables Model 1 Model 2 Model 3 Model 4
Expected Log Selling Price 0.8058∗∗∗ 0.8057∗∗∗ 0.8071∗∗∗ 0.8269∗∗∗

(0.0074) (0.0074) (0.0073) (0.0072)
Moving Hazard Rate -0.0159∗∗∗ -0.0158∗∗∗ -0.0158∗∗∗ -0.0142∗∗∗

(0.0007) (0.0007) (0.0007) (0.0007)
Market Volatility (Lag) 0.1842∗∗∗ 0.1864∗∗∗ 0.1653∗∗∗

(0.0199) (0.0199) (0.0206)
Market Index When Listing 0.0017∗∗∗ 0.0017∗∗∗ 0.0016∗∗∗

(0.00005) (0.00005) (0.00005)
Last Residual 0.2582∗∗∗ 0.2580∗∗∗ 0.2558∗∗∗ 0.2615∗∗∗

(0.0080) (0.0080) (0.0079) (0.0079)
Loss 0.1284∗∗∗ 0.1217∗∗∗ 0.2510∗∗∗ 0.2644∗∗∗

(0.0047) (0.0082) (0.0209) (0.0213)
Loss2 -0.0119 -0.0664 -0.0398

(0.0102) (0.0649) (0.0665)
Loss3 -1.3707∗∗∗ -1.4470***

(0.2674) (0.2603)
Loss4 -0.7657∗ -0.9155**

(0.3978) (0.3958)
Loss5 2.8054∗∗∗ 2.8326***

(0.6597) (0.6393)
Loss6 3.5009∗∗∗ 3.6421***

(1.1479) (1.1186)
Loss7 1.1374∗∗ 1.1921**

(0.5077) (0.4972)
Constant 1.9568∗∗∗ 1.9580∗∗∗ 1.9580∗∗∗ 1.8202***

(0.1034) (0.1028) (0.1028) (0.1035)
Neighborhood Fixed Effect Yes Yes Yes Yes
Quarterly Fixed Effect No No No Yes
Observations 27,564 27,564 27,564 27,564
R2 0.8405 0.8405 0.8411 0.8451
1) *Significant at the 0.10 level. **Significant at the 0.05 level. ***Significant at the 0.01 level.
2) Robust standard errors are in parentheses.
3) Model 1 and 2 repeat the empirical tests from Genesove and Mayer (2001) and find the similar results.
4) Model 3 and 4 run the septic OLS regression. In Model 3, we include the market volatility and index.
In Model 4, we include the quarterly fixed effect. As it is highly correlated with the market volatility
and index, we exclude them from the model. We plot the septic loss function in Figure 3.8.
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In Model 1, we include only the linear loss exposure term. As our loss exposure variable
is not censored at zero, a negative value indicates a potential gain. The coefficient is 0.1284
and is significant at the 1 percent level, which implies that a 1 percent increase in potential
loss (or 1 percent decrease in potential gain) will increase the asking price by 0.1284 percent.
We then add the quadratic loss term in model 2. The quadratic loss2 term is negative but
not significant, and the joint test on loss and loss2 is significant at the 1 percent level.
Finally, in Models 3 and 4, we estimate a septic polynomial model. The joint test on all
polynomial terms is also significant at the 1 percent level. A legitimate concern when using
the moving hazard rate as a proxy is that it may be correlated with some unobservables that
are also correlated with transaction prices. To check for this potential endogeneity, based on
model 4, we run the Durbin-Wu-Hausman test for our waiting cost proxy. The test yields
t = −0.57, p = 0.567, suggesting that endogeneity is unlikely to be a problem.

To delve deeper into the joint curvature of selling price on reference values, in Figure 3.8,
we plot the predicted selling price based on the septic polynomial fit in Model 4, conditional
on different loss/gain exposures.

Figure 3.8: Joint Curvature of Asking Price from the Septic Polynomial Fit in Model 4.
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Notes: The functional form here is f(loss) = 0.2644 loss− 0.0398 loss2 − 1.4470 loss3 −
0.9155 loss4 + 2.8326 loss5 + 3.6421 loss6 + 1.1922 loss7 + 1.8202.

Both Proposition 4 and the simulation show that, under prospect theory, the optimal ask-
ing price tends to increase as the potential gain declines, and as the potential loss increases.
However, when the potential loss increases further, a reverse disposition effect arises, and
the optimal asking price decreases. Eventually, when the potential loss increases further and
becomes large enough, the optimal asking price begins to increase again. The septic polyno-
mial fit, as seen in Model 4, matches this pattern of a two-way disposition effect well, which
supports our model prediction under marginally diminishing sensitivity. Further, it is clear
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from Models 1 and 2 in Table 3.2 and Figure 3.8 that empirical specifications that consider
only linear and quadratic terms for loss/gain may overlook the underlying non-monotonicity.
Had we only considered up to Model 2, our results would be consistent with Genesove and
Mayer [2001] and support a (one-way) disposition effect with marginally declining mark-up.

As discussed in the simulation section 3.2.2.2, the loss aversion effect (i.e., when λ > 1)
implies an increasing slope in the seller’s pricing curve around the break-even point. It is
clear from Figure 3.8 that the slope of the pricing curve is steeper in this range, as predicted.
With regard to the holding cost, the coefficient on the moving hazard rate is negative and
significant in all models. Consistent with theory, this implies that people with a higher
probability of moving tend to sell their homes at lower prices. Furthermore, the positive and
significant coefficient on the implied return volatility echoes our model prediction that when
the market is subject to greater bidding heterogeneity, home sellers tend to mark-up their
asking prices.

Our control variables are also consistent with the extant literature. For example, the
residual from the last sale, which controls for potential unobservable house quality, shows
as expected a significant positive effect on the current asking price. A positive last residual
means that the seller was willing to pay a higher than expected market price when she
purchased the unit. Hence, it is very likely that the house may have an unobservable quality
premium, which may make the current asking price high. Finally, a positive and significant
coefficient on Market Index When Listing indicates that when the anticipated market price
is high, in general, sellers tend to ask for a correspondingly higher price.

Our simple OLS analysis in this section is subject to some econometric challenges. First,
as our measures of potential loss/gain, holding cost (via the moving hazard rate), and bid-
ding heterogeneity (via implied market return volatility) are all based on estimates from
auxiliary regressions, we need to consider the potential estimation error in order to make
valid statistical inferences. Second, using a high-order polynomial to fit a non-linear curve,
such as in Model 4, may be inaccurate and overfitting, and any bias in the mean and stan-
dard error of loss may be amplified in the high-order term, leading to high oscillations in
the regression. Furthermore, using a high-order polynomial model may only fit our specific
sample rather than generalize to the overall population (Good and Hardin [2012]).

3.3.3.2 Two-stage Bootstrap Analysis

To address both the “generated regressor” problem and the concern with using a sim-
ple polynomial to fit a non-linear pricing curve, in this section, we conduct our analysis in
a two-stage bootstrap setting. In stage 1, we run hedonic, Cox proportional hazard and
GARCH (1,1) regressions in order to obtain all needed control variables. In stage 2 (i.e., for
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Lit = αVit + f(Lossist) +φcit + γσt +ψControlit + eit), we adopt spline and semi-parametric
regression techniques, two methods widely used in non-linear model fitting. The standard
errors for linear parameters are constructed through a two-stage housing unit stratified boot-
strap procedure with 1,000 replications.

First, we estimate spline regressions (see Silverman [1985]), which allow us to estimate
the range-specific behavior of a seller’s pricing strategy. We report the results in Table 3.3.
Here, we examine a seller’s initial listing price in Models 5 and 6, and the realized transaction
price in Models 7 and 8, where Models 6 and 8 include quarterly fixed effects. The findings
are largely consistent with the predicted two-way disposition effect. Across all models, in
the gain range (see terms up to Loss4), we observe positive and significant coefficients for
most loss terms, which supports the disposition effect. The pattern continues with moderate
loss, although the positive coefficients on Loss5 are significant only in Models 5 and 6 on
asking price. Interestingly, from Models 5 and 6, when potential loss further increases, Loss8
(0.355 < loss < 0.397) exhibits a significant downward slope, with coefficients of −1.5613

and −1.5405, respectively. The implication is that within this range, as the potential loss
increases by 1%, the log asking price decreases by 1.5613% and 1.5405%, holding other
factors constant. A similar pattern holds in Models 7 and 8 for the realized transaction
price, although the coefficients on Loss8 (−0.2694 and −0.1966) imply a weaker reverse
disposition effect when measuring the realized price. Notably, the relevant range of the
reverse disposition effect now becomes broader (0.239 < loss < 0.507).

There is a vast literature purporting the advantages of using the semi-parametric analysis
to model non-linear specifications (Yatchew [2003]; Simar and Wilson [2007]; Verardi and
Debarsy [2012]). Here, we use a partially linear semi-parametric model first proposed by
Robinson [1988] in our stage 2 regression. In particular, we maintain the linear specification
for all parameters except f(Lossist), which is left non-parametrized. Table 3.4 reports the
coefficients for the linear component of the stage 2 regression with 1,000 replications.

The parametric results in Table 3.4 are consistent with the previous findings from the OLS
and spline regressions, with the coefficients being significant and carrying the expected signs.
The curvature of the semi-parametric fit again exhibits non-linearity and an up/down/up
trending pricing curve along the seller’s potential loss exposure, consistent with model pre-
dictions. To test whether our previous septic polynomial fits reasonable well, we plot the
non-parametrically fitted pricing curve in Figure 3.9 and compute Härdle and Mammen’s
[1993] specification test to assess whether the nonparametric fit can be approximated by
a 7-order polynomial. The underlying p-value is 0.80, suggesting no significant difference
between the two curve fittings.
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Table 3.3: Asking Price, Transaction Price and Loss Exposure
Spline Regressions

Model 5 Model 6 Model 7 Model 8
Lask Lask Lsell Lsell

Expected Selling Price 0.8215*** 0.8211*** 0.8357*** 0.8442***
(0.0102) (0.0106) (0.0115) (0.0116)

Last Residual 0.2627*** 0.2664*** 0.2821*** 0.2612***
(0.0080) (0.0079) (0.0094) (0.0091)

Moving Hazard Rate -0.0146*** -0.0146*** -0.0157*** -0.0152***
(0.0024) (0.0023) (0.0026) (0.0024)

Market Volatility (Lag) 0.1133* 0.0540
(0.0640) (0.0576)

Market Index 0.0017*** 0.0017***
(0.0001) (0.0001)

Loss1 0.3982*** 0.3973*** 0.3727*** 0.4011***
(0.0542) (0.0548) (0.0668) (0.0694)

Loss2 0.1487*** 0.1496*** 0.1520*** 0.1642***
(0.0162) (0.0163) (0.0175) (0.0177)

Loss3 0.0313 0.0219 0.0614*** 0.0718***
(0.0196) (0.0196) (0.0220) (0.0215)

Loss4 0.2720*** 0.2619*** 0.2644*** 0.2936***
(0.0322) (0.0330) (0.0403) (0.0409)

Loss5 0.1646*** 0.1692*** -0.1247 -0.0501
(0.0577) (0.0587) (0.1342) (0.1338)

Loss6 -0.0204 -0.0089 -0.0634 0.0500
(0.2834) (0.2785) (0.1835) (0.1807)

Loss7 0.0872 0.0881 1.0993 1.0983
(0.1662) (0.1656) (1.5492) (1.5416)

Loss8 -1.5613*** -1.5405*** -0.2694** -0.1966*
(0.5569) (0.5726) (0.1098) (0.1108)

Loss9 0.6761*** 0.6559*** 0.0541 0.0442
(0.0980) (0.1024) (0.1338) (0.1417)

Constant 2.1752*** 2.2829*** 1.9688*** 1.9089***
(0.2722) (0.3542) (0.3638) (0.4613)

Neighborhood Fixed Effect Yes Yes Yes Yes
Quarterly Fixed Effect No Yes No Yes
Observations 27,564 27,564 19,737 19,737
Bootstrap Replications 1,000 1,000 1,000 1,000
1) *Significant at the 0.10 level. **Significant at the 0.05 level. ***Significant at the 0.01 level.
2) Reported standard errors are constructed by a two-stage housing unit stratified bootstrap.
3) The 8 knots for Models 5 and 6 are: -0.9, -0.5, -0.2, 0, 0.17, 0.22, 0.355, 0.397. For example,
Loss1 corresponds to the range of (.,-0,9), Loss2 is to the range (-0.9,-0.5), and so forth.
4) The 8 knots for Models 7 and 8 are -0.9, -0.5, -0.2, 0, 0.1, 0.224, 0.239, and 0.507.

Table 3.4: Asking Price, Transaction Price and Loss Exposure:
Semi-parametric Model

Variables Log Asking Price Log selling Price
Expected Selling Price 0.8279*** 0.8443***

(0.0106) (0.0115)
Moving Hazard Rate -0.0145*** -0.0153***

(0.0024) (0.0025)
Last Residual 0.2671*** 0.2600***

(0.0079) (0.0092)
Neighborhood Fixed Effect Yes Yes
Quarterly Fixed Effect Yes Yes
Observations 27,564 19,737
1) * Significant at the 0.10 level. ** Significant at the 0.05 level. *** Significant at the 0.01 level.
2) The reported standard errors are constructed through a two-stage housing unit stratified
bootstrap procedure with 1000 replications.
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Figure 3.9: The Joint Curvature of Asking Price from the Semi-Parametric Fit
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Our findings, based on the realized transaction price, are qualitatively similar to those
associated with the asking price. Figure 3.10 plots the semi-parametrically fitted pricing
curve on the transaction price.

The last prediction from our theory relates to the price dispersion effect. If we interpret
the difference between the realized transaction price and expect market price as noise, our
theory predicts that the higher the expected market price, the smaller the noise should be
since there would be fewer and fewer losers in the market. In Appendix G, we present
evidence supporting this prediction.

3.4 Calibration

As discussed earlier, it is empirically challenging to test the loss aversion effect directly
using observational data, as there is no way to measure the benchmark pricing curve from
counterfactual loss neutral sellers. As an alternative, in this section, we calibrate our model
on α, λ and other parameters to optimize the matching between the theoretical pricing curve
and the empirically estimated curve using our Hampton Roads data.

While our theoretical model assumes that all houses are identical, this is not the case
in reality. As a result, before we conduct the calibration exercise, we first standardize
our theoretical and empirical measures by taking the log difference in order to construct
percentage measures. We use (ln v − lnP ) to measure the potential loss/gain exposure
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Figure 3.10: The Joint Curvature of the Realized Transaction Price from the Semi-
Parametric Fit
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and (ln r − lnP ), which we call fishing, to measure the spread of the asking price. In
the calibration, we re-generate a theoretical pricing curve similar to Figure 3.3 using these
measures. Moreover, we estimate an empirical septic polynomial model similar to Model 4 in
Table 3.2. We then conduct our calibration by minimizing the Mean Squared Error (MSE)
between our theoretical and empirical pricing curves 12. To test the significance of α and λ,
we follow the bootstrap calibration method suggested by Diebold, Ohanian, and Berkowitz
[1998]. We maintain β = 0.05 and perform 1,000 bootstrap replications. In each replication
i, our calibration works as follows:

1. Estimate Model 4 using the bootstrap sample generated in the current replication13.
Then, use the coefficients from the 7-order polynomials to generate a pricing curve of
fishing on loss/gain exposure.

2. Simulate 10,000 sellers with various reference values. Instead of assuming a uniform
distribution when drawing reference values as we did in section 1.2.2, here we match the
density of sellers’ loss/gain positions with the distribution observed in the underlying
bootstrap sample.

12See Bakshi et al. [1997] and Hilpisch [2015] for details of the MSE minimization procedures in this
context.

13The only exception is that we now use fishing as the dependent variable and, therefore, no longer have
Expected Log Selling Price as a regressor.
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3. Select the optimal parameter vector (α̂i, λ̂i and ĉi) that minimizes the MSE14 between
the theoretical and empirical pricing curves, subject to the condition that the ranges of
fishing and loss/gain from the theoretical curve match their empirical counterparts. As
the empirical pricing curve is come up to an unknown intercept shift, in selecting the
parameter vector, we posit the empirical curve by choosing an intercept such that, given
the chosen parameter vector, it crosses the theoretical pricing curve at the break-even
point (i.e., Loss = 0).

4. Start the next replication by repeating the process.

The calibrated values of α and λ are obtained by the same procedure applied to the full
data sample. We then calculate the standard errors and test the hypotheses of H0 : α ≥ 1

and H0 : λ ≤ 1, using the distribution of α̂i and λ̂i, i = 1, ..., 1000. The results are reported
in Table 3.5.

Table 3.5: Bootstrap Calibration Result

Parameter α λ
0.8880*** 1.9667***
(0.0462) (0.2504)

Replications 1,000 1,000
1) Null hypotheses are based on H0 : α ≥ 1 and H0 : λ ≤ 1.
2) ** Significant at the 0.05 level. *** Significant at the 0.01 level.
3) Standard errors are constructed from the bootstrap procedure.

Our calibrated parameter values, α = 0.8880 and λ = 1.9667, are both significantly
different from 0. Meanwhile, α is significantly smaller than 1 at the 1% level, and λ is signif-
icantly larger than 1 at a 1% level. The coefficient on the marginal diminishing sensitivity
is close to the value of 0.88 estimated by Tversky and Kahneman [1992], but it is larger
than the value reported by some later experimental studies (Fennema and van Assen [1999],
Abdellaoui et al. [2007]). The loss aversion coefficient of 1.9667 suggests that a one-unit loss
looms approximately 1.9667 times larger than an equal-sized gain.

While we use β = 0.05 in the above calibration, our findings are qualitatively similar
under a wide range of discount rates. To show this, in Figure 3.11, we repeat the above
calibration exercise by maintaining all other parameters the same but letting β vary from
0.01 to 0.1. We also plot the 95% confidence interval along with the point estimate of λ.
With this wide range of β, the calibrated value of λ is consistently and significantly larger
than 1, supporting loss aversion effect. Further, a larger discount rate tends to reduce the
magnitude of λ, which should not be surprising. When the discount rate is high, postponing

14We calculate the inverse probability-weighted MSE (based on 10,000 simulated sellers) in order to place
equal weights on segments within the observable domain of the pricing curve.
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a loss to the future becomes more appealing per se, even without loss aversion. Hence, an
agent with a lower extent of loss aversion still has incentives to mark-up the price.

Figure 3.11: Bootstrap Calibration λ under Varying Discount Rates
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We have thus far documented a strong connection between our prospect theory-driven
model predictions and empirical findings. However, a closer comparison of the overall cur-
vature between the theoretical pricing curve (i.e., Figure 3.3) and the empirical one (i.e.,
Figure 3.9) still reveals some notable differences, especially when “Loss” and “Gain” are
large. For example, home sellers in large loss positions seem to mark-up their asking price at
a rate faster than as predicted by a static prospect theory-based model. As the incremental
(marginal) effect may be affected by α, one potential implication is that α might not be
constant across all loss/gain positions. To assess whether a changing α can potentially help
explain the empirical discrepancy, we perform another calibration by utilizing power-law
transformation on the prospect value function. This allows α to differ depending on the
different regions of the loss/gain positions. We cover the details of this extended calibration
in Appendix H. To summarize, the result suggests that agents tend to be more risk averse
when potential gain is larger, and they are slightly more risk seeking with increasing losses.
The finding that an agent’s risk preference seems to vary along with the extent of loss/gain
echoes several experimental and empirical studies in the literature.

The closest lab study that supports our findings on varying α is by Bouchouicha and
Vieider [2017]. By experimenting with different outcomes on financial rewards, the authors
notice that the respondents are more risk averse when gain size is larger. Our empirical
results are qualitatively consistent with Bouchouicha and Vieider [2017]. For example, in
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the gain range, we reject the null hypothesis that α1 ≥ α2 in the one-way test at the 5%
level. Meanwhile, Bouchouicha and Vieider [2017] do not find any significant changes in
risk-seeking preference with the magnitude of losses. Within the loss range, we also fail to
reject the null hypothesis that α3 = α4 at the 5% level. Another important study is Wang,
Yan, and Yu [2017]. By investigating risk-return trade-off in the stock market, the authors
find that the risk aversion effect seems to be more significant among investors experiencing
larger capital gains while the risk seeking effect seems to be more significant among those
who experienced large capital losses.

3.5 Conclusion

Our study aims to contribute to the ongoing debate in the literature on the connection
between prospect theory and the observed trading behavior in asset markets. We build
a search model to examine a home seller’s pricing decision under a generally characterized
prospect value function. This setup allows us to examine the precise correspondence between
each component of prospect theory and its unique empirical implications. Our model shows
that reference dependence alone generates a disposition effect when sellers are risk neutral.
We show that the seller’s risk seeking attitude will distort the one-way disposition effect by
introducing a local reverse disposition effect, a range in which the seller’s asking price tends
to decrease with the reference value. According to decreasing sensitivity from the prospect
theory, it implies that the reverse disposition effect must occur in the loss range. Further,
loss aversion tends to magnify the disposition effect but mitigates the magnitude and the
range of the reverse disposition effect. To the best of our knowledge, this study is the first
that shows the possibility of a reference-dependent two-way disposition effect.

While our model predictions are consistent with some well documented empirical findings,
we argue that there is a conceptual mismatch in many empirical studies on prospect theory.
For example, a stream of literature following Genesove and Mayer [2001] associates the
disposition effect with loss aversion and the marginally diminishing disposition effect with
decreasing sensitivity. We show that these findings need not have any such direct relations.
Moreover, the co-existence of disposition and reverse disposition effect suggests that empirical
studies dominated by focusing on a one-way disposition effect, as often seen in financial and
housing studies, can be overly simplistic and incomplete.

We test our model predictions by using a detailed set of multiple listing service data
with both listing and transaction information on house sellers in Virginia. Our empirical
results are broadly consistent with the model predictions. Using spline and semi-parametric
regression techniques, we find significant evidence of a local reverse disposition effect, in



67

addition to the well documented overall disposition effect. We further calibrate the pricing
curve generated from our model with the empirical data and find significant evidence on the
loss aversion effect.

Concerning the coefficient that governs an agent’s risk preference, we use power-law
transformation to estimate marginal sensitivity and find it seems to vary with the extent of
an agent’s loss/gain. However, we note that, unlike many insightful studies on changing risk
preferences in other contexts, such as the habit model by Campbell and Cochrane [1999], we
offer no proposal on what forces may generate such a reference-dependent α. Therefore, we
welcome follow-up research on the underlying mechanism that leads to heterogeneous risk
preferences in the domain of losses and gains under prospect theory.
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Appendix A

Proof of Proposition 0
Proof. The proof of Equation (2.6) to (2.11) can be found in the appendix of Williams [1998]
paper, page 272-273. Here, we briefly repeat this.

By Taylor expansion on e−ι∆t, and using integration by parts on
∫ 1

rijn
pdG(p), Equation

(2.1) can be re-written as:

V (n) = max︸︷︷︸
rijn,xijn,yin

e−ι∆t
{ n∑

j=1

F (xijn, x
∗)t

∫ 1

rijn

b∗(1−G(p))dp∆t

+ αn∗(yin/y
∗)∆V ∗n∆t− θH(win)∆t

+
n∑
j=1

F (xijn, x
∗)[1−G(rijn)][b∗rijn −∆V ∗n−1]∆t

}
− ιV (n)∆t+ V (n) (A.1)

where ∆V ∗n = V (n+ 1)− V (n).
Now, by dividing Equation (A.1) by ∆t and taking the limit as ∆t approaches zero, we

get

ιV (n) = max︸︷︷︸
rijn,xijn,yin

{ n∑
j=1

F (xijn, x
∗)

∫ 1

rijn

b∗(1−G(p))dp

+ αn∗(yin/y
∗)∆V ∗n − θH(win)

+
n∑
j=1

F (xijn, x
∗)[1−G(rijn)][b∗rijn −∆V ∗n−1]

}
(A.2)

We set M(r) =
∫ 1

r
1−G(p)dp. Now take the first-order conditions for xijn, rijn, and yin:

∆V ∗n−1 = b∗r∗ijn (A.3)

b∗F ′(x∗ijn, x
∗)M(r∗ijn) = θH ′(w∗in) (A.4)
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θH ′(w∗in) =
αn∗∆V ∗n

y∗
(A.5)

Williams [1998] appendix shows that for this class of problem, a set of constant, unique
solution exists. As a result, we know x∗ijn = x∗, r∗ijn = r∗,and y∗in = y∗. Equation (A.3)
implies b∗r∗ = ∆V ∗n−1 = ∆V ∗. Thus, it means V (n) = γ + nb∗r∗. Now, putting Equation
(A.3), (A.4), and (A.6) back to Equation (A.2), we find:

ιV (n) = ιγ + ιnb∗r∗ = nb∗F (x∗, x∗)M(r∗) + αn∗
y∗

y∗
b∗r∗ − θH ′(w∗) (A.6)

As y∗ = w∗ − nx∗ and Equation (A.6) holds for all the possible n, with the steady state
assumption, we could prove Proposition 1 results, from S1 to S5.
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Appendix B

Proof of Proposition 1
Proof. From Equation (2.7) to (2.11) (S1 to S5), we get a set of equations of r∗, x∗, w∗, α
and γ in the following form:

S1(r∗, α : ι, η) = 0

S2(r∗, x∗, w∗ : b∗, ι, η, θ) = 0

S3(r∗, x∗, α : b∗) = 0

S4(w∗, γ : ι, θ) = 0

S5(x∗, α, w∗ : ι, η, n̄) = 0 (B.1)

We have two methods to prove that the solutions of r∗, x∗, and w∗ are related to the b∗.
First, these five equations are coming from the three first order conditions from Equation
(2.1), steady state equilibrium Equation α = F (x∗)(1−G) and V (0) = γ. In order to solve
r∗, x∗, and w∗ directly, we may replace α = F (x∗)(1 − G) into Equation (2.7) and (2.11).
Thus, S1 to S5 are now simplified to:

SS1 :
r∗

M(r∗)
− F (x∗, x∗)

ι
(1− η) = 0 (B.2)

SS2 :
1− η
ηι

x∗θ∗H ′(w∗)− b∗r∗ = 0 (B.3)

SS3 :
ηι

ηι+ (1− η)F (x∗, x∗)[1−G(r∗)]
w∗ − n∗x∗ = 0 (B.4)

From the above equations, we can see SS1, SS2 and SS3 are three equations with three
unknown variables r∗, x∗, and w∗. We can directly solve this by allowing other parameters
fixed. Also, we find that, as SS2 has a b∗ inside, thus, w∗ should be related to the b∗. There-
fore, all the r∗, x∗, and w∗ should be related to b∗ because they all appear in SS3. After we
get the solution of r∗, x∗, and w∗, take them back to S3 and S4, we can get the α and γ. So
far, all the five variables r∗, x∗, w∗, α, and γ are all related to the b∗.

Second, we can go directly to find the relations between r∗ and b∗ from S1 to S5. As we
are not able to directly get solutions like r∗ = r∗(b∗, ι, η, θ, n̄), we have to find another way
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to get the partial derivatives. First, the Jacobian Determinant |J |1 is:

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣

S1r∗ 0 S1α 0 0

S2r∗ S2x∗ 0 S2w∗ 0

S3r∗ S3x∗ S3α 0 0

0 0 0 S4w∗ S4γ

0 S5x∗ S5α S5w∗ 0

∣∣∣∣∣∣∣∣∣∣∣∣
= −S4γS2w∗ ×

∣∣∣∣∣∣∣
S1r∗ 0 S1α

S3r∗ S3x∗ S3α

0 S5x∗ S5α

∣∣∣∣∣∣∣− S4γS5w∗ ×

∣∣∣∣∣∣∣
S1r∗ 0 S1α

S2r∗ S2x∗ 0

S3r∗ S3x∗ S3α

∣∣∣∣∣∣∣ (B.5)

Now, we start from the proof of S1r∗ > 0. Use the same method with Williams [1998] page
274. We set M(r) =

∫ 1

r
1− G(p)dp and L(r∗) ≡ log [r∗(1−G)]

M
. The problem has transformed

to prove the partial derivative of L(r∗) against r∗. Therefore, L′(r∗) = 1
r∗

+ 1−G
M
− g

1−G =

[1+ α
ι
(1−η)] 1

r∗
− g

1−G . Following the same step in Williams’s [1998] paper page 274, with the
nondecreasing hazard function g

1−G , L
′(r∗) is nonincreasing, so L′(1) must be its minimum

value. By using L’Hospital’s rule, limr→1 L
′(r∗) = 1 + limr→1

1−G
M
− limr→1

g
1−G = 1 +

limr→1
g

1−G − limr→1
g

1−G = 1 > 0. we prove the following:

S1r∗ =
∂ r(1−G)

M

∂r
=

(1−G− r∗g)M + r[1−G]2

M2
> 0 (B.6)

This also proves that the solution of r∗ is unique under the constrain of 0 < r∗ < 1. Thus,
other solutions like x∗, w∗ and y∗ are also unique under the constrain (0, 1). Other terms in
Equation (B.5) are straightforward to derive. Taking them all into Equation (B.5), we could
get:

|J | =− S4γS2w∗(S1r∗S3x∗S5α + S1αS3r∗S5x∗ − S1r∗S3αS5x∗)

−S4γS5w∗(S1r∗S2x∗S3α + S1αS2r∗S3x∗ − S1αS2x∗S3r∗) > 0 (B.7)

1Here, S1r∗ means ∂S1
∂r∗ .
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Now, based on Crammer’s rule:

∂r∗

∂b∗
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 S1α 0 0

−S2b∗ S2x∗ 0 S2w∗ 0

0 S3x∗ S3α 0 0

0 0 0 S4w∗ S4γ

0 S5x∗ S5α S5w∗ 0

∣∣∣∣∣∣∣∣∣∣∣∣
|J |

=
|Jrb|
|J |

> 0 (B.8)

Using the same method, we could prove

∂x∗

∂b∗
=

∣∣∣∣∣∣∣∣∣∣∣∣

S1r∗ 0 S1α 0 0

S2r∗ −S2b∗ 0 S2w∗ 0

S3r∗ 0 S3α 0 0

0 0 0 S4w∗ S4γ

0 0 S5α S5w∗ 0

∣∣∣∣∣∣∣∣∣∣∣∣
|J |

=
|Jxb|
|J |

> 0 (B.9)

∂w∗

∂b∗
=

∣∣∣∣∣∣∣∣∣∣∣∣

S1r∗ 0 S1α 0 0

S2r∗ S2x∗ 0 −S2b∗ 0

S3r∗ S3x∗ S3α 0 0

0 0 0 0 S4γ

0 S5x∗ S5α 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
|J |

=
|Jwb|
|J |

> 0 (B.10)

Using the same method, we could prove ∂α
∂b∗

> 0. For the relation between y∗ and b∗, we first
notice y∗ = w∗−nx∗. Substituting w∗ from Equation (2.11), we get y∗ = (n−n)x∗+ 1−η

ηι
nαx∗.

Because we could prove ∂(αx∗)
∂b∗

> 0, when n ≤ n,

∂y∗

∂b∗
> 0. (B.11)

Meanwhile, we notice that as n increases to larger than n, the partial derivative ∂y∗

∂b∗
will

be smaller or even negative. This indicates there exists some integer N ≥ n that satisfies
∂y∗

∂b∗
> 0 when n ≤ N and ∂y∗

∂b∗
≤ 0 when n > N .

Finally, we prove the relation between likelihood of sale F (x∗, x∗)[1−G(r∗)] and commission
rate b∗. We firstly note that under our steady state model, x∗ = x∗. Also, α = F (x∗, x∗)[1−
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G(r∗)] because finding new assets has the same rate with selling current assets. Thus, we
prove the relation between the likelihood of a sale and the commission rate by:

∂{F (x∗, x∗)[1−G(r∗)]}
∂b∗

=
∂α

∂b∗
=

∣∣∣∣∣∣∣∣∣∣∣∣

S1r∗ 0 0 0 0

S2r∗ S2x∗ −S2b∗ S2w∗ 0

S3r∗ S3x∗ 0 0 0

0 0 0 S4w∗ S4γ

0 S5x∗ 0 S5w∗ 0

∣∣∣∣∣∣∣∣∣∣∣∣
|J |

(B.12)

=
S4γS5w∗S1r∗S2b∗S3r∗

|J |
> 0
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Appendix C

Proof of Proposition 2
The term 1−[ρG(rijn)]n

1−ρG(rijn)
looks messy because we need to take derivative against r. Here, we

introduce a notation N(r, ρ) by:

N(r, ρ)×G′(r) = ∂
1− [ρG(rijn)]n

1− ρG(rijn)
/∂r (C.1)

and D(r∗, ρ):

D(r∗, ρ) =
1− (ρG)n

1− (ρG)

1−(ρG)n

1−(ρG)

1−(ρG)n

1−(ρG)
−N(r∗, ρ)(1−G)

(C.2)

Also, we use the same notation of M(r) =
∫ 1

r
1 − G(p)dp as the Williams paper. The

equations after picking maximum outcome against r∗, x∗, and y∗ are:

∆V ∗n−1 = br∗ − bM(r∗)N(r∗, ρ)
1−(ρG)n

1−(ρG)
−N(r∗, ρ)(1−G)

(C.3)

θH ′(w∗) = b∗F ′(x∗, x∗)M(r∗)D(r∗, ρ) (C.4)

θH ′(w∗) = αn
∆Vn
y

(C.5)

The final outcome V (n) must have following expression with all possible n:

ιVn = b∗nF (x∗, x∗)M(r∗)D(r∗, ρ)− θH(w∗) + αn
y∗

y
∆Vn (C.6)

In addition, Equation (2.9), which indicates a steady state of E(∆n) = 0 now changes to:

α− F (x∗, x∗)[1−G(r∗)]
1− [ρG(r∗)]n

1− ρG[r∗]
= 0 (C.7)

We are unable to find the partial derivative relation between variables from the above
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equations, because we have five equations (C.3), (C.4), (C.5), (C.6) and (C.7) but six inde-
pendent variables here. However, under the limiting condition of [ρG(r)]n ∼ 0, the function
N(r, ρ) and D(r, ρ) will be simplified to:

N(r∗, ρ) =
ρ

[1− ρG(r∗)]2
(C.8)

D(r∗, ρ) =
1

1− ρ
(C.9)

Equations from (C.3) to (C.6) will change to:

∆V ∗ = br∗ − bM(r∗)ρ

1− ρ
(C.10)

θH ′(w∗) = b∗F ′(x∗, x∗)M(r∗)
1

1− ρ
(C.11)

θH ′(w∗) = αn
∆V ∗

y
(C.12)

The final outcome V (n) must have following expression with all possible n:

ιVn = b∗nF (x∗, x∗)M(r∗)
1

1− ρ
− θH(w∗) + αn

y∗

y
∆V (C.13)

Now, we can solve these equations with the limiting condition [ρG(r)]n ∼ 0 and compare
them with the original Williams’s model from Equation (2.7) to (2.11) :

V (n) = γ + nb∗
[
r∗ − M(r∗)ρ

1− ρ

]
(C.14)

S6 :
[r∗(1− ρ)−M(r∗)ρ][1−G(r∗)]

[1− ρG(r∗)]M(r∗)
− α

ι
(1− η) = 0 (C.15)

S7 :
1− η
ηι

x∗θ∗H ′(w∗)− b∗
[
r∗ − M(r∗)ρ

1− ρ

]
= 0 (C.16)
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S8 : α− F (x∗, x∗)
1−G(r∗)

1− ρG(r∗)
= 0 (C.17)

S9 : w∗θ∗H ′(w∗)− θ∗H(w∗)− γι = 0 (C.18)

S10 :
ηι

ηι+ (1− η)α
w∗ − n∗x∗ = 0 (C.19)

The results show that the agency problem holds because we have five equations but three
independent variables. Thus we cannot tell r∗ has no relation to b∗ because of absence b∗ in
Equation (C.15). Here we also take α and γ vary, and other factors like η, ι, θ and n̄∗ hold
constant. First, the derivation S6r∗ is similar to our previous model. We notice that (C.15)
could be transformed to:

α

ι
(1− η) =

1

1− ρG(r∗)

[
r∗[1−G(r∗)]

M(r∗)
(1− ρ)− ρ[1−G(r∗)]

]
(C.20)

We have already proved that the term r(1−G)
M

increases against r from (B.6). Now, as the
term −ρ(1−G) and 1

1−ρG are also increasing against r, the whole right-hand side is increasing
against r, thus we could prove S6r∗ > 0. After this, take it into the Jacobian determinant
of the Equation set S6 to S10, we will also find that the Jacobian determinant |J ′| > 0.
Finally, the relations between r∗, x∗, w∗, y∗ and b∗ are the same with our previous model:

∂r∗

∂b∗
> 0 (C.21)

∂x∗

∂b∗
> 0 (C.22)

∂w∗

∂b∗
> 0 (C.23)

For some integer N(ρ) ≥ n,
∂y∗

∂b∗

> 0 n ≤ N(ρ)

≤ 0 n > N(ρ)
(C.24)

with the prerequisite condition [ρG(r)]n ∼ 0.
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For ∂r∗

∂ρ
, we know that

∂r∗

∂ρ
=
|Jr∗ρ|
|J ′|

=

∣∣∣∣∣∣∣∣∣∣∣∣

−S6ρ 0 S6α 0 0

−S7ρ S7x∗ 0 S7w∗ 0

−S8ρ S8x∗ S8α 0 0

0 0 0 S9w∗ S9γ

0 S10x∗ S10α S10w∗ 0

∣∣∣∣∣∣∣∣∣∣∣∣
/|J ′|

= −S9γS7w∗

|J ′|
×

∣∣∣∣∣∣∣
−S6ρ 0 S6α

−S8ρ S8x∗ S8α

0 S10x∗ S10α

∣∣∣∣∣∣∣−
S9γS10w∗

|J ′|
×

∣∣∣∣∣∣∣
−S6ρ 0 S6α

−S7ρ S7x∗ 0

−S8ρ S8x∗ S8α

∣∣∣∣∣∣∣ (C.25)

From Equation (C.25), because ρ must be in the domain ρ ∈ [0, 1], and with the previous
result of increasing r(1−G)

M
against r∗, by carefully input each partial derivative coming from

(C.15) to (C.19), we could derive that both 3×3 determinants are positive and thus ∂r∗

∂ρ
> 0 .

The proof of Equation (2.26) is following: we firstly notice that:

∂{F (x∗,x∗)[1−G(r∗)]r∗

1−ρG(r∗)
}

∂ρ
=
∂(αr∗)

∂ρ
= α

∂r∗

∂ρ
+ r∗

∂α

∂ρ
(C.26)

= −S9γS7w∗

|J ′|
×

α
∣∣∣∣∣∣∣
−S6ρ 0 S6α

−S8ρ S8x∗ S8α

0 S10x∗ S10α

∣∣∣∣∣∣∣− r∗
∣∣∣∣∣∣∣
S6r∗ 0 −S6ρ

S8r∗ S8x∗ −S8ρ

0 S10x∗ −S10ρ

∣∣∣∣∣∣∣


− S9γS10w∗

|J ′|
×

α
∣∣∣∣∣∣∣
−S6ρ 0 S6α

−S7ρ S7x∗ 0

−S8ρ S8x∗ S8α

∣∣∣∣∣∣∣− r∗ ×
∣∣∣∣∣∣∣
S6r∗ 0 −S6ρ

S7r∗ S7x∗ −S7ρ

S8r∗ S8x∗ −S8ρ

∣∣∣∣∣∣∣


Based on equations (C.15) to (C.19), we could solve the x∗, w∗ and α by the function
forms of r∗ and ρ. Then, we input the function form of G(r) = 3r2 − 2r3, thus we can find
that the minimum value of Equation (C.26) is positive. This proves (2.26).

Our previous results of r∗, x∗, w∗, α and γ are free with current assets number n, which
means these variables (except y∗) are fixed along with different number of assets if n is
smaller than its maximum integer n∗ =

[
w∗

x∗

]
. These results are all based on our assumption

that (ρG)n ∼ 0. If the current asset number is small, this assumption will not hold. For
the case of (ρG)n � 0, by substituting Equation (C.3) into (C.5) and (C.6), we have four
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equations (C.4), (C.5), (C.6) and (C.7) but five independent variables. We notice that unlike
other variables, the entry cost γ should have no relation to the current number of assets n.
By this assumption, we replace the current γ here with the solutions of the γ under the
case [ρG(r∗)]n ∼ 0. Thus, we have four equations and four variables and we can solve them
together.
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Appendix D

Proof of Proposition 3
For the agency problem test case, we set two different assets (b∗ < 1 and b̂∗ = 1). The

Equation (2.5) is simplified as following:

V̂ (n, 1) = max︸︷︷︸
rijn,xijn,yin,r̂in,x̂in

e−ι∆t
{ n∑

j=1

F (xijn, x
∗)

∫ 1

rijn

b∗pdG(p)∆t

+
n∑
j=1

F (xijn, x
∗)[1−G(rijn)]V̂ (n− 1, 1)∆t

+ F (x̂in)

∫ 1

r̂in

pdG(p)∆t

+ F (x̂in)[1−G(r̂in)]V̂ (n, 0)∆t

+ αn∗(yin/y
∗)V̂ (n+ 1, 1)∆t− θH(

n∑
j=1

xijn + x̂in + yin)∆t

+
[
1−

n∑
j=1

F (xijn, x
∗)[1−G(rijn)]∆t− F (x̂in)[1−G(r̂in)]∆t− αn∗(yin/y∗)∆t

]
V̂ (n, 1)

}
+ o(∆t) (D.1)

Here, r̂∗ is for the asset with b∗ = 1. we realize that the marginal benefit for general asset
should be the same with the broker’s own asset, and they should all equal to the marginal
cost. Thus, from Equation (A.3), (A.4), and (A.6), we should have the similar results:

V̂ ∗n,1 − V̂ ∗n,0 = r̂∗ (D.2)

F ′(x̂∗, x∗)M(r̂∗) = b∗F ′(x∗, x∗)M(r∗) = θH ′(ŵ∗) (D.3)

ιV̂ (n, 1) = nb∗F (x∗, x∗)M(r∗) + F (x̂∗, x∗)M(r̂∗) + αn∗
y∗

y∗
b∗r∗ − θH ′(ŵ∗)

= ιγ + ιnb∗r∗ + ιr̂∗ (D.4)

Here, w∗ = nx∗ + x̂∗ + y∗. Similar with Equation (A.6), Equation (D.4) holds for all the
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possible number of assets. Thus, the formula of r∗ and r̂∗ here should also satisfy the S1 and
S3 in the Proposition 1. That is actually S11: F (x, x) = ιr

(1−η)M(r)
. As F (x, x) ≡ xη, we get

xη = ιr
(1−η)M(r)

and x̂η = ιr̂
(1−η)M(r̂)

. Put them into Equation (D.3), we could find:

b∗r1− 1
ηM(r)

1
η = r̂1− 1

ηM(r̂)
1
η (D.5)

As dM(r)
dr

= −(1 − G(r)) < 0, 0 < η < 1. For any 0 < b∗ < 1, as r1− 1
ηM(r)

1
η > r̂1− 1

ηM(r̂)
1
η ,

we could find that r̂∗ > r∗. Back to xη = ιr
(1−η)M(r)

, we prove that x̂∗ > x∗.

Also, for any 0 < b∗1 < b∗2 < 1, Equation (D.5) could transform to:

b∗1r
1− 1

η

1 M(r1)
1
η = b∗2r

1− 1
η

2 M(r2)
1
η (D.6)

As b∗1 < b∗2, we get r
1− 1

η

1 M(r1)
1
η > r

1− 1
η

2 M(r2)
1
η . Thus, we can also find r∗1 < r∗2. It indicates

that for any asset with lower commission rate, agent will ask for a lower price, ceteris paratus.
Meanwhile, we could get x∗1 < x∗2.
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Appendix E

Proof of Proposition 4
From Equation (3.3), the utility function of our model is:

U =
B(ti)[1−G(ri)]W (ri, vi)−H(ti)− ci

B(ti)[1−G(ri)] + β
(E.1)

We define the first order conditions against t and r in A1 and A2. Here, W (x) =

W (r∗ − vi):

A1 = W (x) +
H(t∗) + c

β
− F (r∗)W ′(x) = 0 (E.2)

A2 = B′(t∗) [βW (x) +H(t∗) + c]−H ′(t∗)
[
B(t∗) +

β

1−G

]
= 0 (E.3)

From (E.2) and (E.3), we can derive A1t = A2r = 0. As B′ > 0, W ′ > 0, B′′ < 0, and
H ′′ > 0, the two remaining terms of the Jacobian Matrix are:

A1r = W ′ − F ′W ′ − FW ′′ (E.4)

A2t = B′′(βW +H + c)−H ′′(B +
β

1−G
) < 0 (E.5)

Thus, by using the formula of implicit function derivative, we find:

∂r∗

∂v
=

1− F (r∗)W
′′(x)

W ′(x)

1− F (r∗)W
′′(x)

W ′(x)
− F ′(r∗)

(E.6)

∂t∗

∂v
=

βB′W ′(x)

B′′ [βW (x) +H + c]−H ′′(B + β
1−G)

< 0 (E.7)

From Equation (E.7), ∂t∗

∂v
< 0 always holds. However, the sign of ∂r∗

∂v
is still unknown.

Moreover, in order to maximize the utility, the second order conditions must be:

Urr = − Bβg

[B(1−G) + β]2
A1r < 0 (E.8)
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Utt =
1−G

[B(1−G) + β]2
A2t < 0 (E.9)

Equation (E.9) always holds and the second order interaction term Urt = 0. Thus, to
maximize the utility function (E.1), Urr must be negative, which indicates A1r must be
positive. First, if we assume A1r > 0, the denominator of Equation (E.6) is positive. Thus,
the sign of ∂r∗

∂v
depends on the sign of 1 − F (r∗)W

′′(x)
W ′(x)

. After incorporating the prospect
theory value functions in Equation (3.10), in the case of α < 1, we have the following: If
vi − r∗ < 0, i.e., the gain area, we have:

∂r∗

∂vi
=

1 + (H+c)(1−α)
β

(r∗ − vi)−α

1 + (H+c)(1−α)
β

(r∗ − vi)−α − αF ′(r∗)
> 0 (E.10)

In the loss area, or vi − r∗ > 0, we get:

∂r∗

∂vi
=

1− (H+c)(1−α)
βλ

(vi − r∗)−α

1− (H+c)(1−α)
βλ

(vi−r∗)−α − αF ′(r∗)
(E.11)

As we assume Urr < 0, or A1r > 0, the denominator is positive and we can find that:

∂r∗

∂vi
=


> 0 if vi − r∗ < 0

< 0 if ρ(r∗) (H+c)(1−α)
β

< λ(vi−r∗)α < (H+c)(1−α)
β

> 0 if λ(vi−r∗)α > (H+c)(1−α)
β

(E.12)

As F ′(r∗) < 0, we define ρ(r∗) ≡ 1
1−αF ′(r∗) < 1. It is debatable whether a solution exists

within the third area when waiting cost c is very large. In practice, the waiting cost could
not be very large. The total discounted cost, (H+c)(1−α)

β
, should be smaller than the possible

maximum value function λ(v − r)α. Thus, we could always find a solution that matchs the
condition λ(vi − r∗)α > (H+c)(1−α)

β
.

Second, in the previous discussion, we assumed A1r > 0. If A1r ≤ 0, we find that it must
be the missing area 0 < λ(v − r)α < ρ(r∗) (H+c)(1−α)

β
in the previous results (E.12). Now, we

are going to find a local maximum in this area under the A1r ≤ 0 constraint. By using the
Kuhn-Tucker conditions, we find that the local maximum is just at the boundary, which is
A1r = 0. After incorporating the specific prospect theory function, it is:

B1 = (vi − r∗)[1− F ′(r∗)]− F (r∗)(1− α) = 0 (E.13)

Thus, B1 (E.13) Combined with Equation A2 (E.3) are our new first order conditions
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under the 0 < λ(v − r)α < ρ(r∗) (H+c)(1−α)
β

area. In this area, with B1 = 0, we find that
Ur < 0 always holds. That is, the utility function is always decreasing in this area, and the
corner conditions are r∗ = vi or r∗ + F (1−α)

1−F ′ = vi. The second condition gives a smaller r∗.
Thus, the r∗ solution from B1 = 0 gives a local maximum of U in this area.

Now, we can derive the ∂r∗

∂v
and ∂t∗

∂v
in this area. By using B1 (E.13) and A2 (E.3), we

find that B1v > 0, B1r < 0, B1t = 0, F2v < 0, F2r < 0, and F2t < 0. Finally, using the
formula of implicit function derivative, we can prove ∂r∗

∂v
> 0 and ∂t∗

∂v
< 0 within this area.

In sum, for the case of marginal diminishing sensitivity (α < 1), ∂t∗

∂v
< 0 and the results

of ∂r∗

∂v
are as following:

∂r∗

∂vi
=


> 0 if vi − r∗ < 0

> 0 if 0 < λ(vi−r∗)α < ρ(r∗) (H+c)(1−α)
β

< 0 if ρ(r∗) (H+c)(1−α)
β

< λ(vi−r∗)α < (H+c)(1−α)
β

> 0 if λ(vi−r∗)α > (H+c)(1−α)
β

(E.14)

The derivation process for ∂r∗

∂v
under α > 1 is similar.
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Appendix F

Proof of Proposition 5
(1) For the relation between r∗ and c, when α < 1 and vi − r∗ < 0, the denominator of

∂r∗

∂c
is the same as ∂r∗

∂vi
. Only the numerator is different:

∂r∗

∂c
=

− 1
β
(r∗ − vi)1−α

1 + (H+c)(1−α)
β

(r∗ − vi)−α − αF ′(r∗)
< 0 (F.1)

When α < 1 and vi − r∗ > 0, and if λ(v − r)α > ρ(r∗) (H+c)(1−α)
β

, the denominator is
always positive. By using the first order conditions, A1 (E.2) and A2 (E.3), we obtain the
same results:

∂r∗

∂c
=

− 1
λβ

(vi − r∗)1−α

1− (c+H)(1−α)
λβ

(vi − r∗)−α − αF ′(r∗)
< 0 (F.2)

If 0 < λ(v − r)α < ρ(r∗) (H+c)(1−α)
β

, as we have done before, we use different first order
conditions, B1 (E.13) and A2 (A.2). We find that ∂r∗

∂c
= 0. However, within all the other

areas, an decreasing waiting cost c would lead to an increasing asking price r∗. This implies
that the area of 0 < λ(v − r)α < ρ(r∗) (H+c)(1−α)

β
should also change because r∗ changes. As

vi must meet the increase in r∗, and c is on the righthand side, when c is decreasing, this
area is increasing. Our simulation result also confirms this. From Figure 3.4, if we set the x
axis reference point vi but not Loss = vi−P , all three curves should have the same starting
point (vi = 0) and ending point (vi = 1). We will find that compared with the c = 0.1 curve,
c = 0.05 curve will move to the right and the c = 0.01 curve will move ever further. Thus,
we can conclude that ∂r∗

∂c
is still negative here. The derivation process for ∂r∗

∂c
when α > 1

is similar. Meanwhile, from Equation (A.2), we observe that as A2v < 0 but A2c > 0, the
result of ∂t∗

∂c
is always the opposite against ∂t∗

∂v
< 0. Therefore, ∂t∗

∂c
> 0.

(2) For the relation between r∗ and λ, we first notice that it only matters when loss > 0

(vi − r∗ > 0). Moreover, compared with ∂r∗

∂c
when vi − r∗ > 0, the expression of ∂r∗

∂λ
has

the same denominator but a positive numerator. Therefore, under α < 1, if λ(v − r)α >
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ρ(r∗) (H+c)(1−α)
β

, we find:

∂r∗

∂λ
=

c+H
βλ2

(vi − r∗)1−α

1 + (c+H)(α−1)
λβ

(vi − r∗)−α − αF ′(r∗)
> 0 (F.3)

∂2r∗

∂v∂λ
=

−αF ′(r∗) (H+c)(1−α)
βλ

(vi − r∗)−α

λ2[1− (H+c)(1−α)
βλ

(vi−r∗)−α − αF ′(r∗)]2
> 0 (F.4)

Also, under 0 < λ(v−r)α < ρ(r∗) (H+c)(1−α)
β

, the entire area is increasing when λ is increasing.
Thus, ∂r∗

∂λ
> 0 and ∂2r∗

∂v∂λ
> 0 hold. The derivation process when α > 1 is similar. Meanwhile,

from Equation (A.2), we observe that under the loss area, as W = −λ(v − r)α, we have
A2v < 0 and A2λ < 0, the result of ∂t∗

∂λ
is always the same as ∂t∗

∂v
< 0. Therefore, ∂t∗

∂λ
< 0.
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Appendix G

Price Dispersion Effect and Price
Volume Relation

One puzzling finding in the housing market is a strong positive correlation between home
prices and transaction volume. For example, using national data, Stein [1995] finds that a
10 percent decline in prices is associated with a reduction in transaction volume by over 1.6
million units in the United States. Another study by Ortalo-Magne and Rady [2006] shows
a similar relation in the U.K. In this section. We demonstrate that, with prospect utility,
the decision problem, as outlined in Equation (3.1), can help explain this phenomenon. As
in Figure 3.3, with prospect utility, although home sellers tend to mark-up their asking price
along with reference values, the positive slope of the asking price curve is much flatter for
sellers who have low reference values than for sellers who have high reference values. This is
due to the loss aversion effect. Compared to the expected market price, for sellers who have
high reference values, it is more likely that they will encounter a loss, which yields a greater
disutility due to the asymmetric response in the value function. As a result, they have a
greater incentive to inflate the asking price to mitigate this disutility.

The heterogeneity of pricing behavior between sellers with low versus high reference values
naturally leads to a positive price-volume relation. The intuition is simple. Conditional on a
given distribution of reference values, when the market becomes hot, the willingness to pay
off potential sellers will increase. As a result, in a hot market, the proportion of sellers who
have low reference values relative to the market price increases. Because these sellers are not
subject to potential equity loss, the incentive for them to mark-up the price is relatively low.
As increasingly more sellers in the market choose to sell at a moderate price, as reflected by
the lower and flatter asking price curve, it is clear that the probability of a successful sale
will increase, which in turn generates a higher transaction volume.

Furthermore, a flatter asking price curve for sellers with low reference values may shed
light on the extent of price dispersion under different market conditions. As previously
mentioned, when a market becomes hot, the proportion of sellers who have low reference
values relative to market price increases. With a high market price, as more and more sellers
cluster in the range of low reference values, differences among their asking prices becomes
smaller. In aggregate, we should expect that ceteris paribus, in a hot market, the observed
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transaction prices will be less dispersed with respect to the expected market price than in a
cold market.

To confirm the implication of the price-volume relation and dispersion effect from our
model, we simulate different market conditions and then compare the corresponding trans-
action volume and variance in asking prices within these markets. In particular, we define
the market fundamental as the mean of the buyer’s bidding distribution. Therefore, in the
last section, the market fundamental for a Beta(2, 2) distribution with support of [0,1] is 0.5.
In the following simulation, we expand the Beta(2, 2) distribution by gradually increasing
the market fundamental from 0.3 to 0.9. Here, we use the set of Beta distributions to change
the mean of the market fundamental. For example, Beta distribution Beta(2, 2) is the exact
quasi-triangular distribution we used above. Beta(2, 3) has a mean of 0.4, and Beta(3, 2)

has a mean of 0.6.

Figure G.1: Beta distributions with Different Means
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The simulation process remains the same as above. That is, we assume the seller’s
reference values are distributed uniformly within [0,1]. Each time we randomly draw 1,000
sellers from this distribution. Again, we set β = 0.05, ci = 0.1, α = 0.88 and λ = 2.25.
We normalize the transaction volume per unit period as 100 when the market fundamental
equals 0.5. Doing so makes it easier to infer the percentage change in transaction volume
with the expected market price. When calculating the variance of asking prices under each
expected market price, we weight every seller’s asking price by the corresponding selling
probability. The simulation results are presented in Figure G.2.

As expected, the left panel of Figure G.2 reveals a positive price-volume relation. Condi-
tional on a given pool of potential sellers in the marketplace, when the market fundamental
increases from approximately 0.5 to 0.74, the transaction volume also increases by roughly
38 percent. The right panel of Figure G.2 also follows our expectation when the market
fundamental increases from approximately 0.5 to 0.74, the variance of the asking price drops
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Figure G.2: Price-volume Relation and Dispersion Effect
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from 0.05 to 0.02.
For the empirical test, if we interpret the difference between the realized transaction price

and expect market price as noise, our theory predicts that the higher the expected market
price, the smaller the noise should be since there would be fewer and fewer losers in the
market. To test this prediction, in each quarter, we first compute the variance of stage 1
hedonic residuals and then regress them on the level of the price index in that given quarter.
Note that our theory has different implications for existing home sales versus sales from a
developer. Individual sellers generally bought their houses at different times and are thus
subject to different initial purchase prices, even after controlling for quality. That is, there is
greater heterogeneity in repeat sellers’ reference values. As a result, we should expect greater
price dispersion for repeat sellers. However, for developers, this may not be true. First, a
new house is typically sold by real estate developers, instead of individual households, and
prospect theory is more relevant for an individual decision-making process. Second, even
under the assumption that real estate developers follow the same decision-making process
as individual sellers, we should still expect less price dispersion from these sellers because
developers should face very similar costs in terms of construction materials, financing, labor,
and so forth, which represents possibly similar reference values for developers. However,
conditional on a common vi, they will also have the same asking price. In this case, our model
implies a much weaker price dispersion effect. Accordingly, to test for a price dispersion effect,
we calculate two variances for the hedonic residuals in each quarter. One is for the repeat
sellers, and the other is for new home transactions, under the assumption that these homes
were sold by developers. We also include a dummy variable that is equal to 1 if transactions
occurred after 2007. Finally, we drop the observations that have tenure durations of less
than one year to rule out potential home flippers. Table G.1 reports the regression results
for both groups. The standard errors are calculated via the Biased-Reduced Linearization
(BRL) method (Bell and McCaffrey [2002]), which is robust to both heteroskedasticity and
small sample size.
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Table G.1: Price-dispersion Effect
Dependent Variable: Variance of Hedonic Residuals in Each Quarter

Variables Individual Sellers Developers
House Price Index -0.0002** -0.0003

(0.0001) (0.0003)
Post-2007 0.0629*** -0.0104

(0.0171) (0.0159)
Constant 0.0970*** 0.1113***

(0.0833) (0.0503)
Observations 80 80
R2 0.4085 0.1384
1) * Significant at the 0.10 level. ** Significant at the 0.05 level. *** Significant at the 0.01 level.
2) Biased-Reduced Linearization (BRL) corrected standard errors are reported.
3) Variance is generated for quarters have at least 10 transactions from the corresponding group.

Consistent with our theoretical prediction, the coefficient on the house price index from
the full model for individuals is significantly negative at 5 percent, which implies that when
the market price increases, market noise (as measured by the variance in the hedonic resid-
uals) decreases. Moreover, as expected, we observe no significant dispersion effect for devel-
opers. The R2 in the developer regression is also much lower than the case for individual
sellers, indicating a much less systematic pattern of price dispersion. Taking them together,
the overall finding suggests that for developers, the dispersion of the realized price is much
less sensitive to the level of the expected market price, due to the lack of reference value
heterogeneity among developers. Concerning the post-2007 dummy, the coefficient is posi-
tive and significant at the 1 percent level in the individual sellers’ sample and insignificant
for the developers’ sample. Hence, the data imply that after the year 2007, average price
dispersion increased significantly. This is not surprising given that many home sellers are
subject to losses, which tends to increase the mark-up when they sell.
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Appendix H

On Potential Heterogeneity in Risk
Preferences

We have thus far documented a strong connection between our prospect theory-driven
model predictions and empirical findings. However, a closer comparison of the overall cur-
vature between the theoretical pricing curve (i.e., Figure 3.3) and the empirical one (i.e.,
Figure 3.9) still reveals some notable differences, especially when “Loss” and “Gain” are
large. For example, home sellers in large loss positions seem to mark-up their asking price at
a rate faster than as predicted by a static prospect theory-based model. As the incremental
(marginal) effect may be affected by α, one potential implication is that α might not be
constant across all loss/gain positions.

Note that we are not the first in the literature to suggest a possibly varying α. Von
Gaudecker et al. [2011] estimate the distribution of risk preferences among their 1,422
Dutch experimental respondents. They find that risk preferences in their population tend
to be heterogeneous, ranging from risk averse to risk seeking, and only a small portion
could be explained by socioeconomic factors, such as age, gender, income, and education.
In a non-experimental study, Yao and Li [2013] investigate data used by Odean [1998] that
include trading records for 10,000 accounts at a large discount brokerage house. The authors
argue that a smaller α in the gain region compared to the loss region can better explain
the observed disposition effect. Quantitatively, Abdellaoui et al. [2008] estimate that α is
approximately 0.86 in the gain area and 1.06 in the loss area.

To assess whether a changing α can potentially help explain the empirical discrepancy,
we perform another calibration in which we allow α to differ depending on the different
regions of the loss/gain positions in the prospect value function. To model it, we adopt a
smoothly double power law transformation approach. Mathematically, the classic prospect
value function (i.e., constant α) has a power law form (xα). Often, when we expect some
varying curvature, a double power law-with two different exponents, α1 and α2, performs
better. For example, to describe the distribution of income, Reed [2003] suggests that,
compared with a single power law, a double power law function generates a good fit of
upper and lower tails over the whole range of the data. Barro and Jin [2011] also uses a
double power law function to match the size distribution of macroeconomic disasters such
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as on consumer expenditure and GDP shocks. As our maximization problem involves a
continuous first order derivative on value function W (r, v), we use a smoothly double power
law function separately in the gain and loss region to ensure the continuity of the first order
derivative. With exponents of α1 and α2 under the gain area and α3 and α4 under the loss
area, a smoothly double power law transformation takes the following form:

W (r, v) =

S
[
( r−v
τ

)−α1 + ( r−v
τ

)−α2
]−1 if r − v > 0,

−λS
[
(v−r
τ

)−α3 + (v−r
τ

)−α4
]−1 if r − v < 0

(H.1)

where τ reflects the transition point on changing curvature, and S is a scale factor in the
transformation. A nice feature of this smoothly double power law transformation is that it
embeds the classic prospect value function as a special case. For example, with the scale
factor S = 2τ (α1+α2+α3+α4)/4, the classic (single α) prospect value function in Equation (3.10)
is equivalent to Equation (H.1) with α1 = α2 = α3 = α4.

This class of smoothly double power-law function is widely used in natural science re-
search. For example, Beuermann et al. [1999] and Uemura et al. [2003] use this form to fit
the gamma-ray burst light curve because the curve has two stages and the transition between
the two stages is smooth. Aguilar et al. [2015] use a smoothly double power law and show
that it describes their proton flux data from the International Space Station well.

Table H.1: Varying α Calibration

Area Gain: (0.25, .) Gain: (0, 0.25) Loss: (0, 0.25) Loss: (0.25, .)
α 0.715*** 0.980 0.910* 0.875**

(0.119) (0.103) (0.076) (0.074)
1) For consistency, we assume that λ is 1.9667 and c is 0.08 to match our single α calibration in

section 3.

2) Here we use a smoothly double power law function with a transition point at τ = 0.25.

3) Null hypotheses are based on H0 : αi ≥ 1.

4) * Significant at the 0.1 level. ** Significant at the 0.05 level.

5) Standard errors are constructed from the bootstrap procedure.

In Table H.1, we run our calibration by segmenting the loss/gain domain into four regions
and allow each region to have a different value for α. We set τ to be 0.25, and S is defined
as above. The calibrated values of α exhibit an inverse V-shape pattern, with lower values
of α on the larger gain/loss, although the variation is much bigger in the gain range. The
interpretations of α1, α2, α3, and α4 are as following1: with a potential gain larger than
0.25, the marginal sensitivity coefficient is closer to α1 of 0.715. When it is smaller than 0.25,

1As suggested by Stanek et al. [1999], the mathematical intuition could be explained as following: The
function (H.1) describes a power law (r − v)α1 curve for large gainers (r − v � τ) and another power-law
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the marginal sensitivity coefficient is closer to α2 of 0.98. Similar interpretations can also
be applied in the loss region. Our result differs from Abdellaoui et al. [2008] in that as the
reference value decreases, we find losers become slightly less risk seeking, but not risk averse
as suggested by their study. We also run 1,000 bootstrap replications to generate standard
errors. The results show that α1 and is significantly smaller than 1 at the 1% level,α4, and
is significantly smaller than 1 at the 5% level, and α3 is significantly smaller than 1 at the
10% level.

As expected, when we allow α to change, we can achieve a better match between the
theoretical and empirical pricing curves. The MSE is reduced by over 10% when we relax
the constant α assumption. Thus, jointly there appears to be evidence that the marginal
diminishing effect, a key component of prospect theory, could differ depending on an agent’s
loss/gain position. Moreover, our multi-α calibration implies that while people tend to be
risk averse in the gain domain and risk seeking in the loss domain, it becomes more so when
the magnitude of gain (or loss) becomes larger.

The closest lab study that supports our findings on varying α is by Bouchouicha and
Vieider [2017]. By experimenting with different outcomes on financial rewards, the authors
notice that the respondents are more risk averse when gain size is larger. Our empirical
results are qualitatively consistent with Bouchouicha and Vieider [2017]. For example, in
the gain range, we reject the null hypothesis that α1 ≥ α2 in the one-way test at the 5%
level. Meanwhile, Bouchouicha and Vieider [2017] do not find any significant changes in
risk-seeking preference with the magnitude of losses. Within the loss range, we also fail to
reject the null hypothesis that α3 = α4 at the 5% level. Another important study is Wang,
Yan, and Yu [2017]. By investigating risk-return trade-off in the stock market, the authors
find that the risk aversion effect seems to be more significant among investors experiencing
larger capital gains while the risk seeking effect seems to be more significant among those
who experienced large capital losses.

(r− v)α2 curve for small gainers (0 < r− v � τ). Also, there is a power-law (v− r)α3 curve for small losers
(0 < v − r � τ) and another power-law (r − v)α4 curve for large losers (v − r � τ).
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Appendix I

Supplemental Tables
Table I1: Hedonic Regression:

Dependent Variable: Log of Transaction Price

age -0.0059∗∗∗
(0.0002)

age2 0.0000198∗∗∗
(0.00000288)

age3 -1.94e-08∗∗∗
(6.44e-09)

age >= 120 0.3498∗∗∗
(0.05035)

Baths_Full_ 0.1665∗∗∗
(0.006219)

Baths_Half_ 0.0807∗∗∗
(0.0037)

Bedrooms_ 0.0532∗∗∗
(0.0044)

Fireplaces_Number_ 0.0890∗∗∗
(0.0031)

Square_Feet_Approx_ 0.00014∗∗∗
(0.000014)

Stories_Number_ -0.0079∗∗∗
(0.0027)

Cool_CENT 0.1261∗∗∗
(0.0025)

Cool_WIN 0.0807∗∗∗
(0.0048)

Cool_OTHER 0.1917∗∗∗
(0.0509)

Waterdummy 0.1233∗∗∗
(0.0042)

ATTdummy -0.3015∗∗∗
(0.0039)

PoolDummy 0.0773∗∗∗
(0.0032)

SewerDummy -0.0633∗∗∗
(0.0055)

Heater_EleDummy -0.0187∗∗∗
(0.0019)

WaterCityDummy -0.0243∗∗∗
(0.0058)

Parkingscale= 1 0.0648∗∗∗
(0.0030)

Parkingscale= 2 0.1434∗∗∗
(0.0027)
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Parkingscale= 3 0.1652∗∗∗
(0.0131)

Viewscale= 1 0.0336∗∗∗
(0.0019)

Viewscale= 2 0.1373∗∗∗
(0.0070)

Viewscale= 3 0.1497∗∗∗
(0.0044)

Floorscale= 2 0.0078
(0.0160)

Floorscale= 3 0.1355∗∗∗
(0.0098)

Floorscale= 4 0.2554∗∗∗
(0.0101)

Floorscale= 5 0.2915∗∗∗
(0.0135)

Floorscale= 6 0.1692∗∗∗
(0.0113)

Floorscale= 7 0.2792∗∗∗
(0.0143)

Constant 10.2605∗∗∗
(0.0508)

Neighborhood Fixed Effect Yes
Quarterly Fixed Effect Yes

Observations 155,933
1) * Significant at the 0.10 level. ** Significant at the 0.05 level. *** Significant at the 0.01 level.
2) Robust Standard errors are in parentheses
3) Cool: Cent = Central air conditioning; WIN = Window unit
4) Floor: 1=worst; 7=best

Table I2: Cox Proportional Hazard Regression

Independent Variables Coefficients
age_list 0.0019∗∗∗

(0.0005)
age>= 120 -0.6817∗

(0.3560)
Baths_Full_ 0.0566∗∗∗

(0.0181)
Baths_Half_ 0.0562∗∗∗

(0.0169)
Bedrooms_ 0.0141

(0.0142)
Fireplaces_Number_ 0.0704∗∗∗

(0.0108)
Square_Feet_Approx_ -0.00058∗∗∗

(0.00002)
Stories_Number_ 0.1123∗∗∗

(0.0192)
Cool_CENT -0.0526∗∗∗

(0.0202)
Cool_WIN -0.1154∗∗∗

(0.0369)
Cool_OTHER -42.1492

(.)
Waterdummy -0.0882∗∗

(0.0377)
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ATTdummy 0.1928∗∗∗
(0.0236)

PoolDummy -0.0452
(0.0344)

SewerDummy 0.0812
(0.0554)

Heater_EleDummy 0.0286∗
(0.0164)

WaterCityDummy 0.2440∗∗∗
(0.0595)

Parkingscale== 1 -0.0708∗∗∗
(0.0241)

Parkingscale== 2 -0.0803∗∗∗
(0.0232)

Parkingscale== 3 -0.7980∗
(0.4124)

Viewscale== 1 0.0424 ∗

(0.0225)
Viewscale== 2 0.3037∗∗∗

(0.0854)
Viewscale== 3 -0.0427

(0.0413)
Floorscale== 2 0.4016∗∗∗

(0.1077)
Floorscale== 3 0.1659∗∗∗

(0.0589)
Floorscale== 4 0.0698

(0.0599)
Floorscale== 5 0.1397

(0.1187)
Floorscale== 6 0.2083∗∗

(0.0832)
Floorscale== 7 0.1998 ∗

(0.1182)
Neighborhood Fixed Effect Yes

Observations 147,055
1) * Significant at the 0.10 level. ** Significant at the 0.05 level. *** Significant at the 0.01 level.
2) Robust Standard errors are in parentheses
3) Cool: Cent = Central air conditioning; WIN = Window unit.
4) Floor: 1=worst; 7=best
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