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Pyrocumulonimbus Stratospheric Plume Injections
Measured by the ACE-FTS

C. D. Boone' (), P. F. Bernath? (%), and M. D. Fromm?

"Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada, ?Department of Chemistry and
Biochemistry, Old Dominion University, Norfolk, VA, USA, 3Naval Research Laboratory, Washington, DC, USA

Abstract The Atmospheric Chemistry Experiment (ACE) is a satellite-based mission that probes Earth's
atmosphere via solar occultation. The primary instrument on board is a high-resolution infrared Fourier
transform spectrometer (Atmospheric Chemistry Experiment Fourier Transform Spectrometer, ACE-FTS),
providing altitude-resolved volume mixing ratio measurements for numerous atmospheric constituents,
including many biomass burning products. The ACE mission has observed the aftermath of three major
pyrocumulonimbus events, in which extreme heat from intense fires created a pathway for directly injecting
into the stratosphere plumes of gaseous and aerosol pollutants. These three events were associated with
severe Australian bushfires from 2009 and 2019/2020, along with intense North American wildfires from
summer 2017. The ACE-FTS measured stratospheric plumes containing aerosols, enhanced levels of gaseous
fire products, and tropospheric air transported into the stratosphere. Infrared spectral features indicate
strikingly similar aerosol composition for all three events, characteristic of oxygenated organic matter.

Plain Language Summary The Atmospheric Chemistry Experiment (ACE) is a satellite-based
mission for studying the Earth's atmosphere. During the 16+ years of operation for the mission, three
extreme fire events were observed that injected gases and smoke particles very high into the atmosphere
(near 20 km in altitude). The amount of gas and the nature of the smoke particles were studied, in an effort to
provide insight into the effect of such fires on climate and atmospheric chemistry.

1. Introduction

Intense fire activity can trigger deep atmospheric convection events, referred to as pyroconvection.
Relatively moist, particle-laden, superheated air rising from a fire can, when meteorological conditions per-
mit, generate towering pyrocumulonimbus (pyroCb) clouds (Fromm et al., 2010, 2019). Rapid updraft within
the cloud can serve to create an efficient “smokestack” for transporting material from the planetary bound-
ary layer into the upper troposphere and lower stratosphere (Fromm et al., 2005). Severe fires can create suf-
ficiently strong convection for the cloud tops to extend past the tropopause (normally a substantial barrier to
transport) and intrude well into the stratosphere (Fromm & Servranckx, 2003), creating a pipeline for direct
injection of biomass burning products into this atmospheric region. The impact of introducing gaseous and
aerosol pollutants from fire emissions into the stratosphere is not completely understood but has implica-
tions in climate (Peterson et al., 2018) and stratospheric chemistry (Glatthor et al., 2013).

The Atmospheric Chemistry Experiment (ACE) is a satellite-based mission for remote sensing of Earth's
atmosphere (Bernath, 2017; Bernath et al., 2005). The measurement technique employed is solar occultation.
Using the Sun as a light source, instruments collect a series of atmospheric absorption measurements as the
Sun rises or sets from the orbiting satellite's perspective, providing up to 30 measurement opportunities per
day. The primary instrument is the Atmospheric Chemistry Experiment Fourier Transform Spectrometer
(ACE-FTS), featuring high resolution (+25 cm maximum optical path difference, 0.02 cm™ resolution),
broad spectral coverage (750 to 4,400 cm™"), and a signal-to-noise ratio ranging from ~100:1 up to ~400:1
(Buijs et al., 2013). There is also a pair of filtered imagers on board (Gilbert et al., 2007), providing atmo-
spheric extinction profiles at 527.11 and 1020.55 nm.

In ACE-FTS processing Version 4 (Boone et al., 2020), volume mixing ratio (VMR) profiles are generated for
44 molecules and 24 subsidiary isotopologues, including a suite of molecules that traditionally experience
emissions from biomass burning (Andreae & Merlet, 2001; Coheur et al., 2007): carbon monoxide (CO),
ethane (C,Hg), acetylene (C,H,), hydrogen cyanide (HCN), formic acid (HCOOH), methanol (CH;0H),

BOONE ET AL.

10f9


https://orcid.org/0000-0001-9041-8299
https://orcid.org/0000-0002-1255-396X
https://orcid.org/0000-0002-0412-9202
https://doi.org/10.1029/2020GL088442
https://doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
http://dx.doi.org/10.1029/2020GL088442
mailto:cboone@scisat.ca
https://doi.org/10.1029/2020GL088442
http://publications.agu.org/journals/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2020GL088442&domain=pdf&date_stamp=2020-08-07

o~
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Geophysical Research Letters 10.1029/2020GL088442

peroxyacetyl nitrate (PAN, C,H3NOs), acetone (CH3COCHj3;), acetonitrile (CH3CN), methane (CHy),
formaldehyde (HCHO), nitrogen dioxide (NO,), and methyl chloride (CH;Cl).

2. Major Pyroconvection Events

The ACE mission has been collecting scientific measurements since February 2004 (over 16 years to date)
and continues to operate well. During this long time span, the mission has captured the atmospheric after-
math from numerous biomass burning events, but three such events stand out, from particularly severe fires
that generated plumes of fire emission products well into the lower stratosphere (around 20 km). These
events are the Black Saturday Australian bushfires from 2009, wildfires in the Pacific Northwest of North
America in 2017, and another set of Australian bushfires from 2019/2020.

2.1. Black Saturday Australian Bushfires

On 7 February 2009, colloquially referred to as “Black Saturday,” a collection of fires devastated southeast-
ern Australia, burning an area covering more than 4,500 km?, with the particularly severe Kilmore East fire
burning more than 1,000 km? in a 12 hr period (Cruz et al., 2012). These intense fires created conditions con-
ducive to a pyroCb “eruption,” resulting in the injection of a biomass burning plume into the stratosphere
above Australia.

Measurements of the stratospheric smoke plume by the Optical Spectrograph and InfraRed Imager System
(OSIRIS) instrument on the Odin satellite (Siddaway & Petelina, 2011) suggested that plume injection height
was between 15 and 17 km (close to the tropopause height near 16 km), in good agreement with radar obser-
vations of pyroCb cloud tops near 15 km (Dowdy et al., 2017), followed by relatively rapid vertical transport
above 18 km, after which it remained in the altitude region between 18 and 22 km from mid-February to
mid-June while gradually dissipating.

The stratospheric plume from Black Saturday fires was also studied using measurements from the
Microwave Limb Sounder (MLS) on the Aura satellite (Pumphrey et al., 2011). They looked primarily at
CO enhancement but also considered CH;CN and HCN. Anomalous behavior in ClO retrievals was attrib-
uted to the presence of enhanced CH30H or CH;Cl in the plume.

Another limb-sounding mission that investigated the plume was the Michelson Interferometer for Passive
Atmospheric Sounding (MIPAS) instrument on the Envisat satellite (Glatthor et al., 2013). They showed
enhanced levels of CO, C,Hg, and PAN within the stratospheric plume and, using comparisons to a chemical
model, delved into the evolution of C,H, and HCOOH relative to HCN.

The ACE mission captured the plume nearly 3 weeks after Black Saturday. A small number of occultations
contained signatures from the plume as ACE measurements swept through the region, but one occultation
in particular (sr29848, where “sr” stands for sunrise, and 29,848 is the number of orbits since launch, a
unique identifier for the occultation) showed enhanced biomass burning products in a measurement just
above 20 km. This occultation was collected on 27 February 2009, 20 days after plume injection into the stra-
tosphere, and was located near latitude 19.8°S and longitude 76°E.

2.2. Pacific Northwest Event

On 12 August 2017, wildfires in Washington, USA, and British Columbia, Canada, created a collection of
pyroCbs that injected smoke directly into the stratosphere, at altitudes just above the tropopause height near
12 km (Peterson et al., 2018). Measurements from a combination of satellite sensors were employed to inves-
tigate the event, revealing that the mass of aerosols transported into the stratosphere was comparable to a
moderate sized volcanic eruption (Peterson et al., 2018).

A study of aerosol measurements from the Stratospheric Aerosol and Gas Experiment III in the
International Space Station (SAGE III-ISS) instrument tracked the ascent of the aerosols up to an altitude
of 23 km, sufficiently high to persist for about 8 months (Yu et al., 2019). They attributed the magnitude
of the ascent to buoyancy from a small fraction of black carbon (BC) among the aerosol particles absorbing
sunlight, thereby warming the surrounding air.
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Another study employed a chemical transport model to estimate the radiative forcing associated with this
event (Christian et al., 2019), concluding that it imparted a warming in the upper troposphere and lower
stratosphere, attributed mostly to efficient absorption from BC.

The first opportunity for the ACE mission to measure the stratospheric plume came almost a month after the
event. A small number of occultations contained biomass burning signatures just above 20 km in early
September 2017 as ACE measurements swept through the region. The occultation containing the strongest
signature (because it featured the longest path length through the measured plume) was sr75758, measured
on 5 September 2017, 24 days after plume injection, near latitude 38°N and longitude 74.7°E.

2.3. Black Summer Australian Bushfires

During late 2019 through early 2020, colloquially known as “Black Summer,” hundreds of wildfires raged
through Australia, mainly in the southeast, burning more than 186,000 km?. Peaking in December and
January, these widespread fires created at least 18 pyroCb events between 29 December 2019 and 4
January 2020 (Kablick et al., 2020), injecting multiple plumes into the stratosphere. From mid-January
through early February 2020, the ACE mission measured several occultations containing biomass burning
signatures in the lower stratosphere. For the current paper, an example occultation is selected for compar-
ison with the two previously described major pyroCb events. This occultation is ss88712 (where “ss” refers
to sunset), measured 30 January 2020, 08:42 UTC, between 26 and 32 days after plume injection, near lati-
tude 47.5°S and longitude 163°E.

The Australian Black Summer plume captured by the ACE-FTS (ss88712) was also observed by other instru-
ments. Figure Sla in the supporting information shows measurements of the plume by the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission (Winker et al., 2009), with the lati-
tude of the ACE-FTS measurement indicated by an arrow. The stratospheric plume is clearly visible, span-
ning an altitude range from roughly 18 km to just over 20 km. Figure S1b shows aerosol index (AI)
measurements from the Ozone Mapping and Profiler Suite (OMPS) mission (Torres, 2019), collected about
5 hr before the ACE-FTS measurement, with the plume moving slowly northeast. The measured plume, on
this day located between Australia and New Zealand, is clearly visible as a large brown splotch on the map. A
green star indicates the tangent point (the location of closest approach to the Earth's surface for a measured
solar ray) for the ACE-FTS ss88712 measurement, situated within the plume.

3. ACE Data Issues

Aerosol levels for Black Summer plumes measured by the ACE-FTS were significantly greater than for the
other two cases. For some Black Summer occultations, aerosol absorption was sufficiently strong to impact
instrument pointing (which is achieved by finding the center of radiance of the Sun), causing an altitude
jump as the instrument moved from looking through the altitude region above the aerosol plume (with
the top of the plume in the lower portion of the ACE-FTS field of view) to the altitude region below the
plume (with the bottom of the plume located in the upper portion of the ACE-FTS field of view).
Although a measurement of the plume is obtained, skipping past the heart of it results in underestimating
aerosol extinction as well as VMRs for atmospheric constituents within the plume.

There are multiple ACE-FTS processing versions available for the three events. Version 3.5/3.6 (Boone
et al., 2013) results can be used, but the VMR retrievals for some biomass burning products (C,H,, C,Hg,
and HCOOH) do not extend high enough in altitude to fully capture enhancements within the plume, unlike
later processing versions. In occultations featuring altitude jumps (e.g., where pointing hops from looking
above a strongly absorbing aerosol layer to below), imager extinction profiles in this version can exhibit oscil-
latory behavior (including unphysical negative spikes) within the altitude range lacking measurements.
Version 4.0 has problems in the presence of significant aerosols (Boone et al., 2020), and therefore, caution
should be exercised when using this version in the analysis of Black Summer plumes. The recently released
ACE-FTS processing Version 4.1 has a dramatically reduced sensitivity to aerosols (Boone et al., 2020) and is
less likely to yield spurious results when the pointing jumps.

For very strong aerosol extinction, incoming light measured by the visible (VIS) imager (at 527 nm) can
heavily saturate (i.e., minimal light at that wavelength reaches the detector), which may lead to unreliable
results such as negative spikes or an apparent extinction less than that for the near-infrared (NIR) imager,
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to the tangent point of the measurement. If the plume is in either the
foreground or the background relative to the tangent point, it will
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appear to be at a lower altitude as a consequence of the Earth's curva-
ture (Gordley et al., 2009). The further away from the tangent point
the plume resides, the lower in altitude it will seem. There is no
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Figure 1. Near infrared (NIR) and visible (VIS) imager data extinction profiles ~means to determine from ACE measurements where along the line
from the ACE mission for three occultations featuring stratospheric plumes of sight the plume is located.

from major pyroCb events: sr29848 (from the Australian Black Saturday fires in

2009), sr75758 (from the Pacific Northwest Event in 2017), and ss88712 (from the

Australian Black Summer in 2020).

4. Observations and Discussion

The current paper employs preliminary Version 4.1 results (Boone

et al., 2020), except for four biomass burning products (CH;0H,
PAN, acetone, and CH;CN), for which VMR retrievals were pushed to higher altitude specifically for this
study in order to capture their enhancement within the plume.

Figure 1 shows imager profiles for the three pyroCb events considered here. The VIS imager profiles for two
of the occultations (sr29848 and ss88712) suffer from saturation effects and are therefore not shown. Note
that the NIR and VIS imager profiles for sr75758 appear to show a slightly different peak altitude for the
plume. There is a “hitch” in measured transmittances near 20 km for the NIR imager that is not evident
in the VIS imager measurements. The source of the differences is unknown but may be connected to the
higher propensity for scattering at the lower wavelength of the VIS imager.

As mentioned previously, peak altitudes in the imager measurements serve as a lower limit for the plume
height. The heights for the plumes in sr29848 and sr75758 in Figure 1 are consistent with values determined
previously (Pumphrey et al., 2011; Yu et al., 2019), suggesting they are near the tangent points of the ACE
measurements. The agreement of plume height in ss88712 with the CALIPSO measurement in Figure Sla
indicates close correspondence between tangent height and plume for this occultation as well, consistent
with the OMPS Al observations in Figure S1b. All three plumes are located well into the lower stratosphere.

Figure 2 shows retrieved VMR profiles for various atmospheric constituents emitted during biomass burn-
ing. All exhibit a distinct VMR peak within the plume. Note that in sr75758, comparable (and sometimes
higher) VMRs for some molecules below ~16 km reflect enhancements from something independent from
the plume above 20 km and are therefore not discussed here. Peak stratospheric VMRs in sr75758 are much
lower than for the other two examples, but this likely arises primarily from different path lengths through
the plumes, which means one cannot directly compare results from different occultations. When comparing
different occultations, it is more appropriate to consider relative quantities (e.g., the ratio of a particular
molecule’'s VMR to HCN).

Other than CO, CH;0H typically features the highest peak stratospheric VMRs in Figure 2 with HCN often
at comparable levels, followed by C,Hg. Very high CH;0H VMRs observed in the Black Saturday occultation
(Figure 2a) align with the suggestion that this molecule was impacting MLS measurements of the event
(Pumphrey et al., 2011). CH;Cl, the other molecule mentioned as a potential source of unexpected absorp-
tion in the MLS measurements, also appears to have experienced enhancement in these occultations, as
shown in Figure S2, but the increase over background levels was roughly 50%, compared to orders of mag-
nitude for CH;OH.

HCOOH shows greater relative abundance in the Pacific Northwest Event (Figure 2b) than the two
Australian events. That results in part from differences in emissions from different types of vegetation, but
variations in molecular lifetimes in the lower stratosphere (which could deviate significantly from
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Figure 2. VMR profiles of biomass burning products for occultations featuring a plume in the lower stratosphere: (a) sr29848; (b) sr75758; and (c) ss88712. CO
VMR has been divided by a factor of 200 for plotting.

lifetimes experienced in the troposphere and may be sensitive to plume height) will lead to an evolution of
relative abundances within the plume over time (R'Honi et al., 2013).

Beyond the nine molecules presented in Figure 2 and CH;3Cl in Figure S2, other species measured by the
ACE-FTS experience perturbations from the pyroCb event. Transport of tropospheric air entrained within
the plume into the stratosphere yields enhanced VMRs for molecules that normally feature higher levels
in the troposphere than the stratosphere, evident in the significant bumps in H,O in Figure S3, and reduced
VMRs for molecules where the opposite is normally true (e.g., Os). The two more recent occultations
(sr75758 and ss88712) exhibit little difference for NO,, either as a consequence of high tropospheric levels
of the molecule from fire emissions or chemical processing of the air within the plume.

H,O0 in the stratosphere serves as a greenhouse gas (Forster & Shine, 1999), while a pipeline for increasing
stratospheric NO, and chlorine-containing molecules (such as CH5Cl) has negative implications for the
health of the ozone layer, the barrier that protects the surface from harmful UV solar radiation
(Crutzen, 1979; Santee et al., 2013). However, perturbations in the concentrations of these molecules will
generally be localized within the plume and should not induce far-reaching effects but may play a significant
role in the nature and chemical evolution of the plume.

A unique perspective offered by the ACE-FTS comes when considering aerosols. Information on particle
composition can be deduced from the shape of the spectrum (the locations and relative intensities of differ-
ent absorption features) in the infrared (Clarisse et al., 2010). The instrument's broad coverage in the infra-
red provides an opportunity to examine the nature of aerosols emitted from biomass burning. To that end,
“residual spectra” are created from ACE-FTS measurements, dividing out all known contributions to the
spectra, and what is left represents everything in the measured spectrum that was missing from the calcula-
tion, primarily aerosols in the stratospheric plumes. The calculated spectra employ all retrieval results for gas
phase molecules, as well as the contribution from the N, collision-induced absorption, calculated as
described in Boone and Bernath (2019), a contribution from O, collision-induced absorption (Thibault
et al., 1997), and far wing absorption from the strong CO, v; band (Cousin et al., 1985). The measured spec-
trum is divided through by the calculated spectrum. Only points with a calculated transmittance greater
than 0.7 are included in the calculation, to avoid dividing by small values. Results were then averaged into
2 cm™! wide bins, filtering out values more than 2-sigma (twice the standard deviation) away from the bin
average.

Unfortunately, a number of bands for nitric acid (HNO3) are missing in the HITRAN 2016 line list (Gordon
et al., 2017), which is employed for spectral calculations with the ACE-FTS, and these bands will therefore
appear in the residual spectra. The spectral signature from background sulfate aerosols will also appear in
the residual spectra. Residual spectra from nearby occultations with similar conditions (in terms of HNO3
and background sulfate aerosols) but lacking a contribution from the stratospheric plume are used to
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Figure 3. Calibrated residual spectra (observed/calculated) for three
measurements containing the signature of stratospheric plumes. The legends
indicate the occultation name and tangent height for the measurement
containing the plume and the occultation name and tangent height for the
measurement used as calibration. Peaks associated with three infrared-active

functional groups (C=0 stretch, C—H stretch, and O—H stretch) are indicated.

generate a rough calibration, dividing out everything except the por-
tion of the spectrum associated with the plume.

Figure S4 shows an example of residual spectra from a measurement
of a biomass burning plume (ss88712, 17.6 km) along with the
plume-free measurement (ss88719, 17.9 km) that is used for calibra-
tion. Residual spectral features resulting from two HNO3 bands miss-
ing from the line list are indicated. The background sulfate aerosol
contribution consists of a series of peaks in the lower wave number
portion of the spectrum with a maximum absorption of roughly
12% just below 1,200 cm™!, as well as a broad, shallow feature at
higher wave number, peaking near 3,000 cm™ !, The HN 03 and sul-
fate aerosol features cancel when dividing the two spectra to obtain
the associated curve in Figure 3, which represents the infrared spec-
trum associated with the plume itself (primarily from aerosols within
the plume, along with any infrared-active gases emitted from the fires
that are not included in the calculated spectra).

Figure 3 shows the calibrated residual spectra for the three strato-
spheric plumes considered in this manuscript. To our knowledge, this

represents the first reported measurements of infrared spectra for stratospheric aerosols arising from pyroCb
events. They all show remarkably similar spectral structure, despite coming from different fires and being
sampled at different lengths of time following the pyroCb event. Smaller extinction for sr75758 in Figure 3
is a consequence of fewer aerosol particles along the instrument's line of sight (a function of particle density
within the plume and the path length through the plume) than for the other two occultations, but when
investigating aerosol composition, it is the shape of the spectrum (i.e., the locations and relative intensities
of the various spectral features) that is instructive, not the absolute amount of absorption. Figure S5 shows
the spectrum for ss88712 from Figure 3 along with a magnified version of the spectrum for sr75758 to facil-
itate comparison. The locations and relative intensities of peaks in the spectra display a strong similarity,
implying that the aerosols in the two occultations have very similar composition. Note that the divergence
between the two spectra toward higher wave number likely results from differences in size distribution, as
scattering effects become more significant at higher wave numbers (Eldering et al., 2001).

The wave number positions for absorption features in Figure 3 are characteristic of particular infrared-active
functional groups, which provide information on aerosol composition. Each spectrum contains a strong car-
bonyl (C=0, double-bonded carbon and oxygen atoms) stretch (i.e., vibration of the bond length) spectral
feature near 1,740 cm™" (Bernath, 2020). Each spectrum also features a peak below 3,000 cm™" consistent
with an alkane (i.e., no double bond on the carbon atom) C—H stretch feature (where H refers to a hydrogen
atom). There is also a hydroxyl (O—H) stretch feature peaked just below 3,250 cm ™, with the location and
width suggestive of hydrogen bonding in the aerosol. This feature could alternatively arise from water ice,
either from ice deposited on smoke particles or separate aerosols composed primarily of ice. However, in that
case one would expect greater variability in peak amplitude relative to the carbonyl stretch spectral feature,
indicating that the O—H stretch feature is likely associated with the smoke particles. The presence of the
C=0 stretch shows that these particles are oxygenated, which supports this assumption. Other peaks appear
in the spectrum below 1,700 cm™" in Figure 3, associated with additional vibrational modes. For example,
there are peaks consistent with methyl (CHs) deformation (asymmetrical near 1,450 cm™" and symmetrical
near 1,380 cm™"), as well as skeletal C—C stretch in the range 1,150-1,250 cm ™" (Bellamy, 1975). Identifying
other peaks in the spectrum may provide further clues regarding aerosol composition.

The broad O—H stretch feature in Figure 3 is consistent with the infrared measurement of aged wood smoke
in Zhong and Jang (2014), attributed in that study to the formation of carboxylic acids. Zhong et al. also
observed an increase in the C=O stretch absorption as the smoke aged, consistent with oxidation of the aero-
sol particles. The C—H stretch feature indicated in Figure 3 was also noted in their spectrum.

The collection of spectral features in Figure 3 indicates that the aerosols are heavily oxygenated and hydro-
genated organic matter, although this only provides insight into the elements comprising the aerosols rather
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than the actual composition. They could be aggregates of organic molecules, organic molecules depos-
ited on particle surfaces, or simply oxygen and hydrogen atoms attached to the exterior of carbonaceous,
sooty particles (or some combination thereof). However, the fact that different spectra in Figure 3 fea-
ture similar proportions of absorption from different functional groups implies a strong degree of
similarity in composition and suggest that heavily oxygenated organic aerosols may represent a charac-
teristic by-product of biomass burning in situations where the fire is intense enough to generate a
pyroCb eruption.

Organic aerosols emitted from fires are typically assumed to efficiently scatter solar radiation with mini-
mal absorption, except for BC (composed of almost pure elemental carbon arranged in a honeycomb
network of graphitic layers, absorbing strongly at all wavelengths) and brown carbon (aerosols typified
by stronger ultraviolet absorption than BC but assumed to have negligible absorption in the infrared)
(Andreae & Gelencser, 2006). Standard treatment of these aerosols appears to focus on their absorption
properties in the visible and ultraviolet, ignoring any impact from absorption in the infrared. Figure 3
shows that pyroCb aerosols contain strong absorption features in the infrared, which should be
accounted for when modeling atmospheric effects. At a minimum, infrared absorption by the aerosols
will contribute a greenhouse effect, trapping outgoing radiation (Lacis et al., 1992), and could potentially
play a role in the “self-lofting” of plumes high into the stratosphere, a mechanism that was previously
attributed entirely to small quantities (about 2%) of BC among the aerosols for the Pacific Northwest
Event (Yu et al., 2019).

5. Conclusions

ACE-FTS measurements provide a wealth of information on the relative abundances of different biomass
burning products, which could be used as inputs in model-based studies probing the impact of introducing
relatively large quantities of these species into the lower stratosphere, from the viewpoint of climate and/or
stratospheric chemistry. The ACE-FTS provides information on more biomass burning constituents for these
stratospheric plumes than any other source. The repercussions of such events are not fully understood but
represent an important avenue of inquiry. A shifting climate that promoted increasing numbers of pyroCb
events would serve to magnify adverse climate effects, potentially creating a positive feedback loop.

Residual spectra derived from ACE-FTS measurements reveal common characteristics for stratospheric
aerosols arising from different pyroCb events: heavily oxygenated organic matter possessing strong absorp-
tion features in the infrared. This absorption should be taken into account when considering the impact of
these aerosols on climate and on the evolution of the plume (e.g., self-lofting). This infrared signature can be
used to differentiate biomass burning plumes from other stratospheric plumes (e.g., sulfate aerosols from
volcanic eruptions).
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