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ABSTRACT Truckload spot rate (TSR), defined as a price offered on the spot to transport a certain cargo
by using an entire truck on a target transportation line, usually price per kilometer-ton, is a key factor in
shaping the freight market. In particular, the prediction of short-term TSR is of great importance to the
daily operations of the trucking industry. However, existing predictive practices have been limited largely
by the availability of multilateral information, such as detailed intraday TSR information. Fortunately,
the emerging online freight exchange (OFEX) platforms provide unique opportunities to access and fuse
more data for probing the trucking industry. As such, this paper aims to leverage the high-resolution trucking
data from an OFEX platform to forecast short-term TSR. Specifically, a lagged coefficient weighted matrix-
based multiple linear regression modeling (Lag-WMR) is proposed, and exogenous variables are selected
by the light gradient boosting (LGB) method. This model simultaneously incorporates the dependency
between historical and current TSR (temporal correlation) and correlations between the rates on alternative
routes (between-route correlation). In addition, the effects of incorporating temporal and between-route
correlations, time-lagged correlation and exogenous variable selection in modeling are emphasized and
assessed through a case study on short-term TSR in Southwest China. The comparative results show that
the proposed Lag-WMR model outperforms autoregressive integrated moving average (ARIMA) model and
LGB in terms of model fitting and the quality and stability of predictions. Further research could focus
on rates’ standardization, to define a practical freight index for the trucking industry. Although our results
are specific to the Chinese trucking market, the method of analysis serves as a general model for similar
international studies.

INDEX TERMS Freight transportation, truckload spot rates, lagged weighted matrix, short-term prediction,
weighted multiple regression, trucking economy.

I. INTRODUCTION

Trucking is a critical component of freight transportation
in many countries. In the United States (US), for example,
the trucking industry generated $700 billion in economic
activity in 2017 [1]. Likewise, China’s trucking market is
estimated at more than $750 billion [2]. A salient feature of
the trucking industry is its high fragmentation. For example,
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China gradually dismantled its state-owned trucking com-
panies since opening up its markets after 1978 [3]. China’s
trucking industry has been largely privatized and has become
highly fragmented and competitive. For example, most truck-
ing companies in the country today are owner-operated, with
70% owning just one truck [4]. The consolidation of many
small owner-operators reduces bargaining power and limits
access to information (e.g., about where to find high-value
loads). The rise of online freight exchange (OFEX) plat-
forms, such as Uber Freight, Truck Alliance, and Convoy,
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offers a promising solution to improve the efficiency of
the industry through information sharing and consolidation.
Such a system can bring shippers and carriers together to
exchange freight information, and provide value-added ser-
vices, such as designing shipping tours for carriers [5]. Cur-
rently, shippers cover transportation orders either through
long-term contracts or on-the-spot markets [6]. Shippers,
in most cases, post transportation requirements on an online
platform (e.g., OFEX). To guide truckers to high-value loads,
predicting truckload spot rate (TSR), a price offered on the
spot to transport a certain cargo by using an entire truck
on a target transportation line (i.e., a route connecting two
transshipment points). The question that we aim to answer in
this paper is how well short-term route-specific TSR can be
predicted.

This question is related to understanding not only the short-
term forecasting model but also the behavior of the trucking
industry, which has become a hot topic of research in recent
years [7]-[11]. The driver of this enthusiasm is the avail-
ability of an unprecedented amount of data, such as the type
of truck required, truck size, the type of goods, deal prices,
the order-posted time, and truckers’ current locations—made
available through online trading through OFEX platforms.

This paper aims to leverage real-world data and advanced
predictive models to offer a new means of modeling
short-term TSR. Specifically, a lagged coefficient weighted
matrix-based multiple linear regression (Lag-WMR) model-
ing approach with the selection of exogenous variables by the
light gradient boosting (LGB) method is proposed to predict
the short-term TSR. Its predictive performance is compared
with the traditional time series forecasting approaches and
machine learning methods.

This investigation is distinct from the literature because
it contributes to the multifaceted investigations into TSR
forecasting and freight econometrics. First, this paper demon-
strates the existence of correlations between the rates on
alternative routes (between-route correlation) and presents a
temporal approach for addressing the issue in the short-term
predictive analysis by considering the between-route corre-
lation and the dependency between historical and current
TSR (temporal correlation). Second, the conditions that aug-
ment the performance of the proposed model are discussed.
An in-depth analysis of the exogenous factors that influence
predictive performance can help practitioners choose appro-
priate variables and predictive models. Third, we detail the
specification of a lagged weighting matrix for forecasting
modeling (e.g., how routes are inter-related). Instead of using
traditional weighting matrices, a lagged weighting matrix is
proposed and compared with the matrix calculated based on
the Pearson correlation coefficient. The proposed weighting
matrix helps account for more temporal characteristics of the
between-route correlation of the TSR.

II. LITERATURE REVIEW
In freight rate forecasting, the objects are typically classified
into two categories: spot freight rate and contract freight rate.
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A contract rate is the price that a carrier and the third-party
logistic (3PL) agree on to move a shipper’s freight in a set lane
over a set period, and a spot rate is a price that a shipper offers
on the spot to move a load from point A to point B. It can be
easily understood that a contract rate is a long-term route-
based price with non-binding, whereas a spot rate is more
a concern of an immediate shipment order [6], which is so
dynamically based on market conditions that they can change
over the course of a day. When addressing a forecasting issue,
it is easier to reach much higher accuracy and less forecast-
ing variability for a contract than spot rates. Additionally,
when referring to improving the accuracy of prediction, for
a contract rate, we could increase the model’s performance
by adding volume, rates of adjacent routes, and retraining of
the model, whereas for spot rate, there is no general method
to improve forecasting accuracy. For example, if adding the
past value of the contract rate, the model updated with the new
information may not improve yet because of barely short-
term information transmission between the spot and contract
rate.

One set of studies has investigated the pricing of
less-than-truckload (LTL) shipments, which are less than
10,000 pounds. Baker [12] examines LTL carriers’ practices
for 64 city-pairs based on published freight rates collected
from 24 large LTL carriers concerning the exploration of the
variance of net rates that carriers charge for transportation
between the same two cities, the extent of discounts that
carriers offer for shipments, and practices regarding carries’
class rate. Smith er al. [13] use data from large US LTL
carriers to estimate a regression model to predict revenue
for different customers in different lanes with transportation
characteristics of shipment information (e.g., cargo density,
shipped weight) Kay and Wasring [10] use publicly available
data to estimate a nonlinear regression model concerning an
investigation of tariff-based rates. Ozkaya et al. [14] use LTL
market data from Schneider Logistics to develop a regression
model to estimate LTL market rates.

A second set of studies has examined factors that affect
the pricing on the full truckload (also known as truckload)
spot market. Caldwell [9] develops a regression model to
estimate the extent that lead time and transportation fac-
tors (e.g., distance, origin, and destination of load) affect
the full truckload shipment price. Lindsey et al. [15] esti-
mate a regression model with spot market transaction data
provided by a third-party carrier to predict lane/shipment-
level spot prices. This model considers factors including
lane (e.g., traffic congestion along the route, lane miles) and
shipment (e.g., distance, type of freight, national transport)
predictors. Scott [16] explores how shipment participants’
(shippers and carriers) factors influence the price premium
for a spot market shipment by using a private transaction
dataset from a large national shipper. Budak ef al. [8] imple-
ment an artificial neural network and quantile regression to
forecast a TSR based on Turkey highway data. They apply
the model in a route-based approach and general approach to
forecast spot marketing rates that incorporate both shipment
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(e.g., load, freight type), carriers (e.g., vehicle type), and
market (e.g., unit price of fuel, month variable). Bai [7] devel-
ops a nonlinear regression model that incorporates predictor
variables to forecast lane-level spot and contract rates, with
a comparison that uses the autoregressive integrated moving
average (ARIMA) model and conventional nonlinear regres-
sion model. Miller [17] develops an ARIMA framework to
develop forecasts for three time series of monthly archival
truckload trucking prices by using two public data sources,
which also examines the evolution of price based on the
temporal dynamics of the freight market.

This paper’s contributions differ from the aforementioned
studies. The first contribution shifts from considering the
same predictor variables set for each lane, to incorporate the
importance of variable assessment in a regression model to
select the true factors that actually influence the route-specific
TSR, because the market rate of each lane may differ. Second,
unlike the aforementioned studies that have forecast prices
by using only the conventional macro-factors (e.g., distance,
weight of shipment), this manuscript focuses on developing a
framework to predict short-term route-level TSR rates using
intraday dynamics of transaction data with consideration of
both temporal and between-route correlations. As before the
arising of online freight exchange platforms, shippers and
truckers mainly determine the TSR based on the empirical
rates information, e.g., the past rates on a specific route and
the latest TSR of the neighboring routes. In this case, we not
only consider the temporal correlation as typical time series
forecasting models do but also incorporate the between-route
correlation in our new model.

Developing such a model to predict the short-term route-
level price is valuable for carriers and shippers to capture
the current temporal dynamics of TSR and bargain effec-
tively. For example, if today’s spot market rate is higher
than yesterday’s, shippers and carriers may reach a higher
negotiation price, and more carriers tend to be more motivated
to share capacities for more revenue. This model is estab-
lished on the basis of the multiple regression model because
it allows us to find the functional relationships among the
dependent variables and explanatory variables; however, they
are appreciated because of practical advantages, such as being
relatively easy to implement, the requirement of less compu-
tational power than other statistical methods (e.g., neural net-
work, genetic algorithm), satisfactory prediction ability, and
increased availability of data through smart metering [18].
Multiple regression presents satisfactory predictability in
short-term forecasting. For example, Saber and Alam [19] use
big data in a power system to estimate a multiple regression
model for short-term load forecasting and explore how dif-
ferent components of weather (e.g., humidity, temperature)
influence load demand.

Outside the scope of this article, there are several appli-
cations for multiple regression models: Silva et al. [20]
implement a regression model to estimate the area at risk
and environmental variables that best relate to the disease
to municipalities in the state of Rio Grande do Sul and
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demonstrate that the model had certain general employing;
Seo et al. [21] present a multiregression-based framework
to efficiently and accurately determine the load rating of
complex steel bridges, and the findings display accurate and
rapid prediction of a load rating, given unknown truck data.

The remainder of this paper is organized as follows.
Section III describes the proposed methodology and explains
how the multiple regression model is optimized. Section IV
contains the application of the framework and presents a
preliminary analysis of the data. Section V displays related
results and discussions. Section VI summarizes the paper and
suggests topics for further research.

lIl. METHODOLOGY
This section aims to provide insights into the general con-
cept of the proposed model, to better understanding how
the devising framework is established. Three conventional
models are used in the framework: simple linear regression
model, multiple regression model, and machine learning. The
multiple regression model is used as the basis of the proposed
model, and the simple linear regression model and machine
learning are used to optimize the multiple regression model.
The proposed framework for creating a regression model to
perform short-term TSR forecasting is described herein.

The relevant framework comprises three pieces (Figure 1):

The Online_1 component (Step 1) is used to collect field
data. A database is derived from the OFEX platform, which
provides trucker data (e.g., types of truck, length of truck),
shipper data (e.g., shipper ID, registration place of shipper),
order data (e.g., specified type of truck, type of cargo), and
TSR data (e.g., price, trucker ID, the closed order date). The
integration of the aforementioned data is further used for
the preliminary analysis, which helps develop a thorough
investigation of TSR that makes the best use of the micro
trucking data.

The Offline component is used to illustrate the proposed
model in detail and comprises three steps (Step 2 to Step 4):

In Step 2, we compute the lagged coefficient-based
weighted matrix. Before the emergence of the OFEX plat-
form, truckers and shippers referred to historical rates when
bargaining; thus, we propose that the weight matrix should
include the time-lagged correlation between route-specific
rates. Inspired by Nimon [22] summary of the nature and
meaningfulness of variables in a linear regression model,
we establish a time-lagged matrix as weights in proposed
model to describe the influences from regional rates, and the
element of this matrix is defined as the lagged coefficients,
which is calculated as follows:

y! =a0+aijy]f.—‘, Vi, jefl,....n,i#j} (1)

where the dependent variable y represents the vector of any
one route-specific rate on day t, yj’._l represents other rates
on day #-/, and the constant o9 and coefficients «;; are to be
estimated from the data. To distinguish it from other matrices
in the following analysis, we define this time-lagged matrix
as W, and W, is the asymmetric matrix.
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FIGURE 1. Structure of the proposed framework.

In Step 3, we determine which factors actually influence
route-specific rates. According to the data information in
Step 1, a basic variable set is initially established using
information collected in Step 1. To identify the different
variables’ combinations for each route, an ensemble method
LGB is implemented. An LGB is a novel gradient boosting
decision tree algorithm that Microsoft proposed in 2017 [23].
The importance of each variable is calculated explicitly for
each attribute in the dataset, namely, calculated for a single
decision tree by the amount that each attribute split point
improves the performance measure, and weighted by the
number of observations the node is responsible for. The vari-
ables importances are then averaged across all the decision
trees within the model. Multiple importances ranking plots
are created from the algorithm to show graphically how the
variables’ combinations differ by routes.

In Step 4, we create the Lag-WMR model. The Lag-WMR
model is constructed based on multiple regression (or multi-
ple linear regression). The conventional multiple regression
model is formulated as follows:

y=a+XB+e b)

Two modifications are proposed to optimize Equation (2).
First, influences from adjacent route-specific TSR are con-
sidered (defined as the WY term). Second, the differences in
the predictor variables at the lane level is considered. Hence,
the variate multiple regression is formulated as follows:

y=a+pWY +XB+¢ 3)

where y denotes the dependent variables; X denotes the
independent variables; « is the constant;p and S are the
regression parameters; and ¢ is the error term. Specifically,
W is the one-day lag n x n weighting matrix W, calculated
in Step 2, and the X term is the result of variable selec-
tion in Step 3. We digress here to note that Equation (3) is
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Step 6:
Sensitivity Analysis

Step 7:
Recommendations

very similar to the spatial econometric model (e.g., spatial
autoregression model) [24], but the use of a spatial econo-
metric model here is inappropriate because defining “spa-
tial dependency” is difficult. Spatial dependency is ‘‘the
propensity for nearby locations to influence each other and
to possess similar attributes” [25]; in other words, things
that are closer together tend to be more related to each other
than are things that are far apart. However, for route-specific
rates, although we can say that they may have correlations,
we cannot assert the existence of spatial dependency without
grounds to do so. In one region, any route may intersect
at least two other routes; thus, it is difficult to define the
concept of “contiguity” or ‘“‘distance’’ among route-specific
rates.

This optimized model is used for short-term TSR forecast-
ing in the Online_2 part (Step 5 to Step 7):

In Step 5, we compare the Lag-WMR model with conven-
tional models. The time-lagged coefficient-based regression
model is compared with the traditional time series model and
machine learning approach. The comparison can be statisti-
cally investigated, namely, how well each model is capable
of predicting short-term TSR. The prediction model with the
smallest values for the evaluation criteria is considered the
best fit model.

In Step 6, we conduct sensitivity analysis using the Lag-
WMR model to determine how temporal and between-route
correlations, different weighted matrices and variable selec-
tion affect the rates’ predictions. Statistical information helps
us draw a conclusion regarding whether the consideration
of different variable combinations and time-lagged matrices
affect the predicted rates.

In Step 7, we propose recommendations based on the afore-
mentioned analyses that reflect some significant predictor
variables and types of weight matrices that affect short-term
TSR prediction.
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IV. APPLICATION OF PROPOSED FRAMEWORK

A sample application in the trucking industry of this frame-
work is detailed in this section by following the steps of the
framework.

A. FIELD DATA

1) PRELIMINARY DESCRIPTION

This paper uses online trading data obtained from an OFEX
platform based in Southwest China. The OFEX platform uses
an online mechanism to allow carriers and shippers to bid
competitively on a load. The detailed transaction data were
obtained from the Truck Alliance [26]. These data reflect
the truckload, long-distance, general freight trucking activ-
ities, and concern the intraday detailed transaction prices

IFor brevity, trips from city i to city j are defined as ‘iTj’, where ij €
[Chengdu (C) , Guiyuang (G) , Chongqing (Q) , Kunming (K)], and i # j.
For example, “CTG’” means a trip from Chengdu to Guiyang; Gan et al. [28]
map three typical operational models of truckers in the southwestern part
of China indicating that the main corridors between capitals are unique,
because most truckers in China prefer the highway. Therefore, although there
are many realized trips between a given origin—destination (OD), the routes
between capitals are considered identical, that is, highway-orientated trans-
portation routes.

VOLUME 8, 2020

shippers paid for the transportation of freight transported
by different trucks (e.g., a heavy, medium, or light truck),
in which a heavy truck is the primary type of equipment used
to haul most freight. The truck classification is determined
based on the vehicle’s gross vehicle weight rating, grouped
broadly as light trucks, medium trucks, and heavy trucks.
A heavy truck refers to tractors, trailers, and straight trucks
with a gross vehicle weight of more than 3500 kg. By 2017,
the Truck Alliance had already signed up over one-third
of China’s 6 million truck drivers, and currently, it hosts
70,000 transactions—equivalent to $110 million in shipping
costs—each day through its app and website (IFC, 2017).
In this study, daily data with a continuous time span of six
months, starting from March 1, 2018 are assembled. These
data are the full data of the OFEX platform and are not
seasonally adjusted. Given the coverage of freight on Truck
Alliance.com, we can reasonably view these data as having
an acceptable degree of validity in capturing the southwestern
spot market full truckload prices in the respective sectors.
The data covers the southwestern part of China
(Figure 2) and the colored routes represent the shortest routes
between pairwise trips from Google Maps. Southwest China
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TABLE 1. lllustration of sample data.

Description Example
Order ID 15201265
Shipper ID 13023651
Shipper registration province Chengdu
Shipper registration city Sichuan
Creation time 2018/3/11
Deal time 2018/3/12
Deal price(CNY) 5,320
Order departure Chongging
Order destination Guiyang
Type of truck Heavy
Length of truck (m) 13
Type of cargo Vegetable

contains three provincial capitals—Chengdu, Kunming, and
Guiyang—and a centrally administered city (Chongqing),
which is one of the most promising areas with innovation
and technology. Southwest China’s combined nominal Gross
Domestic Product (GDP) in 2016 was US$ 1.15 trillion, mak-
ing the four provincial economies equivalent to the then 14th
largest economy in the world and with a total of over 190 mil-
lion population in an area as big as Western Europe and
its advanced engineering sectors are automotive, aerospace,
advanced manufacturing and marine [27]. In addition, South-
west China is piloting the opening up of the world’s largest
electricity market (worth approx £300 billion a year); The
pilot markets in Chongqing, Guizhou and Yunnan are worth
£20 billion a year [29]. In the aspect of technology, 70%
of all iPads and 50% of CPUs in the world are made in
Southwest [30].

Each TSR record includes information on the truckers,
shippers, types of transported goods, and other relevant infor-
mation. In all, we obtain 179,623 records, with a default
record if the status of an order is “Closed/Deal.”” An illus-
tration of the sample data is presented in Table 1. Such
data were rarely available in early studies of China’s truck-
ing industry. A data cleaning procedure is implemented to
exclude records with null values and outliers. We first remove
null values and then observed that the distribution of TSR
is close to a Gaussian distribution. Next, we implement a
two- boundary outlier elimination to reject abnormal rates
with different standard deviation boundaries. After several
experiments on the combination of limits and standard devia-
tion, 1.65 standard deviations and 1.96 standard deviations of
TSR are selected as the first and second limits for elimination
boundaries, respectively, and the final data set retains more
than 90% of the records.

Figure 2 displays the truck distribution of the trucking
market in Southwest China. Figure 2b shows the market
shares of the types of truck, and Figure 2c and Figure 2d show
the overall and route-specific distribution of length of heavy
trucks, respectively. Figure 2b indicates that heavy trucks
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are the key type of truck in the study area, with a market
ratio reaching up to 84%. At the heavy truck branch level,
generally, trucks with a length of 9.6 m and 13 m account for
86.5% of the total (Figure 2c). Figure 2d also demonstrates
the big market ratios of trucks of 9.6 m and 13 m in length
from a route-specific view. Hence, we target heavy trucks
with a length of either 13 m or 9.6 m.

Next, we discuss the data selection procedures in this study.

2) SELECTION OF STUDIED OBJECT

We first investigate quantitively whether there are any rela-
tionships between the rates of the two truck length subsets:
9.6 m (denoted as M9.6) and 13 m (denoted as M13). Given a
specific origin-destination (OD), the corresponding Pearson
correlation coefficient (PCC) [31] is calculated as follows:

_ Cov(X,Y)  E[X—EX)X —E(Y))]
" Var(X)Var(Y) Var(X)Var(Y)

OX,Y “4)
where, Var (X) = E(X?) — [EX)]?, Var (Y) = E(Y?) —
[E(Y)]?, and X and Y are the intraday average rates of
M13 and M9.6, respectively. The intraday average rate p; is
calculated as follows:
mg
o = =0 ®)
my
where m; is the number of TSR at day r (t = 1,2,...,T),
and P; is the price at day ¢. Results of the PCC values
(0.2-0.7) are not strong correlations, indicating that M13 and
M09.6 are not necessarily correlated; however, they share
the same combination of freight type (Figure 3). For both
M13 and M9.6, the top four types of cargo are heavy cargo,
building, materials, commodities, and general cargo; thus,
given a specific route, a truck with a length of 13 m can
sometimes replace a truck with a length of 9.6 m, and vice
versa. As M13 and M9.6 are different objects, we pick the
object of the study by applying several statistical criteria.
From a general perspective, we consider (i) sample size,
(i1) counts of missing values in cargo information, and
(iii) coefficient of variation (CV) as our data selection criteria.
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FIGURE 4. Geographic information of the studied region.

The reasons why we use the three criteria are as follows:
(i) Sample size: As larger sample sizes have the obvious
advantage of providing more data for researchers to work
with, we prefer the sub-market with a larger sample size.
(ii) Missing values in cargo information: As we observed
that the fluctuation of rates/trip is influenced by combina-
tions of different types of transported goods, consideration
of the cargo information when discussing the rates changes is
essential. (iii) CV: CV is calculated for two main factors that
most influence rates, namely, posted orders and deal orders,
and computed as the standard deviation over the average. The
results are shown in Appendix A and Appendix B.

In terms of “null counts” and ‘“sample size” in
Appendix A, the sample size of M13 is almost twice that of
M19, and M13 has a smaller number of null values. As the
greater the number of null values, the more unusable the
data; thus, it is preferable to select samples with fewer null
values. Obviously, M13 has a much smaller null ratio (3.60%)
than M9.6 (18.20%). Appendix B shows that M13 has a
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lower average CV in both posted orders and closed orders
(0.192 and 0.195, respectively). The smaller the CV, the more
stable the market is likely to be. Based on a combination of
the aforementioned results, this paper focuses on the more
stable M13 in the following analysis.

B. LAGGED WEIGHTED MATRIX

Instead of presenting the time-lagged weight matrix directly,
we illustrate why we consider the devising matrix first.
We first visually display the temporal characteristics among
route-specific TSR as time series figures. In brief, we take
rates related to the city of Guiyang as examples to illustrate
the temporal correlations (Figure 4).

In general, Panel A illustrates the temporal correlations
between the rates of routes that share the same city of depar-
ture. The rates of GTC and GTK show similar dynamic
changes, beginning with a decline from March 18 to April 19,
then fluctuating until June 10, after which there is a down-
trend from June 20 to July 31, another uptrend at the
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TABLE 2. PCC results between rates of routes in M13.

OD

CTG CTK CTQ GTC GTK GTQ KTC KTG KTQ QTC QTG QTK
CTG 1 0211 | 0.114 | -0.276 | -0.178 | -0.301 | 0.111 | -0.132 | 0.189 | 0.673 | 0.341 | 0.154
CTK | 0.211 1 0311 | 0.232 | -0.145 | -0.319 | 0.224 | 0.328 | -0.167 | 0.107 | 0.129 | -0.151
CTQ | 0.114 | 0.311 1 -0.208 | -0.376 | -0.212 | 0.171 | 0.134 | 0351 | 0.121 | -0.091 | 0.263
GTC | -0.276 | 0.232 | -0.208 1 0.215 | 0.298 | 0.161 | 0.412 | -0.241 | 0.265 | 0.284 | -0.132
oD GTK | -0.178 | -0.145 | -0.376 | 0.215 1 0.234 | -0.154 | 0.214 | -0.146 | 0.198 | 0.212 | 0.104
GTQ | -0.301 | -0.319 | -0.212 | 0.298 | 0.234 1 0.127 | -0.211 | 0.343 | -0.213 | 0.241 | -0.144
KTC | 0.111 | 0.224 | 0.171 | 0.161 | -0.154 | 0.127 1 -0.433 | 0.321 | 0.269 | 0.209 | -0.187
KTG | -0.132 | 0.328 | 0.134 | 0.412 | 0.214 | -0.211 | -0.433 1 -0.263 032 | -0.118 | 0.243
KTQ | 0.189 | -0.167 | 0.351 | -0.241 | -0.146 | 0.343 | 0.321 | -0.263 1 0.249 | 0.092 | -0.189
QTC | 0.673 | 0.107 | 0.121 | 0.265 | 0.198 | -0.213 | 0.269 0.32 0.249 1 -0.082 | 0.424
QTG | 0341 | 0.129 | -0.091 | 0.284 | 0.212 | 0.241 | 0.209 | -0.118 | 0.092 | -0.082 1 0.186

QTK | 0.154 | -0.151 | 0.263 | -0.132 | 0.104 | -0.144 | -0.187 | 0.243 | -0.189 | 0.424 | 0.186 1

beginning of the August, and a subsequent downtrend. Panel
B shows the temporal correlations between the rates of round
trips. Visually, the trend of rates of GTC and CTG are likely
to be opposite to each other. Comparing the changing pattern
in the period studied, we demonstrated that from March 31 to
May 1 and from June 30 to July 31, the rates of GTC display a
concave shape, followed by a downtrend at the end of August,
whereas those of CTG display a convex shape, followed by
an uptrend along the tail.

As for the interval between the lowest points of each
series, for the rates of GTK, GTQ, and GTC, there are
approximately 50 days between the lowest points, whereas
for CTG, the next lowest rate is every 30 days. Moreover,
the GTC and GTQ rates are more stable than the other two
rates, because the oscillatory intervals for GTC and GTQ are
between 150 CNY/ton to 200 CNY/ton and 125 CNY/ton to
185 CNY/ton, respectively.

Inspecting Figure 4, The rates changes during the festival
appear to be larger than usual, which arouses our interests to
consider whether the festival should be considered as a key
factor for rates fluctuation. Generally, national festivals (usu-
ally three to seven days in China) can increase traffic demand.
In order to stimulate the holiday economy, the Chinese gov-
ernment proposed the toll-free policy for small passenger cars
on the national festivals since October 2012, this toll-free
policy encourages more people travel on the highways, and
thus causes severe highway congestions [32], which also
increase travel time and fuel consumption of the trucks and
thus result in higher roadway transportation prices. Further-
more, Chinese labor laws mandate that, for work during the
statutory holidays, the employer should pay the employee
no less than three times the normal wage rate [33], which
leads to rises in the transportation prices during the festivals
as well. Thus, it is necessary to observe the movements
of TSR before and after festivals. The period under study
includes three national festivals: the Sweeping Tomb Festival
(April 5-April 7), Labor Day (May 1-May 4), and the Dragon
Boat Festival (June 7-June 9). The four rates show significant
fluctuation during Labor Day: a brief rally is observed on
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the first day of the Labor Day Festival (May 1), the trucking
market erases the gains on May 2, and then the rates return
to normal. The above dynamic fluctuations of TSR time
series indicate that the TSR may display a boom-bust pattern
before and after the festivals but return to normal soon. Thus,
we consider the national festivals as one of the explanatory
variables in our initial feature set.

Furthermore, we use PCC (Equation 4) to quantify the
correlation of rates, in which X and Y are the rates of dif-
ferent routes in M13. The results are reported in Table 2 and
presented as a heat map for ease of reading.

The cell color in Table 2 provides a perceptual intuition of
the correlation between rates of different routes. Remarkably,
the rates of CTG show an obviously positive correlation with
those of QTC (0.673), QTG (0.341), and GTQ (0.301) but
also a negative correlation with the rates of GTC (—0.276).
Additionally, the greatest degree of correlation with the rates
of GTC is observed in the rates of KTG (0.412), but these
rates also show correlations with the rates of GTQ (0.298),
QTG (0.284), CTG (—0.276), QTC, (0.265), and so forth.
We observe that the rates of a given route show different
degrees of correlation with other route-specific rates. How-
ever, the range of PCC, 0.3(-0.3) — 0.7, does not show
strong correlations; thus, using the PCC values as the weights
may be inappropriate. Therefore, we consider different trans-
fer correlations as a weighted matrix calculated in Equa-
tion (1). The results are displayed in Table 3. Each element
in Table 3 means the change in the value of one route-specific
rate corresponding to the unit change in the values of other
route-specific rates, which will be used in the forecasting
model.

C. PREDICTOR VARIABLES’ SELECTION

We believe propose that the more effective information we
use, the more accurate our prediction will be. In the literature,
most of the explanatory variables have been chosen empiri-
cally and used one predictor set by default for every object.
However, in reality, the variable combinations may vary by
route. To solve this issue, we initialize a basic predictor
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TABLE 3. Time-lagged weighted matrix W;.

oD
CTG | CTK | CTQ | GTC | GTK | GTQ | KTC | KTG | KTQ | QTC | QTG | QTK
CTG - 0.108 | 0.201 | 0.615 | -0.065 | -0.101 | -0.045 | 0.030 | -0.031 | 0.433 | 0.087 | 0.319
CTK | -0.111 - <0367 | 0.702 | 0.301 | -0.144 | -0.076 | 0276 | 0.132 | 0.128 | 0.114 | 0.063
CTQ | -0.282 | -0.352 - -0.140 | -0.410 | 0.131 | -0.065 | 0.076 | 0.201 | 0.028 | -0.060 | -0.043
GTC | -0.983 | 0346 | 0.132 - 0.093 | -0232 | 0.012 | 0389 | 0.043 | 0.034 | -0.102 | 0.194
op | GTK | 0212 | 0361 | 0076 | 0.142 - -0.087 | -0.076 | 0.108 | 0.043 | -0.083 | 0.218 | 0.199
GTQ | 0382 | -0.018 | 0.104 | -0.149 | -0.063 - 0.259 | -0.093 | -0.138 | 0.427 | 0.032 | 0.174
KTC | -0.319 | -0.673 | -0.753 | 0.427 | 0.467 | 0.798 - 0429 | -0.124 | -0.163 | 0.294 | 0.043
KTG | -0.043 | 0341 | 0.136 | 0392 | -0.132 | 0.432 | -0.084 - 0.103 | 0202 | -0.043 | 0.293
KTQ | 0.498 | 0.034 | 0241 | -0.239 | -0673 | 0.613 | 0.127 | -0.076 - 0482 | 0.193 | -0.052
QTC | -0.026 | 0.048 | 0.166 | 0.345 | -0.028 | -0.065 | -0.034 | 0.081 | -0.012 - 0.293 | 0.026
QTG | 0.482 | 0.012 | 0361 | 0.561 | 0.853 | -0.031 | 0.032 | -0.008 | 0.154 | 0.285 - 0.265
QTK | 0.003 | -0.329 | -0.351 | 0.901 | 0.205 | 0.074 | 0.063 | 0.210 | -0.023 | 0.342 | -0.038 -

TABLE 4. Lists of features per trip.

Feature L
Feature description
number
Fl Whether the day is a weekend: 0 for weekends, and 1 for
weekdays
m Whether the day is a state holiday: 0 for state holidays, and 1
for weekdays
F3 Number of unoccupied truckers at departure city
4 Number of unoccupied truckers at departure city with ‘Heavy

truck’ at a length of 13 m
F5 Total order inflow into departure city
Fo6 Total order outflow into destination city
F7 Sum of posted orders
F8 Sum of closed orders
F9 Sum of posted orders with ‘Heavy truck’ at a length of 13 m
F10 Sum of closed orders with ‘Heavy truck’ at a length of 13 m

1- Intraday median value of TSR

kil 2- Weekly median value of TSR
2 1- Intraday 75th percentile of TSR
2- Weekly 75th percentile of TSR
F13 1- Intraday mean value of TSR
2- Weekly mean value of TSR
F14 1- Intraday minimal value of TSR
2- Weekly minimal value of TSR
F15 1- Intraday maximal value of TSR
2- Weekly maximal value of TSR
Fl6 1- Intraday range of TSR
2- Weekly range of TSR
F17 1- Intraday standard deviation of TSR

2- Weekly standard deviation of TSR

set according to the data structure and empirical experience
and use variable assessment tools to select the appropriate
predictor variables for every single route, to collect the pre-
dictor variables that affect the route-specific TSR. By con-
trast, it is challenging to consider a large number of potential
input combinations, the potential correlations between inputs,
very weak correlations between future dependent variables
and current and past inputs, and time-varying structures.
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In particular, a large number of possible input combinations
can lead to the risk of overfitting. To solve this problem, LGB
is used to select explanatory variables. Table 4 summarizes
the candidate list of initial predictor variables X;, in which
variables F11—F17 represent the statistical characteristics of
temporal correlation. The importances of the ranking plots
are displayed in Figure 5.

Figure 5 shows the relative importance of the variables
based on the feature importance of the LGB. Obviously,
each OD has different sets of important variables, which
implies the inappropriateness of the default identical exoge-
nous variables set for each route. We observe that the his-
torical statistics of rates F11-F17 all rank at the top in most
cases. For example, GTK, GTQ, and KTQ are much more
sensitive to the Intraday 75th percentile of TSR (F12-1),
indicating carriers and shippers on these routes pay more
attention to the intraday higher TSR to offer a higher price
when making decisions. By contrast, carriers and shippers
located in KTC, CTG, and CTQ care much more about the
range of TSR (F17). In addition, we observe that the number
of posted/closed orders and unoccupied truckers remain crit-
ical variables for some routes, such as QTG and QTC. The
above aforementioned results demonstrate the existence of
the diversity of variable combinations of different routes, and
we demonstrate that choosing appropriate input variables is
likely to help improve the accuracy of predictions. According
to the results in Figure 5, features with relative importance
higher than 0.1 are selected as the exogenous variables of the
Lag-WMR model (Table 5).

D. LAG-WMR MODEL

According to Equation (3), to create a Lag-WMR model,
we must calculate a weighting matrix and variable combi-
nations from the weights and variables identification. The
analytical results of the time-lagged matrix and predictor
selections are combined into a Lag-WMR model. As afore-
mentioned, each route-specific set of variable combinations is
presented in Table 5, and the weights assigned to rates of adja-
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cent routes are presented in Table 3. To solve the Lag-WMR
model, an ordinary least square (ols) method is implemented.
To calculate the optimal estimate for «, 8, and p, a choice-
criterion is necessary; in the case of OLS, the criterion is the
sum of the squared residuals. We calculate «, 8, and p for the
case in which the sum of all squared residuals (&) is minimal,

that is,
min Z (e)2

a.B.p

(6)

The residual ¢ is named as the difference between depen-
dent variable y and the estimated systematic influence on X
and WY on y:

)

where y denotes the dependent variables; X denotes the inde-
pendent variables, WY represents influences from adjacent

e=y—oa—Bx—pWY
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route-specific TSR; « is the constant;p and g are the regres-
sion parameters; and ¢ is the error term. Combining Equa-
tion (6) and Equation (7), we obtain the function as follows:

min Y —a—px—pWY)? =S5@.5.5  ®
a.B.p
The above solving process is achieved through Python 3.7,
and the one-step-ahead TSR predicted from the Lag-WMR
model are compared with the conventional models in a statis-
tical manner, which we show in Section V.

V. RESULTS AND DISCUSSION

A. FORECASTING COMPARISON

The proposed Lag-WMR model is compared with two bench-
mark methods, a typical time series prediction model ARIMA
and a machine learning approach LGB model. ARIMA is a
traditional time series forecasting model that has been widely
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TABLE 5. Selected variables for each route.

OD Selected variables

CTG F17-2, F16-1, F11-1, F12-1

CTK F15-1, F11-1, F14-1, F12-1, F7
CTQ F17-1, F12-1, F16-1, F7, F14-1, F11-1
GTC F14-1, F16-1, F12-1, F7, F14-2
GTK F12-1, F4, F5

GTQ F12-1, F7, F14-1, F16-1, F9

KTC F17-1, F16-1, F5, F3, F14-1

KTG F14-2, F12-2, F15-1, F7, F13-1
KTQ F12-1, F11-1, F8, F9, F7

QTC F10, F15-1, F16-1, F17-1

QTG F3, F17-1, F12-1, F13-1, F16-2, F5
QTK F11-1, F16-1, F4, F20-1

applied in many fields of study such as finance [34], ship-
ping [35], logistics [17], and electric power [36] and recently
ARIMA model has been proved to be superior to the artificial
neural networks in the short-term forecasting [37], [38]. And
LGB is a promising ensemble machine learning method with
a gradient boosting framework and a tree-based learning
algorithm that is used for ranking, classification and pre-
diction [39], [40]. The training- (in-sample) and test- (out-
of-sample) samples are considered for all employed models
and we consider two performance measures: mean absolute
error (MAE) and mean absolute percentage error (MAPE),
to assess the forecast accuracy. The performances measures
are calculated based on the following equations:

N
1.
MAE = Zl 19 — il )
=
1 &[5 — yil
MAPE = 100 x — ) — % (10)
N

i=1

First, the appropriate ARIMA model is to be selected to
forecast the group of the TSR time series. ARIMA model
is determined by the lowest Akaike information criterion
(AIC) [41] and the stationarity is examined by Phillips-Perron
(PP) test [42] using the auto.arima function in the Forecast
package provided by programming language R. According
to the AIC, the selected model is ARIMA (2, 1, 2).

Once the ARIMA model has been decided, the in-
sample and out-of-sample predictions can be conducted.
We divide the dataset into training- (in-sample) and test-
(out-of-sample) samples. The in-samples are from March 1,
2018 to August 11, 2018, and the out-of-samples are
from August 12, 2018 to August 31, 2018. In Table 6,
we first present the in-sample forecast performances of Lag-
WMR, LGB and ARIMA models by means of MAE and
MAPE. Then in Table 7, the out-of-sample forecast perfor-
mances of the employed models are displayed. According
to Table 6, Lag-WMR model performs better than LGB and
ARIMA models in most cases. According to Table 7, for
all cases, Lag-WMR is superior to LGB and ARIMA in the
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TABLE 6. Comparison results of the In-sample forecasts.

In-sample period

oD Lag-WMR LGB ARIMA

MAE MAPE | MAE MAPE | MAE MAPE
CTG 0.015 0.064 0.016 0.068 0.029 0.125
CTK 0.016 0.040 0.031 0.078 0.066 0.165
CTQ 0.023 0.058 0.046 0.115 0.061 0.155
GTC 0.011 0.033 0.025 0.074 0.046 0.138
GTK 0.014 0.065 0.014 0.065 0.038 0.177
GTQ 0.022 0.031 0.021 0.029 0.106 0.149
KTC 0.013 0.035 0.026 0.071 0.069 0.185
KTG 0.017 0.051 0.028 0.084 0.054 0.162
KTQ 0.018 0.054 0.062 0.186 0.055 0.165
QTC 0.010 0.021 0.030 0.064 0.094 0.198
QTG 0.029 0.068 0.036 0.085 0.078 0.184
QTK 0.013 0.062 0.025 0.120 0.031 0.146

Note: Values in bold indicate the best performance.

out-of-sample TSR forecasts. These low MAPEs reflect that
the differences between the actual and predicted TSR are
very small. However, the performances of different models
presented above are judged solely in terms of MAPE and
MAE. These comparisons give the ordinal rankings of the
models but provide no evidence of whether the forecasts from
one particular model are significantly better than those from
another model in a statistical view. To address this issue, the
Diebold-Mariano (DM) test [43] is implemented to compare
the prediction results between the employed models. The DM
test is widely used in determining whether the differences
of time series predicting accuracy by different models are
substantially crucial from a statistical perspective [44]. The
results, presented in Table 8, show that it is possible to
reject the null hypothesis that Lag-WMR and LGB (ARIMA)
have the equal predictive capacity at the traditional levels of
significance. In other words, the Lag-WMR forecast error is
significantly different from that of LGB and ARIMA. Indeed,
the results of DM test provide additional evidence to demon-
strate the Lag-WMR model generates better accuracy in TSR
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TABLE 7. Comparison results of the out-of-sample forecasts.

Out-of-sample period

OD Lag-WMR LGB ARIMA

MAE MAPE | MAE MAPE | MAE MAPE
CTG | 0.012 0.052 0.020 0.088 0.030 0.131
CTK | 0.008 0.042 0.020 0.103 0.031 0.158
CTQ | 0.023 0.053 0.062 0.146 0.055 0.129
GTC | 0.008 0.036 0.020 0.087 0.032 0.137
GTK | 0.015 0.058 0.019 0.074 0.043 0.165
GTQ | 0.016 0.033 0.027 0.056 0.073 0.151
KTC | 0.008 0.032 0.021 0.088 0.043 0.178
KTG | 0.019 0.056 0.033 0.098 0.052 0.154
KTQ | 0.010 0.065 0.038 0.261 0.024 0.161
QTC | 0.007 0.023 0.021 0.069 0.045 0.149
QTG | 0.025 0.064 0.069 0.174 0.068 0.171
QTK | 0.013 0.059 0.031 0.142 0.027 0.124

Note: Values in bold indicate the best performance.

TABLE 8. DM test for the out-of-sample forecasting results.

oD DM test statistics
Lag-WMR vs. LGB Lag-WMR vs. ARIMA

CTG -1.912 (0.056) " -2.412 (0.015)™
CTK —1.826 (0.072)" -2.268 (0.023)™
CTQ -1.667 (0.097)" -1.891(0.060) "
GTC -1.715 (0.087)" -1.812 (0.070)"
GTK —2.281(0.022) -1.756 (0.078) "
GTQ —2.412 (0.016) -1.785(0.077)"
KTC —1.981 (0.048) ™ -1.815(0.070) "
KTG -1.710 (0.087)" -1.822 (0.068) "
KTQ —2.445 (0.014) ™ -1.756 (0.078)"
QTC 2.350 (0.021) ™ -2.368 (0.018) ™
QTG 2.114 (0.036) ™ 2.218 (0.025)™
QTK —2.587 (0.010) -2.058 (0.039)™

Note: P-values are reported in the parentheses. ** refers to a significance
at (5%), * refers to a significance at (10%).

forecast than LGB and ARIMA models and this improvement
is statistically significant. This further strengthens the earlier
conclusions derived from the MAPEs and MAEs and indi-
cates that a machine learning approach might not be the best
choice for the short-term TSR prediction.

Regarding the above analysis, while the average of MAPEs
of Lag-WMR model (0.049) is lower than that of ARIMA
(0.096) and the DM test statistics between Lag-WMR and
ARIMA is statistically significant makes theoretical sense
in that it suggests the Lag-WMR model captures the move-
ment of TSR better, there is less explanation for why the
Lag-WMR model plays such a strong predictive role. One
potential explanation is that ARIMA modeling very simply
makes use of data from either the recent or more distant past
to model the existing data as well as to make predictions of
future behavior, while the Lag-WMR model not only deeply
investigates the temporal correlations among the recent and
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past TSR by calculating a set of rates statistics but also
considering the shippers and truckers’ on-the-spot behaviors
and transforming them as critical terms in the model. Turning
now to the spot market, the on-the-spot shippers and truck-
ers mainly determine the rates based on the empirical rates
information in one region, e.g., the past rates on the route
and the latest spot rates of the neighboring routes. Before
making decisions, truckers tend to first compare orders on the
online exchange platform at the current city. This is because
truckers are willing to haul high-value orders. And to make
it a round trip, they also try to find a shipment back from the
destination of the current shipment. Thus, truckers activated
in one region prefer to pick the order that (i) the origin of
the freight is at the same city as the truckers, (ii) sufficient
orders back from destination and (iii) whose spot rate is the
highest. Consequently, the route with more high-value orders
will attract more truckers and thus results in the shortage of
truckers on other routes, and then followed by the rises in spot
rates on other routes. In this case, the behaviors of the truckers
on selecting the on-the-spot orders could influence spot rates
on alternative routes. These on-the-spot behaviors may be
associated with between-route correlation among TSR in one
region, which is neglected in the ARIMA model.

Another concern that often expressed by industry practi-
tioners seeking to utilize the statistical model for applied uses,
is about the choices of alternative routes when introducing the
between-route correlations into the TSR forecasting. First,
the routes between capitals undertake approximate 70% of
cargos in the southwestern area and thus other non-capital
cities are not considered. Second, the order choice behaviors
of truckers show strong regional characters. Gan et al. [28]
demonstrate that truckers in the southwestern area are pre-
ferred to operate in one region with a relatively small radius
(about 300—400 km) as truckers tend to stick with the routes
that they are familiar with. Similarly, the southwestern ship-
pers hardly cooperate with the truckers outside this region.
As a result, the routes between the four southwestern capital
cities are included in the final model.

B. SENSITIVITY ANALYSIS

This paper aims to develop an accurate time series forecasting
model to capture the movements of TSR and, in doing so,
shed some lights on the underlying factors that give rise to
the improvement in shaping and predicting TSR. To better
address this regard, several sensitivity analyses are conducted
in this section. The first analysis is to examine whether incor-
porating temporal and/or between-route correlations make
improvements in TSR forecast. And the other two are to
check the effectiveness of the time-lagged weight matrix and
variable selection for short-term forecasting: (i) the extent of
prediction power after wiping out the variable selection in the
conventional multiple regression model, and (ii) the extent
of prediction power after replacing the one-day lag weight
matrix with conventional PCCs in the proposed model to
evaluate in terms of MAE and MAPE. Results are presented
in Table 9, Table 10 and Table 11, respectively.
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TABLE 9. Comparison results of Out-of-sample forecast with and without temporal and between-route correlations.

Out-of-sample period
cons:;li%;r:zﬁl:l:(j)irtgl and c](;flfi(f(;]rl?i[“llg2 t\;’rll;}[l)(()):;] ci;ji(gfﬁgé':;gg;_ DecreaseI:s in MAPE (%) Decreasses in MAPE (%)
between-route correlation (wiping out 1j01.1te correlation after mcorporatn.lg after mcorporatmg.
OD correlations Xp term from (wiping out WY term temporal correlation between-route correlation
Equation (3) ) from Equation (3) )
et _ iech
MAE_]1 MAPE_1 MAE_2 MAPE_2 | MAE_3 MAPE_3 ™ APE_ZD ‘ffM APE1)% | (M APE_?‘EfM APE.1)%
CTG 0012 0.052 0.026 0.112 0.034 0.147 6.0% 9.5%
CTK 0.008 0.042 0.021 0.108 0.029 0.151 6.6% 10.9%
CTQ 0.023 0.053 0.054 0.124 0.057 0.132 7.1% 7.9%
GTC 0.008 0.036 0.024 0.107 0.030 0.134 7.1% 9.8%
GTK 0.015 0.058 0.033 0.129 0.041 0.157 7.1% 9.9%
GTQ 0016 0.033 0.057 0.117 0.072 0.148 8.4% 11.5%
KTC 0.008 0.032 0.026 0.103 0.035 0.138 7.1% 10.6%
KTG 0.019 0.056 0.043 0.126 0.045 0.132 7.0% 7.6%
KTQ 0.01 0.065 0.022 0.140 0.022 0.141 7.5% 7.6%
QTC 0.007 0.023 0.030 0.100 0.037 0.121 7.7% 9.8%
QTG 0.025 0.064 0.043 0.111 0.053 0.135 4.7% 7.1%
QTK 0013 0.059 0.022 0.098 0.023 0.106 3.9% 4.7%
TABLE 10. Comparison of out-of-sample forecasting results with different weighted matrices.
oD
| ct6 | cx | cro | 6rc | ok | 6 | ktc | k16 | k1tQ | Qrc | Q16 | QK
Lag-WMR with time-lagged matrix
MAE 0.012 0.008 0.023 0.008 0.015 0.016 0.008 0.019 0.010 0.007 0.025 0.013
MAPE 0.052 0.042 0.053 0.036 0.058 0.033 0.032 0.056 0.065 0.023 0.064 0.059
Lag-WMR with matrix defined by Pearson correlation
MAE 0.047 0.020 0.080 0.033 0.028 0.088 0.027 0.026 0.036 0.030 0.056 0.051
MAPE 0.203 0.099 0.187 0.143 0.107 0.182 0.111 0.078 0.246 0.102 0.141 0.237

Note: Values in bold indicate the best performance.

Table 9 presents the results of either wiping out the tempo-
ral or between-route correlations for the out-of-sample TSR
forecasting. The most salient result is that the performance
improvement brought by the combination of temporal and
between-route correlations is superior to that of adopting
only one of them. The finding that the complete Lag-WMR
model has the lowest MAPE values is consistent with the
earlier augment that temporal and between-route correlations
exist in TSR time series. Turning now to the two rightmost
columns in Table 9, the Diff’ is larger than Diff” for all cases.
Regarding the interpretation of this finding, larger decreases
in MAPE achieved by incorporating the between-route cor-
relation indicates the on-the-spot shippers and truckers rely
more on the TSR information of neighboring routes. This
finding is consistent with the southwestern truckers’ order
choice behaviors — preferring to operate in one region and
pick the best deal.
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From the results of Table 10, the Lag-WMR with a time-
lagged weighting matrix is found to achieve better forecasting
results than those achieved using the Pearson correlation as
a weight matrix. This finding may be attributed to the con-
sideration of the lagged correlations of the past rates, and to
some extent, this result corresponds to the industry behavior
that truckers or shippers proposing prices for the next day
will depend on recent historical rates for their decisions,
which cannot be reflected in a Pearson correlation. Turning
now to Table 11, to demonstrate the general practicability
of the variable selecting process, the conventional multiple
linear regression (MLR) is used as the base model instead of
the Lag-WMR model. Regarding the values of performance
measures, MLR model with the selected variables (by LGB)
outperforms that with the full variables, which indicates that
variable selection makes a great contribution to the accu-
racy of short-term rates’ prediction. Additional explanatory
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TABLE 11. Comparison of out-of-sample forecasting results with different independent variable sets.

oD
| cr6 | ek [ crQ | are | ok | 6o | ke | k16 | k1o | Qe | @t | oQmk
MLR with variables selected through LGB
MAE 0.020 0.019 0.036 0.019 0.019 0.023 0.024 0.031 0.020 0.009 0.048 0.027
MAPE 0.085 0.094 0.085 0.083 0.073 0.047 0.097 0.092 0.136 0.031 0.121 0.126
MLR with full variables
MAE 0.056 0.033 0.053 0.035 0.044 0.066 0.042 0.047 0.034 0.068 0.066 0.028
MAPE 0.241 0.166 0.125 0.150 0.170 0.137 0.173 0.139 0.230 0.226 0.167 0.129
Note: Values in bold indicate the best performance.
TABLE 12. Comparisons of Sample size and Null values counts.
M9.6 M13
OD Null counts Sample size Null ratios Null counts Sample size Null ratios
CTG 230 5871 3.90% 279 8183 3.40%
CTK 342 4377 7.80% 241 7561 3.20%
CTQ 320 1879 17.00% 210 6730 3.10%
GTC 441 2405 18.30% 278 7873 3.50%
GTK 1099 3840 28.60% 111 5603 2.00%
GTQ 1580 4666 33.90% 442 6729 6.60%
KTC 220 2106 10.40% 201 6382 3.10%
KTG 841 2154 39.00% 241 5390 4.50%
KTQ 422 4646 9.10% 398 7109 5.60%
QTG 597 2935 20.30% 201 6610 3.00%
QTK 611 4153 14.70% 332 8393 4.00%
QTC 781 5293 14.80% 136 8591 1.60%
Sum 6703 44324 - 3070 85154 -
Average - - 18.20% - - 3.60%

variables do not mean higher forecasting accuracy, but the
correct variables do.

C. RECOMMENDATION

From the sensitivity results, we infer that different route-level
TSRs are sensitive to different predictor variables. It is inap-
propriate to assume one same set of the predictors’ combina-
tions for all rates. Incorporating temporal and between-route
correlations in TSR and identifying real predictor variables
can positively affect short-term TSR. Based on the results,
we recommend that carries and shippers may consider this
model to forecast the future price to ensure the price with the
least premium.

VI. CONCLUSION AND FUTURE STUDY

In this paper, we have proposed a Lag-WMR method to
manage the issue of short-term TSR’ forecasting, using data
from the OFEX platform. The proposed approach is based
on the multiple regression model, with two improvements
for variables’ selection and the weighted matrix. The first
improvement is the implementation of a machine learning
approach, LGB, for selecting the critical exogenous variables.
The second is the use of a time-lagged weighted matrix
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established by the estimated coefficients of regression mod-
els. We compared the proposed model with two benchmark
models: ARIMA and LGB. The comparative results show
that the predictive performance of the Lag-WMR largely
outperforms the benchmarks in terms of MAE and MAPE.
Based on the results of DM test, empirical study shows that
Lag-WMR generates better accuracy in out-of-sample TSR
forecasts than LGB and ARIMA and the improvement is
statistically significant. We have conducted further sensitiv-
ity analyses to verify whether the temporal and between-
route correlations could improve forecasting accuracy, and
check the effectiveness of the regression-based weight matrix
and the selection of variables by LGB. Results demonstrate
that the performance improvement brought by the combina-
tion of temporal and between-route correlations is superior
to that of adopting only one of them. Meanwhile, Lag-WMR,
with a lagged correlation-based weighting matrix, achieves
better prediction accuracy than does prediction with the use of
the Pearson correlation matrix, which should be attributed to
the inclusion of a temporal lag correlation with the regression.

The proposed model framework can be applied to short-
term route-level TSR prediction, which considering temporal
and between-route correlations in TSR and determining the
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TABLE 13. Comparison of CV for orders data.

M9.6
OD Posted Orders Closed Orders
SD Avg Ccv cv SD Avg Ccv cv

CTG 9.720 32.618 0.298 6.640 26.453 0.251

CTK 7.392 24.314 0.304 6.173 18.649 0.331

CTQ 3.915 10.439 0.375 2.603 9.604 0.271

GTC 5.317 13.360 0.398 4.859 11.623 0.418

GTK 6.379 21.336 0.299 4.617 14.338 0.322

GTQ 5.548 25.924 0.214 5.031 19.806 0.254

KTC 4.528 11.699 0.387 0316 1.600 8.988 0.178 0267
KTG 4.392 11.967 0.367 0.823 3.865 0.213

KTQ 6.840 25.810 0.265 4.461 22.532 0.198

QTC 3913 16.304 0.240 4.122 14.364 0.287

QTG 7.751 23.070 0.336 6.288 22.701 0.277

QTK 8.998 29.404 0.306 4.959 24.670 0.201

M13
OD Posted Orders Closed Orders
SD Avg (0Y cv SD Avg Ccv cv

CTG 9.820 45.461 0.216 7.716 40.824 0.189

CTK 4.285 42.006 0.102 7.106 33.520 0.212

CTQ 11.778 37.389 0.315 5.583 36.492 0.153

GTC 5.599 43.739 0.128 11.209 39.890 0.281

GTK 3.113 31.128 0.100 3.364 23.688 0.142

GTQ 10.505 37.383 0.281 6.695 33.641 0.199

KTC 5.070 35.456 0.143 0.192 7.130 32.265 0.221 0.195
KTG 6.558 29.944 0.219 4.163 23.656 0.176

KTQ 10.940 39.494 0.277 10.801 37.243 0.290

QTC 3.599 36.722 0.098 6.190 35.988 0.172

QTG 11.237 46.628 0.241 5.097 45.509 0.112

QTK 8.925 47.728 0.187 7.767 41.094 0.189

Note: SD and Avg mean the standard deviation and the average, respectively, and the units are both orders/day. CV represent the average of CVs.

factors that actually influence route-level prices given an ini-
tial variables’ set. Additionally, this proposed framework can
be applied to forecast contract rates, for example, to examine
which rates of adjacent routes actually improve the forecast-
ing accuracy. As such, this model could also be used as a
tool for shippers and carriers to use this model to develop
their forward projections of the current trucking market in the
following days.

Further research could focus on two topics. On the one
hand, despite the improved performance, the approach we
have presented requires additional verification if data from
other regions become available, and there is a need to explore
more exogenous variables that may affect the fluctuation of
rates and investigate the regional differences among trucking
markets. On the other hand, we consider a practical approach
to implement the standardization of rates to eliminate the
influences from different types of cargo, which is intended
to create a general but efficient freight index for the south-
western part of China’s trucking industry.
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APPENDIX A
See Table 12.

APPENDIX B
See Table 13.
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