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SUMMARY

In the medical literature, there has been an increased interest in evaluating

association between exposure and outcomes using nonrandomized observa-

tional studies. However, because assignments to exposure are not random in

observational studies, comparisons of outcomes between exposed and nonex-

posed subjects must account for the effect of confounders. Propensity score

methods have been widely used to control for confounding, when estimating

exposure effect. Previous studies have shown that conditioning on the propen-

sity score results in biased estimation of conditional odds ratio and hazard

ratio. However, research is lacking on the performance of propensity score

methods for covariate adjustment when estimating the area under the ROC

curve (AUC). In this paper, AUC is proposed as measure of effect when out-

comes are continuous. The AUC is interpreted as the probability that a ran-

domly selected nonexposed subject has a better response than a randomly

selected exposed subject. A series of simulations has been conducted to exam-

ine the performance of propensity score methods when association between

exposure and outcomes is quantified by AUC; this includes determining the

optimal choice of variables for the propensity score models. Additionally, the

propensity score approach is compared with that of the conventional regres-

sion approach to adjust for covariates with the AUC. The choice of the best

estimator depends on bias, relative bias, and root mean squared error. Finally,

an example looking at the relationship of depression/anxiety and pain intensity

in people with sickle cell disease is used to illustrate the estimation of the

adjusted AUC using the proposed approaches.

KEYWORDS

AUC, bias, covariate adjustment, propensity score, PS variable selection

1 | INTRODUCTION

Evaluating association between exposure and outcome in observational studies is growing rapidly in the health care
research field. Because assignments to exposure are not random in observational studies, any comparisons of outcomes
between exposed and nonexposed subjects must account for confounders. This is important because failing to adjust for
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the confounding variables could lead to biased estimates of true effects. As a result, researchers using observational data
must use statistical methods to control for bias and confounding.

When study outcomes are continuous and follow a normal distribution, the mean difference between two popula-
tions is a well‐known measure of treatment effect. However, there is a growing interest in the medical literature about
the use of the probability that a randomly selected participant in a treatment or risk factor exposed group has a better
response than a randomly selected participant in the control or nonexposed group. This probability is equivalent to the
area under the receiver operating characteristic (ROC) curve and is sometimes denoted by AUC = P(X > Y) where X is
the response in the treatment group and Y the response in the nontreated group. Hauck et al7 introduced the concept of
P(X > Y) to assess treatment effects after noting that standard tests may fail to identify important treatment difference.
They believe that a new treatment may have effects on the distribution of responses other than on the average response.
Therefore, if there is an increased variability due to the effect of the new treatment, then the estimated effect is captured
when AUC is used as a measure of effect instead of the simple difference of means.7 Acion et al,1 Kraemer and Kupfer,2

and McGraw and Wong3 have also shown that AUC may be clinically more meaningful than the change in means, the
latter represents the magnitude of the mean difference but does not tell patients their chance to improve under the new
treatment. They variously described AUC as a “measure that presents good qualities of meaning, simplicity, and robust-
ness,”1 “clinically interpretable and statistically justifiable,”2 and “a common language effect size statistic.”3 As noted by
Tian,4 there are a few advantages of using P(X > Y) to assess treatment effects over the change in means.4 First, it is
scale‐free, making it a reasonable measure of treatment effect no matter how much variability exists between the two
populations' responses. Second, she showed that AUC does not change under monotonic transformation. Hence, the
theory developed for the original distribution is also valid for transformed distributions. Nunney et al have also shown
that the mean difference does not account for variability within the groups being compared.5 Even if the standardized
mean difference is used to overcome this problem, it is difficult for clinicians to interpret practically the improvement
measured in standard deviations units.1,5

Propensity score (PS) methods have been used for a long time to adjust for confounding variables in order to reduce
bias in observational studies.6,8 As introduced by Rosenbaum and Rubin in 1983, the key property of the PS is to balance
observed covariates between two groups in nonrandomized studies so that the groups are comparable in the sense that
their baseline covariates have similar distribution; it follows that treatment assignment and observed covariates are con-
ditionally independent, given the PS.

Some common ways of using PSs to reduce confounding are stratification on the PS, matching on the PS, inverse
probability weighting using the PS, and covariate adjustment on the PS.9 In his seminal works on PSs, Peter Austin
assessed the performance of these PSs methods to adjust estimates of relative risk, odds ratio, hazard ratio, marginal
odds ratio, marginal hazard risk, and difference in means.9-14 He also investigated the choice of variables to include
in the PS models. However, there is no mention in his work or other literature of the performance of the PS when asso-
ciation is quantified by the area under the ROC curve; neither has anyone looked at the appropriate choice of variables
in the context of the AUC as an effect size measure.

The objective of this paper, then, is to investigate the performance of the PS methodology to control for confounding
when association between exposure and outcomes is quantified by AUC. Additionally, the optimal choice of variables to
include in the PS model is examined. Finally, the performance of the PS approach to control for confounding is com-
pared with that of a conventional regression approach to adjust the AUC for confounding.

This research is organized as follows. Section 2 contains definition and notation of AUC and methods for estimat-
ing AUC, an overview of PS methods, and AUC regression analysis. Additionally, the performance of the PS meth-
odology is investigated through a simulation study in Section 2. In Section 3, the results of the simulation study are
presented. In Section 5, the proposed approaches are applied to data concerning depression and pain in sickle cell
disease. Section 4 is a concluding section which summarizes the results of the simulations studies and addresses
limitations.

2 | METHODS

2.1 | AUC as a measure of risk effect

In methods for ROC analysis, the AUC is usually used as an index to summarize how well a diagnostic test can discrim-
inate diseased and nondiseased populations.15,16 AUC is also equivalent to the probability that for a randomly selected
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pair of diseased and nondiseased individuals, the diagnostic test value is higher for the person with disease.17,18 More
generally, instead of groups or people with disease, discrimination could also be between risk and nonrisk populations,
treatment or nontreatment groups, or some other binary indicator of a clinical state.

AUC has been used in two studies for assessing treatments effects of atomoxetine versus placebo in adults with
ADHD in a randomized controlled trial.19,20 In both studies, the authors found that atomoxetine was efficacious in
reducing ADHD symptoms (AUC ≈ 0.6, P < .001). The AUC value of 0.6 indicates that the probability that a randomly
selected subject treated with atomoxetine showed a reduction in ADHD symptoms as compared with a randomly
selected placebo‐treated subject is approximately 0.6.

This research is restricted to the comparison of two groups: one of subjects with the treatment/risk factor and the
other of subjects without the treatment/risk factor. The measure of effect we suggest is AUC = P(YRF > YNRF) where
YRF and YNRFare continuous responses from a risk‐group and a nonrisk group, respectively. The AUC is interpreted
as the probability that a randomly selected participant in the risk group has a more extreme response than a randomly
selected participant in the nonrisk group. We assume without loss of generality that larger response values are associ-
ated with the risk population, and smaller values with the nonrisk population.

2.2 | Methods for estimating AUC

2.2.1 | The unadjusted AUC

A nonparametric estimate of the unadjusted AUC is computed based on the fact that the AUC is equivalent to the two‐
sample Mann‐Whitney U statistic.15-17,21,22 Let YRFi (i = 1, … ,n) and YNRFj , (j = 1, … ,m) represent two continuous

responses from random variables YRFand YNRFrepresenting n and m subjects in the risk group and the nonrisk group,
respectively. The Mann‐Whitney U statistic is defined by

U ¼ AUCunadj ¼ ∑
m

i¼1
∑
n

j¼1
I YRFi > YNRFj

� �
=mn (1)

where I YRFi > YNRFj

� �
is an indicator function of the number of pairs in which YRFi > YNRFj . More specifically,

I YRFi > YNRFj

� � ¼ 1 if YRFi > YNRFj , and 0 otherwise. The variance of the unadjusted AUC is calculated based on a for-

mula suggested by Delong et al for estimating variances of AUCs based on the properties of the Mann‐Whitney
statistic.23

2.2.2 | AUC controlling for covariates

Brumback et al22 defined the adjusted treatment effect in a clinical trial as AUCadj = P(YA > YP|XA = XP = X) where
subscripts A and P represent treatment arm, T = A (active) or P (placebo). If the result depends on X, there is effect
modification, else not, in which case AUCadj will be a constant. They note that the treatment effect, if measured as
the expected differences in means, should be equal regardless of whether covariates are taken into account, at least
in randomized trials, because E(X|T = A) = E(X|T = P). But this may not be the case when the AUC is the effect mea-
sure, because the variance of the estimated difference may be decreased with adjustment. In the context of observational
studies and risk factors, where adjusted AUC could be writtenAUCadj = P(YRF > YNRF|XRF = XNRF = X), while E(X|
RF) = E(X|NRF) will most often not be true in observational studies, it should be true if also conditioning on the PS.
Nevertheless, because of the variance, the marginal AUC will not equal the adjusted AUC. In essence, the AUC as
an effect measure appears to not be collapsible, and not adjusting for covariates associated with the outcome will lead
to attenuation of the AUC, ie, values closer to the null (0.5). This result is consistent with results regarding other non-
linear models such as logistic and proportional hazards regression, particularly when not all covariates associated with
Y (outcome) are included.9,14,24,25

Brumback et al developed an approach to control for covariates when the covariate of interest, X, is discrete; using
this, they developed the following approach:

1) Each level of the discrete covariate Xis considered as a stratum s where s = 1, … ,S, and Srepresents the total num-
ber of strata;
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2) Within each stratums, compute all of the 0 or 1 indicator data such that I YRFi > YNRFj

� �
= 1 if YRFi > YNRFj , and

0 otherwise for all subjects i,j in the stratum;
3) The adjusted AUC is the sum of all the indicator functions of the the number of pairs with higher

values for the risk factor group, ie, I YRFi > YNRFj

� �
within each strata divided by the sum of the product of the

number of subjects in the risk factor group and nonrisk factor group in stratums. Hence, the adjusted estimator is given

by AUCadj ¼ ∑
S

s¼1
∑
ns

i¼1
∑
ms

j¼1
I YRFi > YNRFj

� �
=N where N ¼ ∑S

s¼1m
snsand ms and ns are the number of subjects in the

risk factor and nonrisk factor group in stratum s, respectively.22

Janes et al proposed a covariate‐adjusted measure of classification accuracy.26 Their approach in estimating the
AUC controlling for confounding is based on the concept of placement values (PVs). Let YR F and YN R F be two
continuous normal responses arising from a risk factor population and a nonrisk factor population, respectively.
The variable T denotes the populations such that T = 1 if the subject has the risk factor and T = 0 if the subject is
without the risk factor. Let Zdenote a vector of covariates for each subject. The covariate adjusted AUC is computed
following two major steps. The first consists of estimating the cumulative distribution (CDF) for the response YNRF in
the control group as a function of the covariatesZ. This is done by specifying a linear model YNRF = β0+Zβ1+ε where
the error term is normally distributed and the covariates act linearly on the distribution of YNRF. Then, for each subject

i in the risk factor group, the PVs(PVRF,Z) are computed. The PV is the standard normal CDF of YRF − bβ0 − Zbβ1� �
=bσ;

hence, bPVRF;Z ¼ Φ YRF − bβ0 − Zbβ1� �
=bσn o

where bβ0; bβ1; and bσ are the regression coefficient estimates and the standard

deviation of the linear model of control observations, respectively. The second major step is to estimate the adjusted

AUC, which is the mean of the estimated PVs:AUC ¼ ∑
nRF

i¼1

bPVRF;Z=nRFwhere nRF is the number of case observations. This

approach requires the assumption that the outcome and the covariates be linearly related.
In this research, our approach in estimating the adjusted AUC is based on Janes et al's method but in the context of

epidemiologic research where the risk effect is quantified by AUC = P(YRF > YNRF).

2.3 | Overview of propensity score methods

The concept of PSs was introduced by Rosenbaum and Rubin, as a tool to reduce bias in observational studies.6,8 It is a
tool that balances observed covariates between two groups in order to create the same probability structures as that
achieved by a “randomized” experiment. The PS is defined as the conditional probability of assignment to a particular
group given a vector of observed covariates. Suppose each subject in the cohort has a vector of observed covariates Z,
and an indicator of risk status Tsuch that T = 1 if subject has the risk factor and T = 0 if subject does not have the risk
factor. Then, the PS, e(x) = Pr (T = 1|Z), is the probability that a subject with covariates Z is in the risk factor group. 6

While several approaches exist to estimate a PS, logistic regression is the method used most often. Logistic regression
models the probability of having the risk factor as a function of a set of the observed covariates Z. The PS is then com-
puted as the expected probability of being in the risk group, conditional on Z.

Once the PS has been estimated, it is used as a variable in an analysis to control for confounding when estimating
risk effect. Common PS analysis methods include stratification, matching, and covariate adjustment on the PS, which
are the methods considered here.

When using PSs to control for confounding, where the treatment effect is measured with means, odds ratios, relative
risk, or hazard ratios, estimands focus on the average treatment effect (ATE) or the average treatment effect for the
treated (ATT). In particular, for those measures, one‐to‐one matching on PS allows one to estimate ATT, while stratifi-
cation allows one to estimate either ATE, when equal weights of 1/k for the k strata are used to combine results, or ATT
if weights are equal to the proportion of treated/at risk subjects in each stratum.9,27 Stratum weights used here with
AUC are functions of the number of subjects in each strata (see formula (2) below). In general, whether ATT or ATE
should be the desired estimand depends on the research context. In the context of the AUC measure of treatment effect,
comparable concepts more likely to apply may be better thought of as AUC treatment effect for the population (ATE) or
AUC treatment effect for the treated (ATT). 9 In this work, for simplicity, we assume constant treatment effect and
explore the consequences of different PS adjustment methods in terms of AUC measures.
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2.3.1 | Stratifying on the propensity score

The basic idea of stratifying on the PS is to group subjects into approximately equal‐size groups determined by the quin-
tiles of the estimated PS. These groups are considered to be homogeneous as subjects in each group are expected to have
similar PSs. The use of five strata is common because researchers have shown that five groups can remove over 90% of
the bias due to each baseline covariate when the comparison is a difference of means.8,28 Once the subjects have been
grouped into strata based on their PSs, we used the technique proposed by Brumback et al, as described in Section 2.3.2,
to estimate the adjusted AUCs within each quintile, and the five estimated AUCs are pooled into one overall AUC to
estimate the treatment effect.22 The technique of Brumback et al is based on determining strata by the quintiles of
the estimated PSs. It can readily be shown that the proposed adjusted AUC as described in Section 2.2.2 is a weighted
average of the stratum‐specific AUCs, given by

AUCadj
Stratified ¼ ∑

S

s¼1
wsAUCS (2)

where ws ¼ msns

∑
S

s¼1
msns

, ms and ns are are the number of subjects in the risk factor and nonrisk factor group in stratum s,

respectively. S = (1,2,3,4,5)correspond to the quintiles of the PS. Thus, we see that the overall estimated risk effect for
the outcome is a weighted average of the (five) stratum‐specific risk effects.

The variance of the adjusted PS stratified AUC is given by

Var AUCadj
Stratified

h i
¼ ∑

S

s¼1
wsð Þ2Var AUCS½ �: (3)

2.3.2 | Matching on the propensity score

In PS matching, matched pairs of risk factor and nonrisk factor subjects are created such that pairs have similar PSs.
This technique is also known as one‐to‐one matching. The treatment effect, AUC in this case, is then estimated from
the resultant matched sample. The adjusted risk effect, AUC, must include the matching variables in analysis.29 We
incorporate the PS in the matched sample based on the method of Janes et al26 for accommodating covariates in
ROC analysis as described in Section 2.3.2. The risk group effect is estimated in the matched sample as the mean of
the PVs for each subject with PS PS = Z in the risk group:

AUCadj
matched ¼ ∑

nRF

i¼1

bPVRF;Z=nRF (4)

where nRF is the number of subjects having the risk factor in the matched sample. The PVs of the response YRF for each

subject with estimated PS in the risk group are given by bPVRF;PS ¼ Φ YRF − bβ0 − bβ1PS� �
=bσn o

:bβ0; bβ1 and bσare the esti-

mates of regression coefficients and the root mean squared error, respectively, from the observations in the nonrisk
group. These estimates were obtained through a regression model of the response YNRF in the nonrisk group as a func-
tion of the PS. The model is given byYNRF = β0+β1PS+ε, whereε~N(0,σ

2). The variance estimates of the adjusted AUC
were obtained via bootstrapping using 1000 bootstrap samples of the original observations.

2.3.3 | Covariate adjustment using the propensity score

In the PS covariate adjustment method, the outcome is regressed on two independent variables: an indicator variable
Tdenoting the risk status group and the estimated PS. The estimated risk effect is obtained from the regression coeffi-
cient for risk status.
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The risk group effect is estimated by regressing the outcome variable on the estimated PS and the variable
representing risk group status T using the regression method developed by Janes et al described in Section 2.3.2:

AUCadj
CovAdjust ¼ ∑

nRF

i¼1

bPVRF;Z=nRF :
26 The standard errors for the estimated AUC were obtained by bootstrapping the data.

2.4 | AUC regression adjustment

Rather than summarizing covariates with a PS, direct adjustment for the individual covariates of interest can also be
used to estimate the adjusted AUC. Specifically, the outcome is modeled as a function of an indicator variable denoting
the risk group status and a set of independent covariates, again using the method of Janes et al.26 We refer to this
method as the “direct AUC regression adjustment” method.

2.5 | Design of simulation study

To examine the performance of different PS methods and models for estimating conditional treatment or risk effects,
data were simulated using a framework similar to those used by Austin et al.10,14 Data were generated according to
the following steps:

Step 1:. Eighteen baseline covariates were randomly generated such that nine of them were dichotomous and the
other nine were continuous. Each of the 18 variables varied in their association with the risk factor group and the
outcome as described in Table 1.

The 12 variables b1,c1,b2,c2,b4,c4,b5,c5,b7,c7,and b8,c8 were related “strongly” or “moderately” to the risk group, while
the 12 variables b1,c1,b2,c2,b3,c3,b4,c4,b5,c5,and b6,c6were “strongly” or “moderately” related to the outcome. The eight
variables b1,c1,b2,c2,b4,c4, and b5,c5were related to both risk group and the outcome and were thus confounders. The
two variables b9,c9are neither associated with the risk group nor with the outcome. The association between a given var-
iable and risk group was measured by the odds ratio. A moderate or a strong association was assumed if the presence of
the given variable in the logit model increases the odds of being in the risk group by a factor of 1.5 or 2, respectively.29,30

A moderate or a strong association was defined as the odds of having the risk factor is increased by a factor of 1.5 or 2
for binary covariates, respectively,29 and 1.5 and 1.25 for continuous covariates.10

Similarly, the association between outcome and a binary variable was measured with the point‐biserial correlation;
the association between outcome and a continuous variable is measured with the Pearson correlation. The strength of
the association between a given variable and an outcome is measured with a correlation of 0.5 and 0.3 to reflect a strong
and a moderate association, respectively. Cohen proposed these guidelines for interpreting the magnitude of correlation
coefficients.31

In summary, for this simulation study, we considered correlations values of 0.5, 0.3, and 0 to depict strong, moderate,
and no association, respectively, between a given variable and the outcome, and odd ratio values of 2, 1.5, and 1 for a
strong, moderate, and no association between a given covariate and the risk factor group.

To determine the optimal choice of variables for the PS model, four PS models were specified in the Monte Carlo
simulation experiments:

PS‐Model 1:. This model included all 12 variables associated with the risk factor group: b1,c1,b2,c2,b4,c4,b5,c5,b7,c7,
and b8,c8.

PS‐Model 2:. This model included all 12 variables associated with the outcome: b1,c1,b2,c2,b3,c3,b4,c4,b5,c5,and b6,c6.

TABLE 1 Association between baseline covariates with risk group and outcome

Strongly Associated
with Risk Group

Moderately Associated
with Risk Group

Not Associated
with Risk Group

Strongly associated with outcome b1,c1 b2,c2 b3,c3

Moderately associated with outcome b4,c4 b5,c5 b6,c6

Not associated with outcome b7,c7 b8,c8 b9,c9
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PS‐Model 3:. This model included all eight variables associated with both the risk factor group and the outcome: b1,c1,
b2,c2,b4,c4,and b5,c5.

PS‐Model 4:. This model included all 18 generated variables: b1 − b9 and c1 − c9.
Step 2:. A risk factor status Twas generated for each subject. Data were simulated such that the logit of the probability
of having the risk factor for the ith subject is linearly related to the 12 covariates associated with the risk factor group.
In other words, the subject‐specific probability of group assignment was determined assuming that the probability of
group assignment (Pgroup) was related to the 12 baseline covariates that are strongly and moderately associated with
the risk group, ie, (b1, b2, b4, b5, b7, b8, c1, c2, c4, c5, c7, c8)through the logit model:

logit ¼ log
Pgroup

1 − Pgroup

� �
¼ β0 þ β1b1 þ β2b2 þ β4b4 þ β5b5 þ β7b7 þ β8b8

þ α1c1 þ α2c2 þ α4c4 þ α5c5 þ α7c7 þ α8c8:
(5)

The subject‐specific probability of group assignment is obtained by inversing the logit:

Pgroup ¼ exp logitð Þ
1þ exp logitð Þ: (6)

The risk factor status Tfor each of the N subjects was generated from a Bernoulli distribution with a parameter
(Pgroup), ie, T~Bernouilli (Pgroup). The risk factor status vector is computed by comparing the estimated probability of

group assignment (Pgroup) to a random variable U generated fromUniform(0,1). We assign T ¼ 1 if U ≤ Pgroup

0 if U > Pgroup

(
.

Step 3:. For each of the N subjects, a continuous outcome Y conditional on risk factor status Twas generated through
the following linear model:

Y ¼ α0 þ δT þ β*1b1 þ β*2b2 þ β*3b3 þ β*4b4 þ β*5b5 þ β*6b6þ

α*1c1 þ α*2c2 þ α*3c3 þ α*4c4 þ α*5c5 þ α*6c6 þ ε: (7)

Each regression coefficient was estimated assuming the outcome Y and the single covariate X
(ie, b1 − b9,c1 − c9) were related through a regression equation. The derived formula to estimate theβ*sis given by

β* ¼ ρ
σε
σx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − ρ2ð Þ
r

where ρ is the Pearson product‐moment correlation between a covariate x and the outcome Y,

and σx and σε are the standard deviations of the covariate of interest and the error term, respectively. The effect on out-
come of the risk group compared with the nonrisk group is quantified by AUC statistic through δTin Equation (7).

Hence, the effect size is given by δ ¼ σε
ffiffiffi
2

p
Φ−1 AUC0ð Þthat is δis a function of the true AUC which is denotedAUC0,

and Φ denotes the standard normal cumulative distribution function.

2.6 | Simulating data

A sample of size N = 500 was considered in this simulation study; for each of the N subjects, we randomly generated:
(a) 18 independent baseline covariates such that nine of them are dichotomous variables from a Bernoulli distribution
with parameter 0.5: (b1, b2, b4, b5, b7, b8, b9)~Bernouilli(0.5)and the other nine are continuous from a standard normal
distribution: (c1, c2, c4, c5, c7, c8, c9)~N(0,1). Each of the 18 covariates varied in their association with the risk group and
the outcome as described in Table 1. (b) A risk factor status for each of the N subjects was generated using Equations (5)
and (6) as described in Section 2.6.β0 was set to −1.65, so that approximately 50% of subjects would be exposed to the
risk factor group. This was determined in an initial set of simulations. We set (β1,β4, β7) = log (2)and(α1,α4,α7) = log (1.5)
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to depict a strong association between the risk group with the binary and continuous covariates, respectively;
(β2, β5,β8) = log (1.5)and (α2,α5,α8) = log (1.25)to depict a moderate association between the risk group with the binary
and continuous variables, respectively. (c) Finally, for each subject N, a continuous outcome conditional on the risk fac-
tor status T was generated as in Equation 7 such that

Y = δT+4.6b1+4.6b2+4.6b3+2.6b4+2.6b5+2.6b6+2.3c1+2.3c2+2.3c3+1.3c4+1.3c5+1.3c6+εwhereε~N(0,4). The error
variance 4 for the outcome model has been chosen after an iterative process to induce the desired parameters estimates
values. The data generating process described here was repeated 2500 times. All data generation and analyses were com-
pleted using SAS version 9.4. As evaluation criteria for the performance of the estimated AUC, we considered relative
bias and root mean squared error (RMSE) across 2500 simulated data sets (replications).

3 | RESULTS

Results of the simulation study are given in Table 2. This table displays the AUC estimates, relative bias, and RMSE for
three true values of AUC, four adjustment methods, and four covariate set models. The AUC estimates are the estimated
mean risk effect across the 2500 simulated data sets for each propensity score method and for each model. The obtained
crude estimates when AUC is 0.5, 0.7, and 0.9 are 0.63, 0.73, and 0.85, respectively. They are biased positively when the
true risk group effect are 0.5 and 0.7 but biased negatively when the true AUC is 0.9.

When stratification on the quintiles of the PS is used, we observe four things: (a) the amount of bias is somewhat
similar for each true effect regardless of the PS model used; (b) the risk effect is overestimated when there is no effect

TABLE 2 Results of the simulation study: AUC estimates, relative bias, and RMSE for AUC = 0.5, 0.7, and 0.9

Methods Modelsa

AUC = 0.5 AUC = 0.7 AUC = 0.9

AUC
Estimates

Relative
Bias RMSE

AUC
Estimates

Relative
Bias RMSE

AUC
Estimates

Relative
Bias RMSE

Unadjusted 0.63 25.85 0.13 0.73 4.31 0.04 0.85 5.91 0.06

Stratification

Model 1 0.55 10.04 0.08 0.64 −8.95 0.09 0.79 −12.23 0.12

Model 2 0.55 9.77 0.08 0.65 −7.24 0.09 0.81 −10.25 0.10

Model 3 0.55 10.23 0.08 0.65 −6.98 0.08 0.81 −9.99 0.10

Model 4 0.55 9.90 0.08 0.64 −9.00 0.08 0.79 −12.33 0.12

Matching

Model 1 0.50 −0.67 0.02 0.61 −12.33 0.09 0.76 −15.14 0.14

Model 2 0.50 0.83 0.02 0.63 −9.80 0.07 0.79 −12.25 0.11

Model 3 0.49 −1.97 0.02 0.62 −11.04 0.08 0.79 −12.43 0.11

Model 4 0.50 −0.29 0.02 0.62 −11.99 0.09 0.77 −14.86 0.13

PS covariate adjustment

Model 1 0.51 1.34 0.02 0.63 −10.65 0.08 0.78 −13.82 0.13

Model 2 0.50 −0.60 0.02 0.62 −10.72 0.08 0.79 −12.78 0.12

Model 3 0.48 −3.54 0.03 0.61 −12.19 0.09 0.78 −13.19 0.12

Model 4 0.51 2.34 0.02 0.63 −10.13 0.07 0.78 −13.63 0.12

Regression adjustment

Model 1 0.51 1.40 0.02 0.65 −6.71 0.05 0.83 −8.26 0.08

Model 2 0.50 0.26 0.02 0.70 0.26 0.02 0.90 0.15 0.01

Model 3 0.49 −2.76 0.02 0.63 −9.41 0.07 0.81 −9.69 0.09

Model 4 0.52 3.33 0.03 0.71 1.99 0.02 0.91 0.73 0.01

aModel 1 includes all variables associated with risk factor; Model 2 includes all variables associated with outcome; Model 3 includes variables associated with
both risk factor and outcomes; Model 4 includes all variables.
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(True AUC = 0.5) and underestimated when the true effects are 0.7 and 0.9; (c) the risk estimate when truth is 0.7 is
associated with the least bias; and (d) bias was somewhat less when using matching or PS covariate adjustment.

When matching on the PS is used, when there is no effect (AUC = 0.5), the bias is almost null, but it is not the case
when the true AUC was 0.7 or 0.9, where relative bias is generally 10% to 15%. Models 2 and 3 appear to have the least
bias when the effect is non‐null.

When covariate adjustment on the PS is used, the findings are similar to the previous ones. When AUC is 0.5, the
results are similar to those found with matching. However, PS model 2 or 4, ie, models including variables associated
with outcome seem to have the least bias in the non‐null case.

From these results, it appears that stratifying, matching, and covariate adjustment on the PS resulted in biased esti-
mation of AUC when true effects were non‐null. When true effects were 0.7 and 0.9, the estimated risks from all
methods and models were negatively biased with relative biased ranging from −15% to −7%.

Finally, for comparative purposes, we investigated risk effects estimated from directly regressing individual covari-
ates. The mean estimated risk effects perform better than those estimated from the PS methods. The second regression
model including all covariates associated with outcomes was found to be the best model in estimating the true effect.
Similarly, the fourth model including all measured covariates resulted in unbiased estimates of the risk effect except
when true area was 0.5. However, the first and third models which do not include all the variables related to outcome
resulted in biased estimates of the true AUC. Also, as seen in Table 2, these models had increased RMSE when true
effects were 0.7 and 0.9.

4 | Case Study

4.1 | Data sources

Sickle cell disease (SCD) is a genetic disease that manifests itself in pain, both acute and chronic. Patients with sickle
cell disease are more likely than the general population to have depressive or anxiety disorders.32 Because chronic pain
has been shown to be associated with depression, it is of interest to know whether SCD patients with depression/anxiety
have more intense pain than those with SCD but without depression.

The Pain in Sickle Cell Epidemiology Study (PiSCES) is a longitudinal study of pain in sickle cell disease. The
methods of PiSCES have been described in detail elsewhere.33 Briefly, subjects were enrolled in both medical center
and community settings between July 2002 and August 2004, with most from the Richmond and Tidewater areas.
Subjects aged 16 years and older were eligible for enrollment. A total of 308 people with SCD initially were enrolled.
Baseline information including demographics and psychosocial measures was collected, and daily pain diary data
were completed for up to 6 months. Covariates considered for analysis included demographics (age, sex, marital
status, income, education, and genotype), SF‐36 summaries of physical and mental health related quality of life
(HRQOL—values range from 0 to 100 with higher being better), SCD stress, (ranging from 0 to 40, high values indicat-
ing more stress), SCD coping (values are mean of subscales and range from 0 to 6), number of somatic symptoms ranged
from 0 to 18, while number of SCD comorbidities could be as high as 19, and ridicule, a measure of negative social
exchange from the Test of Negative Social Exchange measure ranges from 0 to 4. Among other items, the diary asked
subjects to report the worst sickle cell pain intensity experienced during the previous 24 hours on a scale from 0
(no pain) to 9 (unbearable).

A total of 232 subjects met the inclusion criteria of filling at out at least 1 month of diaries, 220 of these reported at
least 1 day with pain score greater than zero. After removal of subjects due to missing covariates, there were N = 196
subjects for analysis. The study was approved by the Institutional Review Board of Virginia Commonwealth University.

4.2 | Statistical analyses

For each subject, PSs were estimated by fitting a logistic regression to predict depression/anxiety status, as a function of
16 baseline covariates. We constructed four different PS models which included different combinations of measured
covariates: PS model 1 (PS‐M1) included variables associated with the depression/anxiety status group. The association
between the covariates and the depression/anxiety status was determined using a t‐test for continuous covariates and a
chi‐square test for categorical variables at 5% significance level. PS model 2 (PS‐M2) included variables associated with
the outcome, mean pain intensity during pain days over a 1 to 6‐month period. The association between mean pain

576 GALADIMA AND MCCLISH



intensity and the continuous covariates was measured using a Pearson correlation, and a t‐test was used to test associ-
ation between the outcome and the categorical covariates. PS model 3 (PS‐M3) included variables associated with both
depression/anxiety status and mean pain intensity, ie, all common covariates to the previous two models. PS model 4
(PS‐M4) included all measured variables.

To compare patients with SCD who have depression/anxiety with patients who do not, all four methods described
earlier were used to estimate the adjusted probability that patients with depression/anxiety would have higher average
intensity of pain over a 1 to 6‐month period compared with those without depressionP(YDepr > YNoDepr|X). First, subjects
were stratified based on the quintiles of the PS, and the adjusted AUC was computed as described in Section 2.4. Second,
we estimated the adjusted depression/anxiety effect via AUC in the PS matched sample as described in Section 2.4 as
well. Third, the risk group effect was estimated under the covariate adjustment on the PS method using the method
described in Section 2.3.3. Finally, for comparison purpose, the direct AUC regression method was used to adjust for
covariates in directly modeling covariates effects on the response as described in Section 2.4. For this method, we con-
sidered four separate regression models as well. Those models were similar to the four PS models described earlier.

4.3 | Results

The summary statistics of the baseline covariates between subjects with depression and those without depression are
presented in Table 3. The descriptive analysis reveals that patients with depression are older with worse physical and
mental HRQOL scores, more somatic complaints, higher active, passive, and affective coping scores, yet lower income
(P < .05). Pain intensity on pain days was associated with physical and mental HRQOL, somatic complaints, SCD
comorbidities, and income (P < .05). There was no statistically significant relationship between depression and sex, mar-
ital status, education, genotype, number of comorbidities, stress, social support, and ridicule.

As seen in Table 4, PS‐M1 contained nine covariates, PS‐M2 had nine variables, and seven variables for PS‐M3 and
PS‐M4 contained all 16 variables. Logistic regression was used to estimate the PSs. The crude AUC between depression
groups was 0.6016 with a 95% confidence interval of (0.5128‐0.6905). Because the confidence interval does not contain
the null value 0.5, we might conclude that when not adjusting for any other variables, for two randomly chosen patients
one with depression and the other not, the probability is 0.6016 that the mean pain intensity from the SCD patient with
depression is higher than the mean pain intensity for patient without depression; that represents a statistically signifi-
cant chance of increased pain intensity for those with depression at baseline.

The adjusted estimates using the four different methods are reported in Table 5. Using stratification on the quintiles
of the PS, the adjusted estimates of P(YNS > YS|X) range from 0.5666 to 0.66634 for different PS models. In contrast to
the unadjusted AUC, all four 95% confidence intervals contain the null value of 0.5. This indicates that under stratifi-
cation, the adjusted AUC is not statistically different from the null value, ie, we fail to rejectHo : AUC = 0.5. Propensity
score matching resulted in the formation of 33, 39, 41, and 32 pairs of subjects out of a possible maximum of 60 for PS
models 1, 2, 3, and 4, respectively. The range of adjusted estimates was lower than with stratification for each model,
ranging from 0.4625 to 0.5180. Nevertheless, the results were consistent between matching and stratification in that
all confidence intervals contain the null value (0.5). Using covariate adjustment on the PS, results were similar to what
we found with matching. We also evaluated the use of AUC regression to directly model the covariates on the response.
AUC results ranged from 0.5031 to 0.5554. All four confidence intervals are consistent in containing the null value of
0.5. Because, in this analysis, the null appears to be true, it is not surprising that all four methods of adjustment are
in agreement, that adjusting for baseline covariates, SCD patients with sickle cell who are depressed do not report sig-
nificantly different levels of pain intensity.

5 | DISCUSSION

The primary objective of this research was to evaluate the performance of PS methods to control for confounding when
estimating the area under the ROC curve. The simulation study demonstrated that when AUC is used as measure of risk
factor effect, conditioning on the propensity often results in biased estimation of the true conditional risk factor effects.
When the true effect was null, ie, AUC was 0.5, matching on the PS and covariate adjustment on the PS were associated
with little or no bias; slightly more bias was incurred when using the method of stratifying on the PS. When the true
effect was different from the null effect, the estimated AUC were all associated with large bias for all different methods
and models.
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In a simulation study conducted by Austin et al, they found that controlling for covariates using PS methods when
estimating conditional odds ratio and conditional hazard ratio resulted in biased estimation of the true effect.14 Our
simulation, which focuses on “conditional AUC” would likely be expected to find similar results. Thus, our results
are not totally unexpected. This study is the first to evaluate the performance of different PS methods for controlling
for covariates when estimating area under the ROC curve, ie, P(YRF > YNRF|X). Due to the suggestions in the epidemi-
ologic literature to report P(YRF > YNRF) as a measure of association/treatment effect18 and to the common practice of
using PS methods to control for confounding in observational studies, it is of practical importance that the statistical
properties of PS estimators as a means of adjusting AUC estimates be understood.

A secondary objective was to determine the best choice of variables to include in the PS model. We found that when
matching and covariate adjustment on the PS methods are used, the PS model including variables associated with

TABLE 3 Baseline characteristics of the study sample by depression/anxiety status, and relationship of characteristics with pain intensity

Depression/Anxiety
N = 60 (30.6%)

No Depression/Anxiety
N = 136 (69.4%)

P‐Value w
Depr/Anxiety

Correlation w
Pain

P‐Value w
Pain

Demographic variables

Age (years) 38.2 ± 12.1 32.6 ± 10.1 0.0008 −0.011 0.8785

Sex

Male 18 (30.0%) 56 (41.2%) 0.1369 ‐‐ 0.8173

Female 42 (70.0%) 80 (58.8%)

Marital status

Married 10 (16.7%) 34 (25.0%) 0.1975 ‐‐ 0.3638

Not married 50 (83.3%) 102 (75.0%)

Education

<HS 8 (13.3%) 17 (12.0%) 0.5726 ‐‐ 0.8483

HS 25 (41.7%) 47 (34.6%)

>HS 27 (45.0%) 72 (52.9%)

Income

<$10 000 34 (56.7%) 40 (29.4%) 0.0008 ‐‐ 0.0008

$10 000‐20 000 14 (23.3%) 32 (23.5%)

$20 000‐30 000 3 (5.0%) 27 (19.8%)

>$30 0000 9 (15.0%) 37 (27.2%)

Psychosocial variables

Physical HRQOL (PCS) 31.4 ± 9.4 36.8 ± 9.8 0.0004 −0.3439 <0.0001

Mental HRQOL (MCS) 39.5 ± 11.7 50.6 ± 9.0 <0.0001 −0.1517 0.0337

Active coping 3.2 ± 1.1 2.8 ± 1.0 0.0255 0.215 0.0025

Passive coping 4.2 ± 9.0 3.9 ± 1.1 0.0411 0.1701 0.0172

Affective coping 3.1 ± 1.0 2.3 ± 1.2 <0.0001 0.2121 0.0028

Stress 21.7 ± 8.3 18.8 ± 10.2 0.0548 0.0802 0.264

Social support 5.6 ± 1.3 5.6 ± 1.3 0.9016 −0.0413 0.5659

Ridicule 0.5 ± 0.7 0.6 ± 0.8 0.2454 0.1282 0.0734

Disease‐specific variables

Genotype (SS) 41 (68.3%) 105 (77.2%) 0.1891 ‐‐ 0.3851

No. somatic symptoms 9.6 ± 3.5 6.1 ± 3.4 <0.0001 0.1572 0.0215

Number of comorbidities 2.4 ± 1.8 2.6 ± 1.8 0.4658 0.2253 0.0078

Continuous variables are reported as mean ± standard deviation. Dichotomous variables are reported as frequency and percent.

Correlation with pain only computed for continuous variables. P‐values reported are for t‐tests/ANOVAS comparing pain intensity for levels of categorical
variable.
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TABLE 4 Selection of variables entering different propensity score models

Covariates PS Model 1 PS Model 2 PS Model 3 PS Model 4

Age (years) ✓ ✓

Physical HRQOL (PCS) ✓ ✓ ✓ ✓

Mental HRQOL (MCS) ✓ ✓ ✓ ✓

Active coping ✓ ✓ ✓ ✓

Passive coping ✓ ✓ ✓ ✓

Affective coping ✓ ✓ ✓ ✓

Somatic symptoms ✓ ✓ ✓ ✓

Number of comorbidities ✓ ✓

Stress ✓ ✓

Social support ✓

Ridicule ✓ ✓

Genotype ✓

Income ✓ ✓ ✓ ✓

Married ✓

Education ✓

Sex ✓

TABLE 5 Effect estimates using different methods and models

Methods Modelsa AUC Standard Error 95%CI

Unadjusted 0.6016 0.0529 0.5128‐0.6905

Stratification using PS

Model 1 0.6634 0.1137 0.4406‐0.8862

Model 2 0.5572 0.1273 0.3077‐0.8067

Model 3 0.5666 0.1209 0.3444‐0.7889

Model 4 0.6421 0.1599 0.4211‐0.8631

Matching using PS

Model 1 0.4625 0.0684 0.3281‐0.5961

Model 2 0.5180 0.0651 0.3907‐0.6457

Model 3 0.4911 0.0630 0.3688‐0.6157

Model 4 0.4837 0.0713 0.3450‐0.6246

PS covariate adjustment

Model 1 0.4445 0.0691 0.3070‐0.5778

Model 2 0.5181 0.0596 0.4038‐0.6373

Model 3 0.4878 0.0574 0.3744‐0.5993

Model 4 0.4863 0.0779 0.3336‐0.6397

Regression adjustment

Model 1 0.5031 0.0562 0.3926‐0.6127

Model 2 0.5554 0.0551 0.4473‐0.6635

Model 3 0.5237 0.0552 0.4160‐0.6323

Model 4 0.5311 0.0574 0.4173‐0.6422

aModel 1 includes all variables associated with risk factor; Model 2 includes variables associated with outcome, Model 3 includes variables associated with both
risk factor and outcomes; Model 4 includes all variables.

Bold means Model 2 has the best performance.
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outcome seems to have the least bias. Models including those variables that are both associated with outcome and risk
group (these are referred to as true confounders) did not perform as well. But these findings are not conclusive because
the results were not consistent throughout the true effects and the amount of bias is still high. In prior research inves-
tigating the issue of variables selection in PS models, Brookhart et al34 as well as Austin35 found that a PS model which
includes covariates associated with outcome or the true confounders resulted in a larger number of matched samples, a
greater precision of the estimated treatment effect, and a lower bias. Furthermore, Austin found that variables associ-
ated with treatment exposure but not the outcome increased the MSE of the estimated relative risk.11 Interestingly,
there is some work that suggests that including variables strongly associated with treatment/risk factor but not outcome
(these are often referred to in the economic literature as instrumental variables) may result in bias amplification with
increases in bias as well as variance of effect measures, including some nonlinear effect measures such as odds ratios.36

While this has not specifically been examined for the AUC measure, results here suggest that including instrumental
variables in PSs and covariate adjustment (such as b7, c7 in model 3) results bias amplification.

A third objective was to compare the performance of the PS approach with that of using the individual covariates of
interest to adjust estimates of P(YRF > YNRF). The results of our simulation study show that the AUC regression models
including all covariates associated with outcomes (models 2 and 4) have the best performance and result in unbiased
estimates of the risk effect. However, regression models that did not include all variables associated with outcome
and only contained variables associated with risk factor group or variables associated with both risk group and outcome
resulted in biased estimates of the true AUC and in an increased RMSE when AUC > 0.5. Austin et al advocate that the
choice between PS methods and regression adjustment when estimating odds ratio or hazard ratio should be based on
whether one wishes to estimate the marginal or the conditional treatment effect.14 They noted that the conventional
regression adjustment estimates conditional treatment effect while the PS estimates marginal treatment effects such
as in a randomized trial. As mentioned previously, these only coincide if the effect measure is collapsible, which is
not the case for the AUC,22 nor was it for the odds ratio of hazard ratio.14

A limitation to the use of the PS methodology in practice includes the fact that it only controls for observed variables,
as with any method. The unobserved variables are accounted for only if they are correlated with the observed covariates.
And while the optimal choice of variables for a PS should include those associated with outcome and exclude those that
are not (instrumental variables), it may be difficult to determine which variables exhibit these properties. Although the
baselines covariates were assumed to be all inclusive and correctly measured in the simulations, this assumption in
practice can be more problematic. On the other hand, some PS methods have been shown to be relatively robust to
incorrect modeling.

In a systematic review conducted by Weitzen et al covering publications through 2001, using the PS directly as a
covariate was shown to be a popular choice of covariate adjustment method.37 Austin and others in more recent work
also consider covariate adjustment as an option for PS adjustment. In fact, Austin has developed methods to assess
goodness‐of‐fit when using the PS as a covariate in order to determine whether the PS model is correctly specified
and the baseline characteristic balanced between groups.38 On the other hand, it should be noted that Schafer and Kang
discourage such use because they feel that the interpretability of covariate adjustment in terms of causal inference may
be suspect. As they point out, the treatment effect assessed with covariate adjustment is an average response difference
between two groups, adjusting for differences in covariates, while causal inference focuses on changes in response when
two treatment are applied to the same people. This issue applies equally to using the PS as a covariate, or directly
adjusting the AUC with covariates (regression adjustment). While under some circumstances the results are the same,
conceptual differences might suggest that this method be avoided.39 Additionally, an issue with PS covariate adjustment
as compared with other PS methods is that the method relies on modeling a relationship of the PS to the outcome
(separate from modeling relationship of covariates to treatment/risk factors). Model misspecification (eg, linear or non-
linear) at this level can have serious consequences.9,39

Limitations to the simulations in this research include the use of a limited number of AUC values, a single sample
size, only one prevalence of risk factor (50%), and equal standard deviation between those with and without the risk
factor. Also, for simplicity, only independent variables were considered in the simulation; we could have considered
correlated variables as well. In addition, the simulation only considered linear relationships between covariates and
outcomes. This is unlikely to be true in real life. We also assumed that the outcome of interest was normally distributed.
If the outcome variable is not normally distributed, and cannot be so transformed, other methods would need to be
used. We did not assess the amount of overlap of our samples, nor did we assess balance actually achieved. Finally,
and perhaps most importantly, the simulation generated data appropriate for conditional treatment effects, not mar-
ginal effects. Further research considering marginal effects are likely to find that PS methods will be useful, having
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much less bias, although some of Austin's work found some bias remained even for estimating marginal odds ratios and
hazard ratios.12,13 So it is not clear what would be found when considering a simulation for looking at marginal effects
assessed with the AUC.

In conclusion, given these findings and based on our simulation study, we do not recommend the use of PS methods
to provide adjusted estimates of conditional effects when the AUC is used (ie, P(YRF > YNRF|X)). If interest is in mar-
ginal effects, it may be that PS methods will be the method of choice, but that research has not been done. It appears
that direct adjustment with the individual covariates of interest can be used to estimate the conditional, adjusted
AUC, at least when outcomes are continuous and follow a normal distribution, and covariates exhibit linear relation-
ships with outcomes. Furthermore, AUC regression modeling adjusting for covariates related to the outcome and the
model adjusting for all variables lead to unbiased estimation of conditional AUC under these circumstances. But with
conventional regression adjustment, one cannot easily determine the overlap of the distributions (common support),
thus possibly involving unwitting extrapolation. Results may be sensitive to correct specification of the model, while
adjustment with PS models, when appropriate, is more robust.
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