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Aim: Insulin-resistant skeletal muscle is characterized by metabolic inflexibility with
associated alterations in substrate selection, mediated by peroxisome-proliferator
activated receptor δ (PPARδ). Although it is established that PPARδ contributes to the
alteration of energy metabolism, it is not clear whether it plays a role in mitochondrial fuel
competition. While nutrient overload may impair metabolic flexibility by fuel congestion
within mitochondria, in absence of obesity defects at a mitochondrial level have not yet
been excluded. We sought to determine whether reduced PPARδ content in insulin-
resistant rat skeletal muscle of a non-obese rat model of T2DM (Goto-Kakizaki, GK)
ameliorate the inhibitory effect of fatty acid (i.e., palmitoylcarnitine) on mitochondrial
carbohydrate oxidization (i.e., pyruvate) in muscle fibers.

Methods: Bioenergetic function was characterized in oxidative soleus (S) and
glycolytic white gastrocnemius (WG) muscles with measurement of respiration
rates in permeabilized fibers in the presence of complex I, II, IV, and fatty acid
substrates. Mitochondrial content was measured by citrate synthase (CS) and succinate
dehydrogenase activity (SDH). Western blot was used to determine protein expression
of PPARδ, PDK isoform 2 and 4.

Results: CS and SDH activity, key markers of mitochondrial content, were reduced
by ∼10–30% in diabetic vs. control, and the effect was evident in both oxidative and
glycolytic muscles. PPARδ (p < 0.01), PDK2 (p < 0.01), and PDK4 (p = 0.06) protein
content was reduced in GK animals compared to Wistar rats (N = 6 per group). Ex vivo
respiration rates in permeabilized muscle fibers determined in the presence of complex I,
II, IV, and fatty acid substrates, suggested unaltered mitochondrial bioenergetic function
in T2DM muscle. Respiration in the presence of pyruvate was higher compared to
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palmitoylcarnitine in both animal groups and fiber types. Moreover, respiration rates
in the presence of both palmitoylcarnitine and pyruvate were reduced by 25 ± 6%
(S), 37 ± 6% (WG) and 63 ± 6% (S), 57 ± 8% (WG) compared to pyruvate for both
controls and GK, respectively. The inhibitory effect of palmitoylcarnitine on respiration
was significantly greater in GK than controls (p < 10−3).

Conclusion: With competing fuels, the presence of fatty acids diminishes mitochondria
ability to utilize carbohydrate derived substrates in insulin-resistant muscle despite
reduced PPARδ content.

Keywords: metabolic flexibility, fatty acid oxidation, bioenergetic, oxidative phosphorylation, diabetes

INTRODUCTION

Skeletal muscle insulin resistance is a primary defect in the
pathogenesis of type 2 diabetes mellitus (T2DM). Although the
mechanism that underlies the development of insulin resistance
is not fully understood, a large body of research implicates
excessive accumulation of intramyocellular lipids (IMCL) and
impaired mitochondrial function (Shulman, 2004; Abdul-Ghani
and Defronzo, 2010). In contrast, other studies indicate that
these conditions are not strictly required to induce insulin
resistance (Wicks et al., 2015; Vandanmagsar et al., 2016). The
loss of metabolic flexibility, defined as the capacity to adapt
fuel (carbohydrate and fat) utilization to fuel availability (Kelley
and Mandarino, 2000), is a hallmark of insulin resistance and
T2DM. It has been suggested that nutrient overload may impair
metabolic flexibility due to fuel congestion within mitochondria
(Muoio, 2014), however, defects at a mitochondrial level have not
yet been excluded. Mitochondrial fuel competition experiments
can help to clarify whether metabolic inflexibility factors are
present within mitochondria. Thus, an altered response to fuel
competition in healthy vs. diabetic muscle mitochondria, in the
absence of nutrient overload, could indicate the presence of
intrinsic factors influencing metabolic flexibility.

The strategy of stimulating mitochondrial respiration with
competing substrates is used to evaluate substrate utilization
in conditions mimicking the transition from fasting to the
fed state (Muoio et al., 2012; Muoio, 2014). Fuel competition
studies show that mitochondria isolated from healthy skeletal
muscle of mouse, rat, and humans, preferentially utilize free
fatty acid metabolites over carbohydrate substrates for ATP
synthesis and respiration (Abdul-Ghani et al., 2008; Kuzmiak-
Glancy and Willis, 2014). This evidence suggests that metabolic
impairment in utilizing competing substrates may be present
within mitochondria where transcription factors can have
a role. A computational study based on metabolic control
analysis (Cortassa et al., 2019) suggested that cytoplasmic
and mitochondrial metabolic networks are responsible for the
regulation of fatty acid and glucose utilization.

Peroxisome proliferator-activated receptors (PPAR) δ/β
(hereafter PPARδ) (Ehrenborg and Krook, 2009; Phua et al.,
2018) which is reduced in T2DM (Mensink et al., 2007; Shen
et al., 2008), regulates skeletal muscle substrate utilization at the
transcriptional level. PPARδ is reported to induce upregulation

of (pyruvate dehydrogenase kinase) PDK isoform 2 (PDK2)
and 4 (PDK4) (Constantin et al., 2007), which regulate the
activity of the pyruvate dehydrogenase (PDH) complex, while
also modifying genes responsible for fatty acid transport,
b-oxidation (Tanaka et al., 2003; Wang et al., 2003, 2004; Phua
et al., 2018), and mitochondrial biogenesis, via peroxisome
proliferator-activated gamma coactivator 1-alpha (PGC1-α)
(Schuler et al., 2006; Phua et al., 2018). Previous studies using
transgenic mice or PPARδ activators have established that PPARδ

contributes to skeletal muscle fuel selection (Ehrenborg and
Krook, 2009) without any effects on mitochondrial function
(Constantin et al., 2007). Nevertheless, it is unclear whether
reduced PPARδ expression, as in T2DM, alters fuel competition
during mitochondrial substrate utilization. Furthermore, fuel
competition has not been studied in mitochondria of insulin
resistant skeletal muscle. To determine whether free fatty acid
metabolites reduce mitochondrial utilization of carbohydrate
substrates in insulin resistant skeletal muscle, as observed in
healthy skeletal muscle mitochondria, requires the assessment
of fuel competition in mitochondria of T2DM in the absence
of nutrient oversupply as seen in healthy muscle. The presence
of obesity has been reported to cause metabolic inflexibility
(Ukropcova et al., 2005; Aucouturier et al., 2011; Muoio, 2014),
thus, by using a non-obese model of T2DM we were able to
minimize the potential confounding effect of obesity-related
metabolic disturbance on mitochondrial fuel utilization.

The Goto-Kakizaki (GK) rat is a widely used lean model
of T2DM. Studies have shown that skeletal muscle in the GK
rat is insulin resistant even in the absence of obesity (Goto
and Kakizaki, 1981; Steiler et al., 2003), displays preserved
mitochondrial function (Lai et al., 2017) and has reduced
PPARδ gene expression (Shen et al., 2008) with concomitant
hyperglycemia and hyperinsulinemia (Steiler et al., 2003;
Kuwabara et al., 2017; Lai et al., 2017), despite normal levels of
plasma non-esterified fatty acids (NEFA), and normal skeletal
muscle glycogen and IMCL content (Macia et al., 2015). Thus,
we elected to use this animal model to study mitochondrial
fuel competition in insulin resistant skeletal muscle that lacks
obesity-associated nutrient oversupply (Muoio, 2014).

Moreover, the competing effect of fatty acids on carbohydrate
substrate utilization may differ in mitochondria of red oxidative
and white glycolytic muscle fibers, given their differing ability
to oxidize fat (Pande and Blanchaer, 1971; Carroll et al., 1983;
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Jackman and Willis, 1996; Glancy and Balaban, 2011; Li et al.,
2012). The capacity of glycolytic muscle fibers to utilize fat is less
than oxidative muscle fibers whereas the effect of fatty acids on
glucose utilization in oxidative differed from that in glycolytic
fibers (Jenkins et al., 1988). Furthermore, it is not known whether
the different biochemical properties of oxidative and glycolytic
fibers affect substrate selection in the presence of competing fuels.

We proposed that reduced PPARδ in insulin-resistant skeletal
muscle results in impaired mitochondrial fat oxidation by
altering substrate selection pathways and promoting greater
responsiveness to carbohydrate derived substrate. To test this
hypothesis, we measured skeletal muscle PPARδ and PDK4/2
protein content, muscle fiber respiration, and fuel competition
between pyruvate and palmitoylcarnitine as representative
substrates for carbohydrate and fat oxidation in oxidative soleus
and glycolytic white gastrocnemius from GK rats compared to
lean healthy controls.

RESULTS

Animal Model
The animal characteristics are reported in Table 1. The animals
used in this study are the same of those used in our previous study
(Lai et al., 2017, 2020). The diabetic (GK) rats had a significant
lower body weight than control (W) rats at both age groups.
While the body weight of W rats significantly increased by 24%
from 18 to 28 weeks that of GK rats did not change. The GK rats
were hyperinsulinemic and hyperglycemic at both age groups.

Mitochondrial Content
Citrate synthase (CS) and succinate dehydrogenase (SDH)
activities were used to assess mitochondrial content in soleus (S)
and white gastrocnemius (WG) muscles (Table 2). In GK rats,
CS activity was 10 ± 3% lower in the S (p < 0.01) and 15 ± 4%
lower in the WG muscle (p < 0.04) compared to CON. The SDH

TABLE 1 | Animal characteristics: body weight, insulin, and glucose
concentration in blood.

Unit Wistar GK

Body weight (g) 590 ± 58 389 ± 21*

Insulin (ng mL−1) 2.4 ± 2.1 5.1 ± 1.4*

Glucose (mM) 6.5 ± 1.7 17.4 ± 3*

*(P < 0.03) Wistar 28 weeks vs. GK-28 week (n = 6).

TABLE 2 | Specific activities of mitochondrial marker enzymes (CS, SDH, U g−1)
in white gastrocnemius (WG) and soleus (S) of GK and Control rats.

Wistar GK

CS WG 16.8 ± 0.6 14 ± 0.6*

S 33.3 ± 0.6§ 29.2 ± 0.8*,§

SDH WG 0.42 ± 0.03 0.3 ± 0.02*

S 1.8 ± 0.04§ 1.3 ± 0.05*,§

*p < 10−2 Wistar vs. GK, § p < 10−4 S vs. WG.

activity was 27 ± 4% lower (p < 0.01) in both muscle groups in
the GK animals compared to Wistar.

Respiration Rates in Oxidative and
Glycolytic Fibers
Respiration rates in permeabilized S and WG fibers were similar
for both experimental groups (Figure 1). The basal respiration
rate determined in the presence of malate and pyruvate and
absence of ADP in both S (Figure 1A) and WG (Figure 1B)
permeabilized fibers (leak state with no adenylates (Gnaiger et al.,
2019), PL,N) was similar for GK and Wistar animals. Oxphos
state (i.e., State 3) respiration rate in the presence of pyruvate
(PP) and succinate (SP), which supply electrons to complex I
and II respectively, was not different between GK and Wistar
for both S and WG fibers (Figure 1). Uncoupled mitochondrial
respiration rate (ET) was similar to OXPHOS determined with
coupled mitochondria (SP), indicating that the phosphorylation
system is not limiting OXPHOS (Figure 1). After inhibiting
complex III with antimycin A, ascorbate and TMPD were added
to measure uncoupled complex IV respiration rate. As observed
for other substrates, complex IV respiration rate was unaltered in
GK (Figure 1).

CS and SDH activities were lower in GK vs. control rats
for both muscle fibers. Thus, respiration rates were normalized
to CS and SDH activity. This correction resulted in higher
respiration rates in GK than control, however, this increase
was not statistically significant for the rates normalized to CS
(Supplementary Figure 1). When the rates were normalized to
SDH activity, those obtained with pyruvate and succinate were
greater in GK than control rats only for S fibers (Supplementary
Figure 2A, p < 0.03).

Competing Substrate Utilization in
Mitochondrial Metabolism
To determine the capacity of permeabilized muscle fibers to
metabolize fatty acids, palmitoylcarnitine (PCN) was used as a
substrate to supply mitochondrial b-oxidation. The Oxphos state
respiration rate state (PCNP) in presence of malate + PCN was
similar in Wistar and GK for both muscle fibers (Figure 2).
Oxphos state respiration rate (PP) obtained in the presence of
pyruvate (Figure 1) also is reported in Figure 2 to facilitate a
comparison with the respiration rates obtained with PCN or PCN
and pyruvate (PCN + PP). In the Wistar group, the addition
of pyruvate in the presence of PCN significantly increased
mitochondrial respiration rates from 30± 4 (PCNP) to 44.8± 1.8
(PCN + PP) pmol s−1 mg−1 ww in permeabilized fibers from S
(Figure 2A), and 10 ± 1.6 (PCNP) to 22.5 ± 1.7 (PCN + PP)
pmol s−1 mg−1 ww for WG fibers (Figure 2B). In the GK
group, the addition of pyruvate did not affect mitochondrial
respiration rate in S fibers (28 ± 2.2 with PCNP and 28.4 ± 2.1
with PCN + PP pmol s−1 mg−1, Figure 2A), but increased
respiration rates from 8.2± 0.7 (PCNP) to 12.3± 1.0 (PCN+ PP)
pmol s−1 mg−1 ww in WG (Figure 2B). The decrease of the
respiration rate with P in presence of PCN was greater in GK
than control for both muscle fiber types (Figures 2C,D). In both
muscle groups, mitochondrial respiration rate determined in the
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FIGURE 1 | Respiration rates in permeabilized soleus (A) and white gastrocnemius (B) muscles of control and GK rats obtained under leak state (PL,N) and oxphos
state (PP) with malate and pyruvate, cytochrome c (Cyt-c), Succinate (SP), uncoupled mitochondria to measure maximal electron transport chain capacity (ET),
rotenone (R). Also, ET-R indicates the respiration rate difference between that indicated with ET and R; CIV indicates the respiration rate difference between that with
ascorbate plus TMPD and azide; Respiratory acceptor control ratio (RACR). Data are mean ± SEM (n = 6). For soleus, the respiration rate obtained with cytochromes
c is 8 ± 3% and 14 ± 7% greater than that in presence of only P for control and GK, respectively. And for white gastrocnemius is 5 ± 4% and 2 ± 2%, respectively.

presence of both PCN and pyruvate was significantly lower in
the GK rats compared to Wistar (Figure 2). In the Wistar group,
the respiration rate observed with PCN and P was reduced by
37 ± 6% and 25 ± 6% of that determined with pyruvate in S
and WG muscle fibers, respectively. In GK, the respiration rate
observed with PCN and P was reduced by approximately 63± 6%
and 57 ± 8% of that determined with pyruvate in S and WG
muscle fibers, respectively.

To determine mitochondrial membrane integrity,
mitochondrial respiration rate was measured with and
without cytochrome c in the presence of complex I substrate
(malate + pyruvate) (Figure 1) or in the presence of PCN + PP
(Figure 2), with a saturating concentration of ADP. Addition of
cytochrome c did not significantly (p > 0.6) affect the respiration
rates for both sets of experiments (Figures 1, 2). The increase in
respiration rate in the presence of cytochrome c is reported in
the figure legends for both muscle fiber types.

Protein Expression
Western blot analysis revealed muscle specific differences in
protein expression between GK and Wistar. Thus, PPARδ

(Figure 3), and PDK2 (Figure 4A) (both p < 0.01), and
PDK4 (Figure 4B) and PGC1-α (Figure 5, both p = 0.06),

were reduced in the diabetic group (pyruvate dehyrogenase
phosphatase). PDP2 (Figure 6) also was not different between
control and diabetic rats.

DISCUSSION

The GK rat represents a spontaneous non-obese model of
T2DM, with insulin-resistance primarily manifesting in skeletal
muscle, and was used to evaluate competing fuel selection in
the absence of lipid accumulation in oxidative and glycolytic
skeletal muscle fibers. Mitochondrial content in both muscle
groups was significantly less in GK than in control muscles,
whereas similar respiration rates with complex I, II, IV, and fatty
acid substrates for both S and WG muscle fibers indicate that
mitochondrial function is preserved in the presence of insulin
resistance. Substrate competition was observed in both red and
white fiber types in control and insulin-resistant skeletal muscle.
In particular, the respiration rate in both muscle fiber types in
the presence of pyruvate and palmitoylcarnitine was reduced in
comparison to pyruvate alone and was further reduced in GK
rats. Thus, fuel competition at the level of mitochondrial pyruvate
utilization is more impaired in GK than lean non-diabetic control
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FIGURE 2 | Comparison of the respiration rates obtained with malate plus palmitoylcarnitine (PCNP), or pyruvate (PP) or PCN + PP or PCN + PP with cytochromes c
(Cyt-c) in permeabilized soleus (A) and white gastrocnemius (B) fibers of control and GK rats. For soleus, the respiration rate obtained with cytochromes c is 4 ± 2%
and 1 ± 1% greater than that in presence of PCN + PP for control and GK, respectively. And for white gastrocnemius it is 3 ± 2% and 8 ± 4%, respectively.
Comparison of the respiration rate with PCNP and PCN + PP changes relative to that obtained with PP for soleus (C) and white gastrocnemius (D) fibers of control
and GK rats; Influence of substrate within group for soleus and white gastrocnemius muscles (p < 10-5): (#) Statistically different from PCNP, (†) Statistically different
from PCN + PP. Influence of insulin resistance in presence of PCN + PP substrates for soleus and white gastrocnemius muscles (p < 10−3): (*) Statistically different
from control soleus and white gastrocnemius. Data are mean ± SEM (n = 6). (U ) Statistically different from GK PCNP. Data are mean ± SEM (n = 6).

rats even in the presence of reduced PPARδ content, which was
hypothesized to enhance pyruvate oxidation.

The role of mitochondria in the etiology of skeletal muscle
insulin resistance has been the subject of considerable debate
for several decades. In the current study, the finding that
mitochondrial function was similar in both diabetic and non-
diabetic muscle, despite a reduction in mitochondrial content,
adds to the growing body of literature (Boushel et al., 2007;
Holloway, 2009; Hoeks et al., 2010; Holloszy, 2013; Muoio, 2014)
that contradicts the notion of an intrinsic defect in mitochondrial
capacity leading to skeletal muscle insulin resistance and T2DM
(Goodpaster, 2013). Thus, alternative mechanisms are required
to explain the contribution of the mitochondrion to skeletal
muscle insulin resistance. The presence of metabolic inflexibility
in individuals with insulin resistance and T2DM suggests that
mitochondrial substrate selection may be defective in individuals
with T2DM, however, traditional models of insulin resistance that
include obesity associated nutrient oversupply add a confounding
factor to assessment of this characteristic. We therefore used a

non-obese model of insulin resistance to study the flexibility of
mitochondrial metabolic fuel competition.

Mitochondrial Content
Based on CS and SDH activity, mitochondrial content was lower
in glycolytic muscle fiber types compared to oxidative, for both
groups. This difference is consistent with previous observations
indicating a difference in fiber type distributions in these rat
muscle groups (Delp and Duan, 1996; Yasuda et al., 2002).
Because CS activity is positively related to type IIA (red; fast
oxidative and glycolytic) fibers, and inversely related to type IIB
(white; fast glycolytic) fiber content (Delp and Duan, 1996), a
reduced CS activity in S and WG fibers reported in our study
(Table 2) is consistent with the decrease in oxidative fibers
and an increase in glycolytic fibers previously reported (Yasuda
et al., 2002) in GK rats. In studies of human skeletal muscles,
oxidative enzyme activity (He et al., 2001; Oberbach et al., 2006)
and type I fiber number are reduced in patients with obesity
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FIGURE 3 | Representative western blots and densitometric analysis of
PPARδ protein expression in soleus of control and GK rats. (*) Statistically
different from control (p < 0.01). Data are mean ± SEM (n = 6).

(Hickey et al., 1995; Tanner et al., 2002; Oberbach et al., 2006) and
T2DM (Hickey et al., 1995; He et al., 2001; Oberbach et al., 2006).

The reduced CS and SDH activities observed in GK rats is
consistent with a switch in fiber type to lower oxidative capacity
triggered by a reduced PGC1-α and PPARδ protein content in
muscle observed in our study (Figures 3, 5). In support of
this mechanism, a study in which PPARδ was ablated in mouse
skeletal muscle (Schuler et al., 2006) showed a key role of PPARδ

in regulating type I fiber content via PGC1-α, whereas in human
skeletal muscle, PGC1-α and PPARδ mRNA expression were
both positively correlated with type I fiber content (Krämer
et al., 2007). In our study, the reduced mitochondrial content
and preserved function in GK rats, is consistent with the
intimate interplay between PPARδ and PGC1-α. Specifically,
mitochondrial biogenesis can be triggered by PPARδ activation
with the expression of PGC1-α at transcriptional level without
affecting mitochondrial function (Ehrenborg and Krook, 2009).
These effects did not increase mitochondrial ability to oxidize
pyruvate in both control and diabetic groups.

Mitochondrial Function
The unaltered bioenergetic function evaluated in oxidative and
glycolytic muscle is consistent with our previous work on

mitochondria isolated from quadriceps muscle (Lai et al., 2017)
and on ischemia−reperfusion of skeletal muscle (Liu et al.,
2016) of the same GK rats. These studies and a NMR work
on this T2DM model suggested the absence of mitochondrial
dysfunction in GK rats (Macia et al., 2015). In our parallel
GK study (Lai et al., 2017), no significant differences were
observed in subsarcolemmal and interfibrillar mitochondrial
function evaluated in presence of complex I, II, III, and
IV, and fatty acid substrates (palmitoyl-CoA and PCN). In
addition, unaltered enzymatic activity of Complex I, II, III,
and IV in the insulin-resistant GK muscle mitochondria (Lai
et al., 2017) indicated a preservation of biochemical properties
of the electron transport chain. Another study on isolated
mitochondria from GK skeletal muscle confirmed the absence
of mitochondrial bioenergetic dysfunction in this animal model
(Lewis et al., 2019) regardless mitochondrial preparations. Thus,
both respiring isolated mitochondria and fiber studies confirmed
that mitochondrial function is unaltered in insulin-resistant
muscles of non-obese GK rats and in T2DM patients (Boushel
et al., 2007) when respiration rate are related to citrate synthase
(CS) activity used as a mitochondrial marker content.

In our study, there is a trend for higher respiration
rates normalized to CS or SDH activity in GK than control
(Supplementary Figures 1, 2) for both muscle fibers, but the
difference was significant only for respiration rates normalized
to SDH (Supplementary Figure 2A, p < 0.03). It is possible that
the sample size was not sufficient to detect the difference between
GK and control. This difference is mainly related to the lower
CS and SDH activity in GK than W control. Similarly, to our
findings, a previous study indicated that SDH activity in T2DM
patients was 25% lower than control subjects in both oxidative
and glycolytic fibers (He et al., 2001). Another study on myotubes
from T2D subjects attributed the decrease in CS to the absence of
a stimulatory insulin effect on CS activity rather than a decrease in
mitochondrial content (Ørtenblad et al., 2005). Insulin infusion
has been reported to increase CS activity by 28% in human vastus
lateralis (Stump et al., 2003).

Mitochondrial function in the permeabilized fiber was
preserved not only when stimulated with P, but also in the
presence of P and PCN (Figures 1, 2). Thus, the PCN
concentration used in our study does not appear to affect the
integrity of mitochondrial membrane. In other bioenergetic
studies on permeabilized skeletal muscle fibers using the same
respiration media (MiR05), the concentration of PCN (75
mM) (Cavalcanti-De-Albuquerque et al., 2014; Lopes Martins
et al., 2018) and palmitoyl-CoA (50 mM) (Miotto et al.,
2018) were similar to that of our study (60 mM). Also, in
another mitochondrial study with a respiration media with
0.25% of BSA (Hansford, 1977), but different from MiR05, PCN
concentration was 50 mM. This range of concentration was
higher than that used in a study of skeletal muscle mitochondria
(Abdul-Ghani et al., 2008). The difference is related, at least
in part, to the presence of bovine serum albumin (BSA,
0.1%) in the respiration media. The ability of BSA in binding
PCN reduces its free concentration available for mitochondria.
Thus, the inhibitory effect of PCN (10 mM) on mitochondrial
respiration was removed in presence of a media with 0.1% BSA
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FIGURE 4 | Representative western blots and densitometric analysis of PDK2 (A) and PDK4 (B) protein expression in soleus of control and GK rats. (*) Statistically
different from control (p < 0.01). Data are mean ± SEM (n = 6).

whereas, in absence of BSA, detergent effects with a decrease
in mitochondrial inner membrane potential was reported for a
PCN concentration range of 10–50 mM. Also, in plant the PCN-
dependent stimulation of mitochondria was shifted to higher
concentration (> 50 mM) in presence of BSA greater than 0.1%
(Gerhardt et al., 1995).

Substrate Competition
In our study, substrate competition experiments showed that
the capacity of both muscle fiber types to metabolize pyruvate
in the presence of PCN was dramatically reduced in GK and
controls, but the effect of PCN on pyruvate oxidation was greater
in GK than that in control fibers (Figure 2). Our finding agrees
with observations reported by other animal and human skeletal
(Abdul-Ghani et al., 2008; Kuzmiak-Glancy and Willis, 2014) and
heart (Makrecka et al., 2014) studies. In particular, it was reported
that the presence of PCN decreases pyruvate maximal respiration
rate by 20% and pyruvate utilization by 60% in mitochondria
isolated from rat skeletal muscle (Kuzmiak-Glancy and Willis,
2014). Similar results also were reported in another bioenergetic
study on mitochondria isolated from mouse and human skeletal
muscle (Abdul-Ghani et al., 2008). Although our bioenergetic
assays do not quantify the contribution of substrate oxidation
to the mitochondrial respiration rate determined in the presence
of competing fuels, they suggest that the greater respiration rate
observed with pyruvate alone than that with PCN and pyruvate
is related to an inhibitory effect on mitochondrial utilization
of pyruvate. In support of this view, it should be considered
that the reduced rate of mitochondrial respiration stimulated by
competing complex I substrate and free fatty acid metabolites
should not be attributed to the CI capacity to transport electron.

To determine whether the difference between GK and control
on the inhibitory effect of PCN on the respiration rate in
the presence of P was related to the oxidative enzyme activity
(i.e., CS and SDH) or muscle fiber mass, we calculated the
changes in respiration rate PCNP and PCN + PP relative to
that obtained with PP because these changes are independent
of the muscle fiber mass or CS content. Even in this case,
the decrease of the respiration rate PCN + PP (57–63%) in
GK fibers was significantly greater than that in control (37–
25%) muscle fibers (Figures 2C,D) indicating that PCN effect
on respiration differs between GK and control rats. Taken
together, this evidence suggests that PCN outcompetes pyruvate
for mitochondrial respiration in skeletal muscle of GK rats
to a greater extent. Thus, this effect could contribute to the
impairment of glucose utilization in insulin resistant skeletal
muscle whenever fuel competition occurs at a mitochondrial level
even in the absence of obesity.

Whole body fuel utilization data have been reported for
the GK model in a study on glucose telemetry analysis with
indirect calorimetry measurements (Iuchi et al., 2017). In this
study, for both dark and light periods, GK rats had similar
respiratory exchange ratios as the control group. Thus, this
study suggests an unaltered whole-body substrate utilization
whereas our results indicate a mitochondrial disposition to
prefer fatty acids in this non-obese animal model of T2DM.
Nevertheless, this comparison is limited by the experimental
design of whole-body measurements, which does not distinguish
between fed and fasting states, whereas mitochondrial respiration
rates with competing substrates are mimicking the transition
from fasting to the fed state. Substrate preference differences
between mitochondrial and whole-body may be due to tissue
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FIGURE 5 | Representative western blots and densitometric analysis of
PGC1-α protein expression in soleus of control and GK rats (p < 0.06). Data
are mean ± SEM (n = 6).

specific differences in substrate selection that cannot be detected
with indirect calorimetry (Petersen et al., 2015). Our data on
non-obese rats with T2DM are consistent with the inability of
mitochondria to switch from lipid to glucose utilization observed
in lean insulin-resistant patients (Petersen et al., 2015) and
suggest that studies are warranted on this relationship.

In this study, we investigated whether PPARδ as key regulator
of skeletal muscle substrate selection (Wang et al., 2003; De
Lange et al., 2008) in T2DM, had an effect on mitochondrial fuel
competition between PCN and pyruvate. A reduced content of
PPARδ protein in GK mirrors a reduced PDK4 (Figure 4B) which
is responsible for PDH phosphorylation and an unaltered content
of PDP2 and PDP4 which catalyzes PDH dephosphorylation to
restore its activity. Under this condition, PDH is expected to be
more active for pyruvate oxidation in GK than control because
the content of PDK4 responsible for inactivation of PDH is
reduced in GK in comparison to control, while PDP2/4 content
is similar in both animal groups (Figure 6). In contrast to this
view, our results showed that pyruvate oxidation in GK fibers is
not enhanced with M + P substrate. The respiration rate in the
presence of pyruvate is due to the NADH availability depending
on transport of pyruvate into mitochondria and conversion of
pyruvate to Acetyl-CoA by PDH. Although PDH activity was not
determined, we can infer that PDH activity was enough to sustain
pyruvate utilization for both mitochondria of GK and control
with no impairment for GK rats because the respiration rate with

FIGURE 6 | Representative western blots and densitometric analysis of PDP
2 protein expression in soleus of control and GK rats. Data are mean ± SEM
(n = 6).

pyruvate was similar in both GK and W rats. If PDH activity is
limiting the respiration rate with pyruvate, PDH activity would be
similar in both GK and W rats. And if PDH activity is not limiting
the bioenergetics, PDH activity difference between GK and W
rats may exist. Thus, our study suggests that mitochondrial
pyruvate utilization and fuel competition in the presence of PCN
was not affected by reduced PPARδ.

The glucose-fatty acid cycle proposed by Randle (Randle
et al., 1988; Randle, 1994) could in part explain the effect
of PCN on mitochondrial pyruvate oxidation. In particular,
oxidation of fatty acids and carbohydrate generates a high
concentration of acetyl-CoA, which is an allosteric inhibitor
of PDH (Randle et al., 1988; Randle, 1994). However, this
mechanism cannot explain the inhibitory effect of palmitoyl-
CoA and oleoyl-CoA on glutamate (Kuzmiak-Glancy and Willis,
2014) and succinate (Abdul-Ghani et al., 2008) oxidation in
mitochondria, because it does not involve PDH activity. Thus,
these studies support our interpretation of an inhibitory effect
of PCN on pyruvate oxidation without PDH involvement
(Liepinsh et al., 2017). To further probe for competing fuel
utilization, different combinations and orders of substrates can
be used. In addition to using complex I and II substrates,
glyceraldehyde-3-phosphate is of particular interest because it
would provide insight into the interplay between mitochondrial
glycerol-3-phosphate dehydrogenase, b-oxidation and glycolysis
(Mráèek et al., 2013).
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The interpretation of the effect of PCN on mitochondrial fuel
utilization in the context of the regulation of glucose and fat
oxidation pathways in fasting and fed state and during exercise
should be made with caution. Muscle alternates the utilization
of glucose and fat oxidation in fasting and fed states. In a
postprandial state, the switch from fat to carbohydrate utilization
occurs by restricting the availability of substrates for b-oxidation
(McGarry, 2002). This is caused by malonyl-CoA inhibiting
carnitine palmitoyltransferase-1 (CPT-1), which is responsible
for the conversion of long-chain fatty acyl-CoAs to acylcarnitines
(e.g., PCN) (Kerner and Hoppel, 2000; Muoio, 2014). In our
study, PCN access to mitochondria is not limited by CPT-1
since it is transported via carnitine-acylcarnitine translocase.
Thus, the effects of PCN excess in diminishing mitochondrial
utilization of pyruvate may be attenuated in vivo when the flow
of long-chain fatty acid is more realistically controlled by CPT-
1. Nevertheless, a bioenergetic study on healthy skeletal muscle
reported that mitochondrial utilization of pyruvate was inhibited
not only by PCN, but also by palmitoyl-CoA, which is a CPT-1
dependent substrate (Abdul-Ghani et al., 2008). Consistent with
this observation and our findings, fatty acids have been reported
to inhibit glycolysis not only in skeletal muscle (Jenkins et al.,
1988), but also in heart (Cortassa et al., 2020).

Furthermore, the conditions used in our fuel utilization
experiments presented some similarities with those during
exercise. In particular, the high ADP and pyruvate concentration
used in our work may have contributed to PDH activation as
in exercise (Spriet and Heigenhauser, 2002; Lundsgaard et al.,
2018) because PDK, an enzyme that inactivates PDH complex,
is inhibited in presence of pyruvate and ADP (Pratt and Roche,
1979; Mann et al., 2000). Thus, in our study, the experimental
conditions of the permeabilized respiring fibers are unlikely
to resemble resting physiological conditions in which PDH is
not active like in presence of high ADP concentrations. The
bioenergetic approach proposed does not allow to directly relate
the findings on mitochondrial utilization of competing substrates
to the fuel utilization at resting conditions. Nevertheless, it is
reasonable to assume that the effect of PDH activation due to
ADP was similar for both respiration rates obtained with P or
PCN+ PP since the concentration of P and ADP was the same in
both experiments.

Other mechanisms involving the electron transport chain and
membrane potential rather than PDH and PDK are proposed to
explain alterations in mitochondrial metabolic flexibility (Abdul-
Ghani et al., 2008; Sahlin et al., 2008; Hue and Taegtmeyer,
2009). It has been suggested that fatty acids may impair
the electron transport chain in complex I and III (Galgani
et al., 2008). The inhibition of NADH oxidation may be
caused by a specific interaction of long chain fatty acids with
complex I rather than a detergent-related effect of palmitoyl-
CoA and palmitoyl carnitine (Batayneh et al., 1986). Another
potential substrate competition mechanism is related to the
level of mitochondrial uncoupling induced by fatty acids. It was
reported that a decrease in membrane potential would inhibit
metabolite transport in mitochondria in favor of fat oxidation
(Hue and Taegtmeyer, 2009). Nevertheless, the mechanisms
proposed do not explain a more pronounced effect of PCN on

pyruvate oxidation rate in GK than that observed in control for
both muscle groups.

Proteins of the sirtuin family have shown to have a key role in
substrate utilization in skeletal muscle (Jing et al., 2013; Lantier
et al., 2015). A reduced SIRT3 content has been shown to increase
insulin resistance (Lantier et al., 2015) and impair glucose
oxidation by inhibition of PDH in favor of fatty acid utilization in
skeletal muscle (Jing et al., 2013). Thus, mitochondrial utilization
of competing substrates observed for the insulin resistant GK
rats may have been affected by SIRT3. Nevertheless, as previously
discussed, indirect evidence suggests the absence of difference in
PDH activity effects on bioenergetics between GK and W rats.

In our study, we used S and WG muscle fibers as representative
of oxidative and glycolytic muscle fibers, respectively. For both
muscle fibers, mitochondrial fuel competition was greater in
insulin resistant muscle of GK rats in comparison to the control
group. This result is relevant in determining the mechanisms
responsible for muscle fuel utilization in fed and fasting states.
In particular, it has been suggested that type I and II fibers
contribute differently to glucose utilization leading to a different
effect on insulin resistance. Glucose uptake was found to be
linearly related to type I fiber and inversely related to type II
fibers in healthy patients (Lillioja et al., 1987). Some studies
suggest a primary role of oxidative muscle fibers in insulin
resistance, while others reported a similar insulin resistance in
different muscle fibers although different muscle fibers appear
to have similar sensitivity for phosphoregulation by insulin
(Albers et al., 2015). In our study, long chain acylcarnitine can
alter substrate utilization in mitochondria of both muscle fiber
types. Thus, a common mechanism could be responsible for the
fuel competition observed in skeletal muscle. The role of long
chain acylcarnitine is important in the development of metabolic
disorders and our study underscores the need for further research
aimed at understanding the specific mechanisms by which long
chain acylcarnitines impair metabolic flexibility in both insulin
resistant muscle fiber types.

PPAR δ/β and Fuel Utilization
In this study, we investigated whether PPAR δ/β had an effect on
mitochondrial fuel competition between PCN and P. PPAR δ/β, a
key regulator of skeletal muscle substrate selection (Wang et al.,
2003; De Lange et al., 2008), is a promising target for treatment of
obesity, dyslipidemia, T2D and non-alcoholic fatty liver disease
(Luquet et al., 2005; Palomer et al., 2018). Human (Krämer
et al., 2007; Risérus et al., 2008) and animal (Brunmair et al.,
2006; Constantin et al., 2007) studies suggest that PPAR δ/β may
rescue impaired fatty acid utilization in T2D due to its effects on
substrate selection signaling pathways. In particular, metabolic
flexibility may be mediated by overexpression of PDK enzymes
(Randle, 1994; Zhang et al., 2014) by their ability to regulate
PDH activity, which has a key role in glucose oxidation, and by
overexpression of b-oxidation and CPT1 genes, thus contributing
to an increase of fat catabolism (Tanaka et al., 2003; Wang et al.,
2003). In our study, the reduced protein expression of PPAR δ/β
and PGC1-α in our animal model of T2DM is consistent with
the reduced gene expression of PPAR δ/β and PGC1-α that has
been reported in patients with T2DM (Mensink et al., 2007) in
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comparison to control obese. Because skeletal muscle PPAR δ/β
increases during fasting (Ehrenborg and Krook, 2009) whereas
the animals of our study had access to food, it is possible that the
PPAR δ/β effects were diminished.

Furthermore, it has been suggested that PPAR δ/β activation
by free fatty acids (Staiger et al., 2009) may be a mechanism
to prevent the accumulation of fatty acid (Georgiadi and
Kersten, 2012). Thus, in our study, we speculate that the acute
mitochondrial stimulation with PCN, triggered an activation of
the PPAR δ/β. The difference observed between diabetic and
control animals could be related to the target genes of PPAR δ/β
such as Forkhead Box O1A (FOXO1). Thus, in the presence of
insulin resistance as in GK rats, the impaired ability of insulin
to deactivate FOXO1 may have enhanced fatty acid utilization.
FOXO1 not only induces PDK4 (Kim et al., 2006; Nakamura
et al., 2014), but also membrane enrichment in CD36 with an
increase of fatty transport and utilization (Bastie et al., 2005;
Nahlé et al., 2008). The transcriptional activity of FOXO1 is
activated when insulin concentration is low.

In summary, we found that mitochondrial function is
preserved in insulin-resistant skeletal muscle and that there
is a significant effect of FFA metabolites on mitochondrial
fuel utilization determining a reduced carbohydrate oxidation
substrate, even in the presence of reduced PPARδ expression,
which would be expected to predispose mitochondria to utilize
more carbohydrate. In the absence of obesity, mitochondrial
metabolic inflexibility is still present and appears related to a
mitochondrial impairment related to long-chain acylcarnitines.
The impact of mitochondrial dysfunction on metabolic flexibility
in T2DM patients has yet to be determined. New evidence
suggests that mitochondria are the primary site controlling fuel
selection and a common impairment of mitochondrial utilization
of competing fuels is present in oxidative and glycolytic fibers in
insulin resistant skeletal muscle of non-obese rats.

MATERIALS AND METHODS

Animals
The GK non-obese rat with type 2 diabetes mellitus (T2DM)
and Wistar (Control) control animals were purchased from
Charles River Laboratories (Wilmington, MA, United States). GK
rats manifest spontaneous skeletal muscle and hepatic insulin
resistance, mild hyperglycemia and normal lipidemia by 4 weeks
of age. Six male GK and six Wistar controls were housed in
pairs in the Animal Resource Center facilities of Case Western
Reserve University with 12:12-h light-dark cycle and were fed
standard diet chow (Prolab Isopro RMH 3000, LabDiet, St.
Louis, MO, United States) ad libitum. The sample size was
used to detect difference between bioenergetics parameters in
rat skeletal muscle fibers (Lopes Martins et al., 2018). Male
animals were selected to avoid any hormonal effects on energy
metabolism during the menstrual cycle. Animals were euthanized
at 28 weeks of age. The euthanasia was performed 7–8 a.m.
on the day of study while food was available. All procedures
were approved by Case Western Reserve University Institutional
Animal Care and Use Committee and performed in accordance

with the National Research Council guidelines for care and use
of laboratory animals in research. Plasma insulin and glucose,
and the bioenergetics of skeletal muscle mitochondria in these
animals were previously published by our group (Lai et al., 2017).

Buffers
All reagents were purchased from Sigma, unless otherwise
specified. Mitochondrial respiration medium (MiR05), relaxing
and biopsy preservation solution (BIOPS) and saponin solution
for muscle permeabilization were prepared as described
previously (Veksler et al., 1987; Pesta and Gnaiger, 2012).
MiR05 consists of 0.5 mM EGTA, 3 mM MgCl2.6H2O, 60 mM
K-lactobionate, 20 mM Taurine, 10 mM KH2PO4, 20 mM
HEPES, 110 mM D-Sucrose, 1 g/l BSA, essentially fatty acid
free. The pH of MiR05 was adjusted to 7.1 with KOH at 30◦C.
BIOPS consists of 1.77 mM CaK2EGTA, 7.23 mM K2EGTA,
5.77 mM Na2ATP, 6.56 mM MgCl2.6H2O, 20 mM Taurine,
15 mM Na2Phosphocreatine, 20 mM Imidazole, 0.5 mM DTT,
50 mM MES hydrate. The pH of BIOPS was adjusted to 7.1 with
KOH at 0oC. Saponin stock solution was prepared fresh everyday
by dissolving 5 mg Saponin in 1 mL BIOPS.

Skeletal Muscle Fiber Preparation
Permeabilized skeletal muscle fibers were prepared as described
previously (Pesta and Gnaiger, 2012). White gastrocnemius
(WG) and soleus (S) muscles were removed and transferred
into 10 mL of BIOPS on ice. Connective and fat tissue were
removed, the muscle was cut into 50–100 mg fragments, and
placed with BIOPS onto an ice-cold petri dish. The fiber bundles
were mechanically separated with a pair of sharp forceps over a
standardized period of 5 min for a ∼4 mg sample. An optical
glass binocular magnifier with a 10× magnification lens was
used to verify the degree of fiber separation. A color change
from red to pale fibers also was used as a criterion to evaluate
the degree of separation of the soleus muscle. The fibers were
gently teased apart and stretched out. The bundles of fibers
were permeabilized by gentle agitation for 30 min at 4◦C in a
solution of 50 µg of saponin per mL of BIOPS. Fibers were
washed for 10 min by gentle agitation in ice-cold MiR05 and
subsequently blotted, weighed, and then immediately used for
respirometry measurements.

High-Resolution Respirometry
Mitochondrial respiration was determined as described
previously (Lemieux et al., 2010). Permeabilized fibers (1.0–
2.5 mg) were transferred to the chamber of the polarographic
system (OROBOROS-O2k, Innsbruck, Austria, Gnaiger, 2008)
containing 2 mL of MiR05. Datlab software (OROBOROS
Instruments) was used for data acquisition and to calculate
oxygen consumption in the fibers. The metabolic chamber
temperature was maintained at 37◦C.

The protocol (Protocol 1) used to evaluate mitochondrial
function with complex I, II, and IV substrates, uncoupler, and
inhibitors was performed according to the following sequence:
malate (5 mM), pyruvate (5 mM), ADP (2.5 mM), cytochrome
c (Cyt-c; 10 µM), succinate (10 mM), dinitrophenol (DNP;
titration up to an optimum concentration, 5–20 µM, until
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respiration reaches plateau), rotenone (0.5 µM), antimycin A (2.5
µM), ascorbate (4 mM), tetramethylphenylenediamine (TMPD;
0.5 mM), and azide (100 mM). The amount added to the chamber
is referred to as the final concentration. All mitochondrial
respiration rates were corrected for oxygen flux to account for
instrument background. The difference between the uncoupled
mitochondrial respiration rate (ET) and that in the presence of
rotenone (R), which quantifies mainly the contribution of C-II
to uncoupled oxidation, was used to determine NADH-linked
respiration rate (ET-R), while the azide sensitive respiration rate
in the presence of ascorbate plus TMPD was used to determine
complex IV respiration rate (C-IV). Respiration rate in the
presence of antimycin A was subtracted from all mitochondrial
respiration rates, and respiratory flux was expressed in pmol of
O2 s−1 mg−1 ww of fibers. The respiratory acceptor control
ratio (RACR) was computed as the ratio of the oxphos state
respiration rate (PP) to the leak state respiration rate (PL,N)
with no adenylates.

Another protocol was used to evaluate mitochondrial
fatty acid oxidation and substrate selection in muscle fibers.
The substrates were added in sequence: malate (5 mM),
palmitoylcarnitine (60 µM) (Cavalcanti-De-Albuquerque et al.,
2014; Lopes Martins et al., 2018; Miotto et al., 2018), ADP
(2.5 mM), pyruvate (5 mM) and cytochrome c (Cyt-c; 10
µM). The palmitoylcarnitine concentration was determined
by titration. The amount added to the chamber is referred
to as the final concentration. Respiration rate obtained with
palmitoylcarnitine, pyruvate and malate was compared with data
obtained in the presence of only pyruvate+malate in protocol 1.

Citrate Synthase and Succinate
Dehydrogenase Activities
Frozen tissue samples were weighed, and tissue homogenates
prepared in 5% cholate, 25 mM KPi/2 mM EDTA buffer (pH
7.4) and protease inhibitors to a final concentration of 10 mg/mL
using a hand-held glass-on-glass homogenizer. Homogenate
was centrifuged for 5 min at 2000 rpm at 4◦C in a table-top
centrifuge. Citrate synthase (CS) and succinate dehydrogenase
(SDH) activities were measured using a spectrophotometer at 412
and 600 nm, respectively (Hoppel et al., 1987).

Western Blot
Soleus muscle homogenates were prepared by grinding muscle
tissue with ice-cold lysis buffer (Invitrogen) in the presence of
protease inhibitor cocktail, 5 mM phenylmethylsulfonyl fluoride
(Sigma), and Phos-STOP (Roche Applied Sciences, Indianapolis,
IN, United States). Samples for Western blot were prepared from
supernatants after centrifugation of homogenates for 10 min
at 14,000 g. Protein concentrations were measured using a
BCA protein assay kit (Pierce Biotechnology, Rockford, IL,
United States). A 50 µg of muscle homogenate was solubilized
in Laemmli sample buffer containing 5% β-mercaptoethanol
and boiled for 5 min. Proteins were separated on 4–20%
Novex Tris Glycine SDS-PAGE Electrophoresis (Invitrogen),
transferred to a nitrocellulose membrane (0.22 µm pore – LiCor

Biosciences), and blocked with 5% bovine serum albumin in tris-
buffered saline with 0.1% Tween-20 (TBST) for 1 h. Membranes
were then incubated overnight with anti-PPARδ (1:1000
dilution, PA5-29678, Thermo Fisher Scientific, Pittsburgh, PA,
United States), anti-PGC1-α (1:1000 dilution, sc-33796, Santa
Cruz Biotechnology, Dallas, TX, United States), anti-PDP2
(1:1000 dilution, NBP1-82912, Novus Biologicals, Littleton, CO,
United States), anti-PDK2 (1:1000 dilution, Ab68164, Abcam,
Cambridge, MA, United States), anti-PDK4 (1:1000 dilution,
12949-1-AP, Proteintech, Chicago, IL, United States), and anti-
HSC70 (1:5000 dilution, sc-7298, Santa Cruz Biotechnology,
Dallas, TX, United States) antibodies. Membranes were washed
in TBST, and with the exception of the PGC1-α membrane (see
below), incubated with IRDye R© 680RD Goat anti-Mouse IgG-
or IRDye R© 800CW Goat anti-Rabbit IgG -conjugated secondary
antibodies (1:10,000 dilution, LiCor Biosciences, Lincoln, NE,
United States) for 2 h. After three 5 min washes in TBST, antibody
binding was detected using an Odyssey CLx (LiCor Biosciences,
Lincoln, NE, United States) and quantified using Image Studio
software (LiCor Biosciences, Lincoln, NE, United States).
Detection of PGC1-α and its associated loading control was
detected by chemiluminescence using the ECL prime reagent
(GE Healthcare, Chicago, IL, United States) and quantified using
ImageJ software (NIH, Bethesda, MD, United States).

Statistical Analysis
The results are reported as means ± SEM. The comparison
of activity of the enzyme markers for mitochondrial content
between control and diabetic rats was analyzed using a two
tailed Student t-test and two-sample equal variance. Also, the
comparisons of respiration rates obtained with the protocol to
evaluate the function of the electron transport chain components,
were analyzed with Student t-test. Difference of p < 0.05 was
considered significant. The comparisons of the respiration rates
obtained with competing substrates between control and diabetic
rats were evaluated with two-way ANOVA with Bonferroni-
Holm correction for multiple comparisons.
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