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ABSTRACT

NONLINEARITY INDEX AIRCRAFT SPIN MOTION ANALYSIS WITH
DYNAMIC INVERSION SPIN RECOVERY CONTROLLER DESIGN

Je�ry Walker
Old Dominion University, 2020
Director: Dr. Brett Newman

The aim of this thesis research is to extend the previous work of Tapolcai utilizing

nonlinearity index theory to quantitatively analyze nonlinearities in an aircraft model and

to augment these undesirable nonlinear characteristics with feedback control. In his work

Tapolcai utilized a simpli�ed rotational three degree of freedom model to analyze spin con-

ditions of the F-18 High Angle-of-Attack Research Vehicle model. Through the applica-

tion of nonlinearity index theory, regions of severe nonlinearity were uncovered exhibiting

chaotic non-periodic behavior, periodic limit cycling, and instability. If these conditions

were encountered during �ight, the aircraft would exhibit undesirable response characteris-

tics thereby requiring augmented control to safely operate. In this research the F-18 model is

�rst implemented with a complete translational and rotational six degree of freedom frame-

work. The trim solution for a steady state spin condition is then determined subject to

realizable constraints. The trim equations are then leveraged to create nonlinearity index

plots to identify the regions of high nonlinearity that need to be augmented. Nonlinear

Dynamic Inversion theory is then employed to design a controller for spin recovery. The

e�ectiveness of the developed controller is con�rmed with nonlinear simulations in di�erent

spin conditions that were identi�ed from the nonlinearity index analysis.
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NOMENCLATURE

Acronyms

1797B MIL-STD-1797B

8785C MIL-F-8785C

AMS attainable moment subset

AOA angle-of-attack

CLAW control law

CV control variable

CZT chirp-z transform

DFT discrete Fourier transform

DOF degree of freedom

EOM equations of motion

FCC �ight control computer

FCS �ight control system

FFT fast Fourier transform

GM gain margin db

HARV high alpha research vehicle

IRL inner rate loop

LC linear controller

MAL middle attitude loop

MUAD maximum unnoticeable added dynamics

NDI nonlinear dynamic inversion

NED North East Down reference frame

NI nonlinearity index

NIT nonlinearity index theory

OOP object oriented programming
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OPL outer path loop

PI proportional integral

PLA power lever angle

PM phase margin deg

RLIM rate limit

SVD singular value decomposition

VVR velocity vector roll

Variables

α angle-of-attack rad

β angle-of-sideslip rad

χ wind axis z rotation rad

γ wind axis y rotation (�ight path angle) rad

λ eigenvalue

λMRE maximum real component of eigenvalue

L,M, N roll, pitch, yaw moments along body axes ft− lbf

µ wind axis x rotation rad

ν auxiliary input

ω frequency rad/s

ωn natural frequency rad/s

q dynamic pressure ρ
V 22

lbf/ft2

ψ heading angle rad

τ time constant

θ body pitch attitude rad

ϕ body roll attitude rad

~Ωb body axis angular rates p, q, r rad/s

~m commanded moment

~u control vector
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~Vb body axis velocities u, v, w ft/s

ζ damping ratio

A state dynamics matrix

B input distribution matrix

b wing span ft

C output distribution matrix

c wing chord ft

D input-output distribution matrix

D, Y, L aircraft drag, side, lift forces in stability axes lbf

Fx, Fy, Fz forces along body x, y, z axes lbf

Ixx, Iyy, Izz principal moments of inertia slug − ft2

Ixz cross product moment of inertia slug − ft2

Ki integral gain

Kp proportional gain

m aircraft mass slug

P generalized matrix inverse

p, q, r body roll, pitch, yaw rate rad/s

ps, qs, rs stability axis angular rates rad/s

pw, qw, rw wind axis angular rates rad/s

S wing area ft2

s complex frequency rad/s

T aircraft gross thrust lbf

t time s

V aircraft total velocity ft/s

Spin Parameters

Ω angular velocity about spin axis rad/s

σ heading angle relative to the spin axis rad



vii

~VEs , ~ΩEs earth axis velocity and angular rate ft/s, rad/s

R spin radius ft

Vd descent velocity ft/s

Subscripts

A aerodynamic axes (stability) reference frame

b, B body axes reference frame

c command

d desired

E Earth-�xed North-East-Down reference frame

I imaginary number component

R real number component

s stability axes reference frame

sp short period (mode)

w wind axes reference frame

x, y, z axes along which variable is applied

Es Earth-orientated spin axis

Variable Modi�ers

∠ angle, pertaining to complex numbers

∆ change in primary variable

˙ derivative with respect to time

∂<a>
∂<b>

partial derivative of <a> with respect to <b>

∈ left-hand-side is in the set of right-hand-side∫
integral

R real value domain

Re real component of variable

∇ gradient operator

<matrix>−1 matrix inverse
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~ vector notation of primary variable

C<var> coe�cient of <var>

Lrfh Lie derivative of f with respect to h of the rth degree

R<f2>,<f1> rotation transformation matrix from frame <f1> to <f2>

R<var> rotation transformation matrix through <var>

Physical Constants

ρ atmosphere density, taken at 1000 ft 0.0023 slug/ft3

g gravity 32.174 ft/s2
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CHAPTER 1

INTRODUCTION

1.1 Problem Discussion

The �ight control system is an essential component in modern �ghter aircraft that de-

livers the capability to satisfy mission goals, provide superior handling qualities, stabilize

relaxed stability airframes, suppress �utter and structural vibrations, and operate through

intentional and/or unintentional nonlinear conditions.1 Examples of these nonlinear condi-

tions may include large �ight condition envelopes, rapid large angle maneuvering, stall-spin

motions, controlled post-stall super-maneuverability, and unexpected departure from con-

trolled �ight leading to complex transient behavior such as the falling leaf characteristic.2,3

Aircraft employing such control systems include the aging F-15 Eagle, F-16 Falcon,4�6 F-

18 Hornet,7,8 and the present day F-22 Raptor9 and F-35 Lightning.10�12 Some of these

open-loop airframes incorporate relaxed static stability for increased maneuverability and

to increase range-payload performance and fuel economy. The level of stability is incompati-

ble with pure manual control. Digital �y-by-wire �ight control systems (FCS) are utilized to

augment basic dynamic modes to a degree where the closed-loop airframe exhibits superior

handling qualities. The control system typically changes fundamental airframe response

behaviors to task tailored response types appropriate for various �ight functions such as

gross acquisition, �ne tracking, guidance, and operation through or recovery from nonlinear

conditions.

In academia it is not uncommon to explore new and complex methods of analysis to aid in

control design for aircraft. Some examples include symbolic transfer factoring,13 bifurcation

analysis,14,15 perturbation expansions,16 multi-integral convolution,17,18 nonlinearity index

(NI) ,19,20 and even high �delity simulation. Bifurcation analysis comprises continuation

methods to produce trimmed states from which eigenvalues are extracted facilitating the

detection of a change in system stability which can provide a high level view of the overall

system behavior. Nonlinearity index theory (NIT) uses local subregions to measure the

deviation of linear models from the subregions nominal model providing indications of where

nonlinear system behavior can be expected. Further, many nonlinear control design methods

such as back-stepping,21 feedback linearization,22 dynamic inversion,23 and adaptive24 have

been considered by academia. Dynamic inversion provides a systematic approach to control
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design that can be applied to the entire �ight envelope without the need for gain scheduling.

Comparatively, industry is typically driven by rapid schedules and limited budgets thereby

restricting thorough analysis options. Under these constraints, the control design engineer

may not be able to conduct a thorough analysis and instead may solely rely on simpler

linear methods. Although linear analysis can address many design facets within schedules

and budget restrictions, some issues may arise that are not compatible with linear methods

or may be inadvertently overlooked by linear methods. Furthermore, development within

industry is not always receptive to the adoption of new analysis or control methods as it

can be seen as a risk to diverge from previously employed strategies which may have already

been proven. The need to bridge the gap between common industrial practice and more

powerful analysis and design methods is thus underscored. Hence, it is desirable to further

develop nonlinearity index analysis and nonlinear dynamic inversion design as a practical

tool for the control design engineer to utilize. This tool would enable the control design

engineer to determine whether linear methods will su�ce or if further analysis or nonlinear

control schemes may be required.

This thesis explores nonlinearity index analysis of six degree of freedom (DOF) aircraft

spin motion and spin recovery controller design based on nonlinear dynamic inversion (NDI) .

Three primary research objectives are encompassed in this thesis. The �rst is exploring the

feasibility of NIT to detect and describe spin motion characteristics. The second is assessing

the feasibility of NDI to recover and/or reduce fully developed spin motion. Lastly, a higher

level goal is to facilitate utilization of advanced nonlinear techniques for design and analysis

of aircraft systems suitable in the industrial setting. The �rst objective will be accomplished

by extending the previous work done by Tapolcai25�28 by considering the unconstrained

6DOF spin condition. A systematic framework will be implemented that enables the NI to

be determined over the �ight envelop thereby identifying regions of concern. The regions of

concern are then augmented with NDI controllers designed to recover the aircraft from fully

developed spin motion. The systematic framework and NDI implementation will bridge

the second and third objectives. Ultimately, the relevance of this thesis is solidi�ed by

the comprehensive approach taken from nonlinear analysis to controller implementation

which addresses shortcomings in linear methods yielding a better-yet-usable tool for use in

industry.
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1.2 Literature Review

1.2.1 Spin Analysis

Existing literature on the dynamics of spin primarily focuses on methods to approx-

imate spin modes or utilizes complex computational methods for analysis. Early papers

such as References 29, 30 provide an overview of the spin condition utilizing simplifying

assumptions. In Reference 31 approximate spin prediction equations are presented using a

de�nition de�ned by angle-of-attack α, and angle-of-sideslip β. These approximate equa-

tions are then used to predict spin modes by solving a balance of the moment equations

utilizing a non-dimensional spin parameter (Ωb/2V ) with Ω being the angular velocity about

the spin axis, b the wing span, and V the aircraft velocity. Furthermore, these equations are

extended with rotary balance data to compute post-stall incipient, developed, and recovery

spin motions. In Reference 32 the general de�nition for a spin is presented in body axes

with subsequent assumptions applied to develop an approximate closed form solution for a

propeller driven plane in a spin. This set of transformations to de�ne the spin are applied in

this thesis as it does not introduce unnecessary complexities. References 33, 34 utilize an

equilibrium spin technique to graphically determine the spin modes. This method is very

much the same as that presented in Reference 31 with the exception of a di�erent rotation

sequence to orient the aircraft. The equilibrium spin technique is extended in Reference

35 for the unconstrained spin condition; the results are then compared to the approximate

solution method along with further low order approximations. Bifurcation theory is applied

to the F-14 model in Reference 14 to determine spin modes by continuation of a single

control surface. In Reference 36 bifurcation analysis was applied to the Generic Transport

Model (GTM) to determine steady spin modes by varying elevator de�ection. Subsequent

simulations were used to show that natural damping of the aircraft could recover spins when

the control surfaces were returned to neutral.

1.2.2 Nonlinearity Index Theory

Nonlinearity index theory was �rst introduced by Junkins in Reference 37 as a mea-

sure of static and dynamic nonlinearity as it pertains to orbital mechanics. In Reference

38 NIT was presented in greater detail and was used as the analysis method to compare

nonlinearities present in di�erent orbital mechanics reference frames and coordinate descrip-

tions. Newman and Omran extended NIT to atmospheric �ight mechanics in References
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39, 40 and introduced an elliptical subregion approach with four expressions to measure

the nonlinearity's strength across the entire �ight envelope. In References 25, 27 NIT was

applied to the F-18 High Alpha Research Vehicle (HARV) model during high angle-of-attack

(AOA) �ight regimes. Through application of NIT Tapolcai presented a systematic method

to analyze the nonlinearities uncovering periodic-chaotic behavior that would have otherwise

been overlooked by simpler linear analysis methods. In Reference 26 NI was applied to

the aircraft stall condition providing a measure to discern the accuracy of traditional linear

analysis. In Reference 41 NI was used as a novel means to gain schedule a control system.

1.2.3 Nonlinear Dynamic Inversion

InReference 42, Lockheed Martin and Honeywell provide a practical yet thorough explo-

ration of multivariable control theory including a high level overview of NDI. InReference 23

the fundamental constructs of NDI are presented as a powerful alternative design method

and are speci�cally applied to the F-18 HARV as an example. Reference 43 presents a

model reference NDI control law along with model tracking performance plots which are

leveraged in this thesis. InReference 44, 45 NDI control is implemented using the theory of

time-scale separation; this approach is utilized in this thesis. Use of time-scale separation

with NDI results in a more traditional control structure than that of Reference 46 which

uses a strict interpretation of dynamic inversion theory consisting of a single set of control

values yielding higher order derivatives and an overall more complex implementation. The

work presented in Reference 47 is closely tied to this thesis research topic as bifurcation

analysis was used to determine steady trim states which were subsequently applied as con-

trol targets for a NDI controller to transition to and thereby recover the F-18 HARV from

a steady spin condition.

1.3 Thesis Outline

In Chapter 2 the governing equations of motion used throughout this thesis are intro-

duced. This chapter also covers the simulation model of the F-18 HARV aircraft that is

utilized. Chapter 3 develops the trim process, model linearization, and nonlinearity index

framework. These capabilities are then applied to the spin condition. Topics including linear

dynamic inversion, nonlinear dynamic inversion, control allocation, and Lie derivatives are

introduced in Chapter 4. Linear dynamic inversion is �rst used as a simple introduction to

the theory of dynamic inversion prior to building into NDI which utilizes Lie derivatives for

compact notation; control allocation is then discussed as it pertains to the implementation
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of NDI. Chapter 5 presents a generalized process with sequential loop strategy applying

the concepts introduced in Chapter 4 to the F-18 HARV using MIL-F-8785C requirements

as a design reference.48 Implementation issues speci�c to this model are discussed and the

controller is validated using both frequency response and time-domain methods. The entire

control system is evaluated using numerous spin simulations in Chapter 6. Results depict-

ing recovery performance, system engagement pro�les, and �ight trajectories are presented

indicating the ability of the NDI controller to successfully recover the aircraft from a broad

range of spin conditions. Chapter 7 concludes this thesis and provides potential future

work.



6

CHAPTER 2

SIMULATION MODEL

This chapter presents material necessary to mechanize a simulation model for engineering

analysis. First governing equations for unconstrained aircraft motion are de�ned in two

di�erent reference frames, body and hybrid wind. Elements speci�c to the aircraft are

subsequently introduced including aerodynamics, propulsion, and actuator models. Lastly,

the simulation environment used in this research is briefed.

2.1 Modeling Assumptions

Standard aerospace engineering conventions are used throughout and it is assumed the

reader has a graduate level understanding of aerospace engineering. A �at Earth, constant

gravity, constant atmosphere, and zero wind environment model is utilized. Furthermore,

the rigid body aircraft model assumes steady-symmetric aerodynamics, constant mass, in-

ertial symmetry, symmetric thrust, and negligible angular momentum from the engines.

2.2 Equations of Motion

The study of unconstrained aircraft dynamics requires a set of nonlinear equations de-

scribing the general 6DOF motion. Two sets of motion equations are in common use and are

described here. Di�erences between the two sets primarily involve the translational position

and velocity descriptions. The two equation sets are inherently associated with the body

centered axis system and the wind axis system. ??�3 show these frames along with the

inertial Earth-�xed North-East-Down (NED) frame and their relationship. The equation

sets are derivable from �rst principles and can be found in the literature.49,50

2.2.1 Body Axis EOM

The body axis equations of motion (EOM) system is described by the twelve nonlinear

equations presented in Equation (2.2-1).

u̇ = rv − qw − g sin θ +
Fx
m

(2.2-1a)

v̇ = pw − ru+ g sinϕ cos θ +
Fy
m

(2.2-1b)
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ẇ = qu− pv + g cosϕ cos θ +
Fz
m

(2.2-1c)

q̇ =
1

Iyy

[
M+ Ixz(r

2 − p2) + (Izz − Ixx)rp
]

(2.2-1d)[
ṗ

ṙ

]
=

[
Ixx −Ixz
−Ixz Izz

]−1 [
L+ Ixzpq + (Iyy − Izz)qr
N − Ixzqr + (Ixx − Iyy)pq

]
(2.2-1e)

ϕ̇ = p+ q sinϕ tan θ + r cosϕ tan θ (2.2-1f)

θ̇ = q cosϕ− r sinϕ (2.2-1g)

ψ̇ = sec θ(q sinϕ+ r cosϕ) (2.2-1h)
ẋ

ẏ

ż

 = RENED,b


u

v

w

 (2.2-1i)

In Equation (2.2-1) (ẋ, ẏ, ż) denote the NED velocities, (u, v, w) denote the body axes

velocities, (p, q, r) denote the body axes angular rates, and (ψ, θ, ϕ) correspond to a 3-2-

1 Euler angle set. Equations (2.2-1a)�(2.2-1c) and (2.2-1d)�(2.2-1e) represent the kinetic

force and moment equations along the body axis directions. Rotational and translational

kinematic equations are listed as (2.2-1f)�(2.2-1h) and (2.2-1i), respectively.

In the kinetic force formulations, g is the gravitational constant and the external aero-

dynamic and propulsive forces (Fx, Fy, Fz) are de�ned by Equations (2.2-2) to (2.2-4) under

the assumption that thrust only acts along the x-body axis. Aerodynamic parameters,

(CD, CY , CL) represent the unitless drag, sideforce, and lift coe�cients respectively. Ad-

ditional aerodynamic parameters utilized henceforth are S the total wing area, wing span

b, wing chord c, angle-of-attack α, angle-of-sideslip β, and dynamic pressure q. Dynamic

pressure is de�ned as q = 1
2
ρV 2, where ρ is the atmosphere density and is presumed constant

in this research. Note sideslip is neglected in body axis aerodynamic force build-up.

Fx = T + Sq(CL sinα− CD cosα) (2.2-2)

Fy = SqCY (2.2-3)

Fz = −Sq(CD sinα + CL cosα) (2.2-4)

Aerodynamic moments (L,M,N ) drive the angular acceleration in Equations (2.2-1d)

to (2.2-1e) and Figure 2 depicts the sense and direction they are applied. The inertia terms

present in these formulations are the moments of inertia (Ixx, Iyy, Izz) and the cross product

moment of inertia Ixz.
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In the translational kinematic formulation, RENED,b denotes the transformation matrix

from the body-�xed axes to the Earth-�xed NED frame and is de�ned in Appendix A.1.1.

Position and yaw angle, which are governed by Equations (2.2-1h) to (2.2-1i), have no e�ect

on the study of aircraft dynamics under the noted assumptions. Thus there are only eight

equations that need to be considered for analysis.

Figure 1 Euler Attitude Angles with respect to Earth-�xed North-East-Down Reference

Frame51
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Figure 2 Aircraft Forces, Moments, Velocities, and Angular Rates51

2.2.2 Hybrid Wind EOM

While the body axis EOM are convenient for their simplicity, it is sometimes more intu-

itive to represent the translational equations in terms of spherical variables V, α, β. However,

the conventional wind axis angular kinematic equations for velocity roll µ, velocity pitch

(commonly referred to as �ight path angle) γ, and velocity heading χ are not as intuitive

as the body axis kinematic equations for (ϕ, θ, ψ) and corresponding kinetic equations for

rates (p, q, r). Motivated by this observation the body axis angular equations are retained

here; thus, Equation (2.2-5) is introduced as the hybrid wind axis EOM system.50

V̇ =
1

m
[T cosα cos β −D cos β + Y sin β −mg sin γ] (2.2-5a)

α̇ = q − qw sec β − ps tan β (2.2-5b)

β̇ = rw − rs (2.2-5c)

q̇ =
1

Iyy

[
M+ Ixz(r

2 − p2) + (Izz − Ixx)rp
]

(2.2-5d)
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[
ṗ

ṙ

]
=

[
Ixx −Ixz
−Ixz Izz

]−1 [
L+ Ixzpq + (Iyy − Izz)qr
N − Ixzqr + (Ixx − Iyy)pq

]
(2.2-5e)

ϕ̇ = p+ q sinϕ tan θ + r cosϕ tan θ (2.2-5f)

θ̇ = q cosϕ− r sinϕ (2.2-5g)

ψ̇ = sec θ(q sinϕ+ r cosϕ) (2.2-5h)

ps = p cosα + r sinα (2.2-5i)

rs = r cosα− p sinα (2.2-5j)

pw = ps cos β + (q − α̇) sin β (2.2-5k)

qw =
1

mV
[T sinα + L−mg cos γ cosµ] (2.2-5l)

rw =
1

mV
[Y cos β +D sin β − T cosα sin β +mg cos γ sinµ] (2.2-5m)

ẋ = V cos γ cosχ (2.2-5n)

ẏ = V cos γ sinχ (2.2-5o)

ż = −V sin γ (2.2-5p)

The subscripted angular rates (ps, rs) refer to the stability axis roll and yaw rate, and

similarly (pw, qw, rw) refer to the wind axis angular rates. The aerodynamic forces, (D, Y, L)

present in Equations (2.2-5a), (2.2-5l) and (2.2-5m) are the drag, side, and lift forces; Fig-

ure 3 presents the sense and direction (though C as been used instead of Y ). Furthermore,

Figure 3 depicts the signi�cance of the �ight path angle γ and its relationship to the angle-

of-attack and sideslip α, β; the angle ϕW is equivalent to µ. In Equation (2.2-5) the wind

axis angle terms can be de�ned in terms of α, β, ϕ, θ, ψ using the following relationship;

the individual rotation matrices are de�ned in Appendix A.1.1.52

RχRγ Rµ = Rψ Rθ RϕR
T
αR

T
−β (2.2-6)
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Figure 3 Aircraft Body, Wind, and Local-Vertical Axes Reference Frames53

Equation (2.2-7) represents the expanded form of Equation (2.2-6) and is used in the

simulation model. Moreover, Equation (2.2-7a) can be used to obtain γ, Equations (2.2-7b)

and (2.2-7c) are used to obtain µ, and Equations (2.2-7d) and (2.2-7e) are used to obtain

χ.

sin γ = cosα cos β sin θ − sin β sinϕ cos θ − sinα cos β cosϕ cos θ (2.2-7a)

cos γ cosµ = sin θ sinα + cosα cosϕ cos θ (2.2-7b)

cos γ sinµ = sin θ cosα sin β + sinϕ cos θ cos β − sinα sin β cosϕ cos θ (2.2-7c)

cos γ cosχ = cosα cosψ cos θ (2.2-7d)

− cosϕ sin β sinψ

+ cos β sinα sinϕ sinψ
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+ cosψ sin β sinϕ sin θ

+ cos β cosϕ cosψ sinα sin θ

cos γ sinχ = cosϕ cosψ sin β (2.2-7e)

+ cosα cos β cos θ sinψ

− cos β cosψ sinα sinϕ

+ sin β sinϕ sinψ sin θ

+ cos β cosϕ sinα sinψ sin θ

2.3 F-18 Model

The numeric aircraft model used in this research is the publicly available F-18 High Alpha

Research Vehicle (HARV). Numerical data hosted on the NASA website54 was supplemented

with data extracted from NASA technical memorandums such as References 55�57. The

components utilized are described in the following sections.

2.3.1 Aerodynamic Model

The aerodynamic model for this aircraft is composed of thirty-three lookup tables, all

of which are a function of α.54 The domain of valid α for this model ranges from −14◦

to 90◦. No prescribed valid range for β exists with the model; thus, maneuvers inducing

large sideslip will be avoided to stay near the β = 0 datum of the supplied data. Table 1

lists the thirty-three non-dimensional aerodynamic force and moment coe�cients and their

structure. The available control inputs are the di�erential aileron de�ection δa, left-right

elevator (stabilator) de�ection δe, and rudder de�ection δr.

The total aerodynamic force and moment coe�cients are built up as shown in Equa-

tions (2.3-1) to (2.3-2).

CD = CD,0 + CD,δel δe,l + CD,δer δe,r + CD,q
c q

2V
(2.3-1a)

CY = Cy,β β + Cy,δa δa + Cy,δel δe,l + Cy,δer δe,r + Cy,δr δr + Cy,p
b p

2V
+ Cy,r

b r

2V
(2.3-1b)

CL = CL,0 + CL,δel δe,l + CL,δer δe,r + CL,q
c q

2V
(2.3-1c)
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Cl = Cl,β β + Cl,δa δa + Cl,δel δe,l + Cl,δer δe,r + Cl,δr δr + Cl,p
b p

2V
+ Cl,r

b r

2V
(2.3-2a)

Cm = Cm,0 + Cm,δel δe,l + Cm,δer δe,r + Cm,q
c q

2V
(2.3-2b)

Cn = Cn,β β + Cn,δa δa + Cn,δel δe,l + Cn,δer δe,r + Cn,δr δr + Cn,p
b p

2V
+ Cn,r

b r

2V
(2.3-2c)

The aerodynamic lookup tables are implemented in a MATLAB system object utilizing an

optimized lookup routine. This implementation is convenient as it enables the aerodynamics

to be queried from either the MATLAB or Simulink environment.

Table 1 F-18 HARV Aerodynamic Tables

Parameter Drag Sideforce Lift Roll Pitch Yaw

α CD0 CL0 Cm0

β Cy,β Cl,β Cn,β

p Cy,p Cl,p Cn,p

q CD,q CL,q Cm,q

r Cy,r Cl,r Cn,r

δa Cy,δa Cl,δa Cn,δa

δe,l, δe,r CD,δel Cy,δel CL,δel Cl,δel Cm,δel Cn,δel

CD,δer Cy,δer CL,δer Cl,δer Cm,δer Cn,δer

δr Cy,δr Cl,δr Cn,δr

2.3.2 Propulsion Model

The HARV is powered by two F404-GE-400 engines. For the purpose of nonlinear

simulation the engines will be represented with simple �rst order dynamics.55 Typically

engines are modeled using comprehensive lookup tables relating thrust as a function of

altitude, Mach number, and power lever angle (PLA); however, this information is not

publicly available so thrust will be a percentage of the maximum available thrust based on

the current throttle value. This simpli�cation will not impact the validity of the research as

comprehensive testing across the entire �ight envelope is not required.
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Figure 4 presents the block diagram implementation of the engine dynamics by shaping

the throttle command, δt. Note these dynamics consist of a �rst order system with variable

time constant τ and rate limiting (RLIM) on the power lever signal. The shaped δt output

scaled from zero to one simply multiplies by the maximum afterburner thrust, 32e3 lbf. The

linear interpolation implementation of the breakpoint blocks are de�ned in Equation (2.3-3)

while the block diagram conventions used hereafter are de�ned in Appendix A.2. In Figure 4,

RLIM refers to the rate limit values to be used in the block diagram implementation de�ned

in Figure 95.

PLA = 31 + 99δt

τ =

(PLA > 87)0.55

(PLA ≤ 87)0.625

δt =
1

99
(PLA− 31)

(2.3-3)

δt PLA

0 31◦

1 130◦

×

÷

PLA τ

> 87◦ 0.55 (1/s)

≤ 87◦ 0.625 (1/s)

PLA RLIM

> 87◦ +26.81 (◦/s)

≤ 87◦ +19.03 (◦/s)

1
s

PLA δt

31◦ 0

130◦ 1

δt δt
−

Figure 4 F404-GE-400 Engine Dynamics

2.3.3 Actuator Model

The dynamics of the aerodynamic surface actuators on the HARV are modeled as �rst

and second order linear transfer functions as de�ned in Reference 56. Additionally, rate and
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position limits will be imposed as these nonlinearities are critical in realistically evaluating

controller performance in nonlinear simulations.

The actuator position and rate limits utilized in the simulation are provided in Table 2.

Note that the aileron position limits have been modi�ed from Reference 56. In Reference 56

the aileron position limits are given as −25◦, +42◦. However, the aerodynamic database is

not implemented with independent left/right surfaces. To simplify this matter, the ailerons

have been given equal control authority in both directions corresponding to the maximum

travel of 42◦. The linear actuator models are presented in Table 3 where the input/output

units are rad/rad and the natural frequencies use rad/s.

Table 2 F-18 HARV Actuator Physical Limits

Actuator Rate Limit Position Limit

Aileron ±100◦/s ±42◦

Elevator ±40◦/s −24◦, +10.5◦

Rudder ±82◦/s ±30◦

Table 3 F-18 HARV Linear Actuator Models

Actuator Linear Model

Aileron 752

s2+2(0.59)(75)s+752

Elevator 30.742

s2+2(0.509)(30.74)s+30.742

Rudder 72.12

s2+2(0.69)(72.1)s+72.12

2.4 Simulation Environment

Models presented in the previous section will be implemented utilizing the MATLAB

and Simulink environment. Nonlinear simulations conducted in the Simulink environment

will utilize a �xed step solver. All MATLAB based systems will be implemented using

Object Oriented Programing (OOP), speci�cally MATLAB Systems. The bene�ts of OOP

and MATLAB Systems include:

� strict control on system interfaces,

� seamless integration into the Simulink environment,

� re-usability of common components.
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CHAPTER 3

SPIN ANALYSIS

In this chapter the analysis of the 6DOF spin is conducted utilizing nonlinearity index

theory. Two prerequisites to calculating the NI are (1) trimming the aircraft in a steady

state spin condition, and (2) linearizing the system. These topics will �rst be covered in

the following sections. The formulation of the nonlinearity index requires many equilibrium

points to be determined. To facilitate this requirement the equations of motion must be

solved subject to constraints that de�ne a steady state spin. The solutions also should be

predictable and be systematically determined by varying a single parameter.

3.1 Spin Analysis Trim

In order to solve the system of nonlinear equations, MATLAB's lsqnonlin function will

be utilized. This solver method enables constraints to be set on the input variables which

is necessary to ensure the solution is realizable.

3.1.1 Spin Parameterization

The aircraft spin motion can readily be de�ned in an Earth-orientated coordinate system

that rotates with the aircraft. Let the subscript Es denote this reference frame and de�ne

the axis system such that the x axis points towards the spin center of rotation, and the z

axis points down. Figure 5 depicts the aircraft spin motion and depicts the angle σ de�ned

herein. Using this reference frame results in the following conditions where Vd is the vertical

descent velocity, R the spin radius, Ω the angular spin velocity, ~VEs the inertial velocity

vector, and ~ΩEs is the inertial angular velocity vector.

~VEs =


0

−RΩ

Vd

 , ~ΩEs =


0

0

Ω

 (3.1-1)

Parameters R,Ω, Vd fundamentally describe the spin characteristics and although they could

be speci�ed in the trim process, they are typically treated as unknowns along with other

remaining state variables and control inputs after specifying a subset of these variables and

inputs. Unknowns are computed from the governing motion relations from Chapter 2 and

the constraint relations are presented above and below.
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Figure 5 Aircraft Spin Motion32

In order to determine the body angular rates (p, q, r) and velocities (u, v, w) or (V, α, β),

the method of rotation must be de�ned. The rotations introduced in Reference32 are utilized

here. This consists of a rotation σ about the vertical axis followed by the conventional pitch

and roll angles (θ, ϕ). In this context σ is the heading angle, but is measured from the radial

plane. Equation (3.1-2) de�nes the necessary transformation matrices to transform a vector



18

from the Es frame to the body axes.

Rσ =


cosσ sinσ 0

− sinσ cosσ 0

0 0 1

 Rθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



Rb,Es = RϕRθ Rσ Rϕ =


1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ


(3.1-2)

Utilizing Equation (3.1-2) the body axis angular rates (p, q, r), which are the components

of angular velocity vector ~Ωb, are de�ned by Equation (3.1-3).

~Ωb = Rb,Es
~ΩEs =


−Ω sin θ

Ω cos θ sinϕ

Ω cos θ cosϕ

 (3.1-3)

Similarly, the body axis translational velocities (u, v, w), the components of velocity vector

~Vb, are de�ned by Equation (3.1-4).

~Vb = Rb,Es
~VEs =


−Vd sin θ −RΩ sinσ cos θ

Vd cos θ sinϕ−RΩ (cosσ cosϕ+ sinσ sin θ sinϕ)

Vd cos θ cosϕ+RΩ (cosσ sinϕ− sinσ sin θ cosϕ)

 (3.1-4)

Equation (3.1-3) is the same de�nition of body angular rates also presented in Reference

58. The formulation here is also the same as that presented in Reference 59 except for

θ being measured from vertical. Similarly, Reference 29 uses the same representation but

measures θ positive from the x− z plane.

3.1.2 Trim Solution

To determine the steady state trim solution, the necessary eight equations from Equa-

tion (2.2-1) or Equation (2.2-5) must be solved and the six constraints de�ned by Equa-

tions (3.1-3) and (3.1-4) must also be satis�ed. This calculation is described overall by

fourteen coupled nonlinear algebraic equations with �fteen unknowns, but the equation set

contains certain structure that can be exploited in the computations. Note two formulations

are possible based on the choice for translational velocities. Table 4 depicts the mapping be-

tween six constraint equations and six state variables and the remaining nine free and �xed
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variables. For this analysis there are two sensible options: α or δe. Specifying α would be

bene�cial as this choice could ensure the full range of the aerodynamic database is covered,

whereas specifying δe is pertinent as it is related to inducing stall/spin conditions under

normal �ight operations (i.e., level �ight transitioning to steep climb). However, position of

the elevator control surface is in general arbitrary; thus, the angle-of-attack is used as the

parameter to be speci�ed.

Table 4 Solution Map (σ − θ − ϕ)

State Value Inputs Value Spin Parameter Value

u, (V ) Equation (3.1-4) δa free R free

v, (α) Equation (3.1-4) δe free Ω free

w, (β) Equation (3.1-4) δr free σ free

p Equation (3.1-3) Vd free

q Equation (3.1-3)

r Equation (3.1-3)

ϕ free

θ free

In Table 4 it is clear that α enters as a function of the components in Equation (3.1-4). In

order to facilitate an α constraint the relationship tanα = w
u
can be introduced. Substituting

in the component values from Equation (3.1-4) yields the following relationship.

tanα = −Vd cosϕ cos θ +RΩ (cosσ sinϕ− cosϕ sinσ sin θ)

Vd sin θ +RΩ cos θ sinσ
(3.1-5)

Equation (3.1-5) can subsequently be solved for one of three options Vd, R, Ω resulting in

the following α dependent parameters.

Vd = −RΩ (cosσ sinϕ− cosϕ sinσ sin θ + tanα cos θ sinσ)

cosϕ cos θ + tanα sin θ
(3.1-6a)

R = − Vd (cosϕ cos θ + tanα sin θ)

Ω (cosσ sinϕ− cosϕ sinσ sin θ + tanα cos θ sinσ)
(3.1-6b)

Ω = − Vd (cosϕ cos θ + tanα sin θ)

R (cosσ sinϕ− cosϕ sinσ sin θ + tanα cos θ sinσ)
(3.1-6c)

Thus in order to specify the angle-of-attack, one must decide which parameter is dependent

and let the solver determine the remaining two parameters. For this analysis Ω was chosen

as the dependent parameter as it retains physical signi�cance irrespective of sign thereby
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avoiding potential numerical issues such as a solution with a negative spin radius. During

the course of building the database Vd and R were temporarily used in an exploratory e�ort

to increase trim accuracy in particular regions as well as an attempt to make the spin

direction uniform across the entire envelope. However, this uncovered that using Vd or R

caused the solved α to vary from the speci�ed α and was attributed to the solver specifying

negative values of Vd, R which have no physical meaning. Furthermore, forcing Ω to be

negative in the regions of α ≈ 72− 74.5, 76− 89 degrees resulted in greater trim errors than

those attained with a positive Ω. Details of the numerical accuracy of the trim database are

presented in Appendix A.3.

3.2 Model Linearization

The linearized plant must be calculated at every trim point in order to calculate the

NI. While there are numerous ways to calculate a linear model, this research will utilize

small perturbation theory. Brie�y stated, a linearized model can be approximated by a

summation of �rst order partial derivatives with respect to the state and input variables.

∆f1 =
∂f1

∂x1

∆x1 +
∂f1

∂x2

∆x2 +
∂f1

∂xn
∆xn + · · ·+ ∂f1

∂u1

∆u1 +
∂f1

∂u2

∆u2 + · · ·+ ∂f1

∂um
∆um

∆f2 =
∂f2

∂x1

∆x1 +
∂f2

∂x2

∆x2 +
∂f2

∂xn
∆xn + · · ·+ ∂f2

∂u1

∆u1 +
∂f2

∂u2

∆u2 + · · ·+ ∂f2

∂um
∆um

...

∆fn =
∂fn
∂x1

∆x1 +
∂fn
∂x2

∆x2 +
∂fn
∂xn

∆xn + · · ·+ ∂fn
∂u1

∆u1 +
∂fn
∂u2

∆u2 + · · ·+ ∂fn
∂um

∆um

(3.2-1)

There are two common methods to calculate the coe�cient values of Equation (3.2-1):

carrying out the partial derivatives and numerically perturbing the model. Generally speak-

ing, analytically derived models can provide more insight into the dynamics of the system;

however, this process can be tedious and error prone when the equations are complex. Com-

paratively, numerically calculated models can be attained quickly and commercial software

such as Simulink have built in linearization functionality.

In the following sections the analytically linearized models will be presented in state-

space form as de�ned by Equation (3.2-2) where A represents the state dynamics and B the

input distribution. Matrix entries that are zero are not presented. For example, if a11 = 0
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the entry for a11 will not be presented as zero is the prescribed default value.

∆~f = A∆~x+B∆~u

where,

A =


a11 · · · a18

...
. . .

...

a81 · · · a88

 B =


b11 · · · b13

...
. . .

...

b81 · · · b83


(3.2-2)

In the development that follows the delta operator (∆) is dropped for brevity when appro-

priate.

3.2.1 Body Axis Linear Equations

This section details the development of the body axis linear equations. The �nal matrix

entries are presented in Appendix A.4. Note in the following development σ with a numeric

subscript denotes a temporary variable utilized to more clearly present the equation of

interest.

Linearization of u̇

Recast Equation (2.2-1a) with the generalized form presented by Equation (3.2-3).

u̇ = (σ1 + σ2 + σ3)(u2 + v2 + w2) + σ4 (3.2-3a)

where,

k =
−Sρ
2m

(3.2-3b)

σ1 =
kc

2V
(cosαCD,q − sinαCL,q) q (3.2-3c)

σ2 = k (cosαCD,δe − sinαCL,δe) δe (3.2-3d)

σ3 = k (cosαCD,0 − sinαCL,0) (3.2-3e)

σ4 = v r − w q − g sin θ (3.2-3f)

The �rst three partial derivatives with respect to the body axis velocities are summarized

by Equation (3.2-4).

forN = u, v, w, p, q, r, ϕ, θ, δa, δe, δr

∂u̇

∂N
= 2N

3∑
i=1

σi + V 2

3∑
i=1

∂

∂N
σi +

∂

∂N
σ4

(3.2-4)
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Linearization of v̇, ẇ

The linearization of v̇ and ẇ follow the same process utilized in the linearization of u̇.

Thus the development for these variables is not depicted.

Linearization of ṗ

To develop the ṗ equation for body axes consider recasting Equation (2.2-1e) in the

generalized form given by Equation (3.2-5).

ṗ = σ6 + (σ5 + σ4 + σ3 + σ2 + σ1)(u2 + v2 + w2) (3.2-5a)

where,

kI = I2
xz − IxxIzz (3.2-5b)

K =
−Sbρ
2kI

(3.2-5c)

σ1 =
Kb

2V
[(IxzCn,p + IzzCl,p) p+ (IxzCn,r + IzzCl,r) r] (3.2-5d)

σ2 = K (IxzCn,β + IzzCl,β) β (3.2-5e)

σ3 = K (IxzCn,δr + IzzCl,δr) δr (3.2-5f)

σ4 = K (IxzCn,δe + IzzCl,δe) δe (3.2-5g)

σ5 = K (IxzCn,δa + IzzCl,δa) δa (3.2-5h)

σ6 =
1

kI

[
Ixz (Ixx − Iyy + Izz) pq +

(
I2
xz + I2

zz − IyyIzz
)
qr
]

(3.2-5i)

forN = u, v, w, p, q, r, ϕ, θ, δa, δe, δr

∂ṗ

∂N
= 2N

5∑
i=1

σi + V 2

5∑
i=1

∂

∂N
σi (3.2-5j)

Linearization of q̇

Similarly for q̇, recast Equation (2.2-1d) in the generalized form given by Equation (3.2-

6).

q̇ = (σ1 + σ2 + σ3)(u2 + v2 + w2) + σ4 (3.2-6a)

where,

K =
Scρ

2Iyy
(3.2-6b)

σ1 =
Kc

2V
Cm,qq (3.2-6c)
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σ2 = KCm,δeδe (3.2-6d)

σ3 = KCm,0 (3.2-6e)

σ4 =
1

Iyy

(
Ixz(r

2 − p2) + (Izz − Ixx)pr
)

(3.2-6f)

forN = u, v, w, p, q, r, ϕ, θ, δa, δe, δr

∂q̇

∂N
= 2N

3∑
i=1

σi + V 2

3∑
i=1

∂

∂N
σi (3.2-6g)

Linearization of ṙ

Lastly, recasting Equation (2.2-1e) in the generalized form given by Equation (3.2-7).

ṙ = σ6 + (σ5 + σ4 + σ3 + σ2 + σ1)(u2 + v2 + w2) (3.2-7a)

where,

kI = I2
xz − IxxIzz (3.2-7b)

K =
−Sbρ
2kI

(3.2-7c)

σ1 =
Kb

2V
[(IxzCl,p + IxxCn,p) p+ (IxzCl,r + IxxCn,r) r] (3.2-7d)

σ2 = K (IxzCl,β + IxxCn,β) β (3.2-7e)

σ3 = K (IxzCl,δr + IxxCn,δr) δr (3.2-7f)

σ4 = K (IxzCl,δe + IxxCn,δe) δe (3.2-7g)

σ5 = K (IxzCl,δa + IxxCn,δa) δa (3.2-7h)

σ6 =
1

kI

[(
IyyIxx − I2

xx − I2
xz

)
pq + Ixz (Ixx − Iyy + Izz) qr

]
(3.2-7i)

forN = u, v, w, p, q, r, ϕ, θ, δa, δe, δr

∂ṙ

∂N
= 2N

5∑
i=1

σi + V 2

5∑
i=1

∂

∂N
σi (3.2-7j)

Linearization of ϕ̇, θ̇

The roll and pitch angles (ϕ, θ) follow the same process taking the partial derivatives.

The development is left to the reader.

3.2.2 Hybrid Wind Axis Linear Equations

Similarly the wind axis linearized equations can be de�ned where a4−8,4−8, b4−8,1−3 are
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the same as in the body axis equations. In Equation (A.5-1) the C ′x,y and θ
′
x parameters

denote the derivative of the lookup tables with respect to α evaluated at the trim α. The

C ′x,y and θ
′
x parameters must be calculated numerically by di�erencing the lookup table and

is done with a step size of 1e−5 + 1e−8|α|.

3.2.3 Numerical Perturbation

As a cross-reference check to catch errors in the analytical build-up, a numerical routine

was used to calculate the Jacobian. The algorithm for this calculation was adapted from

linmodv5.m.60 The pseudocode for this operation is presented in Figure 6.

1 x0; % operating point states

2 u0; % operating point inputs

3 ptb = 1e-5;

4 dx = ptb + (1e-3)*ptb*abs(x0);

5 du = ptb + (1e-3)*ptb*abs(u0);

6 % A matrix forumlation

7 A = zeros(numel(x0));

8 xdot0 = stepSystem(x0, u0); % initial state derivative

9 for j=1:numel(x0)

10 x = x0;

11 x(j) = x + dx(j);

12 A(:,j) = (stepSystem(x, u0) - xdot0) / dx(j);

13 end

14 % B matrix formulation

15 B = zeros(size(A,1), numel(u0));

16 for j=1:numel(u0)

17 u = u0;

18 u(j) = u + du(j);

19 B(:,j) = (stepSystem(x0, u) - xdot0) / du(j);

20 end

Figure 6 Numerical Jacobian Pseudocode
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3.2.4 Linear Model Validation

The linear models were validated by running nonlinear simulations with perturbations

independently applied to all states and inputs. The condition of α = 60◦ was arbitrarily cho-

sen as the evaluation case. The linear models were taken to be correct as the analytical and

numerical models both behaved the same. Furthermore the linear models closely matched

the nonlinear model for most state perturbations; however, the control input perturbations

were more sensitive. Results of the nonlinear and linear simulation comparisons are pre-

sented in Appendices A.6 and A.7 for the linear wind and body equations, respectively

where the plots depict the deviations (∆) from the nominal trim value.

3.3 Nonlinearity Index Analysis

Nonlinearity index theory is used to identify the severely nonlinear regimes of the aircraft

model that should be the focus for control augmentation facilitating spin recovery. Further,

the NI highlights potential regions of the �ight envelope where linear controllers should

be rigorously tested and/or nonlinear controllers may be required. Nonlinearity index is a

quantitative measure of how much the state dynamics and state input distribution matrix

vary from a trim point. A NI of zero indicates that the system is linear whereas large

nonzero NI values indicate strong nonlinearities in the system.

Consider the general dynamic system with states x, inputs u, and time t with initial

states and time x0, t0.

ẋ = f(t, x, u) (3.3-1)

y = g(t, x, u) (3.3-2)

x(t0) = x0 (3.3-3)

The system described by Equations (3.3-1) to (3.3-3) can be linearized through various meth-

ods. Once linearized the system can be represented by a standard state space representation

as presented in Equation (3.3-4).

δẋ = Aδx+Bδu

δy = Cδx+Dδu

δx(t0) = δx0

(3.3-4)

In Equation (3.3-4) the overlined matrices A,B,C,D represent the state dynamics, input
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distribution, output distribution, and input-output matrices respectively evaluated at a

nominal trim condition (x0). Similarly, the system can be linearized at a deviated condition,

x0 = x0 + δx0 bounded by δxmax such that 0 ≤ ||δx0|| ≤ δxmax. The deviated system is

de�ned by Equation (3.3-5).

δẋ = Aδx+Bδu

δy = Cδx+Dδu

δx(t0) = δx0

(3.3-5)

Four di�erent static nonlinearity indices can be de�ned which measure the strength of

the nonlinearity of the dynamic system. These indices are de�ned by Equations (3.3-6)

to (3.3-9).

νAs = sup
||δx0 ||≤δxmax

||A− A||
||A||

(3.3-6)

νBs = sup
||δx0 ||≤δxmax

||B −B||
||B||

(3.3-7)

νCs = sup
||δx0 ||≤δxmax

||C − C||
||C||

(3.3-8)

νDs = sup
||δx0 ||≤δxmax

||D −D||
||D||

(3.3-9)

Equations (3.3-6) to (3.3-9) capture the maximum deviation of the matrix Jacobian

across a local subregion bounded by δxmax. The static state and output indices, νAs and νCs

capture the initial condition excitation, whereas the input and direct indices, νBs and νDs

capture the input excitation. In Equations (3.3-6) to (3.3-9), || · || denotes the Frobenious
norm.37

Typical in aircraft dynamics, the direct input-output matrix D is zero; thus, the index

νDs will not be computed. Additionally, the output matrix C consists of the identity matrix

simply mapping the states as outputs; thus, the index νCs will also be neglected.

3.3.1 Numerical Results

Calculation of the Nonlinearity Index over the widest range of the operational envelope

as possible is desirable. For the HARV database this would allow for a range of α = 5 to

α = 85 degrees which would ensure the table limits are obeyed. However, due to the inability

to trim the aircraft in a su�ciently accurate steady state spin (i.e., state errors, |e| < 1e−4)
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the region had to be truncated resulting in spin conditions with α > 75◦ being discarded.

This decision was made after inspecting the trim database and plotting the distribution of

trim errors which is presented in Figure 97 in Appendix A.3. In Figure 97 it can be seen

that there are still some trim solutions in the range of consideration that exceed |e| < 1e−4;

however, these are few and further spread out compared to the the higher alpha region.

Given the constraint of α <= 75◦ and the desired subrange of 10% × (αmax − αmin), the

range of α = 5 to α = 71.6 degrees with a step size of 0.1◦ was considered. Furthermore, the

trim database was generated with a 0.02◦ step; thus, the subregion is sampled by 333 equally

spaced trim points where the indices de�ned by Equations (3.3-6) to (3.3-9) are evaluated

and stored in a vector. The maximum value of this vector is then kept as the index for the

given value of α. Mathematically this process is described by Equations (3.3-12) to (3.3-13).

νAk
=
||Ak − Aj||
||Aj||

(3.3-10)

νBk
=
||Bk −Bj||
||Bj||

(3.3-11)

νAj
= max

k
(νAk

) (3.3-12)

νBj
= max

k
(νBk

) (3.3-13)

where j = αmin : αstep : αmax

de�ne αrng = (αmax − αmin)

de�ne αsrmax = αj + 5% ∗ αrng
de�ne αsrmin = αj − 5% ∗ αrng

de�ne αsrstp =
αsrmax − αsrmin

Nsubregion

where k = αsrmin : αsrstp : αsrmax (3.3-14)

To e�ciently calculate the NI a trim database was �rst built over the range of α = 1 :

0.02 : 89 degrees thereby ensuring the trim solution for any given α is only calculated once.

The initial condition for the trim solver was seeded with the previous result (x0,i = x0,i−1)

in an e�ort to speed up the trim algorithm and to �nd a continuous solution. Details of the

accuracy and validity of the trim database are presented in Appendix A.3. At this point let

a "quality trim" be de�ned by Equation (3.3-15).

max(|ẋ0|) < 1e−6 (3.3-15)

In order to utilize a prede�ned trim database with step size δα, Equation (3.3-14) must
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be modi�ed as follows such that the subregion endpoints fall on a pre-calculated α.

k = αsrmin −mod(αsrmin, δα) : αsrstp : αsrmax + mod(αsrmax, δα) (3.3-16)

The NI was calculated using both the analytical and numerical linear models for both the

hybrid wind and body axes. The results for this analysis are presented in Figure 7. From

Figure 7 it is clear the body axis representation exhibits less nonlinearities in the states

whereas both the wind and body axes exhibit similar trends with respect to the inputs.

Given the higher NI for the wind axis, further investigation was conducted. The minimum

NI for the A matrix (based on numerical linearization) occurred at α = 37.9◦ for the wind

axis while the maximum occurred at α = 71.6◦. Similar minimum values also existed for

α = 53.9◦, 65.4◦. The minimum NI for the B matrix occurred at α = 62.7◦ whereas the

maximum occurred at α = 9.3◦. These minimum and maximum values are marked on the

wind axis NI plot presented in Figure 8.
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Figure 7 Nonlinearity Index (Analytic/Numerical)
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Figure 8 Wind Axis NI Marked

From Equations (3.3-12) and (3.3-13), the NI for any one α is the single max value over

the subregion. Thus any one linear model has the potential to dominate multiple test points.

With this in mind the α where the maximum value occurred (αν) is of interest. In Figure 9

αν is plotted against α which reveals regions over α where the maximum NI corresponded to

the same αν . The maximum NI occurring at the same αν across multiple subregions (such

as near α = 14◦ to 20◦ for NI,A) indicates a dominant model. The existence of a single

dominant model which is the product of a numerical process raises concerns regarding the

validity of that particular model.
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Figure 9 α where Maximum NI Value Occurred

In the presence of isolated dominant models, further investigation was conducted in or-

der to either rule out the existence of a potential numerical error or to determine a rational

explanation for this behavior. Subsequently, the NI was plotted with the stability and trim

accuracy indicated in Figure 10. Stable trim points are plotted with the color green while

trim points with solutions that have errors exceeding 1e−4 are plotted in black. This inves-

tigation indicates that the majority of all trim points are unstable while few trim solutions

have errors above acceptable limits. Thus it is concluded that the trim solution does not

negatively impact this analysis. The color breakpoints used in Figure 10 were determined

by inspection of Figure 105 in Appendix A.3 in order to re�ect the relationship between

instability and time to diverge from steady state. A decisive conclusion regarding the dom-

inant models could not be made as no single attribute (such as trim error or instability)

was shared solely among the dominant models alone. Note in Figure 10, λMRE denotes the

maximum real part of the linear system eigenvalues, λMRE = max Re(λ).
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Figure 10 Nonlinearity Index with Stability and Trim Resolution Indicated

3.3.2 Nonlinear Simulation: Time Responses

In the following discussion NI refers to the A matrix NI unless otherwise speci�ed.

The validity of the NI can be con�rmed by running simulations with perturbations and

comparing the time histories of the linear and nonlinear models. In order to ensure the

comparison is only due to the applied disturbance the model is �rst simulated without

perturbations to ensure steady state is maintained. The model is then simulated with a

perturbation of 0.05 (rad/s) on the roll rate channel, p. This process was conducted for

three high NI solutions, α = 70.0, 71.0, 71.6 degrees and four minimum value NI solutions,

α = 56.0, 58.76, 59.06, 59.24 degrees. The �rst minimum NI at alpha of 56.0◦ was added

as a stable model test point; all remaining test points are unstable with the high/low NI

test points chosen such that they share a similar magnitude instability as determined by the

maximum positive eigenvalue (λMRE).

The linear model �t to the nonlinear model was then calculated for all scenarios using

a normalized mean square error. A �t criteria of 95% on all states was chosen to provide

a quantitative comparison. The minimum time for any state to have a �t below the 95%

threshold was then used as the measure of comparison. The pseudocode for this calculation

is presented in Figure 11 where the algorithm iteratively determines the maximum time
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where all state errors comply with the 95% �t criteria. Table 5 summarizes the �ndings and

indicates the linear models in the simulations with a lower NI have a longer duration of 95%

�t. This �nding supports the underlying theory of the nonlinearity index.

1 % states: [V alpha beta p q r phi theta]

2 t; % time vector of length N

3 xr; % nonlinear simulation states [ N x 8]

4 x; % linear model states, [N x 8]

5 a = find( t > 1, 1); % index of time greater than one

6 b = numel(t); % number of data samples.

7 errorTolerance = 0.1;

8 fitTolerance = 0.95;

9 while n ≤ maxIteration

10 c = round( (a + b) / 2);

11 REF = xr(1:c, :); % reference data

12 TST = x(1:c, :); % test data

13 % normalized mean square error of all states

14 for i = 1:8

15 fit(i) = 1 - 2-Norm( REF(:,i) - TST(:,i) )^2 / ...

16 2-Norm( REF(:,i) - mean(REF(:,i)))^2;

17 end

18 if any( fit < fitTolerance )

19 b = c;

20 else

21 a = c;

22 end

23 err = abs( fit - fitTolerance);

24 if all( err < errorTolerance )

25 break

26 end

27 n=n+1;

28 end

29 Time 95 Percent Fit = t(c);

Figure 11 95% Fit Calculation

Figure 12 depicts the entire 500 second simulation (linear and nonlinear) with the per-

turbation applied. Figures depicting the entire simulation range for the remaining test
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cases have been excluded as the linear models are unstable and go without bound. Fig-

ures 13 to 19 depict the linear model �t to the nonlinear model with the ∆p = 0.05 (rad/s)

perturbation over a short time horizon. Figures 20 and 21 show the nonlinear model

response to the perturbation for a low and high NI test point with similar instabilities

(λ = 6.873e−2, 6.878e−2 rad/s). Figures 22 and 23 shows the same condition with the lin-

ear model included up until the linear model diverges from the nonlinear model. Comparing

these two images it is clear that the higher NI test point resulted in a more severe divergence

than that of the lower NI.

At this point it is worth noting that these results are as expected given the high/low

NI test points have a similar instability. However, one must exercise caution when carrying

out this analysis as it is possible for a low NI to have a 95% �t time shorter than that of a

higher NI test point if the low NI test point has a larger instability. This is demonstrated

in Figure 24 where a low NI of 0.1888 has a signi�cantly shorter time of 95% �t due to the

model instabilities.

Table 5 NI vs. Time 95% Fit

NI, A α (deg) λMRE (rad/s) time 95% �t (sec)

0.1888 65.5 0.2153 10.25

0.2476 56 -4.9e-03 65.19

0.3203 59.24 0.06873 36.61

0.3203 59.06 0.06597 36.61

0.3205 58.76 0.06125 37.24

1.223 71 0.06595 18.78

1.223 70 0.06129 1.03

1.543 71.6 0.06878 19.76

Inspecting the aerodynamic tables in the range of the high state NI it is observed that the

coe�cient Cnp undergoes a sharp change in slope as depicted in Figure 25. This discovery

demonstrates the ability of the nonlinearity index to identify regions of the aerodynamic

database which may require special attention of the control engineer.
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Figure 12 Response for NI = 0.2476, Stable, α = 56.0◦ (Long Term)
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Figure 13 Response for NI = 0.2476, Stable,α = 56.0◦
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Figure 14 Response for NI = 0.3203, λMRE = 6.873e−2 (rad/s), α = 59.24◦
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Figure 15 Response for NI = 0.3203, λMRE = 6.597e−2 (rad/s), α = 59.06◦
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Figure 18 Response for NI = 1.223, λMRE = 6.129e−2 (rad/s), α = 70◦
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Figure 20 Response for NI = 0.3203, α = 59.24◦ (Long Term)
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Figure 21 Response for NI = 1.543, α = 71.6◦ (Long Term)
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Figure 22 Response for NI = 0.3203, α = 59.24◦ (Extended Term)
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Figure 23 Response for NI = 1.543, α = 71.6◦ (Extended Term)
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Figure 24 Response for NI = 0.1888, λMRE = 0.2153 (rad/s), α = 65.5◦
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3.3.3 Nonlinear Simulation: Trajectories

In Figure 26 the trajectories for α = 56.0, 58.76, 65.40, 71.60 degrees is shown. These

values of α correspond to a stable trim condition, low NI, low NI with relatively high insta-

bility, and high NI with instability similar in magnitude to the low NI system. The stable

trim solution (α = 56.0◦) maintains the steady spin motion without deviation throughout

the entire 500 second simulation. The remaining trim points all diverge from the initial con-

dition, regardless of NI magnitude, due to the instability of the system at these operating

points.
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Figure 26 Flight Trajectories of Stable, Low NI, Low NI with High Instability, and High NI

The angular rate phase plots for the low NI at α = 58.76◦ and the high NI at α = 71.6◦

is presented in Figures 27 and 28 respectively. The perturbed simulations incorporating

∆p = 0.05 rad/s is also plotted in these �gures. In these �gures it can be seen that the

perturbations shift the response, but the overall trajectory remains mostly the same.
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Figure 27 p, q, r Phase Trajectories for Spin Simulation at Low NI, α = 58.76◦
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CHAPTER 4

NONLINEAR DYNAMIC INVERSION

Nonlinear dynamic inversion (NDI) is a relatively simple yet powerful method that has

gained traction as a popular control method in recent times. As the name implies, NDI

explicitly accounts for system nonlinearities by employing the equations of motion in the

controller. While this may add some complexity to the overall control structure, inclusion

of the nonlinear equations of motion makes the NDI controller applicable over the entire

�ight envelope without any explicit gain scheduling. Due to this observation, NDI control

can be advantageous over conventional controllers as the time consuming and tedious task

of gain tuning scheduling is not required.

4.1 NDI: Linear System

In this section NDI is applied to a linear system to build the groundwork for extending it

to nonlinear systems. The material presented here closely follows that presented in Reference

49 .

Consider the following square linear state space system with A system dynamics, B input

distribution, and C output distribution matrices.

ẋ = Ax+Bu (4.1-1)

y = Cx (4.1-2)

The state, input, and output are de�ned as x ∈ Rn, u ∈ Rm, y ∈ Rp, respectively. The

objective is to control the output y such that it follows a speci�ed trajectory yd. In dynamic

inversion the process is to di�erentiate the output until the input appears yielding a direct

relationship between the output y and the control input u.

ẏ = Cẋ = CAx+ CBu (4.1-3)

In Equation (4.1-3) the control input will appear as long as the product CB is not equal

to zero. If CB were to equal zero di�erentiation would be continued until a nonzero result is

obtained. Since a square system is assumed CB will also be square. A further requirement

is that CB be a nonsingular or invertible matrix. Introduce the auxiliary input ν as given

by Equation (4.1-4).

ν = CAx+ CBu− ẏd (4.1-4)
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Observe that the control input in Equation (4.1-4) can be directly solved for.

u = (CB)−1(ν + ẏd − CAx) (4.1-5)

Substituting Equation (4.1-5) into Equation (4.1-3) gives the relationship shown in Equa-

tion (4.1-6).

ẏ = CAx+ CB
[
(CB)−1(ν + ẏd − CAx)

]
= CAx+ ν + ẏd − CAx

= ν + ẏd

(4.1-6)

De�ne the tracking error e as the di�erence between the desired output and the actual

output.

e = yd − y (4.1-7)

After utilizing Equations (4.1-6) and (4.1-7) observe that error dynamics are governed by

Equation (4.1-8).

ė = −ν (4.1-8)

The choice of auxiliary input has been selected such that the CAx terms do not appear in

the error dynamics. This choice results in the error dynamics consisting of p integrators

(i.e., p poles at s = 0) for which a stabilizing controller can be e�ciently designed using

various linear control techniques.

The simplest choice for the auxiliary input is a positive de�nite diagonal gain matrix

K that ensures stability and decouples the control inputs. With this selection the control

law consists of a proportional outer tracking loop with a full state feedback linearization

inner loop as depicted in Figure 29. In Figure 29 the system's control input is de�ned by

Equation (4.1-9).

u = (CB)−1(ẏd +Ke− CAx) (4.1-9)

K
ν(t)

CA

(CB)−1
aircraft

dynamics

ẏd

eyd
x

y−

−
u

Figure 29 Nonlinear Dynamic Inversion Control Law for Linear System



45

At this point it is important to discuss the concept of zero dynamics, the dynamics

of the system when the input ν is selected to give an output y equal to zero. While the

error dynamics are guaranteed stable by ν, there remains n− p poles that are unobservable
through y. These poles are de�ned by the zero dynamics and their behavior should be

checked. Internal zeros that are non-minimum phase will result in an unstable closed-loop

system.

The zero dynamics can be evaluated by substituting Equation (4.1-9) into Equation (4.1-

1) and setting ν = −ẏd. This value of ν arises from y = ẏ = 0 being applied to Equation (4.1-

8).

ẋ = Ax+Bu (4.1-10)

= Ax+B(CB)−1(ẏd + ν − CAx) (4.1-11)

= [I −B(CB)−1C]Ax+B(CB)−1(ẏd + ν) (4.1-12)

= [I −B(CB)−1C]Ax ≡ Azx (4.1-13)

Thus for a given choice of control variables (CV), Equation (4.1-13) can be employed

to ensure stable zero dynamics. That is to say, the poles of Az should all be stable. NDI

may not succeed in providing this character and the selection of control variables should be

revisited if Az contains unstable poles. If an unstable pole does exist, the time to double

should be considered prior to adjusting the control variable selection as a measure of the

instability severity. As an example consider the linear plant presented in Figure 31 extracted

from the HARV model for level �ight at M = 0.4, H = 1000ft with coe�cients rounded to

four signi�cant digits.

The open-loop system has one unstable pole at 1.779e − 3 rad/s which has a doubling

time T2 ≈ 389 s. With the selected control variables the closed-loop zero dynamics are

determined to have the following poles in units of rad/s by Equation (4.1-13).

−1.752091635500319e− 02

−1.047404705978418e+ 00

−1.370320252152475e− 01

1.523809787396252e− 15 + 2.758208778000431e− 08i

1.523809787396252e− 15− 2.758208778000431e− 08i

−5.877961663095412e− 19

0.000000000000000e+ 00
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0.000000000000000e+ 00

Numerically the control law has produced an unstable pole in the zero dynamics; how-

ever, this is in fact the third expected pole at the origin when closely looking at the magni-

tude of the values. With stable zero dynamics it is safe to proceed with the chosen control

variables.

As a simple demonstration the gain matrix K is selected with diagonal elements equal

to 10 with units 1/s. This controller is then simulated using the MATLAB function ode23

with an input pitch pulse and roll doublet. The results for this simulation are presented in

Figure 30. Note the control law is forcing the aircraft to closely follow the desired motion

commands.
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Figure 30 Simulation of Linear NDI Control
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1 A = [% V alpha beta p q r ...

phi theta

2 -1.7509e-02 -6.9953e+00 3.8080e-12 -6.7100e-16 2.3768e-02 ...

-1.6447e-14 -7.2005e-13 -3.2174e+01;...

3 1.4826e-06 -1.0755e+00 3.5204e-18 2.2380e-14 9.9010e-01 ...

1.6868e-15 -0.0000e+00 0.0000e+00;...

4 9.3924e-18 -3.6571e-16 -1.8625e-01 7.5223e-02 1.1986e-18 ...

-9.9553e-01 7.2090e-02 -1.6225e-15;...

5 1.3272e-15 1.1989e-12 -1.3159e+01 -2.5675e+00 -0.0000e+00 ...

7.7571e-01 0.0000e+00 0.0000e+00;...

6 -1.3015e-14 -1.0059e+00 0.0000e+00 0.0000e+00 -3.7121e-01 ...

0.0000e+00 0.0000e+00 0.0000e+00;...

7 -1.7360e-16 -6.6401e-15 1.7212e+00 -4.9824e-02 -0.0000e+00 ...

-1.3577e-01 0.0000e+00 0.0000e+00;...

8 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 ...

7.5369e-02 0.0000e+00 0.0000e+00;...

9 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 ...

-0.0000e+00 -0.0000e+00 0.0000e+00;...

10 ];

11 B = [% da de dr

12 4.5417e-14 6.7773e+00 -3.9190e-13;... V

13 0.0000e+00 -1.4841e-01 0.0000e+00;... alpha

14 -4.5470e-03 3.4178e-16 3.9236e-02;... beta

15 1.0156e+01 0.0000e+00 1.9694e+00;... p

16 0.0000e+00 -5.3158e+00 0.0000e+00;... q

17 -3.8666e-02 0.0000e+00 -1.2240e+00;... r

18 0.0000e+00 0.0000e+00 0.0000e+00;... phi

19 0.0000e+00 0.0000e+00 0.0000e+00;... theta

20 ];

21 C = [...

22 % V alpha beta p q r ...

phi theta

23 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 0.0000e+00 ...

0.0000e+00 0.0000e+00 0.0000e+00;...

24 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 ...

0.0000e+00 0.0000e+00 0.0000e+00;...

25 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 ...

1.0000e+00 0.0000e+00 0.0000e+00;...

26 ];

Figure 31 Linear F-18 Model
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4.2 NDI: Nonlinear System

Building on the foundation of the previous section NDI will now be extended to the

general case of nonlinear systems. For convenience in notation the Lie derivative will �rst

be introduced. Given a scalar function h(x) and a vector �eld f(x), the Lie derivative takes

the derivative of h with respect to x along direction f and is de�ned by Equation (4.2-1)

where ∇ represents the gradient operator.

Lfh = ∇hf =
∂h

∂x
f (4.2-1)

The Lie derivative can be de�ned recursively using superscript notation to represent the

order of di�erentiation. Equation (4.2-2) presents this recursive notation.

L0
fh = h

L1
fh = ∇hf

L2
fh = Lf (L

1
fh) = ∇(L1

fh)f

...

Lnfh = Lf (L
n−1
f h) = ∇(Ln−1

f h)f

(4.2-2)

Now consider the nonlinear system described by Equation (4.2-3) with vector �elds

f(x), g(x), scalar function h(x) , state vector x ∈ Rn, input vector u ∈ Rm, and output

vector y ∈ Rp.

ẋ = f(x) + g(x)u

y = h(x)
(4.2-3)

Applying nonlinear dynamic inversion, di�erentiate the output function (with p = 1) until

the input u appears as presented in Equation (4.2-4).

dy

dt
= ∇h(x) [f(x) + g(x)u] = L1

fh(x) + Lgh(x)u (4.2-4)

If the input doesn't appear after the �rst di�erentiation the process is done recursively

until it does (for each output function). Equation (4.2-5) de�nes the general process using

superscript notation where j is iterating over all inputs, and subscript i denotes the output

function (here p > 1).61 The degree of di�erentiation for the output is distinguished by ri,

the "relative degree" for the ith output, as in general they may not be the same across all
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output functions.

y
(ri)
i = L

(ri)
f hi +

m∑
j=1

LgijL
ri−1
f hi(x)uj (4.2-5)

In Equation (4.2-5) the relative degree ri obeys the relationship, ri ≤ n as at most the

function will need to be di�erentiated n times. Grouping similar terms Equation (4.2-5) can

be rewritten in the following matrix format.

yr = Â+ B̂u (4.2-6a)

Â =


Lr1f h1(x)

...

L
rp
f hp(x)

 (4.2-6b)

B̂ =


Lg11L

r1−1
f h1(x) . . . Lg1mL

r1−1
f h1(x)

...
. . .

...

Lgp1L
rp−1
f hp(x) . . . LgpmL

rp−1
f hp(x)

 (4.2-6c)

Similar to Equation (4.1-4) introduce the auxiliary input ν given by Equation (4.2-7).

ν =


yr11
...

y
rp
p

− ẏd = yr − ẏd (4.2-7)

Assuming a square system with p = m, the required control input is solved for from Equa-

tion (4.2-6a) as

u = B̂−1
[
ν + ẏd − Â

]
(4.2-8)

where ẏd has been inserted for the tracking control problem. Similar to the linear develop-

ment the tracking error is given by Equation (4.2-9).

e = yd − y (4.2-9)

Substituting Equation (4.2-8) into Equation (4.2-6a) produces a linear relationship for error

dynamics in terms of the auxiliary input ν enabling any linear control design method to be

employed.

yr = Â+ B̂B̂−1
[
ν + ẏd − Â

]
(4.2-10)

ẏd − yr = −ν (4.2-11)

ė = −ν (4.2-12)
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Similar to the linear implementation, the internal dynamics need to be well behaved

and stable. If r =
∑m

i ri = n, then closed-loop stability can be guaranteed. However, if

r =
∑m

i ri < n, then closed-loop stability can only be guaranteed locally by showing the

unobservable internal dynamics are well behaved over the region of interest. The internal

dynamics can be checked by utilizing the zero dynamics, that is constraining the output to

zero given the input presented in Equation (4.2-13). Similarly, the nonlinear system can be

linearized at a given condition and the linearized internal dynamics or zero dynamics can

be evaluated.

yr = 0 = Â+ B̂u

u = −B̂−1Â
(4.2-13)

4.3 Control Allocation

A key component in the design of control systems for advanced aircraft is control alloca-

tion. This trend is true as many advanced aircraft have multiple surfaces that can control

one of the three primary moments. As a comparison consider the controls of a Cessna 172

presented in Figures 32 and 33. Clearly the Cessna only has three primary controls, one

for each primary axis of control. Thus for a simple aircraft con�guration control allocation

isn't of concern. In contrast, modern �ghter aircraft have redundant control surfaces. The

F-18 HARV control surfaces include ailerons, horizontal stabilators, a rudder, leading and

trailing edge �aps, and thrust vectoring (see Figure 34). When an aircraft has redundant

controls the question is then how are the control surfaces most e�ectively employed? The

answer to this question is not straight forward nor can it be generalized for all conditions as

it depends on the design goals of the system. Since the focus of this thesis is not on solving

nor optimizing the control allocation problem, only a brief introduction will be provided.

In order to provide a more illustrative example the model used in the remainder of

this section is that of the ADMIRE model presented in Reference 62 and replicated here

in Equations (4.3-1) and (4.3-2). The control surface limits presented in Equation (4.3-2)

are provided in degrees for readability. However, in subsequent calculations the units are

in radians in order to comply with the units of the B matrix presented in Equation (4.3-

1). The motivation for using the ADMIRE model is due to the additional aerodynamic

control surfaces. The ADMIRE model consists of left/right canard, left/right inboard elevon,

left/right outboard elevon, and rudder whereas the aerodynamic control surface data for the

F-18 HARV is limited to e�ective aileron, left/right stabilator, and rudder.
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CESSNA 
MODEL 172S 

SECTION 7 
AIRPLANE & SYSTEMS DESCRIPTION 

0585X1017 

Figure 7-1. Flight Control and Trim Systems (Sheet 1 of 2) 

July 8/98 7-7 

Figure 32 Cessna 172 Lateral-Directional Controls63
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SECTION 7 
AIRPLANE & SYSTEMS DESCRIPTION 

CESSNA 
MODEL 172S 

0585X1018 

Figure 7-1. Flight Control and Trim Systems (Sheet 2 of 2) 

7-8 July 8/98 

Figure 33 Cessna 172 Longitudinal Controls63
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Figure 34 F-18 HARV Control Surfaces56



54

B =


0.7073 −0.7073 −3.4956 −3.0013 3.0013 3.4956 2.1103

1.1204 1.1204 −0.7919 −1.2614 −1.2614 −0.7919 0.0035

−0.3309 0.3309 −0.1507 −0.3088 0.3088 0.1507 −1.2680

 (4.3-1)

umin =



−55

−55

−30

−30

−30

−30

−30


umax =



25

25

30

30

30

30

30


names =



R canard

L canard

R OB elevon

L OB elevon

R IB elevon

L IB elevon

rudder


(4.3-2)

4.3.1 Attainable Moment Subset

The attainable moment subset (AMS) refers to all moments that can be physically

generated at the current �ight condition. Mathematically this is the control e�ectiveness

matrix B times every admissible control u. However, of particular interest is the boundary

of the AMS. The aircraft three-moment problem will generate a three-dimensional space

bounded by two-dimensional facets. The facets are computed by varying two control surfaces

at a time while the remaining surfaces are at their limits.

The method to determine the two-dimensional AMS is �rst presented. Consider the

following two-dimensional control e�ectiveness matrix with control limits ±0.5 rad.

B =

[
1 0 −0.5

0 1 −0.5

]
(4.3-3)

The set of all attainable moments can be determined by varying one control while holding

the other two at their limits. Utilizing the same object notation presented inReference 62 ,

let 1 denote the maximum, 0 the minimum, and 2 a control free to vary. The pseudocode

presented in Figure 35 can be used to determine all attainable moments.
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1 B = 2 x 3 control effectiveness

2 u = 3 x 1 control input

3 p = 1 1

4 1 0

5 0 1

6 0 0

7 for j = 1:3

8 for k=1:4

9 u(not j) = row j of p

10 u(j) = 1

11 vertex1 = B * u

12 u(j) = 0

13 vertex2 = B * u

14 plot edge connecting vertex1 to vertex2

15 end

16 end

Figure 35 Admissible Controls Attainable Moments
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m
1

-0.8
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0.4

0.6

0.8

m
2

Figure 36 Two-Dimensional AMS
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Figure 36 presents the AMS for the B matrix given by Equation (4.3-3). In the �gure,

concern is only given to determining the boundary of the AMS denoted by the red lines as

this represents the maximum attainable moments. Inspecting Figure 36 with consideration

to the B matrix, we conclude that the left and right vertical edges map to the second control

input as the second column of B points in the vertical m2 moment direction. Generalizing,

a zero in a row of B means there is an edge orthogonal to the AMS axis corresponding to

the zero element, and this edge is generated by the control of the corresponding column of

B.62 This statement of course is under the assumption that only one zero appears in any

given row. This assumption can be enforced by �rst setting all zero valued elements to a

su�ciently small positive value, µ such that µ� min
ij

(|Bij|).
To apply this generalization consider choosing the �rst row. A transformation t that will

rotate B such that there is a zero in position one of the ith column of B (b1i) is sought.

~t ~bi = 0

t11b1i + t12b2i = 0
(4.3-4)

In Equation (4.3-4) standard (row, column) indexing in the subscript notation is used.

Arbitrarily choosing the second element of t as unity,

~t =
[
− b2i
b1i

1
]

(4.3-5)

and carrying out the product of t and B results in Equation (4.3-6).

~tB = gi, gi ∈ R1×3, gij = 0 for i = j (4.3-6)

The next step is to maximize and minimize the resulting moment. This step can be ac-

complished by acknowledging the signs of the elements. Utilizing the signum function and

assuming logical indexing of arrays, the AMS vertices can be solved by the pseudocode

presented in Figure 37.

To extend the solution to the three-dimensional case, take two columns at a time rep-

resented by i, j and set the remaining controls at their limits that maximize and minimize

the moment. Under the assumption B has already been preconditioned by µ to remove

zero elements the rotation transformation can be computed as follows. Solve t such that

zeros are placed in the �rst row of columns i, j. In a similar fashion to the two-dimensional

problem, choose one value of t; thus, let t13 = 1, and carry out the procedure as shown in
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Equation (4.3-7).

~t
[
~bi ~bj

]
= ~0

[
t11 t12 t13

]
b1i b1j

b2i b2j

b3i b3j

 =
[
0 0

]
[
b1i b2i

b1j b2j

][
t11

t12

]
= −

[
b3i

b3j

]
[
t11

t12

]
= −

[
b1i b2i

b1j b2j

]−1 [
b3i

b3j

]
(4.3-7)

Once t has been determined the rest of the process is carried out in the same manner as for

the two-dimensional case. In order to take two columns at a time for m controls, implement

a loop for i = 1 . . .m− 1, j = i+ 1 . . .m.

Carrying out this process for the ADMIRE control e�ectiveness matrix with seven control

surfaces results in the volume presented in Figure 38. Any point on the surface represents a

unique solution of the maximum attainable angular accelerations. Points within the surface

are attainable but the solutions are not unique; this situation is where control allocation

has the ability to optimize control surface utilization.

Knowledge of this control space is relevant as it can aid in the control surface sizing,

actuator selection, and controller evaluation. Required accelerations can be calculated given

speci�c design requirements such as roll performance or more advanced maneuvers. The an-

gular accelerations can subsequently be graphically represented with the AMS providing the

engineer with the relevant information to determine whether the maneuver can be achieved.

In industry, this process is bene�cial as it alleviates the requirement to perform nonlinear

simulations on a system that may not yet exist.
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1 B = 2 x m control effectiveness

2 set any B elements that equal zero to mu

3 umin = m x 1 minimum control positions

4 umax = m x 1 maximum control positions

5 for i=1:m

6 bi = the ith column of B

7 if bi(1) not equal 0

8 t = [-bi(2) / bi(1), 1]`

9 tB = t * B

10 else

11 tB = first row of B

12 end

13 uo = logical array size 3 x 4

14 uo column one rows (signum tB equal to 1) = 1

15 uo column one rows (signum tB equal to -1) = 0

16 uo column 2 = not( uo column 1)

17 uo columns one and two, row i = [1 0]

18 uo columns 3, 4 = not( uo columns 1, 2)

19 for j=1:4

20 uc(uo column j) = umax( uo column j)

21 uc(not(uo column j)) = umin(not(uo column j))

22 vertex = B * uc

23 end

24 end

Figure 37 Pseudocode, Two-Dimensional AMS
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Figure 38 Three-Dimensional AMS

4.3.2 HARV AMS

The AMS for the HARV is presented in Figure 39 to present the bene�t of utilizing

di�erential stabilator. The smaller polyhedron colored red represents the attainable mo-

ment region using the stabilators as a single e�ective elevator. The larger gray polyhedron

represents the additional control power that is gained by utilizing the stabilators indepen-

dently. Observe that utilizing the stabilators independently expands the roll authority. In

order to quantitatively compare the di�erences the volumes of the AMS will be used. When

the stabilators are used together the volume is 0.4453 (rad/s2)3 whereas the full potential

AMS is 0.6869 (rad/s2)3. Thus employing the stabilators independently expands the control

power by 54%.
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Figure 39 HARV AMS and E�ective Elevator AMS

The question now is how to utilize the four controls most e�ectively? In going from

three to four controls the system is now under-determined. The following problem must be

solved,

~mc = B~u (4.3-8)

where ~mc, the commanded moment, and B the control matrix are known and the unknown

control vector ~u must be determined. In Equation (4.3-8), ~mc is of dimension 3 × 1, B is

3 × m, and ~u is m × 1. In the case that m = n = 3 the problem can be solved with the

matrix inverse.

~u = B−1 ~mc (4.3-9)

If m > n = 3 the matrix inverse does not exist. To solve the problem the generalized

inverse that solves PB = I can be used and is de�ned by Equation (4.3-10).

P = N(BN)−1

where

B ∈ Rn×m

N ∈ Rm×n

|BN | 6= 0

(4.3-10)
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In Equation (4.3-10) an additional requirement that N and B are real such that the control

algorithm is implementable has been imposed. Now the control vector can be solved,

~u = P ~mc (4.3-11)

When going from the square system to an under-determined system an additional con-

straint must be imposed, that is de�ning N for the inverse. Consider the B matrix for the

HARV aircraft without �aps and thrust vectoring (m = 4) de�ned by the matrix presented

in Equation (4.3-12).

B =


∂L
∂δa

∂L
∂δel

∂L
∂δer

∂L
∂δr

∂M
∂δa

∂M
∂δel

∂M
∂δer

∂M
∂δr

∂N
∂δa

∂N
∂δel

∂N
∂δer

∂N
∂δr

 (4.3-12)

The N matrix maps the control inputs and can be de�ned in such a manner that it produces

the same e�ect as the square system with three controls, that is a single e�ective elevator.

Equation (4.3-13) creates the single e�ective elevator.

N =


1 0 0

0 1 0

0 1 0

0 0 1

 (4.3-13)

Exploring another option, impose a common conventional control method by ganging

controls together. An example would be stabilator-rudder interconnect and is obtained if

N is de�ned by Equation (4.3-14). This ganging scheme leverages the ability of di�erential

stabilators to generate a yawing moment. In Figure 40 the stabilator-rudder interconnect

con�guration AMS is depicted; it has a volume of 0.3096 (rad/s2)3, signi�cantly lower than

the maximum attainable control power. However, the attainable yaw moments are increased

with respect to nonzero rolling moments.

N =


1 0 0

0 1 −0.5

0 1 0.5

0 0 1

 (4.3-14)
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Figure 40 AMS with Ganged Control within Full AMS

There are numerous approaches to optimize the control allocation but for simplicity

consideration is only given to the Moore-Penrose pseudo-inverse. This implementation min-

imizes the 2-norm of the control vector. If the control matrix B has full rank this method

simpli�es to that of Equation (4.3-15).62

P = BT(BBT)−1 (4.3-15)

If B is rank de�cient then singular value decomposition (SVD) can be used where the SVD

is de�ned by Equation (4.3-16). Literature such as Reference 64 presents a more detailed

introduction to SVD.

B = UΣV T (4.3-16)

Given the diagonal matrix Σ of singular values σi which must be invertible, de�ne a

suitable minimum value ε > 0. If any σi in Σ is less than ε the corresponding row/column

is removed, the resultant matrix is then de�ned as Σ̂. The indexed row/column removed

from Σ are also removed from the corresponding column in U, V thereby de�ning Û , V̂ .

Σ̂ = Σ(σi > ε)

Û = U(σi > ε)

V̂ = V (σi > ε)

where (σi > ε) refers to logical indexing

(4.3-17)
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Subsequently the pseudo-inverse is formulated as shown by Equation (4.3-18).

P = V̂ Σ̂−1ÛT (4.3-18)

Unless otherwise speci�ed any inverse of a non-square matrix henceforth will utilize the

inverse de�ned by Equation (4.3-18) as this is the method utilized by MATLAB. Figure 41

depicts the AMS with the pseudo-inverse where a volume of 0.2839 (rad/s2)3 is attained.

Though more complex methods could optimize this volume such work is beyond the scope

of this thesis.

Figures 42 and 43 compare the ganged and pseudo-inverse allocation methods (blue)

against the single e�ective elevator (red). All three methods have trade-o�s and all fall

short of the full potential AMS.

Figure 41 Pseudo-Inverse AMS
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Figure 42 E�ective Elevator (red) vs. Ganged (blue) AMS

Figure 43 E�ective Elevator (red) vs. Pseudo-Inverse (blue) AMS
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CHAPTER 5

CONTROL DESIGN

In this section a NDI control law (CLAW) is developed for the purpose of spin recovery.

This CLAW should be capable of returning the aircraft to a level �ight condition with

minimum altitude loss. Given the task at hand one could develop a NDI CLAW directly

for control variables (CV)
[
V γ µ β

]T
given control inputs

[
δt δa δe δr

]T
. However,

the derivation and implementation of such control law would be overly complex and would

not �nd much practical use in piloted aircraft. Instead, a time scale separation method will

be employed. This method consists of splitting the system into fast and slow dynamics and

has been utilized by various di�erent researchers such as Reference 44, 61.

Utilizing the principle of time scale separation the CLAW will consist of a fast inner rate

loop (IRL), slower middle attitude loop (MAL), and still slower outer path loops (OPL).

The IRL will control the aircraft rotational rates in stability axes, ps, q, rs. These CVs are

chosen such that equations can be developed to ensure coordinated �ight at the innermost

and subsequently fastest loop. This practice is desirable in manned aircraft as it provides

a "feet �at on the �oor" pilot interaction thereby relieving pilot workload. The MAL will

control velocity roll µ and aerodynamic angles α and β. Velocity roll µ is chosen as it

eliminates the issue of commanding body axis roll at nonzero AOA. Further, the command

channel around β will ensure sideslip is small during large maneuvers. Finally, the OPL will

provide control of the �ight path angle γ and velocity V .

5.1 Generalized NDI Control Law

This section de�nes the generalized control law architecture that is employed in the

subsequent sections. Any given control loop will be comprised of reference dynamics, linear

controller, and dynamic inversion components as depicted in Figure 44 where δ represents

any of the available aircraft control inputs.

5.1.1 Reference Dynamics

Reference dynamics de�ne the desired behavior the system should track. In other words

this component prescribes the yd value de�ned in Chapter 4. In general, the reference

dynamics could be arbitrarily prescribed by the designer. However, much experience of

manned �ight has been amassed such that desirable �ying qualities and characteristics are
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Reference

Dynamics

Linear

Controller

Dynamic

Inversion

CVc

CV

δ

Figure 44 Controller Components

known. These characteristics as they pertain to military manned aircraft are presented in

reports such as MIL-F-8785C (8785C) and standards such as MIL-STD-1797B (1797B).48,65

The reference dynamics used herein will be either �rst or second order depending on re-

quirements prescribed by 8785C. More details pertaining to speci�c reference models will

be described in subsequent sections.

5.1.2 Linear Controllers

Proportional integral (PI) linear controllers (LC) will be employed as they su�ciently

handle uncertainties in the dynamic inversion process. This choice will avoid the added

complexities of alternative linear control methods such as H∞ loop shaping or structured

singular value synthesis.66,67 Further, the reference dynamics can be integrated within the

PI network as the prescribed dynamics are restricted to second order implementations.

This process simpli�es the architecture to be implemented in code and is described in the

following subsections for both the �rst and second order dynamic models.

First Order Implementation

This section derives a PI network which tracks a prescribed �rst order response. To do

this �rst consider a generic PI controller with proportional gain Kp and integral gain Ki

as shown in Figure 45. Manipulating the architecture as depicted in Figure 46 allows the

equivalent closed-loop system to be determined. Equating the prescribed �rst order system

to the control second order system gives the relationship shown in Equation (5.1-1).

ω

s+ ω
=

AKps+BKi

s2 +Kps+Ki

(5.1-1)

In order for Equation (5.1-1) to hold true a pole-zero cancellation must occur as de�ned by
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Figure 45 Generic First Order PI Architecture

Equation (5.1-2).
ω(s+ ω)

(s+ ω)2
=

AKps+BKi

s2 +Kps+Ki

∴ A =
1

2
, B = 1, Kp = 2ω, Ki = ω2

(5.1-2)

Figure 47 depicts the �nal architecture.

Second Order Implementation

Similar to the development of the �rst order controller, a second order controller shown

in Figure 48 with Kp = 2ζω and Ki = ω2 can be implemented utilizing Equation (5.1-3).

K(s+ ωn)ω2

s2 +Kps+Ki

(5.1-3)

The additional terms, K,ωn are provided as a means to match the 8785C construct. In this

application K = 1
ω
and ωn = ω ensure unity dc gain. Unless otherwise stated, take the

damping ratio as ζ =
√

2
2
.

5.1.3 Dynamic Inversion

The inversion component consists of rigorous application of Section 4.2 for the given

control path problem.
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Figure 46 Generic PI Manipulation
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Figure 47 Integrated PI Architecture
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Figure 48 Generic Second Order PI Architecture

5.2 Inner Rate Loop

Though the objective is to control the stability axis angular rates, (ps, rs), moments

are most conveniently dealt with in the body axis. With this in mind �rst develop the

inversion control law for the body axis angular rates, p, q, r. The �rst step in the process is

to di�erentiate the output function, y = h(x) = CV until the input appears. Starting with

Equations (2.2-5d) and (2.2-5e) it is clear the control inputs appear in the �rst derivative

through the aerodynamic moments. For generality, subscript notation will now be used

to denote the output function; superscript notation will be used to denote the degree of

di�erentiation.

The �rst output function is governed by Equation (5.2-1).

L
(1)
f h1 = ∇pẋ

= ṗ

=
Ixz

IxxIzz − I2
xz

(N + (Ixx − Iyy) pq − Ixzqr)

+
Izz

IxxIzz − Ixz2 (L+ Ixzpq + (Iyy − Izz) qr)

(5.2-1)

Similarly for the second output function is governed by Equation (5.2-2).

L
(1)
f h2 = ∇qẋ

= q̇

=
1

Iyy

[
M+ Ixz(r

2 − p2) + (Izz − Ixx)rp
] (5.2-2)
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Lastly the third output function is governed by Equation (5.2-3).

L
(1)
f h3 = ∇rẋ

= ṙ

=
Ixx

IxxIzz − Ixz2 (N + (Ixx − Iyy) pq − Ixzqr)

+
Ixz

IxxIzz − Ixz2 (L+ Ixzpq + (Iyy − Izz) qr)

(5.2-3)

Equations (5.2-1) to (5.2-3) are subsequently grouped together in order to solve for the

control input resulting in the formulation de�ned by Equation (5.2-4). In this context c1,2,3,4,5

provide intermediate inertia variables. State dependent dynamic values are prescribed by

f1,2,3 and have a dependence on the x subscripted L,M,N . The input mapping parameters

are denoted by the u subscript on L,M,N .

ẏ =


f1

f2

f3

+ Sq


b 0 0

0 c 0

0 0 b



c2Nu + c3Lu

1
Iyy
Mu

c1Nu + c2Lu

u
f1 = c2 (Nx + c4) + c3 (Lx + c5)

f2 =
1

Iyy

[
Mx + Ixz(r

2 − p2) + (Izz − Ixx)rp
]

f3 = c1 (Nx + c4) + c2 (Lx + c5)

where

c1 =
Ixx

IxxIzz − Ixz2 c4 = (Ixx − Iyy) pq − Ixzqr

c2 =
Ixz

IxxIzz − Ixz2 c5 = Ixzpq + (Iyy − Izz) qr

c3 =
Izz

IxxIzz − Ixz2

Lx = Sqb

(
Cl,ββ +

b

2V
(Cl,pp+ Cl,rr)

)
Lu =

[
Cl,δa Cl,δe,l Cl,δe,r Cl,δr

]
Mx = Sqc

(
Cm,0 +

c

2V
Cm,qq

)
Mu =

[
0 Cm,δe,l Cm,δe,r 0

]
Nx = Sqb

(
Cn,ββ +

b

2V
(Cn,pp+ Cn,rr)

)
Nu =

[
Cn,δa Cn,δe,l Cn,δe,r Cn,δr

]

(5.2-4)

The inner loop control law can be solved for from Equation (5.2-4) noting that it follows

the form of Equation (4.2-6a). The control e�ectiveness matrix present in Equation (5.2-4)

is not square; thus, the pseudo-inverse will be utilized as de�ned by Equation (4.3-18).
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δa

δe

δr

 =
1

Sq



b 0 0

0 c 0

0 0 b



c2Nu + c3Lu

1
Iyy
Mu

c1Nu + c2Lu



−1

·



νṗ

νq̇

νṙ

+


ṗd

q̇d

ṙd

−

f1

f2

f3




(5.2-5)

In Equation (5.2-5) the virtual inputs νṗ, νq̇, νṙ are the time rate of change of the angular

rates. At this juncture it is convenient to utilize the rotation matrix Rα that relates the

body axis rates p, q, r and the stability axis rates, ps, q, rs. Utilizing this relationship the

control algorithm can be developed in the chosen stability axis and then transformed into

the required body axis commands for the inversion implemented by Equation (5.2-5). This

high level architecture is presented in Figure 49 where snsr refers to the measured sensor

values in the feedback loop. Note that LC in Figure 49 includes the command derivative

feed-forward term.

LC RT
α

Pseudo-Inverse

×


ps

q

rs


c

ps

q

rs


snsr

f1

f2

f3



−

B 
δa

δe,l

δe,r

δr



Figure 49 IRL Overview

Speci�cations de�ned by MIL-F-8785C will be used to determine a suitable ωn for the

IRL. The recommended dynamic characteristics prescribed by 8785C are �rst order roll, and

second order for pitch and yaw. However, the yaw axis will be implemented as �rst order
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as there will be no exposed control input for sideslip as the design goal for the yaw axis is

simply to minimize deviations from zero.

5.2.1 MIL-F-8785C Requirements

The speci�cations de�ned in 8785C are provided for multiple classes of aircraft over

di�erent categories of �ight. The six aircraft classes are presented in Table 6. The three

�ight phases are brie�y introduced in Table 7. Some speci�cations, such as roll performance,

are based on the aircraft speed range. The speed range de�nitions are presented in Table 8

where VL de�nes very low, L de�nes low, M for medium, and H for high. Levels 1, 2, and

3 presented in Table 8 refer to �ying qualities based on the Cooper-Harper Scale, such that

Level 1 is always desired.

Table 6 Air Vehicle Classes

Class Description

I small and light

II medium weight, low-to-medium maneuverability

III large, heavy, low-to-medium maneuverability

IV high maneuverability (�ghter)

V rotorcraft

VI V/STOL

Table 7 Flight Phases

Category Description

A rapid maneuvering with precise tracking

B gradual maneuvers without precise tracking

C gradual maneuvers with accurate �ight path control
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Table 8 Speed Ranges

Speed Range Level 1 Level 2 & 3

VL Vo,min ≤ V < Vmin + 20KTS Vmin ≤ V < Vmin + 20KTS

L Vmin + 20KTS ≤ V < 1.4Vo,min Vmin + 20KTS ≤ V < 1.4Vmin

M 1.4Vo,min ≤ V < 0.7Vmax 1.4Vmin ≤ V < 0.7Vmax

H 0.7Vmax ≤ V ≤ Vo,max 0.7Vmax ≤ V ≤ Vo,max

To carry out the design for the HARV aircraft a minimum speed of Vmin = 1.1Vstall =

0.18 Mach is assumed where Vstall is de�ned as
√

2W
ρSCL,max

. The factor of 1.1 is seemingly

arbitrary and was chosen as no public source of information de�ning V speeds for the F-18

was found that did not introduce unnecessary complexities with further assumptions about

aircraft con�guration. Note that the aerodynamic model utilized does not incorporate �aps

which would most likely be utilized at airspeeds this low. The maximum speed is assumed

to be Vmax = 0.7Mach as this represents the �ight envelope used by the HARV.7 Under

these assumptions along with Level 1 handling characteristics the speed ranges in Table 9

are utilized with a constant reference altitude of 1000 ft.

Table 9 Speed Range at 1000 ft

Speed Range LOW (Mach) HIGH (Mach)

VL 0.2002 0.2306

L 0.2306 0.2803

M 0.2803 0.4900

H 0.4900 0.7000

Roll Axis Requirements

The requirements provided by 8785C for the �rst order roll response are the time constant

and the time to bank. The maximum roll mode time constants are presented in Table 10.

Table 11 presents the time to bank requirements for di�erent phases of �ight and speed

ranges. In Table 11 category A �ight has requirements for 30, 50, 90 degree changes while

categories B and C have single requirements for 90 and 30 degrees, respectively. Utilizing

Tables 10 and 11 required accelerations that can be determined which will aid in the design

process.
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Table 10 Maximum Roll Mode Time Constant (seconds)

Flight Phase Class Level 1 Level 2 Level 3

A I, IV 1.0 1.4 10

A II, III 1.4 3.0 10

B all 1.4 3.0 10

C I, II, IV 1.0 1.4 10

C III 1.4 3.0 10

Table 11 Time To Bank Requirements (seconds)

Level Speed Range
Category A Category B Category C

30 50 90 90 30

1

VL 1.1 2.0 1.1

L 1.1 1.7 1.1

M 1.1 1.3 1.7 1.1

H 1.1 1.1 1.7 1.1

2

VL 1.6 2.8 1.3

L 1.5 2.5 1.3

M 1.7 2.5 1.3

H 1.3 2.5 1.3

3

VL 2.6 3.7 2.0

L 2.0 3.4 2.0

M 2.6 3.4 2.0

H 2.6 3.4 2.0
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Pitch Axis Requirements

Longitudinally 8785C gives various di�erent requirements in order to cover a multitude

of di�erent aircraft types, operational missions, and �ight regimes. In this research the

second order equivalent system is used as prescribed by Equation (5.2-6).

q

δ
=

Kq(s+ 1/Tq)

s2 + 2ζωs+ ω2
(5.2-6)

The short period requirements considered are ω ≥ 1 rad/s and 0.35 ≥ ζ ≥ 1.3; thus, the

choice of ζ =
√

2
2
is su�cient. Furthermore, the bandwidth (ω) of the longitudinal axis will

be made to match the roll/yaw axes. This approach will simplify the design process by only

considering the more demanding and coupled roll maneuvers.

Yaw Axis Requirements

Though 8785C provides requirements for the yaw axis, these are not considered. Instead

the yaw axis is matched with the roll axis. The rationale for this simplistic design is that

during spin recovery sideslip is regulated to zero; thus, desirable response dynamics to pilot

inputs can be neglected.

5.2.2 Required Accelerations

In this section the required accelerations to perform maneuvers in accordance with 8785C

are determined. Consider a coordinated roll maneuver about the velocity vector with zero

sideslip and constant angle-of-attack and velocity. This maneuver is preferred over rolling

about the aircraft body axis as doing so would induce sideslip for nonzero angle-of-attack.

Additionally, this maneuver requires nonzero pitch and yaw accelerations; thus, limitations

of the o� axis controls will be considered. The analysis for this maneuver is presented below

adapted from Reference 68.

During a velocity vector roll the wind and stability axis coincide; thus, consider the

stability axis to be the reference where moments are calculated. Consider the wind-stability

axis equations given by Reference 50 presented here in Equation (5.2-7).

µ̇ = pw + (qw sinµ+ rw cosµ) tan γ

γ̇ = qw cosµ− rw sinµ (5.2-7a)

χ̇ = (qw sinµ+ rw cosµ) sec γ

mV̇ = Tx,w −D −mg sin γ
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mV rw = Ty,w − C +mg cos γ sinµ (5.2-7b)

−mV qw = Tz,w − L+mg cos γ cosµ

Lw = Ixxṗw − Ixz(ṙw + pwqw)− (Iyy − Izz)qwrw
Mw = Iyy q̇w − Ixz(r2

w − p2
w)− (Izz − Ixx)rwpw (5.2-7c)

Nw = Izz ṙw − Ixz(ṗw − qwrw)− (Ixx − Iyy)pwqw

In Equation (5.2-7) the inertia parameters Ixx, Iyy, Izz, Ixz refer to elements of the stability

axis inertia tensor, Is and are derived from the body axis inertias using the body to stability

rotation matrix de�ned in Equation (5.2-8).

Is = RαIbR
T
α (5.2-8)

In Equation (5.2-7) the thrust components are given as a function of the body axis thrust

using the body to wind transformation relationship, Tw = Rw,bT .

Tx,w = T cosα cos β

Ty,w = −T cosα sin β

Tz,w = −T sinα

(5.2-9)

Furthermore, to clarify the wind axis aerodynamic contributions used, D,C, L, as a function

of the stability axis aerodynamic data provided, are given by Equation (5.2-10).
D

C

L

 = Rw,s


D

Y

L

 (5.2-10)

The requirement for the roll axis is given as a �rst order roll response with time constant

τr provided a step rolling moment input δR with magnitude pc. This requirement is presented

in the Laplace domain in Equation (5.2-11).

pw(s) =
1

τrs+ 1

pc
s

(5.2-11)

Taking the inverse Laplace transformation the time response is obtained assuming an initial

condition of zero.

pw(t) = pc(1− e−t/τr) (5.2-12)

Di�erentiating Equation (5.2-12) yields the roll acceleration de�ned in Equation (5.2-13).

ṗw = −pw(t)

τr
+ pc

δR
τr

(5.2-13)
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Assume the maneuver is carried out with α, V constant and β = 0. Additionally, assume

the combined aerodynamic and thrust force Zw along the zw direction is constant such that

Zw = Tz,w − L = −nz,w × weight. Provided β = 0 the sideforce is zero, C = Ty,w = 0.

Utilizing the Yw, Zw force equations qw, rw can be solved such that combined forces Yw = 0

and Zw = constant.

qw(t) = −Zw +mg cos γ(t) cosµ(t)

mV
(5.2-14)

rw(t) =
mg cos γ(t) sinµ(t)

mV
(5.2-15)

Di�erentiating Equations (5.2-14) to (5.2-15) the accelerations are obtained.

q̇w =
g (cos γ(t) sinµ(t)µ̇+ sin γ(t) cosµ(t)γ̇)

V
(5.2-16)

ṙw =
g (cos γ(t) cosµ(t)µ̇− sin γ(t) sinµ(t)γ̇)

V
(5.2-17)

Thus the total angular acceleration in wind axis is known and from it the required aerody-

namic moments can be determined. However, in order to evolve qw, rw the wind axis Euler

angles µ, γ also need to be considered. Substituting Equation (5.2-15) into Equation (5.2-7a)

yields the angular rate formulations necessary to propagate µ, γ with time.

µ̇ = pw(t)− Zw sinµ(t) tan γ(t)

mV
(5.2-18)

γ̇ = −Zw cosµ(t) +mg cos γ(t)

mV
(5.2-19)

Lastly, derive a relationship between the time to bank requirements and the roll mode

time constant in order to calculate the required roll rate step command. Assume the bank

angle of interest is a single integration of the roll rate such that a change in the bank angle

can be represented by Equation (5.2-20).

∆µ = µ(T )− µ(0) =

∫ T

0

pw dt

= pw,cT + pw,cτre
−T/τr + C

(5.2-20)

Taking µ(0) = 0 the integration constant is determined as C = −τrpw,c.

∆µ = pw,cT − pw,cτr(1− e−T/τr) (5.2-21)
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Solving for the step command magnitude results in Equation (5.2-22).

pw,c =
∆µ

T − τr(1− e−T/τr)
(5.2-22)

The set of �ve nonlinear relationships, Equations (5.2-13) and (5.2-16) to (5.2-19), can

be integrated subject to the roll rate step command de�ned by Equation (5.2-22).

5.2.3 Roll Axis Design

Utilizing the set of equations developed in Section 5.2.2 the required accelerations were

evaluated for all speed ranges and �ight categories. To simplify the analysis the maximum

roll mode time constant for category B was also taken to be τr = 1.0 s. The design speed

for each speed range was the lower value. Table 12 presents the required accelerations as a

percent of the maximum available acceleration in the required direction. A value of one in

Table 12 would suggest that the required acceleration is on the surfaces of the AMS, values

greater than one highlighted in red exceed the physical limitations of the aircraft.

For each �ight level, category C had the most acceleration demand. These three condi-

tions are presented in Figures 50 to 52. In the VL and L speed ranges the demands exceed

the aircraft capabilities. However, this nuance is attributed to the following items. First,

the aerodynamic model available did not include tables for the leading/trailing edge �aps

thereby increasing the trim angle-of-attack at these lower speeds. Secondly, this analysis has

been done for the ideal velocity vector roll (VVR), whereas the roll requirement speci�ed

in 8785C generally refers to a change in bank. That is to say the aircraft does not need to

maintain zero sideslip throughout the maneuver. While the VVR is an ideal roll maneuver,

at higher α more yaw control is required due to the transformation between the body and

wind axes. As can be seen in Figures 50 to 52, the yaw axis control power is the only axis

exceeding the physical limits.
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Table 12 Required Roll Accelerations as Percent of Available Acceleration, τr =

1.0 s

Level Speed Range
Category A Category B Category C

30 50 90 90 30

1

VL 3.34 3.82 3.34

L 1.18 1.74 1.18

M 0.51 1.15 0.75 0.51

H 0.09 0.15 0.14 0.09

2

VL 1.80 2.33 2.53

L 0.71 0.97 0.89

M 0.75 0.42 0.38

H 0.12 0.08 0.07

3

VL 0.86 0.63 0.45

L 0.45 0.33 0.11

M 0.39 0.27 0.19

H 0.04 0.05 0.04

Figure 50 VVR AMS, Level 1, Category C, Speed Range VL
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Figure 51 VVR AMS, Level 1, Category B, Speed Range L

Figure 52 VVR AMS, Level 1, Category A, Speed Range M

The knowledge gained from performing the VVR analysis can now be leveraged to �nalize

the design of the IRL. Speci�cally, the goal is to design the IRL such that the actuators do

not become rate/position limited as doing so will induce limit cycling and the controller may
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Table 13 VL pw,c Step Limits

Mach
pw,c Step

(deg/s)

T∆µ,90

(sec)

0.2000 20.75 5.333

0.2306 58.66 2.4479

0.2601 102.04 1.6992

0.2803 136.09 1.4195

0.4900 745.56 0.5351

0.3766 81.84 1.2994

0.4900 149.14 0.7998

0.7000 382.71 0.4093

become unstable. Furthermore, outer attitude control loops will be designed which require

the IRL to have near perfect tracking. Thus, the aim is to determine the IRL bandwidth as

a schedule of dynamic pressure.

Instead of determining a slower bandwidth for the VL IRL, a limit on the maximum roll

rate step size was initially investigated. Utilizing a bisection search method the maximum

roll rate step command was determined for the lower and upper speeds and is presented

along with the corresponding time-to-bank 90◦ in Table 13. In a similar fashion, determine

the Mach numbers at which the aircraft is able to achieve the 8785C requirements without

alterations. This process was carried out for the three Level 1 T90 requirements with two

di�erent time constants. The �rst is the maximum time constant de�ned in 8785C; the

second is the recommended time constant for �ghter aircraft presented in Reference 42 .

The results are presented in Table 14. These results present a large disparity between the

initial design speed ranges and what is physically required for the ideal roll performance.

Referring back to Table 9 note that the minimum Mach to achieve the VL T90 falls into

the M speed range. Thus limits on τr should be imposed for Mach < 0.2601 to ensure

degraded responses aren't obtained. Additionally, as a higher bandwidth is desirable, τr will

be transitioned to 0.2 once Mach ≥ 0.3766. This value is chosen as transitioning at a lower

Mach would result in failure to achieve Level 1 handling. To summarize Table 15 presents

the proposed scheduling to be implemented.

Testing of command limiting did not prove adequate, especially when outer loops were



82

Table 14 Minimum Mach and Step Magnitude for T90 Requirements

τr

(sec)
Speed Range T90 (sec) Minimum Mach

Step Cmd

(deg/s)

1.0

VL 2.0 0.2471 79.2717

L 1.7 0.2601 101.9618

M 1.3 0.2910 157.1965

0.2

VL 2.0 0.3287 49.9997

L 1.7 0.3454 59.9984

M 1.3 0.3766 81.7958

Table 15 IRL τr and Limit Schedule

q

(lb/ft2)

τr

(sec)

Max ṗw,c

(deg/s2)

57.1439 1.0 20.75

75.9677 1.0 58.66

96.6475 1.0 102.04

112.2422 1.0 136.09

202.6146 0.2 81.84

343.0064 0.2 149.14

700.0131 0.2 382.71
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incorporated. As a result, the command limiting implementation was discarded. In part

this de�ciency is justi�ed by the simpli�ed aerodynamic model that did not provide �ap

surfaces that would be available at low speeds. Subsequently all performance based testing

was done at a minimum of Mach 0.25.

5.2.4 Turn Compensation

Utilizing an innermost rate based control loop allows for turn compensation to be directly

integrated.42 This component ensures sideslip is minimized during rolling maneuvers and

assists in maintaining wing loading by adding pitch and yaw rate commands. Though the

MAL will include a control path that ensures zero steady state sideslip, the compensation

at the innermost rate loop will begin to respond as soon as a rolling maneuver is initiated

resulting in better �ight characteristics.

Equation (5.2-24) de�nes the turn compensation component for the pitch axis and con-

sists of two parts. The �rst component consists of the direction cosine between the gravity

vector and the body z-axis. This contribution accounts for the change in pitch rate neces-

sary to avoid a change in the normal acceleration subject to a nominal 1g �ight condition

and is de�ned by Equation (5.2-23a). The second component accounts for the change in

pitch rate necessary to avoid a change in normal acceleration due to sideslip and is de�ned

by Equation (5.2-23b).

g

u
cos θ(1− cosϕ) (5.2-23a)

p
v

u
(5.2-23b)

qturn =
g

u
cos θ(1− cosϕ) + p

v

u
(5.2-24)

Equation (5.2-26) de�nes the turn compensation for the yaw axis and consists of three

components given by Equations (5.2-25a) to (5.2-25c) that account for deviations in sideslip,

the gravity direction cosine, and an integrator on nonzero lateral accelerations, respectively.

βKβ (5.2-25a)
g

V
cos θ sinϕ (5.2-25b)

ayKay
g

V

1

s
(5.2-25c)

rturn = βKβ +
g

V

(
cos θ sinϕ− ayKay

s

)
(5.2-26)
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5.2.5 Implementation Summary

A block diagram overview of the implementation is presented in Figure 53. All three axes

use the same bandwidth schedule that transitions from slow to fast dynamics as a function

of dynamic pressure. In order to ensure smooth operation a low pass �lter is used on ωIRL

as it transitions from the low speed to high speed value. In Figure 53 PINV refers to the

pseudo-inverse introduced in Equation (4.3-18). The input commands, ps,c, qc, rs,c are the

commands that have included turn compensation. Namely,

ps,c = ps,cmd (5.2-27a)

qc = qcmd + qturn (5.2-27b)

rs,c = rs,cmd + rturn (5.2-27c)

where the cmd values source from the middle attitude loop. Step and doublet command

simulations were executed for the roll and pitch axes at the low speed Mach condition. The

results are presented in Appendix B.1. The imperfect tracking is a result of including the

actuator dynamics and nonlinearities in simulation. Figures 129 and 131 demonstrate that

with ideal actuators the nonlinear inversion provides perfect tracking.
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q ≤ 200 : 1

q > 200 : 5

1
5s+1q ωIRL

1
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ω2
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ω2
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1
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2ζωIRL

RT
α ×

1
2

ω2
IRL

2ωIRL

1
s

B
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−

ps

−

qc
−

q

−

rs,c
−

rs

−

δ

fIRL

−

Figure 53 IRL Implementation
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5.3 Middle Attitude Loop

The middle attitude control loop will generate the angular rate commands required by

the IRL. The chosen CV are
[
µ α β

]
. These CVs will enable another control loop to

provide control over γ and maintain level coordinated �ight.

In order to derive the control equations for the MAL �rst introduce the equation for

stability axis roll rate.50

µ̇ = pw + (qw sinµ+ rw cosµ) tan γ (5.3-1)

Considering Equations (2.2-5b), (2.2-5c) and (5.3-1) it is clear the following decomposition

can be made. 
β̇

α̇

µ̇

 =


fβ

fα

fµ

+G


ps

q

rs

 (5.3-2)

Utilizing Equation (5.3-2) it will be possible to perform an inversion that produces the

necessary commands for the IRL.

In order to make this process more clear components from the governing equations can

be substituted.


β̇

α̇

µ̇

 =


rw − rs

q − ps tan β − qw sec β

ps cos β + (q − α̇) sin β + (qw sinµ+ rw cosµ) tan γ



=


rw

−qw sec β

−α̇ sin β + (qw sinµ+ rw cosµ) tan γ

+


0 0 −1

− tan β 1 0

cos β sin β 0



ps

q

rs



=


fβ

fα

fµ

+G


ps

q

rs



(5.3-3)

Equation (5.3-3) can now be inverted with the introduction of the virtual control inputs

thereby providing tracking control as follows.
ps

q

rs

 =


0 0 −1

− tan β 1 0

cos β sin β 0


−1


νβ̇

να̇

νµ̇

+


β̇d

α̇d

µ̇d

−

fβ

fα

fµ


 (5.3-4)
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Figure 54 MAL Bandwidth Implementation

In the same manner as the IRL, the virtual control inputs are an output of the desired

reference dynamics. As the MAL is placed in sequence with the IRL, the bandwidth must

be slower than the IRL. Doing so will ensure the IRL can track the commands with su�cient

accuracy. This sequencing is accomplished by a time scale separation as depicted in Fig-

ure 54. An additional lag was also placed on ωMAL with a time constant double that of the

IRL lag in order to ensure the MAL dynamics do not change too rapidly. Lastly, an empir-

ically determined minimum value of ωMAL = 0.25 rad/s was imposed for all, q ≤ 59 lbf/ft2.

This condition was empirically determined and was shown to ensure quality tracking at

lower velocities.

The reference dynamics for the MAL are all �rst order. Though 8785C does not specify

a �rst order α response, the smaller rise time will aid the yet to be closed γ control loop.

The �rst order model on β was chosen so that the e�orts between the roll/yaw axis are

matched.

Step and doublet commands were simulated for α, µ at the low speed Mach condition.

The results of these simulations are presented in Appendix B.2. The imperfect tracking is

a result of two items. First the IRL does not provide perfect tracking due to nonlinearities

in the actuator dynamics. Second, at the low speed condition, the time scale separation

between the MAL and IRL is minimal such that there is a signi�cant disparity between the

MAL command to the IRL and the reference dynamics of the IRL (irl_pc and irl_p_rc

respectively in Figure 135. Perfect tracking is demonstrated in Figure 136 by using ideal

actuators and canceling the IRL reference dynamics; however, the required control surface

de�ections are not physically realizable as seen in Figure 137.

5.4 Outer Path Loop

The outer path loop is the outermost control loop which provides tracking of airspeed

and �ight path angle. The �ight path angle is controlled via α and the MAL whereas

airspeed is controlled directly through thrust (δt). The development of the OPL is based on
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the split kinematic / aerodynamic approach presented in Reference 61 . The derivation that

follows is done so without the in�uence of external winds, such that the kinematic frame

coincides with the wind axis.

In this frame the ground speed velocity vector is de�ned by Equation (5.4-1).

Vk =


Vg

0

0

 (5.4-1)

As shown in Reference 61 the ground speed velocity vector can be di�erentiated and set

equal to the aerodynamic forces as follows.

dVk
dt

=
∂Vk
∂t

+ Ωk
ke × V =


V̇g

0

0

+ Ωk
ke ×


Vg

0

0

 (5.4-2a)

=
1

m


1 0 0

0 cosµ − sinµ

0 sinµ cosµ

Faero +Rk,e


0

0

g

 (5.4-2b)

To reiterate the aerodynamic forces presented in Equation (5.4-2) are the wind axis

forces. The µ rotation matrix translates the wind axis forces to the kinematic frame. Simi-

larly, Rk,e is the transformation matrix between the Earth-�xed to the kinematic frame and

is de�ned as follows.

Rk,e =


cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ




cosχ sinχ 0

− sinχ cosχ 0

0 0 1

 (5.4-3)

The term, Ωe
ke represents the angular rotation of the kinematic reference frame with respect

to the Earth frame and is de�ned by Equation (5.4-4).

Ωk
ke =


−χ̇ sin γ

γ̇

χ̇ cos γ

 (5.4-4)

Utilizing Equations (5.4-3) and (5.4-4) the ground speed velocity vector relationship

can be rewritten as follows where the k subscript has been dropped and FA refers to the
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aerodynamic forces.

dVk
dt

=


V̇g

χ̇Vg cos γ

−γ̇Vg

 =
1

m


1 0 0

0 cosµ − sinµ

0 sinµ cosµ



FA,x

FA,y

FA,z

+


−g sin γ

0

g cos γ

 (5.4-5)

Isolating the derivatives as shown in Equation (5.4-6).

V̇g =
1

m
FA,x − g sin γ (5.4-6a)

χ̇ =
1

mVg cos γ
(FA,y cosµ− FA,z sinµ) (5.4-6b)

γ̇ =
−1

mVg
(FA,y sinµ+ FA,z cosµ)− g cos γ

Vg
(5.4-6c)

Rewriting Equations (5.4-6b) and (5.4-6c) in terms of the horizontal and vertical forces.

Fhorizontal = mVgχ̇ cos γ

Fvertical = mVg(γ̇ +
g

Vg
cos γ)

(5.4-7)

The total force required has the magnitude of Equation (5.4-8).

|Frequired| =
√
F 2
horizontal + F 2

vertical (5.4-8)

At this juncture it is necessary to use the required forces to solve for the axial and vertical

aerodynamic forces as this will facilitate the required thrust and lift to be determined.

With this information the throttle position δt and angle-of-attack α will be known. From

Equation (5.4-6a) it is clear the axial force command is governed by Equation (5.4-9).

FAx,c = m(V̇g + g sin γ) (5.4-9)

To consider the vertical aerodynamic command consider the case with zero sideforce as the

IRL/MAL controllers will ensure sideslip is nearly zero at all times. Under this assumption

FA,z will be the negative of |Frequired| (negative to ensure proper sign convention), the vertical
aerodynamic command is given by Equation (5.4-10).

FAz,c = −m cos γ

√
(Vgχ̇)2 +

(
g +

Vgγ̇

cos γ

)2

(5.4-10)

Aside from being su�ciently accurate for this application, neglecting the sideforce ensures

the value to be square-rooted is always positive. Equations (5.4-9) and (5.4-10) provide the
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required forces in the wind axis system, and now it is required to implement a controller

that will generate the corresponding δt, α to attain these values. Unlike the inner control

loops, analytical inversion of the control variables is not possible due to α being a lookup

table parameter. In order to overcome this obstacle a Newton solver can be used to �nd the

optimum control set as presented in Figure 55.

While the required forces (commands) are de�ned by Equations (5.4-9) and (5.4-10), the

feedback forces are given by Equation (5.4-11); these account for the current iteration of

α, δt. The Jacobian required by the Newton solver is numerically calculated using central

di�erencing of Equation (5.4-11) with respect to α, δt.
FAx

FAy

FAz

 = Rw,s

Sq

CD(α)

CY (α)

CL(α)

 ◦

−1

1

−1


+Rw,b


δtTm

0

0

 (5.4-11)

Lastly, the reference dynamics need to be prescribed which will provide the required

commands, νV̇ , νγ̇. The speed control path employs the simple �rst order dynamics used

throughout the system with the addition of integrator anti-windup protection. The anti-

windup protection was only implemented in the speed path as recovery scenarios were en-

countered where the descent velocity exceeded the target velocity with the throttle fully

retarded (subsequently the integrator would wind up). However, note that in practice

anti-windup protection should be provided for all paths to ensure �ight safety. The imple-

mentation of the anti-windup protection is presented in Figure 56. The anti-windup gain,

Kaw was simply set to one.

The reference dynamics for �ight path consist of an over damped second order system.

This speci�cation ensures a smooth initial �ight path rate command while maintaining a

capture with zero overshoot. Step and doublet γ commands with a constant airspeed were

simulated to test the OPL. These results are presented in Appendix B.3.
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Calculate Force Command

Equations (5.4-9) and (5.4-10)

j = 0

x =
[
δt α

]T

Start

j = j + 1

Update Forces

Equation (5.4-11)

e =
[
FAx,c FAz,c

]T
−
[
FAx FAz

]T

Calculate Jacobian

x = x− J−1e

e < Tolerance

j > Tolerance

Stop

νV̇ , νγ̇

FAx,c, FAz,c

True

False

Figure 55 OPL Newton Solver
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1
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Kaw

cmd

cv

−
ν

d
dt
cmd

−

d
dt
cv

−

Figure 56 First Order with Anti-Windup

5.5 Stability Margin Testing

In order to ensure safe operation it is imperative to ensure the aircraft stability margins

are acceptable. MIL-F-9490D, superseded by MIL-DTL-9490E provides speci�cations for

theses margins pertaining to manned aircraft. In the standard operating envelope this

amounts to a gain margin of GM = ±6.0 db and a phase margin of PM = ±45◦.69 The

determination and extraction of the gain-phase margins from the simulation model follow

the guidelines presented by Tischler detailed in the following subsections.70

5.5.1 Automated Sweep Inputs

The determination of frequency response data requires an input with frequency content.

As an example, a pilot may induce fore and aft control inputs increasing in frequency about

a trim point. As an alternative, a computer-generated sweep may also be utilized. In order

to spend more time at low frequencies than at high frequencies the frequency sweep de�ned

by Tischler was implemented and is presented here as Equation (5.5-1).

δs = A sin θ(t) (5.5-1a)

θ(t) =

∫ T

0

ω(t)dt (5.5-1b)
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ω = ωmin +K(ωmax − ωmin) (5.5-1c)

K = C2

(
e

C1t
T − 1

)
(5.5-1d)

C1 = 4.0 C2 = 0.0187 (5.5-1e)

Amplitude A is typically 10% of the maximum limits. The sweep generator includes user

de�ned trim times before and after the sweep where δs remains zero. Additionally, the

generator ensures a constant frequency ωmin for one full period. An example sweep input

made by the sweep generator is presented in Figure 57.

0 10 20 30 40 50 60 70 80 90

Time (seconds)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 57 Sweep Input: ωmin = 0.3 (rad/s), ωmax = 12 (rad/s)

In Reference 70 recommendations pertaining to the recording time are made and are

presented here in Equation (5.5-2). Equation (5.5-2a) provides the recommended recording

time as a function of the minimum frequency used in the input sweep signal.

Trec ≥ (4− 5)Tmax (5.5-2a)

fmin =
ωmin
2π

(5.5-2b)

Tmax =
2π

ωmin
(5.5-2c)
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Tmin =
1

fmax
(5.5-2d)

For the duration of the sweep input the aircraft motion needs to be bounded and should

be relatively symmetric. In piloted tests this behavior is accomplished by minor corrective

inputs from the pilot.

5.5.2 Frequency Response Basics

A very simpli�ed explanation of the frequency response is as follows. Consider a periodic

sine wave input x(t) with amplitude A and frequency f .

x(t) = A sin(2πft) (5.5-3)

After initial transients, the system output y(t) will also be a sine wave of the same frequency,

but with a di�erent amplitude B and phase shift φ.

y(t) = B sin(2πft+ φ) (5.5-4)

The complex valued frequency response functionH(f) has a corresponding magni�cation

factor and phase shift given by Equations (5.5-5) and (5.5-6) respectively.

|H(f)| = B(f)

A(f)
(5.5-5)

∠H(f) = φ(f) (5.5-6)

The frequency response H(f) fully characterizes the system in a non-parametric manner;

thus, zero assumptions are made about the system. If a Fourier Transform is used on

time-based measured input/output signals an equivalent set of frequency-based signals are

attained and are commonly referred to as the Fourier coe�cients.

X(f) = FFT (x(t)) (5.5-7a)

Y (f) = FFT (y(t)) (5.5-7b)

In Equation (5.5-7) the Fast Fourier Transform (FFT) has been presented. However, for

a �nite set of data the Discrete Fourier Transform (DFT) is utilized. Given time history

data with sample time ∆t and N data points, the resulting Fourier transformed data will

have equally spaced frequency content ranging from fmin = 1
N∆t

to fmax = fs/2 = 1
2∆t

.
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Consider �ight data collected at 50 Hz, (a typical minimum rate one can expect �ight data

at) with 1024 sample points. The resultant frequency data will range from 0.0488 Hz to

25 Hz evenly spaced with a frequency step of 0.0488 Hz. However, for aircraft applications

one is typically only concerned with frequencies up to 13 rad/ sec (≈ 2 Hz); thus, much of

the content is wasted.70

As an alternative, the Chirp-Z Transform (CZT) can be utilized which distributes the

data along an arbitrary arc of the unit circle. The CZT will return the same overall number

of samples; however, the frequency range can be restricted to the frequencies of interest

thereby increasing the resolution.

The Fourier coe�cients are related to the frequency response function as a ratio of input

to output in a similar manner as when the Laplace Transform is used (aside from being

complex-valued). This relationship is presented in Equation (5.5-8) where subscript R and

I denote the real and imaginary components respectively.

H(f) =
Y (f)

X(f)
= HR(F ) + iHI(f) (5.5-8)

The magni�cation factor and phase shift can be calculated as follows.

|H(f)| =
√
H2
R +H2

I (5.5-9a)

∠H(f) = tan-1

(
HI

HR

)
(5.5-9b)

Spectral Functions

The following spectral functions are utilized in frequency response analysis. The input

autospectrum is

Gxx =
2

T
|X(f)|2 (5.5-10)

which represents the input power as a function of frequency. The output autospectrum,

representing the output response power is given by Equation (5.5-11).

Gyy =
2

T
|Y (f)|2 (5.5-11)

The cross spectrum, which conveys the input-output phase and power information, is below.

Gxy =
2

T
(X∗(f)Y (f)) (5.5-12)
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The frequency response can be estimated from the spectral functions as shown in Equa-

tion (5.5-13).

H(f) =
Gxy

Gxx

(5.5-13)

A bene�t of utilizing Equation (5.5-13) is that it provides an optimum model when output

noise is present. In Equations (5.5-10) to (5.5-12), T refers to the data record length. Finally,

the coherence function

γ2
xy =

|Gxy|2

|Gxx||Gyy|
(5.5-14)

relates the output spectrum Gyy to the input spectrum Gxx. Under ideal circumstances the

coherence will have a value of 1.

5.5.3 Gain-Phase Margin Determination

The gain and phase margins are calculated from the broken servo-loop frequency re-

sponse. Utilizing an automated sweep input, δs, the direct estimate of the broken loop

response can be determined with Equation (5.5-15).

GH(s) =
f

e
(s) (5.5-15)

Using spectral functions the frequency response can determined by Equation (5.5-16).

GH(f) =
Gef

Gee

(5.5-16)

In Equations (5.5-15) and (5.5-16), e is the error signal and f is the feedback signal. This

process must be carried out for all loops that connect a sensor to a force/moment producer.69

A generic block diagram of the relevant signals is presented in Figure 58. Results from the

analysis of the IRL and MAL control loops are presented in the following two sections. No

analysis was done for the OPL loop.
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Sensor

Airframe
FCS

Actuators

e

f−

cmd

δs

Figure 58 Broken Servo-Loop Identi�cation

IRL Margins

Figures 59 to 61 and Tables 16 to 18 present the broken loop response data for the IRL

at both low and high speed conditions. Unlike the roll and yaw axes the pitch axis data

was questionable as it contained excessive noise that should not be present in the simulation

environment. The reason for this contamination was not determined and the behavior was

not re�ected in the closed-loop response. The desirable values of 6 dB, 45◦ are met in all

cases except the phase margin of the roll/yaw axis at low Mach. However, the levels below

the threshold are not signi�cant enough to necessitate design changes.

Table 16 IRL Roll Broken Loop Margins

M = 0.25 M = 0.60

GM(dB) -16.97 10.09 -69.51

ωGM(rad/s) 0.2054 1.979 0.06442

PM(deg) 39.76 64.55 64.26 64.89

ωPM(rad/s) 0.8747 6.17 6.195 6.223



98

Table 17 IRL Pitch Broken Loop Margins

M = 0.25 M = 0.60

GM(dB) - -

ωGM(rad/s) - -

PM(deg) 87.96 67.99 85.8 64.27 62.79 64.95

ωPM(rad/s) 1.259 1.371 1.502 7.222 7.282 7.364

Table 18 IRL Yaw Broken Loop Margins

M = 0.25 M = 0.60

GM(dB) - -31.45 -16.04

ωGM(rad/s) - 2.367 3.549

PM(deg) 41.32 58.13 57.98 58.31

ωPM(rad/s) 2.517 10.36 10.37 10.39
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Figure 59 IRL Roll Broken Loop
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Figure 60 IRL Pitch Broken Loop
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Figure 61 IRL Yaw Broken Loop
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MAL Margins

The margins for the pitch axis have been omitted given the suspect quality of collected

data as can be seen in Figure 63. A reason explaining why the frequency response for the

pitch axis did not produce reliable data is not known. Figures 62 and 64 and Tables 19

and 20 present the broken loop response and summarizing margins for the roll and yaw axes

respectively.

Table 19 MAL Roll Broken Loop Margins

M = 0.25 M = 0.60

GM(dB) -63.73 -9.705 9.172 -133 -11.09

ωGM(rad/s) 0.1915 0.5091 2.116 0.005181 2.82

PM(deg) 27.81 43.14

ωPM(rad/s) 1.051 6.296

Table 20 MAL Yaw Broken Loop Margins

M = 0.25 M = 0.60

GM(dB) - -80.39 -39.22 -10.3

ωGM(rad/s) - 0.06459 2.122 4.735

PM(deg) 38.19 50.63

ωPM(rad/s) 2.608 10.41
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Figure 62 MAL Roll Broken Loop
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Figure 63 MAL Pitch Broken Loop
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Figure 64 MAL Yaw Broken Loop

5.5.4 Model Tracking Performance

Frequency response methods can also be used to ensure the system tracks the desired

model system. This task is accomplished in a similar manner as the broken servo-loop with

a slightly di�erent selection of signals as depicted in Figure 65. The closed-loop response is

then given as f
cmd+δs

where δs is the automated sweep and f is the sensor feedback signal.

FCS Airframe

Sensor

cmd

δs

cmd+ δs

−
f

Figure 65 Closed-Loop Frequency Response Signals

In application the system is not expected to behave exactly like the linear reference model

due to nonlinear dynamics, discontinuities, external disturbances, etc. As such Maximum
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Unnoticeable Added Dynamics (MUAD) envelopes have been previously developed and are

presented in Reference 65. These envelopes are de�ned by Equation (5.5-17) and are used

to generate a shaded region of acceptable closed-loop response enabling a visual veri�cation

that the system is su�ciently close to the design model.

The MUAD models were utilized to validate the reference model tracking performance

for both the IRL and MAL.

Upper Gain Envelope :
3.16s2 + 31.61s+ 22.79

s2 + 27.14s+ 1.84
(5.5-17a)

Lower Gain Evelope :
0.095s2 + 9.92s+ 2.15

s2 + 11.6 + 4.95
(5.5-17b)

Upper Phase Envelope :
68.80s2 + 1100.12s− 275.22

s2 + 39.93s+ 9.99
e0.006s (5.5-17c)

Lower Phase Envelope :
475.32s2 + 184100s+ 29460

s2 + 11.66s+ 0.039
e−0.0072s (5.5-17d)

IRL

The closed-loop responses with MUAD thresholds is presented in Figures 66 to 71 for

both low and high Mach numbers. Unlike the broken loop response, the data collected for

the pitch channel behaved as expected with a close �t to the reference dynamics documented

in Figures 68 and 69. The roll and yaw channels also exhibited a response that closely �t

the reference dynamics. In all cases the models are within the thresholds up to a reasonably

high value of ω indicating that the system should behave as designed.
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Figure 66 IRL Roll Closed-Loop Response, Mach=0.25
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Figure 67 IRL Roll Closed-Loop Response, Mach=0.60
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Figure 68 IRL Pitch Closed-Loop Response, Mach=0.25
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Figure 69 IRL Pitch Closed-Loop Response, Mach=0.60
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Figure 70 IRL Yaw Closed-Loop Response, Mach=0.25
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Figure 71 IRL Yaw Closed-Loop Response, Mach=0.60
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MAL

The MAL closed-loop response data indicated the control loops were more susceptible

to higher frequency inputs as the tracking of the reference models breaks down with higher

values of ω. This degraded performance is presented in Figures 72 to 77 and depicts de-

viations exceeding the MUAD boundaries. The noise in the high frequency data content

is exaggerated in Figures 72, 74 and 76 due to the wrapping of the phase signal to be

within ±180◦. Furthermore, the degraded tracking at higher ω is dominant in the low speed

condition which agrees with the analysis of Section 4.3.2 that indicated insu�cient control

authority exists at low speeds. The larger deviations from the reference dynamics is in some

part attributed to the reference models used for comparisons not entirely accounting for the

exact cascaded implementation of the system. Nonetheless these plots are useful as they

provide the overall response of the closed-loop system.
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Figure 72 MAL Roll Closed-Loop Response, Mach=0.25
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Figure 73 MAL Roll Closed-Loop Response, Mach=0.60
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Figure 74 MAL Pitch Closed-Loop Response, Mach=0.25
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Figure 75 MAL Pitch Closed-Loop Response, Mach=0.60
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Figure 76 MAL Yaw Closed-Loop Response, Mach=0.25
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Figure 77 MAL Yaw Closed-Loop Response, Mach=0.60

5.6 Spin Recovery

The spin recovery aspect of the NDI controller consists of additional logic conditions

and sequencing that uni�es the IRL, MAL, and OPL together into a cohesive system as

depicted in Figure 80. There are numerous strategies pertaining to spin recovery such as a

lift coe�cient based control as presented inReference 71, multi-mode neutral control surface

strategy as presented in Reference 72, or a more theoretical trim state targeting controller

as inReference 47. The approach taken in this thesis is a blending of a multi-mode recovery

that targets maximum CL by using a pre-determined constant recovery α. This method is

not meant to be an optimized solution but, instead, a practical approach.

First and foremost the spin motion must be arrested. In some cases, it may be possible

to simply neutralize the control surfaces and wait for the natural damping of the aircraft to

minimize the spin motion. However, this method does not actively aid in reducing loss of

altitude. Instead, full rudder de�ection is commanded to counteract the large body yaw rate

a�liated with spin motion. During this time the ailerons and stabilators are commanded

to zero. Lastly, full thrust is commanded in order to increase dynamic pressure thereby

increasing control authority. The e�ect of this combination results in a reduction in the

spin motion as depicted in the time between FCC ON and IRL ON in Figure 78. FCC
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denotes �ight control computer.

Once the body yaw rate falls within the prescribed dead zone the IRL is allowed to

engage. The dead zone on body yaw rate is necessary due to the limited yaw axis control

authority. With the yaw rate threshold met the IRL engages and commands ps, q, rs to

zero. During initial engagement a check for positive control is continually evaluated. This

condition consists of all three angular channels having errors with magnitudes less than one

degree per second for a minimum continuous duration of 0.25 seconds. This check ensures

outer loops are not enabled prior to the IRL ability to track commands. Figure 79 presents

an example of the signals of interest where the black lines represent the tolerance around

the command signal required for positive control. The data in this �gure represents the

time from initial IRL engagement to the positive control condition being satis�ed.

Once the IRL has con�rmed positive control the MAL activates. Upon activation, the

MAL commands µ and β to zero while α is commanded to attain the maximum CL in an

e�ort to minimize altitude loss. Commanded α begins to decay to zero once a positive rate

of climb is attained in order to stop the climb in preparation for OPL engagement. The

OPL engages once the α command is less than one degree and the positive climb rate is

less than 100 ft/sec. This condition ensures the α required to command γ to zero is not an

abrupt change. At this point the OPL takes command and maintains level �ight.
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Figure 78 Body Angular Rates During Spin Recovery, α = 75.0◦
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CHAPTER 6

SPIN RECOVERY SIMULATIONS

The spin recovery controller was evaluated by running 500 trimmed spin scenarios evenly

spaced between α = 31◦ and 85◦. The lower boundary of 31◦ was chosen to avoid the con-

ditions that did not have adequate trim accuracy. The simulation was initialized from a

trimmed steady state spin condition. The FCS was engaged at thirty seconds into the sim-

ulation for all but thirty-four cases in order to account for initial transients. The simulation

was terminated at a �xed time of ninety seconds.

Figure 81 presents an example of the unmitigated spin at α = 71.6◦ which corresponds

to the maximum NI. Note the position track taken by the aircraft mass center during the

spin exhibits the classic helix shape with a rather tight radius of approximately 5 ft and a

descent of approximately 17,000 ft over 90 seconds. Figure 82 presents the same condition

with the FCC engaged at thirty seconds. In this �gure the dashed black line projected on

the vertical axes denotes the altitude at which the FCC was engaged; for clarity this altitude

has been shifted to zero. The black square projected in both the vertical and horizontal axes

corresponds to when the IRL became operational. The altitude loss that occurred between

engagement of the FCC and the IRL becoming active corresponds to the period of time

during which control surfaces were held constant to arrest the spin motion. The arresting

input is very e�ective in quickly suppressing the helix motion. The aircraft descent has also

been altered, where the altitude loss is approximately 3,500 ft over 30 seconds. After IRL

engagement, the aircraft descent was completely halted after approximately 2,000 ft. The

NDI controller is e�ective in suppressing the spin motion and restoring stabilized level �ight

over a short duration of time.
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Figure 81 Unmitigated Spin Simulation, α = 71.6◦, T = 90 sec

Figure 82 Recovered Spin Simulation, α = 71.6◦, T = 90 sec

Figure 83 compares the unmitigated to the recovered spin. The data depicted in this plot

represents �ve seconds prior to FCC engagement through the minimum altitude attained

during recovery. The blue and red dashed lines in the vertical plane depict the di�erence in
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altitude loss between the unmitigated and recovered spin, respectively. This data shows that

the aircraft has an increase in altitude loss when the FCC is engaged and is attributed to

the initial decrease in α intended to restore forward velocity. During this period, the aircraft

follows a track with a much larger horizontal component consisting of several thousand feet.

Figure 83 Unmitigated vs. Recovered Spin, α = 71.6◦

Figure 84 presents an overview of the altitude loss during recovery, time to recover, and

vertical descent rate (at controller engagement) for all 500 simulations. The data points

marked in red correspond to the thirty-four cases that the FCC did not engage at thirty

seconds. In these cases the FCC was engaged at �fteen seconds. This change was done as

the initial results for these simulations resulted in erroneously large altitude losses due to the

aircraft being unstable prior to the engagement of the FCC. The time to recover and altitude

loss was measured from the time the FCS was enabled through the time corresponding to

the minimum altitude attained by the aircraft. The controller recovered from the spin in

10-25 seconds for almost every scenario.
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Table 21 Recovery Results, α = 35 − 85 deg

Alpha (deg) Recovery Time (s) Alt Loss (ft)

35 13.07 3823

40 12.93 4800

45 18.82 3246

50 12.39 2738

55 14.51 4024

60 15.72 3897

65 18.03 5233

70 19.38 4662

75 22.93 6111

80 22.4 5318

85 18.46 4714

Figure 85 presents the altitude performance from the time the control system is turned on

until the end of simulation for α = 35 : 5 : 85 deg. This data is tabulated in Table 21 which

clearly indicates that the higher α spins require more time and, subsequently altitude, to

recover. Markers have been placed that indicate when the IRL, MAL, OPL have positively

engaged. The MAL engages within a few execution cycles after IRL engagement and is

observed by the coincident markers in the �gure. This demonstrates the ability of the IRL

to rapidly gain positive control of the aircraft. In Figure 85, note how the IRL is consistently

engaged in the initial descent after the spin motion is halted, and after OPL engagement the

aircraft quickly levels o� after the recovery ascent. Following the initial MAL engagement α

quickly approaches αc thereby increasing lift and arresting the descent. The period between

the minimum altitude and the engagement of the OPL corresponds to the MAL decaying

αc which is characterized by the gradual decrease in ascent rate.

The next obvious question that needs to be addressed is how does this performance

compare to the actual aircraft? Though not a direct comparison, the altitude loss for

recovery from the F-18 falling leaf mode is presented inReference 8. In this work two charts

are presented, one for the altitude loss pertaining to an improved control software release

and the other for pilot dive recovery inputs. The improved software had most occurrences in

the range of 4000 to 6000 feet whereas the pilot dive recovery predominantly occurred in the
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range of 5000 to 7000 feet. Another comparison is that of the work presented inReference 73

which utilizes the F/A-18 FCC version 10.7. Data tabulated in this work indicates that the

altitude loss with the pilot alerting spin arrows present is in the range of 2200 to 4400 feet.

However, this altitude only re�ects the loss while arresting the spin, and not the recovery

from descent as presented in this thesis. Provided these two reference points the altitude

loss demonstrated in this thesis is reasonable.
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CHAPTER 7

CONCLUSION

7.1 Conclusion

This thesis provided further evidence supporting the validity of nonlinearity index theory.

This validity was accomplished by utilizing the unconstrained rotational and translational

six degree of freedom spin motion framework. The application of nonlinearity index theory

provided a systematic process to scrutinize an otherwise complex and large aerodynamic

database and dynamic model. The results supported the ability of nonlinearity index theory

to identify highly nonlinear areas of the aerodynamic database, thereby reducing the need

to scrutinize every table manually.

Extending the previous work of Tapolcai the spin condition was �rst expanded beyond

the three rotational degrees of freedom to also include translational motion. This extension

involved utilizing the complete rotational and translational six degree of freedom framework

commonly used in aircraft simulation. Further, this required a more thorough system model

of the F-18 HARV to include actuator nonlinearities, dynamics, and a simpli�ed propulsion

model.

The criteria de�ning a steady state spin condition was then provided using a rotation

sequence adopted from Reference 32 . This de�nition was then applied to create a trim

database over the envelope of the aerodynamic model. The accuracy of the trim database

was scrutinized to ensure subsequent analysis using the database would be accurate and

not misleading. This analysis uncovered regions with insu�cient trim accuracy that were

removed from the remaining analysis. Further, observations regarding the instability of the

spin conditions were noted.

Methods for model linearization were introduced with a primary focus on perturbation

theory. Numerical perturbation methods were implemented and tested on both the MAT-

LAB System and Simulink models. Rigorous testing was conducted comparing the output

of the custom linearization code with the built-in tools provided with the Simulink Control

Design Toolbox. This process of testing uncovered minor coding mistakes and ultimately

lead to high con�dence in the linearized models. The linearized and nonlinear models were

simulated in parallel with perturbations applied to all states and inputs independently; the

results solidi�ed the con�dence in the models.
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Nonlinearity index theory was then formally introduced as a systematic process to evalu-

ate system nonlinearities. This method of analysis provided a straightforward methodology

to analyze the dynamics of the aircraft model. Utilizing the trim database NIT was ap-

plied across the aerodynamic envelope and uncovered regions with high nonlinearities. The

aerodynamic database was then inspected in this region uncovering the highly nonlinear

behavior of Cn,p. Nonlinear simulations with perturbations were then carried out for both

high and low NI. Due to the known instabilities in the trim models the speci�c values of

α for comparison were carefully chosen to ensure the unstable poles between the models

were similar. In order to provide a quantitative measurement a normalized mean square

error between the linear and nonlinear models was calculated. Comparing the duration that

the �t was at least 95% between the low and high NI simulations supported the underlying

theory of the NI; that is, the high NI diverged faster than the low NI.

Nonlinear dynamic inversion theory was then introduced, �rst with linear dynamic in-

version as a simpler presentation of the underlying theory and concepts along with a trivial

example. The linear theory was subsequently expanded to the nonlinear case. Further,

the concept of control allocation was introduced along with the graphical representation of

the attainable moment subset. The AMS was utilized as an easy to understand method of

comparing control allocation strategies.

Utilizing the formally introduced concepts a nonlinear dynamic inversion controller was

designed for the F-18 HARV. The design took into consideration requirements and rec-

ommendations from military standards such as MIL-STD-1797B and MIL-F-8785C. The

velocity vector roll maneuver was introduced along with the governing equations that de�ne

the required accelerations. This acceleration information was then used in conjunction with

the AMS in order to prescribe inner rate loop reference dynamics that closely adhered to

the military speci�cations while not exceeding aircraft capabilities. Outer loops were then

designed utilizing time scale separation principles. Basic frequency response concepts were

introduced and were subsequently applied to the system to ensure compliance with gain and

phase margins prescribed in MIL-DTL-9490E.

A multi-mode control logic for spin recovery was then implemented unifying the IRL,

MAL, and OPL controllers. This recovery strategy leveraged common spin recovery strate-

gies, speci�cally, full counter-spin rudder de�ection to arrest the initial spin motion while

neutralizing ailerons and stabilators. In order to provide a complete recovery system the

controller targeted angle-of-attack to maximize the lift coe�cient once the spin motion was
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arrested thereby minimizing altitude loss. Once a positive rate of climb was attained the sys-

tem gradually enabled the OPL in order to recover to straight and level �ight. All together,

the system was designed to fully recover from spin without any manual pilot inputs.

Lastly, numerous nonlinear simulations were conducted to validate the system. In total,

500 simulations were executed over the range of thirty-one to eighty-�ve degrees angle-of-

attack. This data set provided su�cient evidence to demonstrate that the system is capable

of successfully recovering from a wide range of spin conditions and not just a few test cases.

7.2 Recommendations

Future work expanding on this thesis may include determining the cause of the longi-

tudinal frequency response's inaccurate representation of the broken loop system response.

Another potential interesting topic of research may be utilizing the nonlinearity index the-

ory as a means to quantify how well a control system linearizes an aircraft plant. Further,

the spin recovery strategy could be optimized. Possible means to optimize recovery could

include active feedback of lift coe�cient estimates or by simultaneously arresting the spin

while targeting a positive climb rate. Lastly, the F-18 HARV has vectored thrust capabilities

which were not considered and could be leveraged.
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APPENDIX A

F-18 HARV SIMULATION

A.1 Axes De�nitions

A.1.1 Rotation Matrices

In the following rotation matrices the subscript convention is given as Rxb,xa resulting in

~xb = Rxb,xa~xa. Thus Rxb,xa transforms from axis a to axis b. Since a transformation matrix

is orthogonal, the inverse transformation is given by the transpose, Rxa,xb = RT
xb,xa.

Body to Earth-�xed NED

The transformation from the body axes b to the inertial NED frame

RENED,b =


cos θ cosψ − cosϕ sinψ + sinϕ sin θ cosψ sinϕ sinψ + cosϕ sin θ cosψ

cos θ sinψ cosϕ cosψ + sinϕ sin θ sinψ − sinϕ cosψ + cosϕ sin θ sinψ

− sin θ sinϕ cos θ cosϕ cos θ


(A.1-1)

Body to Stability

The transformation from the body axis b to the stability axis s

Rs,b =


cosα 0 sinα

0 1 0

− sinα 0 cosα

 (A.1-2)

Stability to Wind

The transformation from the stability axis s to the wind axis w

Rw,s =


cos β sin β 0

− sin β cos β 0

0 0 1

 (A.1-3)

Body to Wind

The transformation from the body axis b to the wind axis w

Rw,b = Rw,sRs,b =


cosα cos β sin β sinα cos β

− cosα sin β cos β − sinα sin β

− sinα 0 cosα

 (A.1-4)
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Individual Rotation Matrices

The 3-2-1 Euler rotations for body axis,

Rψ =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (A.1-5)

Rθ =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (A.1-6)

Rϕ =


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 (A.1-7)

The 3-2-1 wind axis rotations,

Rχ =


cosχ − sinχ 0

sinχ cosχ 0

0 0 1

 (A.1-8)

Rγ =


cos γ 0 sin γ

0 1 0

− sin γ 0 cos γ

 (A.1-9)

Rµ =


1 0 0

0 cosµ − sinµ

0 sinµ cosµ

 (A.1-10)

Rotations required from wind to body,

RT
α =


cosα 0 − sinα

0 1 0

sinα 0 cosα

 (A.1-11)

RT
−β =


cos β − sin β 0

sin β cos β 0

0 0 1

 (A.1-12)
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A.2 Block Diagram Conventions

a

b

a+ b

Figure 86 Block Diagram Summing Junction

a

b

−
a− b

Figure 87 Block Diagram Summing Junction, Negative Input

Ka aK

Figure 88 Block Diagram Gain

×

÷
a

b

a
b

Figure 89 Block Diagram Division

1
s

a
∫
a

Figure 90 Block Diagram Integrator

sa d
dt
a

Figure 91 Block Diagram Di�erentiation
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x y

x1 y(x1)

x2 y(x2)

a y(a)

Figure 92 Block Diagram Table

1
z

xi xi−1

Figure 93 Block Diagram Unit Delay

5(input)

4(limit)

4

Figure 94 Block Diagram Saturation

dt

1
z

x

RateLimit

y
−

Figure 95 Block Diagram Rate Limit

x

RateLimit

y

Figure 96 Rate Limit Block Diagram Mask
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Table 22 Trim Solver Constraints

Parameter min max

V 100 (ft/s) Mach 0.8

R (ft) 1e-3 500

σ −90◦ 90◦

ϕ −90◦ 90◦

θ −90◦ 0◦

δa −25◦ 42◦

δe −24◦ 10.5◦

δr −30◦ 30◦

A.3 Trim Solution Database

The trim solution database was generated numerically using the built in routine lsqnon-

lin. This solver is tailored for solving nonlinear systems and enables constraints to be placed

on the free variables. The constraints proved necessary in order to generate physically at-

tainable results. The constraints utilized are presented in Table 22

The trim solutions used to generate the nonlinearity index were inspected for validity

by inspecting the state derivative values and agreement of the solved and speci�ed α. The

desired state derivative error (from zero) is |error| < 1e − 6 where the angular units are

measured in degrees. A summary of the solutions is presented in Table 23 and Figure 98

and demonstrates that the majority of the solutions are reasonably close to steady state.

The trim states are presented in Figure 99 as a function of the desired spin α. Similarly,

Figure 100 depicts the state derivatives a�liated with the desired spin α where the ideal

value for all parameters is zero. The calculated spin radius is presented in Figure 102 and

shows that solutions for α < 55 yielded a spin radius greater than the wingspan.

From Figure 100 it is observed that the worse trim errors are encountered at high α spin

conditions. This is seen more clearly in the general case presented in Figure 97.
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Table 23 Nonlinearity Index Trim Solutions (4401 solutions)

min avg max > 37.42 (ft) (%) left (%) right (%)

R (ft) 1.484 30.79 78.22 42.7

Ω (rpm) -19.11 -8.65 22.42 88.1 11.9
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Trim Solution Stability

Through nonlinear simulations it was discovered that the model was unstable over most

of the range of α. The instability resulted in divergence from steady state even for an

accurate trim solution. Initially it was thought that the divergence may be a result of

numerical error in the trim solution; however, this was disproved by simulation.

To prove that the instability is the source of divergence, let us compare the stable

model at α = 56.36◦, max real(ev) = −6.2179e−5 to the unstable model at α = 56.38◦,

max real(ev) = 2.1155e−4. Figure 104 shows that after 25e3 seconds the unstable model

diverges. Noting Figure 103 and Table 24 the di�erence between the trim points is negligible

while the behavior when simulated is not.
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Table 24 Trim Summary, Stable vs. Unstable

α(deg) 56.36 56.38

funcVal 1.1e-28 6.4e-29

exitFlag 3 1

Vd(ft/s) 196.6 196.6

R(ft) 34.72 34.63

Ω(rpm) -7.688 -7.696

σ(ft) 11.33 11.31

V̇ (ft/s2) 9.4e-10 9.4e-10

α̇(deg/s) -8.3e-14 -6.0e-14

β̇(deg/s) 4.6e-09 4.6e-09

ṗ(deg/s2) -6.4e-08 -6.3e-08

q̇(deg/s2) -2.9e-14 7.2e-15

ṙ(deg/s2) -6.7e-08 -6.7e-08

ϕ̇(deg/s) 0.0e+00 3.2e-15

θ̇(deg/s) 8.0e-16 0.0e+00

V (ft/s) 198.5 198.5

α(deg) 56.36 56.38

β(deg) 3.399 3.399

p(deg/s) -24.68 -24.69

q(deg/s) 3.707 3.7

r(deg/s) -38.8 -38.84

ϕ(deg) -5.457 -5.441

θ(deg) -32.34 -32.33

δa(deg) 30.95 30.92

δe(deg) 5.36 5.364

δr(deg) 17.38 17.43

As the trim points become more unstable the sensitivity to trim accuracy increases. To

visualize this batches of no greater than 350 runs across increasing instability were simulated

and the time at which any state diverged by 1 was noted. All conditions simulated had a

trim error of |e| < 1e − 6 at a maximum to ensure the comparison was focused on the

stability alone. In Figure 105 the black circles denote the minimum divergence time of any
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state in a particular simulation whereas the colored dots denote all state divergence times

across the block of simulations.
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Figure 105 Unstable Eigen Values vs. Divergence Time

A.4 Linear Body EOM Entries

a11 = k1u (θ1 sinα− θ2 cosα)

a12 = r + k1v (θ1 sinα− θ2 cosα)

a13 = −q + k1w (θ1 sinα− θ2 cosα)

a15 = −w − k3
V

m
(CD,q cosα− CL,q sinα)

a16 = v

a18 = −g cos θ

a21 = −r + k1uθ3 − k2
u

mV
θ4

a22 = k1vθ3 − k2
v

mV
θ4

a23 = p+ k1wθ3 − k2
w

mV
θ4
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a24 = w + k2
V

m
Cy,p

a26 = k2
V

m
Cy,r − u

a27 = g cosϕ cos θ

a28 = −g sinϕ sin θ

a31 = q − uk1 (θ1 cosα + θ2 sinα)

a32 = −p− vk1 (θ1 cosα + θ2 sinα)

a33 = −wk1 (θ1 cosα + θ2 sinα)

a34 = −v

a35 = u− k3
V

m
(CL,q cosα + CD,q sinα)

a37 = −g cos θ sinϕ

a38 = −g cosϕ sin θ

a41 =

Izz

Ixz
2 − Ixx Izz

Sbρu

[
b

4v
θ6 − θ5

]
+

Ixz

Ixz
2 − Ixx Izz

Sbρu

[
b

4V
θ9 − θ8

]
a42 =

Izz

Ixz
2 − IxxIzz

[
Sb2ρv

4V
θ6 − Sbρvθ5

]
+

Ixz

Ixz
2 − IxxIzz

[
Sb2ρv

4V
θ9 − Sbρvθ8

]
a43 =

Izz

Ixz
2 − IxxIzz

[
Sb2ρw

4V
θ6 − Sbρwθ5

]
+

Ixz

Ixz
2 − IxxIzz

[
Sb2ρw

4V
θ9 − Sbρwθ8

]
a44 = k2

V b

Ix
Cl,p

a45 =
r

Ix
(Iy − Iz)

a46 =
1

Ix
(q (Iy − Iz) + k2V bCl,r)

a51 = Scρ
u

Iy
θ7
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a52 = Scρ
v

Iy
θ7

a53 = Scρ
w

Iy
θ7

a54 =
−r
Iy

(Ix − Iz)

a55 = k3
V c

Iy
Cm,q

a56 =
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(q (Ix − Iy) + k2V bCn,p)

a65 =
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Iz
(Ix − Iy)

a66 = k2
V b

Iz
Cn,r

a74 = 1

a75 = sinϕ tan θ

a76 = cosϕ tan θ

a77 =
sin θ (q cosϕ− r sinϕ)

cos θ

a78 =
r cosϕ+ q sinϕ

cos θ2

a85 = cosϕ
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a86 = − sinϕ

a87 = −r cosϕ− q sinϕ

b12 = −Sq
m

(cosα (CD,δel + CD,δer)− sinα (CL,δel + CL,δer))

b21 =
Sq

m
Cy,δa

b22 =
Sq

m
(Cy,δel + Cy,δer)

b23 =
Sq

m
Cy,δr
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m
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cq

4V
CL,q

)
θ2 =
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CD,q

)
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bp

2V
Cl,p +

br

2V
Cl,r

)
θ6 = (Cl,pp+ Cl,rr)

θ7 =
(
Cm,0 + (Cm,δel + Cm,δer) δe +

cq

4V
Cm,q

)
θ8 =

(
Cn,ββ + Cn,δaδa + (Cn,δel + Cn,δer) δe + Cn,δrδr +

bp

2V
Cn,p +

br

2V
Cn,r

)
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θ9 = (Cn,pp+ Cn,rr)

k1 =
Sρ

m

k2 =
Sbρ

4

k3 =
Scρ

4

k4 = Sbρ (A.4-1)

A.5 Linear Hybrid Wind EOM Entries

a11 =
1

m
(SV ρ (sin βθ6 − cos βθ5) + k1 sin βθ1 − k2q cos βCD,q)

a12 =
Sq

m
(sin βθ′2 − cos βθ′3) + g cos β (sinα sin θ + cosα cosϕ cos θ)

a13 = g (cos β cos θ sinϕ+ cosα sin β sin θ − cosϕ sinα sin β cos θ)

+
Sq

m
(θ2 cos β + sin β (θ3 + Cy,β))

a14 =
1

m
k1V sin βCy,p

a15 = − 1

m
k2V cos βCD,q

a16 =
1

m
k1V sin βCy,r

a17 = g cos θ (cosϕ sin β − cos β sinα sinϕ)

a18 = −g (sin β sinϕ sin θ + cosα cos β cos θ + cos β cosϕ sinα sin θ)

a21 =
k5

V cos β
(sinα sin θ + cosα cosϕ cos θ)− k3

cos β
θ4

a22 =
k5

cos β
(cosα sin θ − cosϕ sinα cos θ)− tan β (r cosα− p sinα)

− k4

cos β

(
θ′4 +

c

2V
qC ′L,q

)
a23 = −p cosα− r sinα

− sin β

cos β2

(
sin β (p cosα + r sinα) + k5 (sinα sin θ − cosα cosϕ cos θ)

+ k4

(
θ4 +

c

2V
qCL,q

))
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a24 = −cosα sin β

cos β

a25 = 1− k2

m cos β
CL,q

a26 = −sinα sin β

cos β

a27 = − k5

cos β
cosα cos θ sinϕ

a28 =
k5

cos β
(sinα cos θ − cosα cosϕ sin θ)

a31 = k3 (sin βθ5 + cos βθ6)

− k5

V
(cosϕ sinα sin β cos θ − cosα sin β sin θ − cos β cos θ sinϕ)

a32 = k4 (θ′2 cos β + θ′3 sin β)

+ p cosα + r sinα− k5 (sinα sin β sin θ + cosα cosϕ sin β cos θ)

a33 = k5 (cosα cos β sin θ − sin β cos θ sinϕ− cos β cosϕ sinα cos θ)

+ k4 (θ3 cos β − θ2 sin β + Cy,β cos β)

a34 = sinα +
k1

m
Cy,p cos β

a35 =
k2

m
CD,q sin β

a36 =
k1

m
Cy,r cos β − cosα

a37 = k5 (cosα sin β cos θ − cos β sinϕ sin θ + cosϕ sinα sin β sin θ)

a38 = k5 (cosα sin β cos θ − cos β sinϕ sin θ + cosϕ sinα sin β sin θ)

a41 = −k1

ki
(4V (Ixzθ11 + Izθ8) + b(Ixzθ10 + Izθ7))

a42 = −Sqb
ki

(
(Ixzθ

′
11 + Izθ

′
8) +

b

2V
(Ixzθ

′
10 + Izθ

′
7)

)
a43 = −Sqb

ki
(IxzCn,β + IzCl,β)

a44 = − 1

ki
(Ixz(Ix − Iy + Iz)q + k1V b(IxzCn,p + IzCl,p))

a45 =
1

ki

(
(I2
xz + I2

z − IyIz)r − Ixz(Ix − Iy + Iz)p
)

a46 =
1

ki

(
(I2
xz + I2

z − IyIz)q − k1V b(IxzCn,r + IzCl,r)
)

a51 =
k2

Iy
(4V θ9 + cqCm,q)
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a52 =
Sqc

Iy

(
θ′9 +

c

2V
qC ′m,q

)
a54 = −(

2Ixz
Iy

p+ k6r)

a55 =
k2V c

Iy
Cm,q

a56 =
2Ixz
Iy

r − k6p

a61 = −k1

ki
(4V (Ixzθ8 + Ixθ11) + b(Ixzθ7 + Ixθ10))

a62 = −Sqb
ki

(
Ixzθ

′
8 + Ixθ

′
11 +

b

2V
(Ixzθ

′
7 + Ixθ

′
10)

)
a63 = −Sqb

ki
(IxzCl,β + IxCn,β)

a64 = − 1

ki
(k1V b(IxzCl,p + IxCn,p) + (I2

x − IyIx + I2
xz)q)

a65 =
1

ki

(
Ixz(Ix − Iy + Iz)r − (I2

x − IyIx + I2
xz)p

)
a66 =

1

ki
(Ixz(Ix − Iy + Iz)q − k1V b(IxzCl,r + IxCn,r))

a74 = 1

a75 = sinϕ tan θ

a76 = cosϕ tan θ

a77 = tan θ (q cosϕ− r sinϕ)

a78 =
r cosϕ+ q sinϕ

cos θ2

a85 = cosϕ

a86 = − sinϕ

a87 = −r cosϕ− q sinϕ

b11 =
Sq

m
sin βCy,δa

b12 =
Sq

m
(sin β (Cy,δel + Cy,δer)− cos β (CD,δel + CD,δer))

b13 =
Sq

m
sin βCy,δr

b22 = − k3V

cos β
(CL,δel + CL,δer)

b31 = k3V cos βCy,δa



148

b32 = k4

(
cos β (Cy,δel + Cy,δer) + sin β (CD,δel + CD,δer)

)
b33 = k3V cos βCy,δr

b41 = −Sqb
ki

(IzCl,δa + IxzCn,δa)

b42 = −Sqb
ki

(Iz (Cl,δel + Cl,δer) + Ixz (Cn,δel + Cn,δer))

b43 = −Sqb
ki

(IzCl,δr + IxzCn,δr)

b52 =
Sqc

Iy
(Cm,δel + Cm,δer)

b61 = −Sqb
ki

(IxCn,δa + IxzCl,δa)

b62 = −Sqb
ki

(Ix (Cn,δel + Cn,δer) + Ixz (Cl,δel + Cl,δer))

b63 = −Sqb
ki

(IxCn,δr + IxzCl,δr)

θ1 = Cy,pp+ Cy,rr

θ2 = θ6 +
b

2V
θ1

θ3 = θ5 +
c

2V
qCD,q

θ4 = CL,0 + (CL,δel + CL,δer) δe

θ5 = CD,0 + (CD,δel + CD,δer) δe

θ6 = Cy,ββ + Cy,δaδa + (Cy,δel + Cy,δer) δe + Cy,δrδr

θ7 = Cl,pp+ Cl,rr

θ8 = Cl,ββ + Cl,δaδa + (Cl,δel + Cl,δer) δe + Cl,δrδr

θ9 = Cm,0 + (Cm,δel + Cm,δer) δe

θ10 = Cn,pp+ Cn,rr

θ11 = Cn,ββ + Cn,δaδa + (Cn,δel + Cn,δer) δe + Cn,δrδr

k1 =
Sbρ

4

k2 =
Scρ

4

k3 =
Sρ

2m

k4 =
Sq

mV
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k5 =
g

V

k6 =
(Ix − Iz)

Iy
(A.5-1)

ki = I2
xz − IxIz

A.6 Linear Wind Model Validation
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Figure 106 Linearized Wind, Perturbation: ∆V = 10.00(ft/s)
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Figure 107 Linearized Wind, Perturbation: ∆α = 0.05(rad)
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Figure 108 Linearized Wind, Perturbation: ∆β = 0.05(rad)
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Figure 109 Linearized Wind, Perturbation: ∆p = 0.05(rad/s)
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Figure 110 Linearized Wind, Perturbation: ∆q = 0.05(rad/s)
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Figure 111 Linearized Wind, Perturbation: ∆r = 0.05(rad/s)
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Figure 112 Linearized Wind, Perturbation: ∆ϕ = 0.05(rad)
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Figure 113 Linearized Wind, Perturbation: ∆θ = 0.05(rad)
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Figure 114 Linearized Wind, Perturbation: ∆δa = 0.05(rad)
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Figure 115 Linearized Wind, Perturbation: ∆δe = 0.05(rad)
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Figure 116 Linearized Wind, Perturbation: ∆δr = 0.05(rad)
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A.7 Linear Body Model Validation
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Figure 117 Linearized Body, Perturbation: ∆V = 10.00(ft/s)
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Figure 118 Linearized Body, Perturbation: ∆α = 0.05(rad)
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Figure 119 Linearized Body, Perturbation: ∆β = 0.05(rad)
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Figure 120 Linearized Body, Perturbation: ∆p = 0.05(rad/s)
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Figure 121 Linearized Body, Perturbation: ∆q = 0.05(rad/s)
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Figure 122 Linearized Body, Perturbation: ∆r = 0.05(rad/s)
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Figure 123 Linearized Body, Perturbation: ∆ϕ = 0.05(rad)
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Figure 124 Linearized Body, Perturbation: ∆θ = 0.05(rad)
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Figure 125 Linearized Body, Perturbation: ∆δa = 0.05(rad)
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Figure 126 Linearized Body, Perturbation: ∆δe = 0.05(rad)
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Figure 127 Linearized Body, Perturbation: ∆δr = 0.05(rad)



161

APPENDIX B

NDI CONTROL

B.1 IRL Time Responses
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Figure 128 IRL p Doublet
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Figure 129 IRL p Doublet, Without Actuator Dynamics/Nonlinearities
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Figure 131 IRL q Doublet, Without Actuator Dynamics/Nonlinearities
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B.2 MAL Time Responses

5 10 15 20 25 30 35
-0.6

-0.4

-0.2

0

0.2

(d
eg

)

mu_c

mu
mu_rc
mu_c

5 10 15 20 25 30 35
0

5

10

15

20

(d
eg

)

alp_c

alpha
alp_rc
alp_c

5 10 15 20 25 30 35

t (sec)

-1.5

-1

-0.5

0

0.5

1

(d
eg

)

10-3 bta_c

beta
bta_rc
bta_c
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B.3 OPL Time Responses
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