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ABSTRACT 

DIATOM COMMUNITY COMPOSITION SHIFTS DRIVEN BY COHERENT CYCLONIC 

MESOSCALE EDDIES IN THE CALIFORNIA CURRENT SYSTEM  

Zuzanna Maria Abdala 
Old Dominion University, 2020 
Director: Dr. P. Dreux Chappell 

 
 

The California Current System (CCS) is characterized by an equatorward flowing eastern 

boundary current, as well as seasonal wind-driven coastal upwelling which supplies nutrient-rich 

waters to the surface and drives high coastal productivity. Cyclonic mesoscale eddies form off 

the coast in the CCS where they trap the highly productive upwelled coastal waters, along with 

their resident planktonic communities, and transport them offshore into the more oligotrophic 

California Current waters. The interaction between waters within and outside of the eddies is 

limited, and so the eddies act as natural mesocosms, where the resident phytoplankton population 

undergo ecological succession as the eddy ages. Diatoms, a unicellular and eukaryotic subgroup 

of phytoplankton, have high sensitivities to changes in their environment, particularly 

temperature and nutrient distributions. In this study, I examine how diatom communities trapped 

within mesoscale eddies in the CCS evolve in response to environmental shifts as they travel 

offshore.   

In a transect that bisected two cyclonic eddies off the coast of northern California near 

Cape Mendocino, diatom samples were collected and later sequenced using high throughput 

sequencing. Although the eddies both originated in broadly the same location, they had formed 2 

and 10 months previous to sampling, respectively. Because of this difference in the age of the 

eddies, I can approximate the time evolution of a single CCS eddy by comparing their 

biogeochemical and ecological characteristics. The older, offshore eddy was low in 



macronutrients, nitrate-limited, low in Fe, and lower in diversity, the last result largely driven by 

the relative abundance of a single Rhizosolenia species. Rhizosolenia accounted for over 50% of 

the diatom community in 5 out of 8 offshore eddy stations, with one of these stations 

characterized by nearly 75% Rhizosolenia. Our results suggest that the Rhizosolenia species 

present in the offshore eddy is one that bypasses nitrate limitation by forming vertically 

migrating mats. I also found elevated relative abundances of Pseudo-nitzschia cf. sp. and 

Thalassiothrix sp.  in the offshore eddy. The younger, nearshore eddy was higher in 

macronutrients, Fe-limited, and higher in diversity. Top abundances for this eddy include 

Pseudo-nitzschia sp., Fragilariopsis kerguelensis, F. cf. kerguelensis, Thalassiosira ritscheri, 

Asteromphalus sp., and T. oestrupii.  Our results show that the biogeochemistry and diatom 

community structure within cyclonic eddies evolve as the eddies move offshore from the coast. 

The high-nutrient coastal waters are initially dominated by coastal diatoms known to have higher 

nutrient requirements. As the nutrients within the eddy are drawn down over time, species 

equipped with low-nutrient adaptations can become dominant. The combined effect of transport 

by, and ecological succession within the eddies is likely a key factor in mediating carbon cycling 

and export across the wider CCS region.
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INTRODUCTION 

Phytoplankton are a group of photoautotrophic microorganisms that are geographically 

cosmopolitan, occupying most aquatic habitats around the world (Vanormelingen, Verleyen, & 

Vyverman, 2007). Marine phytoplankton account for only 1-2% of the total plant biomass 

globally yet contribute ~ 40% of earth’s total fixed carbon (Falkowski, 1994). Diatoms are a 

subgroup of phytoplankton that are unicellular and eukaryotic. They contribute ~ 25% of the 

global primary production (Sumper & Brunner, 2006), and ~ 40% of the primary production in 

the oceans (Falkowski, Barber, & Smetacek, 1998). Out of all the eukaryotic marine 

phytoplankton globally, diatoms are known to be the greatest in abundance and highest in 

diversity (Bowler, Vardi, & Allen, 2010; Kooistra, Gersonde, Medlin, & Mann, 2007; Lewitus, 

Bittner, Malviya, Bowler, & Morlon, 2018). Previously, 200,000 diatom species were estimated 

to exist worldwide (Mann & Droop, 1996), though a recent estimate suggests a more 

conservative range of 30,000 to 100,000 diatom species (Mann & Vanormelingen, 2013). 

Diatom productivity has a significant control on fixed carbon availability for other trophic levels 

(Ducklow, Steinberg, & Buesseler, 2001; Falkowski et al., 1998), making diatoms key players in 

the success of fisheries (Chenillat, Franks, & Combes, 2016).  

The role of diatoms in the biological pump is important because of the transfer of carbon 

to other trophic levels (carbon cycling) and the removal of carbon from the surface waters to the 

ocean floor through sinking diatom frustules, fecal pellets from primary consumers, or 

aggregates (carbon export) (Brown et al., 2008). This carbon transfer results in a strong carbon 

gradient at the atmosphere-ocean surface interface, allowing carbon in the form of CO2 to be 

removed from the atmosphere (Falkowski et al., 1998). In a studying examining a collection of 

17 marine diatom species, the rate of uptake of carbon (predominantly through bicarbonate) 



2 
 

 

varied significantly among species (Martin & Tortell, 2008). Therefore, the rate of carbon 

cycling and export from surface oceans is significantly influenced by the community 

composition of diatoms (Brown et al., 2008). 

Examining diatom community composition can also provide insight into prevailing 

environmental conditions. Nutrient distributions can fluctuate rapidly for a variety of reasons, 

including drawdown from primary producers, ocean circulation, and dust deposition (Ducklow et 

al., 2001; Falkowski, 1995). Nutrient delivery—or lack thereof—determines the amount of 

biomass an environment can support. Regions with higher frequencies of nutrient delivery, such 

as eastern boundary upwelling systems (EBUS), can support both larger abundances of biomass 

(blooms) and larger cells (Hood, Abbott, Huyer, & Kosro, 1990). Regions with lower 

frequencies of nutrient delivery, such as open oceans, are commonly in a nutrient-limited state 

and generally have lower biomass and cell sizes (Bibby, Gorbunov, Wyman, & Falkowski, 2008; 

Brown et al., 2008). Diatoms have high sensitivities to changes in their surroundings, including 

circulation, temperature, light availability and nutrient distributions (Heil, Revilla, Glibert, & 

Murasko, 2007)—so much so that they are commonly used as a bioindicator for environmental 

health in freshwater ecosystems like lakes, rivers, and streams (Visco et al., 2015). Over time, 

some diatoms have developed adaptations to help them survive—and even thrive—under 

nutrient limitation (Bowler et al., 2010). The presence, absence, or dominance of the known 

diatoms with specific adaptations can supplement nutrient concentration measurements to reveal 

a clearer picture of the environmental conditions. 

Cell counts and light microscopy lack in both specificity and accuracy in species-level 

identifications (Kaczmarska, Lovejoy, Potvin, & Macgillivary, 2009; Tomas, 1997; 

Zimmermann, Glockner, Jahn, Enke, & Gemeinholzer, 2015). In a study that compared diatom 
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identification through high-throughput sequencing and light microscopy, the sequencing 

technique was able to recover 270 identified taxa, while the light microscopy only recovered 103 

taxa (Zimmermann et al., 2015). Skeletonema costatum sensu lato (s. l.) (Greville) Cleve, 

previously described as morphologically and physiologically versatile, has since been parsed into 

at least nine distinct species using sequencing (Kooistra et al., 2008). The genus Attheya is 

commonly misidentified as the genus Chaetoceros, which it is morphologically similar to 

(Crawford, Hinz, & Koschinski, 2000), though this issue is mostly eliminated with sequencing 

techniques (Hardge et al., 2017). For these reasons, a high-throughput sequencing technique 

(Chappell et al., 2019) was utilized in this experiment to examine diatom community 

composition.  

The California Current System (CCS) is characterized by a collection of currents, 

upwelling, downwelling, and mesoscale activity that is typical of EBUS regions. The prevailing 

current is the California Current (CC), which has a width of 1000 km, depth of 300 m, and flows 

equatorward at a speed of 10-30 cm/s (Combes et al., 2013; Kurian, Colas, Capet, McWilliams, 

& Chelton, 2011), bringing colder, fresher water southward along the western coast of the 

continent. The California Undercurrent (CUC), which is only 10-40 km in width (Combes et al., 

2013), flows adjacent to the CC along the continental slope in a poleward direction 100-400 m 

below the surface (Combes et al., 2013; Kurian et al., 2011), distributing warmer, nutrient-rich 

waters northward. During the winter and fall, a weaker, nearshore, and poleward current 

reappears, known as the Davidson Current (Kurian et al., 2011), displacing coastal communities 

north of their origins.  

Vertical transport of nutrients into the euphotic zone occurs from two main sources—the 

primary source being shoaling of isopycnals (Biller & Bruland, 2014) and the secondary source 
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is coastal upwelling (Owen, 1980). The seasonal shifts of wind direction in this region controls 

the presence and absence of upwelling, which impacts nutrient distributions at the surface. In the 

summer, the winds blow towards the equator (Du & Peterson, 2013), which leads to Ekman 

transport offshore. The displacement of water offshore causes deep water to take its place at the 

surface, resulting in coastal upwelling. In the winter, the prevailing winds switch to a poleward 

direction (Du & Peterson, 2013), causing Ekman transport onshore and downwelling along the 

coast. Freshly upwelled waters have nitrate, silicate, and phosphate concentrations that range 

from 15-35 μM, 15-45 μM, and 1.3-2.6 μM respectively (Bruland, Rue, & Smith, 2001). Because 

of the coastal upwelling dynamics providing nutrient delivery to the surface with high frequency, 

the CCS is one of the most biologically productive regions in the world (Capone & Hutchins, 

2013; Lachkar & Gruber, 2012) and provides a disproportionate amount of primary production 

compared to surrounding regions (Chenillat et al., 2016). Upwelled waters can lead to 

chlorophyll a values between 10-35 μg/L (Bruland et al., 2001). In many areas of the CCS, the 

silicate concentration far exceeds the nitrate concentration, allowing for a phytoplankton 

community that is diatom-dominant (Chavez et al., 1991; Du & Peterson, 2013; Hood et al., 

1990; Venrick, 2009; Wilson et al., 2008). Nutrient-rich coastal waters in the CCS are home to 

elevated proportions of larger (Bibby et al., 2008; Bruland et al., 2001; Hood et al., 1990), 

centric (Aizawa, Tanimoto, & Jordan, 2005) diatoms compared to open ocean ecosystems. The 

convergence of several CCS nearshore dynamics, including coastal upwelling, mixing from 

opposing currents, and river outflows, has an impact on the phytoplankton and diatom 

community compositions (Du & Peterson, 2013).  The CCS also has strong seasonality, which 

can dramatically alter the structure of the diatom communities depending on the presence, 

absence, or strength of upwelling (Du & Peterson, 2013).  
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In addition to upwelling and downwelling, the CCS is high in both strength and 

frequency of mesoscale activity (Chenillat et al., 2016), which plays a significant role in the 

movement of water in the region. Eddy formation occurs from baroclinic instability (Bibby et al., 

2008; Kurian et al., 2011), which can result from many different factors, including coastline 

irregularities, upwelling filaments, seafloor topography, wind forcings, the shearing from 

opposing currents, or a combination of these (Batteen, Cipriano, & Monroe, 2003). One area 

along the California coast where eddies commonly form is Cape Mendocino, an area with a 

mountainous headland and complex bathymetry attributed to a triple junction (Hoover & Tréhu, 

2017), elevated eddy kinetic energy (Batteen et al., 2003), high frequency of filaments 

(Marchesiello, McWilliams, & Shchepetkin, 2003; Nagai et al., 2015), and is the westernmost 

point of the California coast (Smith, 1999). Cyclonic eddies in the CCS are most commonly 

formed in the fall (Chenillat et al., 2018; Chenillat et al., 2016), which could be a result of the 

fall reappearance of the weaker, poleward Davidson Current or the fall strengthening of the CUC 

(Kurian et al., 2011). Recent models have shown eddies in the CCS contain water from both 

northern (via the CC) and southern (CUC) origin (Chenillat et al., 2018; Combes et al., 2013). 

CCS eddies are highly nonlinear compared to eddies globally (Kurian et al., 2011), meaning the 

rotational speed is much faster than the speed of offshore propagation, severely limiting 

exchange with surrounding waters (Chenillat et al., 2018). Upwelled nutrients are advected 

offshore via filaments—responsible for most of the nutrient transport within the first 100 km 

from shore—and surface and subsurface eddies—responsible for transport 200 to 800 km 

offshore (Combes et al., 2013; Nagai et al., 2015). In fact, 50% of the total transport of nitrate in 

the CCS can be attributed to eddies (Chenillat et al., 2018; Chenillat et al., 2016). Coastal 

diatoms, which also become entrained into eddies, are known to have higher macro- and 
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micronutrient requirements for growth (Marchetti, Maldonado, Lane, & Harrison, 2006), making 

them more susceptible to nutrient depletion (Hood et al., 1990). Because eddies are effective in 

transporting coastal water offshore (Combes et al., 2013), they can advect the nutrient-rich 

waters from coastal upwelling to benefit a larger area, hundreds of kilometers offshore (Bruland 

et al., 2001). This mosaic of mesoscale (and sub-mesoscale) processes creates many sharp 

salinity and nutrient fronts (Nagai et al., 2015). Additionally, because of the strong seasonality of 

the winds, currents, and upwelling, nutrient distributions are also strongly seasonal (Du & 

Peterson, 2013). 

Mesoscale eddies are high frequency structures in the CCS and are known to have a 

direct control on coastal ecosystems (Chenillat et al., 2016; Chenillat et al., 2015). CCS eddies 

are also highly efficient in trapping parcels of coastal water and transporting them offshore 

(Chenillat et al., 2016; Combes et al., 2013). These eddy parcels contain upwelled waters high in 

nutrients (Kurian et al., 2011), and diatom communities high in diversity (Goebel, Edwards, 

Zehr, Follows, & Morgan, 2013; Venrick, 2009). CCS cyclonic eddies increase productivity to 

coastal-like levels (Benitez-Nelson et al., 2007; Brown et al., 2008), increase the phytoplankton 

photosynthetic efficiency (Bibby et al., 2008), sustain higher productivity for extended periods 

up to one year and up to 800 km offshore (Chenillat et al., 2016), and have a substantial role in 

controlling the carbon cycling and export in the CCS (Benitez-Nelson et al., 2007; Brown et al., 

2008). These pockets of elevated productivity can be the primary source of nourishment for 

coastal fisheries (Brown et al., 2008), controlling their success or collapse (Chenillat et al., 

2016).  

Because of the entrapment of coastal waters, combined with longer lifespans of cyclonic 

eddies (Kurian et al., 2011), the coastal diatom communities within cyclones can undergo an 
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ecological succession as the eddy ages and travels offshore (Brown et al., 2008; Owen, 1980). In 

a spatial study, diatom communities of similar composition were found along concentric rings, 

with each ring in a different stage of succession (Owen, 1980). In a temporal study, larger-celled, 

coastal diatoms were succeeded by smaller-celled, open ocean diatoms in a Hawaiian lee 

cyclonic eddy ecosystem, attributed to the depletion of nutrients and an environmental shift more 

suited to smaller cells (Brown et al., 2008). In addition to smaller diatoms, long-lived eddies may 

also be suitable for diatom species with physiological adaptations to nutrient limitation, such as 

vertical migrators or those with dinitrogen-fixing endosymbionts (Wilson & Qiu, 2008). Because 

of the wide spatial and temporal variability in community structures within eddies, there is a 

need to better understand the processes that drive community shifts (Brown et al., 2008).  

The combination of high frequency mesoscale activity, strong seasonality, and an 

extensive presence of diatoms makes the CCS an ideal region to examine how diatom 

communities respond to nutrient pulses and ocean dynamics. The current study aims to gain a 

better understanding of how eddy dynamics in the CCS impact diatom communities. It examines 

a suite of ecological factors occurring in two cyclonic (rotating counterclockwise) CCS eddies—

an inshore eddy that was two months old and an offshore eddy that was ten months old, both of 

which formed near Cape Mendocino. Because CCS eddies are highly non-linear, they are 

efficient in trapping coastal waters with high nutrients and diverse diatom communities and 

encouraging ecological succession. In sampling two eddies that differ in age yet originate from 

the same region, comparing the biological contents of these eddies can serve as a proxy for a 

long-term, in situ study of ecological succession of diatoms within a CCS eddy.  
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METHODS 

SAMPLE COLLECTION 

Samples from transects were collected off the coast of northern California, just south of Cape 

Mendocino, 13-14 July 2014 on the R/V Melville cruise (MV 1405). The cruise track (Figure 1) 

began 430 km from the coastline of Northern California, traveled northeast, and pivoted midway to 

allow for sampling through the centers of two cyclonic eddies. For simplicity, the two eddies 

(Figure 1) will be identified as eddy I, the younger eddy, and eddy II, the older eddy. A trace metal 

clean surface tow-fish system (Bruland, Rue, Smith, & DiTullio, 2005) was used to collect water 

from 3-5 m depth while the ship was underway (~10 knots). Samples for DNA analysis were 

collected at roughly 1-hour intervals. One to two liters of water were filtered onto 25 mm diameter, 

3 μm polyester filters using a Masterflex peristaltic pump. Filters were placed in 2 mL screw-cap 

tubes with 400 μL of Qiagen® RLT Plus Buffer (Qiagen, Germany), frozen in liquid N2, and stored 

at –80 °C until DNA extraction. 

 

ENVIRONMENTAL DATA 

Surface temperature and salinity were measured using the R/V Melville’s SBE 21 

Thermosalinograph system (SeaBird Electronics). Water samples for both surface macronutrient 

analyses and surface dissolved Fe (dFe) analyses were collected from the tow-fish system (Bruland 

et al., 2005) and filtered through an acid-cleaned, seawater-flushed 0.2 µm Acropak filter capsule 

(Pall 500, Fisher Scientific). Nitrate + nitrite, phosphate, and silicate were analyzed  onboard using 

a Lachat QuickChem 800 Flow Injection Analysis System following standard spectrophotometric 

methods (Parsons, 1984). Surface dFe was analyzed onboard using a chelating method, described 

in detail by Till et al. (2019).  



9 
 

 

DNA EXTRACTION 

Filters were extracted using the Qiagen® Allprep RNA/DNA co-extraction with an additional bead-

beating step and homogenization using the QIAshredder column (Qiagen, Germany).  Extracted 

DNA was diluted at least 1:10 or to 3 ng/μL.  The V4 region of the 18S rDNA was amplified in 

triplicate using primers designed to target diatoms (Zimmermann, Jahn, & Gemeinholzer, 2011) 

that were modified to include the Illumina overhang adapter sequences for two step amplicon 

sequencing (http://www.illumina.com/content/dam/illumina- 

support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-

guide-15044223-b.pdf). 25 μL PCR reactions consisted of 2.5 μL of diluted DNA, 1.25 μL of each 

5 μM primer, 7.5 μL of PCR-grade water, and 12.5 μL Phusion GC MasterMix (Life Technologies 

Corporation, Carlsbad, CA, USA). PCR reactions were performed using a SimpliAmp Thermal 

Cycler (Life Technologies Corporation, Carlsbad, CA, USA). PCR conditions consisted of 98°C 

for 3 minutes, then 35 cycles of [98°C for 15 seconds, 62°C for 15 seconds, 72°C for 30 seconds], 

then a final 72°C for 5 minutes. Successfully amplified triplicate samples were pooled and purified 

using Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, USA). An agarose gel was then 

used to verify presence and size of the amplicon. A secondary PCR (3 minutes at 72 °C, 30 seconds 

at 98 °C, 6 cycles of [10 seconds at 98 °C, 30 seconds at 63 °C], and finally 3 minutes at 72 °C) 

was conducted using Nextera indexed adapters. PCR product was purified again with AMPure XP 

beads, agarose gel verified, and diluted to 3.2 ng/μL concentration in preparation for a pooling of a 

multiplexed library to be sequenced. Nextera tagged samples were pooled and paired-end 

sequenced at the Illumina MiSeq sequencer at Old Dominion University using the 2x300 bp 

sequencing kit.  
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SEQUENCE PROCESSING 

Sequences were de-multiplexed and imported into the CLC Genomics Workbench (Qiagen, 

Germany).  Reads were imported in pairs, trimmed, and merged in CLC before being exported in 

fasta format.  Parameters for trimming were as follows: no ambiguous nucleotides allowed, quality 

limit 0.02, and discard reads < 150 nucleotides in length post trimming.  Read merging parameters 

were as follows: mismatch cost = 1, minimum score = 8, gap cost = 2, and maximum unaligned end 

matches = 5.  Following the merge, reads were searched for the primer sequences and any merged 

reads without the primers were discarded.  The remaining merged reads had the primers trimmed 

off.  A final trimming step had the following parameters: no ambiguous nucleotides, quality limit 

= 0.05; reads were discarded if they were not within the range of 390-415 nucleotides in length.  

Reads were exported out of CLC as single fasta files. Mothur, an open source software package 

optimized for bioinformatics usage (Schloss et al., 2009a), was selected to streamline and organize 

sequence data formatting for optimal node representative identification using shell scripting. Reads 

were screened using the classify.seqs tool of mothur (Schloss et al., 2009b) using an in-house 

database that combined stramenopile 18S sequences from NCBI (downloaded as of May 10, 2016) 

and the SILVA eukaryote 18S database. The get.lineage mothur tool was used to select all reads 

that were classified as Bacillariophyta.  Due to the variation in reads per sample, a normalization 

randomized subset of 22,000 reads per sample was extracted. The output from mothur was then 

used in the minimum entropy decomposition (MED) pipeline (Eren et al., 2015). This clustering 

algorithm partitioned the randomized subset of sequences for each sample into operational 

taxonomic units (OTUs) that MED refers to as nodes. The representative sequence for each OTU 

was used as the input in a nucleotide BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990) 

against an in-house database that combined stramenopile 18S sequences from NCBI (updated as of 
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June 26, 2017) and the SILVA eukaryote 18S database sequences. Due to trimming parameters, 

some sequences that were otherwise identical (indicating they were from the same species) were a 

base or two shorter in length and ended up being pooled into different OTUs. To deal with this 

issue, OTUs were pooled (i.e., read counts combined) if they had <1 % percent identity difference.  

OTUs were classified to the species level if they had > 99% percent identity to a classified organism.  

Because of the sequence similarity of the 18S rDNA, any OTU sequences with percent identity 

between 97-99% were classified as “Genus cf. species” to signify that the OTU was similar to a 

known species.  OTU sequences with percent identity < 97% were only classified to the genus level. 

OTU sequences identified to the genus level under the same genus were given the designation “-

sp.” followed by a number to indicate a difference in species.  

 

COMMUNITY COMPOSITION ANALYSES 

OTU counts were imported into PRIMER 7 (PRIMER-E Ltd, Plymouth, UK), log(X+1) 

transformed, and a matrix of Bray-Curtis similarity coefficients (Bray & Curtis, 1957) was utilized 

to compare the relative abundance data for each station. A dendrogram was generated from the 

Bray-Curtis similarity matrix using the group average clustering mode. The ecological indices used 

to assess community diversity were the Shannon-Wiener diversity index (Shannon, 1948) and 

richness. Diversity and richness calculations were based on the OTU counts at each station. 

Composition columns were created for each station in Prism (GraphPad Prism version 7 for 

Macintosh).  
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STATISTICAL ANALYSES 

Statistical tests were performed for a set of select variables (Appendix Table 1), including 

temperature, salinity, fluorescence, nitrate, silicate, phosphate, silicate:nitrate, dFe:nitrate, 

diversity, relative abundance of Rhizosolenia sp. 1, and wind speed. Variables were first tested for 

normality using skewness, kurtosis (Pearson, 1905; Westfall, 2014), and Kolmogorov–Smirnov 

(Appendix Table 1A) (Lilliefors, 1967; Massey, 1951). Statistical tests were conducted comparing 

the variables among three groups, eddy I, eddy II, and non-eddy. For variables with a normal 

distribution, a one-way analysis of variance (ANOVA) was performed (Appendix Table 1B) 

(Fisher, 1921). For variables with a non-normal distribution, a Kruskal-Wallis test was performed 

(Appendix Table 1C) (Kruskal & Wallis, 1952). Post hoc tests were performed to obtain detailed 

differences between each set of groups – eddy I vs. eddy II, eddy I vs. non-eddy, and eddy II vs. 

non-eddy (Appendix Table 2). Tukey’s honestly significant difference (HSD) post hoc test was 

performed after all ANOVA tests (Tukey, 1976). Dunn’s post hoc test was performed after all 

Kruskal-Wallis tests (Dunn, 1964).  
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RESULTS 

ENVIRONMENTAL DATA 

The geographical locations of the stations are shown superimposed on gridded sea level anomaly 

(SLA; grey contours) from the Aviso dataset for satellite altimetry data for July 10, 2014 (Figure 

1; http://www.aviso.altimetry.fr/). A monthly composite of chlorophyll a for July 2014 from the 

MODIS instrument (moderate resolution imaging spectroradiometer) aboard the Terra and Aqua 

satellites is also shown (colors; Figure 1); values ranged from 0.1 mg m-3 to 10 mg m-3. Contours 

show SLA differences of 25 cm, with dashed lines representing negative SLAs and solid lines 

representing positive SLAs in comparison to the mean sea level height. SLA ranged from + 2.5 m 

to – 1 m, with concentric negative SLAs (dashed contours) showing cyclonic eddies. The highest 

values for chlorophyll were found along the coast. The transect passed through the centers of two 

cyclonic eddies. From this point on, stations 15-22 (nearshore) will be referred to as “eddy I” and 

stations 2-9 (offshore) will be referred to as “eddy II.” Through searching for coherency in the eddy 

formation retroactively in week-by-week images from the Aviso dataset, eddy I was confirmed to 

have separated from the coast approximately 2 months prior to sampling and eddy II separated from 

the coast approximately 10 months prior to sampling.  

The surface temperature (Figure 2A) across the transect ranged from 12.7°C to 17.2°C, with 

warmer water offshore and cooler water nearshore. The average temperature of eddy I was 13.8°C 

± 0.6°C, eddy II averaged 16.1°C ± 0.4°C, and in between eddies, the average temperature was 

15.8°C ± 0.9°C. Temperature was significantly different (Appendix Table 1B) across the three 

regions (eddy I, eddy II, and non-eddy), F(2, 18) = 45.1; p-value < 0.05. 
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Figure 1. Geographical location of the study site. Grey contours represent sea level anomaly. Stations are 
numbered in succession, beginning with Station 1 at the most-western point to Station 22 at the most-
eastern point. Logscale chlorophyll concentration is shown in color. 

 

Post hoc tests reveal that the differences in temperature between eddies I and II and between 

eddy I and non-eddy were significant (p-values < 0.01; Appendix Table 2) while the difference 

between eddy II and non-eddy was not significant. The surface salinity (Figure 2B) across the 

transect ranged from 32.36 to 33.12, with similar average salinities for eddies I and II (33.00 ± 0.05 
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and 32.80 ± 0.09, respectively). In between eddies, the salinity was lower, with an average of 32.44 

± 0.13. Salinity was significantly different (Appendix Table 1B) across the three regions (eddy I, 

eddy II, and non-eddy), F(2, 18) = 40.1; p-value < 0.05. Post hoc tests reveal that the differences in 

salinity between each region pairing were significant (p-values < 0.05; Appendix Table 2). The 

surface fluorescence (Figure 2C) ranged from 0.17 µg L-1 to 3.06 µg L-1. Averages showed elevated 

fluorescence in eddies I and II (1.71 µg L-1 ± 0.66 µg L-1 and 1.50 µg L-1 ± 0.37 µg L-1, respectively) 

compared to non-eddy stations (0.32 µg L-1 ± 0.17 µg L-1). Fluorescence was significantly different 

(Appendix Table 1B) across the three regions (eddy I, eddy II, and non-eddy), F(2, 18) = 8.1; p-

value < 0.05. Post hoc tests reveal that the difference in fluorescence between eddies I and II was 

not significant while the differences between eddy I and non-eddy and between eddy II and non-

eddy were significant (p-values <0.01; Appendix Table 2). Density values (Figure 3) were 

calculated in ODV using conservative temperature and absolute salinity. Density was significantly 

different (Appendix Table 1B) across the three regions (eddy I, eddy II and non-eddy), F(2, 18) = 

85.3; p-value < 0.05. Post hoc tests reveal that the differences in density between each region pairing 

was significant (p-values < 0.05; Appendix Table 2).  
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Figure 2. Underway measurements of (A) sea surface temperatures (°C), (B) surface salinity (psu), and 
(C) surface fluorescence (µg ∙ L-1). Grey boxes demarcate the boundaries of eddies I and II. The numbers 
above the datapoints represent the station number. 
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Figure 3. Density values calculated from absolute salinity and conservative temperature. Boxes have been 
added around stations within eddies I and II.  

Nutrients 

Nitrate concentrations (Figure 4A) ranged from 0.05 µmol kg-1 at station 11 to 8.28 µmol 

kg-1 at station 16 and were, on average, more than 6 times higher in eddy I (average of 5.24 µmol 

kg-1 ± 1.95 µmol kg-1), while eddy II showed near-depleted levels of nitrate (average of 0.82 µmol 

kg-1 ± 0.83 µmol kg-1). Nitrate concentrations were significantly different (Appendix Table 1B) 

across the three regions (eddy I, eddy II, and non-eddy), F(2, 18) = 38.3; p-value < 0.05. Post hoc 

tests reveal that the differences in nitrate concentrations between eddies I and II and between eddy 

I and non-eddy were significant (p-values < 0.01; Appendix Table 2) while the difference between 

eddy II and non-eddy was not significant. Silicate measurements (Figure 4B) ranged from 0.94 

µmol kg-1 (at station 5) to 4.09 µmol kg-1 at station 22. Average silicate in eddy I, 3.28 µmol kg-1 ± 
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0.67 µmol kg-1, was more than double the average seen in eddy II, 1.73 µmol kg-1 ± 0.50 µmol kg-

1. Silicate concentrations were significantly different (Appendix Table 1B) across the three regions 

(eddy I, eddy II, and non-eddy), F(2, 18) = 17.1; p-value < 0.05. Post hoc tests reveal that the 

differences in silicate concentrations between eddies I and II and between eddy I and non-eddy 

were significant (p-values < 0.01; Appendix Table 2) while the difference between eddy II and non-

eddy was not significant. Phosphate measurements (Figure 4C) ranged from 0.29 µmol kg-1, 

observed at stations 8, 11, and 12, to 0.80 µmol kg-1 at station 16. The average for phosphate in 

eddy I, 0.63 µmol kg-1 ± 0.11 µmol kg-1, was nearly double that of eddy II, 0.33 µmol kg-1 ± 0.03 

µmol kg-1. Phosphate was significantly different (Appendix Table 1B) across the three regions 

(eddy I, eddy II, and non-eddy), F(2, 18) = 47.1; p-value < 0.05. Post hoc tests reveal that the 

differences in phosphate concentrations between eddies I and II and between eddy I and non-eddy 

were significant (p-values < 0.01; Appendix Table 2) while the difference between eddy II and non-

eddy was not significant. I observed a sharp increase in all macronutrient concentrations at the 

nearshore eddy front, between stations 14 and 15.  
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Figure 4. Measurements of surface macronutrient concentrations along the cruise track (A) nitrate, (B) 
silicate, and (C) phosphate. Grey boxes demarcate the boundaries of eddies I and II. The numbers above 
the datapoints represent the station number. 
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Dissolved Fe:Nitrate (dFe:Nitrate) ratio calculations (Figure 5A) ranged from 0.017 

nmol/µmol at station 19 to 4.4 nmol/µmol at station 11. The dFe:Nitrate average in eddy I was 0.04 

nmol/µmol ± 0.02 nmol/µmol, the eddy II average was 0.52 nmol/µmol ± 0.78 nmol/µmol, and the 

non-eddy average was 2.15 nmol/µmol ± 1.72 nmol/µmol. dFe:Nitrate was significantly different 

(Appendix Table 1C) across the three regions (eddy I, eddy II, and non-eddy), H(2, 21) = 10.5; p-

value < 0.05. Post hoc tests reveal that the differences in dFe:Nitrate between eddies I and II and 

between eddy I and non-eddy were significant (p-values < 0.05; Appendix Table 2) while the 

difference between eddy II and non-eddy was not significant. 

Silicate:Nitrate ratio calculations (Figure 5B) ranged from 0.47 at station 16 to 28.58 at 

station 11. The Silicate:Nitrate average in eddy I was 0.67 ± 0.2, eddy II average was 5.70 ± 8.40, 

and the non-eddy average was 12.54 ± 10.95. Silicate:Nitrate was significantly different (Appendix 

Table 1C) across the three regions (eddy I, eddy II, and non-eddy), H(2, 21) = 14.3; p-value < 0.05. 

Post hoc tests reveal that the differences in Silicate:Nitrate between eddies I and II and between 

eddy I and non-eddy were significant (p-values < 0.01; Appendix Table 2) while the difference 

between eddy II and non-eddy was not significant. 
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Figure 5. Ratios of (A) dFe:Nitrate and (B) Silicate:Nitrate. In plot A, the upper dashed line (0.67) 
differentiates nitrate limitation (above the dashed line) and Fe limitation (below) for coastal diatoms. The 
lower line (0.51) differentiates nitrate limitation (above) and Fe limitation (below) for oceanic diatoms. 
The dashed line in plot B (1.0) differentiates nitrate limitation (above) and silicate limitation (below). 
Grey boxes demarcate the boundaries of eddies I and II. The numbers above the datapoints represent the 
station number. 
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SPECIES DIVERSITY 

Diversity (Figure 6A) and richness (Figure 6B) calculations were based on diatom OTU counts for 

each station. Eddy I and non-eddy stations were elevated in average diversity (3.0 ± 0.2 and 2.8 ± 

0.1, respectively) while eddy II was characterized by lower average diversity, 1.8 ± 0.7. Diversity 

was significantly different (Appendix Table 1C) across the three regions (eddy I, eddy II, and non-

eddy), H(2, 20) = 10.4; p-value < 0.05. Post hoc tests reveal that the differences in diversity between 

eddies I and II and between eddy I and non-eddy were not significant while the difference between 

eddy II and non-eddy was significant (p-values < 0.01; Appendix Table 2). Richness was not 

significantly different (Appendix Table 1B) across the three regions, F(2, 17) = 2.1; p-value = 0.16, 

nor were there significant differences in richness between any two regions (p-values > 0.05; 

Appendix Table 2). The relative abundance of Rhizosolenia sp. 1 among diatom communities varied 

11-fold across the transect (Figure 6C), ranging from > 71% of the community at stations 3, 6, and 

7 to < 0.01% at station 20 (Appendix Table 4). There was a twenty-fold increase in Rhizosolenia 

sp. 1 relative abundance across the front of eddy II, between stations 1 and 2. The average relative 

abundance of Rhizosolenia sp. 1 in eddy I was 0.05 ± 0.08, non-eddy was 0.09 ± 0.05, and eddy II 

was 0.56 ± 0.20. Outside of eddy II, the highest abundance of Rhizosolenia sp. 1 was at station 22 

(Appendix Table 4). The relative abundance of Rhizosolenia sp. 1 was significantly different 

(Appendix Table 1B) across the three regions (eddy I, eddy II, and non-eddy), F(2, 17) = 31.5; p-

value < 0.05. Post hoc tests reveal that the differences in Rhizosolenia sp. 1 relative abundance 

between eddies I and II and between eddy II and non-eddy were significant (p-values < 0.01; 

Appendix Table 2) while the difference between eddy I and non-eddy was not significant. 
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Figure 6. (A) Shannon diversity index (H’), (B) richness, and (C) relative abundance of Rhizosolenia sp. 
1. Grey boxes demarcate the boundaries of eddies I and II. The numbers above the datapoints represent 
the station number. 
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DIATOM COMMUNITY COMPOSITION 

The Bray-Curtis similarity dendrogram (Figure 7A) and community composition columns (Figure 

7B) reveal the relatedness of stations based on their diatom community composition. While stations 

in eddy I clustered with similarity above 80%, eddy II did not exclusively cluster together. Stations 

8 and 9 were part of eddy II based on the temperature and salinity graphs (Figure 2A-B) but 

clustered loosely with non-eddy rather than the rest of eddy II. Overall, there was lower similarity 

in the diatom community composition among the non-eddy stations. 

The OTU with the highest read count, dominated the reads from the eddy II stations, was 

most similar in sequence to that of Rhizosolenia shubsholei, however, the sequence match between 

this OTU and R. shubsholei was only 91% (Appendix Table 3). For this reason, I have only 

classified this sequence to the genus level and refer to it as Rhizosolenia sp. 1. This lower match 

percentage classification was also given to three other OTUs, Rhizosolenia sp. 2, Rhizosolenia sp. 

3, and Thalassiothrix sp. 1. The top 5 species in abundance along the transect (based on read counts) 

were Rhizosolenia sp. 1, Fragilariopsis cf. kerguelensis, Actinocyclus sp. MPA-2013, 

Asteromphalus sp. TN-2014, and Pseudo-nitzschia cf. sp. A3ni. Along with the three species of the 

Rhizosolenia (R. sp. 1, R. sp. 2, R. sp. 3), five different species of the genus Pseudo-nitzschia (P. 

cf. sp. A3ni, P. americana, P. sp. A3ni, P. subcurvata, and P. delicatissima) and three species of the 

genus Thalassiosira (T. oestrupii, T. oceanica, and T. rischeri) ranked among the top 20 OTUs in 

abundance. Detailed sequencing information including OTU names from NCBI, accession 

numbers, match percentage, and total reads for the top 20 OTUs are provided in Appendix Table 3. 

All remaining OTUs were grouped together in the “other identified species” category.   



25 
 

 

 

Figure 7. Diatom community structure. (A) Similarity dendrogram based on the group averages of the 
calculated Bray-Curtis values using PRIMER 7. A horizontal line indicates 80% similarity. Eddies I and 
II are indicated. (B) Composition columns of the diatom communities are shown below each 
corresponding station number. The colors within each column represent the species listed in the legend.  
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Line graphs of the relative abundance of the top 20 OTUs as they varied across the transect 

were categorized into one of six patterns. These classifications were based on the OTU’s dominant 

pattern, noting that an OTU may also fit into other patterns. The one exception to this was the OTU 

classified as T. oestrupii, which was categorized into two different patterns. OTUs in pattern 1 

(Figure 8) had a dramatic decrease in abundance from station 1 to 2. The two OTUs in pattern 1 

were P. subcurvata and Cylindrotheca sp. UTKSA0079. OTUs in pattern 2 (Figure 9) had an 

elevated relative abundance in eddy II. The OTUs whose dominant pattern was type 2 were 

Rhizosolenia sp. 1, Pseudo-nitzschia cf. sp. A3ni, Thalassiothrix sp. 1, and Rhizosolenia sp. 2. 

Pattern 3 (Figure 10) OTUs had an elevated relative abundance in the stations between the two 

eddies. Pattern 3 was represented by four OTUs classified as: Chaetoceros sp. NIOZ, Thalassiosira 

oceanica, Cylindrotheca cf. closterium, and Rhizosolenia sp. 3. Pattern 4 (Figure 11) OTUs had an 

elevated relative abundance in eddy I. Pattern 4 OTUs included Pseudo-nitzschia sp. A3ni, 

Fragilariopsis cf. kerguelensis, Fragilariopsis kerguelensis, and Thalassiosira ritscheri. OTUs in 

pattern 5 (Figure 12) showed an overall elevated relative abundance in eddy I with a dip in relative 

abundance in the center stations of eddy I. Pattern 5 was represented by OTUs classified as 

Asteromphalus sp. TN-2014 and T. oestrupii. Pattern 6 OTUs (Figure 13) had an elevated relative 

abundance in both eddy I and the trailing edge of eddy II. This pattern was represented by OTUs 

classified as Actinocyclus sp. MPA-2013, T. oestrupii, P. americana, Brockmanniella brockmannii, 

and P. delicatissima.  
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Figure 8. Pattern 1: Sharp decrease in relative abundance from Station 1 to Station 2. 

 
Figure 9. Pattern 2: Elevated relative abundance in eddy II. 

 
Figure 10. Pattern 3: Elevated relative abundance in between eddies (Stations 10-14). 
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Figure 11.  Pattern 4: Elevated relative abundance in eddy I. 

 

Figure 12. Pattern 5: Elevated relative abundance in eddy I with lower relative abundance in the center 
(Stations 17-19). *Thalassiosira oestrupii var. venrickae is also categorized in pattern 6. 
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Figure 13. Pattern 6. Elevated relative abundance in both eddy I and trailing edge of eddy II. 
*Thalassiosira oestrupii var. venrickae is also categorized in pattern 5. 

 

We note that the region amplified by our primers are not diagnostic for Fragilariopsis 

species, with F. kerguelensis, Fragilariopsis curta and Fragilariopsis sublineata all identical in 

sequence in this region. These three Fragilariopsis species are all found in the Southern Ocean and 

have not been reported in the North Pacific Ocean. There is a Fragilariopsis species, F. 

pseudonana, that has been found to dominate the Eastern temperate zone of the North Pacific Ocean 

(Aizawa et al., 2005), but there is no 18S sequence data that covers the region amplified by our 

primers available for that species. 
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To quantify the impact of Rhizosolenia sp. 1 relative abundance on the Shannon diversity 

index (H’), a linear regression was performed (Figure 14) and showed that the two variables have 

a significant negative correlation, r = −0.9421, p-value < 0.05. While the blue points (eddy II values) 

were mostly grouped on the right-hand side of the plot, there was one point (station 9) that was 

grouped with eddy I and non-eddy stations. Additionally, 6 of the 7 eddy I stations fall below the 

line of best fit, while 4 of the 5 non-eddy stations fall above the line. 

 

 

Figure 14. Scatterplot of Rhizosolenia sp. 1 relative abundance and Shannon index diversity (H’) 
calculations. A line of best fit has been added, represented by y = −2.3x + 3.0. The relative abundance of 
Rhizosolenia sp. 1 and diversity have a significant negative correlation, r = −0.9421, p < 0.05. 
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DISCUSSION 

The limited exchange of water across cyclonic eddy boundaries in the CCS creates natural 

mesocosms wherein the original coastal planktonic communities trapped in the eddy undergo 

ecological succession as the eddy ages and travels offshore. I sampled two eddies of different ages 

to approximate the time evolution of CCS eddies by comparing the biogeochemical and ecological 

characteristics. The biogeochemical properties of the three regions – eddies I, II, and non-eddy – 

uncovered the strong environmental differences among the regions. These differences were echoed 

in the distinct diatom community compositions, with the strongest community similarities seen 

within eddies I and II. Here, I discuss the physical (temperature, salinity, fluorescence, and 

density), biogeochemical (nutrient concentrations and limitations), and ecological (diatom 

community composition) differences among the three regions and the apparent drivers. Eddy II, 

hosting 10 months of a hotspot of ecological succession, was largely dominated by one diatom 

species within the genus Rhizosolenia. I discuss the adaptations of Rhizosolenia, evidence 

supporting the presence of a vertically migrating mat species of Rhizosolenia, stipulations to this 

study, and areas for future research.  

 

EDDY I 

The formation and development of cyclonic mesoscale eddies in the CCS have been studied and 

modeled in depth (Chenillat et al., 2018; Chenillat et al., 2016; Chenillat et al., 2015). The 

outermost concentric ring of an eddy is the youngest and latest addition and is composed of water 

from a variety of regions including recently upwelled waters (Chenillat et al., 2018), which creates 

a strong front on the western boundary of the eddy, especially in newly developed eddies. Dramatic 

shifts seen in the temperature (Figure 2A), salinity (Figure 2B), and nutrient concentrations (Figure 
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4) crossing from California Current water (station 14) into eddy I (station 15) can thus be attributed 

to newly upwelled waters having been recently wrapped around the eddy. Post hoc testing 

confirmed the strength of the front, as eddy I was significantly different in temperature, salinity, 

and all three macronutrients when compared to both eddy II and non-eddy (Appendix Table 2). 

Eddy I also showed a dip in salinity between stations 20-22, which could be attributed to a coastal 

upwelling filament (Marchesiello et al., 2003). The fluorescence measurements at stations 15 and 

16 (taken at 7 pm and 8 pm PST, respectively) were surprisingly low for their macro-nutrient 

concentrations and were not significantly impacted by the non-photochemical quenching effect 

(Bilger, Schreiber, & Bock, 1995; Murchie & Lawson, 2013). Areas high in macro-nutrients and 

low in chlorophyll could signify a micro-nutrient limitation (Bruland et al., 2001; Falkowski et al., 

1998) or a pre-bloom stage where the primary producers have just received nutrient delivery 

(Engel, Goldthwait, Passow, & Alldredge, 2002). 

 

EDDY II 

Eddy II had significantly higher temperatures than eddy I (Figure 2A), not surprising considering 

that these surface waters had been exposed to 10 months of solar radiation since separation from 

coastal upwelling influences. Eddy II experienced limited exchange with California Current waters 

during this time, reduced access to nutrient-rich coastal waters and sustained photosynthetic 

activity would have led to the observed depletion of nutrients (Figure 4). The salinity 

measurements of eddy II (Figure 2B) resembled a tiered structure and was fairly symmetrical. 

Stations 5-6 were the center of the eddy, with stations 4 and 7 as part of a concentric ring around 

stations 5-6. The next ring was composed of stations 2-3 on the western boundary (leading edge) 

and stations 8-9 on the eastern boundary (trailing edge). There was a significant drop in 
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temperature and a slight increase in salinity in eddy II between stations 8-9, which could have been 

a signature of localized, small-scale upwelling or coastal filament, either of which could explain 

the increase in fluorescence and nitrate in the same region. This effect may also be a product of 

eddy leakage, a process that has been documented in the later stages of the eddy’s life (Chenillat 

et al., 2018). The fluorescence inside eddy II was much higher than at station 1, outside it to the 

southwest. Note that because station 1 was sampled at midnight, the lower fluorescence was not 

the result of non-photochemical quenching.  

 

DIATOM COMMUNITIES 

Diatom community shifts can reveal relationships between diatoms and their environment, which 

can include those induced by both physical and biogeochemical factors. In this study, the eddies 

exhibited communities genetically distinct from one another, both of which differed from the 

community in the non-eddy areas. I also observed distinct differences in environmental conditions 

explicable by our understanding of the nature of eddy formation and dynamics. Eddies in the CCS 

have high nonlinearity, which limits the exchange with surrounding waters (Chenillat et al., 2018). 

This partial isolation of CCS eddies allows for nutrient drawdown and ecological succession of 

diatoms. The concentric ring structure and formation of these eddies is reflected in the Bray-Curtis 

similarity dendrogram of the diatom communities (Figure 7). In eddy I, stations 15 and 16 grouped 

together and originated from the most recently upwelled waters. Stations 17-19 grouped together 

and were part of the original parcel of water trapped by the eddy that has undergone a two-month 

succession since formation. Stations 21 and 22 grouped together apart from 17-19.  While the 

surface waters of these 5 stations all originated from the same region where the eddy formed, 
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stations 21 and 22 were located above the continental shelf, thus they remain in close proximity to 

upwelling, mixing, and runoff from the coast.  

The community dendrogram structure of eddy II was similar to that of eddy I, despite the 

differences in age and composition. Stations 2 and 3 grouped closely each other and with other 

eddy II stations but remained distinct from stations 4-7 in the eddy center. Stations 8 and 9 were 

part of the trailing edge of eddy II and the communities were more similar to non-eddy stations 

than any other eddy II stations. This result may have been linked to the unusual characteristics of 

the region between stations 8 and 9, where there was a significant drop in temperature, slight 

increase in salinity, a surge in both fluorescence and nitrate, and the highest community diversity 

and richness of all eddy II stations. Finally, while there was less similarity among the non-eddy 

stations compared to the similarity within each eddy, the non-eddy stations grouped according to 

similar sea surface heights. This clustering signifies that many of the diatoms inside parcels of 

water along the same sea surface heights once occupied the same space. 

 

EFFECT OF NUTRIENT LIMITATION ON DIATOM COMMUNITIES 

Nutrient limitation calculations for Fe:Nitrate and Silicate:Nitrate were in performed in accordance 

with previous studies (Biller & Bruland, 2014; Brzezinski, 1985) to compare the nutrient 

concentrations to diatom nutrient requirements for growth. Eddy I was high in macronutrients and 

although nutrient ratios suggest Fe and silicate limitation (Figure 5), there were still sufficient 

nutrients to support a diverse community of coastal diatoms known to have higher nutrient 

requirements. The broad shelf area off Cape Mendocino has previously been described as an Fe-

replete region (Bruland et al., 2001). Discovering Fe-limitation in a normally Fe-replete region 

was also discovered during the same cruise in a shelf region off Cape Blanco, Oregon, just 300 km 



35 
 

 

north (Till et al., 2019). If Fe-limitation has become more common in coastal regions than 

previously thought, it could have a significant impact on coastal productivity, carbon exchange, 

and carbon export estimates, especially considering the NE Pacific is a diatom-dominated region 

(Wilson et al., 2008). Silicate is also not a typical limiting nutrient in the NE Pacific (Wilson & 

Qiu, 2008), but eddy I was limited by silicate. Since sampling took place in the mid- to late 

upwelling season, this silicate limitation may have been an artifact of earlier diatom blooms that 

drew down silicate in surface waters. Nutrient ratios in eddy II, on the other hand, suggest 

phytoplankton growth was limited by nitrate, which could have resulted from nutrient depletion 

by phytoplankton activity over the 10 months since eddy formation. Looking at Silicate:Nitrate 

ratios, eddy II was limited by nitrate at 7 of 8 stations. Examining Fe:Nitrate ratios and assuming 

the eddy II diatom communities were of coastal origin, eddy II was limited by nitrate for half the 

stations (2-3, 5, 9) and limited by Fe for the other half (4, 6-7).  

The depleted nitrate concentrations at the surface of eddy II mimics oligotrophic conditions 

and appears to have influenced the diatom community. Rhizosolenia, a genus of morphologically 

large diatoms with high silicate requirements known to have strategies to bypass nitrate limitation 

(Villareal, Woods, Moore, & CulverRymsza, 1996), was by far the most abundant diatom 

sequence recovered in this study. The diversity of eddy II was largely driven by the relative 

abundance of a single Rhizosolenia species (Figure 14). Rhizosolenia sp. 1 accounted for over 40% 

of the diatom community in 7 of 8 eddy II stations with sequences at 3 of these stations being 

composed of over 70% Rhizosolenia sp. 1. According to post hoc testing, eddy II was significantly 

different in Rhizosolenia sp. 1 relative abundance compared to both eddy I and non-eddy 

(Appendix Table 2). One species of this genus of diatom was dominant in the community at the 

nitrate-limited stations 2 and 3 but decreased in relative abundance by more than 40% at the low-
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silicate, Fe-limited station 4. There, with both nitrate and silicate concentrations approximately1 

μmol/kg, Rhizosolenia sp. 1 may have experienced co-limitation and transitioned to a senescent 

stage, allowing other diatoms to increase in abundance. It is also worth noting that the highest 

silicate concentration along the transect was at station 22, also where this species of Rhizosolenia 

exhibited highest abundance outside eddy II.  

Rhizosolenia sp. 2 was also a notable presence in eddy II (Figure 9), mirroring the general 

structure of Rhizosolenia sp. 1, including elevated relative abundance in eddy II and an increase in 

abundance at station 22. Additionally, Rhizosolenia sp. 1 showed a slight increase in relative 

abundance in between the eddies at station 12, where the relative abundance of Rhizosolenia sp. 2 

was at its highest. Two Rhizosolenia species that were not in the 20 most abundant taxa, R. formosa 

and R. delicatula, also had elevated relative abundances between eddies, with their highest 

abundances at station 12 and 14, respectively (Appendix Figure 3).  

 

RHIZOSOLENIA TRAITS 

One of the advantageous traits of the Rhizosolenia genus is the ability of cells to congregate into 

mats and regulate buoyancy to migrate vertically and access deep nitrate pools. The buoyancy 

mechanism is regulated by ballasting from changes in carbohydrate concentration within the cell 

via carbohydrate production and consumption (Letscher & Villareal, 2018; Villareal et al., 1996). 

Carbohydrates accumulate within Rhizosolenia mats at the surface during photosynthesis, then are 

consumed at depth for respiration and for nitrate uptake, which then de-ballasts the cell (Singler 

& Villareal, 2005). One study has confirmed via isotopic and optical methods that Rhizosolenia 

access nitrate from below the euphotic zone (Villareal, Pilskaln, Montoya, & Dennett, 2014) up to 

305 m below the surface (Pilskaln, Villareal, Dennett, Darkangelo-Wood, & Meadows, 2005). 
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Vertical migration of Rhizosolenia mats has been characterized as an asynchronous, non-diurnal 

migration (Villareal et al., 1996). When Rhizosolenia mats migrate vertically, they access new 

nitrate below the euphotic zone and return to the surface to carry out photosynthesis on a large 

scale, removing substantial amounts of carbon from surface waters more efficiently than non-

vertically migrating phytoplankton (Wilson & Qiu, 2008). This phenomenon is in contrast to 

upwelling events, which in addition to supplying nitrate to the surface, translocates carbon as well, 

which lowers the carbon concentration gradient at the air-sea interface (Wilson & Qiu, 2008). 

Therefore, a significant presence of Rhizosolenia mats in CCS eddy diatom communities can 

greatly impact the carbon cycling and export estimates. Mat accumulation at the surface occurs for 

several days at a time (Richardson, Cullen, Kelley, & Lewis, 1998), especially during low-wind 

periods (Villareal et al., 1996). Eight species have been identified in mats in the NE Pacific, 

including R. castracanei, R. debyana, R. acuminata, R. formosa, R. ostenfeldii, R. decipiens, R. 

fallax (Alldredge & Silver, 1982; Carpenter, 1977; Martínez, Silver, King, & Alldredge, 1983; 

Venrick, 1971; Villareal, 1987; Villareal & Carpenter, 1989) and R. imbricata var. shrubsolei 

(Alldredge & Silver, 1982). One of these studies found that R. fallax was present in all the mats 

they sampled, suggesting that it acted as a “matrix” for mat formation (Villareal & Carpenter, 

1989). It is important to note, however, that the majority of the Rhizosolenia species previously 

identified as mat formers are not present in the Bacillariophyta group of the NCBI 18S library of 

sequences, including R. castracanei, R. debyana, R. acuminata, R. ostenfeldii, and R. decipiens. 

The absence of these 18S sequences could explain why the match percentages of our Rhizosolenia 

species 18S sequences to the library Rhizosolenia shubsholei 18S sequence were quite low at 91% 

(R. sp. 1), 92.7% (R. sp. 2), and 94.1% (R. sp. 3) (Appendix Table 3). Further, the full NCBI 18S 

sequence of R. fallax is a 100% match to that of R. formosa, meaning the R. formosa detected in 
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our sampling with elevated relative abundance in between the eddies (Appendix Figure 3) could 

just as likely be R. fallax.   

In addition to buoyancy regulation, some Rhizosolenia are also known to host the 

cyanobacterium Richelia intracellularis as an endosymbiont in a diatom-diazotroph assemblage 

(DDA) (Villareal, Adornato, Wilson, & Schoenbaechler, 2011). R. intracellularis fixes dinitrogen 

(N2) into a bioavailable form of nitrogen to fulfill the nitrogen requirements of itself and the host 

diatom; as much as 97.3% of the total fixed N2 goes to the diatom (Foster et al., 2011). Thus far, 

R. clevei is the only Rhizosolenia species that has been identified in CCS Rhizosolenia-Richelia 

DDAs (Kemp & Villareal, 2013; Villareal et al., 2011; Villareal & Carpenter, 1989) that is not 

present in the Bacillariophyta group of the NCBI 18S library of sequences.  

 

EVIDENCE FOR VERTICALLY MIGRATING MATS 

While the Rhizosolenia sequences that were categorized as top 20 OTUs cannot 100% be 

confirmed as one of the vertically migrating, mat-forming species or the DDA species, our results 

provide more evidence supporting R. sp. 1 and R. sp. 2 function as part of vertically migrating 

mats. Firstly, the top hit for both OTUs were R. shrubsolei (Appendix Table 3), a known mat-

forming species (Villareal, 1987). Because there are two species of Rhizosolenia with elevated 

relative abundances present in eddy II, it is possible that they formed multi-species mats as found 

in previous studies (Villareal & Carpenter, 1989). Also, the low wind speed conditions (hovering 

between 8-12 m/s) in eddy II (Appendix Figure 1) would be suitable, though near the upper limit, 

for Rhizosolenia mats to remain intact (Richardson et al., 1998; Villareal & Carpenter, 1989; 

Villareal et al., 1996). Additionally, the process of N2 fixation for diazotrophs is energetically 

expensive and dependent on sufficient Fe bioavailability (Falkowski et al., 1998; Mellett et al., 
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2018) for nitrogenase to function properly (Wilson & Qiu, 2008). Based on the magnitude of the 

Rhizosolenia dominance, we might expect to see Fe limitation in eddy II if N2 fixation was 

occurring on such a large scale. Instead, I found that while eddy II had low Fe, Nitrate was near 

depletion and the limiting nutrient of eddy II.  

Assuming the Rhizosolenia in eddy II were vertically migrating mats, they were likely Fe-

stressed based on a previous study that found Fe-stress to be associated with low Fv/Fm values 

(Appendix Figure 2) in Rhizosolenia mats (Singler & Villareal, 2005). Also, because R. formosa, 

observed in low relative abundance between eddies, is a known species in vertically migrating 

mats (Richardson, Ciotti, Cullen, & Villareal, 1996; Villareal, 1987), there may have been 

vertically migrating mats in between the eddies, but in much lower relative abundance.  

 

IMPACT OF OUR RESULTS ON THE SCIENTIFIC COMMUNITY 

Our results suggest that cyclonic eddies do more than just trap coastal waters and sustain high 

productivity as they age and travel offshore. Ecological succession of the eddies’ constituent 

biological communities is also an important factor to consider. As our results have shown, diatom 

community composition can shift in response to both physical processes inherent to eddies and to 

a depletion of nutrients by coastal diatoms. Incorporation of ecological succession in studies of 

biophysical interactions of eddies can greatly impact carbon cycling and carbon export estimates 

as well as the estimate of total nitrate transported by eddies across the CCS. A recent model 

suggests that CCS cyclonic eddies are responsible for 50% of lateral transport of nitrate offshore 

(Chenillat et al., 2016), which may be an overestimation considering the average nitrate 

concentration of eddy II was 0.82 μmol/kg. Additionally, while there may be elevated biological 

activity in a cyclonic eddy for a period of time, the biological activity will plateau at some point 
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because of the nutrient drawdown from coastal communities. By the time an eddy dissipates 

offshore, the phytoplankton communities will be quite different from the communities trapped 

during the eddy’s formation.  

It is important to address the seasonality of phytoplankton communities in the CCS region 

(Du & Peterson, 2013) and the impact that season-to-season shifts in community could have had 

on my results. Eddy I formed 2 months prior to sampling around mid-May and just after the start 

of the coastal upwelling in the Northern California region (Lassiter, Wilkerson, Dugdale, & Hogue, 

2006) while eddy II formed 10 months prior to sampling around mid-September. Studies have 

previously found that phytoplankton (and diatom) communities undergo seasonal shifts in 

composition (Du & Peterson, 2013; Peterson et al., 2017; Sancetta, 1995). A study in the upwelling 

region off the coast of Northern California’s Bodega Bay found nearly identical coastal diatom 

communities in the same location in yearly intervals in the mid-May to late-June timeframe, with 

elevated relative abundances of Chaetoceros and Rhizosolenia, though the Rhizosolenia species 

switched from R. delicatula in 2001 to R. setigera in 2002 (Lassiter et al., 2006). In this shelf 

region, despite high turbulence and mixing, the diatom community composition remains relatively 

consistent year-to-year, suggested to be caused by a benthic resting stage by these recurrent species 

(Lassiter et al., 2006). A study off the coast of Cape Mendocino in mid-June of 1987 found R. 

alata in elevated relative abundances, along with species of Chaetoceros and Thalassiosira (Hood 

et al., 1990). Because of these previous findings, seasonality could have been a significant driver 

in the stark difference in diatom communities between eddies I and II. However, the role of 

seasonality in my study remains undetermined, as there were no samples obtained at the time of 

eddy formation for either eddy.  
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 Additionally, the inclusion of samples from a range of depths would have assisted in 

creating a more complete assessment of the ecological and biogeochemical dynamics of the eddies.  

Using the same sequencing methods for obtaining the surface diatom community composition at 

different depths would uncover whether the Rhizosolenia species in my study were migrating 

vertically, which is an important distinction for this study. The physical and chemical properties 

and community compositions at depth would also be informative for the areas along the transect 

that showed unusual fluctuations in these properties at the surface. There are both advantages and 

drawbacks with implementing a study that only uses surface samples. Surface-only experiments 

allow for faster sampling which provides a nearly true snapshot of the region. They are also less 

expensive in terms of ship time, extraction materials, and sequencing costs. Experiments with 

depth profiles, however, provide more comprehensive and conclusive results.  

 

FUTURE RESEARCH 

This study provides valuable insight into the impact of mesoscale cyclonic eddy dynamics on 

diatom communities in the CCS. In the future, a series of incubation experiments tracking the 

ecological succession of coastal diatoms (+/- Rhizosolenia additions) under both coastal and 

oligotrophic nutrient conditions would be helpful in understanding the fine-scale biological 

activities occurring during the ecological succession.  The samples from this study could also be 

tested for the presence of N2 fixation via nif gene expression to more definitively classify the 

Rhizosolenia collected. Additional studies involving long-term, Lagrangian sampling of eddies are 

needed to provide a more comprehensive view of biological activity in CCS eddies. This type of 

process has previously been performed utilizing an aquatic autonomous vehicle that has captured 

data on optics, imaging, and photosynthetic efficiency of diatom blooms in the NE Pacific 
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(Anderson, Wilson, Knap, & Villareal, 2018). The Anderson et al. (2018) study could be used as 

a model for gathering similar data within an eddy as it ages and travels offshore. Finally, the 

estimates for carbon cycling and export in the region should be revisited to account for 

Rhizosolenia mats. The effect of Rhizosolenia mats on carbon cycling has a stronger impact by 

biomass on the removal of CO2 from the atmosphere compared to coastal upwelling-fueled diatom 

blooms (Wilson & Qiu, 2008), making an important contribution to minimizing the impacts of 

CO2 emissions that influence climate change. The estimate of nitrate transport in the CCS via 

mesoscale cyclonic eddies should also be adjusted to factor in the drawdown of nutrients by 

phytoplankton during eddy development.  
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CONCLUSION 

The high nonlinearity of CCS mesoscale cyclonic eddies impacts diatom communities by limiting 

their interaction with surrounding waters, leading to ecological succession. Our results suggest that 

both the biogeochemistry and diatom community structure within cyclonic eddies evolve as the 

eddies move offshore from the coast. The high-nutrient, high-diversity coastal waters are initially 

dominated by coastal diatoms known to have higher nutrient requirements. As the nutrients within 

the eddy are drawn down over time, species equipped with low-nutrient adaptations can become 

dominant and affect diversity. The combined effect of transport by, and ecological succession 

within the eddies is likely a key factor in mediating carbon cycling and export across the wider 

CCS region. 
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Appendix Table 1A. Tests for Normal Distribution for Select Variables 
 Temperature Salinity Fluorescence Nitrate Silicate Phosphate 
Skewness -0.43 -0.63 0.27 0.95 0.64 0.97 
Kurtosis -1.38 -0.98 -0.69 -0.17 -0.41 -0.27 
KS stat (D) 0.23 0.19 0.13 0.22 0.13 0.27 
p-value 0.18 0.38 0.79 0.21 0.82 0.08 
Normal? normal normal normal normal normal normal 

 Silicate:Nitrate Fe:Nitrate Diversity 
(H’) 

Rhizosolenia 
Rel. Abun. 

Wind 
Speed Density Richness 

Skewness 2.01 2.39 -0.80 0.73 0.50 0.26 -0.24 
Kurtosis 3.12 5.49 -1.02 -1.24 -1.22 -1.44 -0.19 
KS stat (D) 0.34 0.36 0.31 0.25 0.19 0.22 0.09 
p-value 0.01 0.007 0.03 0.14 0.41 0.22 0.99 
Normal? not normal not normal not normal normal normal normal normal 
Appendix Table 1B. One-way ANOVA (Analysis of Variance) Results 
Groups defined as eddy I, eddy II, and non-eddy 

Variables Between 
Groups df Within Groups df F-statistic (distance 

between groups) p-value Significant? 

Temperature 2 18 45.1 p < 0.05 (9.8 e-8) Yes 
Salinity 2 18 40.1 p < 0.05 (2.3 e-7) Yes 
Fluorescence 2 18 8.1 p < 0.05 (0.003) Yes 
Nitrate 2 18 38.3 p < 0.05 (3.3 e-7) Yes 
Silicate 2 18 17.1 p < 0.05 (6.9 e-5) Yes 
Phosphate 2 18 47.1 p < 0.05 (6.9 e-8) Yes 
Rhizosolenia 
Relative 
Abundance 

2 17 31.5 p < 0.05 (1.9 e-6) Yes 

Wind Speed 2 18 40.1 p < 0.05 (2.3 e-7) Yes 
Density 2 18 85.3 p < 0.05 (6.6 e-10) Yes 
Richness 2 17 2.1 p = 0.16 No 
Appendix Table 1C. Kruskal-Wallis Test Results for non-normal data 
Groups defined as eddy I, eddy II, and non-eddy 

Variables Between 
Groups df 

Number of Observations 
(N) H-statistic p-value Significant? 

Silicate:Nitrate 2 21 14.3 p < 0.05 (7.9 e-4) Yes 
Fe:Nitrate 2 21 10.5 p < 0.05 (0.005) Yes 
Diversity (H’) 2 20 10.4 p < 0.05 (0.005) Yes 

Appendix Table 1. (1A) Tests for data distribution normality for select variables. Non-normal data 
distributions are indicated in red font. Skewness, Kurtosis, Kolmogorov–Smirnov statistic (D) and p-
value are reported. (1B) One-way ANOVA results from select variables with normal distributions. Test 
details include the degrees of freedom (df) for the test between groups and the test within groups. F-
statistic, p-value, and significance classification are reported. (1C) Kruskal-Wallis results from non-
normal data distributions. Test details include the degrees of freedom (df) for the test between groups and 
the number of observations (N). H-statistic, p-value, and significance classification are reported.  
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Appendix Table 2. Post hoc tests – Tukey’s HSD and Dunn’s 
Variables Eddy I vs. Eddy II Eddy I vs. Non-eddy Eddy II vs. Non-eddy 

Temperature Q(3,18)=12.6; p<0.01 
Significant  

Q(3,18)=9.7; p<0.01 
Significant  

Q(3,18)=1.3; p=0.6 
Not significant 

Salinity Q(3,18)=4.4; p<0.05 
Significant 

Q(3,18)=12.6; p<0.01 
Significant 

Q(3,18)=8.7; p<0.01 
Significant 

Fluorescence Q(3,18)=0.3; p=0.8  
Not significant 

Q(3,18)=5.0; p<0.01 
Significant 

Q(3,18)=5.2; p<0.01 
Significant 

Nitrate Q(3,18)=10.5; p<0.01 
Significant 

Q(3,18)=10.5; p<0.01 
Significant 

Q(3,18)=1.3; p=0.6  
Not significant 

Silicate Q(3,18)=7.1; p<0.01 
Significant 

Q(3,18)=6.9; p<0.01 
Significant 

Q(3,18)=0.7; p=0.9  
Not significant 

Phosphate Q(3,18)=12.0; p<0.01 
Significant 

Q(3,18)=11.3; p<0.01 
Significant 

Q(3,18)=0.8; p=0.8  
Not significant 

Rhizosolenia 
Relative 
Abundance 

Q(3,17)=10.3; p<0.01 
Significant 

Q(3,17)=0.8; p=0.8  
Not Significant 

Q(3,17)=8.4; p<0.01  
Significant 

Wind Speed Q(3,18)=12.4; p<0.01 
Significant 

Q(3,18)=7.8; p<0.01 
Significant 

Q(3,18)=3.0; p=0.1  
Not significant 

Density Q(3,18)=14.7; p<0.01 
Significant 

Q(3,18)=16.5; p<0.01 
Significant 

Q(3,18)=3.7; p<0.05 
Significant 

Richness p=0.2; Not significant p=0.2; Not significant p=0.9; Not significant 
Silicate:Nitrate * p<0.01(0.008); Significant p<0.01(0.001); Significant p=0.3; Not significant 
dFe:Nitrate * p<0.05(0.002); Significant p<0.05(0.002); Significant p=0.7; Not significant 
Diversity (H’) * p=0.1; Not significant p=0.2; Not significant p<0.01(0.005); Significant 

Appendix Table 2. Results from the post hoc tests performed on the select variables. The normal 
distribution data were tested by the Tukey’s honestly significant difference (HSD) post hoc test. Reported 
are the Q-statistic, p-value, and significance classification. (*) The non-normal distribution data were 
tested by the Dunn’s post hoc test. Reported are p-values and significance classification.  
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Appendix Table 3. Detailed OTU information, including species classifications used in this study, the 
name of the species from NCBI, accession number, match percentage, and total reads detected in all 
samples. Match percentages above 99% have been bolded. 

 

Species Classification OTU name from NCBI Accession 
Number 

Match 
percentage 

Total 
Reads 

Rhizosolenia sp. 1 Rhizosolenia shubsholei 18S ribosomal RNA 
gene partial sequence AY485510 91.0% 104,345 

Fragilariopsis cf. 
kerguelensis 

Fragilariopsis kerguelensis strain L26-C5 18S 
ribosomal RNA gene partial sequence KJ866919 98.7% 44,196 

Actinocyclus sp. MPA-
2013 

Actinocyclus sp. 1 MPA-2013 isolate 
ECT3899tinydrum 18S ribosomal RNA gene 
partial sequence 

KC309522 99.8% 33,484 

Asteromphalus sp. TN-
2014 

Asteromphalus sp. TN-2014 isolate 
ECT3832Aster 18S small subunit ribosomal RNA 
gene partial sequence 

KJ577845 99.7% 30,210 

Pseudo-nitzschia cf. sp. 
A3ni 

Pseudo-nitzschia sp. A3ni 18S ribosomal RNA 
gene partial sequence KJ671704 98.5% 23,831 

Thalassiosira oestrupii 
var. venrickae 

Thalassiosira oestrupii var. venrickae strain 
CC03-15 18S small subunit ribosomal RNA gene 
partial sequence 

DQ514870 99.7% 20,904 

Fragilariopsis 
kerguelensis 

Fragilariopsis kerguelensis strain L26-C5 18S 
ribosomal RNA gene partial sequence KJ866919 99.1% 14,130 

Pseudo-nitzschia 
americana 

Pseudo-nitzschia americana strain UNC1412 
18S ribosomal RNA gene partial sequence KX229689 100% 12,777 

Pseudo-nitzschia sp. 
A3ni 

Pseudo-nitzschia sp. A3ni 18S ribosomal RNA 
gene partial sequence KJ671704 99.3% 11,659 

Pseudo-nitzschia 
subcurvata 

Pseudo-nitzschia subcurvata strain UNC1409 
18S ribosomal RNA gene partial sequence KX253952 99.8% 11,458 

Brockmanniella 
brockmannii 

Brockmanniella brockmannii gene for 18S 
ribosomal RNA partial sequence strain: NIES-
3972 

LC189090 100% 8,928 

Cylindrotheca cf. 
closterium 

Cylindrotheca closterium strain 10 18S ribosomal 
RNA gene partial sequence KJ671694 97.4% 8,728 

Thalassiothrix sp. 1 Thalassiothrix longissima gene for 18S rRNA 
partial sequence strain: p441 AB430611 96.7% 7,888 

Rhizosolenia sp. 2 Rhizosolenia shubsholei 18S ribosomal RNA 
gene partial sequence AY485510 92.7% 7,437 

Chaetoceros sp. NIOZ Chaetoceros sp. NIOZ 18S ribosomal RNA gene 
partial sequence EF192996 99.7% 6,783 

Thalassiosira oceanica Thalassiosira oceanica 18S ribosomal RNA gene 
partial sequence HM991696 100% 6,292 

Pseudo-nitzschia 
delicatissima 

Pseudo-nitzschia delicatissima strain SZN-B653 
18S ribosomal RNA gene partial sequence KJ608075 100% 5,832 

Cylindrotheca sp. 
UTKSA0079 

Cylindrotheca sp. isolate UTKSA0079 18S 
ribosomal RNA gene partial sequence KX981848 99.4% 5,686 

Rhizosolenia sp. 3 Rhizosolenia shubsholei 18S ribosomal RNA 
gene partial sequence AY485510 94.1% 5,258 

Thalassiosira ritscheri Thalassiosira ritscheri strain LC01-12 18S small 
subunit ribosomal RNA gene partial sequence DQ514891 99.0% 4,241 
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Appendix Figure 1. Wind speed measurements at each station. The dashed line (10 m/s) indicates the 
estimated maximum wind speed tolerated by Rhizosolenia mats. 
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Appendix Figure 2. Variable fluorescence (Fv)/Maximum fluorescence (Fm) used to estimate 
photosynthetic efficiency of primary producers in surface waters. Values above the dashed line are those 
indicating high photosynthetic efficiency. Measurements taken during daytime have been removed. Grey 
boxes demarcate the boundaries of eddies I and II. 
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Appendix Figure 3. Line graphs of the Rhizosolenia species not categorized among the top 20 OTUs. 
Total reads are shown across the stations.  

  



52 
 

 

 

Appendix Figure 4. Representation of the ecological succession that occurs during eddy aging and 
propagation offshore. Eddy I is the cylindrical feature spinning counterclockwise on the right side; the 
eastern boundary of this eddy is located above the continental shelf, shown here as the beige boxes. On 
the surface of eddy I, there is a diverse community of diatoms, shown in the colors corresponding to those 
in the community composition columns (Figure 7). The three boxes on the front of eddy I represent the 
high-nutrient coastal environment with replete levels of nitrate, silicate, and phosphate. Eddy II is the 
cylindrical shape on the left side, also spinning counterclockwise, and represents a time-lapse of 8 months 
after eddy I.  On the surface of eddy II, there is a low-diversity community of diatoms dominated by 
Rhizosolenia (blue mats) in a low-nutrient environment. Mats access nutrient-replete waters below the 
euphotic zone by vertically migrating, as shown by the arrows.  
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