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ABSTRACT 

A FLEXIBLE ELECTROCHEMICAL LACTATE SENSOR 

Peyton Miesse and Dr. Gymama Slaughter 
Old Dominion University, 2020 
Director: Dr. Gymama Slaughter  

 
 

Lactic acid is a vital indicator for shock, trauma, stress, and exercise intolerance. It is a key 

biomarker for increases in stress levels and is the primary metabolically produced acid responsible 

for tissue acidosis that can lead to muscle fatigue and weakness. During intensive exercise, the 

muscles go through anerobic metabolism to produce energy. This leads to decreases in the blood 

flow of nutrients and oxygen to the muscles and increases in lactate production, which in turn 

cause lactic acidosis. Currently, changes in blood lactate concentrations are monitored by sensors 

that can be invasive via blood or wearable based sensors that use the enzyme lactate oxidase. 

Lactate oxidase produces hydrogen peroxide, which is a toxic byproduct and can foul the surface 

of the sensor.  Here, we present the development of a noninvasive wearable electrochemical lactate 

biosensor for the detection of lactic acid. The bioelectrode was designed with buckypaper (BP), 

which is composed of a dense network of multi-walled carbon nanotubes. This material was chosen 

due to its low cost, high conductivity, flexibility, and high active surface area. D-Lactate 

dehydrogenase (D-LDH) was immobilized on the surface of the BP to facilitate the oxidation of 

lactic acid. The biosensor was then integrated into a polydimethylsiloxane (PDMS) flexible 

substrate platform. PDMS was chosen because of its lightweight, flexible, biocompatibility, and 

conformal properties.  The sensor is designed to be placed on skin in order to measure the 

concentration of lactate in sweat. The concentration of lactate in sweat has been shown to be a
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good biomarker for evaluating the severity of peripheral occlusive arterial diseases and damage in 

soft tissue. The lactate biosensor developed in this work exhibited a dynamic linear range of 5 mM 

to 45 mM lactic acid with a good sensitivity of 1.388µA/mMcm2. It can measure higher than the 

average lactate concentration in sweat during exercise, which is 31mM. This electrochemical 

biosensor has the potential to be used for the real-time detection of lactic acid concentration in 

sweat, suggesting promising applications in clinical, biological and sports medicine fields.
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CHAPTER 1  

 

INTRODUCTION 

 

 

Background  

 
Wearable sensors are becoming widely popular throughout the medical field due to the 

benefits that are derived from the sensors being noninvasive as well as their capabilities to monitor 

ongoing physiological problems arising in consumers. Patients with wearable sensors can receive 

personalized health assessments and examinations [1]. Flexible sensors can play a key role in early 

detection of certain diseases and injuries because they are typically cost effective, lightweight, and 

easy to fabricate [2]. Wearable technology that is currently on the market for consumers has wrist-

worn, textile, or strap mounted formats that require bulky power sources. With current 

technological advances, electrochemical sensors have increasingly become smaller in size while 

maintaining their abilities to be used as analytical devices [3]. These devices have become more 

user friendly, inexpensive, comfortable, smaller in size and easier to operate [4]. Typically, this 

technology is limited to high-level physiological signals such as temperature, heart rate, and skin 

conductance [3]. Recent research has shown an increase in demand for wearable sensors, such as 

epidermal sensors, which allow consumers to easily monitor their health throughout the day [5].  

Many sweat sensing devices are designed to be worn in the form of a patch, watch, or temporary 

tattoo that can measure analytes such as glucose, lactate, ammonia, ethanol, pH, and hydration 

biomarkers [3]. Using personalized healthcare devices can enable a person to prevent illnesses 

from getting worse or be coming incurable.  
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One of the most widely developed sensors is the electrochemical sensor. Originally, 

electrochemical methods were traditionally used for in vitro diagnostics systems to measure pH, 

gases, and electrolytes in blood [6]. The three major electrochemical methods are potentiometry, 

amperometry, and conductometry (Table 1). This is discussed in more details in Chapter 1. Briefly, 

potentiometry is based on the electrical potential difference between two electrodes when the 

current is zero.  Amperometry is when a constant potential applied between two electrodes shows 

the oxidation or reduction of an electroactive species. Finally, conductimetry relies on the applied 

potential between two inert metal electrodes. This is used to determine if the analyte changed the 

conductivity of the sample. The electrochemical sensor developed by this project utilizes 

amperometry, which uses electrocatalytic activity to detect a particular biological analyte [7].   

 

Table 1.  Different electrochemical methods  

Electrochemical 
Methods 

Summary Advantages Limitations 

Potentiometry Use a zero-current 
potentiometry which 
current is of controlled 
amplitude is applied to 
the working electrode 

 Rapid response 
 Reproducible 
 Simple technique 

 Unable to detect 
lower limit ions 

Amperometry Monitor the current 
associate with the 
oxidation or reduction 
of an electroactive 
species that is used in 
the recognition process 

 High selectivity and 
sensitivity 

 Reproducible 
 Inexpensive 

 Introduce 
interferences as a 
result of oxidation 
of other matrix 
components 

Conductometry Two electrode device 
to measure the 
conductivity of the 
electrolyte adjacent to 
the electrode surface 

 Does not require 
reference electrode 

 Inexpensive 
 Miniaturization 

 Sensitivity 
decreases in the 
presences of non-
reacting ions in the 
solution 

 Low specificity 
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A common way to analyze and detect lactic acid levels is through blood collection. This 

method is less efficient than using a non-invasive sensor to measure sweat. Invasive sensors that 

rely on blood are difficult to use during exercise and may not provide lactate levels in real time 

while exercising. Human sweat lactate concentration has been reported to show a positive 

correlation to results that have been derived from lactate concentrations in blood [8]. Venous blood 

lactate concentrations before exercise are between 2.5 - 3.5 mM and sweat lactate concentrations 

are between 13.7 -  27.1 mM [9]. This indicates that perspiration contains a higher concentration 

of lactate before and after exercise than blood.  Sweat also allows for a less invasive way of 

sampling without the risk of infection.  

Lactate is an important metabolite of the anerobic glycolysis pathway and serves as a 

biomarker for lactic acidosis. During anerobic conditions, pyruvate is converted to lactate by the 

enzyme Lactate dehydrogenase (LDH). Lactic acid is produced at physiologic pH ranges [10]. 

Lactic acid exists as L-(+) lactate, which is a normal intermediate in the mammalian metabolism. 

The D-(-) is produced by microorganisms, algae, and plants. When assessing a patient for elevated 

lactic acid levels during surgery or critical care, L-L-lactate concentration in the blood is measured. 

Elevated lactate levels in the blood can indicate ischemic conditions such as heart failure, shock, 

and respiratory insufficiency [11]. Additionally, lactate levels can be altered due to diabetes or 

absorptive abnormalities of short-chain fatty acids in the colon. When there is a shortage of oxygen 

to the muscles, an increase in lactate production occurs. An increase in lactate levels can be a key 

indicator for tissue acidosis leading to muscle fatigue and weakness [12].  Recently, lactate has 

been found to be the major cause of acidification in the microenvironment of cancer cells, which 

in turns helps with cancer diagnosis [13].  
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There are different ways to measure lactate, such as through blood, sweat, saliva, and tears. 

Blood has been the primarily biofluid for measuring lactate. Drawn blood must be analyzed 

immediately, as concentrations can increase by 70% in 30 minutes at room temperature due to 

glycolysis. The sampling bio-matrix can affect the biosensor response to the analyte, causing 

potentially skewed results. Some sensors are implantable, which allows for continuous monitoring 

of lactate through blood but is extremely invasive. This can lead to a high risk of infection [14]. 

Using a noninvasive technique to measure lactate concentrations decreases the risk of infection.  

Saliva can be used to measure lactate during anerobic metabolism. Saliva has been shown to have 

a high correlation with blood lactate and human saliva lactate level is about 0.2 mM. This allows 

for saliva to be used as a key diagnostic tool in measuring lactate. Tears can also be used to measure 

lactate level. The concentration is around 2 - 5 mM in the tear fluid [14].  Since these techniques 

are non-invasive, this allows for simple, safe, and stress-free procedures. Overall, measuring 

lactate through sweat has been shown to have higher concentration of lactate than using blood, 

saliva, or tears to detect lactate. Sweat has been demonstrated to be an easily accessible non-

invasive bodily fluid that can provide diagnostic information in a quick and efficient manner [15].  

We have developed a noninvasive enzymatic flexible biosensor that monitors lactate levels 

with a high sensitivity of 1.388 µA/mMcm2. Different enzymes have been used as biorecognition 

elements in electrochemical sensors to detect lactate. D-LDH was selected for the development of 

this lactate biosensor to oxidize lactate, since it does not produce the toxic hydrogen peroxide 

byproduct observed with lactate oxidase (LOD). Hydrogen peroxide has been shown to affect the 

performance of the electrode [16].  The material that was selected for the working electrode was 

buckypaper (BP), which is composed of a dense network of multi-walled carbon nanotubes. The 

benefits of using BP are that it is easy to reproduce, can allow for large-scale production, and has 
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controllable porosity. The BP also allows for enhanced electrical conductivity, which increases 

charge transport [17]. The biosensor is then placed on polydimethylsiloxane (PDMS), which is a 

silicon-based elastomer [18]. PDMS is flexible and elastic, which makes it a good base for the 

sensor (shown in Figure 1).   

 

 

 

Figure 1. Schematic illustration of the flexible wearable electrochemical lactate biosensor. 

 

Thesis Statement  

      This thesis focuses on the development of a flexible lactate sensor for the medical and 

sports medicine fields to detect lactate. The biorecognition element, D-LDH, which has high 

catalytic activity in the presence of lactic acid, was immobilized on BP to maintain a stable 

environment for lactic acid biosensing.  

Author Contribution  

      I developed a flexible lactate sensor after a year of research and work. I came up with a 

protocol that can be used to replicate the sensor fabrication process. The design of the working 
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electrode was made into a circle with a diameter of 9 mm. I made the biosensor with and without 

enzymes and chose to move forward with an enzyme-based biosensor because it performed well 

at physiological conditions. The tests that were conducted were a cyclic voltammetry, 

chronoamperometry, pH, and temperature profiling to study the characteristics of the operational 

biosensor.  

Thesis Outline 

      The purpose of Chapter 1 is to provide background about the thesis and introduce the 

reader to biosensors and lactate in the body. 

Chapter 2 focuses on different biosensors that are used for lactate sensors. This will provide 

details on non-enzymatic sensors and enzymatic sensors.   

      Chapter 3 focuses on lactate in the body. This will provide details on the biochemistry of 

lactate and the different ways to sense lactate through sweat and blood. 

     Chapter 4 focuses on the discussion of the enzymatic lactate biosensor system. The 

fabrication methods and the materials used to prepare the lactate electrode will be discussed. All 

the experimental data and results are presented in detail. 

     Chapter 5 briefly describes the studies performed and future outlook of the lactate 

biosensor. 
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CHAPTER 2 

 

BIOSENSORS 

 

 

Biosensors  

The history of biosensors began with Leland C. Clark who invented a device that was able 

to measure oxygen in blood, water and other liquids. This led Leland to become the “Father of 

Biosensors.”  In 1962, Leland C. Clark began the development of an enzyme electrode [19]. Over 

time, different research fields have made advancements to biosensors which have led to more 

sophisticated and reliable sensors. A biosensor is  a self-contained integrated device that is able to 

quantify analytical information using a biological recognition element, which is in direct spatial 

contact with a transduction element [20].  Biosensors can be used for multiple applications and are 

geared towards improving quality of life [21].  Biosensors are utilized in a wide range of areas 

such as defense, homeland security, agriculture, food and safety medicine, and pharmaceuticals 

[22]. Biosensors can be classified into four types: electrochemical, optical, piezoelectric and 

thermal sensors. Electrochemical sensing requires three electrodes which are the working 

electrode, counter electrode, and the reference electrode. Electrochemical sensors have a high 

sensitivity and fast response time. In comparison, optical sensors rely on change in the refractive 

index, absorbance, and fluorescence properties of the specific analyte. The downfall of this type 

of sensor is that it is difficult to miniaturize and is much more costly that an electrochemical sensor.  

Piezoelectric sensors are used to measure the sensitivity of mass to frequency. Theses 

sensors are sensitive to change in mass, density, or viscosity of the sample in contact with its active 

surface [23]. Finally, thermal sensors measure the thermal energy that is absorbed or released in 
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the biochemical reactions [24]. This application has many drawbacks such as poor sensitivity and 

non-specific heating effects, which have resulted in its  poor reputation [25]. Since electrochemical 

sensors have many advantages (e.g., the simplicity of the design of the system, low cost and simple 

instrumentation), the focus of the rest of this chapter will be on electrochemical biosensors, 

wearable biosensors, nonenzymatic biosensors, and enzymatic biosensors.  

Electrochemical sensors  

Electrochemical sensors must contain two basic functional units, which are a receptor 

(biorecognition element) and a physico-chemical transducer. The receptor is made of a biological 

component (such as enzyme, antibody, or DNA) while the receptor modifies the analyte 

concentration into a physical or chemical signal with a distinct sensitivity. The receptor’s purpose 

is to be highly selective towards the chosen analyte and free from other interfering chemical 

species. The transducer will then convert the signal generated by the receptor and analyte 

interaction (as shown in Figure 2) [26].   

 

 

Figure 2.  Schematic of the important components of an electrochemical sensor. Adapted 
from  A. J. Bandodkar  et.al [26]  
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The reaction of electrochemical biosensors occurs when the potential is applied to the working 

electrode and the resulting current is measured against time. The reduction and oxidation of a redox 

couple are associated to the potential (E) by the Nernst equation: 

 

𝐸 = 𝐸  + 𝑙𝑛    (1) 

 

In this equation, E0 is the half-cell potential, F is the Faraday constant, T is the temperature, 

and Coxi and Cred are concentrations of reduction and oxidation species. Overall, the resulting 

electrical signal is related to the recognition process of the specific analyte and proportional to the 

analyte concentration [23]. 

In this regard, Hernández-Ibáñez et al., [27] designed a screen printed electrochemical 

biosensor that can detect lactate within an embryonic cell culture. The electrochemical lactate 

biosensor used multiwalled carbon nanotubes for the working electrode. Carbon materials were 

utilized for electrochemical sensing in vitro. The carbon material has many advantages when used 

as an electrochemical sensor. This material has high conductivity, large surface area, surface can 

be easily modified, fouling resistance, high reproducibility and has high electrocatalytic activity. 

The majority of biosensors use electrochemical detection for the transducer due to the low cost, 

portability and simplicity of construction [28].  For example, Liu et al., [29] recently reported that 

electrochemical sensors are powerful analytical tools which possess the capacity for rapid 

detection of biomarkers in clinical species. This allows for the sensors to be small and have a high 

sensitivity.  



 

 
 

16

Electrochemical sensors contain a biological recognition element, which can be enzymes, 

proteins, antibodies, nucleic acids, tissues or receptors that react with the targeted analyte and 

produce an electrical signal [28]. Electrochemical sensors can detect many biological markers in 

bodily fluids such as sweat, saliva, urine, and blood [30].  The advantage of electrochemical sensor 

over other types of sensors is it is able to sense the materials, which are present within the host 

without damaging to the host system [31].There are three types of electrochemical sensors: 

potentiometric, amperometric and conductometric.  

Potentiometric sensors are a chemical sensor that measures the potential difference 

between two electrodes under the conditions of no current flow [32].These sensors have been used 

since the 1930’s and are still being used due to their simplicity and low cost. These are used for 

determining inorganic or organic ions in medical, environmental, and industrial analysis [33]. The 

most common potentiometric device is a pH electrode that has been used for several decades. 

Potentiometric methods use a zero-current potentiometry in which the current is of a controlled 

amplitude and is applied to the working electrode [34]. The most used potentiometric sensor is an 

Ion-Selective electrode (ISEs). The advantages of these sensors are that they have a rapid response, 

good reproducibility, and simple measuring techniques. Classical ISEs are symmetrical, which 

means there are two solutions. First, is the test solution and then the inner solution with constant 

concentration of ionic species. The sensor typically uses an Ag/AgCl reference electrode that is in 

contact with the internal solution that contains chloride ions at constant concentrations.  The 

response of the potentiometric sensors mostly depends on the bulk properties of an ion-selective 

membrane/film. [35]. The limitations of potentiometric wearable sensors is that the 

instrumentation is large and it is unable to detect lower limits of ions [36] .  
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Both potentiometric and amperometric transducers are commonly used for electrochemical 

sensors. However, amperometric sensors monitor the current associated with the oxidation or 

reduction of an electroactive species that is used in the recognition process [37].  The sensor 

generally has a short response time which makes it a useful application for medicine, food 

technology, and the environmental industry [38]. The design of an amperometric sensor is 

composed of two or three electrodes: a working electrode that is immobilized with an enzyme, a 

counter electrode, and a reference electrode (as shown in Figure 3) [39]. Amperometric sensors 

are known to be inexpensive, provides reproducible results, and highly sensitive. The sensor is a 

chemically modified electrode that is very selective and sensitive [40]. There has been an increase 

in the last 10 years for enzyme-based amperometric biosensors due to the high selectivity and 

sensitivity of the amperometric signal. The limitation of amperometric sensing is that not all 

protein analytes are capable to serve as redox partners in electrochemical reaction. These devices 

are mostly used in electrochemistry for the electrochemical reaction of the analyte at the working 

electrode [41]. 
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Figure 3. Schematic of an amperometric sensor in solution with a working, reference, 
counter electrode.  

 

 

Another electrochemical sensor is conductometric. This sensor is involved with the 

measurement of conductivity at a series of frequencies  [42]. This method must have a conductive 

liquid, which results from the dissociation of the dissolved substance of an electrolyte into ions 

and the generation of an electrical field. Once there is a potential difference applied to the electrode 

then ion movement will occur. Negative charge moves towards anodes that have a positive charge 

while positive charge moves towards the cathode. The ion movement towards the electrodes causes 

current in the electrolyte (as shown in Figure 4) [43]. The material of the sensor is conductive to 

the analyte that is present. The advantages of these sensors are that there is no reference electrode 

required and the sensor can be low cost [44]. A limitation of conductometric techniques is there 

must be a reaction ion in the solution, or the sensitivity will decrease. Another disadvantage is that 
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it has a low specificity and cannot  distinguish between reactions that cause an artifact [43]. Both 

limitations will cause an error for this method when testing.  

 

 

 

 

Figure 4. Ion migration in the solution and electrolyte conductivity. Adapted from N. 
Jaffrezic-Renault et. al [43] 

 

 

Overall, electrochemical sensors are very common biosensors due to their wide range of 

potential applications. These sensors are usually inexpensive and simple to construct.  Further 

research and investigation are still ongoing in this field to make the biosensors miniaturized, 

cheaper, more accurate, and provide faster feedback in real time.  
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Wearable sensors   

Wearable technology has become a huge market for the medical field due to its 

convenience and real time monitoring. The wearable technology market is expected to be close to 

$70 billion in 2025 [45]. Some wearable sensors are in the form of a panic buttons for emergency 

help, and this sensor has shown to be commercially successful [46]. The objective of wearable 

sensors is to continuously monitor wearer’s physiological measurements such as heart rate and 

skin temperature. There was a significant increase in wearable devices in 2015; and now, there are 

more than 500 different health related wearable devices [47]. Since there has been an increase in 

monitoring human performance, there has been a significant amount of research on wearable 

sensors. Wearable sensors do use noninvasive chemical analysis of biofluids such as sweat, tears, 

saliva, and interstitial fluid. These biofluids can be readily accessed without disrupting the 

outermost protective layers of the body’s skin and without using blood [48].  

Tear fluid can be used to monitor glucose as well as intraocular pressure from the human 

eye. Intraocular pressure can be a risk factor of glaucoma, which is a leading cause of human 

blindness [49]. A contact lens is a wearable sensor that collect tear fluid. It can allow for continuous 

monitoring of physiological conditions. The contact lens uses soft material that offer flexibility 

and minimize eye irritation for the user [48].  Kim et al., [49] designed a multifunctional contact 

lens that can detect glucose within the tears as well as the intraocular pressure. A limitation of 

contact lens biosensor is that it can be affected by repeated eye blinking due to the soft material, 

and the contact lens can lead to obstructed vision.  Another noninvasive wearable sensor that uses 

a body fluid is saliva. Saliva-based sensors can detect various biomarkers to improve clinical 

diagnosis and treatment.  They are convenient, safe, and cost effective for monitoring diseases 

such as diabetes and renal disease [50].  Mannoor et al., [51] designed a graphene nanosensor that 



 

 
 

21

was printed onto water-soluble silk. This biosensor was then placed on the tooth enamel or tissue 

which monitored pathogenic bacteria. The limitation with using saliva for a wearable device is that 

brushing teeth, processing food, and smoking can affect the composition of saliva or damage the 

sensor [52].  

Sweat-wearable sensors have only been around for about a decade, and many recent 

advancements in wearable sensors have been studied intensively [53].   A common sensor that is 

used to measure human performance is a wearable lactate sensor. The sensor is able to sense lactate 

through perspiration of the skin [40]. These sensors are non-invasive and are very convenient to 

the user. A tattoo based paper biosensor has been examined on the epidermal surface on the human 

neck and under various forms of mechanical strain [5]. However, this sensor needs to be examined 

on other locations of the body and under different environments to determine its full potential and 

limitations. Two types of material that are used for non-invasive electrochemical sensor for 

monitoring sweat are fabric/flexible plastic-based devices and epidermal based sensors. Epidermal 

sensors can be tattoo-based paper which allows for direct and continuous contact with the skin. Jia 

et al., designed a flexible printer temporary tattoo biosensor that can noninvasively monitor lactate 

levels. There are disadvantages to tattoo sensors. The tattoo sensors are one time use only and 

cannot withstand stretching stress [54]. The fabric/flexible plastic based biosensor material tends 

to be electrochemical sensors that are screen printed on these materials that have large surface area 

[26]. These types of sensors tend to be low cost. An easily reproducible substrate such as 

polydimethylsiloxane (PDMS) is used because of its moldable and flexible properties. PDMS is 

comfortable to wear on the skin and it can cover the sweat collection area and prevent the sweat 

from evaporating [55]. PDMS has been used due to its high transparency and superior mechanical 

flexibility [56]. It has been used mostly for microchips [57], micro pumps [58], and electronics on 
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the skin [59].  PDMS is the most widely used flexible substrate material due to its excellent 

comprehensive performance [60]. Kim et al, designed a flexible triboelectric nanogenerator  using 

PDMS and CNT nanostructures [61]. PDMS was used due to its high flexibility and stretch ability, 

since the sensor will be placed on a human body during human activity.  Wu et al., [62] fabricated 

a three electrode sensor on PDMS to detect hydrogen peroxide. The use of PDMS allowed for 

miniaturization, reproducibility, light weight and flexible microstructures of the sensor.  

Non-enzymatic sensors  

Non-enzymatic sensors’ ability to detect an analyte is based on electrocatalytic reaction of 

non-biological material such as metals, alloys, and metal oxides, like copper oxide and nickel oxide 

[63]. These sensors will have a longer lifetime than enzymatic sensors because they do not contain 

any biological components on the surface of the sensor [64]. The non-enzymatic sensor is less 

expensive to produce since the sensor does not require a biological component such as costly 

enzyme [65]. Recently, Jiang et al., designed a glucose sensor by coating copper on carbon 

nanotube rubber fiber [66]. This allowed the sensors to be highly stretchable and able to withstand 

large strains of up to 60% with negligible influence on its performance. During the detection of 

glucose, the molecule binds to the electrode and then its electrochemical environment changes. 

This biorecognition event indicates that the electrochemical catalyst can oxidize the glucose 

molecule. Enzyme glucose sensors have shown to be effective under various pH, temperature, and 

humidity environments. This type of sensor has proven to have a higher stability than the 

enzymatic sensors. Enzymes sensors have been shown to lose almost half their sensitivity within 

the first ten days [67], whereas these sensors have been proven to be more reliable.  

 Non-enzymatic lactate sensors have been developed to use nickel oxide to detect lactate. 

Nickel oxide can easily be fabricated with conventional solution-based methods. Zaryanov et al., 
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designed a screen printed non-enzymatic lactate sensor. The working electrode surface was 

modified using electropolymerization of 3-aminophenylbornoic acid with imprinting of lactate 

[67]. The lactate sensor had a lactate detection range from 3 mM to 100 mM in the solution 0.1M 

KCL. This sensor was able maintain its sensitivity through 6 months of storage at room 

temperature.  The response time for this sensor was reported to be between 2 - 3 minutes. The 

limitation of non-enzymatic lactate sensors is it exhibits relatively low sensitivity compared to 

enzymatic sensors and it has a slow response time of ≥2 minutes, versus rapid responses in 

enzymatic sensors [65,70].  

Enzymatic Sensors 

Enzymes are proteins that are biological catalysts for biochemical reactions. Enzymes are 

usually used as bioreceptor molecules for biosensing [69].  When a biosensor uses enzymes, it will 

be combined with a transducer in which it will produce a signal proportional to target the analyte 

concentration. This signal occurs from a change in proton concentration, release or uptake of gases, 

light emission, or absorption. The transducer will then convert the signal into current, potential, 

thermal or optical means [70]. Enzymes can recognize a specific chemical reaction. Enzymes are 

categorized in six classes which include: dehydrogenase, oxidases, peroxidases, and oxygenase. 

These enzymes are involved in an oxidation/ reduction reaction of the substrate via transfer of 

hydrogen or electrons [69] . Enzyme biosensors are used for clinical analysis, food safety control, 

or disease monitoring purposes. This is due to the biosensor having a high sensitivity and 

specificity, portability, cost effectiveness, and possibilities for miniaturizations [71].  

The disadvantages of using enzymes are that they have a low stability and a lack of long-

term operational stability. To overcome these issues and make enzyme utilization more desirable, 

immobilization of enzymes have become a focus. Immobilization of enzymes is when the enzymes 
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are physically or chemically confined or localized in a region of space of their catalytic activities 

[72] .  Immobilized enzymes are more resistant to environmental changes and are more stabilized 

[73]. There are different immobilization techniques used to improve the stability, sensitivity, 

response time, reproducibility, and selectivity [74]. The most common immobilization strategies 

are covalent binding, entrapment or encapsulation, cross-linking, and adsorption.  

Covalent binding method has a strong binding which allows for the immobilized enzyme 

to be stable (shown in Figure 5). This method occurs when stable complexes between functional 

groups on enzyme molecules and a support matrix are formed through covalent bonding [75]. 

Covalent binding is associated with enzymes that support owing to their side chain amino acids 

like arginine, aspartic acid, histidine, and degree of reactivity based on different functional groups 

[76]. The covalent binding will go through two stages: the activation of the surface using linker 

molecules such as glutaraldehyde and the enzyme covalent coupling to the activated support. The 

glutaraldehyde, which is the multifunctional reagent, will act as the bridge between surface and 

enzyme by covalent bonding [75] . Fu et al., modified the enzymes on the surface using covalent 

binding which enhanced enzyme activity and stability [77]. The concept was conducted by 

covalently binding the peptides to β-galactosidase through enzyme immobilization. This exhibited 

higher specific activity and stability in the peptide-modified surface. Overall, covalent binding 

provides for strong bindings between enzymes and support matrix. This leads to less leakage of 

enzymes from the support surface. However, covalent binding has a high risk of enzyme 

denaturization when the enzymes undergo the chemical modification process. This immobilization 

process increases enzyme stability but decreases the enzyme activity in affinity reaction and is 

poorly reproducible [71].  
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Figure 5. Schematic shows the enzyme immobilization covalent binding 

 

Entrapment is another method for enzyme immobilization. The enzymes in this method are 

not attached to the support surface but are entrapped in a gel matrix that has minimal leaching of 

enzymes and high stability of the enzyme.  The enzyme is confined within a polymer lattice 

network, the enzyme does not chemically interact with the entrapping polymer [75]. The enzyme 

immobilization methods, entrapment and encapsulated are shown in Figure 6. These methods can 

be used in the chemistry field, biomedicine, biosensors, and biofuel due to the use of nanofiber 

and pristine material to perform the entrapment [76].  Ivnitski et al., [78], designed a glucose 

oxidase sensor on carbon nanotubes, where the glucose oxidase was immobilized on the surface 

of the carbon nanotubes. A silica matrix was applied to the electrode surface to entrap the 

immobilized enzymes. This helped stabilize the enzyme activity and support electrical 

conductivity. However, the gel matrix can interfere with the immobilization of the enzymes, 
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limiting the loading capacity of the enzyme. This method also leads to enzyme leakage, due to the 

pore size of the support matrix being too large. To overcome this issue the membrane porosity 

must be adjusted according to the different molecule sizes of the enzyme to prevent leakage [71].  

 

Figure 6. Schematic shows the enzyme immobilization entrapment and encapsulation. 

 

A third method is cross-linking, which allows for a highly strong and stable bonding 

between enzymes and the support substrate (shown in Figure 7). This method is performed by the 

formation of intermolecular cross-linkages between the enzyme molecules by covalent bonds, 

which is carried out with the assistance of a multifunctional reagent. This reagent will act as linkers 

to connect the enzyme molecules into three-dimensional cross-linked aggregates. Cross-linking 

reagents are glutaraldehyde, bisdiazobenzidine, and hexamethylene diisocyanate that are typically 

used to cross-link enzyme molecules by the reactions of the free amino groups of lysine residues 

on the reactive site of the neighboring molecules [75]. During the immobilization method, the 
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enzyme aggregates produced by precipitation of enzymes from aqueous solution by addition of 

organic solvents. This can enhance longevity and operational stability of the electrode [76]. This 

immobilization method has shown to have a strong chemical binding of enzyme biomolecules with 

minimal enzyme leakage. Nonetheless, glutaraldehyde can result in severe enzyme modifications 

and lead to enzyme conformational changes and loss of activity [71].  

 

 

Figure 7. Schematic shows the enzyme immobilization cross linking. 

 

Finally, the easiest method is adsorption (shown in Figure 8). The adsorption method 

occurs when the enzymes are absorbed onto the supporting matrix through weak non-specific 

forces, such as Van der Waal’s forces, electrostatic and hydrophobic interactions [75]. This method 

is performed by depositing the enzymes on the electrode surface or by dipping the electrode in the 

enzyme solution for a set duration. This sustains the enzyme activity. This method is simple, 

inexpensive, and is less destructive to the enzyme activity than the other methods.  The binding is 
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weak, thereby preventing the active sites of the enzyme from disturbing and allows the enzyme to 

retain its activity [79]. Kibarer et al., [80], fabricated the surface of a petroleum-based activated 

charcoal by the adsorption of urease. This allowed for stability of the enzyme and enhanced the 

activity.  The limitation of this method is that the enzymes can be subject to many changes that 

could weaken the biosensor signal [71]. However, to avoid this, Nafion is used as a protective 

coating on the surface of the enzyme immobilized  electrode in order to prevent enzyme leaching, 

as well as to selectively screen against interfering analytes [81] 

 

 

Figure 8. Schematic shows the enzyme immobilization process adsorption. 

 

Two enzymes that have been frequently used during the design of lactate sensor are lactate 

oxidase (L-LOD) and lactate dehydrogenase (D-LDH) [82].  This is due to their simple enzymatic 

reaction and simple sensor design fabrication. Currano et al., designed a wearable lactate sensor 

using the enzyme lactate oxidase [3]. The enzymatic reaction of lactate with lactate oxidase 

produces hydrogen peroxide. The rate of hydrogen peroxide produced is dependent on the rate of 

the lactate/lactate oxidase reaction. The limitation to using lactate oxidase is it requires a high 

oxidation potential, which leads to interferences caused by electro-oxidizable species [82].  L-
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LOD can be obtained by a bacterial source such as Pediococus, Aerococcus viridans, and 

Mycobaterium smegmatis. In the presence of dissolved oxygen, L-LOD catalyzes the oxidation of 

L-Lactate to pyruvate and will form hydrogen peroxide, which is electrochemically active, and 

will either be oxidized or reduced to give a current proportional to L-Lactate concentration. Due 

to the reduction of oxygen, oxidation of hydrogen peroxide is required for detection [82]. The 

electrochemical reaction involved lactate biosensor is summarized as follows:  

 

𝐿 − 𝑙𝑎𝑐𝑡𝑎𝑡𝑒 + 0
-lactateoxidase
⎯⎯⎯⎯⎯⎯⎯⎯⎯  𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 +  𝐻 𝑂                            (2) 

𝐻 → 𝑂 + 2𝐻 + 2𝑒                                                                       (3) 

 

In Eqn. 2, the electrons are transferred through the FAD cofactor in the enzyme structure. 

Oxygen is a main component in the enzymatic reaction which has motivated researchers to design 

lactate sensors based of the depletion of oxygen. These sensors have less interference because the 

sensor functions at a cathodic potential. The signal depends on the ambient oxygen contraction 

and must be assumed that oxygen is constant, or it must be monitored. Due to monitoring the 

oxygen increase, the complexity of the sensor design leads to extra cost [68].  To overcome this 

issue of monitoring the oxygen concentration, D-lactate dehydrogenase (D-LDH) is used. This 

enzyme works in the presence of a co-enzyme NADH or NADP. The electrochemical reaction is 

as follows:  

𝐿-lactate + NAD  
-lactate dehydrogenase
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  𝑝𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 𝑁𝐴𝐷𝐻                            (4) 
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The D-LDH catalyzes the oxidation of lactate to pyruvate in the presence of the oxidized 

form of nicotinamide adenine dinucleotide (NAD+) [83]. The reduced NADH can be 

amperometrically detected. Baingane et al., designed a self-powered electrochemical lactate 

biosensor that was immobilized with D-LDH [84]. The sensor showed that D-LDH has a high 

catalytic activity when it reacts with lactic acid.    However, difficulty incorporating the coenzymes 

NAD+ /NADH into the biosensor and most often the high oxidation poses problems as additional 

parameters must be improved. This is a reason that L-lactate oxidase has gained more attention in 

the development of the lactate sensor [68].  
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CHAPTER 3 

LACTIC ACID 

 

Lactic Acid  

Lactic acid is an organic compound that is found throughout the human body (shown in 

Figure 9). The accumulation of lactate has been associated with impaired sports performance due 

to lactic acidosis. This research began in the 1920’s by British physiologist A.V. Hill. He 

hypothesized that a decrease in pH derepress the cell excitability and will force a muscular 

contractile force. However, over the years, advances in technology have shown that lactate is a  

valuable energy substrate for various physiological systems which include the brain, heart and 

skeletal muscle [85].  

 

 

Figure 9. Lactic acid molecular structure 

 

 

Lactic acid is mainly associated with anaerobic metabolism, which is the creation of energy 

through the combustion of carbohydrates in the absence of oxygen. During muscle activity, 

glucose is converted into pyruvate through glycolysis, which produces Adenosine triphosphate 

(ATP) in the process. With enough oxygen supply, ATP is produced continuously from pyruvate 
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in the Krebs cycle. Once there is a depletion of oxygen during physical exertion, the anaerobic 

process is initiated. Pyruvate will then be converted into lactate by the enzyme lactate 

dehydrogenase which is found in muscles [10]. The lactate metabolism in muscles is shown in 

Figure 10, where the liver metabolizes lactate. Pyruvate undergoes the metabolic pathway 

gluconeogenesis to convert pyruvate into glucose.  Then glucose goes back into the tissues as an 

energy source. Under normal conditions the lactate is cleared by the liver with small additional 

clearances by the kidneys [86]. The liver accounts for 70% of the lactate clearance [87].  If the 

liver doesn’t metabolize the lactate, it can lead to lactic acidosis.  

  

 

Figure 10. Outline of the Cori cycle. The depletion of oxygen supply, pyruvate will be 
converted into lactate, thereby assuring regeneration of NAD+ from NADH. The glycolysis 

process will lead to the production of ATP. 
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Lactic acidosis occurs when the body is unable to metabolize the increased amount of 

lactate in the muscles. This can lead to muscle fatigue and weakness. This is also associated with 

an increase in mortality in patients with shock and sepsis [88].  There are two classifications of the 

causes of lactic acidosis  [62]. Type A is caused when there is a deficiency in oxygen in the tissue, 

which increases lactate levels. This can also be developed by shock, such as cardiac failure which 

has a mortality greater than 80% [90].  Sepsis can also be a cause of Type A lactic acidosis, and 

this is due to the lack of oxygen during the development of the anaerobic glycolysis within tissues 

[91]. Type B is from toxin induced impairment of cellular metabolism.  There are three categories 

for Type B. Type B 1 occurs with different diseases such as diabetes, liver disease, renal 

insufficiency and infection. Type B 2 is linked with drugs and toxins. The last type is Type B 3, 

which includes congenital errors of the metabolism [90].   Metformin is a commonly prescribed 

medication for type 2 diabetes. People that typically are affected by metformin-associated lactic 

acidosis often develop renal impairment from dehydration. This reduces the clearance of the 

medication resulting in increasing levels of metformin levels in the plasma [92]. 

 

Table 2.  Different Types of Lactic Acidosis  

Lactic Acidosis  Causes Examples 
Type A  Impairment of tissue oxygenation  

 Hypoperfusion 
 Hypoxia  

 

 Septic  
 Regional ischemia  
 Seizures 
 Shock  

Type B   Toxin induced impairment of cellular 
metabolism  

 Medication 
(metformin) 

 Diabetic 
 Liver disease 
 HIV 
 Ethanol intoxication  
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 Lactic acid is essential for diagnosing patients’ conditions during intensive care as well as 

during surgery. If a patient has elevated lactate levels, that can be an indicator of ischemic 

condition of the respective tissue. Ischemic conditions can be caused by heart failure, shock, 

suffocation, intoxication, carbon monoxide, and respiratory insufficiency [11]. It can also play an 

important role in sports medicine and is able to monitor athletes during exercise [11]. When muscle 

fatigue occurs, it is due to accumulation of lactate in working muscles which cause inhibition of 

contractile processes. During exercise, lactate concentrations can increase up to 40 mmol/L (mM) 

in the muscle fibers [93]. A key performance indicator for endurance athletes is lactate threshold. 

Lactate threshold allows for the athlete to perform at the highest rate of work for extended periods 

[94]. The lactate threshold is defined as the exercise intensity in which lactate starts to accumulate 

in the bloodstream. This occurs when the body is unable to metabolize the lactate that is produced 

during exercise [95].  

Blood  

Blood has been used since 1886 to measure lactate levels. In 1964, Broder and Weil proposed 

that lactate was a prognostic biomarker [96]. They observed if there was excess amount of lactate 

levels, then it was associated with poor outcome in patients [86]. There is a relationship between 

increased blood lactate levels and tissue hypoxia in patients. Tissue hypoxia is when there is lower 

than normal oxygen levels in the tissue and the oxygen delivery is not being met.  Lactate levels 

in blood will rise when tissue hypoxia occurs [96]. Normal levels of lactate in blood is around 0.5 

mM. When lactate levels increase in blood exceeding 7 - 8 mM this can be associated with fatal 

outcomes. Lactate is a major indicator of ischemic conditions [97].   

 Lactate blood sensors are invasive sensors than can be implanted in the body and 

continuously monitor lactate. Implantable sensors can be used in hospitalized patients. The design 
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of implantable sensors is the longevity, since it will be in vivo. Implantable sensors will allow for 

monitoring lactate acidosis, acute circulatory shock, heart disease, and continuous monitoring in 

surgery [98]. Guiseppi-Elie et al., designed and fabricated an implantable biochip for dual 

monitoring of glucose and lactate [99]. The implantable sensors allow for continuous monitoring 

of dual analytes and was able detect up to 90 mM of lactate. The implantable sensor did show a 

decline in the activity of the enzyme after three months. This sensor was stored at 4°C, which is 

below the internal body temperature, and the enzymes on the electrode could decline quicker if in 

a warmer environment. When temperature increases, so does the enzyme activity to a certain point 

and then the enzyme will start to denature [100]. When the sensor is implanted into the body, it is 

exposed to flowing whole blood, where plasma proteins adsorb onto the surface of the device. This 

then leads to adhesion activation and aggregation of platelets that trap red blood cells, which will 

form a blood clot. This will affect the surface of the device due to restricting the mass transport of 

analytes to the sensing surface (as shown in Figure 11) [101].  

 

 

Figure 11. Schematic of an implantable sensor. Adapted from K. H. Cha et.al [101] 
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 Overall, this can lead to deterioration in sensors performance and response [101]. Another 

disadvantage of an implantable sensor is it requires a physician to surgically insert the implant into 

the patient [103]. The sensor is in vivo, which can lead to bacterial infection from the sensor being 

implanted into the human body.  

Sweat 

An alternative to invasive implantable sensors is non-invasive sweat sensors that can be 

placed on the body without surgery. Sweat plays a critical role for human thermoregulation which 

can be due to environment or exercise-heat stress. There are three main type of sweat glands: 

eccrine, apocrine and apoecrrine (as shown in Figure 12) [103].  

 

 

Figure 12. Schematic of the structure of the human sweat gland. Adapted from L. B. Baker 

[103] 
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The eccrine gland was first described in 1833 by Purkinje and Wendt and in 1834 by 

Breschet and Roussel de Vouzzem. The eccrine gland was named 100 years later by 

Schiefferdecker. Humans have 2 - 4 million eccrine sweat glands, which are found in palms, soles, 

and non-glabrous skin.  The palms and soles have the highest gland densities and respond to 

emotional and thermal stimuli. The apocrine gland was first recognized in 1844 by Krause and 

then named by Schiefferdecker in 1922. This sweat gland is primarily found in the axilla, breasts, 

face, and scalp. These glands are larger and open into hair follicles. In addition, these glands 

produce lipid rich sweat which consists of protein, sugars, and ammonia. The apocrine sweat 

glands respond to adrenergic and cholinergic stimuli. The third gland is apoeccrine gland which 

was first described in 1987 by Sato. This gland was developed from the eccrine sweat gland from 

the ages of 8 to 14 years old. The apoeccrine glands are located only in the axillary region. This 

gland produces copious saltwater secretions. This also responds to cholinergic than adrenergic 

stimuli [103]. Sweating is initiated by the hypothalamus in response to an increased rise in 

temperature of the body.  Then a signal is sent by the sympathetic nervous system. Sweating is 

stimulated in vivo and in vitro using both α-adrenergic and β-adrenergic agonists [104]. Sweat 

contains mainly ions such as sodium, potassium, magnesium, chloride and lactate. The upper duct 

is also known as the acrosyringium. This region consists or straight and coiled portion in the dermal 

duct. The eccrine sweat gland expands and then emerges to surface of the skin. The microfluids of 

the eccrine sweat gland are very important for biomarkers with strong sweat rate dependence.  

The benefit of using sweat is that it is easily accessible and noninvasive [105].  Sweating 

can occur in physical responses to environmental conditions, physical exercise or a person’s 

emotions [104]. Sweat lactate can track an individual’s performance or exertion levels [106]. This 

can be used for athletes and measure their lactate threshold. Lactate threshold allows athletes to 
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perform at a higher work-rate for extended periods [107].  Lactate threshold indicates when an 

individual is at the point of intensity when the blood lactate concentration begins to exponentially 

increase. The individual or athlete will need to immediately reduce the intensity so overstraining 

does not occur [108].   When a person becomes ill, the illness can change the composition of their 

sweat, which can alter certain components in sweat. These components then can act as a biomarker 

[109]. Work presented in this paper can detect lactate in sweat, which is a noninvasive alternative 

to blood. This sensor can detect sweat lactate concentrations over lactate threshold, which can be 

indicator for lactic acidosis and ischemic conditions.  Sweat lactate can be used as a biomarker for 

tissue viability and for pressure ischemia. Also, it can be indicators for cystic fibrosis (CF), 

electrolyte imbalance, physical stress, osteoporosis, bone mineral loss, sodium, lactate, and 

ammonium levels. It can also be used for monitoring a person’s intoxication level and drug abuse 

[26].  Sweat concentration of lactate and ammonium ion are about 10 to 100 times higher than 

blood, which allows it to be easily detected using a biosensor [110]. During exercise lactate 

concentrations are around 31 mM compared with 12.1 mM at the point of exhaustion [104]. 

Recently, Payne et al., designed a flexible lactate sensor that detects lactate in the sweat [111]. 

This sensor can detect up to 24 mM of lactate, whereas the sensor we developed can detect pass 

the threshold lactate concentration of sweat during exercise.  

The benefit of using sweat to detect lactate is that it is convenient, accessible and it is correlated 

to lactate levels in blood [105]. To collect information on athletes’ physical condition an insertion 

of a catheter or implantable biosensor would have to be used, this can lead to infection and it is 

not convenient to the athlete for safe and convenient monitoring lactate.   
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CHAPTER 4  

 

LACTATE BIOSENSOR 
 

 

Current Trends and Outlooks  

Lactate concentrations have not only been used for clinical diagnostics for assessing 

patient’s health conditions, sports medicine, shock/trauma, but also in the food industry. In the 

food industry, lactate can determine the presence of bacterial fermentation which indicates the 

quality and freshness of the food, whereas in the sports medicine field, lactate levels are used for 

determining physical fitness in athletes  [82].   

Other analytical methods that have been used for lactate determination are high-

performance liquid chromatography, fluorometry, colorimetric test, chemiluminescence, and 

magnetic resonance spectroscopy. The drawbacks of these methods are that they are time 

consuming and costly due to the requirement of the machinery and trained manpower. Using 

biosensors can eliminate some of these limitations. Biosensors allow for real time data acquisition, 

rapid response, and they are user friendly and economical.  The most common lactate biosensors 

are enzyme lactate sensors due to their low detection limit, sensitivity, comparatively simple 

fabrication, user friendliness, portability, reliability, and reasonable cost [82]. Current trends of 

lactate sensors are noninvasive applications, such as monitoring in saliva [112], sweat[105], and 

tears[113]. 

Monitoring lactate through sweat has shown to be the most convenient for evaluating 

physical performance [114]. Sweat has been shown to be the most promising biofluid to measure 

lactate. This is due to sweat being easily accessible to collect and offers physiological information. 
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Sweat lactate has been shown to be a good biomarker for evaluating the severity of peripheral 

occlusive arterial diseases and damage in soft tissue [115]. Noninvasive lactate biosensors are also 

incorporated into biofuel cell, where the biofuel cells harvest energy from metabolites present in 

various biofluids. The metabolites is utilized as a potential fuel for energy [116]. In human 

perspiration, there is high levels of lactate concentrations which can be used to power the device 

[117].  

Materials  

  Buckypaper is composed of a dense network of multi-walled carbon nanotubes 

(MWNCTs) was bought from NanotechLabs (Yadkinville, NC, USA). Pyrenebutanoic acid 

succinimidyl ester (PBSE) was purchased from AnaSpec Inc. Lactic acid, potassium phosphate 

monobasic, dimethyl sulfoxide (DMSO), isopropyl alcohol and d-lactate dehydrogenase (D-LDH) 

were acquired from Sigma Aldrich and were without further purification. PDMS was obtained 

from Dow Corning (Midland, MI, USA). Phosphate buffer and phosphate-buffered saline (PBS) 

were prepared with 18.2 MΩ·cm Milli-Q water.   

Working Electrode Fabrication and Design 

        To make a small-scale sensor while maintaining high sensitivity, the BP was cut into a 

circle with a diameter of 9 mm. Then 200 μm tungsten wire was sandwiched and sealed along the 

top edge of the circle using polyimide and an additional 2 mm × 2 mm strip of BP.  The polyimide 

was applied around the outside edges of the circle to enhance the structure of the BP. The 

bioelectrode was cured at 100 °C for fifteen minutes. This is shown in Figure 13.  
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Figure 13. Schematic of the fabricated working electrode. 

       The electrode was washed with 2-propanol for fifteen minutes to remove any impurities on 

the surface. The circular BP was then placed in 1.4 mg/ml PBSE/DMSO cross-linking solution 

and was done in the dark for one hour with moderate shaking. Next, the electrode was rinsed with 

DMSO for five minutes and followed by another rinse of 10 mM of phosphate buffered solution 

(PBS) (pH 7.0) for five minutes to remove any leftover DMSO.  Afterwards, a solution of 1.4 

mg/ml of D-LDH prepared in 10 mM PBS (pH 7.4) used for enzyme immobilization. Next, 50 µL 

was drop casted on the front after being prepared in the dark at room temperature with moderate 

shaking for an hour. Then the electrode was turned over and 50 µL was drop casted on the other 

side following the same procedures as outlined previously. Then coated the bioelectrode with 5 μl 

of Nafion on the surface area. Nafion is used on the surface of the electrode because it is 

biocompatible to the enzymes and is chemically inert, which entails it exhibits relatively little 

adsorption of species from the solution. Nafion reduces the effects of electroactive interferents 

such as ascorbate. It is also used as a protective membrane for the biosensor [118]. Nafion was 

chosen over chitosan because it is more conductive and over time Nafion enhances the electrode 

stability of the electrode [119]. Next, the bioelectrode was dried in the desiccator at room 
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temperature for fifteen minutes. This allows for the immobilization of D-LDH to be preserved on 

the bioelectrode. The electrode was placed in a sealed container for 24 hours until tested.  

  PDMS film was prepared using PDMS monomer and the curing agent with a mixed ratio 

of 10:1 and cured in the oven at 50 °C for ten minutes (shown in Figure 14). Next, a hole was 

punched in the center of the PDMS and the working electrode was affixed. Then, the counter and 

working electrode was weaved through the PDMS (Figure 15). Small amounts of PDMS were 

placed to enclose the holes of the working, counter, and reference. Finally, the PDMS was placed 

on athletic tape for adhesion (Figure 16).   

 

 

Figure 14. (A) PDMS cut into a square and (B) PDMS bent 
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Figure 15. Fabricated lactate biosensor prototype 

 

 

 

Figure 16. Lactate biosensor prototype incorporating athletic tape to enable facile attachment to 
skin  
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Reference and Counter Electrode Fabrication  

A 20 mm long and 1 mm thick silver (Ag) wire is placed briefly in 0.1M HNO3 to remove 

any oxide layer on the surface of the wire. Then, the silver wire is rinsed with DI water, IPA and 

dried in a N2 gas. Next, the Ag wire electrode is oxidized in 3 M NaCl at +700 mV applied voltage 

using chronoamperometry techniques. This resulted in the formation of a white coating of AgCl 

on the surface of the electrode. The electrode was then rinsed with and stored in 3 M KCl. The 

counter electrode is a 20 mm long platinum wire.  

Results  

The working electrode material is made from a mesh network of multiwalled carbon 

nanotubes (MWCNT’s).  MWCNTs are a type of carbon nanotubes (CNTs). CNTS are rolled up 

sheets of graphene that exists as a hollow tube [120]. This material has shown to be a promising 

material for sensing application. CNTs have an outstanding ability to mediate fast electron transfer 

kinetics for a wide range of electroactive species. CNT chemical functionalization can be used to 

attach almost any chemical species to them. This enhances the solubility and biocompatibility of 

the tubes [121].  For use in the design of the sensor, the MWCNT’s were cut into a circular shape. 

This was chosen to ensure uniform distribution of enzyme solution on the surface of the 

bioelectrode. D-LDH enzyme is used to catalyze the oxidation of lactate [122]. The initial reaction 

that creates the enzyme immobilization reaction is derived from the creation of a peptide bond 

between the amino group from the enzyme and the carboxyl group which is found within 1-

Pyrenebtanoic acid, succinimidyl ester (PBSE), a heterobifunctional crosslinker. As this reaction 

occurs, the double bond between the carbon and oxygen is broken off from the PBSE. This causes 

oxygen to have a negative formal charge with the electrons moving towards the electron with a 

higher electron count. Because of this, the carbon becomes electron deficient which leads nitrogen 
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to donate electrons creating an unstable intermediate with a now positive formal charge nitrogen 

and oxygen retaining its negative formal charge. The oxygen is then able to reform a double bond 

with the carbon atom on the PBSE using the π bond electrons from the oxygen atom. This happens 

concurrently with the ester group, that was previously attached to the carbon atom, breaking off 

along with the hydrogen that was previously attached to the nitrogen. The result of this reaction 

leaves behind a neutral, immobilized enzyme (as shown in Figure 17) [85, 86].  

 

 

 

Figure 17. Schematic of the enzyme immobilization. (A) PBSE interacting with MWCNT’s via 
π-π stacking and amino functional group on the enzyme reacts with the carboxyl functional group 
on the PBSE to form a peptide bond. (B) Formation of an unstable intermediate product. (C) 
Immobilized enzyme along with the byproduct. From T.Kulkarni et.al  [123] copyright line © 
[2017] IEEE 

 

After two months, the electrodes were weaved into PDMS, a polymer that is used for 

fabrication for flexible microelectronics [124]. This is one of the most common polymer materials 

used in biomedical applications due its ease for fabrication, biocompatibility, and 

haemocompatible [125]. PDMS has also been used as a biomaterial in catheters, drainage tubing, 
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insulation for pacemakers, membrane oxygenators, and ear and nose implants [126].   The benefits 

of using PDMS are it is inexpensive, flexible, and non-toxic to cells. In addition, this is a soft 

flexible substrate, optically transparent, and very thin [124]. This will allow for the sensor to be 

placed on the body.  

 

 

Figure 18. (A) Pt wire electrode (red curve) in 10 mM phosphate buffer solution. (B) As-
fabricated Ag/AgCl reference electrode (blue curve) and commercially available glassy carbon 
electrode, Ag/AgCl and Pt wire were used as the working, reference and counter electrodes.  

 

 

Cyclic voltammetry (CV) and chronoamperometry (CA) were performed with the 

PalmSens4 in order to electrochemically characterize the biosensor. All experiments that were 

conducted were done in triplicates. The setup of the biosensor system, which consists of platinum 

counter, BP/D-LDH working, and Ag/AgCl reference electrodes. Figure 11 shows the prototype 

biosensor, which incorporates an athletic tape to affix the biosensor to the skin. Figure 18 shows 

the CV curve for the platinum (Pt) wire counter electrode versus the commercial Pt electrode which 

showed no significant potential difference observed between the two counter electrodes. In 

addition, the as fabricated reference electrode showed an increase in the oxidation compared to the 

A B 
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commercial Ag/AgCl, which is within in the experimental error.  The electrocatalytic activity of 

the biosensor was assessed using cyclic voltammetry in the presence of 10 mM phosphate buffer 

solution (pH 7.4) and in the presence of the increasing concentration of lactic acid. A well-defined 

oxidation peak was observed at a potential of 0.15 V as shown in Figure 14. 

  

 

Figure 19. Cyclic voltammetry of the lactate biosensor in the absence and presence of increasing 
lactic acid (1, 20, and 40 mM). (a) in the absence of D-LDH. 

 

In chronoamperometry, the potential of the working electrode is stepped from a value 

which no faradaic reaction occurs to a potential at which the surface concentration of the 

electroactive species becomes zero. It is used by pulsing the potential of the electrode repetitively 

at fixed time intervals [34]. Chronoamperometry is used to measure current–time dependence for 

the diffusion of lactic acid added in phosphate buffer solution. In response to the addition of 5 mM 

lactic acid aliquot, there was a clear increase in current, which indicated that the lactate biosensor 

is responsive to lactic acid at an impressed potential of 150 mV (Figure 20). This potential was 

chosen to match the oxidation peak observed in the CV (Figure 19) for the oxidation of lactic acid. 
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Lactate oxidase produces hydrogen peroxide which will cause the enzymatic reaction to have a 

higher oxidation potential. Multiple lactate biosensor that used lactate oxidase had an applied 

potential of +650 mV [16,108]. This could cause electro-oxidizable species, such as ascorbate to 

be easily detected thereby interfering with the biosensor response to lactic acid [82, 115]. In this 

work we used D-LDH in order to maintain the high selectivity of the biosensor.  

Anastasova et al., [105] developed a wearable multi-sensing patch that was only able to 

detect a linear range up to 28 mM of lactic acid. Whereas in the work we observed a linear range 

up to 45 mM of lactic acid (shown in in Figure 20), which is above the average exercise sweat 

lactate concentration of 31 mM [104]. This indicates this sensor would be able to monitor ischemic 

conditions and other physiological conditions that elevate lactate levels. This sensor can be used 

in surgery or organ preservation to monitor lactate levels during surgery and be placed on the tissue 

or organ to monitor lactate levels [102]. Increased levels of lactate in blood around 7 - 8 mM can 

be caused by underlying health conditions [98]. This sensor can measure lactate levels from 2 - 

45mM. This indicates it would be able to detect lactate blood levels that are at dangerous levels.  

 

Figure 20. Current responses of CA Day 1 MWCNTs /D-LDH/nafion electrodes in PBS to the 
successive injection different concentration of lactic acid at 0.15 V, n=3 
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Figure 21. Calibration plot of the response of lactate biosensor, n=3 

Due to the biosensor being placed on the skin, a pH and temperature profile 

characterization was conducted. Figure 22 shows the optimal working temperature of the biosensor 

operating at a fixed pH of 7.5 is 50 °C. When a person begins to exercise, an increase in blood 

flow will occur which will then increase the temperature of the skin [127]. As shown in Figure 22 

the temperature increases as well as the current. Figure 23 shows that the biosensor works better 

in a more acidic or basic environment.  During exercise the pH will increase on the surface of the 

skin making it closer to a pH of 7 which is a more neutral environment [128].  
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Figure 22. Temperature dependence on MWCNTs /D-LDH/nafion in the presence of 5mM of 
lactic acid  

 

 

Figure 23. pH dependence on MWCNTs /D-LDH/nafion in the presence of 5 mM of lactic acid 
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Once the working electrode was calibrated, the system was fully integrated together. The 

working, reference, and counter electrode were placed into PDMS after 60 days and then the 

system was connected to the PalmSens (shown in Figure 34). A chronoamperometry measurement 

was performed of the completed sensor. Figure 25 shows a linear increase in current in response 

to 5 mM lactic acid aliquot at an applied potential of 150 mV. The sensitivity of this sensor is 

0.679 µA/mMcm2. This sensitivity is relatively close to the working sensor without PDMS, which 

indicates it can be used to monitor lactic acid.  

 

 

Figure 24. Working, reference and counter electrode integrate into PDMS after two months and 
placed in PBS.  
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Figure 25. (A) Current responses of CA Day 60 MWCNTs /D-LDH/nafion on electrodes on 
PDMS in PBS to the successive injection different concentration of lactic acid at 0.15 V, n=3 

(B) Calibration plot of the lactate biosensor, n=3 

 

The lower sensitivity of 0.679 µA/mMcm
2
 was anticipated since upon complete sensor 

integration, the PDMS covered half the working electrode surface. This is believed to have led to 

the observed decrease in sensitivity. Additionally, a decrease in sensitivity is also expected over 

two months of storage as the enzyme activity degrades over time.  
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CHAPTER 5  

CONCLUSION 

 

A flexible electrochemical lactate sensor that is sensitive to the detection of lactic acid and 

has been successfully designed and fabricated by immobilizing D-LDH on a mesh network of 

MWCNTs. The lactate dehydrogenase enzyme exhibited a high electrocatalytic activity in the 

presence of lactic acid.  This sensor exhibited an excellent range of up to 45 mM for lactic acid 

and a sensitivity of 1.388 µA/mMcm2. The lactate biosensor also showed stable operation at 

physiological pH and temperature, which demonstrates that the sensor could monitor sweat in 

different operating environments. Upon complete integration of the biosensor system and lower 

sensitivity is observed. This could have been examined by performing a stability test on day 1 to 

ensure the decrease in sensitivity was caused by the working electrode being covered by half of 

the PDMS.  

Lactic acid is a key biomarker for lactic acidosis that can cause weakness and fatigue in 

the muscles. During intense and extraneous exercise, lactic acid will increase in the body. When 

lactic acid increases, the liver will typically break down the lactic acid. The biosensors is fabricated 

on a flexible PDMS to help predict intensive care, training status and fitness during exercise.  It 

has been shown that this type of biosensor has a practical application in clinical and sports 

medicine.  This sensor could be used on a wide scale basis to help improve the health of consumers 

due to continuously monitoring lactate levels while being active.  
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Future Work  

The future work involves making more stable biosensors than can be stable under 

continuous operations. Since the sensor was not tested on day one when integrated into PDMS, 

this will need to be conducted to see if the PDMS or the duration of storage time impacted the 

sensitivity. The sensor will need to go from day one and measured weekly for two months on 

PDMS to determines its stability and sensitivity on the substrate.  The sensor will need to be tested 

on the athletic tape to indicate that it has similar results to the working electrode and the working 

electrode placed on PDMS. Then the sensor can be tested using human sweat. Once this has been 

conducted, the sensor can be tested on a person during exercise to monitor the ability of the sensor.  

Additional stability, selectivity and strength test will need to be performed. The stability 

characteristics that will be tested are the shelf life, reusability, and continuous use stability. Since 

this biosensor does contain biological components, the stability test will provide data on the 

duration the enzymes can stay on the surface and detect lactic acid. Then a selectivity test will test 

for common interfering species such as glucose, ascorbic acid, and uric acid.  

Since this is a flexible sensor, a mechanical distortion (pinching, twisting, and stretching) test 

needs to be conducted on the integrated sensor and PDMS. The sensor can integrate wireless data 

acquisition, where the data obtained from sensor can be wirelessly transferred to a mobile device 

through Bluetooth where it can be further studied and analyzed. Lastly, the sensor could be 

integrated into a wearable biofuel cell for detecting lactate through sweat in the development of a 

self-powered lactate biosensor. This would allow the system to harness lactate in sweat as an 

energy source and produce enough levels of electricity to power the system.  
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