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ABSTRACT 

TRUCK TRAILER CLASSIFICATION USING SIDE-FIRE LIGHT DETECTION AND 
RANGING (LiDAR) DATA 

 
Olcay Sahin 

Old Dominion University, 2020 

Director: Dr. Mecit Cetin 

Classification of vehicles into distinct groups is critical for many applications, including 

freight and commodity flow modeling, pavement management and design, tolling, air quality 

monitoring, and intelligent transportation systems. The Federal Highway Administration 

(FHWA) developed a standardized 13-category vehicle classification ruleset, which meets the 

needs of many traffic data user applications. However, some applications need high-resolution 

data for modeling and analysis. For example, the type of commodity being carried must be 

known in the freight modeling framework. Unfortunately, this information is not available at the 

state or metropolitan level, or it is expensive to obtain from current resources. 

Nevertheless, using current emerging technologies such as Light Detection and Ranging 

(LiDAR) data, it may be possible to predict commodity type from truck body types or trailers. 

For example, refrigerated trailers are commonly used to transport perishable produce and meat 

products, tank trailers are for fuel and other liquid products, and specialized trailers carry 

livestock. The main goal of this research is to develop methods using side-fired LiDAR data to 

distinguish between specific types of truck trailers beyond what is generally possible with 

traditional vehicle classification sensors (e.g., piezoelectric sensors and inductive loop detectors).  

A multi-array LiDAR sensor enables the construction of 3D-profiles of vehicles since it 

measures the distance to the object reflecting its emitted light. In this research  16-beam LiDAR 

sensor data are processed to estimate vehicle speed and extract useful information and features to 



 

 

classify semi-trailer trucks hauling ten different types of trailers: a reefer and non-reefer dry van, 

20 ft and 40 ft intermodal containers, a 40 ft reefer intermodal container, platforms, tanks, car 

transporters, open-top van/dump and aggregated other types (i.e., livestock, logging, etc.). In 

addition to truck-trailer classification, methods are developed to detect empty and loaded 

platform semi-trailers. K-Nearest Neighbors (KNN), Multilayer Perceptron (MLP), Adaptive 

Boosting (AdaBoost), and Support Vector Machines (SVM) supervised machine learning 

algorithms are implemented on the field data collected on a freeway segment that includes over 

seven-thousand trucks. The results show that different trailer body types and empty and loaded 

platform semi-trailers can be classified with a very high level of accuracy ranging from 85% to 

98% and 99%, respectively. To enhance the accuracy by which multiple LiDAR frames 

belonging to the same truck are merged, a new algorithm is developed to estimate the speed 

while the truck is within the field of view of the sensor. This algorithm is based on tracking tires 

and utilizes line detection concepts from image processing. The proposed algorithm improves the 

results and allows creating more accurate 2D and 3D truck profiles as documented in this thesis.   
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CHAPTER 1 

INTRODUCTION 

Vehicle classification plays a significant role in almost all aspects of transportation 

engineering and planning applications. In the mid-1980s, the Federal Highway Administration 

(FHWA) developed a standardized 13-category vehicle classification ruleset, which meets the 

needs of many traffic data user applications, such as highway and pavement design, performance 

monitoring, tolling, transportation planning, and freight planning and modeling, etc. The rule set 

is designed to classify visual descriptions of vehicles using axle-related metrics, such as the 

number of axles, axle spacing, number of trailers, and vehicle length with the available intrusive 

and non-intrusive equipment. The intrusive equipment includes inductive loops, road tubes, and 

piezo sensors, etc. The non-intrusive equipment consists of a video detection system, passive 

infrared, radar, etc. The complete list of standard and current data collection technologies can be 

seen in Table 1 [1]. In general, ruleset separates vehicles into categories depending on passenger 

vehicles or commodities. Many engineering and planning organizations use the generalized four 

bins category, which are cars, small trucks, large trucks, and multi-trailer trucks.  
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Table 1. Common technologies for vehicle classification 

Axle-Based Length-Based 

Infrared (passive) (NI) 

Laser radar (NI) 
Piezo-electric (I) 

Quartz sensor (I) 
Fiber optic (I) 

Inductive Loop Signatures (I) 
Capacitance mats (I) 

Bending plates (I) 
Load cells (I) 

Contact switch closures (e.g., road tubes) 
Specialized inductive loop systems 

Dual inductive loops (I) 

Inductive loops (loop signature) (I) 
Magnetic (magnetometer) (I) 

Video detection system (NI) 
Microwave radar (NI) 

CW Doppler sensors (NI) 

Key: Non-Intrusive (NI), Intrusive (I), Source: (FHWA 2016)  

 

 

However, the four-bins category is not sufficient for the estimation of pavement loads 

and freight planning and modeling. In 2003, the Transportation Research Board (TRB) Expert 

Task Group (ETG) on Long-Term Pavement Performance (LTPP) Traffic Data Collection and 

Analysis developed a new set of rules for classifying vehicles based on sensor outputs available 

from WIM systems. The rule set provides appropriate data for pavement loads analysis. 

Researchers utilized data from such sensors to extract additional information such as 

travel times between two sensor locations and truck-flow patterns by anonymously reidentifying 

trucks [2, 3]. Being able to distinguish between different types of trucks is particularly important 

for freight planning and modeling. For example, long-haul and short-haul freight is typically 

transported on different truck types – tractor-trailers for the former and smaller rigid trucks for 

the latter. Furthermore, truck body types or trailer types may help reveal information about the 

commodity being carried. For example, refrigerated trailers are commonly used to transport 

perishable produce and meat products, tank trailers are for fuel and other liquid products, and 

specialized trailers carry livestock. It is obvious that not all commodity types can be easily 
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inferred from the externally observable characteristics of the truck or trailer; however, it is 

possible to narrow the possible types of commodities if the trailers are classified into distinct 

categories (e.g., car-transporter, tank, enclosed van, intermodal container, empty platform or 

trailer).  

 It should be mentioned that freight planning is a multifaced process that requires a variety 

of data [4]. Knowing truck body types along major truck corridors helps support different freight 

planning and analysis applications. To further motivate the potential value of classifying trucks 

into subcategories based on their trailers, two specific examples are given below.  

• Impacts of capital investments and different policies (e.g., tolling, rush-hour restrictions 

for trucks) along a major truck corridor can be assessed in more detail if the truck body 

types are known. This will allow estimating which freight industry might be affected by 

such decisions. For example, if the corridor is serving a large (or negligible) number of 

intermodal containers, the impacts on containerized cargo will be significant (or 

negligible). This information will be helpful in engaging different stakeholders (e.g., 

ports, distribution centers) in the freight planning process. In this research, we show that 

intermodal containers can be detected with a relatively high accuracy within the FHWA 

Class 9 truck population.  

• Knowing truck body types will help support the validation of commodity-based freight 

models. Commodity-based freight models convert commodity flows (in tonnage) 

between origins-and-destinations by assuming average payloads for trucks to produce an 

estimate of truck trips on the network. These estimated truck trips can be evaluated for 

accuracy at a more granular level if the truck body types are known. For example, 

gasoline and fuel oils are carried in tanks and logs in specialized trailers. Knowing the 
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number of trucks of each type at a network link will allow assessing how accurately these 

specific commodities are being modeled. This will ultimately improve the fidelity of 

freight modeling at a network level.   

 To adequately allocate resources for accommodating commercial freight delivery and 

distribution across the highway network, public agencies need to predict the quantity and type of 

commodities. The primary source for freight planning analysis in the USA is the Commodity 

Flow Survey (CFS) conducted by the Census Bureau every five years. In the commodity-based 

models, cargo weight is the unit of demand, and the information taken from CFS (e.g., weight, 

value) is distributed over suitable body types using specific payloads for loaded trucks. In 

addition to loaded trips, empty trips must then be determined and added to the flows of loaded 

trips to perform traffic assignment. Most of the state DOTs use a flat percentage of trips or 

weight-in-motion (WIM) counts to estimate empty trips for the freight modelling activities.  

 Multi-array LiDAR sensors are becoming widely available in the transportation field due 

to recent research and developments in automated driving technologies [5]. The raw point-cloud 

data from these sensors include distance to the target and intensity of the reflected light. From 

these data, it is possible to construct a 3D representation of the objects within the range of the 

sensor. 

In this research, data from a Velodyne VLP-16 LiDAR are used to first classify truck 

trailers into ten types: (1) Enclosed or dry vans, (2) refrigerated vans, (3) 20 ft and (4) 40 ft 

intermodal containers, (5) 40 ft refrigerated container, (6) platforms, (7) tanks, (8) car 

transporter, (9) open top van/dump and (10) other. The category “other” includes livestock, 

logging and customized truck trailers, etc. Second, platform semi-trailers are classified as empty 

or loaded. 
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1.1 Main contributions 

The main contributions of this research include the following: (i) demonstrating, for the 

first time, how multi-array LiDAR data could be utilized in classifying semi-trailers into ten 

subcategories; (ii) detecting empty and loaded platform semi-trailers; (iii) developing effective 

methods for extracting useful features from 3D LiDAR data; and (iv) developing classification 

algorithms that yield relatively high accuracies.  

1.2 Structure of the Dissertation 

Chapter 2 provides a review of the literature. In Chapter 3, we will describe data 

collection, and in Chapter 4, we provide details of methodological steps employed in this 

research. In Chapter 5 and Chapter 6, the extracted features for the classification of the ten 

subcategories and empty and loaded platform semi-trailers classification will be explained, 

respectively. Their results are presented at the end of each chapter. Chapter 7 includes 

conclusions and suggestions for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 The literature review is organized into three main categories: 1) vehicle classification, 2) 

truck-trailer classification, 3) detecting empty trips. In the vehicle and truck-trailer classification 

sections, the studies using traditional sensors, image processing, and LiDAR data are 

summarized. To the best of our knowledge, there is no prior research on detecting empty trips 

using LiDAR data. However, there are some attempts to detect empty trips using WIM data and 

survey methods.  

2.1 Vehicle Classification 

As mentioned earlier, FHWA developed a rule set based on the vehicle’s visual 

descriptions such as the number of axles, axle spacing, number of trailers, and vehicle length 

using the available sensors. These sensors are listed in Table 1. 

The traditional sensors, namely, loop detectors, WIM sensors, and radars are widely used 

by state agencies and municipalities. The developed software (e.g., HI-COMM 100, IRD, PEEK 

VIPER and TOPS, etc.) [1] for classification using these sensors provides necessary information 

for most applications. However, researchers have recently investigated how these sensors could 

be used for monitoring traffic flow and estimating vehicle trajectories [6-8] and for evaluating 

highway safety issues [9-12]. Researchers are also exploring how GPS and smartphone data can 

be utilized for various transportation applications such as trajectory creation using smartphone 

inertial sensors[13, 14], vehicle speed and stop estimation using smartphone accelerometer data 

[15-17], modeling the impact of latent driving patterns on traffic safety using smartphone GPS 

data [18, 19], and feasibility of estimating commodity flows on highways with existing and 

emerging technologies [20]. 
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In addition to traditional traffic sensors, camera sensors are also installed for instantly 

monitoring traffic flow. Researchers have used images from surveillance cameras [21, 22] to 

classify vehicles. The pictures from camera sensors are processed using several image processing 

algorithms (e.g., contrast enhancement, noise reduction, edge sharpening, edge detection, 

segmentation, etc.). One of the main challenges of vehicle classification is extracting the vehicle 

region from the background. Researchers use various methods to overcome this challenge. For 

example, Gupte, Masoud [23] uses optical flow, to separate background from foreground. 

Chung-Lin and Wen-Chieh [25] explored background subtraction and defined at intersections 

and on roadsides, low-altitude airborne platforms are used for vehicle classification [26, 27]. 

Coifman, McCord [26] describe the methods to determine level of service, average annual daily 

traffic, intersection operations, origin–destination flows on a small network, and parking lot 

utilization from data collected by an unmanned aerial vehicle. Khan and Cheng [27] used aerial 

images to match vehicles’ 3D models using Histogram of Oriented Gradients (HoG) [28] for 

classification of various vehicle types (e.g., sedan, SUV, truck, etc.). Using the camera sensors 

for tracking and classification is a challenging task due to the following reasons: occlusions, 

shadows, camera noise, changes in lighting and weather conditions. Researchers explored other 

sensors which are not sensitive to lighting and may be less sensitive to other environmental 

conditions (e.g., radar, LiDAR). 

There is some limited research on classifying vehicles based on LiDAR data [29-34]. The 

majority of these works classify vehicles based on three major groups: (i) passenger vehicles, (ii) 

light duty trucks, and (iii) heavy duty trucks. Xiao et al. used data from a LiDAR onboard a 

vehicle that surveys parking spots along a street to detect and identify parked vehicles to support 

automated parking management applications [35]. In a related work, Lee and Coifman [30]  
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proposed the use of a multi-array LiDAR that is used as part of a portable, nonintrusive system 

for assessing the performance of vehicle classification stations [34]. Lee and Coifman [30] 

installed two multi-array LiDAR on top of a minivan with a distance of 4.6 ft [30, 34]. Then they 

extract features (e.g., length, height, middle drop) as input to a decision tree algorithm to classify 

motorcycle, passenger vehicle, passenger vehicle pulling a trailer, single-unit truck, single-unit 

truck pulling a trailer, and multi-unit truck. The developed decision tree algorithm correctly 

classifies non-occluded vehicles with 99.5% accuracy.  

2.2 Truck-trailer Classification 

Each truck trailer has its own shape, characteristics, and dimensions. The base of the 

truck-trailer classes was developed by the United States Census Bureau Vehicle Inventory and 

Use Survey (VIUS). VIUS captured the vehicle population in three main categories: passenger 

vehicles, single-unit trucks, and semi-tractor trailer combination trucks. According to the 2002 

VIUS, there are 11 major body types of trucks (platform, van, auto transport, dump, grain bodies, 

garbage, livestock, logging, dry tank, liquid tank, and other) in the USA. VIUS is the only 

available source for the truck-trailer classification. 

There are attempts to classify truck body types into subgroups relevant to the 

commodities being transported using data from traditional sensors and inductive loop signatures 

[36]. Unfortunately, to the best of our knowledge this is the only available study for truck-trailer 

classification using traditional traffic sensors. 

Vatani Nezafat, Sahin [37] generated 2D images of trucks from LiDAR scans and 

classified them using convolutional deep neural networks. However, in that study only four 

trailer types were considered [37] and 3D LiDAR data were not fully exploited.  
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Asborno and Burris [38] implemented two single-beam low-cost LiDARs to classify truck 

body types into five distinct five-axle tractor-trailer body types, namely: van and container, 

platform, low-profile trailer, tanks, and hopper and end dumps [38]. The LiDAR employed by 

these researchers has a single beam that scans the scene at a fixed height and angle. Therefore, it 

provides distance to the truck body only at the preset height. This information helps extract 

additional data about truck body types, but it is not possible to generate 3D complete profiles. In 

terms of classification accuracy, the authors report an average true positive rate of 81% [38]. 

More research is needed to fully utilize the rich multi-array LiDAR data for refined classification 

schemes, especially for different types of truck trailers. 

2.3 Detecting Empty Trips 

 In the commodity-based models, cargo’s weight is the unit of demand, and the 

information taken from CFS (e.g., weight, value) is distributed over suitable body types using 

specific payloads for loaded trucks. In order to better quantify empty trips, researchers developed 

empty trip models [39, 40] and used a supply chain logistical approach [41] or behavioral and 

operational characteristics of the carriers [42]. FDOT Transportation Data and Analytics office 

performed a study regarding truck empty backhaul [43]. In this study, WIM data is analyzed to 

estimate whether a truck is an empty backhaul. Nevertheless, there is no systematic way to 

identify empty trips so that such freight models can be calibrated and validated. However, in this 

research we investigate how LiDAR sensors could be utilized to distinguish between different 

trailer types and detect empty and loaded platform semi-trailers. 
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CHAPTER 3 

DATA COLLECTION 

The data needed for this thesis are collected at a major freeway in Hampton Roads, VA. 

Velodyne VLP-16 LiDAR and a set of high definition (HD) surveillance cameras are used for 

data collection. Considering the continuous data collection from two independent systems and 

their size, an efficient hardware and software configuration is needed. The hardware and 

software configuration, selected site, handling data from two different systems, and ground truth 

labeling processes are described in this section. 

3.1 Hardware Configuration 

The data needed to conduct this research come from a LiDAR unit and a set of 

surveillance cameras. There is also other hardware for a complete data collection system, e.g., 

power supply, a computer, ethernet switch, external hard drives, and internet-enabled 

smartphone for remote desktop.  

In order to collect data from Velodyne LiDAR, an external CPU unit (e.g., computer) and 

software are necessary. The Velodyne VLP-16 LiDAR is programmed to store collected point 

cloud data in the packet (.pcap) format, using an ethernet networking interface. Using this 

interface, LiDAR can be attached to a local area network, and it can be accessed through a 

computer that is in the same network. The advantage of using a local area network is that other 

hardware can be also attached to the same network switch e.g., computer, surveillance cameras, 

and network hard drive. Thus, the whole system can be controlled using a single computer.  

Since a local area network already is created, a surveillance system compatible with the 

network connection can be used. There are many choices available in the market. For this 

research, we used a Swann 4 camera 5MP Super HD surveillance system. The advantage of this 
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system is that the timestamp can be synchronized with the computer timestamp which is 

connected to the same network. The surveillance system automatically renames the recorded 

files with a current timestamp which will be used to match video to LiDAR files. 

The designed data collection system will be on-site and may not be accessible all the 

time. Therefore, a remote connection is needed to check system health. For this purpose, a high-

speed internet-enabled smartphone can be attached to a computer and a remote connection can be 

established through the smartphone to monitor if the system is running. We can visit the data 

collection site only when a problem occurs. The designed data collection system is illustrated in 

Figure 1. 

 

 

 

Figure 1. Whole data collection system 

 

 

 All sensitive equipment in the data collection system e.g., laptop, ethernet switch, hard 

drives, etc., must be located in a waterproof case to protect from rain, snow, and dust. LiDAR 
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and surveillance cameras are placed onto a carrier. The built waterproof case and carrier can be 

seen in Figure 2. 

 

 

 

Figure 2. Built waterproof case for electronic equipment and carrier to hold LiDAR and 

surveillance cameras 

 

 

3.2 Software Configuration 

3.2.1 LiDAR Software 

Velodyne VLP-16 LiDAR manufacturer developed the Veloview software to visualize and 

record the LiDAR data. Unfortunately, this software does not support automated data collection. 

A user must start and stop a recording manually. Also, if data collection runs on for many hours, 

data will be lost in circumstances such as power loss or exceeding file storage space. Therefore, 

other software must be considered for data collection. 
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Since LiDAR is accessible with a network interface, the Wireshark network protocol 

analyzer program can be used to record data. This software allows recording data from any 

network interface (e.g., ethernet, Wi-fi, Bluetooth). One of the advantages of using this software 

is that a new file is automatically created after a defined size (e.g.,  1GB). In this study, this 

software will be used with an automatic file creation feature. The automated file creation 

threshold is set at 1GB as seen in Figure 3. Wireshark automatically adds the timestamp when 

the file is created. The created file naming format can be seen in Figure 4. 

 

 

 

Figure 3. Wireshark output feature for automatic file creation  
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Figure 4. Sample .pcap files created with the selected naming format 

 

 

3.2.2 Video Software 

The purchased surveillance system has its own operating system which records files in a 

DVR box. The system allows us to set up desired recording times, image quality, location, 

timestamp, etc. In this research, we are interested in only daytime recording because the video 

will be used for ground truth purposes, and at nighttime it is difficult to observe vehicle types. 

Therefore, recording times are set for the daytime and picture quality set to 4K at 10 hertz. The 

video files are saved onto the local DVR system, and computer time has been used through the 

network connection. 
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3.3 Site Selection 

The equipment is installed on a gantry pole, carrying a variable message sign across I-64 

westbound in Hampton Roads, VA (Figure 5-a). The road segment at this location has two lanes 

(Figure 5-c), and the site is about one mile upstream of the Hampton Roads Bridge-Tunnel 

(HRBT). Trucks are prohibited from traveling in the left lane. Therefore, the LiDAR sensor is 

configured to capture vehicles in the rightmost lane. As illustrated in Figure 5-b, the LiDAR 

sensor is 22 ft above ground and 20 ft away from the travel lane. The LiDAR sensor and the 

surveillance cameras are oriented to get good coverage of the vehicles traveling in the right lane. 

 

 

 

 

Figure 5. (a) Data collection site, (b) LiDAR and surveillance cameras, (c) LiDAR mounted on 
the gantry pole before HRBT 

a 

c 

b 
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The LiDAR sensor can be installed in a vertical or horizontal (or any other angle) 

scanning mode depending on the application. If mounted horizontally (Figure 6-a) on the 

roadside, a sensor covers a maximum of 164 ft (Figure 6-b) from the sensor in the longitudinal 

direction of the roadway, but it will not result in a dense set of points for each vehicle observed. 

In the vertical configuration (Figure 7-a), a sensor covers about 16 ft of the longitudinal section 

of the rightmost lane and provides more dense points per vehicle. Most passenger vehicles can fit 

in this range, but vehicles longer than 16 ft (Figure 7-b) will not. Therefore, multiple scans or 

frames need to be combined to create the full 3D or 2D profiles of trucks. For this study, the 

LiDAR is configured in the vertical orientation. 

 

 

 

Figure 6. (a) Horizontal LiDAR configuration, (b) sample scan from horizontally 

 

a 

b 
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Figure 7. (a) Vertical LiDAR configuration, (b) sample scan from vertically 

 

 

3.4 Data Collection Schedule 

The LiDAR and camera systems were installed in the field on October 25, 2017, in the 

westbound direction on I-64 and set to record data during the day from 7:00 AM until 6:00 PM. 

The system started to collect data on October 27 and was in place until December 12, 2017. 

Table 2 shows the schedule of the collected data. Due to power outages and equipment 

malfunctions, data from several days within this period were not collected. This is indicated by 

empty cells in Table 2. Cells highlighted in green indicate the periods where both LiDAR and 

camera systems were operational whereas yellow cells indicate when only cameras were 

working. Rainy days/times are indicated by an “R.” LiDAR data from rainy days were not 

included and analyzed since LiDAR’s reading is affected by rain (e.g., spurious returns from 

plumes of rainwater). Overall, the collected data amount to 3.2 TB of .pcap LiDAR files and 

a 
b 
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18.5 TB of video files. LiDAR data were collected over 36 days, as indicated in the last row of 

the table. 

 

 

Table 2. Calendar for the collected LiDAR data in 2017 

 
 

 

3.5 Ground Truth Labeling 

The data ground truth procedure involved preprocessing the LiDAR and video data then 

identifying the vehicle configuration and body type from each vehicle through a customized user 

interface. 

3.5.1 LiDAR Data 

At the end of the data collection there were around 3,200 LiDAR files. Each file contains 

15 minutes of a scan containing around 10,000 frames. Veloview software can be used to 

manually open and extract these LiDAR files, but it is time-consuming to perform this process 

manually. Therefore, a custom script was developed in the Python programming language which 

opens and extracts LiDAR files automatically using parallel computing. The flow chart of the 



   

 

19 

developed script can be seen in Figure 8. A method is developed to extract only a vehicle’s cloud 

points from the LiDAR files. This method will be explained in the methodology section. 

 

 

 

Figure 8. Flow chart for extracting vehicle cloud point data from raw LiDAR data 

 

Load Initials 
Read PCAP 

File 
Extract 

Packet Data 

Collect 1 
Rotation Data 

Remove 
Redundant 

Points 

Calculate Max 
Height for All 

Beams 

Send Data to 
CSV Writer 

Append Veh. 
Data to Vehicle 
Array (vArray) 

Update Plane 
Equation 

Any 
MaxH 
>=10”? 

Is vArray 
Empty? 

Append 
Empty Frame 

Data for 
Plane  Eq. 

Calculation 

# of 
Empty 
Frames 
>=10? 

Clear vArray 

No 

No 

Yes 

Yes 

Yes 

No 



   

 

20 

3.5.2 Video Data 

Four surveillance cameras were used to collect video data. Three of these cameras were 

installed directly below the LiDAR sensor (see Figure 2). The other camera was installed about 

10 ft from the ground. The recordings were programmed to start at 7:00 AM till 6:00 PM every 

day. As stated before, the surveillance cameras used computer time to facilitate data 

synchronization and identify the same vehicle within the LiDAR data. The frequency of video 

data was set at 10Hz which is the same as the LiDAR settings.  

Since LiDAR and video systems are set at the same frequency, every single vehicle’s 

picture can be extracted using the information gathered from LiDAR data. The picture extraction 

can be done using the following process. To begin with, the first vehicle was selected from the 

LiDAR file for a day. Then, this vehicle was found in the video file. Second, the timestamp for 

this specific vehicle from the video file was recorded. The rest of the vehicle's video timestamp 

can be found since headway information is known for each vehicle from the LiDAR data. Thus, 

the picture extraction process is automated using the FFMPEG [44] tool. 

3.5.3 Customized User Interface 

To ease the ground truth process for each vehicle’s video and LiDAR information, a 

unique identification number is stored in a PostgreSQL relational database. A data lake is created 

for storing all related files such as raw and extracted LiDAR files, video, and picture files.  

A software user interface shown in Figure 9 is developed with RShiny framework. Using 

the developed UI, each truck-trailer configuration is manually entered based on Hernandez and 

Tok's [36] study that defined truck-trailer body classifications. The user interface was linked to 

the relational database to update vehicle configuration for the selected vehicle. 
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The user interface contains 3 columns. The leftmost column contains date selection, length 

filtration based on the Highway Performance Monitoring System (HPMS), and a selectable 

record table in the bottom left corner. The middle column contains vehicle images extracted from 

video and constructed 2D LiDAR points. The rightmost column contains basic information of the 

vehicle (e.g., vehicle id, date and time, number of LiDAR frames, max-height, and max length) 

and selectable vehicle body configurations that will be explained in the next section. 

 

 

 

Figure 9. Interface developed to manually label vehicle classes 

 

 

3.6 Classification Scheme Development 

The ultimate goal of this study is classifying truck trailers into sub-categories (e.g., dry 

van, container, tank, platform, and specialty such as dump, automobile carrier, etc.). The base of 

the truck-trailer classes was developed by the United States Census Bureau Vehicle Inventory 
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and Use Survey (VIUS). VIUS captured vehicle population in three main categories: passenger 

vehicles, single-unit trucks, and semi-tractor trailer combination trucks. As of writing this 

dissertation, the most recent available survey was performed in 2002. The Census Bureau 

announced that a new vehicle survey will be conducted in 2022. In addition to VIUS, Hernandez 

and Tok [36] developed a model for truck-trailer body classification using WIM and inductive 

loop signatures. They introduced additional truck-trailer body classification on top of the VIUS. 

The comparison of truck-trailer body classification between VIUS and Hernandez and Tok's [36] 

study can be seen in Table 3. In this research, the categories proposed by Hernandez and Tok 

[36] for truck-body classification will be used. 
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Table 3. VIUS and Hernandez, Tok [36] Model Body Classification for Semi-Trailers for 
Existing VIUS Classes 

Category VIUS Body Class 
Hernandez, Tok [36] 

Body Class 

Van 

Van, basic enclosed (dry 

cargo) 
Enclosed van 

Van, insulated non-
refrigerated 

Skirted enclosed van 

Van, drop frame 
(excluding livestock) 

Drop frame van 

Van, insulated refrigerated Reefer enclosed van 

Tank 
Tank, dry bulk 
Tank, liquids or gases 

Hot product tank 

Deep drop tank 

Food grade tank 

Petroleum tank 

Chemical tank 

Crude oil tank 

Air compression tank 

Propane tank 

Pneumatic Tank 

Platform 

Flatbed, platform, etc. 
Basic platform 

Platform with devices 

Low boy (platform with 

depressed center) 
Low boy platform 

Specialty 

Dump (including belly or 
bottom dump) 

Bottom/Belly dump 

Bulk waste transport 

End dump 

Livestock (including 
livestock drop frame) 

Livestock 

Curtainside Curtainside van 

Mobile home toter * 

Open tops (vans, low side 

grain, fruit, etc.) 
Open top van 

Pole, logging, pulpwood, 
or pipe 

Pole, logging, pulpwood, 
or pipe 

Automobile Carrier Automobile transport 

Beverage Beverage 

Trailer mounted equipment * 

** Hopper 

** Agricultural van 

Intermodal 

Containers 

** Container chassis 

** 40 ft container 

** 40 ft refrigerated container 

** 20 ft container 

** 20 ft cont. on 40 ft chassis 
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Table 3. Continued   

Category VIUS Body Class 
Hernandez, Tok [36] 

Body Class 

 ** 53 ft container 

Small 

Trailers 

** Recreational vehicle trailer 

** Towed vehicle 

** Small trailer/dolly 

* Not included in the model body classification scheme 
** Not included in VIUS 

Note. Reprinted from “Integration of Weigh-in-Motion and Inductive Signature Data for Truck 

Body Classification”, by Hernandez, S., 2014, Dissertation, p. 67 

 

 

3.7 Summary 

Hardware and software systems are developed to collect data from a 2-lane section of I-

64W. For each vehicle travelling in the rightmost lane, its information is recorded and linked to 

the developed user interface for manual labeling. Around 365,000 vehicles passed in the 

rightmost lane through the LiDAR field of view (FOV) area between 7:00 AM and 5:00 PM. The 

HPMS vehicle classification scheme applied to collected vehicle data for distinguishing the 

vehicle classes. Multi-unit-truck (MUT) configurations are manually labeled using Hernandez 

and Tok's [36] study on truck-trailer body classification scheme. The number of vehicles by 

HMPS classification can be seen in Table 4. The labeled MUT vehicles’ trailer body types are 

also in Appendix A. 

 

 

Table 4 Data labelled based on the HPMS 

HPMS Class Samples Collected 

Motorcycle (MC) 349 

Passenger Vehicle (PV) 292,832 

Light Truck (LT) 38,406 

Single Unit Truck (SUT) 18,570 

Multi-Unit Truck (MUT) 15,182 
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CHAPTER 4 

METHODOLOGY  

LiDAR technology has been primarily used in geology, forestry, and mapping 

applications, and recently it has been deployed in automated vehicles to recognize objects 

surrounding the vehicle. LiDAR offers additional sensing capabilities beyond what is available 

with more traditional sensors. From the cloud points, 3D profiles of trucks can be generated, and 

these profiles allow extracting useful features for classification. In general, LiDAR can provide 

various measurements of interests such as trailer height and length to support applications 

beyond vehicle classification. For example, beyond truck classification, the LiDAR sensors can 

measure truck heights in real time to support monitoring over-height trucks at locations with 

height restrictions (e.g., underpasses and tunnels). As mentioned earlier, we use data from a 

LiDAR sensor mounted in a side-fire configuration on a roadside pole. Figure 10 shows the 

major steps in the overall procedure. Data preprocessing, vehicle profile construction, and 

classification procedures will be explained in this chapter. Feature extraction for truck-trailer 

classification and detecting empty and loaded platform trailers will be explained in Chapter 4 and 

Chapter 5, respectively.  

 

 

 

Figure 10. Main components of the procedure for classifying truck trailers and detecting empty 
and loaded platform trailer from LiDAR data 
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4.1 Data Preprocessing 

For data collection, we used the VLP-16 LiDAR unit manufactured by Velodyne [45]. 

This sensor comes with 16 beams, which covers a 30° view angle with 360° rotation around its 

internal z-axis. The LiDAR frequency is set at 10 Hz, which provides a very rich cloud point 

dataset. The unit can be installed in a vertical or horizontal (or any other angle) scanning mode 

depending on the application. If it is mounted horizontally (Figure 6) on the roadside, it covers a 

maximum of 164 ft from the sensor in the longitudinal direction of the roadway, but it will not 

result in a dense set of points for each vehicle observed. In the vertical configuration (Figure 7) 

for the selected site, it covers a 16 ft longitudinal section of the rightmost lane and provides more 

dense points per vehicle. Most passenger vehicles can fit in this range, but vehicles longer than 

16 ft will not. Therefore, multiple scans or frames need to be combined to create the full 3D or 

2D profiles of trucks. For this research, the LiDAR is configured in the vertical orientation. To 

create a profile of the vehicles from the collected data, redundant data points should be removed 

and LiDAR frames should be identified for the same vehicle. These will be explained in the next 

subsections. 

4.1.1 Remove Redundant Data Points 

Since trucks are traveling only in the right lane, LiDAR points reflected from objects 

elsewhere can be excluded from the dataset. Thresholds were established to eliminate these 

redundant data points. Figure 11-a shows a complete LiDAR scan, whereas Figure 11-b has the 

remaining data points after removing the redundant data. All the analyses are performed with the 

subset of points belonging to vehicles traveling in the right lane, as in Figure 11-b.  
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Figure 11. (a) A full scan or frame from the LiDAR sensor. (b) After redundant points removed. 

  

 

4.1.2 Identify LiDAR Frames for the Same Vehicle 

As mentioned earlier, there is more than one frame per vehicle. Before constructing a 2D 

or 3D profile of a vehicle from raw LiDAR data, all the frames which belong to a vehicle must 

be labeled. It can be accomplished as consecutively numbering all vehicles passing under the 

LiDAR detection zone and assigning each LiDAR beam and frame to the corresponding vehicle.  

The existence of a vehicle in the LiDAR view area is identified in the following manner. 

First, all redundant data points are removed. Second, a plane equation (see Figure 14) is found by 

fitting a surface plane to the collected data when there is no vehicle in the LiDAR viewing area. 

Third, the height of each point is computed with respect to the roadway surface using the 

previously found plane equation. A method for the height calculation will be discussed in the 

next sub-section. Then all the data points for height are computed. Since points height is known, 

a threshold can be applied to detect a vehicle when entering and departing the LiDAR view area. 

Then, all corresponding frames and LiDAR beams are assigned a unique identifier for the 

vehicle. Figure 12 shows a sample table demonstrating how each LiDAR frame (rows) and beam 

(columns) belonging to individual vehicles are numbered (numbers in the table). 

 

a b 
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Figure 12. Labeling of each LiDAR frame (rows) and beam (columns) belonging to individual 

vehicles numbered consecutively (numbers in the table) 

 

 

After identifying the frames and beams for every vehicle, the raw data was saved into a 

single CSV file. This file contains x-y-z cartesian coordinates, timestamp, frame numbers, and 

other information about the specific data point. A sample file that belongs to a vehicle can be 

seen in Figure 13. The name of the CSV file is assigned as “vehid_316 

hrbt_00003_20171207093503 (Frames 1299-1311).csv” which contains information about the 

source LiDAR file, frame numbers, and vehicle order in the LiDAR file. The vehicle specific 

information is also recorded in a log file for further processing. 
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Figure 13. Screenshot of saved LiDAR raw data for a vehicle 

 

 

4.1.2.1 Height Calculation  

The height of a LiDAR point from the roadway surface is needed to create vehicle 

profiles. The height calculation can be accomplished by using basic geometry and the equation 

of a point to a plane (i.e., roadway surface) – see Equation (1). The equation can be found by 

fitting a surface plane to the LiDAR data which returns from the roadway surface when there is 

no vehicle.  

 

 

Figure 14. Equations used to calculate the height of a given point on a vehicle to the roadway 

surface represented by a plane 
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 𝐻 =
|𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0 + 𝑑|

√𝑎2 + 𝑏2 + 𝑐2
 

(1) 

 

4.1.3 Coordinate Transformation 

The LiDAR sensor provides the position of each point in its 3D coordinate system.  This 

coordinate system may not be fully aligned with the travel lane. Therefore, the raw data are 

transformed into a new coordinate system where the x-axis is along the travel direction, the y-

axis is perpendicular to the roadway surface, and the z-axis is in the lateral direction. This 

transformation is simply accomplished by identifying unit vectors along these three directions. 

Then, the points are simply transformed into the new coordinate system by employing a rotation 

matrix, a commonly used coordinate transformation method.   

As seen in Figure 15-a, a truck enters the field of view of the LiDAR. After the 

coordinate transformation is applied to the raw data, it is recreated as shown in Figure 15-b with 

all the original data preserved. Working in the new coordinate system facilitates the remaining 

steps where speed is estimated for merging multiple frames as explained next.  

 

 
 

Figure 15. Before (a) and after (b) coordinate transformation 

 

a b 
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4.2 Constructing 2D or 3D Vehicle Profiles 

As explained before, the entire truck does not fit within the detection zone or the LiDAR 

FOV. Therefore, to generate the full truck profile, multiple frames need to be merged. It can be 

done if the speed at which the truck is traveling is known. Unfortunately, at the data collection 

site, there was no speed measurement instrument available. However, with the LiDAR data, 

speed can be estimated since we know the length of the field of view and the LiDAR scan rate. 

Three different speed estimation methods will be explained in the next subsection.  

In this section, first the LiDAR FOV will be explained in detail. Afterward, the speed 

estimation methods will be discussed, and the results for each method will be presented at the 

end. 

4.2.1 LiDAR FOV 

As indicated before, the LiDAR sensor scans ten times in one second with its 16 beams to 

measure depth. The labeled beams can be seen in Figure 16. The numbering of the beams shown 

is how it is defined by the manufacturer. Since laser beams emanate from the LiDAR sensor at 

2⁰angles, the spacing between adjacent beams increases with increasing distance from the sensor. 

Figure 16 shows how the LiDAR’s detection zone looks on the pavement and its dimensions 

when there is no vehicle. Along the longitudinal direction, the detection zone is 15’ and 20’, 

corresponding to 12 inches and 16 inches of spacing between consecutive beams, at the near and 

far sides of the lane, respectively. A truck traveling around the speed limit of 55 mph 

(approximately 80 fps) will be in the detection zone for about 1 sec if the truck length is 60 ft or 

1.2 sec if the truck is about 80 ft long. This means that there will be 10-12 LiDAR frames, where 

at least some part of the truck is within the detection zone (see Figure 17). However, a specific 
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point on the truck (such as bumper cover) will cross the detection zone in about 0.2 sec. It means 

that there will be two frames where a specific point of the truck is within the detection zone. One 

can estimate vehicle speed using these frames. Speed estimation methods will be explained in 

more detail in the next section. 

 

 

Figure 16. Detection zone of the LiDAR marked on the pavement, top view 

 

 

4.2.2 Speed Estimation Methods 

Based on freeway traffic, one can consider the speeds less than 20 mph as stop-and-go 

traffic, between 20 mph and 40 mph as congested, and greater than 40 mph as free-flow. 

Constructing the vehicles’ 2D or 3D profiles using a constant speed value may not work for 

Beam ID 
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different traffic conditions. For example, if the vehicle speed is varying in LiDAR FOV, using a 

constant speed can distort the construction of the vehicle’s profile. In this research, three 

different speed estimation methods are tested to construct vehicle profiles using LiDAR cloud 

points in various traffic conditions. These methods are: 

1. Using a Constant Speed value (CS) 

2. Speed estimation by Interpolation (IS) 

3. Speed estimation by tracking Axles (AS) 

For the first two methods (CS and IS), the speed can be estimated using the first two or 

more consecutive frames and the time instances when the truck enters the scan zone of each 

beam since the distance between individual beams is known. Likewise, as the truck is departing 

the detection zone, the last two or more consecutive frames can be utilized in the same manner to 

estimate another speed. As long as the vehicle is not occupying the entire set of 16-beams, data 

from such frames can be used similarly to determine entry and exit speeds.  The steps 

implemented to estimate the speed will be explained in the next sub-sections. 

4.2.2.1 Using a Constant Speed Value (CS) 

In the preprocessing of the LiDAR data, each cloud point’s height is computed with respect 

to the roadway surface. First, we need to remove any points less than 10”. In this way, we can 

observe only vehicle cloud points. Second, whenever a vehicle is observed in the FOV, the laser 

id is recorded where the maximum LiDAR point belongs until all the beams are occupied. Then 

we can apply Equation (2) for estimating the speed for each consecutive frame. 

 

 𝑢̃𝑖 =
𝑋𝑖+1 − 𝑋𝑖

𝑇𝑖+1 − 𝑇𝑖
∗ 106 ∗ 𝑐 

(2) 
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where: 

• 𝑢̃𝑖= estimated speed in any given two-consecutive frames i and i+1 

• 𝑋 = x coordinate in 3D cloud points 

• 𝑇 = Timestamp 

• 𝑖 = Frame number 

• 106 = Conversion from microsecond to second 

• 𝑐 = conversion factor, e.g., to convert from meter per second (m/s) to mile per hour (mph) 

 

When we compute each 𝑢̃ n times, we can average estimated speeds using Equation (3). 

 

 𝑢̃𝑎𝑣𝑒 =
1

𝑛
∑ 𝑢̃𝑖  (3) 

 

For example, Figure 17 shows projected 2D cloud points for a truck progressing through the 

FOV. Speeds can be estimated by frame numbers 8221-8222 for entering and 8231-8232 for 

departing.  These speeds are then averaged to find a constant average speed for the vehicle. It 

should be noted that the precision of this method is limited since the distance can only be 

measured in increments of the distance between two consecutive beams. For the installation, this 

increment is about one foot. Given the fact that the time between two frames is 0.1 seconds, this 

discretized measurement of travel distance translates to approximately ±7 mph maximum error 

(worst case) for a truck traveling around 50 mph. However, since multiple estimates are utilized, 

the actual error is expected to be lower than this. For example, in Figure 18, green points are the 

estimated speeds from entry and exit frames, and blue points are the averaged constant speed 

value across the frame numbers. 
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Figure 17. A 2D view of truck generated from each frame as it progresses through FOV (colors 

represent reflectivity) 
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Figure 18. Estimated and averaged distributed speed across the frames 

 

 

4.2.2.2 Speed estimation by Interpolation (IS) 

Speed estimation is challenging under congested and stop-and-go traffic conditions 

because speed is different when a truck is entering into and exiting from the LiDAR area or 

when the truck is idling. The calculated constant average speed may cause misalignment at the 

vehicle profile construction. Thus, merged LiDAR points may not represent the actual truck 

profile.  

Since we know the entry and exit speeds, we can first interpolate, then apply a smoothing 

method to estimate speed values for each frame. In Figure 19, green square points are the 
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estimated speeds from entry and exit frames, and blue circle points are the interpolated speeds 

that are calculated from entry and exit speeds. 

 

 

 

Figure 19. Estimated and smoothed interpolated speed across the frames 

 

 

4.2.2.3 Speed Estimation by Tracking Axles 

The LiDAR points returned from the vehicle body are used for CS and IS speed 

estimation. However, there is still a possibility to change speed while in the LiDAR FOV in 

congested traffic. In this condition, CS and IS methods may not work. As a result, vehicle profile 

construction could be erroneous. To estimate speed in that condition, we can use LiDAR points 

that are returning from axles. Once we identify the axle trajectories in the FOV, we can estimate 
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the speed of a vehicle. Then, we can update the speed values for the frames when axles are in the 

FOV. However, tracking the axles from LiDAR cloud points requires additional filtering and 

processing of the data. These processes will be explained in detail in the next sub-sections. 

4.2.2.3.1 Identifying Axles Area 

To track the trajectory of the vehicle axles, we must use the longitudinal direction of the 

FOV, which is “x” direction and time instances from the transformed LiDAR cloud points. First, 

we need to extract only cloud points returning from the region of interest which is the axle area. 

Since the height of each cloud point was computed previously, we can filter out the rest of the 

cloud points using the thresholds. The top threshold can be set at 12 inches from the pavement to 

remove the cloud points returning from the vehicle body. Likewise, we also need to remove 

cloud points that are returning from the roadway, for which a threshold is set at 2 inches from the 

roadway. In other words, we get the cloud points between two inches and twelve inches from the 

roadway surface. The red cloud points in Figure 20 are the visual representation of the selected 

region of interest for an FHWA Class 9 semi-truck hauling a dry-van trailer. This process is 

applied to every frame on the vehicle cloud points. 
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Figure 20. Used cloud points for the axle trajectory in the region of interest for FHWA Class 9 
semi-truck hauling a dry-van trailer 
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4.2.2.3.2 Counting Number of Cloud Points 

Sometimes, there are devices on the vehicle or body frame that are close to the pavement. 

Cloud points from these places may also fall into a defined threshold and can be identified as 

part of the axles or tires. The number of points from these parts is less than the total number of 

cloud points returning from the tires. When we count the number of points at a given time and 

location at the LiDAR FOV, density can vary where the tires are located. For example, in Figure 

21, all the data points are mapped to a pre-defined grid. On the grid, the x-axis (time) represents 

time and the y-axis (direction) represents trajectory of the axles. The higher number of points, 

which is darker in Figure 21, indicates the higher possibility of being an axle. 

 

  

 

Figure 21. Axles trajectory for an FHWA Class 9 semi-truck hauling a dry-van trailer  

Front Axle Rear Axles Trailer Axles 
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Since we created a trajectory plot from cloud point data, the slope from each axle 

provides the speed of that region. If we find the slope for each axle, we can update the speed of 

the vehicle for given frames, and this could improve the speed estimation.  

On the other hand, each truck produces a different trajectory due to different speeds and 

some other LiDAR points returned from the body. These kinds of samples increase the 

complexity of trajectory creation. In other words, each truck has a unique trajectory; therefore, 

we can’t simply create one model for every truck.  However, in the image processing and 

computer vision literature, automatic detection of lines is a classic problem that we can utilize to 

develop a speed estimation method. The proposed improved speed estimation algorithm based on 

the automatic line detection method is explained in the next section. 

4.2.2.3.3 Hough Transform 

Hough Transform (HT) [46, 47] is an effective method for detecting straight lines in the 

images, even in the presence of noise and missing data. We can develop a method using the HT 

to estimate the best line in the axle trajectories.  

First, we need to prepare an empty 2D grid to map axle trajectories. The identified axle 

trajectories for the vehicle will be mapped onto that 2D grid space. While transforming the 

trajectories to the pre-defined grid, the number of cloud points for each cell will also be recorded 

for the voting. Consider the slope-intercept equation of a line, which is “𝑦 = 𝑎𝑥 + 𝑏”. The 𝑥 and 

𝑦 values are known from the grid; 𝑎 is the slope we are looking for. From the given number of 

frames of the collected LiDAR cloud points, we can roughly estimate the speed and set a range 

for the possible slope candidates. In other words, we can quantize the parameter space as 

𝑃[𝑎𝑚𝑖𝑛, … , 𝑎𝑚𝑎𝑥][𝑏𝑚𝑖𝑛, … , 𝑏𝑚𝑎𝑥]. Then using the HT method, we can find 𝑏 = −𝑥𝑎 + 𝑦, which 

is y-intercept in the coordinate system using the algorithm in Table 5. 
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Table 5. Pseudocode for Hough Transform line detection 

For each time and space (x,y) 

𝐹𝑜𝑟(𝑎 = 𝑎𝑚𝑖𝑛 ; 𝑎 ≤ 𝑎𝑚𝑎𝑥; 𝑎 + +){ 

         𝑏 = −𝑥𝑎 + 𝑦; #round off if needed 

        (𝑃[𝑎][𝑏]) + +; #voting 

} 

Find local maxima in 𝑃[𝑎][𝑏] 

  

 

The maximum number of voted slopes are the possible lines that we are interested in.  As seen in 

Figure 22, lines on the grid are drawn based on the HT voting method. Lines are passing on the 

grids where the maximum number of cloud points are. It is expected that the lines form clusters. 

The next step is finding the position of these clusters. It can be found by using the K-means 

clustering algorithm, which will be explained in the next section.  



   

 

43 

 

Figure 22. First 100 lines based on the HT voting method 

 

 

4.2.2.3.4 K-Means Clustering 

K-means clustering is an unsupervised machine learning algorithm that iteratively 

measures the distance from the centroids to each data point. The “K” is the identifier for a cluster 

size of a given data. One can find the best optimum k-value iteratively from the given data set. 

However, in this research, we defined the k=3, which represents three groups of axles, namely: 

1) Front axles, 2) Rear axles, and 3) Trailer axles.  

The input for the k-means cluster is the x-intercept of the slope, which is time. After we 

identify the clusters, the most voted line is selected from each cluster, as seen in Figure 23. Then, 

we can locate the frame numbers with the slope value, which is the speed of the vehicle at that 
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time. The estimated speed values, found by using tracking axles, can be seen in red in Figure 24. 

Estimated speed for each method can be seen in Figure 25. 

 

 

 

Figure 23. K-means identified dominant lines in the clusters 
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Figure 24. Estimated, k-means, and smoothed speed across the frame numbers 
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Figure 25. Speed values for reconstructing the vehicles profiles 

 

 

4.2.3 Constructing Vehicle Profile  

Based on the estimated speed, the frames belonging to the same trucks are then merged 

by shifting the consecutive frames accordingly. Since all the frames are merged, the 3D LiDAR 

points can be projected onto voxel grids. The size of the voxels can be adjusted based on the 

application. In this research, the voxels are set to be one cubic inch (1 𝑖𝑛3). It is also possible that 

LiDAR points can be projected onto 2D grids. Projecting the data to the 2D grid reduces the 

computation load needed to process this large number of points per truck in the feature 

extraction. For example, a typical FHWA Class 9 truck spends about 1-2 seconds within the 

LiDAR detection zone in free-flow speed. Within this time, LiDAR generates around 30,000 
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points. This projection reduces the data points drastically to around 1,000 points. A constructed 

sample of 2D and 3D truck profiles for each method can be seen in Figure 26 and Figure 27, 

respectively. The vertical line in Figure 26 is the 53 feet line. The trailer in this plot is 53 feet. 

 

 

 

Figure 26. Constructed 2D truck profiles using proposed three-speed estimation methods 
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Figure 27. Constructed 3D truck profiles using proposed three-speed estimation methods 

 

 

4.2.4 Speed Estimation Methods Analysis 

As mentioned earlier, at the data collection site, there is no speed measurement 

instrument available. In practice, when the speed estimation is accurate, less error is expected in 

the vehicle profile construction from the LiDAR cloud points. In order to test speed accuracies 

estimated from CS, IS, and AS based vehicle profile construction, we can measure trailers with 

known lengths. For example, there are four different lengths of intermodal containers: 20, 40, 45, 

and 53 ft We can measure these trailers and check the estimation error rate. 
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Table 6 shows the sample size for each type of intermodal trailer length. The 40 ft 

intermodal container in the dataset has the largest sample. It is sufficient to use 40 ft containers 

for testing the speed estimation methods. 

 

 

Table 6. Intermodal containers sample size 

Intermodal Container Length Sample Size 

20 ft 303 

40 ft 1,919 

45 ft 46 

53 ft 32 

 

 

A method for estimating the length of the trailer will be explained in Chapter 4, section 

4.1.1. As can be seen in Figure 28, there is a correlation in the speed and number of frames. 

When the speed is decreasing, the number of frames is also increasing. In the dataset, 73% of the 

samples have fewer than 15 frames, 22% have between 15 and 29 frames, and 6% have greater 

than or equal to 30 frames (see Figure 29). Table 7 shows the statistics for the number frames in 

each bin. 
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Figure 28. Averaged constant speed by frame number for 40 ft intermodal containers 

 

 

 

Figure 29. 40 ft Intermodal container count by the number of frames into three bins 
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Table 7. Statistic of estimated speed and intermodal container length by three-speed estimation 
methods 

Number of Frames Min Max Mean Median 

  Averaged Constant Speed (mph) 

< 15 33.66 63.75 49.15 49.82 

15 - 29 17.12 39.26 27.35 27.46 

>= 30 6.77 18.59 14.76 15.24 

  Length in Constant Speed (ft) 

< 15 31.50 52.82 38.62 38.71 

15 - 29 35.43 44.62 38.94 38.88 

>= 30 30.51 45.28 39.00 39.21 

  Length in Interpolated Speed (ft) 

< 15 31.50 53.97 38.73 38.71 

15 - 29 35.27 43.80 38.81 38.71 

>= 30 34.45 45.77 39.30 39.21 

  Length in Axle Tracked Speed (ft) 

< 15 31.50 52.49 38.41 38.55 

15 - 29 34.28 43.31 38.38 38.55 

>= 30 30.18 44.13 38.53 38.39 

 

 

The estimated length distribution for each speed estimation method can be seen in Figure 

30 for the number of frames less than 30 and Figure 31 for the greater than or equal to 30 frames. 

As can be seen in the box-plot in Figure 30, three of the speed estimation methods perform 

similarly at high speeds or when the number of frames is less than 30 because there is no speed 

change in the LiDAR FOV. There are some outliers due to distance within the beam, which was 

explained previously in section 3.2.2. However, in Figure 31, one can see that axle tracked speed 

estimation fixed some of the distorted vehicle profiles. For example, significant improvement 

can be seen in Figure 26, which is vehicle profile construction by axle speed estimation. On the 

other hand, the estimated length has more variance compared to constant and interpolated speed 

estimation methods. The variance can be reduced by adjusting the minimum and maximum 
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speed in the search space for the axle tracked speed estimation method and by developing a more 

robust technique. This is left for future research.   

 

 

 

Figure 30. Speed estimation methods tested on 40 ft intermodal containers. The number of 
LiDAR frames is less than 30 
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Figure 31. Speed estimation methods tested on 40 ft intermodal containers. The number of 
LiDAR frames greater and equal to 30 

 

 

4.3 Classification Algorithms 

 In the literature, there are a wide variety of classification methods available [48]. In this 

research, the following commonly used supervised machine learning algorithms are implemented 

with the k-fold cross-validation (k = 10) to prevent bias within the dataset: 

1. K-Nearest Neighbors (KNN) is a non-parametric approach and commonly used 

classification method due to its simplicity [49]. This algorithm has only one 

parameter, K, the number of neighbors. The optimum K value is selected based on the 

best accuracy from the training phase. 

2. Multilayer Perceptron (MLP) is a feed-forward neural network structure that consists 

of input, hidden, and output layers [50]. In this method, the input layers are the 
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features, and the output layers are classes. The number of neurons in the hidden layer 

is optimized based on the best output accuracy in the training dataset. 

3. Adaptive Boosting (AdaBoost) is repeatedly fitting a sequence of weak learners (such 

as small decision trees) to data and produces a final prediction through weighted sum 

[51]. Grid search is implemented in order to find the optimum combination of 

boosting object (mfinal) and maximum depth (maxdepth) to be used in the prediction. 

4. Support Vector Machines (SVM) solves an optimization problem on training data to 

find the optimal hyperplane to separate classes [52]. In this method, a Gaussian 

Kernel and soft margin penalty, called box constraint, is applied. Each combination of 

a box constraint and a kernel scale make up a single SVM model. Grid search is 

implemented in order to find the optimum combination of box constraint and kernel 

scale parameters in the training phase. The SVM model with the best parameters is 

then used on the test data to predict the trailer type. 
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CHAPTER 5 

TRUCK-TRAILER CLASSIFICATION 

This chapter presents the trailer classification algorithms and results. These findings were 

recently published in the Journal of Intelligent Transportation Systems [41]. 

5.1 Feature Extraction 

  Each truck trailer has its own shape, characteristics, and dimensions. To be able to 

categorize trucks into distinct groups, pertinent features that help distinguish trucks in each group 

are needed. All features are based on cloud points within certain regions of interest defined over 

the 3D-truck profile shown in Figure 32. Overall, 18 features are computed.  

 

 

 

Figure 32. Extracted features annotated on a 3D profile of a refrigerated dry van 

 

 

There are 11 regions of interest shown in Figure 32. Six of them are simple rectangular 

cells (R1, R2, …, R6) to cover the entire truck and are found by dividing a given 2D-truck-

profile into six equal-sized rectangular cells.  This is accomplished by simply dividing a 2D-

profile to create two rows and three columns, as shown in Figure 32. The horizontal dimension 
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of the rectangular regions is fixed at 7 ft since the truck height is almost always below 14 ft The 

vertical dimension is set to one-third of the calculated truck length to evenly split the total length 

into three equal pieces. It should be mentioned that after all data points are placed into the 2D-

grid, the truck length measurement becomes relatively straightforward. The overall truck length 

and height are found by simply measuring the distance between extreme x- and y-coordinates, 

respectively.   

The remaining five regions, labeled as Overhang, Top Reefer (TRF), Bottom Reefer 

(BRF), Top Region Standard Deviation (TRSD), and Side Region Standard Deviation (SRSD) 

are selected to capture specific data to be able to distinguish among the box-type trailers (e.g., 

dry vans and intermodal containers and their reefer counterparts). For example, the density of 

cloud points within the Top Reefer area (TRF) and Bottom Reefer area (BRF) regions will be 

valuable for detecting whether a trailer has a refrigeration unit. These are placed at the front of 

the trailer where the refrigeration unit is expected. The other two features, namely “TRSD” and 

“SRSD” regions, are important for distinguishing between box type and other trailers (e.g., 

platforms, auto transporters, and tanks). In order to locate these regions, the trailer dimensions 

need to be estimated. This is explained in the next subsection, which is followed by additional 

subsections describing the extracted features.  

5.1.1 Trailer Length and Height 

Trailer length and height are not used as input features in the classification models. 

However, these two are needed to define the four regions of interest: “TRF,” “BRF,” “TRSD,” 

and “SRSD.” These four regions are particularly important for identifying trailer type, as 

mentioned above. To determine the x-coordinate for the frontend of the trailer, a rectangular 

region (e.g., 2 ft high and 6 ft long) much smaller than the trailer is selected from the middle of 
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the trailer (Figure 33-a). As indicated earlier, each grid cell contains the average z-coordinate 

(depth) of all LiDAR points corresponding (i.e., projected) to that cell. We then collapse the 

vertical dimension of this sample (2 ft by 6 ft) rectangle by taking the average of all z-

coordinates for all y-levels at a given x-coordinate (Figure 33-b). This results in a one-

dimensional vector (along the x-axis) with z-coordinates as the variables. We then fit a simple 

linear regression model of the form z = mx +b to this vector (Figure 33-c). We then use this 

model to predict the z-coordinate (depth) as a function of x, where x is now extended further 

towards the tractor unit where the frontend of the trailer is expected to be. By measuring the 

difference between predicted z (depth) and actual z (depth), we can identify a sudden drop or 

change in the surface depth (Figure 33-d). The x-coordinate where the first sudden drop (seen as 

a red star in Figure 33-d) occurs will be identified as the frontend of the trailer. This technique is 

repeated to determine the backend, top, and bottom of the trailer as well by scanning in the 

relevant direction. Once these four coordinates are found, the box type trailer dimensions are 

straightforward to compute.  
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Figure 33. Trailer length and height calculation steps 

 

 

5.1.2 Standard Deviation of Residuals (SDR) and Relative Density (RD) 

In order to distinguish each one of the ten types of trailers considered here, we propose to 

divide a given 2D-truck-profile into six equal-sized rectangular cells (R1, R2, etc.). For each one 

of these cells, we extract raw LiDAR point cloud data contained within the boundaries of each 

cell and then fit a linear model of the form 𝑧̂ = x + y + c, where x is the horizontal coordinate, 

a 

b 

c 

d 
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y vertical, 𝑧̂ predicted depth (see Figure 15-b), and  , and c are model parameters. We then 

compute residuals, i.e., z-𝑧̂, for each point contained within the boundaries of each cell. For each 

one of the six cells, we compute the Standard Deviation of these Residuals (SDR). In addition, 

for each cell, we count the number of points and divide that by the total number of points for the 

truck. This gives the Relative Density (RD) of points in that cell as compared to the total number 

of points. Since there are six cells and two variables (SDR and RD), this will produce 12 

variables as input to the machine learning methods for classification.   

These two types of variables exhibit enough variation among the trailer types to allow 

accurate classification, as shown later in the paper. For example, the surface smoothness of box-

type trailers is quite different from other types of trailers, such as platforms, tanks, and specialty 

trailers. The VLP-16 LiDAR sensor is accurate enough to detect the small depth variations on the 

side surface of these trailers – enough to distinguish between containers and dry vans.  

5.1.3 Top Reefer Density (TRD) and Bottom Reefer Density (BRD) 

Dry vans and refrigerated dry vans look the same, except the latter has a refrigerator unit 

attached to the dry van’s frontend. The refrigerator unit does not cover the whole space on the 

frontend. There is a gap between the tractor chassis and underneath the refrigerator unit, as seen 

in Figure 32. Therefore, in the 2D profile of a refrigerated unit, there are more LiDAR points 

observed at the top section protruding forward from the trailer. This information can be captured 

by defining two regions (rectangles) at the frontend of the trailer. Since the x-coordinate of the 

frontend is estimated, we can go a certain distance towards the tractor (about 2 ft) from the trailer 

edge (see the highlighted sections labeled as TRF and BRF in Figure 32) and calculate the 

density of points in a rectangle close to the top of the trailer and another rectangle at the bottom 

of the trailer. The heights of the bottom and top rectangles are taken as 2 ft and 4 ft, respectively. 
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We then simply count the number of grid cells (i.e., two by two inches cells used in 2D 

projection) that are not empty and divide the count by the area of the rectangle to find the density 

of points. 

5.1.4 Side and Top Region Standard Deviation (SRSD and TRSD) 

 Since we have the trailer position in the cloud point, extracting the side and top regions is 

straightforward. We simply locate rectangular regions at the center point of the trailer for 

extracting such data. For the side region, a 3.5 ft by 16 ft rectangle area is extracted, shown in 

blue at the side of the trailer labeled SSD in Figure 32. For the top region, this rectangle is three-

fourths of a trailer, the width by 16 ft, shown in blue at the top of the trailer labeled TSD in 

Figure 32. The cloud point data gathered for these regions are extracted, and the same technique 

as above is applied to find the standard deviation of the residuals, which was discussed earlier. If 

there is no point available in the selected regions (e.g., in the case of open-top vans), its value is 

set to “999”.  

5.1.5 Middle Height (MH) 

 Similar types of trailers are expected to have similar heights and dimensions. For 

example, the height of box-type trailers is between 10 ft and 14 ft from the ground whereas the 

heights of platform trailers vary based on the commodity carried. In any case, the trailer height 

does not always help in clustering all trailer types but certainly would be a useful feature for 

more standard types such as containers and dry vans. Rather than simply using the maximum 

height, the trailer height is calculated at the midpoint of the trailer.  Since the trailer dimensions 

are already determined from the steps discussed above, the middle height (MH) is simply 

computed from the highest LiDAR points located at the midpoint of the trailer along its length.  
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5.1.6 Overhang (OH) 

Another useful variable is the overhang distance or the distance from the trailer end to the 

point where the last rear tire is. This distance is quite small for intermodal trailer containers 

where is it is typically larger for enclosed or dry vans. Rather than attempting to measure the 

overhang distance from the 2D profiles, we use a 2 ft high by 4 ft long rectangle starting at the 

origin of the coordinate system and measure the density of points within this rectangle. This 

turns out to be a good surrogate variable to capture the variation in rear overhang among the 

trailers of different types.  

5.2 Classification 

Overall, 18 variables listed below are found to be effective for the purposes of this study and 

are used as input features for the classification methods listed above. Their descriptive statistics 

can be seen in Table 8. 

• Standard Deviation of Residuals (SDR) for each region one of the six rectangular regions 

denoted as 𝑆𝐷𝑅𝑅1 … 𝑆𝐷𝑅𝑅6 

• Relative density (RD) for each region denoted as 𝑅𝐷𝑅1 … 𝑅𝐷𝑅6 

• Top Reefer Density (TRD) 

• Bottom Reefer Density (BRD) 

• Side Region Standard Deviation (SRSD) 

• Top Region Standard Deviation (TRSD) 

• Middle Height (MH) 

• Overhang (OH) 



   

 

62 

These variables show enough variation across the different truck trailers. As seen in Figure 

34, all box-type trailers have residual standard deviation between 0.5 inches to 3.0 inches, 

because there is less variability on these surfaces. Since other trailers such as automobile 

transport and platform trailers have no uniform shape, their residual standard deviations are 

much larger. On the other hand, tank trailers are also differentiated based on the TRSD variable 

where the majority of them 0.5 ft or above. 
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Table 8. Features extracted for each truck and descriptive statistics 

Feature 
Abbreviat

ion 
Unit Min Max Mean 1st Qu. 3rd Qu. 

St. Dev. 
Residuals 

Region #1 

SDRR1 Feet 0.166 3.297 1.055 0.622 1.215 

#2 SDR R2 Feet 0.071 3.406 0.797 0.254 1.202 

#3 SDR R3 Feet 0.649 2.631 1.627 1.511 1.753 

#4 SDR R4 Feet 0.000 4.103 1.550 1.551 1.851 

#5 SDR R5 Feet 0.000 4.104 1.555 1.541 1.800 

#6 SDR R6 Feet 0.650 3.334 1.926 1.743 2.096 

Relative 

Density 
Region #1 

RD R1 Ratio 0.047 0.422 0.146 0.109 0.147 

#2 RD R2 Ratio 0.035 0.392 0.136 0.099 0.142 

#3 RD R3 Ratio 0.061 0.483 0.182 0.148 0.197 

#4 RD R4 Ratio 0.000 0.392 0.208 0.210 0.257 

#5 RD R5 Ratio 0.000 0.358 0.211 0.206 0.258 

#6 RD R6 Ratio 0.006 0.317 0.116 0.098 0.138 

Top Reefer 
Density 

TRD Ratio 0.000 0.792 0.064 0.008 0.084 

Bottom 

Reefer 
Density 

BRD Ratio 0.000 0.681 0.061 0.008 0.090 

Side Region 
Standard 

Deviation 

SRSD Feet 0.000 4.0210 0.437 0.118 0.186 

Top Region 
Standard 

Deviation 

TRSD Feet 0.000 3.692 0.280 0.064 0.143 

Middle 

Height 
MH Feet 1.804 14.436 12.229 12.467 13.615 

Overhang OH Ratio 0.000 0.773 0.098 0.008 0.168 
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Figure 34. Residuals of standard deviation by side and top region 

 

 

The ML methods are trained with the subset of the data indicated in Table 9. The training 

step results in determining the best model parameters to be used in prediction. All modeling 

work is done with the statistical programming language R [53], and Caret R-package [54] is 

employed for model training and development. These methods are implemented on the field data 

that includes over seven-thousand trucks. Based on 10-fold cross-validation applied to the 

training data, the model hyper-parameters that produce the best performance are found for each 

one of the four ML models. These parameters are namely the number of trees being 300 with a 

maximum depth of 10 for AdaBoost, 29 nodes for the single hidden layer MLP, 5 nearest 

neighbors for KNN, sigma value of 0.1, and C value of 10 for Radial Basis Function Kernel 

SVM. Models with these optimum hyper-parameters are then applied to the test data to evaluate 
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their prediction performance. The empirical analyses and results are discussed in the next 

section. 

 

 

Table 9. Training and testing data 

Trailer Type Training Testing Total 

20 ft Intermodal container  206   87   293  

40 ft Intermodal container  1,292   553   1,845  

40 ft Reefer container  164   70   234  

Dry van  1,711   773   2,484  

Reefer dry van  984   421   1,405  

Platform  985   421   1,406  

Tank  234   100   334  

Automobile transport  229   97   326  

Open top van/dump  110   47   157  

Other (livestock, logging, 

etc.) 

 182   77   259  

Total Samples  6,097   2,646   8,743  

 

 

5.3 Empirical Analyses and Results  

Table 10 shows the results of the ML models explained above for both the constant and 

axle tracked speed estimation method. The italic figures in the parentheses are the classification 

results based on the vehicle construction of the axle tracked speed estimation. The performance 

of the models is assessed by computing the Correct Classification Rate (CCR). CCR is found by 

dividing the number of correctly classified samples by the total number of samples in the given 

category.  
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Table 10. Results from the classification algorithms on the test data 

 Proposed Method 
Hernandez et 

al. (2016) Study 

Trailer 

Type 

Number 

of test 

samples 

CCR (Correct Classification Rate) (%) Number 

of test 

samples 

Best 

CCR 

(%)  SVM ADABoost KNN MLP 

20 ft 
Intermodal 

container 

87 96.3  97.5  96.3  96.3  13 100.0 

40 ft 
Intermodal 

container 

553 97.7  96.8  97.2  96.4  131 87.8 

40 ft Reefer 

container 
70 94.2  93.6  97.1  97.1  16 93.8 

Dry van 773 94.3  94.1  92.3  93.6  2,329 83.5 

Reefer dry 

van 
421 91.0  91.5  91.0  92.2  1,565 75.3 

Platform 421 94.9  96.0  90.4  91.8  734 87.5 

Tank 100 97.1  95.1  98.0  96.1  265 80.4 

Automobile 

Transport 
97 91.1  91.1  92.1  93.1  67 91.0 

Open Top 

Van/Dump 
47 85.1  68.1  53.2  76.6  203 76.8 

Other 
(Livestock, 

logging, 
etc.) 

77 62.5  29.2  45.8  41.7  - - 

Median 

CCR 
 94.2  93.8  92.2  93.3    

 

 

In general, all tested machine learning models give a median CCR of 92% or higher in 

both constant and the axle tracked speed estimation method. However, the SVM model has the 

highest CCR among them with 94% median accuracy. Within the box-type-trailer category, the 

SVM model correctly identifies the trailer types with accuracies ranging from 91% (for reefer 

dry-van) to 98% (for 40 ft container). For the other group of classes, the CCR is 85% for open-

top van/dump, 91% for automobile transport, 95% for platform trailers, and 97% for tank trailers. 

The “other” category has the fewest samples (only 24) in the test data, and the CCR is 63%. 
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Table 10 also includes results from Hernandez et al.’s (2016) study, which proposes a 

classification method for truck body configuration using weigh-in-motion and inductive loop 

signature data. Hernandez and Tok [36] classified 14 body types, which are FHWA Class 9, five-

axle semi-tractors pulling single trailers. In our data, we have additional body types, but some of 

the classes are aggregated to maintain large-enough sample sizes. For example, we counted 

dropped-frame vans in the “dry van” category where Hernandez et al. (2016) have a distinct class 

type for them. We also aggregated 45 ft and 53 ft intermodal containers to the 40 ft container 

group due to having very few samples in the dataset. In our model, livestock and logging trailers 

are labeled as “other” types. However, Hernandez et al. (2016) have distinct classes for these. In 

our dataset, there are also around 40 empty container chassis available. Due to the low sample 

size, container chassis are counted in the “platform” category, which was done in the Hernandez 

et al. (2016) study as well. As shown in the table, for all body types with the exception of 20 ft 

containers, the proposed method in this paper gives more accurate results. This is most likely due 

to the richer LiDAR data and more pertinent information and features extracted from the raw 

data. It should be noted that Hernandez et al. (2016) considered more vehicle classes and had 

much larger samples in some categories.  

To analyze the errors in more detail, Table 11 shows the confusion matrix (generated 

based on the SVM model) where the rows represent the actual class and columns of the predicted 

class. Clearly, most of the samples are correctly classified. However, thirty-two reefer dry-vans 

were predicted as a dry van; this is because of the speed variability of the truck while within the 

LiDAR detection zone – the methods presented here assume a constant speed. When LiDAR 

frames are merged, some data points don’t fit correctly in the place of where a refrigerated unit is 

attached. Then, the model predicts that there is no refrigeration unit. This error is seen in dry 
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vans as well, where twenty-four of the dry vans were predicted to be reefers. Nine of the 40 ft 

intermodal containers were predicted as dry vans. It was found that these predictions were 53 ft 

containers which have characteristics similar to dry vans. For example, they also have an 

overhang, and the outer shell is flat material rather than the usual corrugated metal. Nine of the 

automobile transport trailers were predicted as platforms, which is because some auto 

transporters are similar to a platform when they are empty. 

 

 

Table 11. Confusion matrix (for SVM method), rows represent the actual class and columns the 
predicted class 

 
 

In order to understand if the speed is an important factor in the misclassification, we have 

applied Pearson's chi-squared test of comparison among different speed values. Table 12 shows 

the breakdown of observations and their percentages based on their estimated speed values. The 

speed values are divided into three different bins. Based on the freeway traffic, one can consider 
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the speeds less than 20 mph as stop-and-go traffic, between 20 mph and 40 mph as congested, 

and greater than 40 mph as free-flow. As seen in Table 12, the misclassification rate for samples 

collected during stop-and-go traffic is slightly greater than the other two.   

 

 

Table 12. Misclassified and correctly classified truck-trailers from the SVM model disaggregated 
by speed 

  Number and % of Samples 

 Speed 
(mph) 

Misclassified 
(%) 

Correctly Classified 
(%) 

<20 12 (7.50%) 148 (92.50%) 

20-40 28 (5.91%) 446 (94.09%) 

>40 96 (5.67%) 1,596 (94.33%) 

 

 

Table 13 shows the Pearson's chi-squared test of comparison among all traffic conditions 

for each ML algorithm. Based on the 95% level of significance, the speed range is found to be 

statistically insignificant. In other words, for the sample considered in this paper, these speed 

levels are not found to affect truck-trailer classification accuracies significantly. 

 

 

Table 13. Pearson's chi-squared tests for checking whether the classification results are affected 
when samples are disaggregated by speed   

ML 
Method 

p-value Statistic (χ2) 
Statistically 
Significant? 

SVM 0.641 0.890 No 

ADABoost 0.388 1.896 No 

MLP 0.474 1.494 No 

KNN 0.561 1.157 No 
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5.4 Summary 

This chapter demonstrates how LiDAR data could be utilized to accurately predict truck 

trailer types. The presented methodology for processing the data involves a series of statistical 

models and heuristics to extract pertinent features to distinguish between different truck body types 

of FHWA class 9 five-axle tractor-semitrailer. Over 7,700 trucks are manually labeled, and their 

LiDAR data are processed. After extracting key features, various ML algorithms, including a 

SVM, AdaBoost, KNN, and a MLP, are trained to determine whether the subject truck is hauling 

a dry van, refrigerated van, 20 ft and 40 ft intermodal containers, 40 ft refrigerated container, 

platform, tank, car transporter, open-top van/dump, or other. The other types of trailers contain 

various body types, including livestock, logging, custom-designed trailer, etc. While all ML 

methods produce relatively high accuracies, the results of the SVM model on test data are slightly 

higher with a medium CCR of 94%. The results presented in this paper are compared to other 

studies in the literature that rely on weigh-in-motion and other sensors for truck body classification. 

From this comparison, it can be concluded that LiDAR provides much richer information for 

detecting truck body types since the presented accuracies were found to be significantly higher in 

general.  
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CHAPTER 6 

DETECTING EMPTY AND LOADED PLATFORM SEMI-TRAILERS 

6.1 Feature Extraction 

Each truck trailer has its own shape, characteristics, and dimensions. According to the 

2001 VIUS, there are 11 major body types of trucks (platform, van, auto transport, dump, grain 

bodies, garbage, livestock, logging, dry tank, liquid tank, and other) in the USA. When we 

consider these various body types, a platform type trailer does not have a unique shape when 

loaded. To be able to categorize truck trailers into distinct groups, pertinent features that help 

distinguish trailers are needed. Since we have the 3D profile of each truck, dividing the entire 

truck into pre-defined equal-sized voxels is expected to generate enough information for 

distinguishing different body types. 

In order to set voxels dimensions, the longest truck and largest height and depth values 

are taken. In the next section, how the voxels are created is explained, which is followed by an 

additional subsection describing the extracted features. 

6.1.1 Defining Voxels 

In order to extract features, the 3D profile of the truck body is subdivided into smaller 

voxels. First, a large enough rectangular prism is defined such that it can enclose all trucks in the 

dataset. This is accomplished by simply determining the largest measurements in the coordinate 

directions. Measured maximum length and height of trucks are 960.0 and 178.0 inches, 

respectively. According to these measures, the rectangular prism is created with the size of 

180" × 144" × 960" (15′ × 12′ × 80′), height (H), depth (D), and length (L), respectively. 

Then this prism is divided into equal-sized smaller voxels such that there are four in the 

longitudinal direction and three in lateral and vertical directions, as shown in Figure 35. This 
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gives a total of 36 voxels. These voxels are denoted as 𝑉1, 𝑉2, 𝑉3, … , 𝑉36 or 𝑉𝑖 for the 𝑖𝑡ℎ voxel, in 

the remainder of this paper. These 36 “Vs” can be seen in Figure 35, where each voxel is 

colored. The voxels dimensions are set at 60"𝐻 × 48"𝐷 × 240"𝐿 (5′𝐻 × 4′𝐷 × 20′𝐿). Then, for 

each voxel the relative density (RD) is calculated as explained in the next section. 

 

 

 

Side View (a) 

  

Rear View (b) Front View (c) 

Figure 35. 36 Voxels from different views with a 3D truck cloud points. (a) Full View (b) Rear 

View (c) Front View 

 

6.1.2 Relative Density (RD) 

 To compute the density for each Vi, first, raw 3D LiDAR data are divided into one cubic 

foot (1 𝑓𝑡3) sub-voxels. Visual representation of these sub-voxels can be seen in the bottom left 
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voxel in Figure 35-b. Based on the selected dimensions for Vi’s, the total volume of each Vi is 

400 𝑓𝑡3; hence, there are 400 unit-volumes constituting each Vi. Each unit volume is considered 

either occupied or not depending on the presence of raw LiDAR points. If there is at least one 

LiDAR cloud point within a given unit-volume, it is considered occupied. The relative density 

( 𝑅𝐷𝑖) is found by simply dividing the total number of occupied (O) unit-volumes to the total 

volume (i.e., 400). RD is computed for each of the 36 Vis as shown in Equation (4).   

 

𝑅𝐷𝑖 =
∑ 𝑂𝑗

400
   {

𝑂𝑗 = 1 if the j-th unit voxel contains at least one LiDAR point

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4) 

 

6.1.3 Sections Height (H) 

Similar types of trailers are expected to have similar heights and dimensions. For example, 

the height of box-type trailers is between 10 ft and 14 ft from the ground, whereas the heights of 

platform trailers vary based on the commodity carried. In any case, the trailer height does not 

always help in clustering all trailer types but certainly would be a useful feature for more 

standard types such as containers and dry vans. Since we already defined four sections in the 

longitudinal (y) direction, we simply get the highest LiDAR points (𝐻1, 𝐻2, 𝐻3 , 𝐻4) belonging to 

each section. Thus, we have four additional features for the classification models.  

6.2 Classification 

The classification step involves predicting the type of the semi-trailer based on the 

extracted 36 RDs and 4 Hs explained above. The truck trailers are classified into three groups: 

empty platform, loaded platform, and all other trailer types. To accomplish this, four 

classification models are created using KNN, MLP, AdaBoost, and SVM.  These classification 
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models are well-known supervised learning techniques that have been widely used to solve 

classification problems in various domains. Supervised learning techniques in which labeled data 

are used for training and testing phases have proven to be successful in many applications. For 

the input, a total of 40 variables are used: relative density for each one of the 36 Vi and maximum 

heights measured after dividing the truck longitudinally into four equal-sections. All modeling 

work is done with the statistical programming language R [53], and Caret R package [54] is 

employed for model training and testing. Based on 10-fold cross-validation applied to the 

training data, the model hyper-parameters that produce the best performance are found for each 

one of the four ML models. 

These parameters are: the number of trees being 100 with a maximum depth of 10 for 

AdaBoost, 37 nodes for the single hidden layer MLP, 5 nearest neighbors for KNN, and sigma 

value of 0.001 and C value of 1000 for Radial Basis Function Kernel in SVM. Models with these 

optimum hyper-parameters are then applied to the test data to evaluate their prediction 

performance.  

 

6.3 Empirical Analyses and Results  

Table 14 shows the results of the Machine Learning (ML) models listed above. The 

performance of the models is assessed by computing the CCR. CCR is found by dividing the 

number of correctly classified samples by the total number of samples in the given category. In 

general, all tested machine learning models for the empty platform provide over 92% CCR. 

However, the KNN model has the highest CCR among them, with 99% CCR. The CCR for the 

loaded platform is lower, ranging between 75% and 84%. The other types of trailers have very 

high CCR in all ML models. 
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Table 14. Results from the classification algorithms 

  Proposed Method 

Trailer Type 

Number of 

training 

samples 

Number 

of test 

samples 

CCR (Correct Classification Rate) (%) 

SVM ADABoost KNN MLP 

Empty Platform  502  215 92.1 97.2 99.1 95.3 

Loaded Platform  527  225 82.7 83.1 75.1 84 

Others  5,437  2330 99.3 98.9 99.2 99.3 

 

 

To analyze the errors in more detail, Table 15 shows the confusion matrix where the 

rows represent the actual class and columns of the predicted class. As shown in the table for 

SVM and MLP models, 8 of the empty platforms are predicted as loaded. After closer inspection, 

it is found that sometimes truck drivers load their tarp onto the platform, the ML models identify 

the tarp as a load. The most problematic class in the dataset is loaded platform. The majority of 

misclassifications for the loaded platforms are predicted as the other category due to some of the 

loaded platforms resembling the trucks in the subcategory other. For example, some of the loads 

have similar shapes as a tank or container. On the other hand, the other category performed very 

well; only a few samples are misclassified. The major misclassified subclasses in the other 

category are container chassis, logging, and auto transport semi-trailers. The container chassis 

are sometimes misclassified as an empty platform. In the VIUS, log semi-trailers are considered 

as a distinct body type. They are essentially platforms with devices permanently mounted on the 

bed of the trailer due to its purpose of use. Therefore, we aggregated the logging trucks into the 

other category. The ML models misclassified these trucks as a loaded platform. This 

misclassification is expected because loaded log semi-trailers have similar physical 
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characteristics as the loaded platform. The auto transport semi-trailers have various 

configurations, e.g., 4-6, 7-8, 9-10 car haulers. The ML models misclassified about 4-6 car 

haulers as a loaded platform. Overall, the ML models distinguish the empty trailers with a 1% to 

8% error rate.  

  

 

Table 15. Confusion matrix for each ML model. Rows are actual, and columns are predicted 
values from the models for the testing data.  

 Predicted 

A
ct

u
al

 

 Empty Loaded Others 

SVM 

Empty 198 (92.1%) 8 (3.76%) 9 (%) 

Loaded 8 (3.6%) 186 (82.7%) 31 (%) 

Others 2 (0.1%) 14 (0.6%) 2,314 (99.3%) 

KNN 

Empty 213 (99.1%) 0 (0.0%) 2 (0.9%) 

Loaded 23 (10.2%) 169 (75.1%) 33 (14.7%) 

Others 4 (0.2%) 14 (0.6%) 2,312 (99.3%) 

AdaBoost 

Empty 209 (97.2%) 5 (2.3%) 1 (0.5%) 

Loaded 9 (4.0%) 187 (83.1%) 29 (12.9%) 

Others 5 (0.2%) 21 (0.9%) 2,304 (98.9%) 

MLP 

Empty 205 (95.3%) 8 (3.7%) 2 (0.9%) 

Loaded 12 (5.3%) 189 (84.0%) 24 (10.7%) 

Others 2 (0.1%) 14 (0.6%) 2,314 (99.3%) 

Note: Bold marks > 80% 

 

 

6.4 Summary 

In order to quantify empty trips, statistical and optimization models are developed in the 

literature for freight planning and analysis. In this chapter, we demonstrate how LiDAR data 

could be utilized to accurately predict empty platform semi-trailer trucks to support freight 
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analysis and planning. Over 9,200 trucks are manually labeled, and their LiDAR data are 

processed. After extracting key features, various ML algorithms, including a SVM, AdaBoost, 

KNN, and MLP, are trained to determine whether a truck is empty or a loaded platform semi-

trailer or other body type (e.g., dry van, container, tank, open-top van/dump, auto transporter, 

etc.). Overall, the machine learning models produce relatively high accuracies; the result of the 

KNN model on test data identifies empty platform semi-trailers with 99% accuracy.  
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

In this research, methods are developed to classify truck-trailers and for detecting empty and 

loaded platform semi-trailers using side-fire LiDAR data. The presented methodology for 

processing the data involves a series of statistical models, heuristics, and machine learning 

algorithms to extract pertinent features to distinguish between different truck body types. Three 

different speed estimation methods are proposed using LiDAR data.  

After extracting key features, various ML algorithms, including SVM, AdaBoost, KNN, and 

MLP, are trained to determine whether the truck in question is hauling a dry van, refrigerated 

van, 20 ft or 40 ft intermodal container, 40 ft refrigerated container, platform, tank, car 

transporter, open-top van/dump, or other. The other types of trailers contain various body types, 

including livestock, logging, custom-designed trailer, etc. While all ML methods produce 

relatively high accuracies, the results of the SVM model on test data are slightly higher with a 

medium CCR of 94%. In addition to the truck-trailer classification, empty and loaded platform 

semi-trailers are detected with 99% accuracy. 

While installing multi-array 3D LiDAR sensors on highways is not a common practice 

today, it is anticipated that such sensors could become a viable option for data collection in the 

near future as they become more widely available and affordable. This study shows how 

additional truck classification information could be extracted if data from such sensors are 

available. Clearly, the scope of this paper is limited in terms of the variety of truck body types 

considered. The LiDAR data cannot be used to identify empty trucks with closed body types, e.g. 

a dry van, container, tank, etc.  However, the author believes that this research will ultimately 

enhance freight and commodity modeling research by providing a detailed breakdown of truck 



   

 

79 

body types at observation stations where a LiDAR sensor is installed. The cost of the used 

hardware which includes Velodyne VLP-16 LiDAR, surveillance cameras, a laptop computer, 

and peripherals is around ten thousand dollars. 

One can consider the price as a barrier for large-scale deployment; however, the price of 

the LiDAR sensors is dropping due to the recent development of automated vehicles. In addition 

to price, a LiDAR sensor has data quality issues in bad weather (e.g. rain, snow, etc.). Laser 

firings are affected by the rain or snow. Currently, researchers are developing models and 

methods to use LiDAR data in precipitation conditions. Another limitation of the LiDAR data is 

that it generates relatively large data. It requires a large amount of hard drive space if the LiDAR 

data need to be stored. For example, 15 minutes of Velodyne VLP-16 LiDAR data is around 

1GB. Since the LiDAR data is relatively large, analyzing or processing requires more 

computational power.   

For future work, new models could be developed to extract additional information from 

the cloud point data. For example, the third method for speed estimation could be extended to 

track individual axles. This will allow classifying vehicles based on the number of axles. In 

addition, new methods can be developed to mitigate the effects of precipitation conditions on 

LiDAR data. Finally, additional vehicle or truck classes can be considered to enrich the types of 

vehicles in the classification scheme.   



   

 

80 

REFERENCES 

1. FHWA, Traffic Monitoring Guide. 2016. 
2. Basar, G., M. Cetin, and A.P. Nichols, Comparison of vehicle re-identification models for 

trucks based on axle spacing measurements. Journal of Intelligent Transportation 
Systems, 2018. 22(6): p. 517-529. 

3. Cetin, M., C.M. Monsere, and A.P. Nichols, Bayesian Models for Reidentification of 
Trucks Over Long Distances on the Basis of Axle Measurement Data. Journal of 

Intelligent Transportation Systems, 2011. 15(1): p. 1-12. 
4. AASHTO Freight Data Guide for Improved Transportation Planning. 2018. 

5. He, Z., et al., Vehicle sensor data-based transportation research: Modeling, analysis, and 
management. Journal of Intelligent Transportation Systems, 2019. 23(2): p. 99-102. 

6. Aijazi, A.K., et al. Automatic detection of vehicles at road intersections using a compact 
3D Velodyne sensor mounted on traffic signals. in 2016 IEEE Intelligent Vehicles 

Symposium (IV). 2016. 
7. Sazara, C., R.V. Nezafat, and M. Cetin. Offline reconstruction of missing vehicle 

trajectory data from 3D LIDAR. in 2017 IEEE Intelligent Vehicles Symposium (IV). 
2017. 

8. Sun, Y., et al., 3-D Data Processing to Extract Vehicle Trajectories from Roadside 
LiDAR Data. Transportation Research Record, 2018. 0(0): p. 0361198118775839. 

9. Aycard, O., et al. Intersection safety using lidar and stereo vision sensors. in 2011 IEEE 
Intelligent Vehicles Symposium (IV). 2011. 

10. Khattak, A., S. Hallmark, and R. Souleyrette, Application of Light Detection and Ranging 
Technology to Highway Safety. Transportation Research Record: Journal of the 

Transportation Research Board, 2003. 1836: p. 7-15. 
11. Mokhtarimousavi, S., et al., Improved Support Vector Machine Models for Work Zone 

Crash Injury Severity Prediction and Analysis, in Transportation Research Board 98th 
Annual Meeting. 2019: Washington DC, United States. 

12. Parsa, A.B., et al., Toward safer highways, application of XGBoost and SHAP for real-
time accident detection and feature analysis. Accident Analysis & Prevention, 2020. 136: 

p. 105405. 
13. Ahmed, U., O. Sahin, and M. Cetin, Minimizing GPS Dependency for a Vehicle’s 

Trajectory Identification by Using Data from Smartphone Inertial Sensors and Onboard 
Diagnostics Device. Transportation Research Record, 2017. 2644(1): p. 55-63. 

14. Ahmed, U., O. Sahin, and M. Cetin. Minimizing GPS Dependency for a Vehicle’s 
Trajectory Identification by Utilizing Data from Smartphone Inertial Sensors and OBD 

Device. in Transportation Research Board 96th Annual Meeting. 2017. Washington DC. 
15. Cetin, M., I. Ustun, and O. Sahin, Classification Algorithms for Detecting Vehicle Stops 

from Smartphone Accelerometer Data. Transportation Research Board, Washington DC, 
2016. 

16. Ustun, I., et al. Detecting vehicle stops from smartphone accelerometer data. in The 21st 
World Congress on Intellegent Transportation Systems, ITSWC2014. ITSWC. 2014. 

17. Ustun, I. and M. Cetin, Speed Estimation using Smartphone Accelerometer Data. 
Transportation Research Record, 2019. 2673(3): p. 65-73. 



   

 

81 

18. Paleti, R., O. Sahin, and M. Cetin, Modeling the impact of latent driving patterns on 
traffic safety using mobile sensor data. Accident Analysis & Prevention, 2017. 107: p. 

92-101. 
19. Sahin, O., R. Paleti, and M. Cetin, Investigating Relationship Between Driving Patterns 

and Traffic Safety Using Smartphones Based Mobile Sensor Data, O.D. University, 
Editor. 2016. 

20. Cetin, M., et al., Feasibility of Estimating Commodity Flows on Highways with Existing 
and Emerging Technologies. 2019. 

21. Vatani Nezafat, R., S. Behrouz, and M. Cetin, Classification of truck body types using a 
deep transfer learning approach, in The 21st IEEE International Conference on 

Intelligent Transportation Systems. 2018. 
22. Zhang, G., R. Avery, and Y. Wang, Video-Based Vehicle Detection and Classification 

System for Real-Time Traffic Data Collection Using Uncalibrated Video Cameras. 
Transportation Research Record: Journal of the Transportation Research Board, 2007. 

1993: p. 138-147. 
23. Gupte, S., O. Masoud, and P. Papanikolopoulos. Vision-based vehicle classification. in 

ITSC2000. 2000 IEEE Intelligent Transportation Systems. Proceedings (Cat. 
No.00TH8493). 2000. 

24. Chen, Z., T. Ellis, and S.A. Velastin. Vehicle detection, tracking and classification in 
urban traffic. in 2012 15th International IEEE Conference on Intelligent Transportation 

Systems. 2012. 
25. Chung-Lin, H. and L. Wen-Chieh. A vision-based vehicle identification system. in 

Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 
2004. 2004. 

26. Coifman, B., et al. Roadway traffic monitoring from an unmanned aerial vehicle. IEE 
Proceedings - Intelligent Transport Systems, 2006. 153, 11-20. 

27. Khan, S.M., et al. 3D model based vehicle classification in aerial imagery. in 2010 IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition. 2010. 

28. Dalal, N. and B. Triggs. Histograms of oriented gradients for human detection. in 2005 
IEEE Computer Society Conference on Computer Vision and Pattern Recognition 

(CVPR'05). 2005. 
29. Harlow, C. and S. Peng, Automatic vehicle classification system with range sensors. 

Transportation Research Part C: Emerging Technologies, 2001. 9(4): p. 231-247. 
30. Lee, H. and B. Coifman, Side-Fire Lidar-Based Vehicle Classification. Transportation 

Research Record: Journal of the Transportation Research Board, 2012. 2308: p. 173-183. 
31. Sandhawalia, H., et al. Vehicle type classification from laser scanner profiles: A 

benchmark of feature descriptors. in 16th International IEEE Conference on Intelligent 
Transportation Systems (ITSC 2013). 2013. 

32. Magnier, V., D. Gruyer, and J. Godelle. Automotive LIDAR objects Detection and 
Classification Algorithm Using the Belief Theory. in IV 2017 - IEEE Intelligent Vehicles 

Symposium. 2017. Los Angeles, United States: Institute of Electrical and Electronics 
Engineers - IEEE. 

33. Sahin, O., R.V. Nezafat, and M. Cetin, Classification of Truck Trailers Based on Side-
Fire LIDAR Data, in Transportation Research Board 98th Annual Meeting. 2019: 

Washington DC, United States. 



   

 

82 

34. Lee, H. and B. Coifman, Using LIDAR to Validate the Performance of Vehicle 
Classification Stations. Journal of Intelligent Transportation Systems, 2015. 19(4): p. 

355-369. 
35. Xiao, W., et al., Street-side vehicle detection, classification and change detection using 

mobile laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 
2016. 114: p. 166-178. 

36. Hernandez, S.V., A. Tok, and S.G. Ritchie, Integration of Weigh-in-Motion (WIM) and 
inductive signature data for truck body classification. Transportation Research Part C: 

Emerging Technologies, 2016. 68: p. 1-21. 
37. Vatani Nezafat, R., O. Sahin, and M. Cetin, Transfer Learning Using Deep Neural 

Networks for Classification of Truck Body Types Based on Side-Fire Lidar Data. Journal 
of Big Data Analytics in Transportation, 2019. 1(1): p. 71-82. 

38. Asborno, M.I., C.G. Burris, and S. Hernandez, Truck Body-Type Classification using 
Single-Beam Lidar Sensors. Transportation Research Record, 2019. 2673(1): p. 26-40. 

39. Holguı́n-Veras, J. and E. Thorson, Modeling commercial vehicle empty trips with a first 
order trip chain model. Transportation Research Part B: Methodological, 2003. 37(2): p. 

129-148. 
40. Holguín-Veras, J., et al., Commercial Vehicle Empty Trip Models With Variable Zero 

Order Empty Trip Probabilities. 2010. 10(2): p. 241-259. 
41. Tatineni, V.C. and M.J. Demetsky, Supply chain models for freight transportation 

planning. 2005. 
42. Mesa-Arango, R., S. Ukkusuri, and I. Sarmiento, Network Flow Methodology for 

Estimating Empty Trips in Freight Transportation Models. 2013. 2378(1): p. 110-119. 
43. Office, F.T.D.a.A., Truck Empty Backhaul. 2018. 

44. FFMPEG, FFMPEG Tool. 2018. 
45. Velodyne. VLP-16 Puck. 2018  [cited 2018; Available from: 

http://velodynelidar.com/vlp-16.html. 
46. Hough, P.V., Method and means for recognizing complex patterns. 1962, Google Patents. 

47. Duda, R.O. and P.E. Hart, Use of the Hough transformation to detect lines and curves in 
pictures. Communications of the ACM, 1972. 15(1): p. 11-15. 

48. Bishop, C.M. and N.M. Nasrabadi, Pattern Recognition and Machine Learning. J. 
Electronic Imaging, 2007. 16. 

49. Dasarathy, B.V., Nearest neighbor (NN) norms : NN pattern classification techniques. 
IEEE Computer Society Tutorial, 1991. 

50. Bishop, C.M., Neural networks for pattern recognition. 1995: Oxford university press. 
51. Eibl, G. and K.-P. Pfeiffer, Multiclass boosting for weak classifiers. Journal of Machine 

Learning Research, 2005. 6(Feb): p. 189-210. 
52. Burges, C.J., A tutorial on support vector machines for pattern recognition. Data mining 

and knowledge discovery, 1998. 2(2): p. 121-167. 
53. R Core Team, R: A Language and Environment for Statistical Computing. 2010, R 

Foundation for Statistical Computing: Vienna, Austria. 
54. Kuhn, M., Building Predictive Models in R Using the caret Package. Journal of 

Statistical Software, Articles, 2008. 28(5): p. 1--26. 

  

http://velodynelidar.com/vlp-16.html


   

 

83 

APPENDIX A 

DETAILED BREAK-DOWN OF LABELLED TRUCK-TRAILERS 

 

Category Hernandez, Tok [36] Body Class Labelled Sample Size 

Van 

Enclosed van 2,591 

Skirted enclosed van 54 

Drop frame van 18 

Reefer enclosed van 1,552 

Tank 

Hot product tank 6 

Deep drop tank  

Food grade tank 23 

Petroleum tank 180 

Chemical tank 4 

Crude oil tank 6 

Air compression tank 9 

Propane tank 3 

Pneumatic Tank 160 

Platform 

Basic 949 

Step deck 379 

Low boy 200 

Specialty 

Bottom/Belly dump  

Bulk waste transport  

End dump 232 

Livestock 1 

Curtainside van  

Open top van 14 

Pole, logging, pulpwood, or pipe 7 

Automobile transport 378 

Beverage  

Hopper  

Agricultural van  

Intermodal 

Containers 

Container chassis 45 

40 ft container 1,919 

40 ft refrigerated container 251 

45 ft container 46 

20 ft container 212+91 

20 ft container on 40 ft chassis 42 

53 ft container 32 

Small 

Trailers 

Recreational vehicle trailer 124 

Towed vehicle 63 
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APPENDIX B 

TRUCK-TRAILER IMAGES AND CONSTRUCTED 3D PROFILES FROM LiDAR 

DATA 

In Appendix A, available truck-trailers from collected data will be shown. To select a truck-

trailer from collected data, HPMS based classification method has been used. When a grouping 

method needed to apply, HPMS recommends a maximum of six generalized vehicle classes. 

These are: 

1. Motorcycle (MC) 

2. Passenger vehicles under 102” (PV) 

3. Light trucks over 102” (LT) 

4. Buses (BS) 

5. Single unit trucks (SU) 

6. Combination trucks (tractor-trailers) (CU) 

Based on this recommendation and nature of this study, group six vehicles are selected from the 

data. Then vehicle configuration of these vehicles and trailers updated using developed UI.  

In the trucking industry, truck-trailers are also grouped within their type. For example, 

intermodal containers contain different lengths such that; 20, 40, 45, and 53 ft; flat-bed trailers 

are basic, lowboy, step deck, then there is a different type of tankers and dry vans. Truck-trailer 

images with their constructed 3D profiles are shown in this appendix. 
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Enclosed Vans 

53 ft Dry Van 

 
 

 

53 ft Refrigerated Dry Van 

 
 

 

Intermodal Containers 

20 ft Container 
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20 ft Reefer Container 

40 ft Container 

 
 

 

40 ft Reefer Container 

  

 

45 ft Container 
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53 ft Container 

 
 

 

Platforms 

Empty Basic Platform 

 

 

 

Loaded Basic Platform 
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Empty Step Deck Platform 

 
 

 

Loaded Step Deck Platform 

 
 

 

Empty Low Boy Platform 
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Loaded Low Boy Platform 

  

 

Stake Body Platform 

 

 

 

Tanks 

Pneumatic Tank 
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Cylinder Tank 

 
 

 

Ellipse Tank 

 
 

 

Specialty 

Automobile Transport  



   

 

91 

 

 

 

Open Top/Dump (End) 

 

  

 

Livestock 

  

 

Logging 
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Custom Trailer 

 

 

  



   

 

93 

VITA 

Olcay Sahin 
Department of Civil and Environmental Engineering  

Old Dominion University 

Norfolk, VA 23529 

Olcay Sahin received his bachelor’s degree in Industrial Engineering from International 

Black Sea University in Tbilisi Georgia in 2005, a Master of Business Administration degree 

from Strayer University in Anne Arundel, Maryland in 2008, and a Master of Science degree 

from the Department of Computational Modeling and Simulation Engineering at Old Dominion 

University in Norfolk, Virginia  in 2012. He has served as a graduate research assistant for the 

Transportation Research Institute (TRI) at Old Dominion University in Norfolk, Virginia. His 

research interests include transportation systems modeling, agent-based simulation, artificial 

intelligence, machine learning, and intelligent transportation systems (ITS). 

 


	Truck Trailer Classification Using Side-Fire Light Detection And Ranging (LiDAR) Data
	Recommended Citation

	tmp.1594217024.pdf.DjoH3

