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ABSTRACT

LATERAL-TORSIONAL INSTABILITY AND BIAXIAL FLEXURE OF CONTINUOUS GFRP BEAMS

INCLUDING WARPING AND SHEAR DEFORMATIONS

Waverly G Hampton

Old Dominion University, May 2020

PhD Advisor, Dr. Zia Razzaq

This dissertation presents an experimental and theoretical study of the lateral-torsional
instability and biaxial flexure of Glass Fiber Reinforced Polymer (GFRP) beams including warping
and shear deformation effects. The theoretical analysis is based on three simultaneous
differential equations of equilibrium with new terms added to account for shear deformation
effects. To solve these equations, algorithms based upon a central finite-difference approach are
then developed. The experimental study is conducted on a series of single- and multi-span beams
subjected to concentrated loads. The predicted beam behavior agreed well with that observed
experimentally. The investigation revealed that the ASCE-LRFD Prestandard for pultruded GFRP
beams can result in seriously unconservative buckling load predictions. The same is found for
biaxially loaded beams which can develop very large induced warping normal stresses currently
unaccounted for by the ACSE-LRFD Prestandard. A new lateral-torsional buckling load equation

is presented which accounts for shear deformation effects.
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CHAPTER 1
INTRODUCTION
1.1 Prelude

Pultruded Glass Fiber Reinforced Polymer (GFRP) structural products are gaining
significance particularly in practical applications where humidity, corrosion, and magnetic
interference become concerns. The GFRP products are also much lighter than steel, concrete,
wood, and other traditional construction materials. Although structural design specifications
based on traditional materials are fairly well-developed, those for pultruded GFRP products are

still evolving.

A unified design standard for GFRP structural products is needed. To this end, the
American Society of Civil Engineers (ASCE) has published a Load and Resistance Factor Design
(LRFD) Prestandard for pultruded GFRP structural members. When evaluating failure modes for
flexure design, the ASCE-LRFD Prestandard includes lateral-torsional buckling without shear
deformation effects. However, shear effects which typically are considered negligible can be
significant when analyzing GFRP beam behavior. This dissertation presents detailed analysis and
results of an experimental investigation to study the effects of shear deformation on the lateral-
torsional buckling of GFRP beams as well as biaxially bent beams which can also develop

significant induced warping stresses.

Beams in practical structures can also be subjected to biaxial bending which creates
induced torsional effects such as those associated with Saint Venant and warping stresses. For
example, biaxial bending can result from a combination of vertical loads simultaneously with
horizontal wind loads. The proposed ASCE-LRFD standard does not account for induced torsional
effects for biaxial bending thereby resulting in unconservative stress estimates. The current

dissertation also addresses this issue and probes into the warping effects.

The analysis is based on three simultaneous differential equations of equilibrium modified
to include shear deformation effects, with applicable boundary conditions. Both single-span and
multi-span GFRP beams are analyzed to predict lateral-torsional buckling loads and biaxial

bending response. To this end, a fourth order central difference approach is used and algorithms



developed to investigate beam behavior both with and without shear effects. The analysis

verified with a series of laboratory experiments on single- and multi-span beams.
1.2 Literature Review

A brief review of the existing literature related to lateral-torsional buckling and biaxial
bending of beams in general and key developments for GFRP beams in particular is presented in
this section. The governing system of differential equations for lateral-torsional buckling of
beams without shear deformation effects are summarized by Timoshenko and Gere [21] and
Galambos [1]. A variety of solutions to these differential equations have been developed in the
past by these authors as well as others such as Salvadori [23], Chen [7], Razzaq, and Galambos
[22]. The American Institute of Steel Construction beam buckling equations are based on such

analyses [8].

However, the magnitude of the shear strains, horizontal deflections, and torsional
rotations which are incurred when using slender fiber reinforced plastic beams is such that
premature elastic lateral-torsional failure may be the primary failure mode and must be
considered during each analysis. To this end, Sirjani, Bondi, and Razzaq [9], and [10] have written
articles on flexural torsional response of FRP | beams. Razzaq, Prabhakaran, and Sirjani [11]
presented LRFD approaches for channels, and Sirjani, and Razzaq [12] presented an LRFD
approach for | beams recognizing the need to have some guidelines and ultimately one design
guide for pultruded members. Presently, the ASCE [ 13] is promoting a LRFD design guide for
pultruded members which will be a valuable tool for predicting of failure mode for GFRP beam:s.

However, lateral torsional buckling predictions do not include shear deformations.

Knorowski [14] wrote a thesis on the behavior of FRP beams subject to biaxial bending
using finite difference. She uses the aforementioned equations of equilibrium by Galambos but
does not include shear deflection. Peck [15] wrote a Master’s project on the behavior and
strength of three span FRP beams under a midspan point load. While the paper addresses
Timoshenko beam deflection and gets excellent results, it does not include lateral-torsional

buckling analysis in any detail. Weaver [18] presents an excellent finite element grid analysis



approach concerning applied torsional loads, but it is of no significance concerning induced

lateral-torsion.

A fourth order central difference approach proves expedient when solving the partial
differential equations resulting from modification of the equations of equilibrium to include a

shear deflection term as defined by Timoshenko.
1.3 Problem Statement

This dissertation deals with lateral-torsional instability and biaxial bending of GFRP beams
including shear deformations. The study involves modifications in three simultaneous differential
equations of equilibrium including Saint Venant and induced warping effects, and subsequent
solutions based on a fourth-order central finite difference approach. Laboratory experiments are
conducted on single, two, and three span GFRP beams subjected to in-plane gradually increasing
quasi-static loading eventually resulting in lateral-torsional instability. An experiment is also
conducted on a three-span beam under biaxial loading. Figure 1 (a) shows a typical GFRP I-section
beam in the x, y, and z coordinate system, and subjected to concentrated loads, Px and Py. Figure
1 (b) shows the dimensions of the I-section. Figure 1 (c) shows the position of a typical section in
the displaced position. In this figure, u and v are respectively, the vertical (in-plane) deflection v,

the horizontal (out-of-plane ) deflections u, and the angle of twist, ¢.

The problems posed herein include the prediction of the behavior of GFRP beams,
experimental verification of the theoretical results, a comparison of the results to those based

on ASCE-LRFD Prestandard, and proposed new guidelines for GFRP beams.
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1.4 Objective and Scope

The main objective of this research is to conduct investigations, theoretical analyses

and laboratory experiments, on GFRP continuous | beams. The specific objectives include:

1. To experimentally check the validity of the analysis including and not including shear

deformation effects.

2. To compare the experimental beam failures and modes with those predicted using the
ASCE-LRFD Prestandard and with lateral-torsional critical buckling loads predicted from

analyses.

3. Propose generic design equations and check their validity analytically and experimentally

foreach investigation.

Nine setups used for investigations are shown in Figures 2, 3, and 4.
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Table 1 provides a list of investigations including span dimensions for each investigation
shown in Figures 2, 3, and 4. Nine investigations are presented to insure a population size
sufficient to define and evaluate the objectives without prejudice. To this end, beam lengths,
cross sections, boundary conditions, and locations of loads are varied. 3 in. x3 in. x % in. and 4
in. x4 in. x % in. cross sections are used in our investigations; beams of one to three span are
tested to evaluate pinned-pinned, pinned-fixed, and fixed-fixed end conditions on targeted

spans; and loads are placed at center or off center of targeted spans. L3

Table 1. Tabular Summary of Beam Test with Point Loads

Test No. Beam Type L1 (in.) Lz (in.) L3 (in.) Figure
1 Single Span 75.00 2a
2 Single Span 79.50 2b
3 Two Span 75.00 30.00 3a
4 Two Span 54.00 51.00 3b.
5 Two Span 79.50 25.50 3c
6 Three Span 15.00 75.00 15.00 4a
7 Three Span 54.00 25.50 25.50 4b
8 Three Span 79.50 15.00 10.50 4c .
9 Three Span 13.50 81.00 10.50 4d
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1.5 Assumptions and Conditions

1. Angle of twist is of equal value for entire cross section. Cross sections do not remain planar.
2. Shear effects are not considered negligible

3. Material obeys Hooke’s law in elastic range. Materials act homogeneous.

4. Shear stress distribution within plane of cross section is also distributed along adjacent axial

planes.

5. For time being, there are no residual stresses in the FRP beam.

6. Beam or loading imperfections and eccentricities exists creating torsional loads as well.
7. Beam sections are thin walled.

8. Small deflection theory is valid.

9. Beam ends are simply supported.

10. Member end warping is unrestrained.

11. Fiberglass reinforced plastic beams are a layered product and will occasionally show
imperfections such as delamination. Will look beyond these imperfections to categorize curves
and determine critical buckling values from lab experiments consistent with moment versus

deflection curve relationships discussed by Galambos.



11

CHAPTER 2
THEORY AND CURRENT PRACTICE

This chapter presents detailed theoretical formulations for the problems briefly outlined
in Section 1.3 of this dissertation. The formulations are in the form of coupled simultaneous
differential equations governing the translational and rotational response of GFRP members
when subjected to uniaxial or biaxial loads. Finite difference based numerical solutions to the
governing differential equations are then presented for each of the nine types of loading and
support conditions shown in Figures 21 — 2b, 3a — 3c, and 4a — 4d. Relevant provisions of the
ASCE-LRFD Prestandard are also summarized and used for numerical comparisons with the

results obtained using the analysis presented here-in which accounts for shear deformations.

Governing equations for biaxial bending of simply supported beams loaded in-plane

arelll;

Bx V" — &( My) = -Mx [1a]
By u” — &( Mx) =-My [1b]
Cud” = (Ce+ K)P" + u'(-Mx) = V' (My) = v/L(My1+ My2) —u/L (Mx1 + Mx2 ) = 0 [ic]

In these equations:

Bx = Elx or Modulus of Elasticity times the Moment of Inertia about x axis.
Myx = Moment about the x axis.

Mx1 = Moment about X axis at right end of element

My = Moment about the y axis

My1 = Moment about y axis at bottom of element

My2 = Moment about y axis at top of element

v = vertical deflection

u = horizontal deflection.

¢ = angle of twist.

Cw = Elw or Warping Constant, Modulus of Elasticity times Warping Moment of Inertia.
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C: = Saint Venant Torsional Stiffness.

K= MxPB = cross sectional constant that equals zero for doubly symmetric cross sections. When
dealing with long spans and slender members, shear deflection can be just as significant as
deflection caused by bending concerning failure. As such, the shear moment, M, will be included
for beams under bilateral bending. Use of this term will allow accurate determination of
horizontal deflections and out of plane rotations. This is accomplished by replacing My in the

above equations by M where
Mtx = Mx + Ms and Ms = ZW Ps [2]

Timoshenko defined the shear moment to be placed on the conjugate beam as a point
load and equal to
Ps = ((1 Elx/AG) P2 [3]
where “a” is a numerical factor related to the cross section’s ability to carry shear; A is the area
of the cross section; G is the shear modulus; and P, is the point load located on the beam when
including shear. P1 is the point load on the beam when ignoring shear moment. Z is a factor

discussed later in this section.

We cannot place the shear moment directly on the real beam because it is imaginary;
however, we can place it on the conjugate beam and determine a relationship between the load
P1 without shear and the load P, with shear using the deflection values. From this relationship,

we can define the moment relationships. This will be demonstrated for each investigation.

Next. The governing equations for biaxial bending and torsion are modified to include the

shear moment, Ms, and take the following form:

BxVv” = ¢ (Myy) = - M [4a]
Byu”’ — ¢ (M) =- My [4b ]
Cud” = (Ce+ K)P' + U (- Mix) = V' (Myy) = v/L(My1 + My2) = u/L ( Mt + Mix2 )

+P(yo/2) §o=0 [4c]
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The term Pyo/2 accounts for the load being placed on the top or bottom of the beam rather than

at its centroid, and yo is the distance from the centroid to the point of load.

The solution approach taken herein is a fourth order central difference approach. Though
it is a finite difference approach, it is as accurate as any other finite element approach. Error is
minimized by taking a forward difference approach and a backward difference approach and

combining them. The following terms from a fourth order central difference approach: ¢! will be

used:

f'(Xo) = (-fz + 8f1—8f1 + f.z) /12h [5a]
f’(xo) = (-f2 + 16f1 -30f, + 16f.1 — ) /12h? [5b]
" (Xo)= (-f3 + 8f2 -13f1+ 13f.; — 8f, + f3 ) /8h3 [5c]

Shear moments and bending moments in the modified equilibrium equations may be
determined from shear and bending moment diagrams. Thus, these terms are given loads and
do not have to be differentiated. Unknowns to be differentiated are vertical and horizontal
deflections and the out of plane rotations, u, v, and ¢, respectively. Therefore, there are three
equations and three unknowns related to each system of equations for each segment of the
beam being differentiated. End boundary conditions and relationships between segments will be

clearly defined by the global system of equations being solved linearly.

Central difference terms related to vertical deflection consist of

VERVo (6a]
V, = [_VZ + 8\/1 - 8V-1 + V.2]/12h [6b]
v’ = [-vy + 16v1 -30Vo + 16V.1 — v_5]/12h? [6c]

Difference terms related to the horizontal deflection consist of
=t [7a]
U' = [_UZ + 8u1 - 8L|-1 + U-2]/12h [7b]

u”=[-uz + 16u; — 30u, + 16u-1 — u2]/12h? [7¢]
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Difference terms related to the out of plane rotation are

¢ = do (8a]
¢ =(-¢p2+8p1-8¢p1+¢2)/12h [8b]
¢ = (-2 + 1601 - 30do + 16¢.1 — d-2 ) /12h? [8c]
& = (-p3+8P2-13d1+13d-1-8Pp2+ d3)/8h3 [8d]

Next, these terms are substituted into our modified lateral-torsion equations to obtain

Bx [‘VZ + 16V1 ‘30Vo + 16V-1 - V-2]/12h2 - d)o ( Mty) =- Mtx [93 ]
By [‘UZ + 16u1 - 3OUO + 16U-1 - U-Z]/].th - d)o ( Mtx) =- Mty [9b ]

Cw(-$p3+8d2-13¢p1+13b-1-8b2+d3)/8h3—(Ce+K)(-b2+8b1-8Pp.1+d2)/12h + [-uz +
8u1—8u.1 + U2]/12h (- M) — [-v2 + 8vi—8Vv.1 + v2]/12h ( Myy) — Vo/L ( M1 + Myy2)
- Uo/l- ( Mix1 + Mix2 ) + P(yo/2 ) d)O: 0 [9C]

Solving the above finite difference equations simultaneously using a stiffness matrix approach,

vertical, horizontal, and lateral deflections along the beam are determined.

To solve for lateral-torsional buckling, replace the first two lower order equations with
their fourth order equations and set the right side of each equation equal to zero. This also will
be demonstrated for each investigation. LTB equations typically used by Galambos and ASCE in

practice for solving P are

Ely uV + Myd” + 2M’x ¢’ = 0 [10a]
Elw ®" - ( GKt + MyBx ) d”' - M'xBx ®’ - Mxu” = 0 [10b]
Because shear is included in the modified solution, equations are coupled and we will be

including equilibrium equation for vertical deflection in our discussion. Itis

Elx VIV + Mtyd)" + ZM'tx d)' = Mtx [11]
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Including additional terms into the third order lateral buckling equation and taking its fourth

derivative, one obtains =

CudV = (GKt )" + U”’(- Mx) - U (M) = u/L(Mpa+Mu2)—u"/L(Moa + Mua)

+P(yo/2 ) ¢'0=0 [12]
Note: When considering shear, My in the equation becomes M where M = Ms+ M

Given a point load on a simple beam, Timoshenko asked us to place a shear moment on
the conjugate beam as a point load as shown in Figure 5. He further noted that a real point load
is actually distributed over some small distance e and creates the moment point load. This point
moment distributed over an eccentric distance e is in k-in. The resultant of the shear moment

when placed on the conjugate beam is Ps given by:
Ps_ aPZElx/AG

P, is applied point load when including Timoshenko shear term. P1 is applied point load when
not including shear term. P, and P1 can be solved using a central difference model and
determining the buckling limit with and without shear being considered, respectively. Once

have values P1 and P3, introduce factor SF where
SF=P»/P;.

Rather than setting up two central difference models to determine P1 and P, propose
calculate SF and use it with P1 or P; as needed. P1 and P; relationship changes with conjugate

beam and loading.
Let M1ixq = Bending moment diagram without shear and
Maxd = Bending moment diagram with shear. On the conjugate beam,

Mixd = Maxd + Ms .



For a single span beam with a point load in the middle,

PiL/4 P>L/4 (xPzEIj/AG
/‘ - _ £ "\ . . >

Figure 5. Moments on Conjugate Beam

(%) P1L/4 (L/2) + (%) P1L/4 (L/2) = (%) PoL/4 (L/2) + (%) P2L/4 (L/2) + aP2ElL/AG [14]

Where resultants are

R1= (%) P1L/4 (L/2) [15]
Rz = (%) P1L/4 (L/2) [16]
Rs = (%) P2L/4 (L/2) [17]
Ra = (%) P2L/4 (L/2) (18]

Rearranging [14],

SF =P, /P1=(L?%/8)/[(L%/8) + aElx/AG ] [19]

Use of this factor will be demonstrated throughout.

Knowing the relationship between P; and P2, we can define the value of Ms in the
moment equation at midspan. Timoshenko defined the shear moment to be applied to the

conjugate beam as Ps = P2(aEl«/AG) [20]
The moment at midspan of real beam can be shown to be

M=P1(L/4) = Mt = M pending + Mshear = P2(L/4 + Zw(0El/AG)) [21]
concerning moment without shear and moment with shear, respectively. Rearranging
(L/4)/SF = (L/4 + Zw(aEl/AG)); [22]

and Zy = (((L/4)/SF) — L/4)/ (aElx/AG) [23]

16
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2.1 Stability Analysis for Simply Supported Beam with Point Load Midspan

Numerical formulations for the critical buckling load and translational and rotational
deflections are presented for Investigation 1 in this section. Numerical methods formulated are
sine approximation and fourth order central difference. Critical buckling load as determined from
the ASCE-LRFD Prestandard is also presented. Beam loading with boundary conditions, moments

on conjugate beam, and shear deflection are defined in Figure 6.

A O
777

\ Shear Moment Load Diagram

Located on Conjugate Beam.

PL/AEI

Bending Moment Diagram

‘(M/EI Diagram on Conjugate)
A

‘(///'PSL/4EI

Shear Deflection

37.5” 37.5”

Figure 6. Investigation 1: Deflection Diagrams



2.1.1 Semi-analytic Solution Including Shear Deformation

When My = 0 and boundary conditions at ends are pinned-pinned, the equilibrium

equations for the simple beam in Figure 4 are

BxV" = - Mtx

Byu” - Mtx d) = 0

Cwd” = (Ct+B) P —Mux(U')=0

Where Mix = Mpending + ZwP2 ( aEl/AG ) ; without shear M = Myending = M .

Let

¢ = Asin(nmt/L)z

v = Bsin(nmt/L)z

And u = Csin(nmt/L)z

For

¢ = Asin(nmt/L)z

¢’ = (nmt/L) Acos(nmt/L)z
¢” = -(nr/L)? Asin(nmt/L)z
¢’ = - (nm/L)3 Acos(nmt/L)z
v = Bsin(nmt/L)z

v’ = (nmt/L) Bcos(nm/L)z
[33]

v’ = -(nrt/L)? Bsin(nt/L)z
u = Csin(nmt/L)z
u’ = (nm/L) Ccos(nm/L)z

u”’ = -(nm/L)? Csin(nmt/L)z

Substituting these terms into the aforementioned equilibirium equations we get
-Bx (n1t/L)% Bsin(n1/L)z = M
B,(nmt/L)? Csin(nmt/L)z + Mix Asin(nrt/L)z =0

-Cw(nmt/L)3 Acos(nmt/L)z — (Ct + B) (n1t/L) Acos(nmt/L)z — M ((n1t/L) Ccos(nmt/L)z) =0

[24]
[25]
[26]

[27]
[28]
[29]

[30]
[31]
[32]

(34]

[35]
(36]

[37]
(38]
[39]
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Simplify we get,

-Bx (nm/L)? Bsin(nm/L)z = Mix [40]
-By(nm/L)2C-MxA=0 [41]
-Cw(nT/L)3 A = (Ct + B) (nTt/L) A = M ((nT/L) C= 0 [42]

where M is taken at a location z from the end of the beam. In our case, it will be midspan. Solving

the determinant of the equations, we get the following lateral-torsional buckling equation:
[-Mc? (n1t/L)°] + [By (n7t/L)* ] [Cw (nTt/L)? + Ci (nmt/L)] = O [43]

Solving the determinant and using the loads of the equations, we can now solve for ¢, v,

and u. This gives us the ability to plot a second finite element approach.

Note: The term Pyo/2 results in an end moment and can not be considered in a sine

approximation.

Problem 2.1.1. Lab Investigation 1

Given: 4” x 4” x %" fiberglass reinforced plastic beam in Figure 4. L = 75”. E=2997 ksi.
lx=7.935in.4. G =450ksi. | y=2.67 in.4. ki =.0612. A =2.85in% Iy=9.375in.%. SF =.92
Find: Buckling limit and vertical deflections with shear. Use Semi-analytic approach.

The equilibrium equations using sine approximation with pinned-pinned ends are

-Bx (n1t/L)2 Bsin(nmt/L)z = Mix [40]
-By(nm/L)2C-MxA=0 [41]
-Cw(nmt/L)3 A= (Ct) (nt/L) A= M ((nrt/L) C=0 [42]

Simplifying for buckling calc where determinant equals zero, we get,
Bx (nt/L)2B=0
-By(nm/L)>C- M A=0

-Cw(nm/L)3 A= (Ct) (nt/L) A= M ((nrt/L) C=0
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Since M is on right side and right side of equation [40] is zero, it becomes uncoupled.
Solution to equations [41] and [42] for buckling determinant is

Mix = [ By (Cw(mt/L)* + Ct (/L)% ]° [43]
Plugging in the given, we have

Mix = 32.87 kip-in.

Mix = Mxbending + Mshear; P2/P1=.92

Mix = P1L/4 without shear, so P1 = 1.76 kips

P, =.92 (1.76) = 1.62 kips. Load P31, kips, M (k-in.)

For vertical deflection calc, we can use determinant solution of

a1 di C1
a d2 C2
as ds C3
- Vw/s
a1 b1 C1
a b2 C2
as bs C3 (44]

where the column of d terms are load values substituted into the coefficient column for the
unknown vertical deflections. Note that d2 = M/sin (nmz/L), and d1 and ds equal zero. Plugging

in values, the solution is

Vwss = (Med(nt/L)/sin(nmiz/L) - (Cw(nmt/L)® + Ci(nmt/L)By(nmt/L)? (Mu/sin(nmz/L) [45]

(Mu(nmt/L)3(Bx) - Cw(nm/L)® + Ci(nmt/L)BxBy(n1t/L)%)

So, to find the vertical deflections with shear, we can use P, load values used in lab.
Calculate P4, then calculate Mw. P2 equals 1.55 kips at the buckling limit calculated using this
approach. M = 32.87 k-in. and vertical deflection are shown in Table 2.



21

Table 2. Vertical Deflection. Investigation I. Semi-Analytic, With Shear Load

Load P, kips Load P4, kips My, k-in. Vert. Deflection, in.
0.0 0.0 0.0 0.0

.0141 .0159 2984 .0071
.1292 1461 2.739 .0657
3149 .3559 6.674 .1598
4913 .5563 10.412 .2493
.6858 7752 14.536 .3480
.8787 9932 18.623 4458
1.0271 1.161 21.768 5211
1.3618 1.539 28.861 .6909
1.6124 1.822 34.173 .8181
1.7509 1.979 37.108

1.8316 2.070 38.818

2.1.2 Semi-analytic Solution Without Shear Deformation

The semi-analytic approach without shear deformation is same as aforementioned

semi-analytic approach with shear except Ms = 0. M« = Mx= Mpyx. Lab values are P without shear

values, P;.

Problem 2.1.2. Lab Investigation 1

Given : 4”x 4” x %" fiberglass reinforced plastic beam in Figure 4. L= 75" . E = 2997 ksi.

lx=7.935in.%. G =450 ksi. ly=2.67in.% k¢=.0612. A=2.85in% 1,=9.375in.%.

Find: Buckling limit and vertical deflections without shear.

For vertical deflections without shear, we simply do not apply the shear moment to the

beam. In other words Ms = 0.0 and Mix = Mxbending. Procedure is exactly same as calculating

critical load and vertical deflection outlined in previous problem which included shear.

However, P loads from lab experiments are P1 not P,. Therefore, M = P1L/4 for this problem.

See tabulated vertical deflection values for this problem in Table 3.

P1 equals 1.75 kips at the buckling limit calculated using this approach. M« = 32.87 k-in.

See Table 3.



Table 3. Vertical Deflection. Investigation 1. Semi-Analytic. W/o Shear

Load Py, kips Mix or Meending, k-in. Vert. Deflection, in.
0.0 0.0 0.0
0141 2640 .0063
1292 2.423 .0580
3149 5.904 1413
4913 9.212 2205
6858 12.86 3079
8787 16.48 3944
1.027 19.26 4610
1.362 25.53 6113
1.612 30.23 7238
1.751 32.83 7859
1.83 34.34 .8222
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2.1.3 Central Difference Solution With Shear Deformation

For this approach, we use the three central difference governing equations previously
developed to determine vertical, horizontal, and lateral deflection values along the beam. My =
M. For this approach, we follow the instructions of Timoshenko to the letter. We simply place
the shear moment point load on the conjugate beam. The ends of the conjugate beam are
pinned-pinned upon the length of an element or eccentricity, the shear moment Ms value varies
from model to model. Ps = P, aElx /(eAG) where e is the eccentricity or length of the element.

With shear, M = Mpending + Ms on the conjugate beam.

Problem 2.1.3. Lab Investigation 1

Given: 4” x 4” x 1/4” fiberglass reinforced plastic beam in Figure 4. L=75". E=2997 ksi.
lx=7.935in.%. G=450ksi. I, =2.67in.% K;=.0612. A=2.85in?% |,=9.375in.°.

Find: Buckling limit and vertical deflections with shear.

As shown in Galambos, the 4t order solution of the second order bending equilibrium equation

including the angle of twist is:

Ely uV + M ¢” +2M' ¢’ =0 [46]
And the 4% order solution of the third order equation of lateral deflection is

Elw ¢IV + th (b” - Mtx U” - M'tx U' = ( M'tx1+ M’tx2 ) U/L - ( Mtx1+ MtxZ ) U'/L = O [47]

Both equations take into consideration that M’ is not zero for a beam with a point load.
Symmetrical properties of | beam have also been taken into consideration. Next, we plug the 4t
order central difference terms into the aforementioned lateral-torsion equations of equilibrium

and we have

a17u3 +aieUz + aisU1 + a14Uo + @13U-1 + @12U-2 + A11U-3 + b1sdo + b1ad1 + bizdo + b1od1 + b1idp2 =0
(48]

azsUz +a24U1 + @23Uo + @22U-1 + @21U-2 + ba7d3 + baeda + basdr + baado + bazd-1 + baadp2 + baadp3 =0

[49]
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where a1 = -Ely/6h*; a12 = 2El,/h*; a13 = -13El,/2h*; a14 = 28Ely/3h%*; a15 = -13El,/2h*;
a1s = 2EI,/h* ; a17 = -Ely/6h* ; b11 = (-Mu/12h2 + M't/6h) ; b1z = (4Mu/3h? -4 M'w/3h);
bis = -(5M/2h? ; bis = (4My/3h? + 4 M’w/3h); and bis = -(Mu/12h? + M’/6h) , and
a21 = (M/12h? - M',/12h) — ((Mea +Mee)/ 12hL);

a22 = (-4Mw/3h? + 2M’/3h) + (2(Mixa +Mixz)/ 3hL); @23 = (5Mux/2h? - (M +M’x2)/ L);
a24 = (-4Muw/3h? - 2M'/3h) - (2(Mua +Mixa)/ 3hL);

azs = (Mu/12h%2+ M’t/12h) + ((Mua +Mu)/ 12hL);

by1 = -Ely/6h*; by, = 2Ely/h* + GK¢/12h? ; bys = -13El,/2h* - 4GK¢/3h? ; bya = 28El,/3h%;

bas = -13Ely/2h* - 4GK¢/3h? ; bs = 2El,/h* + GKi/12h?; and by7 = -El,/6h*.

Next. We define h to be fraction of L. For this problem, L=75.0 in. and h=3.75 in. this gives
us 21 locations. Boundary conditions are associated locations 1 and 21, and ghost boundary
conditions are associated with locations 2,3,19, and 20. The term ghost is because we extend the
columns out by two more imaginary locations beyond the boundary location. This allows us to
modify equations to identify where supports are pinned or fixed. For example, the term a1
extended out two terms beyond the boundary gives us the two terms ai; and ai1. The modified
term *ais goes in the location a4, and *a14 = a14 — a12 ; and *ais = a15 — a1y, if support is pinned.
For fixed support, *ai14 = a1a + a12 ; and *ais = ais + a11 . bis, a3, baa, bys also need to be

determined. Layout of K Matrix is demonstrated in Table 4.
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Table 4. Central Difference Buckling K Matrix for Investigation 1

1 | 2 ‘ 3 Location —

0lo olo 0.0 0.0 0.0 __» Supports at locations 1 and 21
olo—o0lo— 00 __» Zero out boundary

0j0 0j0 0.0 0.0

0j0 00 bz 0.0

0{0 00 b1s a1z

0j0 0J0 b2e 0.0

00 0P bia  aw

0j0 0[ bs  ass

v v Main diagonal

M is the moment at the left end of an element because we are holding the element
there. Mui is also the moment at the left end while M is the moment at the right end of an

element. Signs are opposite, typically. M’« is equal to the slope of the moment. M’ = R; or Ra.

Ril -Mua -PLo+ Mix2 = 0 [50]
RoL -Mux2 -PL1+ Mixa = 0 [51]
Because we are dealing with a point load and discontinuity at its location, the slope is the same
for each location to the left or right of the point load. Once values are assigned to all matrix
locations including the shear moment location, we can solve the determinant of the matrix while
increasing P, each time. When P, changes signs, we have crossed zero and reached the critical

buckling limit. Value of P with shear, P;, for this problem is 1.83 kips.
The governing equations for deflections when considering lateral torsional buckling are:

Bx V”‘ d) Mty = Mtx



26

By u”’- ¢ Mix = My
Cwd”’ = (Ct+ MyB) ¢’ = Mix U' - My V' = (Mixa + Mx2 ) u/L- (Mey1+ Myy2 ) v/L+ P(yo/2) d =0

As we are solving these equations simultaneously using a fourth order central difference
approach, we will be using the aforementioned central difference expressions. These terms are

substituted into our modified lateral-torsion equations to obtain:

Bx ( -v2 +16v1—30vo +16 V.1 - V-2)- o My = Mix

By (-u2 +16u1 — 30up +16 U.1 - U-2)- o Mix = My

Cw(-®D3+8b2-13d1+ 13d-1-8d2+ §3)/8h° — (Ci+ MiB) (-d2 + 81 - 81+ ¢d-2)

— M (-U2+8u1—8u.1+Uy)-My(-v2+8vi—8v.a+Vv,)

= (Mt + M2 ) uo/L- (Mey1 + Myy2 ) vo/L + P(yo/2) do=0

Setting My to zero, we have,

a11V-2 + a12v-1 + @13Vo + a14Vv1 + a1sV2 = Mix [52a]

where a11=-Ely/12h?; a12 = 4Ely/3h?; a13=-5El/2h? ; a1 = 4El/3h?; a15= -Ely/12h?;

B21u-2 + baau-1 + b23ug + baaus + basuz + €210 = 0.0 [52b]

Where b1 = -El/12h? ; by = 4El/3h? ; bz = -5El/2h? ; boa = 4Ely/3h?; bas = -Ely/12h?;

€21 = - M

bs1u-2 + baau.1 + b3sup + baaus + basuz + ca1d-3 + c32d-2 + C33¢-1 + C3ado + Casd1 + 362 + c37d1 = 0.0
[52c]

where b1 = -Mu/12h ; b3z = 2Mu/3h ; b3z = -(Moa + Mue)/L ; baa = -2Mu/3h ; bss = Mu/12h ;

c31 = Cw/8h3; c32 = - Cw/h® = Ct/12h ; c33 = 13Cw/8h3 + 2Ci/3h; €34 = Pyo/2 ;

C35 = -13Cw/8h3 - 2Ci/3h; c36 = Cu/h3 + Ci/12h; c37 = - Cw/8h3.

For the vertical deflection values, we use the same approach we just demonstrated for
the buckling limit except we use the three governing equations and the load vector is not set to
zero. [K] u = F. So we solve for the deflections using the inverse K matrix, u = [K]* F. The vector u
contains the unknowns v, u, and phi along the member. Central Difference K Matrix for deflection

calcs is demonstrated in Table 5.
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Table 5. Central Difference K Matrix for Deflection. Investigation 1

Location 1 Location 2 Location 3 Location 4
\ u (0] v u (0] v u (0] v u (0]
—06:0—06:6—6.0—6.06—06.06—06.0—0.6—0.06—0.0—0.0—0.0—0.0»>
—0:0—0:.0—0,0—0.0—0.0—06.0—0.0—06.06—0.06—0606—066—00—>
0:0— 00— 6.0—0.0—06.06—0.0—0.06—0.06—06.06—06.6—0.0—0.06>
0,0 00 0.0 0.0 0.0
0,0 00 0,0 bss C36
o0 00 00 b2s 0.0
00 00 00 0.0 0.0
00 00 0j0 b3a C35
00 00 00 b24 0.0
v v v

Zero out boundaries

For this problem, we used h=1.5 inches and 51 locations. Vertical deflections were
tabulated based upon given info and applied P, loads from laboratory. Values are shown in Table

6.



Table 6. Vertical Deflections. Investigation 1. Central Difference
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8” from support

18” from support

29” from support

Load P, kips | Vaw/s(in.) | Vaw/0(in.) | Vaw/s(in.) | Vaw/o(in.) | Vaw/s(in.) | Vzw/o(in.)
0.00 0.00 0.00 0.00 0.00 0.00 0.00
.0141 .0020 .0018 .0037 .0034 .0054 .0048
1292 .0180 .0165 .0340 .0311 .0491 .0442
3149 .0438 .0403 .0830 .0758 .1196 1077
4913 .0684 .0628 .1294 1183 .1866 .1680
.6858 .0955 .0877 .1807 .1652 2604 2346
8787 1223 1124 2315 2116 3337 .3006
1.0271 .1430 1314 2706 2473 .3900 3513
1.3618 .1896 1742 3588 .3279 S171 4658
1.6124 2245 2062 4248 .3883 .6123 S515
1.7509 2438 2240 4613 4216 .6649 .5988
1.8316 2550 2343 4825 4411 .6956 .6764
2.13 2966 2725 5612 5129 .8089 7285

2.1.4 ASCE LRFD Method

The ASCE buckling limit equation was developed using the classical approach solution for

a simple beam solution introduced by Galambos. The LTB equations used in the classical

approach were

E|y uIV + Mtx d)” + 2M'tx (b; — O

And the 4% order solution of the third order equation of lateral deflection is

Elw " — (Gke + My B) @” - Mxu” — M’y Bx ®

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide

for Pultruded Members.

n= Cb ( T[z ELf Iy DJ/l_b2 + T[4 ELf |y Cw/l.b4 )'5

=0

[53]

(54]

[55]



29

where Dj = Gki; Cw = lw; and Cp = 12.5Mmax/(2.5Mmax+3Ma+4Mz+3Mc).
Problem 2.1.4. Lab Investigation 1

Given: 4” x 4” x " fiberglass reinforced plastic beam in Figure 4. L = 75”. Eir= 3194 ksi.
lx=7.935in.%. G =450 ksi. ly = 2.67 in.% k¢ =.0612. A=2.85in2% I,=9.375in.%

Find: Buckling limit.
The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross

section is

Mn = Cp (1% ELtly D/Lu? + 1*Eusly Cu/Lo* )® [56]
where Ly is the braced length,

Cw is the warping constant,

Eir is the Modulus Elasticity of the longitudinal flange,

Dj= Gkt and is the torsional rigidity, and

Cb = 12.5Mmax/(2.5Mmax+3Ma+4Mg+3Mc). [57]

and is the moment modification factor. Ma, Mg and Mc are moments at locations .25L, .5L, and
.75L, respectively. See Figure 7.

Ms . Mc

%i\ MMAX: MB
1 .5 | 2

P E
:

251 SL 5L ‘

Figure 7. Moment Diagram for Investigation 1
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Location of Mmax varies with location of point load and equilibrium conditions. For this
problem, Mmax= Mg = PL/4. Plugging in moment values, Cp = 1.32. Plugging in given values and
Cb, Mn=43.02 k-in. Knowing the relationship between the critical moment and critical load, P1,

without shear moment; we can calculate the critical load, P;.

P1=4Myn/L = 2.29 kips.
Now. We must find relationship of P1, the critical load without shear moment, and P, the

critical load with shear moment.

P1 is associated with the moments on the conjugate beam when Ps is not present. P is
associated with the moments on the conjugate beam when Ps is present. The resultant of the
moment diagram on the conjugate beam when considering and not considering shear moment

is of equal value or

2(1/2) (P1/L/4) (L/2) =2(1/2) (P2/L/4) (L/2) + P2(aEl/AG) [58]
Rearranged
P2/P1 = (L*/8)/ ((L?/8) + aElx/AG) [59]

Solving we get SF=P,/P; = .92
Thus,
P2 =.92P; = 2.11 kips

Using the LRFD buckling limit equation, The buckling load with shear was determined to be 2.03
ksi.

Critical loads are summarized in Table 7 and will be compared to experimental load in Chapter
4. Deflections will be compared also.



2.1.5 Summary of Maximum Loads

Table 7. Summary Buckling Limits Theory
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Section Method Per
2.1.1 Semi-analytical Solution Including Shear Deformation 1.55 | kips
2.1.2 Semi-analytical Solution Ignoring Shear Deformation 1.75 | kips
2.1.3 Finite Difference Solution Including Shear Deformmation | 1.83 | kips
2.1.4 ASCE-LRFD Method 2.11 | kips
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2.2 Stability Analysis for Simply Supported Beam with Point Load Off Center

Numerical formulations for the critical buckling load and translational and rotational
deflections are presented for Investigation 2 in this section. Numerical methods formulated
include fourth order central difference. Critical buckling load as determined from the ASCE-LRFD
Prestandard is also presented. Beam loading with boundary conditions and moments on

conjugate beam are defined in Figure 8.

- r

Ps Shear Moment Load Diagram, P./El
| ) 4
7577 /
PLiL,/EIL
(M/EI Diagram on Conjugate)
PsLiLo/EIL

\ Shear Deflection Diagram

Z\

27”7 52.5”

Figure 8. Investigation 2. Deflection Diagrams
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2.2.1 Central Difference Solution With Shear Deformation

For this approach, use the three central difference governing equations previously
developed to determine vertical, horizontal and lateral deflection values along the beam. My =
M. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear
moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned.
So, boundary conditions are set for pinned-pinned in the finite difference model. Depending up
on the length of an element of eccentricity, the shear moment P value varies from model to
model. Ps =P, aElx/(eAG) where e is the eccentricity or length of the element. With shear, M =

Mpending + Ps on the conjugate beam.

Problem 2.2.1. Lab Investigation 2

Given : 3” x 3” x 1/4 “ fiberglass reinforced plastic beam in Figure 5. L=79.5” . E= 2997 ksi.
Ik=3.17in.%. G=450ksi.ly=1.13in.% Kt=.046. A=2.13in.2. I,=2.13in.%

Find: Buckling limit and vertical deflections with shear.

As shown in Galambos, the 4t order solution of the second order bending equilibrium

equation including the angle of twist is:

Ely uV + My d” +2M'xd’ =0 [46]
And the 4% order solution of the third order equation of lateral deflection is

Elw &V + Gki " - Mu” = M’'x0” - ( M2+ M2 ) u/L - ( Mpa+ M2 ) U'/L =0 [47]

Both equations take into consideration that M’ is not zero for a beam with a point load.
Symmetrical properties of | beam have also been taken into consideration. Next, plug the 4t
order central difference terms into the aforementioned lateral-torsion equations of equilibrium

and obtain

a17u3 +aieUz + aisU1 + a14Uo + @13U-1 + @12U-2 + A11U-3 + b1sdo + b1ad1 + bizdo + b1od1 + b1idp2 =0
(48]

azsUz +a24U1 + @23Uo + @22U-1 + @21U-2 + ba7d3 + baeda + basdr + baado + bazdp-1 + baadp2 + baadp3 =0

[49]
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where a1 = -Ely/6h*; a12 = 2El,/h*; a13 = -13El,/2h*; a14 = 28Ely/3h%*; a15 = -13El,/2h*;
a1s = 2EI,/h* ; a17 = -Ely/6h* ; b11 = (-Mu/12h2 + M't/6h) ; b1z = (4Mu/3h? -4 M'w/3h);
bis = -(5M/2h? ; bis = (4My/3h? + 4 M’w/3h); and bis = -(Mu/12h? + M’/6h) , and
a2 = (Mw/12h? - M'/12h) = ((Mua +Mue)/ 12hL);

a22 = (-4Mw/3h? + 2M’/3h) + (2(Mixa +Mixz)/ 3hL); @23 = (5Mux/2h? - (M +M’x2)/ L);
a24 = (-4Muw/3h? - 2M'/3h) - (2(Mua +Mixa)/ 3hL);

azs = (Mu/12h%2+ M’t/12h) + ((Mua +Mu)/ 12hL);

ba1 = -Ely/6h* ; baa = 2Ely/h* + GKy/12h? ; bas = -13El,/2h? - 4GKy/3h? ; bag = 28El,/3h* ;
bas = -13E1,/2h* - 4GKy/3h? ; bas = 2EI,/h* + GKi/12h? ; and by = -El,/6h* .

Next. Define h to be a fraction of L. For this problem, L = 79.5 in. ; h=3.97in. ; and there
are 21 location Boundary conditions are associated with locations 1 and 21, and ghost boundary
conditions are associated with locations 2,3,19, and 20. The term ghost is because we extend the
columns out by two more imaginary locations beyond the boundary location. This allows us to
modify equations and identify whether supports are pinned or fixed. For example, the term al4
extended out two terms beyond the boundary gives us the two terms ai; and ai1. The modified
term *ai4 goes in the location of term a4, and *ais = a1a— a1 ; and *ais = a5 — a1y, if support is
pinned. For fixed support, *ai4 = a1 +a12; and *ais = a15 + a11. *bas, *a23, *b2a, and *bys also need

to be determined. Layout of the K matrix is demonstrated in Table 8.
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Table 8 Central Diff. K Matrix for Buckling. Investigation 2

1 | 2 ‘ 3 Location —

0lo olo 0.0 0.0 0.0 __» Supports at locations 1 and 21
0.6 86 00 _» Zero out boundary

0{0 0J0 0.0 0.0

0/0 0J0 b2z 0.0

0/0 0J0 bis aiy

0j0 0J0 b2e 0.0

00 00 bia  ae

0j0 0Jp b2s azs

v v

Main diagonal

Mt is the moment at the left end of an element because the element is being held there.
M is also the moment at the left end while M. is the moment at the right end of an element.

Signs are opposite, typically. M’« is equal to the slope of the moment. M’ = R; or Ra.

Ril -Mux1 -PLo+ Mix2 = 0 [50]
RaoL -Mux2 -PL1+ Mix1 = 0 [51]

When dealing with a point load and discontinuity at its location, the slope is the same for each
location to the left or right of the point load.

Once values are assigned to all matrix locations including the shear moment location,
solve the determinant of the matrix while increasing P, each time. When the matrix determinant
value changes signs, the determinant has crossed zero and P, has reached the critical buckling

limit. Value of P with shear, Py, for this problem is .84 kips.
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The governing equations for deflections when considering lateral torsional buckling are:

BxV'’- ® My = M

By U”- & M = My

Cwd"”” = (Ct+ MyB) &' — Mix U’ - Mty V' = (M1 + M2 ) Uu/L- (Meya + My ) v/L+ P(yo/2) d =0

Solve the modified equations of equilibrium simultaneously using a fourth order central
difference approach and aforementioned central difference expressions. These terms are

substituted into our modified lateral-torsion equations to obtain:

Bx (-v2 +16v1 —30vo +16 V.1 - V-2)- o My = Mix

By (-u2 +16u1 — 30up +16 U.1 - U-2)- o Mix = My

Cw(-®3+8p2-13d1+ 13¢-1- 82+ d3)/8h% — (Ce+ MyB) (-2 + 81 - 8d-1 + §-2)

— M (-U2+8u1—8u.1+Uz)-My (-v2+8vi—8v.ai+Vv,)

— (Moa + M2 ) uo/L- (Miy1+ Myy2 ) vo/L + P(yo/2) o =0

Setting My to zero,

a11V-2 + a12v-1 + @13Vo + a14Vv1 + a1sv2 = Mix [52a]

where a11=-Ely/12h?; a12 = 4Ely/3h?; a13=-5El/2h? ; a1 = 4El/3h?; a15= -Ely/12h?;

B21u-2 + baau.1 + b23ug + baaus + basuz + €210 = 0.0 [52b]

where by1=-Elx/12h?; b2y = 4El/3h?%; baz = -5EI/2h? ; baa= 4El/3h? ; bys = -Ely/12h?;

€21 = - M

bs1u-2 + baau.1 + b3sup + baaus + basuz + ca1d-3 + c32¢-2 + C33¢-1 + C3ado + Casd1 + C3sd2 + c37d1 = 0.0
[52c]

where b3 = -Mu/12h ; b3z = 2Mu/3h ; b3z = -(Mua + Mue)/L ; bsa = -2Mu/3h ; bss = Mu/12h ;

31 = Cuw/8h3; c32 = - Cu/h® = C/12h ; ca3 = 13Cw/8h3 + 2C¢/3h; c3a = Pyo/2 ;

C35 = -13Cw/8h3 - ZCt/3h; C36 = Cw/h3 + Ct/12h; C37=- CW/8h3 .

For the vertical deflection values, use the same approach just demonstrated for the
buckling limit except use the three governing equations and the load vector is not set to zero.
[K]u = F. So solve for the deflections using the inverse K matrix, u = [K]"! F. The vector u contains

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 9.
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Table 9. Central Difference K Matrix for Deflection. Investigation 2

Location 1 Location 2 Location 3 Location 4
\ u (0] v u (0] v u (0] v u (0]
—06:0—06:6—6.0—6.06—06.06—06.0—0.6—0.06—0.0—0.0—0.0—0.0»>
—0:0—0:.0—0,0—0.0—0.0—06.0—0.0—06.06—0.06—0606—066—00—>
0:0— 00— 6.0—0.0—06.06—0.0—0.06—0.06—06.06—06.6—0.0—0.06>
0,0 00 0.0 0.0 0.0
0,0 00 0,0 bss C36
o0 00 00 b2s 0.0
00 00 00 0.0 0.0
00 00 0j0 b3a C35
00 00 00 b24 0.0
v v v

Zero out boundaries

For this problem, we used h=1.5 inches and 54 locations. Vertical deflections were
tabulated based upon given info and applied P> and P1 loads from laboratory. Values are shown

in Table 10.



Table 10. Vertical Deflections. Investigation 2. Central Difference

38

6” from 6” from 21” from 21” from | 36” from | 36” from

support support support support support support
Load P, kips | Viws(in.) Viw/o Vaw/s Vaw/o Vaw/s V3w/o
0.00 0.00 0.00 0.00 0.00 0.00 0.00
1826 04672 .04426 .1455 1369 1811 1719
4244 .1086 .1029 3383 3182 4209 3996
6514 1667 1579 5192 4885 .6461 6133
.8653 2214 .2097 .6897 .6488 .8582 .8146
1.072 2744 .2600 .8549 .8042 1.064 1.010

2.2.2 Central Difference Solution Without Shear Deformation
For this approach, we use the three central difference governing equations previously
developed to determine vertical, horizontal, and lateral deflection values along the beam. My =

Myending and Ps=0. The ends of conjugate beam are pinned-pinned. So, boundary conditions are

set for pinned-pinned in the finite difference model.

Problem 2.2.2. Lab Investigation 2
Given: 3” x3” x 1/4 “ fiberglass reinforced plastic beam in Figure 5. L=79.5” . E= 2997 ksi.
Ik=3.17in.%. G=450ksi.ly=1.13in.% K;=.046. A=2.13in.% 1, =2.13in.°
Find: Buckling limit and vertical deflections without shear.

For vertical deflections without shear, we simply do not apply the shear moment to the
beam. In other words Ps = 0.0 and Mix = Mybending. Procedure is exactly same as calculating critical
load and vertical deflection outlined in previous problem which included shear. However, P loads

from lab experiments are P1 not P,. Therefore, M¢ = P1LiLy/L for this problem. See tabulated
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vertical deflection values for this problem in Table 6. P1 equals .88 kips at the buckling limit

calculated using this approach. My = 15.69 k-in.

2.2.3 ASCE LRFD Method

The ASCE buckling limit equation was developed using the classical approach solution for
a simple beam solution introduced by Galambos. The LTB equations used in the classical

approach were

Ely uV + My d” +2M'd’ =0 [53]
And the 4t order solution of the third order equation of lateral deflection is

Elw " = (Gke + Mx B) ¢ - Mxu” =M« Bxd =0 [54]
The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide

for Pultruded Members.

n=Co (T ELtly Di/Lp® + m*Ersly Cu/Lp*)? [55]

Where Dj= Gki; Cw = lw; and Cp = 12.5Mmax/(2.5Mmax+3Ma+4Mzg+3Mc).

Problem 2.2.3. Lab Investigation 2

Given: 3” x 3” x %" fiberglass reinforced plastic beam in Figure 5. L=79.5”, E(r=3194 ksi.

Ix=3.17in.4. G=450 ksi. I, =1.13 in.%. k¢=.046. A=2.13in% 1, =2.13in.°.

Find: Buckling limit.

The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross section is
n=Cp (T Erfly Dj/Lp? + m*Eisly Cw/Lo*)®

Where Ly, is the braced length,

Cw is warping constant,

E.r is the Modulus Elasticity of the longitudinal flange,

D; = GKt and is the torsional rigidity, and

Cb = 12.5Mmax/(2.5Mmax*+3Ma+4Mgp+3Mc)

And is the moment modification factor.
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Ma, Mg and Mc are moments at locations .25L, .51, and .75L, respectively. See Figure 9.
Location of Mmax varies with location of point load and equilibrium conditions. For this problem,
Cb = 1.41. Mmax = PL1L2/L. Plugging in moment values, M,=18.68 k-in. Knowing the relationship
between the critical moment and critical load, P1, without shear moment; we can calculate the

critical load, P1. P1 = ML/LiL, = 1.05 kips.

L 2707 ‘Mg Mc
Ma E Mwmax = PL1Lo/L
1 / ' 2 L1 =27.0”
/\ 5 : E O
171 25L . 5L .75L 1]/ L, =52.5"
L 79.5” ‘
|

Figure 9. Moment Diagram for Investigation 2

Now. find the relationship of P4, the critical load without shear moment, and P, the
critical load with shear moment. P1 is associated with the moments on the conjugate beam when
M is not present. P; is associated with the moments on the conjugate beam when Ps is present.
The resultants of the moments on the conjugate beam when considering and not considering

shear moment are of the same value or

(%)(P1LiLlo/L)(L1) + (2&)(P1Lila/L)(L2) = (%)(P2Lila/L)(L1) + (%2)(PaLala/L)(L2) + Ps
Rearranged
Po/P1=[(%)(Lilo/L ) (L) + (%)(Lila/L)(L2) 1/ [ (%5)(P2Lilo/L)(L1) + (%)(P2Lila/L)(L2) + QElL/AG ]

Solving we get P,/P1 = .956 Therefore, P, = 1.00
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2.2.4 Summary of Maximum Loads

Critical loads are summaraized in Table 11 and will be compared to experimental load in

Chapter 4. Deflections will be compared also.

Table 11. Summary of Buckling Limits. Investigation 2

Section Method Pcr
2.2.1 Central Difference with Shear .84 kips
2.2.2 Central Difference without Shear .88 kips
2.2.3 ASCE-LRFD Buckling Limit 1.00 kips
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2.3 Stability Analysis for Two Span Beam with Point Load Midspan. Longer Span.

Numerical formulations for the critical buckling load and translational and rotational
deflections are presented for Investigation 3 in this section. Numerical methods formulated
include fourth order central difference. Critical buckling load as determined from the ASCE-LRFD
Prestandard is also presented. Beam loading with boundary conditions and moments on

conjugate beam are defined in Figure 10.

R -

Ps

Shear Moment

\;; Diagram, P/El

A\
N

13.725P/El \
A M/EI Conjugate

10.045P/El Beam

PsL/4El

Shear|Deflection Diagram

37.5” 37.5” 30.0”

Figure 10. Investigation 3: Deflection Diagrams
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2.3.1 Central Difference Solution With Shear Deformation

For this approach, use the three central difference governing equations previously
developed to determine vertical, horizontal and lateral deflection values along the beam. My =
M. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear
moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned.
So, boundary conditions are set for pinned-pinned in the finite difference model. Depending up
on the length of an element of eccentricity, the shear moment P value varies from model to
model. Ps =P, aElx/(eAG) where e is the eccentricity or length of the element. With shear, M =

Mpending + Ps on the conjugate beam.

Problem 2.3.1. Lab Investigation 3

Given: 4”"x4”x1/4” fiberglass reinforced plastic beam in Figure 6. L=75". E=2997ksi. Ix = 7.935
in%. G=450ksi. ly=2.67in.%. ke =.0612. A=2.85in? I, =9.375in.®.

Find: Buckling limit and vertical deflections with shear.

As shown in Galambos, the 4™ order solution of the second order bending equilibrium

equation including the angle of twist is:

Ely uV + My d” +2M'd’ =0 [46]
And the 4t order solution of the third order equation of lateral deflection is

Elw &V + Gki " - Mu” = M’'x0” - ( M2+ M2 ) u/L - ( Mpa+ Mo ) U'/L =0 [47]

Both equations take into consideration that M’ is not zero for a beam with a point load.
Symmetrical properties of | beam have also been taken into consideration. Next, plug the 4t
order central difference terms into the aforementioned lateral-torsion equations of equilibrium

and obtain

a17u3 +aieUz + aisU1 + a14Uo + @13U-1 + @12U-2 + A11U-3 + b1sdo + b1ad1 + bizdo + b1od1 + b11dp2 =0
(48]

azsUz +a24U1 + @23Uo + @22U-1 + @21U-2 + ba7d3 + baeda + basdi + baado + bazd-1 + baadp2 + baadp3 =0

[49]
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where a1 = -Ely/6h*; a12 = 2El,/h*; a13 = -13El,/2h*; a14 = 28Ely/3h%*; a15 = -13El,/2h*;
a1s = 2EI,/h* ; a17 = -Ely/6h* ; b11 = (-Mu/12h2 + M't/6h) ; b1z = (4Mu/3h? -4 M'w/3h);
b1z = -(5Mw/2h? ; b1a = (4Mw/3h% + 4 M'w/3h); and bis = -(Mu/12h% + M’/6h) , and
a21 = (M/12h? - M',/12h) — ((Mea +Mee)/ 12hL);

a22 = (-4Mw/3h? + 2M’/3h) + (2(Mixa +Mixz)/ 3hL); @23 = (5Mux/2h? - (M +M’x2)/ L);
a24 = (-4Muw/3h? - 2M'/3h) - (2(Mua +Mixa)/ 3hL);

azs = (Mu/12h%2+ M’t/12h) + ((Mua +Mu)/ 12hL);

by1 = -Ely/6h*; by, = 2Ely/h* + GK¢/12h? ; bys = -13El,/2h* - 4GK¢/3h? ; bya = 28El,/3h%;

bas = -13Ely/2h* - 4GK¢/3h? ; bs = 2El,/h* + GKi/12h?; and by7 = -El,/6h*.

Next. Define h to be a fraction of L. For this problem, L=75.0 in. and h=3.75 in. This gives
21 locations. K matrix is shown in Table 12. Boundary conditions are associated with locations 1
and 21, and ghost boundary conditions are associated with locations 2,3, 19, and 20. The term
ghost is because columns are extended out by two more imaginary locations beyond the
boundary location. This allows modifying the equations to identify where supports are pinned or
fixed. For example, the term a1s extended out two terms beyond the boundary gives the two
terms a1 and a11, The modified term *ai14 in the location of term ai4, and *as = a14 - a12; and *ass
= a1s — a1, if support is pinned. For fixed support, *a14 = a14 + a12; and *ais = a1s + a11 *bis, *ays,

*b24, and *bas also need to be determined.
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Table 12. Central Diff. K Matrix for Buckling Limit. Investigation 3

1 | 2 ‘ 3 Location —

0lo olo 0.0 0.0 0.0 __» Supports at locations 1 and 21
0.6 86 00 _» Zero out boundary

0{0 0J0 0.0 0.0

0/0 0J0 b2z 0.0

0/0 0J0 bis aiy

0j0 0J0 b2e 0.0

00 00 bia  ae

0j0 0Jp b2s azs

v v

Main diagonal

Mt is the moment at the left end of an element because the element is being held there.
M is also the moment at the left end while M. is the moment at the right end of an element.

Signs are opposite, typically. M’« is equal to the slope of the moment. M’ = R; or Ra.

RiL -Mix1 -PLy+ Mix2 =0 [50]
RaoL -Mix2 -PL1+ Mix1 =0 [51]
When dealing with a point load and discontinuity at its location, the slope is the same for each

location to the left or right of the point load.

Once values are assigned to all matrix locations including the shear moment location,
solve the determinant of the matrix while increasing P> each time. When the matrix determinant
value changes signs, the determinant has crossed zero and P, has reached the critical buckling

limit. Value of P with shear, P, for this problem is 2.7 kips.

The governing equations for deflections when considering lateral torsional buckling are:
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BxV'’- ® My = M

By U”- & M = My

Cwd"”” = (Ce+ MyB) &' — Mix U’ - Mty V' = (M1 + M2 ) Uu/L- (Meya+ My ) v/L+ P(yo/2) d =0

Solve the modified equations of equilibrium simultaneously using a fourth order central
difference approach and aforementioned central difference expressions. These terms are

substituted into our modified lateral-torsion equations to obtain:

Bx (-v2 +16v1 —30vo +16 V.1 - V-2)- o My = Mix
By (-u2 +16u1 — 30ug +16 U-1 - U-2)- o Mix = My
Cw(-®D3+8b2-13d1+ 13d-1-8d2+ d3)/8h° — (Ci + MiB) (-d2 + 81 - 8d-1 + d-2)
— M (-U2+8u1—8u.1+Uz)-My(-v2+8vi—8v.a+Vv,)
— (Moa + M2 ) Uo/L- (M1 + Myy2 ) vo/L + P(yo/2) do=0
Setting My to zero,
a11V-2 + a12v-1 + a13Vo + a14v1 + a1sV2 = Mix [52a]
Where a11=-Ely/12h?; a12 = 4Ely/3h?; a13=-5Elx/2h? ; a14a= 4El/3h?; a15 = -Ely/12h?;
B21u-2 + baau.1 + b23ug + baaus + basuz + €210 = 0.0 [52b]
Where b1 = -Elx/12h? ; by2 = 4El/3h? ; b3 = -5El/2h? ; boa = 4Ely/3h?% ; bas = -El/12h?;
€21 = - M
b31u-2 + b3z2u-1 + basuo + b3aus + basuz + C31-3 + C329-2 + C33¢-1 + C3ado + C35¢1 + C36¢d2 + C37¢1 = 0.0
[52c]
where b1 = -Mu/12h ; b3z = 2Mu/3h ; b3z = -(Moa + Mue)/L ; baa = -2Mu/3h ; bss = Mu/12h ;
31 = Cuw/8h3; c32 = - Cu/h® = C/12h ; ca3 = 13Cw/8h3 + 2C¢/3h; c3a = Pyo/2 ;
€35 = -13Cw/8h3 - 2C/3h; c36 = Cw/h® + Ci/12h; c37 = - Cw/8h3.
For the vertical deflection values, use the same approach, just demonstrated for the
buckling limit except use the three governing equations and the load vector is not set to zero.

[K]u = F. So solve for the deflections using the inverse K matrix, u = [K]! F. The vector u contains

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 13.



Table 13. Central Difference K Matrix for Deflections. Investigation 3

Location 1 Location 2 Location 3 Location 4

Y, u ¢ v u ¢ v u ¢ v u ¢
—040 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80 0.0
—00 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0—>
0.0 0:0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0,0 00 00 0.0 0.0
00 00 040 bss C36
00 00 040 b2s 0.0
00 00 040 00 0.0
00 00 00 b3a C35
00 00 00 b24 0.0

v v

Zero out boundaries

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were

tabulated based upon given info and applied P, loads from laboratory. See Table 14
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32.5” from | 32.5” from | 29” from 29” from 4” from 4” from

support support support support support support
Load P, kips Vaw/s(in.) Viw/o Vaw/s Vaw/o Vaw/s V3w/o
0.00 0.00 0.00 0.00 0.00 0.00 0.00
3464 .0897 .0759 0779 .0655 .0063 .005
.5803 1502 1272 1306 .1098 .0106 .0084
.8144 2108 1786 1833 1541 .0149 0118
1.047 2710 2296 2356 .1980 .0192 0152
1.245 3222 2729 2801 2355 .0228 0181
1.418 3671 3109 3190 2682 .0259 .0206
1.617 4187 3546 3639 .3060 .0296 .0235
1.794 4644 .3933 4036 .3393 .0328 0261
2.028 5250 4446 4563 3836 .0371 .0295
2.326 .6022 5101 5234 4400 .0426 .0338
2.656 .6876 .5824 5976 5025 .0486 .0386

2.3.2 Central Difference Solution Without Shear Deformation

For this approach, we use the three central difference governing equations previously

developed to determine vertical, horizontal, and lateral deflection values along the beam.

Myx=Mbending and Ps=0. The ends of the conjugate beam are pinned-pinned. So, Boundary

conditions are set for pinned-pinned in the finite difference model.

Problem 2.3.2. Lab Investigation 3

Given: 4”x4”x1/4” fiberglass reinforced plastic beam in Figure 6. L=75". E=2997ksi. Ix = 7.935

in®. G=450ksi. Iy=2.67in.%. k; =.0612. A=2.85in% |y =9.375in.°.

Find: Buckling limit and vertical deflections without shear.
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For vertical deflections without shear, we simply do not apply the shear moment to the
beam. In other words Ms= 0.0 and Mix = Mxpending. Procedure is exactly same as calculating critical
load and vertical deflection outlined in previous problem which included shear. However, P loads
from lab experiments are P1 not P,. Therefore, M¢r = 13.73P4 for this problem. P1 equals 3.2 kips
at the buckling limit calculated using this approach M = 43.97 k-in. and vertical deflections are

shown in Table 14.

2.3.3 ASCE LRFD Method

The ASCE buckling limit equation was developed using the classical approach solution for
a simple beam solution introduced by Galambos. The LTB equations used in the classical

approach were

E|y uIV + Mtx d)” + 2M'tx (b; — O [53]

And the 4% order solution of the third order equation of lateral deflection is

Elw " — (Gke + Mk B) & - Mxu” =M’k Bxd =0 [54]
The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide

for Pultruded Members.

Mn = Cp (T2 Evf ly Di/Lo? + T*Eifly Cuw/Lp*)® [55]

where D= Gki; Cw = lw; and Cp = 12.5Mmax/(2.5Mmax+3Ma+4Mz+3Mc).

Problem 2.3.3. Lab Investigation 3

Given: 4”"x4”x1/4” fiberglass reinforced plastic beam in Figure 6. L=75". E=2997ksi. Ix = 7.935
in4. G=450ksi. Iy=2.67in*. kt =.0612. A=2.85in2.1,=9.375in.®,

Find: Buckling limit.
The ASCE-LRFD equation for lateral-torsional buckling moment for an I-shaped cross

section is

Mn = Cb ( T[Z ELf Iy DJ/I_I;)2 + T[4 ELfIy Cw/Lb4 )'5
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where Ly is the braced length,

Cw is the warping constant,

Eir is the Modulus Elasticity of the longitudinal flange,
D, = Gkt and is the torsional rigidity, and

Cb = 12.5Mmax/(2.5Mmax+3Ma+4Mg+3 M)

and is the moment modification factor.

Ma, Mg and Mc are moments at locations .25L, .5L, and .75L, respectively. See Figure 11.

|
Ma V\ls Mc
///////L/////l f Ly = 37.5”
1 ! j L, = 37.5”

5%5 25L. 5L,
|

75.0” |‘
Figure 11. Moment Diagram for Investigation 3

Location of Mmax varies with location of point load and equilibrium conditions. For this
problem, Mmax = Mg = 13.73P and M3 = 10.04. Plugging in moment values, Cp = 1.46. Plugging in
given values and Cp, Mn=51.53 k-in.

Knowing the relationship between the critical moment and critical load, P1, without shear

moment; we can calculate the critical load, P;.

P1=Mn/13.73 = 3.75 kips

Now. We must find the relationship of P31, the critical load without shear moment, and P, the
critical load with shear moment.
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P1 is associated with the moments on the conjugate beam when Ms is not present. P; is
associated with the moments on the conjugate beam when Ps is present. The resultant of the
moments on the conjugate beam when considering and not considering shear moment is of the
same value or:

.5(13.73P1 )L1 + .5(13.73P1) b1 +.5(10.045P1 ) b2 =.5(13.73P1 )L1 + .5(13.73P1) b1 +
.5(10.045P1 ) b2 + Ps [62]

Rearranged and solved, we get P,/P1 =.843. Therefore, P, = 3.16 kips

2.3.4 Summary of Maximum Loads
Critical loads are summarized in Table 15 and will be compared to experimental load in

Chapter 4. Deflections will be compared also

Table 15. Summary of Buckling Loads. Investigation 3

Section Method Pcr
2.3.1 Central Difference with Shear 2.7 kips
2.3.2 Central Difference without Shear 3.2 kips
233 ASCE_LRFD Buckling Limit 3.16 kips
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2.4 Stability Analysis for Two Span Beam with Point Load Midspan. Spans Near Equal.
Numerical formulations for the critical buckling load and translational and rotational
deflections are presented for Investigation 4 in this section. Numerical methods include fourth
order central difference. Critical buckling load as determined from the ASCE-LRFD Prestandard is
also presented. Beam loading with boundary conditions and moments on conjugate beam are

defined in Figures 12.

>
v
@) @)
T 7% 7T
Ps
| Shear Moment Load Diagram
7
N/ N/
10.88 P/EI
M/EI Conjugate Beam
/ ~N—— 7
5.25P/El
PsL/4EI
Shear Deflection
AN \
27” 27" 51”

Figure 12. Investigation 4: Deflection Diagrams
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2.4.1 Central Difference Solution With Shear Deformation

For this approach, use the three central difference governing equations previously
developed to determine vertical, horizontal and lateral deflection values along the beam. My =
M. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear
moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned.
So, boundary conditions are set for pinned-pinned in the finite difference model. Depending up
on the length of an element of eccentricity, the shear moment P value varies from model to
model. Ps =P, aElx/(eAG) where e is the eccentricity or length of the element. With shear, M =

Mpending + Ps on the conjugate beam.

Problem 2.4.1. Lab Investigation 4

Given: 3”x3” x %" fiberglass reinforced plastic beam in Figure 7. L=54". E=2997 ksi. Ix= 3.17in.%.
G =450ksi. ly=1.13in.% k¢=.046. A=2.13in% Iy =2.13 in..

Find: Buckling limit and vertical deflections with shear.

As shown in Galambos, the 4" order solution of the second order bending equilibrium

equation including the angle of twist is:

ElyuV + Mix @ +2M'xd’ =0 [46]

And the 4t order solution of the third order equation of lateral deflection is

Elw "V + Gkt & - Mixu”’ = M’ - ( M2+ M2 ) U/L - ( Mea+ M2 ) U’/L =0 [47]

Both equations take into consideration that M’« is not zero for a beam with a point load.
Symmetrical properties of | beam have also been taken into consideration. Next, plug the 4t
order central difference terms into the aforementioned lateral-torsion equations of equilibrium

and obtain

a17Usz +aieUz + @15U1 + @14Up + A13U-1 + a12U-2 + A11U-3 + b1sda + b1ad1 + bizsdo + b1ad.1 + b11d2 =0
[48]

azsUy +az4U1 + az3Uo + axU-1 + az1u- + bazds + basdz + basdi + baado + bazd-1 + baadz + b3 =0

[49]
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where a1 = -Ely/6h*; a12 = 2El,/h*; a13 = -13El,/2h*; a14 = 28Ely/3h%*; a15 = -13El,/2h*;
a1s = 2EI,/h* ; a17 = -Ely/6h* ; b11 = (-Mu/12h2 + M't/6h) ; b1z = (4Mu/3h? -4 M'w/3h);
bis = -(5M/2h? ; bis = (4My/3h? + 4 M’w/3h); and bis = -(Mu/12h? + M’/6h) , and
a2 = (Mw/12h? - M'/12h) = ((Mua +Mue)/ 12hL);

a22 = (-4Mw/3h? + 2M’/3h) + (2(Mixa +Mixz)/ 3hL); @23 = (5Mux/2h? - (M +M’x2)/ L);
a24 = (-4Muw/3h? - 2M'/3h) - (2(Mua +Mixa)/ 3hL);

azs = (Mu/12h%2+ M’t/12h) + ((Mua +Mu)/ 12hL);

ba1 = -Ely/6h* ; baa = 2Ely/h* + GKy/12h? ; bas = -13El,/2h? - 4GKy/3h? ; bag = 28El,/3h* ;
bas = -13E1,/2h* - 4GKy/3h? ; bas = 2EI,/h* + GKi/12h? ; and by = -El,/6h* .

Next. We define h to be a fraction of L. For this problem, L=54 in. and h=2.7 in. This
gives us 21 locations. K matrix shown in table 16. Boundary conditions are associated locations
1 and 21, and ghost boundary conditions are associated with locations 2,3, 19, and 20. The term
ghost is because columns extend out by two more imaginary locations beyond the boundary
locations. This allows us to modify equations to identify whether supports are pinned or fixed.
For example, the term ai14 extended out two terms beyond the boundary gives us the two terms
a1z and ai11. The modified term *a14 goes in the location of term ai4, and *a14 = a14- a12 ; and *ais
=ais—au, if supportis pinned. For fixed support, *ai1a = a1a+ a2 ; and *ais = ais + a11. *b1s, *azs,

*b2a, and *bys also need to be determined.
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Table 16. Central Difference K Matrix for Buckling Limit. Investigation 4

1 | 2 ‘ 3 Location —

0lo olo 0.0 0.0 0.0 __» Supports at locations 1 and 21
olo—o0lo— 00 __» Zero out boundary

0j0 0j0 0.0 0.0

0j0 0J0 b27 0.0

0{0 00 b1s a1z

0j0 0J0 b2e 0.0

00 0P bia  aw

0j0 0[ bs  ass

v v Main diagonal

Mt is the moment at the left end of an element because the element is being held there.
M is also the moment at the left end while M. is the moment at the right end of an element.

Signs are opposite, typically. M’« is equal to the slope of the moment. M’ = R; or Ra.

Ril -Mua -PLo+ Mix2 = 0 [50]
RoL -Mux2 -PL1+ Mixa = 0 [51]
When dealing with a point load and discontinuity at its location, the slope is the same for
each location to the left or right of the point load. Once values are assigned to all matrix locations
including the shear moment location, solve the determinant of the matrix while increasing P>
each time. When the matrix determinant value changes signs, the determinant has crossed zero
and P; has reached the critical buckling limit. Value of P with shear, P;, for this problem is 2.3

kips.
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The governing equations for deflections when considering lateral torsional buckling are:

BxVv"’- & My = Mix

By u”’- d Mix = My

Cwd"”” = (Ct+ MyB) &' — Mix U’ - Mty V' = (M1 + M2 ) Uu/L- (Meya + My ) v/L+ P(yo/2) d =0

Solve the modified equations of equilibrium simultaneously using a fourth order central

difference approach and aforementioned central difference expressions. These terms are

substituted into our modified lateral-torsion equations to obtain:

Bx (-v2 +16v1 —30vo +16 V.1 - V-2)- o My = Mix
By (-u2 +16u1 — 30up +16 U.1 - U-2)- o Mix = My
Cw(-®D3+8b2-13d1+ 13d-1-8d2+ §3)/8h° — (Ci + MiB) (-d2 + 81 - 81+ d-2)
— M (-U2+8u1—8u.1+Uz)-My (-v2+8vi—8v.ai+Vv,)
— (Moa + M2 ) Uo/L- (M1 + Myy2 ) vo/L + P(yo/2) do=0
Setting My to zero,
a11V-2 + a12v-1 + @13Vo + a14Vv1 + a1sv2 = Mix [52a]
Where a11=-Ely/12h?; a12 = 4Ely/3h?; a13=-5Elx/2h? ; a14a= 4El/3h?; a1s = -Ely/12h?;
B21u-2 + baau.1 + b23ug + baaus + basuz + €210 = 0.0 [52b]
where by1=-Elx/12h?; b2y = 4El/3h?%; baz = -5EI/2h? ; baa= 4El/3h? ; bys = -Ely/12h?;
€21 = - M
bs1u-2 + baau.1 + b3sup + baaus + basuz + ca1d-3 + c32¢-2 + C33¢-1 + C3ado + Casd1 + C3sd2 + c37d1 = 0.0
[52c]
where b1 = -Mu/12h ; b3z = 2Mu/3h ; b3z = -(Moa + Mue)/L ; baa = -2Mu/3h ; bss = Mu/12h ;
31 = Cuw/8h3; c32 = - Cu/h® = C/12h ; ca3 = 13Cw/8h3 + 2C¢/3h; c3a = Pyo/2 ;
€35 = -13Cw/8h3 - 2C/3h; c36 = Cw/h® + Ci/12h; c37 = - Cw/8h3.
For the vertical deflection values, use the same approach just demonstrated for the
buckling limit except use the three governing equations and the load vector is not set to zero.

[K]u = F. So solve for the deflections using the inverse K matrix, u = [K]! F. The vector u contains

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 17.



Table 17. Central Difference K Matrix for Deflections. Investigation 4

Location 1 Location 2 Location 3 Location 4

Y, u ¢ v u ¢ v u ¢ v u ¢
—040 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80 0.0
—00 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0—>
0.0 0:0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0,0 00 00 0.0 0.0
00 00 040 bss C36
00 00 040 b2s 0.0
00 00 040 00 0.0
00 00 00 b3a C35
00 00 00 b24 0.0

v v

Zero out boundaries

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were

tabulated based upon given info and applied P2 loads from laboratory. See Table 18.
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Table 18. Vertical Deflections. Investigation 4. Central Difference

21.5” from support 19” from support 4” from support

Load P, kips Viw/s(in.) Viw/o Vaw/s Vaw/o V3w/s V3w/o
0.00 0.00 0.00 0.00 0.00 0.00 0.00
2770 .0770 .0664 .0625 .0540 .0097 .0083
6562 1824 1572 1481 .1280 0231 .0197
.8359 2324 .2003 1887 .1630 .0294 0251
1.006 2796 2410 2270 1961 .0354 .0302
1.154 3208 2765 2605 2251 .0406 .0347
1.385 385 3318 3126 2701 .0487 .0416
1.571 4368 3765 3546 3064 .0553 .0472
1.733 4817 4152 3911 3379 .0609 .0521
2.038 5664 4883 4599 3974 0717 .0613
2.341 .6508 5610 5284 4566 .0823 .0704
2.5 .695 5991 .5643 4876 .0879 .0751
2.65 7366 .6350 5981 5168 .0932 0797

2.4.2 Central Difference Solution Without Shear Deformation

For this approach, we use the three central difference governing equations previously
developed to determine vertical, horizontal, and lateral deflection values along the beam. My=
Myending and Ps=0. The ends of the conjugate beam are pinned-pinned. So, boundary conditions

are set for pinned-pinned in the finite difference model.

Problem 2.4.2. Lab Investigation 4

Given: 3”x3” x %” fiberglass reinforced plastic beam in Figure 7. L=54". E=2997 ksi. Ix= 3.17in.%.
G=450ksi. ly=1.13in.% k¢=.046. A=2.13in% Iy =2.13 in.5

Find: Buckling limit and vertical deflections without shear.
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For vertical deflections without shear, we simply do not apply the shear moment to the
beam. In other words Ps = 0.0 and M = Mpending. Procedure is exactly same as calculating critical
load and vertical deflection outlined in previous problem which included shear. However, P loads
from lab experiments are P1 not P,. Therefore, M = 10.9P for this problem. P; equals 2.63 kips
at the buckling limit calculated using this approach. M = 28.67 k-in. and vertical deflections are

shown in Table 18.

2.4.3 ASCE LRFD Method

The ASCE buckling limit equation was developed using the classical approach solution for
a simple beam solution introduced by Galambos. The LTB equations used in the classical

approach were

E|y uIV + Mtx d)” + 2M'tx (b; =0 [53]
And the 4t order solution of the third order equation of lateral deflection is
Elw " — (Gke + Mk B) & - Mxu” =M’k Bxd =0 [54]

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide
for Pultruded Members.

Mn = Co (1% Evt ly Dj/Le? + m*Eisly Cu/Lu* )° [55]

where Dj = Gki; Cw = lw; and Cp = 12.5Mmax/(2.5Mmax+3Ma+4Mz+3Mc).

Problem 2.4.3. Lab Investigation 4

Given: 3”x3” x %” fiberglass reinforced plastic beam in Figure 7. L=54". E=2997 ksi. Ix= 3.17in.%.
G=450ksi. ly=1.13in.% k¢=.046. A=2.13in% Iy =2.13 in.5

Find: Buckling limit.
The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross

section is
Mn = Cb ( T[z ELf Iy DJ/l_b2 + T[4 ELf |y Cw/l.b4 )'5
Where Ly, is the braced length,

Cw is the warping constant,
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E.r is the Modulus Elasticity of the longitudinal flange,

D;= Gkt and is the torsional rigidity, and

Cb = 12.5Mmax/(2.5Mmax+3Ma+4Mgp+3Mc)

And is the moment modification factor.

Ma, Mg and Mc are moments at locations .25L, .51, and .75L, respectively. See Figure 13

Location of Mmax varies with location of point load and equilibrium conditions. For this problem,
Mmax = Mg = 10.9P and M; = 5.2P. Plugging in moment values, Cp = 1.42. Plugging in given values
and Cp, Mn=32.89 kips.

| b1| b2

|

: Mg Mc

% :E
1 ! | 2 Ly =27.0"

5;;; 25L . 5L 7sL N L,=27.0"
|

54.0”

Figure 13. Moment Diagram for Investigation 4
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Knowing the relationship between the critical moment and critical load, P1, without

shear moment; we can calculate the critical load, P1.

P1=Mn/10.9 = 3.02 kips
Now. We must find the relationship of Ps, the critical load without shear moment, and P, the

critical load with shear moment.

P1 is associated with the moments on the conjugate beam when Ps is not present. P, is
associated with the moments on the conjugate beam when Ms is present. The resultant of the
moment on conjugate the beam when considering and not considering shear moment is of the

same value or

.5(10.9P1 )L1 + .5(10.9P1) b1 - .5(5.2P1) b2 = .5(10.9P2)L1 + .5(10.9P2) b1 - .5(5.2P2) b2 + Ps

Rearranged and solved, we get P,/P1 = .873. Therefore, P, = 2.64 kips.

2.4.4 Summary of Maximum Loads

Critical loads are summarized in Table 19 and will be compared to experimental load in

Chapter. Deflections will be compared also. P

Table 19. Summary of Critical Buckling Loads. Investigation 4

Section Method Pcr
24.1 Central Difference with Shear Deformation 2.3 kips
2.4.2 Central Difference without Shear Deformation 2.63 kips
2.4.3 ASCE-LRFD Method 2.64 kips
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2.5 Stability Analysis for Two Span Beam with Point Load Off Center

Numerical formulations for the critical buckling load and translational and rotational
deflections are presented for Investigation 5 in this section. Numerical methods formulated are
sine approximation and fourth order central difference. Critical buckling load as determined from
the ASCE-LRFD Prestandard is also presented. Beam loading with boundary conditions and

moments on conjugate beam are defined in Figures 14.

|l

n 2

Ps

Shear Moment Diagram

1 ’ %

N@EI
Q <E7§M/EI on Conjugate
9.U5P/EI

PsLila/L

Shear Deflection

/

Z\

27”7 52.5” 25.5”

Figure 14. Investigation 5: Deflection Diagrams
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Stability Analysis using Central Difference approach will be presented for beam shown in Figure
12, then ASCE LRFD guidelines buckling solution will be presented.

2.5.1 Central Difference Solution With Shear Deformation

For this approach, use the three central difference governing equations previously
developed to determine vertical, horizontal and lateral deflection values along the beam. My =
M. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear
moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned.
So, boundary conditions are set for pinned-pinned in the finite difference model. Depending up
on the length of an element of eccentricity, the shear moment P value varies from model to
model. Ps =P, aElx/(eAG) where e is the eccentricity or length of the element. With shear, M =

Mpending + Ps on the conjugate beam.

Problem 2.5.1. Lab Investigation 5

Given: 3”"x3"” x 44" fiberglass reinforced plastic beam in Figure 8. L=79.5”. E=2997 ksi. Ix=3.17
in.*. G=450ksi. Iy=1.13in.% k=.046. A=2.13in.2. Ix=2.13in.°5,

Find: Buckling limit and vertical deflections with shear.

As shown in Galambos, the 4™ order solution of the second order bending equilibrium

equation including the angle of twist is:

Ely uV + My d” +2M'd’ =0 [46]
And the 4t order solution of the third order equation of lateral deflection is

Elw " + Gkt " - Mt =M’ - (Mxa+ M2 )U/L - (Mpa+ M )U'/L =0 [47]
Both equations take into consideration that M’« is not zero for a beam with a point load.
Symmetrical properties of | beam have also been taken into consideration. Next, plug the 4t
order central difference terms into the aforementioned lateral-torsion equations of equilibrium

and obtain
a17U3 +a16U2 + A15U1 + A14U0 + A13U-1 + A12U-2 + A11U-3 + b1sdr + biad1 + bizdo + b1ods + b1id2 =0

[48]
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asU2 +az4U1 + a23Up + A22U-1 + A21U-2 + ba7d3 + basdr + basdi + baado + baad- + baado + b1z =0
[49]

where a1 = -Ely/6h*; a12 = 2El,/h*; a13 = -13El,/2h*; a14 = 28Ely/3h%*; a15 = -13El,/2h*;
a16 = 2El/h% ; a17 = -E1,/6h% ; b11 = (-Mu/12h? + M'u/6h) ; b1z = (4Mu/3h? -4 M'w/3h);
b13 = -(5Mw/2h? ; b1a = (4Mw/3h% + 4 M’/3h); and b1s = -(Mw/12h? + M’/6h) , and
a2 = (Mw/12h? - M'/12h) = ((Mua +Mue)/ 12hL);

a22 = (-4Mu/3h? + 2M’w/3h) + (2(Mua +Mue)/ 3hL); @23 = (5Mu/2h? - (M’ +M'w)/ L);
a24 = (-4Muw/3h? - 2M'/3h) - (2(Mua +Mixa)/ 3hL);

azs = (Mu/12h%2+ M’/12h) + ((Mua +Mue)/ 12hL);

ba1 = -EI,/6h?% ; b2z = 2El,/h* + GKe/12h? ; bas = -13El,/2h* - 4GK¢/3h? ; bas = 28E1,/3h%;

bas = -13Ely/2h* - 4GK/3h? ; bas = 2El,/h* + GKi/12h? ; and by = -El,/6h* .

Next. We define h to be a fraction of L. For this problem. L=79.5 in. and h=3.97 in. This
gives us 21 locations. K matrix set up shown in Table 20. Boundary conditions are associated
locations 1 and 21, and ghost boundary conditions are associated with locations 2,3,19 and 20.
The term ghost is because columns extend out by two more imaginary locations beyond the
boundary locations. This allows us to modify equations to identify whether supports are pinned
or fixed. For example, the term ai4 extended out two terms beyond the boundary gives us the
two terms a1z and a11. The modified term *a14 goes in the location of term a4, and *a1s = a14- an2
; and *ais = a15—ai1, if support is pinned. For fixed support, *a14 = ai1a+ a1z ; and *ais = a1s + a11.

*b13, *a23, *bas, and *bys also need to be determined.
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Table 20. Central Difference K Matrix for Buckling. Investigation 5

1 | 2 ‘ 3 Location —

0lo olo 0.0 0.0 0.0 __» Supports at locations 1 and 21
olo—o0lo— 00 __» Zero out boundary

0j0 0j0 0.0 0.0

0j0 00 bz 0.0

0{0 00 b1s a1z

0j0 0J0 b2e 0.0

00 0P bia  aw

0j0 0[ bs  ass

v v Main diagonal

Mt is the moment at the left end of an element because the element is being held there.
M is also the moment at the left end while M. is the moment at the right end of an element.

Signs are opposite, typically. M’« is equal to the slope of the moment. M’ = R; or Ra.

Ril -Mua -PLo+ Mix2 = 0 [50]
RoL -Mux2 -PL1+ Mixa = 0 [51]
When dealing with a point load and discontinuity at its location, the slope is the same for
each location to the left or right of the point load. Once values are assigned to all matrix locations
including the shear moment location, solve the determinant of the matrix while increasing P>
each time. When the matrix determinant value changes signs, the determinant has crossed zero
and P; has reached the critical buckling limit. Value of P with shear, P, for this problem is 1.08

kips.
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The governing equations for deflections when considering lateral torsional buckling are:

BxV'’- ® My = M

By U”- & M = My

Cwd"”” = (Ct+ MyB) &' — Mix U’ - Mty V' = (M1 + M2 ) Uu/L- (Meya + My ) v/L+ P(yo/2) d =0

Solve the modified equations of equilibrium simultaneously using a fourth order central
difference approach and aforementioned central difference expressions. These terms are

substituted into our modified lateral-torsion equations to obtain:

Bx (-v2 +16v1 —30vo +16 V.1 - V-2)- o My = Mix
By (-u2 +16u1 — 30up +16 U.1 - U-2)- o Mix = My
Cw(-®D3+8b2-13d1+ 13d-1-8d2+ §3)/8h° — (Ci + MiB) (-d2 + 81 - 81+ d-2)
— M (-U2+8u1—8u.1+Uz)-My (-v2+8vi—8v.ai+Vv,)
— (Moa + M2 ) Uo/L- (M1 + Myy2 ) vo/L + P(yo/2) do=0
Setting My to zero,
a11V-2 + a12v-1 + @13Vo + a14Vv1 + a1sv2 = Mix [52a]
where a11=-Ely/12h?; a12 = 4Ely/3h?; a13=-5El/2h? ; a1 = 4El/3h?; a15= -Ely/12h?;
B21u-2 + baau.1 + b23ug + baaus + basuz + €210 = 0.0 [52b]
where by1=-Elx/12h?; b2y = 4El/3h?%; baz = -5EI/2h? ; baa= 4El/3h? ; bys = -Ely/12h?;
€21 = - M
bs1u-2 + baau.1 + b3sup + baaus + basuz + ca1d-3 + c32¢-2 + C33¢-1 + C3ado + Casd1 + C3sd2 + c37d1 = 0.0
[52c]
where b1 = -Mu/12h ; b3z = 2Mu/3h ; b3z = -(Moa + Mue)/L ; baa = -2Mu/3h ; bss = Mu/12h ;
31 = Cuw/8h3; c32 = - Cu/h® = C/12h ; ca3 = 13Cw/8h3 + 2C¢/3h; c3a = Pyo/2 ;
€35 = -13Cw/8h3 - 2C/3h; c36 = Cw/h® + Ci/12h; c37 = - Cw/8h3.
For the vertical deflection values, use the same approach just demonstrated for the
buckling limit except use the three governing equations and the load vector is not set to zero.

[K]u = F. So, solve for the deflections using the inverse K matrix, u = [K]"* F. The vector u contains

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 21.



Table 21. Central Difference K Matrix for Deflections. Investigation 5

Location 1 Location 2 Location 3 Location 4

Y, u ¢ v u ¢ v u ¢ v u ¢
—040 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80 0.0
—00 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0—>
0.0 0:0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0,0 00 00 0.0 0.0
00 00 040 bss C36
00 00 040 b2s 0.0
00 00 040 00 0.0
00 00 00 b3a C35
00 00 00 b24 0.0

v v

Zero out boundaries

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were

tabulated in Table 22 based upon given info and applied P loads from laboratory.
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Table 22. Vertical Deflections. Investigation 5. Central Difference

5” from support 22” from support 35” from support
Load P, kips Viwys(in.) Viw/o Vaw/s Vaw/o V3w/s V3w/o
0.00 0.00 0.00 0.00 0.00 0.00 0.00
2188 .00403 .0373 1230 1126 .1419 13084
4293 079 0732 2413 2209 2785 2567
6399 1178 1091 3597 3292 4151 3827
.8488 1562 .1447 4772 4367 .5507 5076
1.056 .1944 .180 5937 5434 .6851 6316
1.211 2228 2063 .6806 .6229 7855 7240
1.35 .2485 2302 7592 .6949 .8762 .8076
1.55 .2849 2638 .8702 7965 1.004 9257

2.5.2 Central Difference Solution Without Shear Deformation

For this approach, we use the three central difference governing equations previously
developed to determine vertical, horizontal, and lateral deflection values along the beam. Mx =
Mopending and Ps= 0. The ends of the conjugate beam are pinned-pinned. So, boundary conditions
are set for pinned-pinned in the finite difference model.

Problem 2.5.5. Lab Investigation 5

Given: 3”"x3"” x %4” fiberglass reinforced plastic beam in Figure 8. L=79.5”. E=2997 ksi. Ix=3.17
in.*. G=450ksi. I,=1.13in.% k=.046. A=2.13in.2. I, =2.13in.°5,

Find: Buckling limit and vertical deflections without shear.

For vertical deflections without shear, we simply do not apply the shear moment to the
beam. In other words Ps = 0.0 and Mix = Mxbending. Procedure is exactly same as calculating critical
load and vertical deflection outlined in previous problem which included shear. However, P loads
from lab experiments are P1 not P,. Therefore, M. = 14.76P for this problem. See tabulated

vertical deflection values for this problem in Table 22. P1 equals 1.18 kips at the buckling limit

calculated using this approach. M = 17.40 k-
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2.5.3 ASCE LRFD Method

The ASCE buckling limit equation was developed using the classical approach solution for
a simple beam solution introduced by Galambos. The LTB equations used in the classical

approach were

E|y uIV + Mtx d)” + 2M'tx (b; — O [53]

And the 4t order solution of the third order equation of lateral deflection is

Elw ¢|V - (th + Mx B) d)” - Mx u” - M'x Bx d) = 0 [54]
The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide

for Pultruded Members.

n=Co (T ELtly Di/Lp® + m*Ersly Cu/Le*)? [55]

where Dj = Gki; Cw = lw; and Cp = 12.5Mmax/(2.5Mmax+3Ma+4Mz+3Mc).

Problem 2.5.3. Lab Investigation 5
Given: 3”"x3” x %4” fiberglass reinforced plastic beam in Figure 14. L=79.5”. E =2997 ksi.
lk=3.17in.%. G=450ksi. ly=1.13in.% k=.046. A=2.13in.2%. |y =2.13in.°.
Find: Buckling limit.
The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross

section is

Mp = Cp (2 Evf ly Dj/Lp? + T*Eisly Cw/Lo* )®

Where Ly, is the braced length,

Cw is the warping constant,

E.r is the Modulus Elasticity of the longitudinal flange,
D;= Gkt and is the torsional rigidity, and

Cb = 12.5Mmax/(2.5Mmax+3Ma+4Mp+3Mc).

And is the moment modification factor.

Ma, Mg and Mc are moments at locations .25L, .5L, and .75L, respectively. See Figure 15.
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Figure 15. Moment Diagram for Investigation 5

Location of Mmax varies with location of point load and equilibrium conditions. For this
problem, Mmax = 14.76P and M2 = 9.05P. Plugging in moment values, we calculate C . Plugging
in given values and Cp, M, = 22.92 k=in. Knowing the relationship between the critical moment

and critical load, P31, without shear moment; we can calculate the critical load, P1.

P1=22.92/14.76 = 1.55 kips

Now. We must find the relationship of P31, the critical load without shear moment, and P, the
critical load with shear moment.

P1 is associated with the moments on the conjugate beam when Ps is not present. P is
associate with the moments on the conjugate beam when My is present. The resultant of the
moments on the conjugate beam when considering and not considering shear moment is of the

same value or

.5(14.76P1 )L1 + .5(14.76P1) b1 - .5(9.05P1) b2 = .5(14.76P2)L1 +.5(14.76P2) b1 - .5(9.05P2) bz + Ps

Rearranged and solve, we get P,/P1 = .916. Therefore, P, = 1.42 kips
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2.5.4 Summary of Maximum Loads

Critical loads are summarized in Table 23 and will be complared to experimental load in Chapter
4. Deflections will be compared also.

Table 23. Summary of Buckling Loads. Investigation 5

Section Method Pcr
251 Central Difference with Shear Deformation 1.08 kips
2.5.2 Central Difference without Shear Deformation 1.18 kips
2.5.3 ASCE-LRFD Method 1.42 kips
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2.6 Stability Analysis for Three Span Beam with Point Load Midspan. Center Span

Numerical formulations for the critical buckling load and translational and rotational
deflections are presented for Investigation 6 in this section. Numerical methods formulated are
sine approximation and fourth order central difference. Critical buckling load as determined from
the ASCE-LRFD prestandard is also presented. Beam loading with boundary conditions and

moments on conjugate beam are defined in Figure 16.

P
A 4 .
Ps
4 j Shear Moment
@) €Y
wiiiin
10.5 P/EI
A M/EI on Conjugate
\JV > 4
ZAN - 8.27P/El 7
[ PsL/4El
-
) Shear Deflection
& \)ﬁl
15” 37.5" 37.5” 15”

Figure 16. Investigation 6: Deflection Diagrams
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2.6.1 Central Difference Solution with Shear Deformation

For this approach, use the three central difference governing equations previously
developed to determine vertical, horizontal and lateral deflection values along the beam. My =
M. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear
moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned.
So, boundary conditions are set for pinned-pinned in the finite difference model. Depending up
on the length of an element of eccentricity, the shear moment P value varies from model to
model. Ps =P, aElx/(eAG) where e is the eccentricity or length of the element. With shear, M =

Mpending + Ps on the conjugate beam.

Problem 2.6.1. Lab Investigation 6

Given: 4”x4” x 1/4” fiberglass reinforced plastic beam in Figure 9. L=75". E=2997 ksi. Ix=7.935
in%, G=450ksi. Iy=2.67in.* . ke=.0612. A=2.85in.2 . I, =9.375in.%.

Find: Buckling limit and vertical deflections with shear.

As shown in Galambos, the 4™ order solution of the second order bending equilibrium

equation including the angle of twist is:

ElyuV + Mix @ +2M'xd’ =0 [46]

And the 4t order solution of the third order equation of lateral deflection is
Elw ¢IV + th (b” - Mtx U” - M'tx U' = ( M'tx1+ M’tx2 ) U/L - ( Mtx1+ MtxZ ) U'/L = O [47]

Both equations take into consideration that M’« is not zero for a beam with a point load.
Symmetrical properties of | beam have also been taken into consideration. Next, plug the 4t
order central difference terms into the aforementioned lateral-torsion equations of equilibrium

and obtain

a17Usz +aieUz + @15U1 + @14Uo + A13U-1 + a12U-2 + A11U-3 + b1sda + b1ad1 + bizdo + b1ad.1 + b11d2 =0
[48]

azsUz +a24U1 + @23Uo + @22U-1 + @21U-2 + ba7d3 + baeda + basdr + baado + bazd-1 + baadp2 + baadp3 =0

[49]
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Where a11 = -Ely/6h%*; a12 = 2Ely/h*; a13 = -13El,/2h*; a14 = 28Ely/3h*; a15 = -13El,/2h*;
a1s = 2EI,/h* ; a17 = -Ely/6h* ; b11 = (-Mu/12h2 + M't/6h) ; b1z = (4Mu/3h? -4 M'w/3h);
b1z = -(5Mw/2h? ; b1a = (4Mw/3h% + 4 M'w/3h); and bis = -(Mu/12h% + M’/6h) , and

a21 = (M/12h? - M',/12h) — ((Mea +Mee)/ 12hL);

a22 = (-4Mw/3h? + 2M’/3h) + (2(Mixa +Mixz)/ 3hL); @23 = (5Mux/2h? - (M +M’x2)/ L);
a24 = (-4Muw/3h? - 2M'/3h) - (2(Mua +Mixa)/ 3hL);

azs = (Mu/12h%2+ M’t/12h) + ((Mua +Mu)/ 12hL);

by1 = -Ely/6h*; by, = 2Ely/h* + GK¢/12h? ; bys = -13El,/2h* - 4GK¢/3h? ; bya = 28El,/3h%;

bas = -13Ely/2h* - 4GK¢/3h? ; bs = 2El,/h* + GKi/12h?; and by7 = -El,/6h*.

Next. We define h to be a fraction of L. For this problem, L=75.0 in. and h=3.75. This gives
us 21 locations K matrix demonstrated in Table 24. Boundary conditions are associated locations
1 and 21, and ghost boundary conditions are associated with locations 2,3,19 and 20. The term
ghost is because columns extend out by two more imaginary locations beyond the boundary
locations. This allows us to modify equations to identify whether supports are pinned or fixed.
For example, the term a14 extended out two terms beyond the boundary gives us the two terms
a1z and a11. The modified term *ai4 goes in the location of term ai4, and *ai14 = a14- a12 ; and *as
=ais—a, if support is pinned. For fixed support, *ai14 =aia+ a1z ; and *ais = ais + a11. *bis, *az3,

*b24, and *bas also need to be determined.
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Table 24. Central Difference K Matrix for Buckling. Investigation 6

1 | 2 ‘ 3 Location —

0lo olo 0.0 0.0 0.0 __» Supports at locations 1 and 21
0.6 86 00 _» Zero out boundary

0{0 0J0 0.0 0.0

0/0 0J0 b2z 0.0

0/0 0J0 bis aiy

0j0 0J0 b2e 0.0

00 00 bia  ae

0j0 0Jp b2s azs

v v

Main diagonal

Mt is the moment at the left end of an element because the element is being held there.
M is also the moment at the left end while M. is the moment at the right end of an element.

Signs are opposite, typically. M’« is equal to the slope of the moment. M’ = R; or Ra.

Ril -Mua -PLo+ Mix2 = 0 [50]

RoL -Mux2 -PL1+ Mixa = 0 [51]

When dealing with a point load and discontinuity at its location, the slope is the same for each
location to the left or right of the point load. Once values are assigned to all matrix locations
including the shear moment location, solve the determinant of the matrix while increasing P>
each time. When the matrix determinant value changes signs, the determinant has crossed zero
and P; has reached the critical buckling limit. Value of P with shear, P;, for this problem is 3.5

kips.
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The governing equations for deflections when considering lateral torsional buckling are:

BxVv"’- & My = Mix

By u”’- d Mix = My

Cwd"”” = (Ct+ MyB) &' — Mix U’ - Mty V' = (M1 + M2 ) Uu/L- (Meya + My ) v/L+ P(yo/2) d =0

Solve the modified equations of equilibrium simultaneously using a fourth order central

difference approach and aforementioned central difference expressions. These terms are

substituted into our modified lateral-torsion equations to obtain:

Bx (-v2 +16v1 —30vo +16 V.1 - V-2)- o My = Mix
By (-u2 +16u1 — 30up +16 U.1 - U-2)- o Mix = My
Cw(-®D3+8b2-13d1+ 13d-1-8d2+ §3)/8h° — (Ci + MiB) (-d2 + 81 - 81+ d-2)
— M (-U2+8u1—8u.1+Uz)-My (-v2+8vi—8v.ai+Vv,)
— (Moa + M2 ) Uo/L- (M1 + Myy2 ) vo/L + P(yo/2) do=0
Setting My to zero,
a11V-2 + a12v-1 + @13Vo + a14Vv1 + a1sv2 = Mix [52a]
Where a11=-Ely/12h?; a12 = 4Ely/3h?; a13=-5Elx/2h? ; a14a= 4El/3h?; a1s = -Ely/12h?;
B21u-2 + baau.1 + b23ug + baaus + basuz + €210 = 0.0 [52b]
where by1=-Elx/12h?; b2y = 4El/3h?%; baz = -5EI/2h? ; baa= 4El/3h? ; bys = -Ely/12h?;
€21 = - M
bs1u-2 + baau.1 + b3sup + baaus + basuz + ca1d-3 + c32¢-2 + C33¢-1 + C3ado + Casd1 + C3sd2 + c37d1 = 0.0
[52c]
where b1 = -Mu/12h ; b3z = 2Mu/3h ; b3z = -(Moa + Mue)/L ; baa = -2Mu/3h ; bss = Mu/12h ;
31 = Cuw/8h3; c32 = - Cu/h® = C/12h ; ca3 = 13Cw/8h3 + 2C¢/3h; c3a = Pyo/2 ;
€35 = -13Cw/8h3 - 2C/3h; c36 = Cw/h® + Ci/12h; c37 = - Cw/8h3.
For the vertical deflection values, use the same approach just demonstrated for the
buckling limit except use the three governing equations and the load vector is not set to zero.

[K]u = F. So solve for the deflections using the inverse K matrix, u = [K]"* F. The vector u contains

the unknowns v, u, and ¢ along the member. K matrix is demonstrated in Table 25.



Table 25. Central Difference K Matrix for Deflections. Investigation 6.

Location 1 Location 2 Location 3 Location 4

Y, u ¢ v u ¢ v u ¢ v u ¢
—040 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80 0.0
—00 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0—>
0.0 0:0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0,0 00 00 0.0 0.0
00 00 040 bss C36
00 00 040 b2s 0.0
00 00 040 00 0.0
00 00 00 b3a C35
00 00 00 b24 0.0

v v

Zero out boundaries

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were

tabulated in Table 26 based upon given info and applied P loads from laboratory.



Table 26. Vertical Deflections. Investigation 6. Central Difference

78

7” from support

18.5” from support

32” from support

Load P, kips Viw/s(in.) Viw/o Vaw/s Vaw/o Vaw/s V3w/o
0.00 0.00 0.00 0.00 0.00 0.00 0.00
2209 .0069 .0048 0238 0179 .0360 0268
6018 .0187 .013 0648 .0488 .0982 .073
9826 .0305 0212 .1059 0798 .1603 1193
1.176 .0365 0254 1267 .0955 1919 1428
1.357 0421 0292 1462 1101 2214 1647
1.55 .0481 .0334 1670 1258 2528 1881
1.764 .0548 .0380 .1901 1432 2878 2141
2.044 .0635 .0441 2203 .1660 3335 2481
2.292 0712 .0494 247 1860 3739 2781
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2.6.2 Central Difference Solution Without Shear Deformation

For this approach, we use the three central difference governing equations previously

developed to determine vertical, horizontal, and lateral deflection values along the beam.

Mx = Mbending and Ps =0.
The ends of the conjugate beam are pinned-pinned. So, boundary conditions are set for pinned-

pinned in the finite difference model.

Problem 2.6.2. Lab Investigation 6

Given: 4”x4” x 1/4” fiberglass reinforced plastic beam in Figure 9. L=75". E=2997 ksi. |x=7.935
in%. G=450ksi. I,=2.67in* . k:=.0612. A=2.85in.? . I,=9.375in.%.

Find: Buckling limit and vertical deflections without shear.

For vertical deflections without shear, we simply do not apply the shear moment to the
beam. In other words Ps = 0.0 and M = Mybending. Procedure is exactly same as calculating critical
load and vertical deflection outlined in previous problem which included shear. However, P loads
from lab experiments are P1 not P,. Therefore, M = 10.48P for this problem. See tabulated
vertical deflection values for this problem in Table 26. P1 equals 6.05 kips at the buckling limit

calculated using this approach. M = 63.46 k-in.
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2.6.3 ASCE LRFD Method

The ASCE buckling limit equation was developed using the classical approach solution for
a simple beam solution introduced by Galambos. The LTB equations used in the classical

approach were

Ely UIV + Mtx ¢” + ZM'tx (b' = O [53]

And the 4% order solution of the third order equation of lateral deflection is

Elw &V — (Gke + My B) & - Myxu” =M’x Bxd =0 [54]
The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide

for Pultruded Members.

Mhn = Cp (T2 Evt ly Di/Lo? + m*Eifly Cuw/Lp*)® [55]

Where DJ = th, CW = Iw, and Cb = 12.5Mmax/(2-5Mmax+3MA+4MB+3MC).

Problem 2.6.3. Lab Investigation 6

Given: 4”x4” x 1/4” fiberglass reinforced plastic beam in Figure 9. L=75". E=2997 ksi. Ix=7.935
in%, G=450ksi. Iy=2.67in.* . ke=.0612. A=2.85in.2 . I, =9.375in.%.

Find: Buckling limit.

The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross

section is

Mp = Cp (12 Evf ly Dj/Lp? + T*Eisly Cw/Lo* )®

Where L, is the braced length,

Cw is the warping constant,

E.r is the Modulus Elasticity of the longitudinal flange,
D; = Gkt, and is the torsional rigidity, and

Cb = 12.5Mmax/(2.5Mmax+3Ma+4Mp+3Mc).

And is the moment modification factor.
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Ma, Mg and Mc are moments at locations .25L, .5L, and .75L, respectively. See Figure 17.

75.0”

Figure 17. Moment Diagram for Investigation 6

Location of Mmax varies with location of point load and equilibrium conditions. For this problem,
Mmax = Mg =10.48P and M; = 8.27P. Plugging in moment values, Cp = 2.07. Plugging in given values
and Cp,

My = 60.46 k-in.
Knowing the relationship between the critical moment and critical load, P1, without shear

moment; we can calculate the critical load, P1

P1=5.77 k-in.

Now. We must find the relationship of P31, the critical load without shear moment, and P;, the
critical load with shear moment. P; is associated with the moments on the conjugate beam when
Ps is not present. P; is associated with the moments on the conjugate beam when Ps is present.
The resultant of the moments on the conjugate beam when considering and not considering
shear moment is of the same value or

.5(10.48P1)a2 + .5(10.48P1) b1 - .5(8.27P1) bz - .5(8.27P1) al = .5(10.48P; )a2 + .5(10.48P2) bs -
.5(8.27P;) bz - .5(8.27P2) al + Ps

Rearranged and solved, we get P,/P1 = .578. Therefore, P, = 3.33 kips.
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2.6.4 Summary of Maximum Loads
Critical loads are summarized in Table 27 and will be compared to experimental load in Chapter.

Deflections will be compared also.

Table 27. Summary of Buckling Loads. Investigation 6

Section Method Pcr
2.6.1 Central Difference with Shear Deformation 3.5 kips
2.6.2 Central Difference without Shear Deformation 6.05 kips
2.6.3 ASCE-LRFD Method 3.33 kips




2.7 Stability Analysis for Three Span Beam with Point Load Midspan. Outside Span.

Numerical formulations for the critical buckling load and translational and rotational
deflections are presented for Investigation 7 in this section. Numerical methods formulated
include fourth order central difference. Critical buckling load as determined from the ASCE-LRFD

Prestandard is also presented. Beam loading with boundary conditions and moments on

conjugate beam are defined in Figure 18.
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Figure 18. Investigation 7. Deflection Diagrams
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2.7.1 Central Difference Solution With Shear Deformation

For this approach, use the three central difference governing equations previously
developed to determine vertical, horizontal and lateral deflection values along the beam. My =
M. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear
moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned.
So, boundary conditions are set for pinned-pinned in the finite difference model. Depending up
on the length of an element of eccentricity, the shear moment P value varies from model to
model. Ps=P; aElx/(eAG) where e is the eccentricity or length of the element. With shear, M =

Mbpending + Ps on the conjugate beam.

Problem 2.7.1. Lab Investigation 7
Given: 3”"x3"”x1/4” fiberglass reinforced plastic beam in Figure 18. L=54". E=2997 ksi.
lk=3.17in.%. G=450ksi. I,=1.13in.% k=.046. A=2.13in.2. |y =2.13in.°.
Find: Buckling limit and vertical deflections with shear.

As shown in Galambos, the 4" order solution of the second order bending equilibrium
equation including the angle of twist is:
E|y uIV + Mtx d)” + 2M'tx (b; — O [46]
And the 4t order solution of the third order equation of lateral deflection is

Elw &V + Gki " - Mu” = M’'x0” - ( M2+ M2 ) u/L - ( Mpa+ Mo ) U'/L =0 [47]

Both equations take into consideration that M’« is not zero for a beam with a point load.
Symmetrical properties of | beam have also been taken into consideration. Next, plug the 4t
order central difference terms into the aforementioned lateral-torsion equations of equilibrium

and obtain

a17Usz +aieUz + @15U1 + @14Up + A13U-1 + a12U-2 + A11U-3 + b1sda + b1ad1 + bizdo + b1ad.1 + b11d2 =0
[48]

azsUy +az4U1 + a23Uo + azU-1 + az1u-2 + bazds + basdz + basdi + baado + bazd-1 + baadz + b3 =0

[49]
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where a1 = -Ely/6h*; a12 = 2El,/h*; a13 = -13El,/2h*; a14 = 28Ely/3h%*; a15 = -13El,/2h*;
a1s = 2EI,/h* ; a17 = -Ely/6h* ; b11 = (-Mu/12h2 + M't/6h) ; b1z = (4Mu/3h? -4 M'w/3h);
bis = -(5M/2h? ; bis = (4My/3h? + 4 M’w/3h); and bis = -(Mu/12h? + M’/6h) , and
a2 = (Mw/12h? - M'/12h) = ((Mua +Mue)/ 12hL);

a22 = (-4Mw/3h? + 2M’/3h) + (2(Mixa +Mixz)/ 3hL); @23 = (5Mux/2h? - (M +M’x2)/ L);
a24 = (-4Muw/3h? - 2M'/3h) - (2(Mua +Mixa)/ 3hL);

azs = (Mu/12h%2+ M’t/12h) + ((Mua +Mu)/ 12hL);

ba1 = -Ely/6h* ; baa = 2Ely/h* + GKy/12h? ; bas = -13El,/2h? - 4GKy/3h? ; bag = 28El,/3h* ;

bas = -13Ely/2h* - 4GK/3h? ; bas = 2El,/h* + GKi/12h? ; and by = -EI,/6h* .

Next. We define h to be a fraction of L. For this problem, L=54.0 in. and h=2.7 in. This gives
us 21 locations. K matrix set up is shown in Table 28. Boundary conditions are associated locations
1 and 21, and ghost boundary conditions are associated with locations 2,3,19, and 20. The term
ghost is because we extend the columns out by two more imaginary locations beyond the
boundary location. This allows us to modify equations to identify whether supports are pinned
or fixed. For example, the term a14 extended out two terms beyond the boundary gives us the
two terms a1z and ai11. The modified term *a14 goes in the location of term a4, and *ais = a4 -
ai2; and *ais = ais—au, if support is pinned. For fixed support, *ai14 = a1a+ ai12; and *ais = ais+

a11. *bis, *azs, *bag, and *bs also need to be determined.
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Table 28. Central Difference K Matrix for Buckling. Investigation 7

1 | 2 ‘ 3 Location —

0lo olo 0.0 0.0 0.0 __» Supports at locations 1 and 21
olo—o0lo— 00 __» Zero out boundary

0j0 0j0 0.0 0.0

0j0 0J0 b27 0.0

0{0 00 b1s a1z

0j0 0J0 b2e 0.0

00 0P bia  aw

0j0 0[ bs  ass

v v Main diagonal

M is the moment at the left end of an element because the element is being held there.
M is also the moment at the left end while M, is the moment at the right end of an element.

Signs are opposite, typically. M’ is equal to the slope of the moment. M’ = R1 or Ry.

Ril -Mua -PLo+ Mix2 =0 [50]

RoL -Muz -PLi+ Mua = 0 (51]

When dealing with a point load and discontinuity at its location, the slope is the same for each
location to the left or right of the point load. Once values are assigned to all matrix locations
including the shear moment location, solve the determinant of the matrix while increasing P>
each time. When the matrix determinant value changes signs, the determinant has crossed zero
and P has reached the critical buckling limit. Value of P with shear, P;, for this problem is 2.5

kips.
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The governing equations for deflections when considering lateral torsional buckling are:

BxV'’- ® My = M

By U”- & M = My

Cwd"”” = (Ct+ MyB) &' — Mix U’ - Mty V' = (M1 + M2 ) Uu/L- (Meya + My ) v/L+ P(yo/2) d =0

Solve the modified equations of equilibrium simultaneously using a fourth order central
difference approach and aforementioned central difference expressions. These terms are

substituted into our modified lateral-torsion equations to obtain:

Bx (-v2 +16v1 —30vo +16 V.1 - V-2)- o My = Mix

By (-u2 +16u1 — 30up +16 U.1 - U-2)- o Mix = My

Cw(-®3+8p2-13d1+ 13d.1-8b2+ §3)/8h3— (Ce+ MyB) (-¢2 + 8d1- 81+ d-2)
—Mx (-U2+8u1—8U1+ U2 ) - My (-V2+8vi—8vi+Vvy)

— (Mt + Mix2 ) uo/L- (Myy1 + Myy2 ) vo/L + P(yo/2) o =10

Setting My to zero,

a11V-2 + a12v-1 + @13Vo + a14Vv1 + a15V2 = Mix [52a]
Where ai11=-El/12h?; a12 = 4El/3h? ; a13= -5EI/2h? ; a1a= 4El/3h?; a15 = -Elx/12h?;
B21u-2 + baau-1 + ba3ug + baaus + basuz + €210 = 0.0 [52b]
Where b1 = -El/12h? ; by = 4El/3h? ; bz = -5El/2h? ; boa = 4Ely/3h?%; bas = -El/12h?;
€21 = - Mix
bs1u-2 + baau.1 + b3sup + baaus + basuz + ca1d-3 + c32d-2 + C33¢-1 + C3ado + Casd1 + C36d2 + c37d1 = 0.0
[52c]

where b1 = -Mu/12h ; b3z = 2Mu/3h ; b3z = -(Moa + Mue)/L ; baa = -2Mu/3h ; bss = Mu/12h ;
c31 = Cw/8h3; c32 = - Cw/h® = Ct/12h ; c33 = 13Cw/8h3 + 2Ci/3h; €34 = Pyo/2 ;
¢35 = -13Cw/8h3 - 2Ct/3h; c36 = Cw/h3 + Ci/12h; c37 = - Cw/8h3.

For the vertical deflection values, use the same approach just demonstrated for the
buckling limit except use the three governing equations and the load vector is not set to zero.

[K]u = F. So solve for the deflections using the inverse K matrix, u = [K]* F. The vector u contains

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 29.



88

Table 29. Central Difference K Matrix for Deflection. Investigation 7

Location 1 Location 2 Location 3 Location 4

\'} u () v u () v u () v u ¢

60— 0.0—06:0—06.0—0.0—06.06—0.0—0.0—0.0—0.0—0.0—0.0»
0:0—0.0—0.0—0.0—0.0—0.0—0.0—0.0—0.0—06.06—06.0—06.06>
oo 00 0,0 ais 0.0 0.0
o0 o000 o0J0 0.0 bss C36
0jo 00 00 0.0 bxs 0.0
00 00 00 as 0.0 0.0
00 00 00 0.0 bas c35
00 00 00 0.0 ba 0.0

\ 4 v v nal

Zero out boundaries

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were

tabulated as shown in Table 30 based upon given info applied P, loads from laboratory.
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Table 30. Vertical Deflections. Investigation 7. Central Difference

21.0” from support 18” from support 4” from support
Load P, kips Viw/s (in.) Viw/o Vaw/s Vaw/o V3w/s V3w/o
0.00 0.00 0.00 0.00 0.00 0.00 0.00
2285 .0544 .0463 .0437 0367 .0059 .0047
4446 .1059 .0900 .0850 0713 0114 .0091
6250 .1489 1265 1194 .1003 0161 .0128
.8108 1932 1641 1550 1301 .0208 0167
1.001 2384 2026 1913 .1606 0257 .0206
1.122 2673 2271 2144 180 .0288 .0231
1.317 3138 2667 2518 2113 .0339 0271
1.518 3617 3074 2902 2436 .039 0312
1.714 4083 3469 3276 275 .0440 .0353
1.909 4549 3865 3649 3063 .0491 .0393
2.065 4919 418 3946 3313 0531 .0425
2.227 .5306 4509 4257 3573 0572 .0458
2.354 .5608 4765 4499 3777 .0605 .0485

2.7.2 Central Difference Solution Without Shear Deformation

For this approach, we use the three central difference governing equations previously
developed to determine vertical, horizontal, and the lateral deflection values along the beam. M
= Mbending and Ps = 0. The ends of the conjugate beam are pinned-pinned. So, boundary conditions

are set for pinned-pinned in the finite difference model.

Problem 2.7.2. Lab Investigation 7
Given: 3”"x3” x %4” fiberglass reinforced plastic beam in Figure 10. L=54". E=2997ksi.
lk=3.17in.%. G=450ksi. I,=1.13in.% k=.046. A=2.13in.2. |y =2.13in.°.

Find: Buckling limit and vertical deflections without shear.
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For vertical deflections without shear, we simply do not apply the shear moment to the
beam. In other words Ps = 0.0 and M = Mybending. Procedure is exactly same as calculating critical
load and vertical deflection outlined in previous problem which included shear. However, P loads
from lab experiments are P1 not P,. Therefore, M= 9.92P for this problem. See tabulated vertical
deflection values for this problem in Table 30. P1 equals 2.98 kips at the buckling limit calculated

using this approach. M = 29.52 k-in.
2.7.3 ASCE LRFD Method

The ASCE buckling limit equation was developed using the classical approach solution for
a simple beam solution introduced by Galambos. The LTB equations used in the classical

approach were

Ely UIV + Mtx ¢” + ZM'tx (b' =0 [53]
And the 4% order solution of the third order equation of lateral deflection is
Elw ¢|V - (th + Mx B) d)” - Mx u” - M'x Bx d) = 0 [54]

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide
for Pultruded Members.

Mn = Cp (T2 Evf ly Di/Lo? + T*Eifly Cuw/Lp*)® [55]

Where DJ = th, CW = Iw, and Cb = 12.5Mmax/(2-5Mmax+3MA+4MB+3MC).

Problem 2.7.3 Lab Investigation 7
Given: 3”"x3” x %" fiberglass reinforced plastic beam in Figure 10. L=54". ELF=3194 ksi.
Ik=3.17in.*. G=450ksi. I,=1.13in.% k=.046. A=2.13in.2. ly=2.13in.°,
Find: Buckling limit.
The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross

section is

n-= Cb ( T[Z ELf Iy DJ/I_I;)2 + T[4 ELf Iy Cw/Lb4 )'5
Where Lb is the braced length,

Cw is the warping constant,
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E.r is the Modulus Elasticity of the longitudinal flange,
D j— Gk and is the torsional rigidity, and

C b =12.5Mmax/(2.5Mmax+3Ma+4Mzp+3Mc)

and is the moment modification factor.

Ma, Mg and Mc are moments at locations .25L, .5L, and .75L, respectively. See Figure 19

;;;; 250 5L
| 75.0" %

Figure 19. Moment Diagram for Investigation 7

Location of Mmax varies with location of point load and equilibrium conditions. For this problem,
Mmax = Mg = 9.92P and M; = 7.16P. Plugging in moment values, Cp = 1.49. Plugging in given values
and Cp, Mn = 34.1 k-in.

Knowing the relationship between the critical moment and critical load, P1, without shear

moment; we can calculate the critical load, P.

P1=3.44 kips

Now. We must find the relationship of P31, the critical load without shear moment, and P, the
critical load with shear moment. P4 is associated with the moments on the conjugate beam
when Ps is not present. P is associated with the moments on the conjugate beam when Ps is
present. The resultant of the moments on the conjugate beam when considering and not

considering shear moment is of the same value or:
.5(9.92P1 )L1 + .5(9.92P1) b1 -.5(7.16P1) b2 =.5(9.92P;)L1 +.5(9.92P;) b1 - .5(7.16P2) by + Ps

Rearranged and solved, we get P,/P1 = .84. Therefore, P> = 2.89 kips.
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2.7.4 Summary of Maximum Loads

Critical loads are summarized in Table 31 and will be compared to experimental load in

Chapter 4. Deflections will be compared also.

Table 31. Summary of Buckling Loads. Investigation 7

Section Method Pcr
2.7.1 Central Difference with Shear Deformation 2.5 kips
2.7.2 Central Difference without Shear Deformation 2.98 kips
2.7.3 ASCE-LRFD Method 2.89 kips




2.8 Stability Analysis for Three Span Beam with Point Load Off Center. Outside Span.

Numerical formulations for the critical buckling load and translational and rotational
deflections are presented for Investigation 8 in this section. Numerical methods formulated
include fourth order central difference. Critical buckling load as determined from the ASCE-LRFD

Prestandard is also presented. Beam loading with boundary conditions and moments on

conjugate beam are defined in Figure 20.

P
A 4
6% O
/117 /17
Ps
Shear Moment Diagram
A 4 Vs
S .
14.3P/El
M/EI Diagram
103p/E1 N |
PsLila/L

\

Shear Deflection

27”

Figure 20. Investigation 8. Deflection Diagrams

52.5”

15"

10.5”
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2.8.1 Central Difference Solution With Shear Deformation

For this approach, use the three central difference governing equations previously
developed to determine vertical, horizontal and lateral deflection values along the beam. My =
M. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear
moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned.
So, boundary conditions are set for pinned-pinned in the finite difference model. Depending up
on the length of an element of eccentricity, the shear moment P value varies from model to
model. Ps=P; aElx/(eAG) where e is the eccentricity or length of the element. With shear, M =

Mbpending + Ps on the conjugate beam.

Problem 2.8.1 Lab Investigation 8

Given 3” x 3” x %" fiberglass reinforced plastic beam in Figure 11. 1L=79.5”. E=2997 ksi.
lk=3.17in.%. G=450ksi. ly=1.13in.% k=.046. A=2.13in.2%. |y =2.13in.®.

Find: Buckling limit and vertical deflections with shear.

As shown in Galambos, the 4t order solution of the second order bending equilibrium

equation including the angle of twist is:

Ely uV + My d” +2M'xd’ =0 [46]

And the 4% order solution of the third order equation of lateral deflection is
Elw &V + Gki " - Mu” = M’'x0” - ( M2+ M2 ) u/L - ( Mpa+ Mo ) U'/L =0 [47]

Both equations take into consideration that M’« is not zero for a beam with a point load.
Symmetrical properties of | beam have also been taken into consideration. Next, plug the 4t
order central difference terms into the aforementioned lateral-torsion equations of equilibrium

and obtain

a17Usz +aieUz + @15U1 + @14Up + A13U-1 + a12U-2 + A11U-3 + b1sda + b1ad1 + bizdo + b1ad.1 + b11d2 =0
[48]

azsUy +az4U1 + a23Uo + azU-1 + az1u-2 + bazds + basdz + basdi + baado + bazd-1 + baadz + b3 =0

[49]
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where a1 = -Ely/6h*; a12 = 2El,/h*; a13 = -13El,/2h*; a14 = 28Ely/3h%*; a15 = -13El,/2h*;
a1s = 2EI,/h* ; a17 = -Ely/6h* ; b11 = (-Mu/12h2 + M't/6h) ; b1z = (4Mu/3h? -4 M'w/3h);
bis = -(5M/2h? ; bis = (4My/3h? + 4 M’w/3h); and bis = -(Mu/12h? + M’/6h) , and
a2 = (Mw/12h? - M'/12h) = ((Mua +Mue)/ 12hL);

a22 = (-4Mw/3h? + 2M’/3h) + (2(Mixa +Mixz)/ 3hL); @23 = (5Mux/2h? - (M +M’x2)/ L);
a24 = (-4Muw/3h? - 2M'/3h) - (2(Mua +Mixa)/ 3hL);

azs = (Mu/12h%2+ M’t/12h) + ((Mua +Mu)/ 12hL);

ba1 = -Ely/6h* ; baa = 2Ely/h* + GKy/12h? ; bas = -13El,/2h? - 4GKy/3h? ; bag = 28El,/3h* ;

bas = -13Ely/2h* - 4GK/3h? ; bas = 2El,/h* + GKi/12h? ; and by = -EI,/6h* .

Next. We define h to be a fraction of IL. For this problem, L-79.5 in. and h=3.797 in. This
gives us 21 locations K matrix is setu up in Table 32. Boundary conditions are associated locations
1 and 21, and ghost boundary conditions are associated with locations 2,3, 19, and 20. The term
ghost is because we extend the columns out by two more imaginary locations beyond the
boundary location. This allows us to modify equations to identify whether supports are pinned
or fixed. For example, the term a4 extended out two terms beyond the boundary gives us the
two terms a1z and ai1. The modified term *ai4 goes in the location of term ais, and *a14 = a14 -
a12; and *ais = ais— a1y, if support is pinned. For fixed support, *aia = a1a+ a1z ; and *ais = ais+

a11. *bis, *azs, *bas, and *bas also need to be determined.
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Table 32. Central Difference K Matrix for Buckling. Investigation 8

1 | 2 ‘ 3 Location —

0lo olo 0.0 0.0 0.0 __» Supports at locations 1 and 21
olo—o0lo— 00 __» Zero out boundary

0j0 0j0 0.0 0.0

0j0 0J0 b27 0.0

0{0 00 b1s a1z

0j0 0J0 b2e 0.0

00 0P bia  aw

0j0 0[ bs  ass

v v Main diagonal

M is the moment at the left end of an element because the element is being held there.
M is also the moment at the left end while M, is the moment at the right end of an element.

Signs are opposite, typically. M’ is equal to the slope of the moment. M’ = R1 or Ry.

Ril -Mua -PLo+ Mix2 =0 [50]

RoL -Muz -PLi+ Mua = 0 (51]

When dealing with a point load and discontinuity at its location, the slope is the same for each
location to the left or right of the point load. Once values are assigned to all matrix locations
including the shear moment location, solve the determinant of the matrix while increasing P>
each time. When the matrix determinant value changes signs, the determinant has crossed zero
and P; has reached the critical buckling limit. Value of P¢ with shear, P, for this problem is 1.12

kips.
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The governing equations for deflections when considering lateral torsional buckling are:
BxVv"’- & My = Mix
By u”’- ® Mix = My
Cwd"”” = (Ct+ MyB) & — Mix U’ - Mty V= (Mixa + M2 ) Uu/L- (Meya+ My ) v/L+ P(yo/2) d =0
Solve the modified equations of equilibrium simultaneously using a fourth order central

difference approach and aforementioned central difference expressions. These terms are

substituted into our modified lateral-torsion equations to obtain:

Bx (-2 +16v1 —30vo +16 V.1 - V-2)- do Mty = M

By (-u2 +16u1 — 30uo +16 U-1 - U-2)- o Mix = Myy

Cw(-®3+8p2-13d1+ 13d.1-8b2+ §3)/8h3— (Ce+ MyB) (-¢2 + 8d1- 8pa + d-2)
—Mux (-Uz2 +8u1—8uU.1+ U2 ) - Myy (-V2+ 8vi—8v+ V)

— (Mt + Mix2 ) uo/L- (Myy1 + Myy2 ) vo/L + P(yo/2) o =10

Setting My to zero,

a11V-2 + a12v-1 + @13Vo + a14Vv1 + a1sv2 = Mix [52a]
where a11=-Ely/12h?; a12 = 4Ely/3h?; a13=-5El/2h? ; a1 = 4El/3h?; a15= -Ely/12h?;
B21u-2 + baau.1 + b23ug + baaus + basuz + €210 = 0.0 [52b]
where by1=-Elx/12h?; b2y = 4El/3h?%; baz = -5EI/2h? ; baa= 4El/3h? ; bys = -Ely/12h?;
€21 = - M
bs1u-2 + baau.1 + b3sup + baaus + basuz + ca1d-3 + c32¢-2 + C33¢-1 + C3ado + Casd1 + C3sd2 + c37d1 = 0.0
[52c]

where b1 = -Mu/12h ; b3z = 2Mu/3h ; b3z = -(Moa + Mue)/L ; baa = -2Mu/3h ; bss = Mu/12h ;
31 = Cuw/8h3; c32 = - Cu/h® = C/12h ; ca3 = 13Cw/8h3 + 2C¢/3h; c3a = Pyo/2 ;
€35 = -13Cw/8h3 - 2C/3h; c36 = Cw/h® + Ci/12h; c37 = - Cw/8h3.

For the vertical deflection values, use the same approach just demonstrated for the
buckling limit except use the three governing equations and the load vector is not set to zero.

[K]u = F. So, solve for the deflections using the inverse K matrix, u = [K]* F. The vector u contains

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 33.
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Table 33. Central Difference K Matrix for Deflections. Investigation 8

Location 1 Location 2 Location 3 Location 4

Y, u ¢ v u ¢ v u ¢ v u ¢
—040 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80 0.0
—00 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0—>
0.0 0:0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0,0 00 00 0.0 0.0
00 00 040 bss C36
00 00 040 b2s 0.0
00 00 040 00 0.0
00 00 00 b3a C35
00 00 00 b24 0.0

v v

Zero out boundaries

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were

tabulated in Table 34 based upon given info and applied P, loads from laboratory.
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7” from support 19” from support 34” from support
P Load, kips Viw/s (in.) Viw/o Vaw/s Vaw/o V3w/s V3w/o
0.00 0.00 0.00 0.00 0.00 0.00 0.00
2204 .0379 .035 .1032 .0944 1338 1221
4409 076 .070 2067 1887 2682 2443
.709 1222 1126 3325 3035 4313 3928
.8899 1534 1413 4174 3810 5414 4931
1.069 .1843 .1698 5015 4578 .6505 5925
1.225 2113 1946 5748 5247 7456 6791
1.382 .2382 2194 .6480 5916 .8406 7657
1.522 2623 2416 7136 6515 9257 .8431

2.8.2 Central Difference Solution Without Shear Deformation

For this approach, we use the three central difference governing equations previously

developed to determine vertical, horizontal, and lateral deflection values along the beam. My =

Myending and Ps = 0. The ends of the conjugate beam are pinned-pinned. So, boundary conditions

are set for pinned-pinned in the finite difference model.

Problem 2.8.2. Lab Investigation 8

Given: 3” x 3” x %" fiberglass reinforced plastic beam in Figure 11. L=79.5”. E=2997 ksi.

lk=3.17in.%. G=450ksi. ly=1.13in.% k=.046. A=2.13in.2%. |y =2.13in.®

Find: Buckling limit and vertical deflections without shear.

For vertical deflections without shear, we simply do not apply the shear moment to the

beam. In other words, Ms= 0.0 and M = Mypending. Procedure is exactly same as calculating critical

load and vertical deflection outlined in previous problem which included shear. However, P loads

from lab experiments are P1 not P,. Therefore, M = 14.34P for this problem. See tabulated

vertical deflection values for this problem in Table 34. P1 equals 1.22 kips at the buckling limit

calculated using this approach. M= 17.53 k-in.
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2.8.3 ASCE LRFD Method

The ASCE buckling limit equation was developed using the classical approach solution for
a simple beam solution introduced by Galambos. The LTB equations used in the classical

approach were

E|y uIV + Mtx d)” + 2M'tx (b; — O [53]

And the 4% order solution of the third order equation of lateral deflection is

Elw " — (Gke + My B) & - Myu” =M’x Bxd =0 [54]
The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide for

Pultruded Members.

Mn = Cp (T2 Evf ly Di/L? + T*Eifly Cuw/Lp* )® [55]

Where Dj= Gki; Cw = lw; and Cp = 12.5Mmax/(2.5Mmax+3Ma+4Mzg+3Mc).

Problem 2.8.3 Lab Investigation 8
Given: 3” x 3” x %" fiberglass reinforced plastic beam in Figure 11. L=79.5”. ELF=3194 ksi.
lk=3.17in.%. G=450ksi. ly=1.13in.% k=.046. A=2.13in.2%. l,=2.13in.°.
Find: Buckling limit.
The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross

section is

Mn = Cp (2 Evf ly Dj/Lo? + m*Eisly Cw/Lo* )°

Where Lb is the braced length,

Cw is the warping constant,

Eir is the Modulus Elasticity of the longitudinal flange,
Dj = Gkt and is the torsional rigidity, and

Cb = 12.5Mmax/(2.5Mmax+3Ma+4Ms+3Mc)

and is the moment modification factor.
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Ma, Mg and Mc are moments at locations .25L, .5L, and .75L, respectively. See Figure 21.

L1 b1 b,

79.5”

% s s 75t %
|\/ L/L

Figure 21. Moment Diagram for Investigation 8

Location of Mmax varies with location of point load and equilibrium conditions. For this problem,
Mmax = Mp = 14.34P and M; = 10.29P. Plugging in moment values, C, = 1.73. Plugging in given
values and Cp, M,=22.90 k-in. Knowing the relationship between the critical moment and critical

load, P1, without shear moment; we can calculate the critical load, P1. P1 = 1.60 kips.

Now. We must find the relationship of P31, the critical load without shear moment, and P, the
critical load with shear moment. P1 is associated with the moments on the conjugate beam when
Ps is not present. P2 is associate with the moments on the conjugate beam when Ps is present.
The resultant of the moments on the conjugate beam when considering and not considering
shear moment is of the same value or

.5(14.34P1 )L1 + .5(14.34P1) b1 - .5(10.29P1) bz = .5(14.34P2)L1 +.5(14.34P2) by - .5(10.29P;) b, +
Ps

Rearranged and solved, we get P,/P1=.916 Therefore, P, = 1.47 kips
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Critical loads are summarized in Table 35 and will be compared to experimental load in

Chapter 4. Deflections will be compared also.

Table 35. Summary of Buckling Loads. Investigation 8

Section Method Pcr

2.8.1 Central Difference with Shear Deformation 1.12 kips
2.8.2 Central Difference without Shear Deformation 1.22 kips
2.8.3 ASCE-LRFD Method 1.47 kips
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2.9 Stability Analysis for Three Span Beam with Point Load Off Center. Biaxial

Numerical formulations for the critical buckling load and translational and rotational
deflections are presented for Investigation 9 in this section. Numerical methods formulated
include fourth order central difference. Critical buckling load as determined from the ASCE-LRFD
prestandard is also presented. Beam loading with boundary conditions and moments on

conjugate beam are defined in Figure 22.

_‘u

Ps
ShearfMoment Diagram
a v N
L
/ 4,92P/El M/EI Diagram
8.34P/EI 2.6PP/EI
PsLala/L
Shear Deflection
13.5” 15” 66" 10.5”

Figure 22. Investigation 9. Deflection Diagram
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2.9.1 Central Difference Solution With Shear Deformation

For this approach, use the three central difference governing equations previously
developed to determine vertical, horizontal and lateral deflection values along the beam. My =
M. Follow the instructions of Timoshenko to the letter. Simply place the shear moment point
load on the conjugate beam. The ends of the conjugate beam are pinned-pinned. So, boundary
conditions are set for pinned-pinned in the finite difference model. Depending up on the length
of an element of eccentricity, the shear moment Ps value varies from model to model. Ps = P, aElx

/(AG).

Problem 2.9.1. Lab Investigation 9

Given : 4” x 4” x 4" fiberglass reinforced plastic beam in Figure 12. L=75". E=3000 ksi.
lx=7.935in.%. G=450ksi. I,=2.67in.% k¢=.06. A=2.85in.2. 1,=9.375in. 5,
Find: Buckling limit and vertical deflections with shear.

As shown in Galambos, the 4t order solution of the second order bending equilibrium

equations including the angle of twist is:

ElyuV + M@ +2M’x ¢’ =0

EkvlV+ My ¢ +2M' @’ =0

And the 4t order solution of the third order equation of lateral deflection is

Elw " + Gki " - MU’ = MU’ - ( M'xi+ M’'e2 ) U/L - ( Mua+ M2 ) U'/L

-My V' =My V' - (My1+ My2)V/L - (My1+My2 ) V'/L =0

Equations take into consideration that My, M’«, and M’y are not zero for a beam loaded biaxially.
Symmetrical properties of | beam have also been taken into consideration. Next, plug the 4t

order central difference terms into the aforementioned lateral-torsion equations of equilibrium

and obtain
a17V3 +a16V2 + A15V1 + @14Vo + A13V-1 + A12V2 + A11V-3 + C152 + C1ad1 + c13do + Cr2d-1 + C1102 =0

ba7u3 +bsuz + basui + baguo + basu.y + boyus + baius + casda + C2ad1 + C23do + C22P-1 + C21P2 =0
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bssuz +bsau1 + b3azup + b3yu.1 + baius + €373 + 362 + €351 + C3ado + €331 + €322 + C31d3 +
as3sVa +asgVi + as3vo + a3pv-1 +as31vay = 0.

where a1 = -Ely/6h*; a12 = 2El,/h*; a13 = -13El,/2h*; a14 = 28Ely/3h%*; a15 = -13El,/2h*;
aie = 2Ely/h*; a17 = -Ely/6h*; c11 = (-Mw/12h% + M'w/6h) ; €12 = (4Mw/3h? -4 M’/3h);
c13 = -(5Mu/2h?; c14 = (4Mu/3h2 + 4 M'x/3h); and c15 = -(Mw/12h% + M'w/6h) , and

bs1 = (Mu/12h% - M't/12h) = ((Msa +Mi2)/ 12hL);

b3z = (-4Mu/3h% + 2M’/3h) + (2(Mua +Mue)/ 3hL); bas = (5Mu/2h? - (Mt +M'v2)/ L);
b3a = (-4Muw/3h? - 2M’x/3h) - (2(Mua +Mue)/ 3hL);

b3s = (Mu/12h?+ M’x/12h) + (M1 +Mue)/ 12hL);

ca1 = -Ely/6h* ; c32 = 2Ely/h* + GKi/12h? ; ¢33 = -13El,/2h? - 4GK¢/3h? ; cas = 28El,/3h*;

c3s = -13Ely/2h* - 4GK¢/3h? ; c36 = 2El,/h* + GK¢/12h? ; and c37 = -Ely/6h* .

Next. We define h to be a fraction of L. For this problem, L=81.0 in. and h= 3.00 in. This

gives us 28 locations K matrix set up shown in Table 36.
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Table 36. Central Difference K Matrix for Buckling. Investigation 9

1 | 2 ‘ 3 Location —

0.0 0i0 0.0 0.0 0.0 __» Supports at locations 1 and 21
Location|1 Location 2 Location 3 Location 4
Y u (0] v u (0] v u (0] v u (0]
00—0;06—06:0—6.6—06.06—0.06—0.06—0.06—0.0—0.0—0.0—0.0»
—0:0—0.0—0.0—0.0—0.0—0.0—0.0—06.0—0.0—0.06—0.06—0.06—>
0:0—0:06—0,0—0.0—0.06—0.06—0.06—0.06—06.6—06.0—06.06—06.0>
0,0 00 o0)0 ais 0.0 0.0
o0 00 o0J0 0.0 bss C36
oo 00 040 0.0 b2s 0.0
oo od o0 as 00 0.0
00 00 00 0.0 b3a C35
00 00 00 0.0 b24 0.0
v v v nal

Zero out boundaries

Boundary conditions are associated locations 1 and 28, and ghost boundary conditions
are associated with locations 2,3, 26, and 27. The term ghost is because we extend the columns
out by two more imaginary locations beyond the boundary location. This allows us to modify
equations to identify whether supports are pinned or fixed. For example, the term a14 extended
out two terms beyond the boundary gives us the two terms a1z and ai1. The modified term *aia
goes in the location of term ai1s4, and *ai14 = a14 - a1z; if support is pinned. For fixed support, *a14

= austan.
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M is the moment at the left end of an element because the element is being held there.
M is also the moment at the left end while Mo is the moment at the right end of an element.

Signs are opposite, typically. M’« is equal to the slope of the moment. M’ = R1 or Ra.

Ril -Mua -PLo+ Mix2 =0 [50]

RoL -Mu2 -PL1+ Mixa = 0 [51]

When dealing with a point load and discontinuity at its location, the slope is the same for each
location to the left or right of the point load. Once values are assigned to all matrix locations
including the shear moment location, solve the determinant of the matrix while increasing P>
each time. When the matrix determinant value changes signs, the determinant has crossed zero
and P, has reached the critical buckling limit. Value of P with shear, Py, for this problem is 2.9

kips.
The governing equations for deflections when considering lateral torsional buckling are:

BxV’- ® My = M

By U”’- ® M= My

Cwd"”” = (Ct+ MyB) &' — Mix U’ - Mty V' = (M1 + M2 ) Uu/L- (Meya + My ) v/L+ P(yo/2) d =0

Solve the modified equations of equilibrium simultaneously using a fourth order central
difference approach and aforementioned central difference expressions. These terms are

substituted into our modified lateral-torsion equations to obtain:

Bx ( -v2 +16v1 — 30V +16 V.1 - Vo2)- do My = M

By (-u2 +16u1 — 30up +16 U.1 - U-2)- o Mix = My

Cw(-®D3+8b2-13d1+ 13d-1-8d2+ d3)/8h° — (Ci + MiB) (-d2 + 81 - 81+ ¢-2)
—Mix (-Uz2+8u1—8U1+ U2 ) - Myy (-v2+ 8vi—8vi+Vvy)

— (Mix1 + M2 ) Uo/L- (My1 + Myy2 ) vo/L + P(yo/2) o =0

For the vertical deflection values, use the same approach just demonstrated for the
buckling limit except use the three governing equations and the load vector is not set to zero.
[K]u =F. So, solve for the deflections using the inverse K matrix, u = [K] " F. The vector u contains

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 37.
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Table 37. Central Difference K Matrix for Deflections. Biaxial. Investigation 9

Location 1 Location 2 Location 3 Location 4
\ u (0] v u (0] v u (0] v u (0]
—0:0—06:06—0:0—06.06—0.0—0.06—06.0 0.0 0:0—0.0—0.0—0.0»>
—0:0—0:0—0;0 0.0—0:0 0.0—0.0—0.0—06.06—06.6—06.0—0.06>
0:0—0;0—0:0 0.0—0:0 0.0—0:0 0.0 0.0 0:0—0.0—0.0»>
0,0 00 0.0 0.0 0.0
0,0 00 0,0 b3s C36
00 00 00 b2s 0.0
00 00 00 0.0 0.0
00 00 00 b3a C35
00 00 00 b24 0.0
v v v

Zero out boundaries

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were

tabulated in Table 38 based upon given info and applied P, loads from laboratory.
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Table 38. Vertical Deflections. Investigation 9. Central Difference

21.0” from support 18" from support 4” from support

Load P, kips Viw/s (in.) Viw/o Vaw/s Vaw/o V3w/s V3w/o
0.00 0.00 0.00 0.00 0.00 0.00 0.00
5129 .0388 0236 .0328 .024 .0068 .00427
.8089 .0612 .0373 0516 .0378 .0107 .0067
1.11 .0841 0512 .0708 .0520 .0147 .0092
1.29 .0977 .0595 .0822 .0605 0171 .0107
1.398 .1057 .0644 .089 0654 0185 0116
1.549 1171 0714 .0986 0725 .0205 .0129
1.682 1271 0775 .1070 0787 0222 .0140
1.818 1374 .0838 1157 0851 .024 0151
1.935 1462 .0892 1231 .0905 0256 .0161
2.114 1598 .0974 1345 .0989 .028 .0176
2318 1751 .1068 1474 .1084 .0306 .0193

2.9.2 Central Difference Solution Without Shear Deformation

For this approach, we use the three central difference governing equations previously
developed to determine vertical, horizontal, and lateral deflection values along the beam.
Mx=Mpending and Ps = 0. The ends of the conjugate beam are pinned-pinned. So, Boundary

conditions are set for pinned-pinned in the finite difference model.

Problem 2.9.2. Lab Investigation 9
Given: 4” x 4” x " fiberglass reinforced plastic beam in Figure 12. L=81". E=3000 ksi.
lk=3.17in.%. G=450ksi. I,=1.13in.% k=.046. A=2.13in.2. |y =2.13in.°.

Find: Buckling limit and vertical deflections without shear.
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For vertical deflections without shear, we simply do not apply the shear moment to the
beam. In other words, Ms= 0.0 and M = Mybending. Procedure is exactly same as calculating critical
load and vertical deflection outlined in previous problem which included shear. However, P loads
from lab experiments are P1 not P,. Therefore, M- = 8.34P for this problem. See tabulated vertical
defleciotn values for this problem in Table 38. P1 equals 7.25 kips at the buckling limit calculated

using this approach. M = 60.46 k-in.

2.9.3 ASCE LRFD Method

The ASCE buckling limit equation was developed using the classical approach solution for
a simple beam solution introduced by Galambos. The LTB equations used in the classical

approach were

E|y uIV + Mtx d)” + 2M'tx (b; — O [53]

And the 4t order solution of the third order equation of lateral deflection is

Elw ¢|V - (th + Mx B) d)” - Mx u” - M'x Bx d) = 0 [54]
The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide

for Pultruded Members.

Mhn = Cp (T2 Evf ly Di/Lo? + m*Eifly Cuw/Lp* )® [55]

where D= Gki; Cw = lw; and Cp = 12.5Mmax/(2.5Mmax+3Ma+4Mz+3Mc).

Problem 2.9.3 Lab Investigation 9

Given: 4” x 4” x " fiberglass reinforced plastic beam in Figure 12. L=81". E=3000 ksi.
lk=3.17in.*. G=450ksi. ly=1.13in.% k=.046. A=2.13in.2%. l,=2.13in.°.

Find: Buckling limit.

The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross section is
Mp = Cp (12 Evf ly Dj/Lp? + T*Eisly Cw/Lo* )®

where Lb is the braced length,

Cw is the warping constant,
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E.r is the Modulus Elasticity of the longitudinal flange,
D; = Gkt and is the torsional rigidity, and

Cb = 12.5Mmax/(2.5Mmax+3Ma+4Mg+3Mc).

and is the moment modification factor.

Ma, Mg and Mc are moments at locations .25L, .5L, and .75L, respectively. See Figure 23.

\ a1 az b1 b2

4.92P

Ji
o

L »

/1 8.34P 81.0” 2.69P

Figure 23. Moment Diagram for Investigation 9

Location of Mmax varies with location of point load and equilibrium conditions. For this problem,
Mmax = 8.34P and M; = 2.69P. Plugging in moment values, Cp = 1.99. Plugging in given and C,, Mp
=74.1k-in.

Knowing the relationship between the critical moment and critical load, P1, without shear
moment; we can calculate the critical load, P1. P1=74.1/8.34 = 8.88 kips. Now. We must find the
relationship of P1, the critical load without shear moment, and P, the critical load with shear
moment. P is associated with the moment son the conjugate beam when Ps is not present. P2 is
associated with the moments on the conjugate beam when Ms is present. The resultant of the
same value or:

.5(4.92P1 )a2 + .5(4.92P1) b1 - .5(2.69P1) bz - .5(8.34P1) al = .5(4.92P2 )a2 + .5(4.92P>) bs -
.5(2.69P;) bz - .5(8.34P2) al + Ps

Rearranged and solved, we get P,/P1 = .41. Therefore, P, = 3.64 kips. Because we are using
Biaxial loads, we must use the interaction equation to determine the critical moment, M.
Following procedure outlined, the critical moment Mcry = 84.4 k-in. The applied moment

My = 3.64 k-in. The interaction equation is



112

Mx/Mcrx + MY/Mcry <1.0

Or My< .96 Mcrx = 71.1 k-in. So, P1 = 8.52 kips and P, = 3.41 kips.

2.9.4 Summary of Maximum Loads
Critical loads are summarized in Table 39 and will be compared to experimental loads in

Chapter 4. Deflections will be compared also.

Table 39. Summary of Buckling Limit. Investigation 9

Section Method Pcr

29.1 Central Difference with Shear Deformation 2.9 kips
2.9.2 Central Difference without Shear Deformation 7.25 kips
2.9.3 ASCE-LRFD Method 3.64 kips
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CHAPTER 3

EXPERIMENTAL INVESTIGATION

Having determined critical buckling loads and translational and rotational deflections
analytically in Chapter 2, empirical results are now determined from lab experiments for nine (9)

investigations shown in Section 1.3.

Set up of lateral torsional testing apparatus is first discussed, then procedure for
determining elastic modulus and shear modulus is demonstrated. These material properties vary

among GFRP beam manufacturers.

Next, using ASCE-LRFD Prestandard, critical load limits for shear and local failure modes
are determined then compare with lateral torsional buckling critical load limits. This was done to

insure that the beams at the lengths and cross sections chosen fail lateral-torsionally.

Using a lateral torsional testing apparatus with dial gages mounted along its length, we

gathered rotational and translational deflection data. Results are presented herein.
3.1 Experimental Equipment

Torsional testing to be performed is similar to rotational beam testing and is used to
determine the angle of twist, the torsion failure load, and the maximum shear stress. The
maximum angel of twist will be determined as the load at which the | beam fails to elastically
return to its original state after unloading. Plastic limit will determined as the load at which the
member is no longer able to support a load. In addition, information from torsional experiments
will be used to develop an interaction equation and to review preliminary design guidelines for

pultruded members as proposed by the ASCE.

To conduct the flexure torsional testing a flexural testing apparatus conceived by Dr.
Sirjani and Dr. Razzaq is used. It is similar in design to a testing apparatus used by Lehigh
University when conducting flexural experiments (See Figure 24). Consistency in testing
procedure and testing equipment gives us a more accurate baseline with which to compare

testing results from previous dissertations, textbooks, and experiments.
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Figure 24. Lateral-Torsional Testing Apparatus at ODU

GFRP beams are held in place by metal supports fastened to the frame of the testing
apparatus creating specified boundary conditions as shown in Figure 25. Each end of the beam is
simply supported, one in a pinned-end and one in a roller condition, by a round bar assembly.
The bar assemblies will be capable of being locked in position to allow different span lengths and

creation of double and triple spans.
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Figure 25. Supports

The test procedure involves providing testing loads through hydraulic pressure from
hydraulic jacks as shown in Figure 26 and then recording deflections, strains, and the output from
load cells so that we may evaluate twist, warping, stresses, deflections, and other strength
parameters. The loads are to be applied in small increments and will be allowed to stabilize after

two or three minutes after each increment before data is recorded.

The hydraulic jacks will be placed on fixed end steel beams located above the GFRP beam.
This will allow application of loads so as not to inhibit rotation. Pistons pointing upward will be
pushing upward against 6” x 24” x % “ steel plates which are supporting vertical steel rods.
Vertical steel rods will be pulling up on steel plates which be placed in contact with the bottom
of the test beam. The loads will be measured by calibrated load cells mounted upon each jack

and plate assembly.
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Figure 26. Hydraulic Jack and Pump

Jack and meter assemblies shown in Figure 27 will create loads through hydraulic pressure
pumped manually and allow us to read load values. Tie rod assembly will allow the beam to

develop lateral torsion and horizontal deflection as well as vertical deflection.
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Figure 27. Jack and Meter for Hydraulic Pump

To measure translational and rotational deflections, dial gages will be positioned along
the member as shown in Figure 28. Optionally, strain gages may be mounted along test beams

to evaluate warping and twist.
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Dial gage for vertical deflection

Dial gage for horizontal deflection

Figure 28. Dial Gages for Measuring Deflection

3.2 Material Properties and Specimens

One standard | beam of dimensions 4” x 4” x %4” or 3” x 3” x %” and approximately 105
inches long is set up using single, double, or triple span boundary conditions and loaded for each
investigation. The specimen is tested and results graphically compared. Vertical deflections,
horizontal deflections, and torsional rotations obtained during experiment are compared with
those predicted using our central difference approach. In addition, the failure modes of bending,
lateral torsional buckling, shear, web or flange local buckling are observed and compared with
those predicted using the ASCE guidelines. Because we are investigating lateral torsional

buckling, these failure modes should not occur.
Elastic moduli, Young’s Modulus and Shear Modulus

Two of the most important elastic properties of the fiberglass reinforced plastic beams
concerning shear deflection and torsion are associated with Young’s Modulus and the Shear
Modulus, E and G, respectively. Thus, we will perform lab experiments to confirm their values for

our 3" x3” x%” and $’ x 4” x %" beams before we gin our analysis. Manufacturer’s data for the
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beams suggest that the range of the Elastic modules is between 2800 and 3200 x 10 ksi. Ex and

Ey are shown to be the same.

During lab experiments to determine Modulus of Elasticity, cross sectional values of Ex
and Ey were determined to be 2800 and 3194 ksi, respectively. These values were at the limits of
the recommended manufacturer’s range. For analysis purposes, E will be the average of these

two values, 2997 ksi.

Shear modulus G from lab experiment was determined be 453 ksi. This is consistent with
the recommended manufacturer’s value. Analysis approaches to determine lab values of E and

G are now presented herein.
Young’s Modulus

Cantilevered beam is used as shown in Figure 29. This creates a uniform moment on the
center span which we can consider free of shear deflection when we perform our deflection
calculation. Once we determine the equations for deflection and run the experiment modeling
itinthe lab, we have one (1) unknown, E. Using the lab determined deflection value, we can solve

for our unknown value of E.
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25” 30.5”

i Ps Ps Shear Moment Diagram
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L M/EI on Conjugate Beam
] : 3 k

Pyi L/EI

N

Figure 29. Shear and Moment Diagrams for Young’s Experiment

Using a superposition approach on the cantilever beam with hinge AC, we can determine
what the reaction at the hinge is in the Y direction. Using this information and the moment load

of the conjugate beam on BC, we can determine the deflection at the centerline BC.

On the major axis, the experimental deflection at centerline is .083”. With Ex =2800 ksi,
we calculated a deflection of 1676.44/El = .0755 without shear and .082 in. with shear. As such,

Exto be used in our analysis is 2800 ksi.

On the minor axis, the experimental deflection is .043”. With the understanding that the
moment of inertia is about the bottom of the beam cross section and not the centroid. Our
calculated value compares favorably to our experimental value and is .043” when using 3194 ksi

for Ey. So, we have 2800 ksi for Ex, 3194 for Ey, and 2997 ksi for E when needing average. These
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values compare favorably with manufacturer’s recommended value range of 2800 ksi to 3200

ksi.

Shear Modulus
In addition to the aforementioned experiment, the lateral deflection related to shear
needs to be used to determine shear modulus which we need to use in our central difference

calculations.

In our second material property experiment to determine the Shear Modulus, we load
the beam as shown in Figure 30 to create a Torque T which is monitored along with the lateral

deflection in the elastic range.

A - -

Ps Shear Moment Diagram
\ v S
A ¢/
1111 T 111/
10.7P/EI M/EI or} Conjugate Beam

/ZSP/EI 9.17P/El

Figure 30. Shear and Moment Diagrams for Shear Modulus Experiment
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Once we have experimental deflection values, we then model the experiment in central
difference using the analytical approach we present herein. Using “G” as our unknown, we place
known loads and other given info on the beam model then solve for G until we accomplish

deflection observed in lab to obtain the same straightline deflection curve in the elastic range.

Solved. G was determined to be 453 ksi. Could not use typical classical finite difference
approach because no relationships between in plane deflections and out of plane rotations are
considered in typical torsion or bending moment equations. Consideration for end shears and
differential warping between sections are included in the third equilibrium equation being used

in our analysis approach presented herein. The equation is cited below:
de)'” - (Ct + K)d)’ - Mx U' - My V' - V/L (Myl + Myz) - U/L (Mx]_ + sz) + (Pyo/2)¢ = 0

The last five terms are not typically addressed in bending or torsion analysis.
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3.3 Lab Investigations

Lab Investigation 1

Experimental results are now presented for investigation 1. Using ASCE-LRFD
Prestandard, critical load limits for shear and local failure modes are determined then compared
with lateral torsional buckling critical load limits. Beam established for investigation 1 predicted

to fail in lateral torsion.

Experiment involves observance of vertical, horizontal, and lateral torsional deflections
of a single span beam with point load at midspan. Dial gages are mounted along the beam with
cross section, supports, and boundary conditions shown in Figure 31. Rotational and translational
deflection data observed from lateral torsional testing for investigation 1 presented in this

section.

"

797 37.5” 37.5” 7%}'
}/ %

-~

Figure 31. Investigation 1: Single Span Model

To determine what size beam to use in the beam testing apparatus, we evaluated the
shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic |
beams (See Figure 32). First, we eliminated the 6” x 6” x %4” beam because the loading capacity

of our testing apparatus may be exceeded.
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Figure 32. LTB Comparison of Cross Sections

Next, to establish a baseline for the investigation, we elected to perform single, double,
and triple span experiments with the point load at midspan using the 4” x 4” x %4” cross section.
Alternatively, the 3” x 3” x %4” cross section issued for single, double, and triple span experiments
where the point loads are off-centered and moved toward the supports. The larger cross section
is being used in the experiments associated with the location where the point load produces
maximum deflection and max shear. Shorter span experiments were performed using the 3” x 3”
X %" cross section. The objective was to keep buckling loads and deflections within range of

testing apparatus and dial gages measuring deflections.

Lastly, beams were evaluated by their failure predictions as determined using the ASCE-
LRFD Design Guide for Pultruded Members (See Appendix). These failures include material
rupture, lateral torsional buckling, and shear. Since we are interested in lateral torsional buckling
failure, we want to make sure beams fail lateral-torsionally before other failure modes are
reached. Our own predictions for lateral-torsional buckling with shear were also considered.
Graph showing lateral-torsional buckling failure is shown in Figure 33. It compares our central

difference buckling solution with the ASCE-LRFD Design buckling solution.
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Figure 33. Central Diff vs ASCE Buckling Prediction Curves

A GFRP beam of dimensions 4” x 4” x %4” x 75” is placed in our beam testing apparatus and
in-plane loads will be placed upon the beam until it reaches lateral-torsional buckling failure. The
objective is to identify in-plane deflection increases and out of plane deflections that are
experienced as a result of shear. These typically unaddressed deflections often lead to premature
buckling failure of the beam. We then compare buckling and deflection lab results to our

predictions and ASCE Design values.

We are using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as determined
during our material testing discussed earlier in Chapter 3. Looking at the manufacturer’s data for
the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x 10 6 and
the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. this information confirms our test

results.

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place
loads upon the specimen. Also, a meter for measuring the loads will be used. Dial gages are
located along the beam as shown in Figure 34 for determination of vertical, horizontal, and lateral
torsional deflections to be compared with deflection values obtained with our analytical models

using the central difference approach for same locations.
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Vertical dial gage(v3)
Horizontal dial gage(h2)

Torsion dial gage(I1)

204 PP & $970
G

8” 5" 9” 18" 17.5II 17II 29II 28[’ 28”
—o——9 ——0- * « o — ¢ —

Figure 34. Dial Gage locations for Single Span Point Load Experiment
Mechanical properties and dimensions of the GFRP beam being used are as follows:

L =75 inches; | beamis 4” x 4” x %”; Area A=2.85in.2; 1 =7.93 in.4; F = 30 ksi; E = 2997 ksi; and
G =453 ksi.

Deflection values observed from lab experiment are shown in Table 40. They are
compared with Central Difference deflection and buckling values and ASCE-LRFD buckling values

in Chapter 4.
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*8” 29” 18” 5” 17.5” 28” 9” 17” 28”

Load P | vllab |vllab | vllab hl hl hl 11 11 11

0 0 0 0 0 0 0 0 0 0
.01408 | .001 .004 .003 0 0 0 .0002 |.00047 |.00023
12925 | .019 .053 .042 .005 .006 .008 .0025 | .00506 |.00254
.31489 | .043 121 .093 .011 .017 .022 .0054 |.01353 | .006
49130 | .066 178 142 .016 .026 .034 .008 .0208 |.00931
.6858 | .091 .258 .189 .022 .036 .045 .011 .02871 | .01377
8787 | .117 329 243 .029 .047 .056 .014 .03647 | .01715
1.027 | .137 .386 .284 .034 .055 .065 .016 .04282 | .01977
1.362 |.181 .509 376 .045 .071 .082 .0208 | .05588 | .02554
1.612 | .217 .607 449 .052 .083 .094 .0246 | .07153 | .02969
1.832 |.238 2.1 489 .059 .09 12 .0267 | .09506 | .03208
1.88 .248 2.7 514 .062 .097 .15 .0279 |.123 .03354

* Distance from support
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Appendix 1. ASCE-LRFD Design Failure Modes. Investigation 1

For each investigation, we are examining several failure modes as defined by the ASCE to
insure that each experiment fails in lateral-torsional buckling and not in another defined mode.
Failure modes being evaluated include material rupture, compression flange local buckling, web

local buckling, and shear.
For material rupture, the equation is:
M = Fi(I/y) where F. = 30 ksi and is the longitudinal strength of the member; 1=7.935in. %

And y = 2.0” and is the distance from the neutral axis to the extreme fiber of a member.

Plugging in values, we have
My =30 (7.935)/2.0 ) = 119.025 k-in.

The equation for compression flange local buckling is:
M = fee(l/y) where

fer is the minimum critical buckling stress of the compression flange or the web. For

compression flange local buckling,
for= (4t2/bf) ((7/12)(Ex Ey/(1 + 4.1€)).5 + G),
€ = Eytr3/(btk:6), and

ke = (Ex tw3/6h) (1 — ((48tr’h%Ey/(11.1m%tw?br*ELe))(G/(1.25(Ey Ex)® + Exvit + G))) where vt is

Poisson’s ratio, tw is web thickness, and by is flange thickness. Plugging in values, we have
for = 19.59 ksi.

For web local buckling,

for = (11.1m2tw%/12h?))(1.25(E y Ex)° + ExviT+ G ) = 28.66 ksi .

Critical stress of 19.59 ksi governs and

Mn =19.59 (7.936/2.0) = 77.7 k-in.
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For shear, we will be examining shear and shear buckling failures. The equation for shear
failure is:
Vi = FitAs where Fi7 = 8 ksi and is the in-plane shear strength; and As =4 in.x.25=1.0in. 2
And is the area of the web. Plugging these values in, we have
Vn=8.0x 1.0 = 8 kips.
The equation for web shear buckling is
Vi = for As where
for = (kirtw?/3h? )(ExEy3)%°> and kir= 8.1 + 5.0(2G + Eyvit )/(Ex Ey) =11.21. Plugging in values
fer =45.10 ksi and
n =45.10(1.0) = 45.10 kips

For the 4” x 4” x %" beam, ASCE-LRFD failure mode values of shear and moment, V, and
Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD
failure modes are shearing of the web and compression flange local buckling. For Investigation 1,
the ASCE-LRFD P and M values for lateral-torsional buckling are 2.11 kips and 43.02 k-in. Because
the critical values associated with the other failure modes are higher than the values determined
using the lateral torsional buckling failure mode, the beam for this investigation is expected to

fail in lateral torsional-buckling.
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Lab Investigation 2

Experimental results are now presented for investigation 2. Using ASCE-LRFD
Prestandard, critical load limits for shear and local failure modes are determined then compared
with lateral-torsional buckling critical load limits. Beam established for investigation 2 predicted

to fail in lateral-torsion.

Experiment involves observance of vertical, horizontal, and lateral- torsional deflections
of a single span beam with a point load off center. Lateral- torsional buckling load is also being

predicted and observed for the beam shown in Figure 35.

l P
LORIPYS ] 52.5" /%
|

g 1

Figure 35. Investigation 2: Single Span Off Center

To determine what size beam to use in the beam testing apparatus, we evaluated the
shear deflection and lateral- torsional buckling characteristics of three fiber reinforced plastic |
beams (See Figure 36). First, we eliminated the 6” x 6” x %” beam because the loading capacity

of our testing apparatus may be exceeded.
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Figure 36. LTB Comparison of Cross Sections

Next, to establish a baseline for the investigation, we elected to perform single, double,
and triple span experiments with the point load at midspan using the 4” x 4” x %4” cross section.
Alternatively, the 3” x 3” x %4” cross section is used for single, double, and triple span experiments
where the point loads are off-centered and on the outside span. The larger cross section is being
used in the experiments associated with the location where the point load will produce maximum
deflection and max shear. Shorter span experiments were performed using the 3” x 3” x %4” cross
section. The objective was to keep buckling loads and deflections within range of testing

apparatus and dial gages measuring deflections.

Lastly, beams were evaluated by their failure predictions as determined using the ASCE-
LRFD Design guide for Pultruded Members (See Appendix). These failures include material
rupture, lateral- torsional buckling, and shear. Since we are interested in lateral- torsional
buckling failure, we want to make sure beams fail lateral- torsionally before other failure modes
are reached. Our own predictions for lateral- torsional buckling with shear were also considered.
Graph showing lateral- torsional buckling failure is shown in Figure 37. It compares our central

difference buckling solution with ASCE-LRFD Design buckling solution.
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Figure 37. LTB and Failure Prediction Curves for3 x3 x %

A GFRP beam of dimensions 3” x 3” x %” x 79.5” will be placed in our beam testing
apparatus and in-plane loads will be placed upon the beam as shown in Figure 35 until it reaches

lateral- torsional buckling failure.

The objective is to identify in-plane deflection increases and out of plane deflections that
are experienced as a result of shear. These typically unaddressed deflections often lead to
premature buckling failure of the beam. We will then compare buckling results to our predictions

and ASCE Design values.

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 psi as
determined during our material testing discussed in Chapter 3. Looking at the manufacturer’s
data for the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x
10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This information confirms

our test results.

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place

loads up on the specimen. Also, a meter for measuring the loads will be used.
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Dial gages were located along the beam as shown in Figure 38 for determination of
vertical, horizontal, and lateral- torsional deflections to be compared with deflection values

obtained with our analytical models using the central difference approach.

Vertical dial gage(v3)

Horizontal dial gage(h2)

;?‘f 0 o O G

6” 3.5” 5.5” 217 22" 22" 36” 36" 36"
P ° —o—o- . *«——o o

79.5”

Figure 38. Dial Gage Locations for Single Span Point Load Off Center Experiment

Mechanical properties and dimensions of the GFRP beam being used are as follows:
L=79.5inches; | beamis3” x3” x %4”; AreaA=2.13in.2;1=3.17in. 4; F =30 ksi; E = 2997 ksi;
and G =453 ksi.

Deflection values from lab experiment are shown in Table 41. They will be compared with

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4.



Table 41. Deflections from Lab. Investigation 2
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*6” 217 36” 3.5” 22" 36” 5.5” 22" 36”
Load P | vllab | v2lab | v3lab hl h2 h3 11 12 13
0 0 0 0 0 0 0 0 0 0
1826 | .074 .23 181 .002 0 .001 .077 131 | .0167
4244 | 132 .309 .399 .004 .003 .029 .14 226 | .0299
.6514 | .206 476 .593 .009 .005 .087 .199 308 | .0431
.8653 | .338 .64 792 .012 .008 175 .263 .384 | .0535
91 41 794 .966 .023 .019 .33 318 449 | .0763
91 1.2 .8 .095
91 1.4 .9 .105

*Distance from support
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Appendix 2. ASCE-LRFD Design Failure Modes. Investigation 2

For each investigation, we are examining several failure modes as defined by the ASCE to
insure that each experiment fails in lateral-torsional buckling and not in another defined mode.
Failure modes being evaluated include material rupture, compression flange local buckling, web

local buckling, and shear.
For material rupture, the equation is:
Mn = Fi(I/y) where F. = 30 ksi and is the longitudinal strength of the member; 1=3.17 in. %;

And y = 1.5” and is the distance from the neutral axis to the extreme fiber of a member.

Plugging in values, we have
Mn =30 (3.17)/1.5) = 63.4 k-in.

The equation for compression flange local buckling is:
M = fee(l/y) where

for is the minimum critical buckling stress of the compression flange or the web. For

compression flange local buckling,
fer= (4t#/be) ((7/12)(Ex Ey/(1 + 4.1€)).5 + G),
€ = E,t:3/(btk:6), and

ke = (Ex tw3/6h) (1 — ((48tr?h?E,/(11.1m%tw2br?Er))(G/(1.25(Ey Ex) + Exvir + G))) where v 1 is

Poisson’s ratio , tw is web thickness, and br is flange thickness. Plugging in values, we have
for = 34.82 ksi.
For web local buckling,
for = (11.1m2tw?/12h2))(1.25(E y Ex)® + Ex vir + G ) = 50.96 ksi .
Critical stress of 34.82 ksi governs and

M =34.82 (3.17/1.5) = 73.6 k-in.
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For shear, we will be examining shear and shear buckling failures. The equation for shear
failure is:
Vi = FitAs where Fi7 = 8 ksi and is the in-plane shear strength; and As =3 in. x .25 =.75 in. 2
And is the area of the web. Plugging these values in, we have
Vn=8.0x.75 =6 kips.
The equation for web shear buckling is
Vi = for As where
for = (kirtw?/3h? )(ExEy3)%°> and kir= 8.1 + 5.0(2G + Eyvit )/(Ex Ey) =11.21. Plugging in values
for =80.17 ksi and

n=80.17(.75) = 60.13 kips

For the 3” x 3” x %4” beam, ASCE-LRFD failure mode values of shear and moment, V, and
Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD
failure modes are shearing of the web and compression flange local buckling. For Investigation 2,
the ASCE-LRFD P, and M values for lateral-torsional buckling are 1.0 kips and 18.68 k-in. Because
the critical values associated with the other failure modes are higher than the values determined
using the lateral torsional buckling failure mode, the beam for this investigation is expected to

fail in lateral torsional-buckling.
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Lab Investigation 3

Experimental results are now presented for investigation 3. Using ASCE-LRFD
Prestandard, critical load limits for shear and local failure modes are determined then compared
with lateral- torsional buckling critical load limits. Beam established for investigation 3 predicted

to fail in lateral torsion.

Experiment involves observance of vertical, horizontal, and lateral torsional deflections
of a two span beam with a point load at midspan of the longer span. Lateral-torsional buckling

load is also being predicted and observed for the beam shown in Figure 39.

Pl
h | -

375" |, 375" 7 300"
I 7] \

Figure 39. Investigation 3. Two Span Model

To determine what size beam to use in the beam testing apparatus, we evaluated the
shear deflection and lateral-torsional buckling characteristics of three fiber reinforced plastic |
beams (See Figure 40). First, we eliminated the 6” x 6” x %” beam because the loading capacity

of our testing apparatus may be exceeded.
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Figure 40. LTB Comparison of Cross Sections

Next, to establish a baseline for the investigation, we elected to perform single, double,
and triple span experiments with the point load at midspan using the 4” x 4” x %4” cross section.
Alternatively, the 3” x 3” x J4” cross section is used for single, double, and triple span experiments
where the point loads are off-centered or on an outside span. The larger cross section is being
used in the experiments associated with the location where the point load will produce maximum
deflection and max shear. Shorter span experiments were performed using the 3” x 3” x %4” cross
section. The objective was to keep buckling loads and deflections within range of testing

apparatus and dial gages measuring deflections.

Lastly, beams were evaluated by their failure predictions as determined using the ASCE-
LRFD Design Guide for Pultruded Members (See Appendix). These failures include material
rupture, lateral-torsional bucking, and shear. Since we are interested in lateral-torsional buckling
failure, we want to make sure beams fail lateral- torsionally before other failure modes are
reached. Our own predictions for lateral-torsional buckling with shear were also considered.
Graph showing lateral-torsional buckling failure is shown in Figure 41. It compares our central

difference buckling solution with the ASCE-LRFD Design buckling solution.
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Figure 41. Central Diff vs ASCE Buckling Prediction Curves

A GFRP beam of dimensions 4” x 4” x %4” x 105” will be placed in our beam testing
apparatus and in-plane loads will be placed upon the beam as shown in Figure 39 until it reaches

lateral torsional buckling failure.

The objective is to identify in-plane deflection increases and out of plane deflections that
are experienced as a result of shear. These typically unaddressed deflections often lead to
premature buckling failure of the beam. We will then compare buckling results to our predictions

and ASCE Design values.

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as
determined during our material testing discussed in Chapter 3. Looking at the manufacturer’s
data for the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x
10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This information confirms

our test results.

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place

loads upon the specimen. Also, a meter for measuring the loads will be used.
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Dial gages were located along the beam as shown in Figure 42 for determination of
vertical, horizontal, and lateral torsional deflections to be compared with deflection values

obtained with our analytical models using the central difference approach.

Vertical dial gage(v3)
Horizontal dial gage(h2)

Torsion dial gage(I1)

0o mb & Do A
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32.5” 27.5” 30.0” 24.0” 19.0” 30.0” 4” 4” 5”7
_— ° —o—o- . *«——o o

75”

Figure 42. Dial Gages for Two Span Point Load Experiment
Mechanical properties and dimensions of the GFRP beam being used are as follows:

L1 =30 inches; L, = 75 inches; | beam is 4” x 4” x %4”; Area A =2.85in.2;1=7.93 in. 4; F=
30ksi; e = 2997 ksi; and G = 453 ksi.

Deflection values from lab experiment are shown in Table 42. They will be compared with

Central Difference deflection and buckling values and AXCE-LRFD buckling values in Chapter 4.



Table 42. Deflections from Lab. Investigation 3
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*32.5” | 29” 4” 27.5" | 24" 4” 30" 30” 5”
LoadP |vilab |v2lab |[v3lab |hl h2 h3 11 12 13
0 0 0 0 0 0 0 0 0 0
.3464 | .0897 | .046 .022 0 0 0 .0081 |.00554 |0
.5803 |.1503 |.104 .037 .008 .002 .002 .0145 |.01023 | .00115
.8144 | 2109 | .146 .052 .009 .003 .003 .021 .01477 | .00231
1.047 |.2711 |.202 .069 .016 .009 .004 .0272 | .01931 |.00354
1.245 | .3223 |.255 .083 .021 .014 .005 .0329 | .02338 |.00454
1.418 |.3671 | .3 .095 .027 .015 .006 .0374 | .02662 | .00546
1.617 |.4188 |.353 .109 .032 .02 .008 .043 .03046 | .00646
1.794 | .4645 | .401 122 .035 .022 .009 .0477 | .03385 |.00746
2.028 |.5251 | .464 14 .05 .026 .011 .0544 | .03862 |.00877
2.326 | .6023 |.549 163 .061 .038 .012 .0615 |.04354 | .00992
25 1.2 .07 .055 12
2.6 1.5 .16 .09 15

*Distance from support
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Appendix 3. ASCE-LRFD Design Failure Modes. Investigation 3

For each investigation, we are examining several failure modes as defined by the ASCE to
insure that each experiment fails in lateral-torsional buckling and not in another defined mode.
Failure modes being evaluated include material rupture, compression flange local buckling, web

local buckling, and shear.
For material rupture, the equation is:
M = Fi(I/y) where F. = 30 ksi and is the longitudinal strength of the member; 1=7.935in. %

And y = 2.0” and is the distance from the neutral axis to the extreme fiber of a member.

Plugging in values, we have

My =30 (7.935)/2.0 ) = 119.025 k-in.

The equation for compression flange local buckling is:
M = fee(l/y) where

fer is the minimum critical buckling stress of the compression flange or the web. For

compression flange local buckling,
for= (4t2/bf) ((7/12)(Ex Ey/(1 + 4.1€)).5 + G),
€ = Eytr3/(btk:6), and

ke = (Ex tw3/6h) (1 — ((48tr?h%E,/(11.1m%tw?br?ELr))(G/(1.25(Ey Ex) + Exvit + G))) where vir is

Poisson’s ratio, tw is web thickness, and br is flange thickness. Plugging in values, we have
for = 19.59 ksi.
For web local buckling,
for = (11.1m2tw%/12h?))(1.25(E y Ex)° + ExviT+ G ) = 28.66 ksi .
Critical stress of 19.59 ksi governs and

Mn =19.59 (7.936/2.0) = 77.7 k-in.
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For shear, we will be examining shear and shear buckling failures. The equation for shear
failure is:
Vi = FitAs where Fi7 = 8 ksi and is the in-plane shear strength; and As =4 in.x.25=1.0in. 2
And is the area of the web. Plugging these values in, we have
Vn=8.0x 1.0 = 8 kips.
The equation for web shear buckling is
Vi = for As where
for = (kirtw?/3h? )(ExEy3)%°> and kir= 8.1 + 5.0(2G + Eyvit )/(Ex Ey) =11.21. Plugging in values
fer =45.10 ksi and
n =45.10(1.0) = 45.10 kips

For the 4” x 4” x %" beam, ASCE-LRFD failure mode values of shear and moment, V, and
Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD
failure modes are shearing of the web and compression flange local buckling. For Investigation 3,
the ASCE-LRFD P and M values for lateral-torsional buckling are 3.16 kips and 51.53 k-in. Because
the critical values associated with the other failure modes are higher than the values determined
using the lateral-torsional buckling failure mode, the beam for this investigation is expected to

fail in lateral-torsional-buckling.
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Lab Investigation 4

Experimental results are now presented for investigation 4. Using ASCE-LFRD
Prestandard, critical load limits for shear and local failure modes are determined then compared
with lateral torsional buckling critical load limits. Beam established for investigation 4 predicted

to fail in lateral torsion.

Experiment involves observance of vertical, horizontal, and lateral torsional deflections
of a two span | beam with point load at midspan and spans are near equal. Lateral torsional

buckling load is also being predicted and observed on beam shown in Figure 43.

o 1 RoR B
L 27" L 27" L 51” L

Figure 43. Investigation 4: Two Span Near Equal

To determine what size beam to use in the beam testing apparatus, we evaluated the
shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic |
beams (See Figure 44). First, we eliminated the 6” x 6” x %4” beam because the loading capacity

of our testing apparatus may be exceeded.
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Figure 44. LTB Comparison of Cross Sections

Next, to establish a baseline for the investigation, we elected to perform single, double,
and triple span experiments with the point load at midspan using the 4” x 4” x %4” cross section.
Alternatively, the 3” x 3” x J4” cross section is used for single, double, and triple span experiments
where the point loads are off-centered and moved toward the supports. The larger cross section
is being used in the experiments associated with the location where the point load will produce
maximum deflection and max shear. Shorter span experiments were also performed using the 3”
x 3” x %" cross section. The objective was to keep buckling loads and deflections within range of

testing apparatus and dial gages measuring deflections.

Lastly beams were evaluated by their failure predictions as determined suing the ASCE-
LRFD Design Guide for Pultruded Members (See Appendix). These failures include material
rupture, lateral torsional buckling, and shear. Since we are interested in lateral- torsional buckling
failure, we want to make sure beams fail lateral- torsionally before other failure modes are
reached. Our own predictions for lateral- torsional buckling with shear were also considered.
Graph showing lateral- torsional buckling with shear were also considered. Graph showing lateral
torsional buckling failure is shown in Figure 45. It compares our central difference buckling

solutions with ASCE-LRFD Design buckling solutions.
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Figure 45. Central Diff vs ASCE Buckling Prediction Curves

A GFRP beam of dimensions 3” x 3” x %4” x 105” will be placed in our beam testing
apparatus and in-plane loads will be placed upon the beam as shown in Figure 43 until it reaches

lateral-torsional buckling failure.

The objective is to identify in-plane deflection increases and out of plane deflections that
are experienced as a result of shear. These typically unaddressed deflections often lead to
premature buckling failure of the beam. We will then compare buckling results to our predictions

and ASCE Design values.

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as
determined during our material testing discussed in chapter 1. Looking at the manufacturer’s
data for the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x
10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This information confirms

our test results.

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place

loads upon the specimen. Also, a meter for measuring the loads will be used.
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Dial gages were located along the beam as shown in Figure 46 for determination of
vertical, horizontal, and lateral torsional deflections to be compare with deflection values

obtained with our analytical models using the central difference approach.

Vertical dial gage(v3)
Horizontal dial gage(h2)

Torsion dial gage(I1)

bo4 b 4 Do &
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Figure 46. Dial Gage Locations for Two Span Near Equal Experiment
Mechanical properties and dimensions of the GFRP beam being used are as follows:

L1 =54.0inches; | beamis 3” x3” x %4”; AreaA=2.13in.2;1=3.17 in. 4; F = 30 ksi; E = 2997 ksi;
and G =453 ksi.

Deflection values from lab experiment are shown in Table 43. They will be compare with

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4.



Table 43. Deflections from Lab. Investigation 4
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*21.5” 19”7 4” 19”7 19” 4” 22.5” 19” 5”

LoadP | vllab | v2lab | v3lab hl h2 h3 11 12 13

0 0 0 0 0 0 0 0 0 0
2770 | .1129 | .0760 .02 .001 0 0 .0061 | .0083 | .00276
.6562 | .2182 | .1588 .046 .006 .004 0 .0165 .017 | .00476
.8359 | .2709 | .2005 .06 .01 .007 .001 .0214 | .0211 | .00562
1.006 | .3295 | .2393 .076 .014 .01 .002 .0264 .025 | .00548
1.154 | .3762 | .2766 .089 .016 .012 .003 .0309 | .0287 | .00724
1.385 445 .3318 .109 .019 .015 .004 .0374 | .0342 | .00838
1.571 | .5019 | .3772 126 .024 .019 .005 .043 .0387 | .0092

1.733 .552 419 142 .028 .022 .006 .0477 | .0425 .01
2.038 | .6471 495 .169 .039 .027 .007 .0559 .049 | .01238
2.37 .8 .5696 .196 .058 .042 .008 .0666 | .0582 | .01828
2.37 1.43 116 .0225

*Distance from support
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Appendix 4. ASCE-LRFD Design Failure Modes. Investigation 4

For each investigation, we are examining several failure modes as defined by the ASCE to
insure that each experiment fails in lateral-torsional buckling and not in another defined mode.
Failure modes being evaluated include material rupture, compression flange local buckling, web

local buckling, and shear.
For material rupture, the equation is:
M = Fi(I/y) where F.= 30 ksi and is the longitudinal strength of the member; 1=3.17 in. %;

And y = 1.5” and is the distance from the neutral axis to the extreme fiber of a member.

Plugging in values, we have
Mn =30 (3.17)/1.5) = 63.4 k-in.

The equation for compression flange local buckling is:
M = fee(l/y) where

fer is the minimum critical buckling stress of the compression flange or the web. For

compression flange local buckling,
for= (4t2/bf) ((7/12)(Ex Ey/(1 + 4.1€)).5 + G),
€ = Eytr3/(btk:6), and

ke = (Ex tw3/6h) (1 — ((48tr?h%E,/(11.1m%tw?br?ELr))(G/(1.25(Ey Ex) + Exvit + G))) where vir is

Poisson’s ratio, tw is web thickness, and br is flange thickness. Plugging in values, we have
for = 34.82 ksi.
For web local buckling,
for = (11.1m2tw%/12h?))(1.25(E y Ex)® + Exvit+ G ) = 50.96 ksi .
Critical stress of 34.82 ksi governs and

Mn =34.82 (3.17/1.5) = 73.6 k-in.
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For shear, we will be examining shear and shear buckling failures. The equation for shear
failure is:
Vi = FitAs where Fi7 = 8 ksi and is the in-plane shear strength; and As =3 in. x .25 =.75 in. 2
And is the area of the web. Plugging these values in, we have
Vn=8.0x.75 =6 kips.
The equation for web shear buckling is
Vi = for As where
for = (kirtw?/3h? )(ExEy3)%°> and kir= 8.1 + 5.0(2G + Eyvit )/(Ex Ey) =11.21. Plugging in values
for =80.17 ksi and

n=80.17(.75) = 60.13 kips

For the 3” x 3” x %4” beam, ASCE-LRFD failure mode values of shear and moment, V, and
Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD
failure modes are shearing of the web and compression flange local buckling. For Investigation 4,
the ASCE-LRFD P, and Mcr values for lateral-torsional buckling are 2.64 kips and 32.89 k-in.
Because the critical values associated with the other failure modes are higher than the values
determined using the lateral-torsional buckling failure mode, the beam for this investigation is

expected to fail in lateral-torsional buckling.
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Lab Investigation 5

Experimental results are now presented for investigation 5. Using ASCE-LRFD
Prestandard, critical load limits for shear and local failure modes are determined then compared
with lateral-torsional buckling critical load limits. Beam established for investigation 5 predicted

to fail in lateral-torsion.

Experiment involves observance of vertical, horizontal, and lateral- torsional deflections
of a two span beam with point load off center. Lateral- torsional buckling load is also being

predicted and observed for the beam shown in Figure 47.

L 27 | 525" | 255" |

Figure 47. Investigation 5: Two Span Off Center Model

To determine what size beam to use in the beam testing apparatus, we evaluated the
shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic |
beams (See Figure 48). First, we eliminated the 6” x 6” x %” beam because the loading capacity

of our testing apparatus may be exceeded.
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Figure 48. LTB Comparison of Cross Sections

Next, to establish a baseline for the investigation, we elected to perform single, double,
and triple span experiments with the point load at midspan using the 4” x 4” x %4” cross section.
Alternatively, the 3” x 3” x J4” cross section is used for single, double, and triple span experiments
where the point loads are of-centered and moved toward the supports. The larger cross section
is being used in the experiments associated with the location where the point load will produce
maximum deflection and max shear. Shorter span experiments were performed using the 3 x 3 x
Y cross section. The objective was to keep buckling loads and deflections within range of testing

apparatus and dial gages measuring deflections.

Lastly, beams were evaluated by their failure predictions as determined using the ASCE-
LRFD Design Guide for Pultruded Members (See Appendix). These failures include material
rupture, lateral torsional buckling, and shear. Since we are interested in lateral torsional buckling
failure, we want to make sure beams fail lateral- torsionally before other failure modes are
reached. Our own predictions for lateral torsional buckling with shear were also considered.
Graph showing lateral torsional buckling failure is shown in Figure 49. It compares the central

difference buckling solutions with the ASXE-LRFD Design buckling solutions.
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Figure 49. Central Diff vs ASCE Buckling Prediction Curves

A GFRP beam of dimensions 3” x 3” x %4” x 105” will be placed in our beam testing
apparatus and in-plane loads will be placed upon the beam as shown in Figure 47 until it reaches

lateral torsional buckling failure.

The objective is to identify in-plane deflection increases and out of plane deflections that
are experienced as a result of shear. These typically unaddressed deflections often lead to
premature buckling failure of the beam. We will then compare buckling results to our predictions

and ASCE Design values.

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as
determined during our material testing discussed in Chapter 3. Looking at the manufacturer’s
data for the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x
10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This information confirms

our test results.

Dial gages were located along the beam as shown in Figure 50 for determination of
vertical, horizontal, and lateral torsional deflections to be compare with deflection values

obtained with our analytical modes using the central difference approach.
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Figure 50. Dial Gage Locations for Two Span Point Load Off Ctr Experiment

Mechanical properties and dimensions of the GFRP beam being used are as follows:

L1 = 79.5 inches; | beam is 3” x 3” x %”; AreaA=2.13in.2;1=3.17 in. % F = 30 ksi; E = 2997 ksi;
and G =453 ksi.

Deflection values from lab experiment are shown in Table 44. They will be compared with

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4.



Table 44. Deflections from Lab. Investigation 5
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*5” 22" 35” 21" 18” 4" 21" 18” 5”

LoadP | vlilab | v2lab | v3lab hl h2 h3 11 12 13

0 0 0 0 0 0 0 0 0 0
.2285 .069 .103 129 0 0 0 .00191 | .00482 | .00158
4446 .109 222 .266 0 0 0 .00445 | .01518 | .01579
.625 147 .339 402 .002 .004 .004 | .00709 | .02591 | .03042
.8108 .184 456 499 .004 .007 .007 | .01018 | .03664 | .04484
1.001 222 .575 .595 .011 .012 .011 .01355 | .04755 | .05947
1.12 .252 .664 7 .023 .021 .017 | .01664 | .05609 | .0707
1.2 .28 747 .801 .036 .031 .022 .02009 | .06427 | .08158
1.2 31 .866 939 .05 .032 .031 .02445 | .07582 | .09642

*Distance from support
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Appendix 5. ASCE-LRFD Design Failure Modes. Investigation 5

For each investigation, we are examining several failure modes as defined by the ASCE to
insure that each experiment fails in lateral-torsional buckling and not in another defined mode.
Failure modes being evaluated include material rupture, compression flange local buckling, web

local buckling, and shear.
For material rupture, the equation is:
M = Fi(I/y) where F.= 30 ksi and is the longitudinal strength of the member; 1=3.17 in. %;

And y = 1.5” and is the distance from the neutral axis to the extreme fiber of a member.

Plugging in values, we have
Mn =30 (3.17)/1.5) = 63.4 k-in.

The equation for compression flange local buckling is:
M = fee(l/y) where

fer is the minimum critical buckling stress of the compression flange or the web. For

compression flange local buckling,
for= (4t2/bf) ((7/12)(Ex Ey/(1 + 4.1€)).5 + G),
€ = Eytr3/(btk:6), and

ke = (Ex tw3/6h) (1 — ((48tr?h%E,/(11.1m%tw?br?ELr))(G/(1.25(Ey Ex) + Exvit + G))) where vir is

Poisson’s ratio, tw is web thickness, and br is flange thickness. Plugging in values, we have
for = 34.82 ksi.
For web local buckling,
for = (11.1m2tw%/12h?))(1.25(E y Ex)® + Exvit+ G ) = 50.96 ksi .
Critical stress of 34.82 ksi governs and

Mn =34.82 (3.17/1.5) = 73.6 k-in.
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For shear, we will be examining shear and shear buckling failures. The equation for shear
failure is:
Vi = FitAs where Fi7 = 8 ksi and is the in-plane shear strength; and As =3 in. x .25 =.75 in. 2
And is the area of the web. Plugging these values in, we have
Vn=8.0x.75 =6 kips.
The equation for web shear buckling is
Vi = for As where
for = (kirtw?/3h? )(ExEy3)%°> and kir= 8.1 + 5.0(2G + Eyvit )/(Ex Ey) =11.21. Plugging in values
for =80.17 ksi and

n=80.17(.75) = 60.13 kips

For the 3” x 3” x %4” beam, ASCE-LRFD failure mode values of shear and moment, V, and
Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD
failure modes are shearing of the web and compression flange local buckling. For Investigation 4,
the ASCE-LRFD P and M values for lateral-torsional buckling are 1.42 kips and 22.92 k-in.
Because the critical values associated with the other failure modes are higher than the values
determined using the lateral-torsional buckling failure mode, the beam for this investigation is

expected to fail in lateral-torsional buckling.
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Lab Investigation 6

Experimental results are now presented for investigation 6. Using ASCE-LRFD
Prestandard, critical load limits for shear and local failure modes are determined then compared
with lateral torsional buckling critical load limits. Beam established for investigation 6 predicted

to fail in lateral- torsion.

Experiment involves observance of vertical, horizontal, and lateral torsional deflections
of a three span | beam with point load at midspan of center span. Lateral torsional buckling load

is also being predicted and observed for the beam shown in Figure 51.

Figure 51. Investigation 6. Three Span Model

To determine what size beam to use in the beam testing apparatus, we evaluated the shear
deflection and lateral torsional buckling characteristics of three fiber reinforced plastic | beams
(See Figure 52). First, we eliminated the 6” x 6” x %4” beam because the loading capacity of our

testing apparatus may be exceeded.
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Figure 52. LTB Comparison of Cross Sections

Next, to establish a baseline for the investigation, we elected to perform single, double,
and triple span experiments with the point load at midspan using the 4” x 4” x %4” cross section.
Alternatively, the 3” x 3” x J4” cross section is used for single, double, and triple span experiments
where the point loads are off-centered and moved toward the supports. The larger cross section
is being used in the experiments associated with the location where the point load will produce
maximum deflection and max shear. Shorter span experiments were performed using the 3” x 3”
X %" cross section. The objective was to keep buckling loads and deflections within range of

testing apparatus and dial gages measuring deflections.

Lastly, beams were evaluated by their failure predictions as determined suing the ASCE-
LRFD Design Guide for Pultruded Members (See Appendix). These failures include material
rupture, lateral- torsional buckling, and shear. Since we are interested in lateral torsional buckling
failure, we want to make sure beams fail lateral- torsionally before other failure modes are
reached. Our own predictions for lateral torsional buckling with shear were also considered.
Graph showing lateral torsional buckling with shear were also considered. Graph showing lateral
torsional buckling failure is shown in Figure 53. It compares our central difference buckling

solutions with ASCE-LRFD Design buckling solutions.
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Figure 53. Central Diff vs ASCE Buckling Prediction Curves

A GFRP beam of dimensions 4” x 4” x %” x 105” will be placed in our beam testing
apparatus and in-plane loads will be placed upon the beam as shown in Figure 51 until it reaches

lateral torsional buckling failure.

The objective is to identify in-plane deflection increases and out of plane deflections that
are experienced as a result of shear. These typically unaddressed deflections often lead to
premature buckling failure of the beam. We will then compare buckling results to our predictions

and ASCE Design values.

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as
determined during our material testing discussed in Chapter 3. Looking at the manufacturer’s
data for the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x
10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This information confirms

our test results.

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place

loads upon the specimen. Also, a meter for measuring the loads will be used.
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Dial gages were located along the beam as shown in Figure 54 for determination of
vertical, horizontal, and lateral torsional deflections to be compared with deflection values

obtained with our analytical models using the central difference approach.

Vertical dial gage(v3)
Horizontal dial gage(h2)

Torsion dial gage(I1)

04 pp 4 Po 4
vas

7" 5.5” 6" 18.5” 20” 20”7 327 32 327
—o—© ——© —- ———— & —— 0 —

Midspan

37.5”

Figure 54. Dial Gage Locations Three Span Point Load at Midspan

Mechanical properties and dimensions of the GFRP beam being used are as follows:
L1 =30inches; L, = 75 inches; | beamis 4” x 4” x %”; Area A=2.85in.2; | =7.93 in. 4; F = 30ksi;
E =2997 ksi; and G = 453 ksi.

Deflection values from lab experiment are shown in Table 45. They will be compared with

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4.



Table 45. Deflections from Lab. Investigation 6
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*7” 18.5” 32" 5.5” 20" 32" 6” 20" 33"
Load P vl v2 v3 hl h2 h3 11 12 13
0 0 0 0 0 0 0 0 0 0
.2209 .008 .017 .0242 .003 | .007 .007 .0013 .005 .0059
.6017 .023 .047 .0678 .013 .015 .02 .0041 | .0128 | .0152
.9826 .042 .088 127 .029 .027 .038 .0081 | .0234 | .0284
1.176 .052 A1 157 .035 .035 .045 .01 .0287 | .0351
1.357 .059 127 .1829 .041 .038 .051 .0119 | .0332 | .0407
1.55 .069 .148 2134 .043 .043 .058 .0135 | .0381 | .0458
1.76 .08 174 .2503 .053 .051 .071 .0163 | .0442 | .0534
2.04 .093 .205 .296 .057 .061 .085 .0243 | .0514 | .0601
2.29 .107 .2342 .338 .0667 .071 .101 .0319 | .0577 .067

*Distance from support
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Appendix 6. ASCE-LRFD Design Failure Modes. Investigation 6

For each investigation, we are examining several failure modes as defined by the ASCE to
insure that each experiment fails in lateral-torsional buckling and not in another defined mode.
Failure modes being evaluated include material rupture, compression flange local buckling, web

local buckling, and shear.
For material rupture, the equation is:
M = Fi(I/y) where F. = 30 ksi and is the longitudinal strength of the member; 1=7.935in. %

And y = 2.0” and is the distance from the neutral axis to the extreme fiber of a member.

Plugging in values, we have
My =30 (7.935)/2.0 ) = 119.025 k-in.

The equation for compression flange local buckling is:
M = fee(l/y) where

for is the minimum critical buckling stress of the compression flange or the web. For

compression flange local buckling,
for= (4t2/bf) ((7/12)(Ex Ey/(1 + 4.1€)).5 + G),
€ = Eytr3/(btk:6), and

ke = (Ex tw3/6h) (1 — ((48tr?h%E,/(11.1m%tw?br?ELr))(G/(1.25(Ey Ex) + Exvit + G))) where vir is

Poisson’s ratio, tw is web thickness, and br is flange thickness. Plugging in values, we have
for = 19.59 ksi.
For web local buckling,
for = (11.1m2tw%/12h?))(1.25(E y Ex)° + ExviT+ G ) = 28.66 ksi .
Critical stress of 19.59 ksi governs and

Mn =19.59 (7.936/2.0) = 77.7 k-in.
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For shear, we will be examining shear and shear buckling failures. The equation for shear
failure is:
Vi = FitAs where Fi7 = 8 ksi and is the in-plane shear strength; and As =4 in.x.25=1.0in. 2
And is the area of the web. Plugging these values in, we have
Vn=8.0x 1.0 = 8 kips.
The equation for web shear buckling is
Vi = for As where
for = (kirtw?/3h? )(ExEy3)%°> and kir= 8.1 + 5.0(2G + Eyvit )/(Ex Ey) =11.21. Plugging in values
fer =45.10 ksi and

n=45.10(1.0) = 45.10 kips

For the 4” x 4” x %" beam, ASCE-LRFD failure mode values of shear and moment, V, and
Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD
failure modes are shearing of the web and compression flange local buckling. For Investigation 6,
the ASCE-LRFD P and M values for lateral-torsional buckling are 3.33 kips and 60.46 k-in. Because
the critical values associated with the other failure modes are higher than the values determined
using the lateral-torsional buckling failure mode, the beam for this investigation is expected to

fail in lateral- torsional buckling.
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Lab Investigation 7

Experimental results are now presented for investigation 7. Using ASCE-LRFD
Prestandard, critical load limits for shear and local failure modes are determined then compared
with lateral- torsional buckling critical load limits. Beam established for investigation 7 predicted

to fail in lateral- torsion.

Experiment involves observance of vertical, horizontal, and lateral torsional deflections
of a three span | beam with point load at midspan of center span. Lateral torsional buckling load

is also being predicted and observed for the beam shown in Figure 55.

o t A
I 27" 27"/‘1 |

255" |, 255
Iz

Figure 55. Investigation 7: Three Span. Outside Span

To determine what size beam to use in the beam testing apparatus, we evaluated the
shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic |
beams (See Figure 56). First, we eliminated the 6” x 6” x %4” beam because the loading capacity

of our testing apparatus may be exceeded.
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Figure 56. LTB Comparison of Cross Sections

Next, to establish a baseline for the investigation, we elected to perform single, double,
and triple span experiments with the point load at midspan using the 4” x 4” x %4” cross section.
Alternatively, the 3” x 3” x J4” cross section is used for single, double, and triple span experiments
where the point loads are off-centered and moved toward the supports. The larger cross section
is being used in the experiments associated with the location where the point load will produce
maximum deflection and max shear. Shorter span experiments were performed using the 3” x 3”
X %” cross section. The objective was to keep buckling loads and deflections within range of

testing apparatus and dial gages measuring deflections.

Lastly, beams were evaluated by their failure predictions as determined suing the ASCE-
LRFD Design Guide for Pultruded Members (See Appendix). These failures include material
rupture, lateral torsional buckling, and shear. Since we are interested in lateral torsional buckling
failure, we want to make sure beams fail lateral- torsionally before other failure modes are
reached. Our own predictions for lateral torsional buckling with shear were also considered.
Graph showing lateral- torsional buckling with shear were also considered. Graph showing
lateral- torsional buckling failure is shown in Figure 57. It compares our central difference

buckling solutions with ASCE-LRFD Design buckling solutions.
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Figure 57. Central Diff vs ASCE Buckling Prediction Curves

A GFRP beam of dimensions 3” x 3” x %4” x 105” will be placed in our beam testing
apparatus and in-plane loads will be placed upon the beam as shown in Figure 55 until it reaches

lateral torsional buckling failure.

The objective is to identify in-plane deflection increases and out of plane deflections that
are experienced as a result of shear. These typically unaddressed deflections often lead to
premature buckling failure of the beam. We will then compare buckling results to our predictions

and ASCE Design values.

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as
determined during our material testing discussed earlier in Chapter 3. Looking at the
manufacturer’s data for the fiberglass reinforced plastic beams, we see that the shear modulus
is listed at .450 x 10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This

information confirms our test results.

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place

loads upon the specimen. Also, a meter for measuring the loads will be used.
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Dial gages were located along the beam as shown in Figure 58 for determination of
vertical, horizontal, and lateral- torsional deflections to be compared with deflection values

obtained with our analytical models using the central difference approach.

Vertical dial gage(v3)
Horizontal dial gage(h2)

Torsion dial gage(I1)
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Figure 58. Dial Gage Locations for Three Span Point Load Midspan. Outside

Mechanical properties and dimensions of the GFRP beam being used are as follows:
L1 =54.0"; I beamis3”x3”x%”;A=2.13in.2;1=3.17in.%; E=2997 ksi; G = 453 ksi.

Deflection values from lab experiment are shown in Table 46. They will be compared with

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4.



Table 46. Deflections from Lab. Investigation 7
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*4” 18” 21" 21" 18” 4” 21" 18” 5”

Load P vl v2 v3 hl h2 h3 11 12 13

0 0 0 0 0 0 0 0 0 0
.2285 | .01136 | .04872 | .05674 | .001 .001 0 .0054 | .0035 | .0012
4446 .022 .0974 | .1135 .003 .002 0 .0134 | .0103 | .0023
.625 | .03266 | .1403 | .1633 .005 .003 0 .0203 | .0171 | .0039
.8108 | .04331 | .1848 | .2158 .007 .006 0 .0263 | .0231 | .0053
1.001 | .05396 | .2285 .268 .011 .007 0 .0344 .029 .0066
1.112 | .06106 | .257 | .30088 | .012 .008 0 .0388 | .0326 | .0072
1.317 | .07242 | .302 .355 .015 .009 0 .0461 .039 .0088
1.518 .084 351 412 .02 .011 .005 .0538 | .0454 | .0108
1.714 .095 .3998 .469 .024 .017 .006 .0618 | .0522 | .0117
1.909 .107 4477 .527 .028 .021 .007 .0699 | .0593 | .0133
2.065 116 .49 .575 .033 .024 .008 .08 .0654 | .0146
2.227 127 532 .75 .045 .027 .009 .09 .0719 | .0161

e Distance from support
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Appendix 7. ASCE-LRFD Design Failure Modes. Investigation 7

For each investigation, we are examining several failure modes as defined by the ASCE to
insure that each experiment fails in lateral- torsional buckling and not in another defined mode.
Failure modes being evaluated include material rupture, compression flange local buckling, web

local buckling, and shear.
For material rupture, the equation is:
M = Fi(I/y) where F.= 30 ksi and is the longitudinal strength of the member; 1=3.17 in. %;

And y = 1.5” and is the distance from the neutral axis to the extreme fiber of a member.

Plugging in values, we have
Mn =30 (3.17)/1.5) = 63.4 k-in.

The equation for compression flange local buckling is:
M = fee(l/y) where

fer is the minimum critical buckling stress of the compression flange or the web. For

compression flange local buckling,
for= (4t2/bf) ((7/12)(Ex Ey/(1 + 4.1€)).5 + G),
€ = Eytr3/(btk:6), and

ke = (Ex tw3/6h) (1 — ((48tr?h%E,/(11.1m%tw?br?ELr))(G/(1.25(Ey Ex) + Exvit + G))) where vir is

Poisson’s ratio, tw is web thickness, and br is flange thickness. Plugging in values, we have
for = 34.82 ksi.
For web local buckling,
for = (11.1m2tw%/12h?))(1.25(E y Ex)® + Exvit+ G ) = 50.96 ksi .
Critical stress of 34.82 ksi governs and

Mn =34.82 (3.17/1.5) = 73.6 k-in.
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For shear, we will be examining shear and shear buckling failures. The equation for shear
failure is:
Vi = FitAs where Fi7 = 8 ksi and is the in-plane shear strength; and As =3 in. x .25 =.75 in. 2
And is the area of the web. Plugging these values in, we have
Vn=8.0x.75 =6 kips.
The equation for web shear buckling is
Vi = for As where
for = (kirtw?/3h? )(ExEy3)%°> and kir= 8.1 + 5.0(2G + Eyvit )/(Ex Ey) =11.21. Plugging in values
for =80.17 ksi and

n=80.17(.75) = 60.13 kips

For the 3” x 3” x %4” beam, ASCE-LRFD failure mode values of shear and moment, V, and
M, are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD
failure modes are shearing of the web and compression flange local buckling. For Investigation 7,
the ASCE-LRFD P and M values for lateral-torsional buckling are 2.89 kips and 34.12 k-in.
Because the critical values associated with the other failure modes are higher than the values
determined using the lateral-torsional buckling failure mode, the beam for this investigation is

expected to fail in lateral-torsional buckling.
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Lab Investigation 8

Experimental results are now presented for investigation 8. Using ASCE-LRFD
Prestandard, critical load limits for shear and local failure modes are determined then compared
with lateral torsional buckling critical load limits. Beam established for investigation 8 predicted

to fail in lateral- torsion.

Experiment involves observance of vertical, horizontal, and lateral- torsional deflections
of a three span | beam with point load at midspan of center span. Lateral- torsional buckling load

is also being predicted and observed for the beam shown in Figure 59.
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Figure 59. Investigation 8. Three Span Off Center

To determine what size beam to use in the beam testing apparatus, we evaluated the
shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic |
beams (See Figure 60). First, we eliminated the 6” x 6” x %4” beam because the loading capacity

of our testing apparatus may be exceeded.
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Figure 60. LTB Comparison of Cross Sections

Next, to establish a baseline for the investigation, we elected to perform single, double,
and triple span experiments with the point load at midspan using the 4” x 4” x %4” cross section.
Alternatively, the 3” x 3” x J4” cross section is used for single, double, and triple span experiments
where the point loads are off-centered and moved toward the supports. The larger cross section
is being used in the experiments associated with the location where the point load will produce
maximum deflection and max shear. Shorter span experiments were performed using the 3” x 3”
X %" cross section. The objective was to keep buckling loads and deflections within range of

testing apparatus and dial gages measuring deflections.

Lastly, beams were evaluated by their failure predictions as determined using the ASCE-
LRFD Design Guide for Pultruded Members (See Appendix). These failures include material
rupture, lateral- torsional buckling, and shear. Since we are interested in lateral- torsional
buckling failure, we want to make sure beams fail lateral- torsionally before other failure modes
are reached. Our own predictions for lateral torsional buckling with shear were also considered.
Graph showing lateral- torsional buckling with shear were also considered. Graph showing
lateral- torsional buckling failure is shown in Figure 61. It compares our central difference

buckling solutions with ASCE-LRFD Design buckling solutions.
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Figure 61. Central Diff vs ASCE Buckling Prediction Curve

A GFRP beam of dimensions 3” x 3” x %4” x 105” will be placed in our beam testing
apparatus and in-plane loads will be placed upon the beam as shown in Figure 59 until it reaches

lateral torsional buckling failure.

The objective is to identify in-plane deflection increases and out of plane deflections that
are experienced as a result of shear. These typically unaddressed deflections often lead to
premature buckling failure of the beam. We will then compare buckling results to our predictions

and ASCE Design values.

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as
determined during our material testing discussed earlier in Chapter 3. Looking at the
manufacturer’s data for the fiberglass reinforced plastic beams, we see that the shear modulus
is listed at .450 x 10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This

information confirms our test results.

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place

loads upon the specimen. Also, a meter for measuring the loads will be used.
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Dial gages were located along the beam as shown in Figure 58 for determination of
vertical, horizontal, and lateral torsional deflections to be compared with deflection values

obtained with our analytical models using the central difference approach.

Vertical dial gage(v3)
Horizontal dial gage(h2)

Torsion dial gage(I1)
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Figure 62. Dial Gage Locations for Three Span Point Load Off Center
Mechanical properties and dimensions of the GFRP beam being used are as follows:

L1 =79.5”; Ibeamis3” x3” x%”; A=2.13in.%; 1x=7.935in.*; F = 30 ksi; E= 2997 ksi; G = 453
ksi.

Deflection values from lab experiment are shown in Table 47. They will be compared with

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4.



Table 47. Deflections from Lab. Investigation 8

176

*7” 19” 34" 3” 19” 50” 5” 19” 34"
Load P vl v2 v3 hl h2 h3 11 12 13
0 0 0 0 0 0 0 0 0 0
22 .021 .063 122 0 0 0 .0008 | .00524 .01
44 .096 .136 242 .018 .002 .004 .0033 | .00924 | .01886
71 175 216 .364 .029 .008 .01 .0073 | .01429 | .028
.89 227 .335 513 .034 .014 .02 .0099 | .02438 | .04076
1.07 279 .455 .627 .037 .034 .036 .0132 | .02448 | .05286
1.19 .325 .567 .763 .041 .084 .041 .0177 | .03267 | .0639
1.2 371 .675 .879 .042 122 .047 .0211 | .03905 | .07029
1.2 371 .787 1.012 .042 .14 .047 .0211 | .03905 | .07476

*Distance from support
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Appendix 8. ASCE-LRFD Design Failure Modes. Investigation 8

For each investigation, we are examining several failure modes as defined by the ASCE to
insure that each experiment fails in lateral-torsional buckling and not in another defined mode.
Failure modes being evaluated include material rupture, compression flange local buckling, web

local buckling, and shear.
For material rupture, the equation is:
M = Fi(I/y) where F.= 30 ksi and is the longitudinal strength of the member; 1=3.17 in. %;

And y = 1.5” and is the distance from the neutral axis to the extreme fiber of a member.

Plugging in values, we have
Mn =30 (3.17)/1.5) = 63.4 k-in.

The equation for compression flange local buckling is:
M = fee(l/y) where

for is the minimum critical buckling stress of the compression flange or the web. For

compression flange local buckling,
for= (4t2/bf) ((7/12)(Ex Ey/(1 + 4.1€)).5 + G),
€ = Eytr3/(btk:6), and

ke = (Ex tw3/6h) (1 — ((48tr?h%E,/(11.1m%tw?br?ELr))(G/(1.25(Ey Ex) + Exvit + G))) where vir is

Poisson’s ratio, tw is web thickness, and br is flange thickness. Plugging in values, we have
for = 34.82 ksi.
For web local buckling,
for = (11.1m2tw%/12h?))(1.25(E y Ex)® + Exvit+ G ) = 50.96 ksi .
Critical stress of 34.82 ksi governs and

Mn =34.82 (3.17/1.5) = 73.6 k-in.
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For shear, we will be examining shear and shear buckling failures. The equation for shear
failure is:
Vi = FitAs where Fi7 = 8 ksi and is the in-plane shear strength; and As =3 in. x .25 =.75 in. 2
And is the area of the web. Plugging these values in, we have
Vn=8.0x.75 =6 kips.
The equation for web shear buckling is
Vi = for As where
for = (kirtw?/3h? )(ExEy3)%°> and kir= 8.1 + 5.0(2G + Eyvit )/(Ex Ey) =11.21. Plugging in values
for =80.17 ksi and

n=80.17(.75) = 60.13 kips

For the 3” x 3” x %4” beam, ASCE-LRFD failure mode values of shear and moment, V, and
Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD
failure modes are shearing of the web and compression flange local buckling. For Investigation 8,
the ASCE-LRFD P¢ and Mc values for lateral-torsional buckling are 1.47 kips and 22.9 k-in.
Because the critical values associated with the other failure modes are higher than the values
determined using the lateral-torsional buckling failure mode, the beam for this investigation is

expected to fail in lateral- torsional buckling.
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Lab Investigation 9

Experimental results are now presented for investigation 9. Using ASCE-LRFD
Prestandard, critical load limits for shear and local failure modes are determined then compared
with lateral torsional buckling critical load limits. Beam established for investigation 9 predicted

to fail in lateral- torsion.

Experiment involves observance of vertical, horizontal, and lateral- torsional deflections
of a three span | beam with point load at midspan of center span. Lateral- torsional buckling load

is also being predicted and observed for the beam shown in Figure 63.

v /P
s -
Lk | P
y |
13.5” 15.0” 25.5” 40.5” 10.5”

Figure 63. Investigation 9. Three Span Biaxial Model

To determine what size beam to use in the beam testing apparatus, we evaluated the
shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic |
beams. We then eliminated the 6” x 6” x %4” beam because the loading capacity of our testing

apparatus may be exceeded.
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Next, to establish a baseline for the investigation, we elected to perform single, double,
and triple span experiments with the point load at midspan using the 4” x 4” x %4” cross section.
Alternatively, the 3” x 3” x %4” cross section is used for single, double, and triple span experiments
where the point loads are off-centered and moved toward the supports. The larger cross section
is being used in the experiments associated with the location where the point load will produce
maximum deflection and max shear. Shorter span experiments were performed using the 3” x 3”
X %” cross section. The objective was to keep buckling loads and deflections within range of

testing apparatus and dial gages measuring deflections.

Lastly, beams were evaluated by their failure predictions as determined suing the ASCE-
LRFD Design Guide for Pultruded Members. See Appendix at end of each lab investigation. These
failures include material rupture, lateral torsional buckling, and shear. Since we are interested in
lateral torsional buckling failure, we want to make sure beams fail lateral- torsionally before other
failure modes are reached. Our own predictions for lateral torsional buckling with shear were
also considered. Graph showing lateral torsional buckling with shear were also considered.
Graph showing lateral torsional buckling failure is shown in Figure 64. It compares our central

difference buckling solutions with ASCE-LRFD Design buckling solutions.

14
2 12
£
s 10
g - CENTRAL DIFF 4X4X1/4
S 8
—
& © | ASCE-LRFD 4X4X1/4
~x 4
=
o 2
0

0 20 40 60 80 100

Span Lentgh, in.

Figure 64. Central Diff vs ASCE Buckling Prediction Curves
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A GFRP beam of dimensions 4” x 4” x %” x 105” will be placed in our beam testing
apparatus and in-plane loads will be placed upon the beam as shown in Figure 63 until it reaches

lateral- torsional buckling failure.

The objective is to identify in-plane deflection increases and out of plane deflections that
are experienced as a result of shear. These typically unaddressed deflections often lead to
premature buckling failure of the beam. We will then compare buckling results to our predictions

and ASCE Design values.

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as
determined during our material testing discussed earlier in Chapter 3. Looking at the
manufacturer’s data for the fiberglass reinforced plastic beams, we see that the shear modulus
is listed at .450 x 10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This

information confirms our test results.

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place

loads upon the specimen. Also, a meter for measuring the loads will be used.

Dial gages were located along the beam as shown in Figure 65 for determination of
vertical, horizontal, and lateral torsional deflections to be compared with deflection values

obtained with our analytical models using the central difference approach.
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Vertical dial gage(v3)
Horizontal dial gage(h2)

Torsion dial gage(I1)

/ -
ik G 0

1111
2 1" 18” 5” 4n
— o S o o
81”

Figure 65. Dial Gage Locations for Three Span Biaxial Point Load

Mechanical properties and dimensions of the GFRP beam being used are as follows:

L, = 81.0 inches; | beam is 4” x 4” x %”; A=2.85in. %; 1*=7.935in.%;F = 30 ksi; E= 2997 ksi; and
G= 453 ksi.

Deflection values from lab experiment are shown in Table 48. They will be compared with

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4.
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Table 48. Deflections from Lab. Investigation 9

*21" 18" 4” 21” 18” 4” 21” 18" 5”
LoadP | vllab | v2lab | v3lab hl h2 h3 11 12 13
0 0 0 0 0 0 0 0 0 0

513 .0247 | .0193 .018 .007 .004 .003 118 .0036 .009

.809 .0483 | .0423 .026 .007 .007 .004 .183 | .00728 | .009

1.11 .0723 .065 .0337 .009 .008 .005 .261 .012 .012

1.29 .088 .0807 .04 .009 .008 .006 .309 .016 .014

14 .0973 | .0893 .043 .009 .008 .007 338 | .01824 | .017

1.55 .1097 | .1017 | .0473 .009 .008 .008 .38 .02152 | .021

1.68 121 1123 | .0513 .009 .009 .008 417 | .02456 | .023

1.82 134 1247 | .0553 .009 .01 .008 454 | .02744 | .026

1.93 146 1373 | .0597 .012 .011 .008 493 .0304 .04

2.11 .162 153 .0653 .013 .012 .008 533 | .03392 | .043

2.32 183 173 .0723 .013 .015 .008 595 | .03896 | .047

*Distance from support
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Appendix 9. ASCE-LRFD Design Failure Modes. Investigation 9

For each investigation, we are examining several failure modes as defined by the ASCE to
insure that each experiment fails in lateral-torsional buckling and not in another defined mode.
Failure modes being evaluated include material rupture, compression flange local buckling, web

local buckling, and shear.
For material rupture, the equation is:
M = Fi(I/y) where F. = 30 ksi and is the longitudinal strength of the member; 1=7.935in. %

And y = 2.0” and is the distance from the neutral axis to the extreme fiber of a member.

Plugging in values, we have
My =30 (7.935)/2.0 ) = 119.025 k-in.

The equation for compression flange local buckling is:
M = fee(l/y) where

fer is the minimum critical buckling stress of the compression flange or the web. For

compression flange local buckling,
for= (4t2/bf) ((7/12)(Ex Ey/(1 + 4.1€)).5 + G),
€ = Eytr3/(btk:6), and

ke = (Ex tw3/6h) (1 — ((48tr?h%E,/(11.1m%tw?br?ELr))(G/(1.25(Ey Ex) + Exvit + G))) where vir is

Poisson’s ratio, tw is web thickness, and br is flange thickness. Plugging in values, we have
for = 19.59 ksi.
For web local buckling,
for = (11.1m2tw%/12h?))(1.25(E y Ex)° + ExviT+ G ) = 28.66 ksi .
Critical stress of 19.59 ksi governs and

Mn =19.59 (7.936/2.0) = 77.7 k-in.



185
For shear, we will be examining shear and shear buckling failures. The equation for shear
failure is:
Vi = FitAs where Fi7 = 8 ksi and is the in-plane shear strength; and As =4 in.x.25=1.0in. 2
And is the area of the web. Plugging these values in, we have
Vn=8.0x 1.0 = 8 kips.
The equation for web shear buckling is
Vi = for As where
for = (kirtw?/3h? )(ExEy3)%°> and kir= 8.1 + 5.0(2G + Eyvit )/(Ex Ey) =11.21. Plugging in values
fer =45.10 ksi and

n=45.10(1.0) = 45.10 kips

For the 4” x 4” x %" beam, ASCE-LRFD failure mode values of shear and moment, V, and
Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD
failure modes are shearing of the web and compression flange local buckling. For Investigation 9,
the ASCE-LRFD P and M values for lateral-torsional buckling are 3.64 kips and 74.1 k-in. Because
the critical values associated with the other failure modes are higher than the values determined
using the lateral-torsional buckling failure mode, the beam for this investigation is expected to

fail in lateral-torsional-buckling.
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CHAPTER 4
COMPARISON OF THEORY AND EXPERIMENT

This chapter presents a comparison of theoretical formulations of the problems
presented in Section 1.3 with the experimental lab results of the same problems. Translational
and rotational deflections from theoretical formulations which include shear deformation and
laboratory experiments are tabulated for each investigation. Critical load values from theoretical
formulations which include shear deformations, ASCE-LRFD Prestandard provisions, and
laboratory experiments concerning lateral- torsional buckling are plotted versus translational and
rotational deflection for each investigation. Theoretical critical buckling values are noted to
compare favorably or unfavorably with empirical results and percentage differences noted for

each investigation.
4.1 Investigation 1

This section presents a comparison of analytical and experimental translational and
rotational deflections for investigation 1. Translational and rotational deflections from
theoretical formulations which includes shear deformation and laboratory experiments are
shown for investigation 1 in Table 49. Critical load values from theoretical formulations which
include shear deformations, ASCE-LRFD Prestandard provisions and laboratory experiments
concerning lateral torsional buckling are plotted versus translational and rotational deflection for

investigation 1 in Figures 66, 67, and 68. Favorable or unfavorable differences are noted.
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VERTICAL 8"
LOADP vllab
1E-07 0
0.014078 -0.001
0.12925 -0.019
0.31489 -0.043
0.491298 -0.066
0.685838 -0.091
0.87873 -0.117
1.0271 -0.137
1.3618 -0.181
1.6124 -0.217
1.8316 -0.238
1.88 -0.248
LOAD P
1E-07 0
0.014078 0
0.12925 0.005
0.31489 0.011
0.491298 0.016
0.685838 0.022
0.87873 0.029
1.0271 0.034
1.3618 0.045
1.6124 0.052
1.8316 0.059
1.88 0.062

Table 49. Deflections. Investigation 1

0
0.001974
0.017997
0.043845
0.068407
0.095494
0.122352
0.143012
0.189611
0.224503
0.243786
0.255034

17.5"
h2

0

0
0.006
0.017
0.026
0.036
0.047
0.055
0.071
0.083
0.09
0.097

8" from support
vlcalew/s vlcalew/ov2 lab

0
0.001814
0.016534
0.040281
0.062846
0.087732
0.112407
0.131387
0.174199
0.206254

0.22397
0.234303

28“
h3

0

0
0.008
0.022
0.034
0.045
0.056
0.065
0.082
0.094
0.12
0.15

0
0.004
0.053
0.121
0.178
0.258
0.329
0.386
0.509
0.607

2.1
2.7

0
0.0002
0.0025
0.0054

0.008
0.0111
0.0141
0.0162
0.0208
0.0246
0.0267
0.0279

29" from support
v2calcw/s v2calcw/o v3lab

0 0
0.003735 0.003414
0.034052 0.031127
0.082959 0.075832
0.129434 0.118313
0.180687 0.165162
0.231505 0.211614
0.270595 0.247346
0.358767 0.327942
0.424787 0.38829
0.461272 0.42164
0.482555 0.441094

17|| 28“
12 13

0 0
0.000471 0.000231
0.005059 0.002538
0.013529 0.006
0.020824 0.009308
0.028706 0.013769
0.036471 0.017154
0.042824 0.019769
0.055882 0.025538
0.071529 0.029692
0.095059 0.032077

0.123 0.033538

0
0.003
0.042
0.093
0.142
0.189
0.243
0.284
0.376
0.449
0.489
0.514
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18" from support
v3calcw/s v3calcw/o

0 0
0.005384 0.004849
0.049084 0.044208

0.11958  0.1077
0.186569 0.168035
0.260446 0.234572
0.333696 0.300545
0.390043 0.351294
0.517135 0.465761
0.612298 0.551469
0.664888 0.598835
0.695566 0.626465



2.5
2
PU—————e) |
—
(%)
o
<
Q
©
©
o
)
-0.5 15 2 2.5
-0.5
Vertical Deflection, in.
Figure 66. Vertical Deflections. Investigation 1
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Figure 67. Angle of Twist. Investigation 1
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Figure 68. Horizontal Deflections. Investigation 1

Experimental deflections for investigation 1 are shown in Table 49. The experimental
critical buckling value was determined to be 1.88 kips from Figures 67 and 68. The Central
Difference critical moment value is 37.29 kip-in. The lab moment value is 38.31 kip-in; and the
ASCE guideline calculated value is 43.0 kip-in. Knowing the relationship and solving for P, P =1.83

kips.

This value compared favorably with the lab experiment value of 1.88 kips and the ASCE
calculated value of 2.11 kips is considered a little high. Our experimental value was within 95%

of the lab value while the ASCE value was within 88%.

Because there is no load in the x direction and M is zero, the horizontal deflections and
the angle of twist within the elastic range will be zero for Central difference calcs. Central
Difference vertical deflection values were taken at same locations along the beam as the
locations of the vertical deflection dial gages observed during experiments. As shown in Figure
66, they compare favorably. As the length of the beam decreases, the percentage of the vertical
deflection due to shear moment increases. Fixed supports increase the value of the moment

contribution due to shear moment.
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4.2 Investigation 2

This section presents a comparison of analytical and experimental translational and
rotational deflections for investigation 2. Translational and rotational deflections from
theoretical formulations which include shear deformation and laboratory experiments are shown
for investigation 2 in Table 50. Critical load values from theoretical formulations which include
shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning
lateral- torsional buckling are plotted versus translational and rotational deflection for

investigation 2 in Figures 69, 70, and 71. Favorable or unfavorable differences are noted.

l P
LORIPYS ] 52.5" /%
|

g 1

Table 50. Deflections. Investigation 2

VERTICAL 6" from Support 21" from Support 36" from Support
LOADP wvillab vlcalew/s vicalew/ov2 lab v2calcw/s v2calew/o V3LAB v3calcw/s v3calecw/o
0 0 0 0 0 0 0 0 0 0
0.1826 0.074 -0.04672 -0.04426 0.23 -0.14554 -0.13692 0.181 -0.18109 -0.17191

0.4244 0.132 -0.1086 -0.10287 0.309 -0.33829 -0.31824 0.399 -0.42092 -0.39957
0.6514 0.206 -0.16669 -0.1579 0.476 -0.51924 -0.48846 0.593 -0.64607 -0.61329

0.8653 0.338 -0.22141 -0.20973 0.64 -0.6897 -0.64881 0.792 -0.85816 -0.81462
0.91 0.41 -0.27445 -0.25997 0.794 -0.85491 -0.80423 0.966 -1.06372 -1.00976
0.91 1.2
0.91 1.4

3.5" 22" 36" 5.5" 22" 36"

LOADP hil h2 h3 11 12 13
0 0 0 0] 0 0 0]
0.1826 0.002 0 0.001 0.077 0.131 0.0167
0.4244 0.004 0.003 0.029 0.14 0.226 0.0299

0.6514 0.009 0.005 0.087 0.199 0.308 0.0431
0.8653 0.012 0.008 0.175 0.263 0.384 0.0535

0.91 0.023 0.019 0.33 0.318 0.449 0.0763
0.91 0.8 0.095
0.91 0.9 0.105

X. DEFLECTIONS OF A SINGLE SPAN W/ PT. LOAD. OFF CENTER.
ANALYTICAL AND EXPERIMENTAL VERTICAL DEFLECTIONS.
EXPERIMENTAL HORIZONTAL AND LATERAL TORSIONAL DEFLECTIONS
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Figure 69. Vertical Deflections. Investigation 2
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Figure 70. Angle of Twist. Investigation 2
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Figure 71. Horizontal Deflections. Investigation 2

Experimental deflections for investigation 2 are shown in Table 50. The experimental
critical buckling value was determined to be .91 kips from Figures 70 and 71. The Central
Difference critical moment value Mcris 15.69 k-in. The lab moment value is 16.97 kip-in; and the
ASCE guideline calculated value is 18.68 kip-in. Knowing the relationship and solving for P, P = .84

kips.

This value compared favorably with the lab experiment value of .91 kips and the ASCE
calculated value of 1.0 kips compares favorably. Our experimental value was within 92% of the

lab value while the ASCE value was within 90%.

Because there is no load in the x direction and M is zero, the horizontal deflections and
the angle of twist within the elastic range will be zero for Central difference calcs. Central
Difference vertical deflection values were taken at same locations along the beam as the
locations of the vertical deflection dial gages observed during experiments. As shown in Figure
69, they compare favorably. As the length of the beam decreases, the percentage of the vertical
deflection due to shear moment increases. Fixed supports increase the value of the moment

contribution due to shear moment.
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4.3 Investigation 3

This section presents a comparison of analytical and experimental translational and
rotational deflections for investigation 3. Translational and rotational deflections from
theoretical formulations which include shear deformation and laboratory experiments are shown
for investigation 3 in Table 51. Critical load values from theoretical formulations which include
shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning
lateral- torsional buckling are plotted versus translational and rotational deflection for

investigation 3 in Figures 72, 73, and 74. Favorable or unfavorable differences are noted.

!
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VERTICAL
LOAD P
0
0.346381
0.580324
0.814432
1.046892
1.24473
1.417838
1.617324
1.79373
2.027838
2.326243
2.5
2.6

LOAD P
0
0.346381
0.580324
0.814432
1.046892
1.24473
1.417838
1.617324
1.79373
2.027838
2.326243
2.5
2.6

32.5"

vllab
0
0.08969
0.150266
0.210884
0.271076
0.322303
0.367126
0.41878
0.464457
0.525076
0.602343
1.2
1.5

27.5"
hl

0
0
0.008
0.009
0.016
0.021
0.027
0.032
0.035
0.05
0.061
0.07
0.16

Table 51. Deflections. Investigation 3

0
-0.08967
-0.15024
-0.21085
-0.27103
-0.32225
-0.36706
-0.41871
-0.46438
-0.52498
-0.60224

-0.6876

24"
h2

0
0
0.002
0.003
0.009
0.014
0.015
0.02
0.022
0.026
0.038
0.055

29"
vlcalew/s vlcalcw/ov2 lab

0 0
-0.07595 0.046
-0.12725 0.104
-0.17859 0.146
-0.22956 0.202
-0.27294 0.255
-0.3109 0.3
-0.35464 0.353
-0.39332 0.401
-0.44466 0.464
-0.51009 0.549

-0.58239

4" 30"
h3 1

0 0
0 0.0081
0.002 0.0145
0.003 0.021
0.004 0.0272
0.005 0.0329
0.006 0.0374
0.008 0.043
0.009 0.0477
0.011 0.0544
0.012 0.0615
0.12
0.15

0.09

4
v2calcw/s v2calcw/o v3lab
0 0 0
-0.07794 -0.06553 0.022
-0.13058 -0.10979 0.037
-0.18326 -0.15407 0.052
-0.23557 -0.19805 0.069
-0.28009 -0.23548 0.083
-0.31904 -0.26823 0.095
-0.36393 -0.30597 0.109
-0.40362 -0.33934 0.122
-0.4563 -0.38363 0.14
-0.52345 -0.44008 0.163
-0.59765 -0.50246
30" 5"
12 13
0 0
0.005538 0
0.010231 0.001154
0.014769 0.002308
0.019308 0.003538
0.023385 0.004538
0.026615 0.005462
0.030462 0.006462
0.033846 0.007462
0.038615 0.008769
0.043538 0.009923
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v3calcw/s v3calcw/o

0
-0.00634
-0.01062
-0.01491
-0.01916
-0.02278
-0.02595
-0.02961
-0.03283
-0.03712
-0.04258
-0.04862

0
-0.00503
-0.00843
-0.01184
-0.01521
-0.01809

-0.0206
-0.0235
-0.02607
-0.02947
-0.03381
-0.0386
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Figure 72. Vertical Deflections. Investigation 3
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Figure 73. Angle of Twist. Investigation 3
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Figure 74. Horizontal Deflections. Investigation 3

Experimental deflections for investigation 3 are shown in Table 51. The rise in the curve
after the elastic range represents strain hardening and lateral- torsion. The experimental critical
buckling value was determined to be 2.6 kips from Figures 73 and 74. The Central Difference
critical moment value M is 43.97 k-in. The lab moment value is 42.28 kip-in; and the ASCE
guideline calculated value is 51.52 kip-in. Knowing the relationship of P and solving for P, P =2.7

kips.

This value compared favorably with the lab experiment value of 2.6 kips and the ASCE
calculated value of 3.16 kips compares favorably. Our experimental value was within 95% of the
lab value while the ASCE value was within 78%; however, the ASCE buckling load value is not

conservative.

Because there is no load in the x direction and M is zero, the horizontal deflections and
the angle of twist within the elastic range will be zero for Central difference calcs. Central
Difference vertical deflection values were taken at same locations along the beam as the
locations of the vertical deflection dial gages observed during experiments. As shown in Figure
72, they compare favorably. As the length of the beam decreases, the percentage of the vertical
deflection due to shear moment increases. Fixed supports increase the value of the moment

contribution due to shear moment.
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4.4 Investigation 4

This section presents a comparison of analytical and experimental translational and
rotational deflections for investigation 4. Translational and rotational deflections from
theoretical formulations which include shear deformation and laboratory experiments are shown
for investigation 4 in Table 52. Critical load values from theoretical formulations which include
shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning
lateral-torsional buckling are plotted versus translational and rotational deflection for

investigation 4 in Figures 75, 76, and 77. Favorable or unfavorable differences are noted.
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Table 52. Deflections. Investigation 4

VERTICAL 21.5" from support
vlcalew/s vlcalew/ov2 lab

LOAD P

0
0.276973
0.656163
0.835866
1.005677
1.154055
1.384866
1.571163
1.732731
2.037731
2.37

2.37

LOAD P

0
0.276973
0.656163
0.835866
1.005677
1.154055
1.384866
1.571163
1.732731
2.037731
2.37

2.37

vllab

0

0.112948
0.218252
0.270905
0.329502
0.376209
0.444997
0.501896

0.552

0.647114

19”
hl

0.8
1.43

0
0.001
0.006

0.01
0.014
0.016
0.019
0.024
0.028
0.039
0.058
0.116

0
-0.077

-0.18241
-0.23237
-0.27958
-0.32083
-0.38499
-0.43678

-0.4817
-0.56649
-0.65082

19"
h2

0

0
0.004
0.007
0.01
0.012
0.015
0.019
0.022
0.027
0.042

0
-0.0663
-0.15707
-0.20009
-0.24074
-0.27626
-0.33151
-0.37611
-0.41479
-0.4878
-0.56042

4"
h3

0

0

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

19" from support

0
0.076046
0.158803
0.200553
0.239322

0.2766
0.331771
0.377249

0.419
0.495047
0.569602

22.5"
1

0
0.006087
0.016522
0.021391
0.026435
0.03087
0.037391
0.042957
0.047739
0.055913
0.066609

0
0.062518
0.148107
0.188669
0.226999

0.26049
0.312588
0.354639
0.391107
0.459951
0.528423

19"
12

0
0.008333
0.017
0.021083
0.025
0.028667
0.034167
0.03875
0.0425
0.049
0.05825

4
v2calcw/s v2calcw/ov3 lab
0 0
0.054018 0.02
0.127971 0.046
0.163019 0.06
0.196137 0.076
0.225075 0.089
0.27009 0.109
0.306424 0.126
0.337934 0.142
0.397418 0.169
0.456581 0.196
g
13
0
0.002762
0.004762
0.005619
0.006476
0.007238
0.008381
0.0092
0.01
0.012381
0.018275
0.0225

198

v3calcw/s v3calcw/o

0
-0.00974
-0.02308
-0.02941
-0.03538

-0.0406
-0.04872
-0.05527
-0.06096
-0.07169
-0.08236

0
-0.00832
-0.01971

-0.0251
-0.0302
-0.03466
-0.04159
-0.04718
-0.05204
-0.0612
-0.07031
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Figure 77. Horizontal Deflections. Investigation 4

Experimental deflections for investigation 4 are shown in Table 52. The experimental
critical buckling value was determined to be 2.37 kips from Figures 76 and 77. The Central
Difference critical moment value M is 28.67 k-in. The lab moment value is 29.59 kip-in; and the
ASCE guideline calculated value is 32.89 kip-in. Knowing the relationship of P and solving for P, P
= 2.3 kips.

This value compared favorably with the lab experiment value of 2.37 kips and the ASCE
calculated value of 2.64 kips is not conservative. Our experimental value was within 95% of the

lab value while the ASCE value was within 88%.

Because there is no load in the x direction and M is zero, the horizontal deflections and
the angle of twist within the elastic range will be zero for Central difference calcs. Central
Difference vertical deflection values were taken at same locations along the beam as the
locations of the vertical deflection dial gages observed during experiments. As shown in Figure
75, they compare favorably. As the length of the beam decreases, the percentage of the vertical
deflection due to shear moment increases. Fixed supports increase the value of the moment

contribution due to shear moment.
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4.5 Investigation 5

This section presents a comparison of analytical and experimental translational and
rotational deflections for investigation 5. Translational and rotational deflections from
theoretical formulations which include shear deformation and laboratory experiments are shown
for investigation 5 in Table 53. Critical load values from theoretical formulations which include
shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning
lateral-torsional buckling are plotted versus translational and rotational deflection for

investigation 5 in Figures 78, 79, and 80. Favorable or unfavorable differences are noted.

P
iox g Eon A

/111
L 2 | 525 | 255" |




Table 53. Deflections. Investigation 5

VERTICAL 5" from support

LOADP

0
0.2285189
0.4446483
0.6249855
0.8108292
1.0008027
1.1219453
1.2

1.2

LOADP

0
0.2285189
0.4446483
0.6249855
0.8108292
1.0008027
1.1219453
1.2

1.2

v1LAB

0

0.069

0.109

0.147

0.184

0.222

0.252

0.28

0.31

21"
h11LAB
0
0
0
0.002
0.004
0.011
0.023
0.036
0.05

vlcalcw/s

0

-0.0402638
-0.07901504
-0.11776692
-0.15621623
-0.19436265
-0.22282089
-0.24855422
-0.28488335

18"
h22LAB
0
0
0
0.004
0.007
0.012
0.021
0.031
0.032

0
-0.03729
-0.07317
-0.10906
-0.14466
-0.17999
-0.20634
-0.23017
-0.26382

4"
h33LAB

0

0

0

0.004

0.007

0.011

0.017

0.022

0.031

22" from support
v3calew/oV22LAB V2calcw/sv3calcw/o

0
0.103
0.222
0.339
0.456
0.575
0.664
0.747
0.866

21"
I11LAB
0
0.001909
0.004455
0.007091
0.010182
0.013545
0.016636
0.020091
0.024455

0
-0.12299
-0.24135
-0.35972
-0.47717
-0.59369
-0.68062
-0.75922
-0.87019

18"
122LAB
0
0.004818
0.015182
0.025909
0.036636
0.047545
0.056091
0.064273
0.075818

0
-0.1125705
-0.2209091
-0.3292476
-0.4367398
-0.5433856
-0.6229467
-0.6948903
-0.7964577

g
I33LAB
0
0.00157895
0.01578947
0.03042105
0.04484211
0.05947368
0.07073684
0.08157895
0.09642105

35" from support
v3calcw/s v3calcw/o

v33LAB

0

0.129
0.266
0.402
0.499
0.595

0.7

0.801
0.939

0
-0.14193
-0.27854
-0.41514
-0.55068
-0.68515
-0.78547
-0.87618
-1.00424

202

0
-0.13084
-0.25676
-0.38267
-0.50761
-0.63156
-0.72403
-0.80765

-0.9257
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Experimental deflections for investigation 5 are shown in Table 53. The experimental
critical buckling value was determined to be 1.2 kips from Figures 79 and 80. The Central
Difference critical moment value Mcis 17.40 k-in. The lab moment value is 19.34 kip-in; and the
ASCE guideline calculated value is 22.92 kip-in. Knowing the relationship of P and solving, P =

1.08 kips.

This value compared favorably with the lab experiment value of 1.2 kips and the ASCE
calculated value of 1.419 kips is not conservative. Our experimental value was within 90% of the

lab value while the ASCE value was within 80%.

Because there is no load in the x direction and M is zero, the horizontal deflections and
the angle of twist within the elastic range will be zero for Central difference calcs. Central
Difference vertical deflection values were taken at same locations along the beam as the
locations of the vertical deflection dial gages observed during experiments. As shown in Figure
78, they compare favorably. As the length of the beam decreases, the percentage of the vertical
deflection due to shear moment increases. Fixed supports increase the value of the moment

contribution due to shear moment.
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4.6 Investigation 6

This section presents a comparison of analytical and experimental translational and
rotational deflections for investigation 6. Translational and rotational deflections from
theoretical formulations which include shear deformation and laboratory experiments are shown
for investigation 6 in Table 54. Critical load values from theoretical formulations which include
shear deformations, ASCE-LRFD prestandard provisions, and laboratory experiments concerning
lateral torsional buckling are plotted versus translational and rotational deflection for

investigation 6 in Figures 81, 82, and 83. Favorable or unfavorable differences are noted.

37.5” 37.5” 1

HOm
/

JAN
s |



VERTICAL
LOADP

0
0.2209191
0.60175725
0.9825954
1.17614691
1.35683895
1.549731
1.7640555
2.044326
2.2916235
3
3.2
3.3
3.5

LOADP
0
0.2209191
0.60175725
0.9825954
1.17614691
1.35683895
1.549731
1.7640555
2.044326
2.2916235
3
3.2
3.3
3.5

Table 54. Deflections. Investigation 6

0
0.00836
0.0228
0.0418
0.05168
0.0589
0.06878
0.08056
0.09348
0.10716

0
0.003
0.013
0.029
0.035
0.041
0.043
0.053
0.057
0.066

0.09
0.12
0.15
0.165

7" from support
vlcalew/s

0
-0.0068606
-0.0186875
-0.0305145
-0.0365252
-0.0421366
-0.0481269
-0.0547827
-0.0634865
-0.0711664

20"
h2

0
0.007
0.015
0.027
0.035
0.038
0.043
0.051
0.061
0.071

vlcalew/o v2

0

0

-0.0047631 0.017004944
-0.0129742 0.047150072
-0.0211853 0.088116528
-0.0253583 0.109759184
-0.0292542 0.127150604
-0.033413 0.148020308

-0.038034

0.1739142

-0.0440767 0.20483228
-0.0494086 0.234204456

3"
h3

0
0.007
0.02
0.038
0.045
0.051
0.058
0.071
0.085
0.101

0
0.0013
0.0041
0.0081

0.01
0.0119
0.0135
0.0163
0.0243
0.0319

18.5" from support
v2calew/s

0
-0.0238077
-0.0648494
-0.1058912
-0.1267496
-0.1462222
-0.1670096
-0.1901067
-0.2203106
-0.2469612

20"
12

0
0.005
0.0128
0.0234
0.0287
0.0332
0.0381
0.0442
0.0514
0.0577

0
-0.0179347
-0.0488521
-0.0797694
-0.0954824
-0.1101514
-0.1258108
-0.1432102
-0.1659632
-0.1860394

33u

0
0.0059
0.0152
0.0284
0.0351
0.0407
0.0458
0.0534
0.0601

0.067
0.09069869
0.1

0.125

0.14

v2calew/o v3

0
0.0241996
0.0678381
0.1273452
0.1570987
0.1828852
0.2134321
0.2503265
0.2963454
0.338
0.58
0.8

1

15
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32" from support
v3calew/s

v3calew/o

0 0
-0.0360449  -0.0268159

-0.098182 -0.07304331
-0.1603191 -0.11927073
-0.1918987 -0.14276466
-0.2213803 -0.16469766
-0.2528524 -0.18811155
-0.2878213 -0.21412698
-0.3335501 -0.24814715
-0.3738989 -0.27816495



Load P, kips

207

Load P, kips

LEGEND
P> |
/ Pasce-LrrD I
/./.__—o— ° P, —
Expt I
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.9
Vertical Deflection, in
Figure 81. Vertical Deflections. Investigation 6
LEGEND
P> ]
Pasce-LrRrD =
P1 [
Expt I

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Angle of Twist, radian

Figure 82. Angle of Twist. Investigation 6




208

6 LEGEND

5 P2

4 Pasce-trrp I
.§ - -
= 1 p —
a3
®
S Expt [

2

1

0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Horizontal Deflection, in.
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Experimental deflections for investigation 6 are shown in Table 54. The experimental
critical buckling value was determined to be 3.5 kips from Figures 82 and 83. The Central
Difference critical moment value M is 63.46 k-in. The lab moment value is 63.46 kip-in; and the
ASCE guideline calculated value is 60.46 kip-in. Knowing the relationship of P and solving, P=3.5

kips.

This value compared favorably with the lab experiment value of 3.5 kips. The ASCE
calculated value of 3.33 kips is conservative. Our experimental value was within 99% of the lab

value while the ASCE value was within 95%.

Because there is no load in the x direction and M is zero, the horizontal deflections and
the angle of twist within the elastic range will be zero for Central difference calcs. Central
Difference vertical deflection values were taken at same locations along the beam as the
locations of the vertical deflection dial gages observed during experiments. As shown in Figure
81, they compare favorably. As the length of the beam decreases, the percentage of the vertical
deflection due to shear moment increases. Fixed supports increase the value of the moment

contribution due to shear moment.



209

4.7 Investigation 7

This section presents a comparison of analytical and experimental translational and
rotational deflections for investigation 7. Translational and rotational deflections from
theoretical formulations which include shear deformation and laboratory experiments are shown
for investigation 7 in Table 55. Critical load values from theoretical formulations which include
shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning
lateral-torsional buckling are plotted versus translational and rotational deflection for

investigation 7 in Figures 84, 85, and 86. Favorable or unfavorable differences are noted.

!
I 27" L 27"

R A
| |

255" |, 255"
s




0
0.22851892
0.44464826
0.62498548
0.81082918
1.00080274

1.1219453
1.31742534
1.51841186

1.7138919
1.90937194

2.06493
2.22737116
2.51

2.51

LOAD P
0
0.22851892
0.44464826
0.62498548
0.81082918
1.00080274
1.1219453
1.31742534
1.51841186
1.7138919
1.90937194
2.06493
2.22737116
2.51
2.51

Table 55. Deflections. Investigation 7

4" from support

v3lab

0
0.01136
0.02201
0.03266
0.04331
0.05396
0.06106
0.07242
0.08449
0.09514
0.10721
0.11644
0.12709

21"
hl
0
0.001
0.003
0.005
0.007
0.011
0.012
0.015
0.02
0.024
0.028
0.033
0.045
0.06
0.0725

0
-0.00587
-0.01143
-0.01606
-0.02084
-0.02572
-0.02883
-0.03386
-0.03902
-0.04405
-0.04907
-0.05307
-0.05724

18"
h2
0
0.001
0.002
0.003
0.006
0.007
0.008
0.009
0.011
0.017
0.021
0.024
0.027

0
-0.0047
-0.00915
-0.01287
-0.01669
-0.0206
-0.02309
-0.02712
-0.03126
-0.03528
-0.0393
-0.04251
-0.04585

4|I
h3

O OO o oo o o

0.005
0.006
0.007
0.008
0.009

18" From Support
v3calew/s v3calcw/ov2lab

0
0.04872
0.09744
0.14028

0.1848
0.22848
0.25704

0.3024
0.35112
0.39984
0.44772
0.48972
0.53172

21”

s

0.0054
0.0134
0.0203
0.0263
0.0344
0.0388
0.0461
0.0538
0.0618
0.0699

0.08

0.09

0.12

0.15

v2calcw/s

0
-0.0436748
-0.0849817
-0.1194479
-0.1549666
-0.1912746
-0.2144275
-0.2517878
-0.2902006
-0.327561
-0.3649213
-0.3946518
-0.4256977

18"
12

0
0.0035
0.0103
0.0171
0.0231
0.029
0.0326
0.039
0.0454
0.0522
0.0593
0.0654
0.0719

21" from support
vlcalew/s vicalew/o

v2calcw/ovllab

0
-0.03666
-0.07134
-0.10027
-0.13008
-0.16056

-0.18
-0.21136
-0.2436
-0.27497
-0.30633
-0.33128
-0.35735

5||

0
0.0012
0.0023
0.0039
0.0053
0.0066
0.0072
0.0088
0.0108
0.0117
0.0133
0.0146
0.0161

0
0.056737
0.113474
0.163334
0.215772
0.268211
0.300878
0.355035
0.411772
0.469369
0.526965
0.575106

0.75
1.6

0
-0.05444
-0.10593
-0.14889
-0.19316
-0.23842
-0.26728
-0.31385
-0.36173

-0.4083
-0.45487
-0.49193
-0.53063

210

0
-0.04626
-0.09001
-0.12652
-0.16414
-0.20259
-0.22711
-0.26669
-0.30737
-0.34694
-0.38651

-0.418
-0.45089
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Experimental deflections for investigation 7 are shown in Table 55. The experimental
critical buckling value was determined to be 2.53 kips from Figures 85 and 86. The Central
Difference critical moment value Mcis 29.52 k-in. The lab moment value is 29.88 kip-in; and the
ASCE guideline calculated value is 34.12 kip-in. Knowing the relationship of P and solving, P=2.5

kips.

This value compared favorably with the lab experiment value of 2.53 kips. The ASCE
calculated value of 2.89 kips is not conservative. Our experimental value was within 99% of the

lab value while the ASCE value was within 85%.

Because there is no load in the x direction and M is zero, the horizontal deflections and
the angle of twist within the elastic range will be zero for Central difference calcs. Central
Difference vertical deflection values were taken at same locations along the beam as the
locations of the vertical deflection dial gages observed during experiments. As shown in Figure
84, they compare favorably. As the length of the beam decreases, the percentage of the vertical
deflection due to shear moment increases. Fixed supports increase the value of the moment

contribution due to shear moment.
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4.8 Investigation 8

This section presents a comparison of analytical and experimental translational and
rotational deflections for investigation 8. Translational and rotational deflections from
theoretical formulations which include shear deformation and laboratory experiments are shown
for investigation 8 in Table 56. Critical load values from theoretical formulations which include
shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning
lateral-torsional buckling are plotted versus translational and rotational deflection for

investigation 8 in Figures 87, 88, and 89. Favorable or unfavorable differences are noted.
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27" 52.5” 15” 10.5”

O
777
2




VERTICAL
LOAD P

0
0.22043
0.44086
0.708995
0.889945
1.06925
1.19
1.2
1.2
1.2

LOAD P
0
0.22043
0.44086
0.708995
0.889945
1.06925
119
1.2
1.2
1.2

0
0.021
0.096
0.175
0.227
0.279
0.325
0.371
0.371

H11LAB

0

0
0.018
0.029
0.034
0.037
0.041
0.042
0.042

7" from support
vlcalew/s

0
-0.037921
-0.0759916
-0.1222129
-0.1534062
-0.1843166
-0.2112573
-0.2381984
-0.2623039

19"
H22LAB

0

0
0.002
0.008
0.014
0.034
0.084
0.122
0.14

vlcalew/o

0
-0.03499646
-0.06999291
-0.11256323
-0.14129166
-0.16975893
-0.19456985
-0.21938077
-0.24158002

50"
H33LAB

0

0
0.004
0.01
0.02
0.036
0.041
0.047
0.047

0
0.063
0.136
0.216
0.335
0.455
0.567
0.675
0.787

L11LAB

0
0.0008
0.0033
0.0073
0.0099
0.0132
0.0177
0.0211
0.0211

Table 56. Deflections. Investigation 8

19" from support

V22LAB v2calcw/s

0
-0.1031695
-0.2067462
-0.3324985
-0.4173647
-0.5014612
-0.5747577
-0.6480552
-0.7136378

19"
L22LAB

0
0.0052381
0.0092381

0.01428571
0.02438095
0.02447619
0.03266667
0.03904762
0.03904762

0
-0.0943754
-0.1887507
-0.3035506
-0.3810229
-0.4577909
-0.5246988
-0.5916067
-0.6514716

34"
L33LAB

0

0.01
0.0188571
0.028
0.0407619
0.0528571
0.0639048
0.0702857
0.0747619
0.09

0
0.122
0.242
0.364
0.513
0.627
0.763
0.879
1.012

1.23

34" from support

v2calew/o V33LAB v3calcw/s

0
-0.13383028
-0.26818903
-0.43131376
-0.54140147
-0.65049074
-0.74557015
-0.84065077
-0.92572369

214

v3calew/o

0
-0.12214
-0.24428
-0.39285
-0.49312
-0.59247
-0.67906
-0.76566
-0.84313
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Figure 88. Angle of Twist. Investigation 8
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Figure 89. Horizontal Deflections. Investigation 8

Experimental deflections for investigation 8 are shown in Table 56. The experimental
critical buckling value was determined to be 1.2 kips from Figures 88 and 89. The Central
Difference critical moment value Mcis 17.53 k-in. The lab moment value is 18.78 kip-in; and the
ASCE guideline calculated value is 22.9 kip-in. Knowing the relationship of P and solving, P =1.12

kips.

This value compared favorably with the lab experiment value of 1.2 kips. The ASCE
calculated value of 1.47 kips is not conservative. Our experimental value was within 90% of the

lab value while the ASCE value was within 78%.

Because there is no load in the x direction and M is zero, the horizontal deflections and
the angle of twist within the elastic range will be zero for Central difference calcs. Central
Difference vertical deflection values were taken at same locations along the beam as the
locations of the vertical deflection dial gages observed during experiments. As shown in Figure
87, they compare favorably. As the length of the beam decreases, the percentage of the vertical
deflection due to shear moment increases. Fixed supports increase the value of the moment

contribution due to shear moment.
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4.9 Investigation 9

This section presents a comparison of analytical and experimental translational and
rotational deflections for investigation 9. Translational and rotational deflections from
theoretical formulations which include shear deformation and laboratory experiments are shown
for investigation 9 in Table 57. Critical load values from theoretical formulations which include
shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning
lateral-torsional buckling are plotted versus translational and rotational deflection for

investigation 9 in Figures 90, 91, and 92. Favorable or unfavorable differences are noted.

o
L L |

13.57 15.0" 25.5” 40.5” 10.5”

e



P load
0
0.512929
0.808902
1.111758
1.292096
1.398095
1.549523
1.681679
1.817964
1.934977
2.113938
2.317677
2.61
2.8
3
3.05

0
0.512929
0.808902
1.111758
1.292096
1.398095
1.549523
1.681679
1.817964
1.934977
2.113938
2.317677

2.61
2.8
3
3.05

Table 57. Deflections. Investigation 9

21"

V1LAB
0
-0.02467
-0.04833
-0.07233
-0.088
-0.09733
-0.10967
-0.12133
-0.13367
-0.14567
-0.162
-0.18267

21"
H11LAB
0
0.007
0.007
0.009
0.009
0.009
0.009
0.009
0.009
0.012
0.013
0.013

Viw/s

0
-0.03884
-0.06119
-0.08407
-0.09769
-0.10569
-0.11713
-0.12711
-0.13741
-0.14625
-0.15976
-0.17515

18"

H22LAB
0
0.004
0.007
0.008
0.008
0.008
0.008
0.009
0.01
0.011
0.012
0.015
0.021
0.027
0.035
0.043

Viw/o

0
-0.02364
-0.03728
-0.05123
-0.05954
-0.06443
-0.0714
-0.07749
-0.08377
-0.08917
-0.09741
-0.1068

4"
H33LAB
0
0.003
0.004
0.005
0.006
0.007
0.008
0.008
0.008
0.008
0.008
0.008

18"

V22LAB  V2w/s

0
-0.01933
-0.04233

-0.065
-0.08067
-0.08933
-0.10167
-0.11233
-0.12467
-0.13733

-0.153

-0.173

0.21
0.25
0.31
0.36

21"

L11LAB
0
0.118
0.183
0.261
0.309
0.338
0.38
0.417
0.454
0.493
0.533
0.595

0
-0.03276
-0.05156

-0.0708
-0.08226
-0.08899
-0.09861

-0.107
-0.11566
-0.12309
-0.13446
-0.14741

18“
L22LAB

0
0.0036
0.00728
0.012
0.016
0.01824
0.02152
0.02456
0.02744
0.0304
0.03392
0.03896
0.048
0.05496
0.068
0.0776

V2w/o
0
-0.024
-0.03785
-0.05202
-0.06046
-0.06542
-0.0725
-0.07869
-0.08506
-0.09054
-0.09891
-0.10845

3n
L33LAB
0
0.009
0.009
0.012
0.014
0.017
0.021
0.023
0.026
0.04
0.043
0.047

4"

V33LAB  V3w/s

0

-0.018
-0.026
-0.03367
-0.04
-0.043
-0.04733
-0.05133
-0.05533
-0.05967
-0.06533
-0.07233

0
-0.00682
-0.01073
-0.01473
-0.01711
-0.01851

-0.0205
-0.02225
-0.02405
-0.02559
-0.02796
-0.03065

218

V3w/o

0
-0.00427
-0.00673
-0.00925
-0.01075
-0.01163
-0.01289
-0.01399
-0.01513
-0.0161
-0.01759
-0.01929
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Figure 91. Angle of Twist. Investigation 9
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Figure 92. Horizontal Deflections. Investigation 9

Experimental deflections for investigation 9 are shown in Table 57. The experimental
critical buckling value was determined to be 3.03 kips from evaluating Figures 91 and 92. The
Central Difference critical moment value Mcris 60.46 k-in. The lab moment value is 63.17 kip-in;
and the ASCE guideline calculated value is 74.1 kip-in. Knowing the relationship of P and solving,

P =2.9 kips.

This value compared favorably with the lab experiment value of 3.03 kips. The ASCE
calculated value of 3.64 kips is not conservative. Our experimental value was within 95% of the

lab value while the ASCE value was within 80%.

The load in the x direction was approximately 6% of the load in the y direction. It changed
the critical load P; by approximately only 3% and, as such, it does not explain the large difference
in critical load we encountered while comparing the ASCE-LRFD Design buckling value to our

Central Difference value including shear.

When the load P which is perpendicular to the weak axis is zero, the critical point load P
in the y-direction and perpendicular to the strong axis is 3.0 kips. When the load Pyx which is
perpendicular to the weak axis is 1 kip, the critical point load P in the y-direction and

perpendicular to the strong axis is 0.0 kips (See Figure 93). This graph is based upon the Central
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Difference Biaxial solution for P,. Moreover, it confirms the fact that the critical buckling value
for lateral torsional buckling is proportionate to moment of inertia, Ix and l,. The ratio of Ixto |y

is 2.97 for our 4” x 4” x %” beam section.

P, -Vs- P, for Three Span Beam Loaded Biaxially
Investigation IX

o =
0 - N

P2x/kips
o
[e)]

Seriesl

o
>

o
N

o

0 0.5 1 1.5 2 2.5 3 35
P2y/kips

Figure 93. P2y Vs Pacry

Central Difference vertical deflection values were taken at same locations along the beam
as the locations of the vertical deflection dial gages observed during experiments. As shown in
Figure 90, they compare favorably. As the length of the beam decreases, the percentage of the
vertical deflection due to shear moment increases. Fixed supports increase the value of the

moment contribution due to shear moment.

Using the 3 equilibrium equations typically used for out of plane rotations, we can solve
the determinant to obtain buckling values. Galambos solves this problem with end moments and
no loading in the weak axis direction. Thus, we are solving for point loads, end moments, and

the biaxial solution.

Following procedure is outlined in Galambos and small deflection theory. The first two

equations reduce to
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u” = - My d/Ely [69]
and
v’ =-My ¢/Elx [70]

After plugging the first two equations into the third equation, it becomes:
Elw ¢ - (GKt) ¢” + (M?%u/Ely) & + (M?,/El) =0 [71]

For doubly symmetric sections such as | beams, Bx reduces to 0, so it was deleted. For constant

end moments, M’y = 0.0
Now, the ordinary differential equation is of the form
OV A D" - Ad =0.0 [72]

For pinned-pinned and loading of the beam biaxially, it can be shown that the solution of
this equation yields the same 4t order solution form established by Galambos and being used by

the ASCE today.

Ay = (M?w/EIWEly) + (M?y/ElwElx) for biaxial loading and not (M?w/EIWEly) .
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4.10 COMPARATIVE SUMMARY AND PROPOSAL

As shown in Table 58, Central Difference critical load values fall within an average of more
than 95% of laboratory experiment values. ASCE-LRFD critical load values fall within an average
of only 86% of laboratory experiment values. As such, propose a new ASCE design approach

which considers shear deflection.

Table 58. Comparative Summary of Labs with Analysis

1. Single Span with Point Load Ctr | M. (k-in.) | P1 (kips) | P2 (kips) | CD/Lab | ASCE/Lab

(4in.x4in.x1/4in.) .97 1.12
a. Lab 38.31 2.04 1.88
b. Central Diff 37.29 1.99 1.83
c. ASCE 43.02 2.29 2.11

2. Single Span w/ Pt Load Off Ctr

(3iin.X3in.x%in.) .93 1.10
a. Lab 16.97 .95 91
b. Central Diff 15.69 .88 .84
c. ASCE 18.58 1.05 1.00

3. Two Span w/ Pt Load Ctr

(4in.x4in.x1/4in.) 1.04 1.22
a. Lab 43.28 3.1 2.6
b. Central Diff 43.97 3.2 2.7
c. ASCE 51.53 3.75 3.16

4. Two Span w/ Pt Ld Near Equal

(3iin.X3in.x%in.) 97 1.11
a.lab 29.59 2.71 2.37
b. Central Diff 28.67 2.63 2.3

c. ASCE 32.89 3.02 2.64




Table 58 (Continued)
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5. Two Span w/ Pt Load Off Ctr | M (k-in.) | Pi(kips) | P2 (kips) | CD/Lab | ASCE/Lab
(3iin.X3in.x%in.) .90 1.19
a.lLab 19.34 1.31 1.2
b. Central Diff 17.40 1.18 1.08
c. ASCE 22.92 1.55 1.42
6. Three Span w/ Pt Ld Ctr. Mid
(4in.x4in.x1/4in.) 1.0 .95
a. Lab 63.46 6.05 3.5
b. Central Diff 63.46 6.05 3.5
c. ASCE 60.46 5.77 3.33
7. Three Span w/ Pt Load Ctr.
Out
(3iin.X3in.x%in.) .99 1.14
a.Lab 29.88 3.01 2.53
b. Central Diff 29.52 2.98 2.5
c. ASCE 34.12 3.44 2.89
8. Three Span w/ Pt Ld Off Ctr
(3iin.X3in.x%in.) .93 1.22
a.lLab 18.78 1.31 1.2
b. Central Diff 17.53 1.22 1.12
c. ASCE 22.90 1.60 1.47
9. Three Span w/ Pt Lds. Biaxial
(4in.x4in.x1/4in.) .96 1.13
a. Lab 29.59 2.71 2.37
b. Central Diff 28.67 2.63 2.3
c. ASCE 32.89 3.02 2.64
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Proposed Solutions

Proposed values represent Critical moments for lateral torsional buckling when
considering shear deflection. These values are based upon an equation developed based upon
observation of second order and fourth order classical and semi-analytical solutions. The

proposed equation being used is:

M2 = ( My (*M’s1 + *M’2 )/L)/ (m/L)? =Cw By (1/L)* + C¢By (1 /L)? [73]

My is the bending moment contribution, when shear moment is being considered; ;
*M'x1 =s(Mx-Mxa ) /L1 and *M’x1 =t(Mx- Myx2 ) /L2 ; and s and t are defined by end conditions
and the location of the point load. Once we determine My and determine the relationship of the

moment with shear and without shear, we can find M , the total moment.
Rearranging and solving for My, we get:

My=((CwBy (m/L)* + CeBy (T/L)? )/ (1-)°

and Mys = M,/SF

where SF = P2/P;

and f = ((s/L1)(1- M) + (t/L2)(1- Mie)(L/T%)

Note: My1 and My, are a function of Mx.
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Steps for Defining Factors s and t

Define a and b from end conditions. For a simple beam, ends are labeled as shown. If
ends a and b are pinned-pinned than a and b are equal to .5. If ends a and b are fixed-fixed, then
a and b are equal to .5 also. However, if ends a and b are pinned-fixed, then a and b are .7 and

.3, respectively.

P
a=. b=.5
o, . A
I 1 2 L
T C=LJ/L d=1L/L /

Define c and d from location of point on the beam.
c=Ly/L

d=Li/L

Calculate p and g.

p=ac

g=hbd

Now, calculate s and t.

s=p/(p+0q)

t=aq/(aq+p)

Proposed Biaxial Stress Approach

Our proposed biaxial equation is not of similar form. While we have considered buckling,
we have not considered biaxial stresses. They must also be evaluated. The longitudinal stress

relationship for biaxial loading is:
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0= Mycy/lx- My cy/ly [74]
Including the warping stress term,

o0 =Mxcg/Ix- Myc/ly + Elw ¢” [75]
For longitudinal stress of a fiberglass reinforced pultruded member, the limit is 30 ksi.

Thus, setting the limit, our modified equation for stress becomes:

0 = Mxcy/lx- My c&x/ly + Elw ¢ =30 ksi.

Our solution of this equation includes applying the Timoshenko shear moment as previously

demonstrated in our central difference approach.

Applying equation [73] for Investigations 1 through 8 and biaxial equation [75] for
Investigation 9, we get the Proposed critical moments shown in Table 59. They include shear

deflection. All values are within 10% of central difference calculated values of critical loads.



Table 59. Modified Comparative Summary of Investigation

1. Single Span with Point Load Ctr | M (k-in.) | P2/P1 | 100(CD-Proposed)/CD(%)
(4in.x4in.x1/4in.) .92
a. Lab 38.31
b. Central Diff 37.29
c. Proposed 39.76 6.6
2. Single Span w/ Pt Load Off Ctr
(3iin.X3in.x%in.) .956
a. Lab 16.97
b. Central Diff 15.69
c. Proposed 15.62 3
3. Two Span w/ Pt Load Ctr
(4in.x4in.x1/4in.) .843
a. Lab 43.28
b. Central Diff 43.97
c. Proposed 43.39 1.3
4. Two Span w/ Pt Ld Near Equal
(3iin.X3in.x%in.) .873
a. Lab 29.59
b. Central Diff 28.67
c. Proposed 28.2 1.8
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5. Two Span w/ Pt Load Off Ctr Mcr (k-in.) P2/P1 100(CD-Proposed)/CD(%)
(3iin.X3in.x % in.) 916
a. Lab 19.34
b. Central Diff 17.40
c. Proposed 16.38 5.9
6. Three Span w/ Pt Ld Ctr. Mid
(4in.x4in.x1/4in.) .578
a. lab 63.46
b. Central Diff 63.46
c. Proposed 57.86 8.8
7. Three Span w/ Pt Load Ctr. Out
(3iin.X3in.x%in.) .84
a. lLab 29.88
b. Central Diff 29.52
c. Proposed 29.1 14
8. Three Span w/ Pt Ld Off Ctr
(3iin.X3in.x%in.) 9
a. Lab 18.78
b. Central Diff 17.53
c. Proposed 16.76 4.2
9. Three Span w/ Pt Lds. Biaxial
(4in.x4in.x1/4in.)
a.Lab 29.59 4
b. Central Diff 28.67
c. Proposed 54.21 10.0
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Problem 4.1 Forthe 4” x 4” x %" fiberglass | beam with moments shown in Figure 94,
determine its lateral-torsional buckling moment. Include shear deflection moment. Beam was
used in Investigation 1. E =2997 ksi; Ix=7.935in.%; 1y, =2.67in.% k=.06; G = 453 ksi; A =2.85
in.2; a=3.23;andl,=9.375in.°5.

M Mx = PL/4

o \ Ms = My = 0 ,

Figure 94. Moments on Targeted Beam. Investigation 1

1. Proposed equation for lateral-torsional buckling including shear is

My = ((CwBy(m/L)* + C:By(m/L)? )/ (1-f))°
And Mys = My/SF

Where SF = P,/P;

And f = (( s/L1)(1- My1) + (t/L2)(1- My2)(L/m?) .
Note: Mx1 and My are relative to My.

My = PL/4 and My and My, = 0.

2. Define Factors s and t

a. Define a and b from end conditions. Ends A and B are pinned-pinned, so a and b are equal to

5.
b. Define c and d from location of point on the beam.
c=L/L=.5

d=Ly/L=.5
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c. Calculate pand g.

p=ac=.5*.5=.25

g=bd=.5%.5=.25

d. Now, calculate s and t.

s=p/(p+q)=.5

t=a/(q+p)=.5

3. Plug in all the knowns

a. CwBy(m/L)* + C¢By(m/L)?> = 1070.34

b. Plugin My1 and My, relative to My. Solve 1- f.
4. Solve for Mx.

Mx? = 1070.34/.80 = 1337.92

or Mx = 36.58 k-in.

My represents the bending contribution to the total moment.
Mix = My bending + My shear

5. Find the shear factor, SF.

a. Place moment diagram on conjugate beam without and with shear moment. Set resultants

equal to each other.

Figure 95. Moments on Targeted Conjugate Beam
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b. Write Resultant equation

Rt + R, = R3 + Rsg + Ps

(1/2)(L/2) PiL/4 + (1/2)(L/2) PiL/4 = 1/2) (L/2)P,L/4 + 1/2)(L/2)P.L/4 + oP:EL/AG
Rearrange,

P2/P1 = (L2/8) /[ (L2/8) + aEIX/AG ]

Solving SF = .92. Therefore,

Mu = M,/.92 = 39.76 k-in.

This value is within 6.6% of the value obtained using Central Difference.

where

Ri=Ry=(1/2)(L/2) PiL/4; Rs =Ra=(1/2) (L/2)P2L/4 ; and Ps= aP:EL/AG .



Problem 4.2 For the 3” x 3” x %4” fiberglass | beam with moments shown in Figure 96,
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determine its lateral-torsional buckling moment. Include shear deflection moment. Beam was

used in Investigation 2. E =2997 ksi; Ix=3.17 in.% I,=1.13in. % k¢=.046; G =453 ksi; A=2.13

in.2;, a=3.26;andly=2.13 in.®%.

M My = PLiLo/L L, =27.0”

Ma= My =0 Mg=Mx2=0

Figure 96. Moments on Targeted Beam. Investigation 2

1. Proposed equation for lateral-torsional buckling including shear is

My = ((CwBy(m/L)* + C:By(m/L)? )/ (1-f))°
And Mys = My/SF

where SF = P,/P;

And f = (( s/L1)(1- My1) + (t/L2)(1- My2)(L/m?) .
Note: Mx1 and My are relative to My.

My = PL1Ly/L and My and My, = 0.

2. Define Factors s and t

a. Define a and b from end conditions. Ends A and B are pinned-pinned, so a and b are equal to

5.
b. Define c and d from location of point on the beam.
c=L,/L=.66

d=Li/L=.34
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c. Calculate pand g.
p=ac=.5*.66=.33
g =bd=.5*%.34=.17
d. Now, calculate s and t.
s=p/(p+q)=.66
t=a/(q+p)=.34
3. Plug in all the knowns
a. CwBy (m/L)* + C¢By(m/L)? = 167.5
b. Plugin My1 and My, relative to My. Solve 1- f.
4. Solve for Mx.
« =167.5/.7516
And My =14.93 k-in.
My represents the bending contribution to the total moment.
Mix = My bending + My shear

5. Find the shear factor, SF.

a. Place moment diagram on conjugate beam without and with shear moment. Set resultants
equal to each other.

Figure 97. Moments on Targeted Conjugate Beam
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b. Write Resultant equation
R1 +R2 =R3+R4+P5

(1/2)(L1) P1L1L2/L + (1/2)(L2) P1|_1|_2/L = (1/2) (L1)P2L1L2/L + (1/2) (Lz)PleLz/L +
aP2El/AG

Rearrange,

P2/P1 = [(.5)(Li)Lila/L + (.5)(L2) Lal2/L ]/ [ (.5) (La)Lalz/L + (.5)(L2)Lilao/L + aEl/AG ]

Solving SF = .956. Therefore,
M = My/.956 = 15.62 k-in.

This value is within .3% of the value obtained using Central Difference.
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Problem 4.3 For the 4” x 4” x %" fiberglass | beam with moments shown in Figure 98,
determine its lateral-torsional buckling moment. Include shear deflection moment. Beam was
used in Investigation 3. E =2997 ksi; Ix=7.935in.%1y,=2.67in.% k=.06; G = 453 ksi; A =2.85
in.2; a=3.23;andl,=9.375in.°5.

M Mx=13.73P  b: \ b2 \

Ma= Myx1=0 \ ‘\ z

A L; =37.5" \ B \ Mg = Myx2 = 10.045P

Figure 98. Moments on Targeted Beam. Investigation 3

1. Proposed equation for lateral-torsional buckling including shear is

My = ((CwBy(m/L)* + C:By(m/L)? )/ (1-f))°
And Mys = My/SF

where SF = P,/P;

and f = (( s/L1)(1- M) + (t/L2)(1- My2)(L/1?) .
Note: Mx1 and My are relative to My.

My = 13.73P and My1 = 0 and M2 = 10.045P.

2. Define Factors s and t

a. Define a and b from end conditions. Ends A and B are pinned-fixed, so aand b are .7 and .3,

respectively.
b. Define c and d from location of point on the beam.
c=L/L=.5

d=Ly/L=.5
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c. Calculate pand g.

p=ac=.7*.5=.35

g=bd=.3*.5=.15

d. Now, calculate s and t.

s=p/(p+q)=.7

t=a/(q+p)=.3

3. Plug in all the knowns

a. CwBy(m/L)* + C¢By(m/L)?> = 1070.34

b. Plugin My1 and My, relative to My. Solve 1- f.
4. Solve for Mx.

Mx? = 1070.34/.80 = 1337.92

or Mx = 36.58 k-in.

My represents the bending contribution to the total moment.
Mix = My bending + My shear

5. Find the shear factor, SF.

a. Place moment diagram on conjugate beam without and with shear moment. Set resultants

equal to each other.

L/2

Figure 99. Moment Diagrams on Targeted Conjugate Beam
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b. Write Resultant equation
Ri + R +R3=Rs + Rs + Rg + P

(.5)13.73P1Ly + (.5)13.73P1bs1 - (.5)10.045P1b; = (.5)13.73P2L1 + (.5)13.73P:2by -
(.5)10.045P2b; + aP2El/AG

Rearrange,

P2/P1=

[(.5)13.73L1+(.5)13.73b1 - (.5)10.045b2 ] / [(.5)13.73L1 + (.5)13.73b1 - (.5)10.045b, + aEl/AG ]
Solving SF = .843. Therefore,

Mu = My /.843 = 43.39 k-in.

This value is within 1.3% of the value obtained using Central Difference.
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Problem 4.4 Forthe 3” x 3” x %4” fiberglass | beam with moments shown in Figure 100,
determine its lateral-torsional buckling moment. Include shear deflection moment. Beam was
used in Investigation 4. E =2997 ksi; Ix=3.17 in.% I,=1.13in. % k¢=.046; G =453 ksi; A=2.13
in.2;, a=3.26;andly=2.13in.°%.

M My = 10.9P by \ bz\

Ma= Myx1=0 \ ‘\ z

A L; =27.0” \ B \ Mg = My2 = 5.2P

Figure 100. Moments on Targeted Beam. Investigation 4

1. Proposed equation for lateral-torsional buckling including shear is

My = ((CwBy(m/L)* + C:By(m/L)? )/ (1-f))°
and Mys = My/SF

where SF = P,/P;

and f = (( s/L1)(1- M) + (t/L2)(1- My2)(L/1?) .
Note: Mx1 and My are relative to My.

My = 10.9P and M1 = 0 and My, =5.2P.

2. Define Factors s and t

a. Define a and b from end conditions. Ends A and B are pinned-fixed, so aand b are .7 and .3,

respectively.
b. Define c and d from location of point on the beam.
c=L/L=.5

d=Ly/L=.5
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c. Calculate pand g.
p=ac=.7*.5=.35
g=bd=.3*.5=.15
d. Now, calculate s and t.
s=p/(p+q)=.7
t=a/(q+p)=.3
3. Plug in all the knowns
a. CwBy (m/L)* + C¢By(m/L)?> = 502.22
b. Plugin My1 and My, relative to My. Solve 1- f.
4. Solve for Mx.
« =502.22/.8265
And My = 24.65 k-in.
My represents the bending contribution to the total moment.

Mix = My bending + My shear

5. Find the shear factor, SF.

a. Place moment diagram on conjugate beam without and with shear moment. Set resultants
equal to each other.

L/2

Figure 101. Moment Diagrams on Targeted Conjugate Beam
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b. Write Resultant equation
Ri + R +R3=Rs + Rs + Rg + P

(.5)10.9P1L1 + (.5)10.9P1b;i-(.5)5.2P1b> = (.5)10.9P;L;1 + (.5)10.9P;b; - (.5)5.2P;bs +
aP2El/AG

Rearrange,

P2/P1=

[(.5)10.9L1 + (.5)10.9b1 - (.5)5.2b2] / [(.5)10.9L1 + (.5)10.9b1 - (.5)5.2b2 + aEl/AG ]
Solving SF = .873. Therefore,

Mu = My /.873 = 28.2 k-in.

This value is within 1.6% of the value obtained using Central Difference.



Problem 4.5 For the 3” x 3” x %4” fiberglass | beam with moments shown in Figure 102,
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determine its lateral-torsional buckling moment. Include shear deflection moment. Beam was

used in Investigation 5. E =2997 ksi; Ix=3.17 in.% I,=1.13in. % k¢=.046; G =453 ksi; A=2.13

in.2;, a=3.26;andly=2.13in.°%.

M L1=27.0in.;L=79.5in;

My = 14.76P L, =52.5in.
Ma= Myx1=0 z

A \ L | b L\B\ Ms = My, = 9.05P
T I
b2

Figure 102. Moments on Targeted Beam. Investigation 5

1. Prposed equation for lateral-torsional buckling including shear is

My = ((CwBy(m/L)* + C:By(m/L)? )/ (1-f))°
and Mys = My/SF

where SF = P,/P;

and f = (( s/L1)(1- M) + (t/L2)(1- My2)(L/1?) .
Note: Mx1 and My are relative to My.

My = 14.76P and My1 = 0 and My, = 9.05P.

2. Define Factors s and t

a. Define a and b from end conditions. Ends A and B are pinned-fixed, so aand b are .7 and .3,

respectively.
b. Define c and d from location of point on the beam.
c=L,/L=.66

d=Li/L=.34
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c. Calculate pand g.
p=ac=.7* .66 =.462
g =bd=.3*.34=.102
d. Now, calculate s and t.
s=p/(p+q)=.82
t=a/(q+p)=.18
3. Plug in all the knowns
a. CwBy (m/L)* + C¢By(m/L)? = 167.5
b. Plugin My1 and My, relative to My. Solve 1- f.
4. Solve for Mx.
¥ =167.5/.7444
And My =15.0 k-in.
My represents the bending contribution to the total moment.

Mix = My bending + My shear

5. Find the shear factor, SF.

a. Place moment diagram on conjugate beam without and with shear moment. Set resultants
equal to each other.

' RS Ps

* w +
1o T .
Re

Figure 103. Moment Diagrams on Targeted Conjugate Beam
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b. Write Resultant equation
Ri + R +R3=Rs + Rs + Rg + P

(.5)14.76P1Ly + (.5)14.76P1bs - (.5)9.05P1b, = (.5)14.76PsLs + (.5)14.76P;bs - (.5)9.05P2b; +
aP2El/AG

Rearrange,

P2/P1=

[ (.5)14.76L1 + (.5)14.76b1 - (.5)9.05b2] / [(.5)14.76L1 + (.5)14.76b1 - (.5)9.05b2 + aEl/AG ]
Solving SF = .916. Therefore,

Mu = My /.916 = 16.38 k-in.

This value is within 6% of the value obtained using Central Difference.
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Problem 4.6 Forthe 4” x 4” x %" fiberglass | beam with moments shown in Figure 104,
determine its lateral-torsional buckling moment. Include shear deflection moment. Beam was
used in Investigation 6. E =2997 ksi; Ix=7.935in.%;1y,=2.67in.% k=.06; G = 453 ksi; A =2.85
in.2; a=3.23;andl,=9.375in.°5.

M Mx = 10.48P
a1 b,
0 _”JF/\ B z
A ! ay | bs ! B
My = 8.27P l My =827P
T L=375 | =375 |

Figure 104. Moments on Targeted Beam. Investigation 6

1. Proposed equation for lateral-torsional buckling including shear is

My = ((CwBy(m/L)* + C:By(m/L)? )/ (1-f))°
and Mys = My/SF

where SF = P2/P;

and f = (( s/L1)(1- M) + (t/L2)(1- My2)(L/1?) .
Note: Mx1 and My are relative to My.

My = 10.48P and Mx1 and My, = 8.27P.

2. Define Factors s and t

a. Define a and b from end conditions. Ends A and B are fixed-fixed, so a and b are equal to .5.
b. Define c and d from location of point on the beam.

c=L/L=.5

d=Li/L=.5
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c. Calculate pand g.
p=ac=.5*.5=.25

g =bd=.5*.5=.25

d. Now, calculate s and t.
s=p/(p+a)=.5
t=a/(q+p)=.5

3. Plug in all the knowns

a. CwBy(m/L)* + CBy(m/L)? = 1070.34

b. Plugin My1 and My, relative to My. Solve 1- f.

4. Solve for M.

Mx? = 1070.34/.9573

and Mx = 33.44 k-in.

My represents the bending contribution to the total moment.
Mix = My bending + My shear

5. Find the shear factor, SF.

a. Place moment diagram on conjugate beam without and with shear moment. Set resultants
equal to each other.

R Rs Re . . Rz Ps

et a2 | b1l b2

Figure 105. Moments on Targeted Conjugate Beam



b. Write Resultant equation

Ri + R2 +R3 + R4 =Rs + Re +R7 + Rg + Ps

-(.5)8.27P1(a1) + (.5)10.48P1(az) + (.5)10.48P1(b1) - (.5)8.27P1(b;) =
-(.5)8.27P3(a1) + (.5)10.48P»(az) + (.5)10.48P;(b1) - (.5)8.27P2(b2) + aP:ElL/AG
Rearrange,

P2/P1 =[-(.5)8.27(a1) + (.5)10.48(az) + (.5)10.48(b1) - (.5)8.27(b2) ]

[-(.5)8.27(a1) + (.5)10.48(a;2) + (.5)10.48(b1) - (.5)8.27(b2) + aElx/AG ]
Solving SF = .578. Therefore,
My = My/.578 = 57.86 k-in.

This value is within 9% of the value obtained using Central Difference.

247
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Problem 4.7 For the 3” x 3” x %4” fiberglass | beam with moments shown in Figure 106,
determine its lateral-torsional buckling moment. Include shear deflection moment. Beam was
used in Investigation 7. E =2997 ksi; Ix=3.17 in.% I,=1.13in. % k¢=.046; G =453 ksi; A=2.13
in.2;, a=3.26;andly=2.13in.°%.

M My =9.92P by \ bz\

Ma= Myx1=0 \ ‘\ z

A L; =27.0” \ B \ Mg = Mx2 = 7.16P

Figure 106. Moments on Targeted Beam. Investigation 7

1. Proposed equation for lateral-torsional buckling including shear is

My = ((CwBy(m/L)* + C:By(m/L)? )/ (1-f))°
and Mys = My/SF

where SF = P,/P;

and f = (( s/L1)(1- M) + (t/L2)(1- My2)(L/1?) .
Note: Mx1 and My are relative to My.

My =9.92P and M1 = 0 and My, = 7.16P.

2. Define Factors s and t

a. Define a and b from end conditions. Ends A and B are pinned-fixed, so aand b are .7 and .3,

respectively.
b. Define c and d from location of point on the beam.
c=L/L=.5

d=Ly/L=.5
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c. Calculate pand g.
p=ac=.7*.5=.35
g=bd=.3*.5=.15
d. Now, calculate s and t.
s=p/(p+q)=.7
t=a/(q+p)=.3
3. Plug in all the knowns
a. CwBy (m/L)* + C¢By(m/L)?> = 502.22
b. Plugin My1 and My, relative to My. Solve 1- f.
4. Solve for My.
¥ =502.22/.84
And My =24.45 k-in.
My represents the bending contribution to the total moment.

Mix = My bending + My shear

5. Find the shear factor, SF.

a. Place moment diagram on conjugate beam without and with shear moment. Set resultants
equal to each other.

L/2

Figure 107. Moment Diagrams on Targeted Conjugate Beam
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b. Write Resultant equation
Ri + R +R3=Rs + Rs + Rg + P

(.5)9.92P1L1 + (.5)9.92P1b;-(.5)7.16P1b2 = (.5)9.92P;L;1 + (.5)9.92P;3b;1-(.5)7.16P2b, +
aP2El/AG

Rearrange,

P2/P1=

[ (.5)9.92L1 + (.5)9.92b1 - (.5)7.16b2] / [(.5)9.92L1 + (.5)9.92b1 - (.5)7.16b2 + aEl/AG ]
Solving SF = .84. Therefore,

Mu = My /.84 = 29.11 k-in.

This value is within 1.4% of the value obtained using Central Difference.
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Problem 4.8 For the 3” x 3” x %4” fiberglass | beam with moments shown in Figure 108,
determine its lateral-torsional buckling moment. Include shear deflection moment. Beam was
used in Investigation 8. E =2997 ksi; Ix=3.17 in.% I,=1.13in. % k¢=.046; G =453 ksi; A=2.13
in.2;, a=3.26;andly=2.13in.°%.

M L1=27.0in.;L=79.5in;

My = 14.34P L, =52.5in.
Ma= Myx1=0 z

A \ L | b L\B\ Ms = My, = 10.29P
—T l ‘\_—_‘;
b2

Figure 108. Moments on Targeted Beam. Investigation 8

1. Proposed equation for lateral-torsional buckling including shear is

My = ((CwBy(m/L)* + C:By(m/L)? )/ (1-f))°
and Mys = My/SF

where SF = P,/P;

and f = (( s/L1)(1- M) + (t/L2)(1- My2)(L/1?) .
Note: Mx1 and My are relative to My.

My = 14.34P and My1 = 0 and My, = 10.29P.

2. Define Factors s and t

a. Define a and b from end conditions. Ends A and B are pinned-fixed, so aand b are .7 and .3,

respectively.
b. Define c and d from location of point on the beam.
c=L,/L=.66

d=Li/L=.34
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c. Calculate pand g.
p=ac=.7* .66 =.462
g =bd=.3*.34=.102
d. Now, calculate s and t.
s=p/(p+q)=.82
t=a/(q+p)=.18
3. Plug in all the knowns
a. CwBy (m/L)* + C¢By(m/L)? = 167.5
b. Plugin My1 and My, relative to My. Solve 1- f.
4. Solve for My.
«=167.5/.736
And My = 15.086 k-in.
My represents the bending contribution to the total moment.

Mix = My bending + My shear

5. Find the shear factor, SF.

a. Place moment diagram on conjugate beam without and with shear moment. Set resultants
equal to each other.

' RS Ps

* w +
1o T .
Re

Figure 109. Moment Diagrams on Targeted Conjugate Beam
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b. Write Resultant equation
Ri + R +R3=Rs + Rs + Rg + P

(.5)14.34P1L1 + (.5)14.34P1bs - (.5)10.29P1b; = (.5)14.34P,L1 + (.5)14.34P2bs - (.5)10.29P2b;
+ aP:EL/AG

Rearrange,

P2/P1=

[(.5)14.34L1 + (.5)14.34b; - (.5)10.29b2] / [ (.5)14.34L1 + (.5)14.34b; - (.5)10.29b, + aEl/AG]
Solving SF = .9. Therefore,

Mu = My /.9 = 16.76 k-in.

This value is within 5% of the value obtained using Central Difference.



254

Problem 4.9 Forthe 4” x 4” x %4” fiberglass | beam with moments shown in Figure 110,
determine the critical stress when the max normal stress is 30 ksi. Include shear deflection
moment. Beam was used in Investigation 9. E =2997 ksi; Ix=7.935in.%;1,=2.67in.% k=.06;

G=453ksi;A=2.85in.%;, a=3.23;andlw=9.375in.°.

M Mx = 4.92P

b
0 z
A az b1 \B/ My = 2.69P

My1 = 8.34P

di

Figure 110. Moments on Targeted Beam. Investigation 6

Using the central difference procedure presented in Chapter 2 for calculation of unknown
deflections u, v, and ¢; increase the applied point load P until the max normal stress is reached.

The governing biaxial stress equation will include a warping stress and is
Omax = Mx Cy/ Ix - Mny/ ly +Elw®” =30ksi [75]

At P2 =2.6 kips, v’ =4.87 x 103, u” =1.25x 104, and ¢” =1.04 x 10, and the max stress
at the point of load is 30.0 ksi. Primary stresses and warping stress are found using the unknowns
and the following relationships: My = Elxv”’; My =Elyu”’; and My = Elw ¢”’ . Knowing the applied

load P;, determine P1 and the moment using the shear factor, SF.
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Find the shear factor, SF.

a. Place moment diagram on conjugate beam without and with shear moment. Set resultants
equal to each other.

RzI‘Rs Re . . Ry Ps

e e
N Y N

4 Rs Rs
|

et a2 | b1l b2

Figure 111. Moments on Targeted Conjugate Beam

b. Write Resultant equation

Ri + R2 +R3 + R4 =Rs + Rg +R7 + Rg + Ps

-(.5)8.34P1(a1) + (.5)4.92Pi(az) + (.5)4.92P1(b1) - (.5)2.69P1(b2) =
-(.5)8.34P5(a1) + (.5)4.92P3(az) + (.5)4.92P2(b1) - (.5)2.69P,(b2) + aPEL/AG
Rearrange,

P2/P1 =[-(.5)8.34(a1) + (.5)4.92(az2) + (.5)4.92(b1) - (.5)2.69(b2) ]

[-(.5)8.34(a1) + (.5)4.92(az) + (.5)4.92(b1) - (.5)2.69(b;) + aEl/AG ]
Solving SF = .40. Therefore,
P1=P,/.40 = 6.5 kips
M ¢x = 6.5 x 8.34 = 54.21 k-in.
This value is within 10% of the value obtained using Central Difference.

Proposed equations introduced here and our design approach will be discussed further in next
chapter.
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CHAPTER 5
DESIGN
Using design equations and material properties of the | beams used in the investigations,
calculated the lateral- torsional buckling moments for the | beams varying span lengths. Curves
are shown in Figure 112. Shorter beams fail in material rupture before lateral torsional buckling.
The flat part of each curve is the rupture limit for an | beam of that cross section. The equation

used for rupture is

Mn = Fu/y where the rupture limiting stress is 30000 psi.

250

3x3x1/4 | Beam

200 4x4x1/4 | Beam

6x6x1/4 1 Beam
150

100

Buckling Limit/ K-in

0 50 100 150 200 250

Span Length/inches

Figure 112. Lateral-Torsional Buckling Moment for

Single Span | Beam. Pinned-Pinned

Example 6.1: a. Calculate the material rupture fora 6in.x6in.x3/8 in. | beam.
b. Would a 6 x 6 x 3/8 | beam 35 inches long fail lateral-torsionally?
c. What about a 6 x 6 x 3/8 with a span of 70 inches?

d. What is its buckling limit?
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Solution:

a. My =Fil/y=30(28.28)/3 =282.8 k-in..

b. No. According to the curve for a 6x6x1/4, it will fail in material rupture at 35 inches.
c. at 70 inches, the 6x6x1/4 will fail lateral-torsionally versus material rupture.

d. From the curve, its critical moment is approximately 210 k-in.

5.1 Buckling Design Curves

While for many of the cases defined by our equations of equilibrium, the present lateral
torsional buckling equation without shear and our proposed buckling equation fall within 0 to
20% of each other, there are instances where they disagree drastically from each other within
the lateral-torsional buckling design range. Single span, two span, and three span beam buckling
limits were graphed for 4 in. x4 in.x % in., 6in.x6in.x3/8in.,8in.x 8 in.x 3/8in.,and 12in.
x 12 in. x 1/2 in. fiberglass beams. See Figures 113 thru 124 below. Approximately 25% of ASCE-
LRFD Prestandard critical buckling values fall within 20% of Proposed critical values and 50% of
ASCE-LRFD Prestandard critical buckling values fall within 20 to 100% of Proposed critical values,
However, 25% of ASCE-LRFD Prestandard critical buckling limits are over 100% higher than critical
buckling limits. Buckling limits using the present lateral-torsional buckling equations without

shear are not conservative and need to be addressed to reduce design liabilities.
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ASCE critical load value
6 here 19.6% higher than
Proposed. Unconservative.

- 5
Q.
5
- 4
3 Local Failure
—
E ? —— ASCE
g
2 Proposed
1
0

50 100 150 200
Unbraced Length/in.

o

Figure 113. 4in. x4 in. x 1/4 in. Single Span | beam. Point Load Center Span

12
ASCE critical load value

10 here 1.5% higher than
Proposed. Unconservative.

2 8
£
-
S 6 Local Failure
—
£ —— ASCE
L 4
Proposed

0 50 100 150 200
Unbraced Length/in.

Figure 114. 6in.x 6 in. x 3/8 in. Single Span | beam. Point Load Center Span
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8
" ASCE critical load value
here 122.6% higher than

6 Proposed. Unconservative.
a
25
S~
©
8 4 Local Failure
—
E ——ASCE
S 3

Proposed

2

1

0

0 50 100 150 200 250 300 350

Ubraced Length/in.

Figure 115. 8in.x 8 in. x 3/8 in. Single Span | beam. Point Load Center Span

14 ASCE critical load value
here 17.5% higher than
Proposed. Unconservative.

12

10

Point Load/kips

0 50 100 150 200 250 300 350 400
Unbraced Length/in.

Figure 116. 12in.x 12 in. x 1/2 in. Single Span | beam. Point Load Center Span
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8
3 ASCE critical load value
here 38.4% higher than

6 Proposed. Unconservative.
1%2]
Q.
)
~
©
S 4 —— ASCE
€
S 3 Proposed
[«

Local Failure

2

1

0

0 50 100 150 200
Unbraced Length/in.

Figure 117. 4in.x4in. x 1/4 in. Two Span | beam. Point Load Center Span

14
ASCE critical load lalue here
12 36.5% higher than
Proposed. Unconservative.
9 10
£
3 8
o ——ASCE
= 6
k= Proposed
g
4 Local Failure
2
0
0 50 100 150 200 250

Unbraced Length/in.

Figure 118. 6in.x 6 in. x3/8 in. Two Span | beam. Point Load Center Span
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10
5 ASCE critical load value
here 158.5% higher than
8 .
Proposed. Unconservative.
w 7
k=
g 6
3 s —— ASCE
£ 4 Proposed
(o]
& 3 Local Failure
2
1
0

0 100 200 300 400
Unbraced Length/in.

Figure 119. 8in.x 8 in. x 3/8 in. Two Span | beam. Point Load Center Span

18
- ASCE critical load value
here 36.5% higher than
14 Proposed. Unconservative.
(%]
a 12
2
S~
< 10
o Local Failure
— 8
E —— ASCE
£ 6
Proposed
4
2
0
0 100 200 300 400 500

Unbraced Length/in.

Figure 120. 12in.x12in. x 1/2 in. Two Span | beam. Point Load Center Span
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12
ASCE critical load value

10 here 45.7% higher than
Proposed. Unconservative.

2 8
£
=
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S 6 Local Failure
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50 100 150 200 250 300 350
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Figure 121. 4in.x4in.x 1/4in. Three Span | beam. Point Load Center Span
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16 ASCE critical load value
i here 43.8% higher than
Proposed. Unconservative.
a 12
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S 10
3 —— ASCE
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Figure 122. 6in.x 6in. x3/8 in. Three Span | beam. Point Load Center Span
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14
ASCE critical load value

= here 172.9% higher than
Proposed. Unconservative.

10

00

— ASCE

()]

Proposed

Local Failure

H

Point Load/kips

N

0 100 200 300 400

Unbraced Length/in.

Figure 123. 8in.x 8 in.x3/8 in. Three Span | beam. Point Load Center Span

25
ASCE critical load value
20 here 42.7% higher than
Proposed. Unconservative.
a2
X 15
©
3 —— ASCE
—
£ 10 Proposed
g
Local Failure
5
0

0 100 200 300 400
Unbraced Length/in.

Figure 124. 12in.x12in.x 1/2 in. Three Span | beam. Point Load Center Span
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5.2 Biaxial Bending Design

Example 5.2: Using the modified stress equation which includes induced torsion , plot M
versus ¢ at a stress of 30 ksi for single span 4” x 4” x %”; two span 6” x 6” x 3/8”; three span 8”
x 8” x3/8” ; and single 12” x 12” x %" loaded biaxially as shown in Figures 125a thru 125d. Plot
with and without Timoshenko shear moment. Beam properties shown in Table 60.

N

a. 4in.x4in.x1/4 in. | Beam. Midspan Biaxial loads.

b. 6in.x6in.x 3/8in. | Beam. Midspan Biaxial loads



Py
yT l Px
X / ] —» Z
7 | mr
"15.0in.”  375in. _ | 375in. | 15.00n.

c. 8in.x8in.x3/8in. | Beam. Midspan Biaxial loads.

Py
1 /P
>z
97 34.5in. L 40.5 in. fm
¥ |
7 A

d. 12in.x12in.x % in. | Beam. Off Center Biaxial loads

Figure 125. GFRP | Beams with Point Loads

Table 60. Fiberglass | Beam Properties
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Dimensions Area lw (in. %) Kt k(in.%) | Iy (in.%) G(ksi) E(ksi)
(in.) (in. ?)
4x4x1/4 2.85 9.735 .06 7.935 2.67 450 3000
6x6x3/8 4.375 74.39 .091 28.27 9 450 3000
8x8x3/8 8.72 465.1 41 99.19 32.03 450 3000
12x12x1/2 24.50 4761 1.46 256.21 83.43 450 3000
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With Central Difference procedure demonstrated in problems found in Chapter 2, solve
for unknown deflections u, v, and ¢. For deflection values, [K]Ju = F. So, solve for the deflections
using the inverse K matrix , u = [K]-1 F. The vector u contains the unknowns u, v, and ¢ along

the member . The modified stress equation to be used is
Omax = Mx Cy/ Ix - Mny/ ly +Elw®” =30ksi [75]

Knowing My = Elx v’; My = Ely u”’; and My = Elw ¢”’; and plugging in our unknowns while varying
the applied load with shear, P4, we find values of the applied load with or without considering
shear. The max stress is 30 ksi. Figures 127, 129, 131, 133 show how the magnitude of the
applied loads vary when considering versus not considering shear moment. Graph showing the
moment My versus the angle of twist are also shown for each example. See figures 128, 130,

132, and 134.
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Figure 126. P, vs Px . Biaxial Bending, 4in.x 4 in. x 1/4 in. Single Span.
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Figure 128. Py, vs Px . Biaxial Bending, 6 in. x 6 in. x 3/8 in. Two Span.
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Figure 129. Moment vs Angle of Twist. Biaxial Bending. 6 in. x 6 in. x 3/8 in. Two Span
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Figure 130. P, vs Px. Biaxial Bending, 8 in. x 8 in. x 3/8 in. Three Span.
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Figure 131. Moment vs Angle of Twist. Biaxial Bending. 8 in. x 8 in. x 3/8 in. Three Span
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Figure 132. Py vs Px . Biaxial Bending, 12 in.x 12 in. x % in. Three Span.
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Figure 133. Moment vs Angle of Twist. Biaxial Bending. 12 in.x 12 in. x % in. Three Span

As evidenced by the magnitude of all the critical loads as determined by the ASCE values
without shear moment, the applied loads in the y direction are dangerously high for each

scenario. Moments for My and as such are misleading.

Values of applied loads with and without shear are shown in Table 61. Notice that
although the moment My will be the same, the applied load without shear is 3 to 20 times higher
than the applied load with shear for the problems shown in Figures 125a thru d. This is a very

real and ever present danger that exists.

For the single span beam , buckling value of the applied load was determined to be 1.83
kips while the biaxial value was determined to be 2.05 kips. Both values are within 10% of the
lab value of 1.88 kips for investigation 1. However, for the other scenarios where we increased
the size of the beam thereby reducing their L/D ratios the beams fail biaxially and the buckling
limits are of no significance. This is due to the slenderness ratio being much less than 20 and
approaching that of a deep beam. For the 6in. x6 in. x 3/8 in. | beam and the 8 in. x 8 in. x 3/8
in. ; | beam thee buckling limits are 8.2 and 36 kips ; while the biaxial stresses are 2.67 and 4.27
kips, respectively. Investigation 9 includes a 4x4x1/4 three span biaxially loaded off center. As is

the case for problem 1a of this chapter, theoretical buckling limit and the biaxial stress values of
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the moment My fall within 10% of the laboratory values for the same problem. However, the

biaxial stress value is slightly lower. Biaxial load was less than 10% of the in-plane load.

Table 61. Applied Load at My.r and Max Normal Stress of 30ksi. Pasce/ P2

Beam Type P> Pasce Pasce/ P2
(kips,w/ shear) | (kips,w/o shear)
Single Span, 4in. x4 in.x % in. 2.045 6.48 3.17
Two Span, 6in. x6in. x 3/8 in. 2.67 20.6 7.71
Three Span, 8 in.x 8 in. x 3/8 in. 4.27 70.8 16.58
Single Span, Off Ctr, 12 in. x 12 in. x 1/2 in. 3.29 68.9 20.94

Table 62. Bending and Warping Stresses at 12.5% My and Max Normal Stress of 30 ksi.

Beam Type Oxbending Oybending Ow Ow/ Ototal
(in.) (Mxc/Ix) ( Myc/ly) ( Ewn ") ( ow/30.0 ksi)
Single Span, .0007993 x 3000 | -.0005696x 3000 | .001956 x 3000 x 728
Ax4x% x2.0= x2.0= 3.75=

4.8 ksi 3.4 ksi 22.0 ksi
Two Span, 3.9 ksi 2.8 ksi 23.4 ksi 777
6 x6 x3/8
Three Span, 3.7 ksi 2.5 ksi 24.1 ksi .795
8x8x3/8
Single Span, Off 3.8 ksi .6 ksi 25.8 ksi .854
Ctr, 12 x 12 x1/2
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

The following conclusions are drawn based on the present study of GFRP beams:

1. The theoretically predicted behavior of beams is in good agreement with that observed

experimentally.

2. Inclusion of shear deformation effects resulted in significantly different lateral-torsional

buckling loads compared to those found using ASCE - LRFD Prestandard.

3. The lateral-torsional buckling formula in the ASCE- LRFD Prestandard is found to be up to 20%

on the unconservative side as compared with the experimental results.

4. The degree of unconservativesness in the buckling load estimates when ASCE - LRFD
Prestandard increases with a decrease in beam slenderness when compared with predicted

values based on the theoretical analysis presented , and is found to be over 100% is some cases.

5. For biaxially bent beams , the induced warping normal stresses are found to be in the range
from moderate to very high in comparison with the primary bending stresses with warping

stresses accounting for over 75% of the total maximum stress.

6. The proposed lateral-torsional buckling formula accounting for the shear deformation effects

is in good agreement with the experimental results.

Based on the findings presented in this dissertation, it is concluded that the current ASCE-
LRFD Prestandard can result in unconservative results in practical applications for lateral-

torsional buckling and biaxial flexure of GFRP beams.
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6.2 Future Research

Additional experimental study is needed in the future on deep GFRP beams susceptible
to lateral-torsional buckling. Experiments also need to be conducted on biaxially bent beams with
a variety of load types and boundary conditions including both large induced warping effects and

shear deformations.
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