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ABSTRACT 

LATERAL-TORSIONAL INSTABILITY AND BIAXIAL FLEXURE OF CONTINUOUS GFRP BEAMS 

INCLUDING WARPING AND SHEAR DEFORMATIONS 

Waverly G Hampton 

Old Dominion University, May 2020 

PhD Advisor, Dr. Zia Razzaq 

 

This dissertation presents an experimental and theoretical study of the lateral-torsional 

instability and biaxial flexure of Glass Fiber Reinforced Polymer  (GFRP) beams including warping 

and shear deformation effects. The theoretical analysis is based on three simultaneous 

differential equations of equilibrium with new terms added to account for shear deformation 

effects. To solve these equations, algorithms based upon a central finite-difference approach are 

then developed. The experimental study is conducted on a series of single- and multi-span beams 

subjected to concentrated loads. The predicted beam behavior agreed well with that observed 

experimentally. The investigation revealed that the ASCE-LRFD Prestandard for pultruded GFRP 

beams can result in seriously unconservative buckling load predictions. The same is found for 

biaxially loaded beams which can develop very large induced warping normal stresses currently 

unaccounted for by the ACSE-LRFD Prestandard. A new lateral-torsional buckling load equation 

is presented which accounts for shear deformation effects.  
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CHAPTER 1 

INTRODUCTION 

1.1 Prelude 

   Pultruded Glass Fiber Reinforced Polymer (GFRP) structural products are gaining 

significance particularly in practical applications where humidity, corrosion, and magnetic 

interference become concerns. The GFRP products are also much lighter than steel, concrete, 

wood, and other traditional construction materials. Although structural design specifications 

based on  traditional materials are fairly well-developed, those for pultruded GFRP products are 

still evolving. 

A unified design standard for GFRP structural products is needed.  To this end, the 

American Society of Civil Engineers (ASCE) has published a Load and Resistance Factor Design 

(LRFD) Prestandard for pultruded GFRP structural members. When evaluating failure modes for 

flexure design, the ASCE-LRFD Prestandard includes lateral-torsional buckling without shear 

deformation effects. However, shear effects which typically are considered negligible can be 

significant when analyzing GFRP beam behavior. This dissertation presents detailed analysis and 

results of an experimental investigation to study the effects of shear deformation on the lateral-

torsional buckling of GFRP beams as well as biaxially bent beams which can also develop 

significant induced warping stresses. 

Beams in practical structures can also be subjected to biaxial bending which creates 

induced torsional effects such as those associated with Saint Venant and warping stresses. For 

example, biaxial bending can result from a combination of vertical loads simultaneously with 

horizontal wind loads.  The proposed ASCE-LRFD standard does not account for induced torsional 

effects for biaxial bending thereby resulting in unconservative stress estimates. The current 

dissertation also addresses this issue and probes into the warping effects.   

The analysis is based on three simultaneous differential equations of equilibrium modified 

to include shear deformation effects, with applicable boundary conditions. Both single-span and 

multi-span GFRP beams are analyzed to predict lateral-torsional buckling loads and biaxial 

bending response. To this end, a fourth order central difference approach is used and algorithms 
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developed to investigate beam behavior both with and without shear effects. The analysis 

verified with a series of laboratory experiments on single- and multi-span beams.  

1.2  Literature Review 

A brief review of the existing literature related to lateral-torsional buckling and biaxial 

bending of beams in general and key developments for GFRP beams in particular is presented in 

this section. The governing system of differential equations for lateral-torsional buckling of 

beams without shear deformation effects are summarized by Timoshenko and Gere [21] and 

Galambos [1]. A variety of solutions to these differential equations have been developed in the 

past by these authors as well as others such as Salvadori [23], Chen [7], Razzaq, and Galambos 

[22]. The American Institute of Steel Construction beam buckling equations are based on such 

analyses [8].   

However, the magnitude of the shear strains, horizontal deflections, and torsional 

rotations which are incurred when using slender fiber reinforced plastic beams is such that 

premature elastic lateral-torsional failure may be the primary failure mode and must be 

considered during each analysis. To this end, Sirjani, Bondi, and Razzaq [9], and [10] have written 

articles on flexural torsional response of FRP I beams.  Razzaq, Prabhakaran, and Sirjani [11] 

presented LRFD  approaches for channels, and Sirjani, and Razzaq [12] presented an LRFD  

approach for I beams recognizing the need to have some guidelines and ultimately one design 

guide for pultruded members. Presently, the ASCE [ 13] is promoting a LRFD design guide for 

pultruded members which will be a valuable tool for predicting of failure mode for GFRP beams. 

However, lateral torsional buckling predictions do not include shear deformations.   

Knorowski [14] wrote a thesis on the behavior of FRP beams subject to biaxial bending 

using finite difference. She uses the aforementioned equations of equilibrium by Galambos but 

does not include shear deflection. Peck [15] wrote a Master’s project on the behavior and 

strength of three span FRP beams under a midspan point load. While the paper addresses 

Timoshenko beam deflection and gets excellent results, it does not include lateral-torsional 

buckling analysis in any detail. Weaver [18] presents an excellent finite element grid analysis 
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approach concerning applied torsional loads, but it is of no significance concerning induced 

lateral-torsion.   

A fourth order central difference approach proves expedient when solving the partial 

differential equations resulting from modification of the equations of equilibrium to include a 

shear deflection term as defined by Timoshenko.   

1.3  Problem Statement 

This dissertation deals with lateral-torsional instability and biaxial bending of GFRP beams 

including shear deformations. The study involves modifications in three simultaneous differential 

equations of equilibrium including Saint Venant and induced warping effects, and subsequent 

solutions based on a fourth-order central finite difference approach. Laboratory experiments are 

conducted on single, two, and three span GFRP beams subjected to in-plane gradually increasing 

quasi-static loading eventually resulting in lateral-torsional instability. An experiment is also 

conducted on a three-span beam under biaxial loading. Figure 1 (a) shows a typical GFRP I-section 

beam in the x, y, and z coordinate system, and subjected to concentrated loads, Px and Py.  Figure 

1 (b) shows the dimensions of the I-section. Figure 1 (c) shows the position of a typical section in 

the displaced position.  In this figure, u and v are respectively, the vertical (in-plane) deflection v, 

the horizontal (out-of-plane ) deflections u, and the angle of twist, ф.    

The problems posed herein include the prediction of the behavior of GFRP beams, 

experimental verification of the theoretical results, a comparison of the results to those based 

on ASCE-LRFD Prestandard, and proposed new guidelines for GFRP beams. 
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1.4  Objective and Scope 

The main objective of this research is to conduct investigations, theoretical analyses 

and laboratory experiments, on GFRP continuous I beams.  The specific objectives include: 

1.  To experimentally check the validity of the analysis including and not including shear 

deformation effects. 

2.  To compare the experimental beam failures and modes with those predicted using the 

ASCE-LRFD Prestandard and with lateral-torsional critical buckling loads predicted from 

analyses.   

3.  Propose generic design equations and check their validity analytically and experimentally 

foreach investigation. 

Nine setups used for investigations are shown in Figures 2, 3, and 4. 
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  y P

  

   z 

  x .5L1    .5L1   

 



a.  4 in. x 4 in. x ¼ in. I Beam.  Midspan Load 

  

 y P 

  

  x  z 

  .34L1                          .66L1 

 



b.  3 in. x 3 in. x ¼ in. I Beam.  Off Center Load  



Figure 2.  Single Span GFRP I Beams with Point Loads

 

//// //// 

//// //// 
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
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   x    z 

  .5L1 .5L1                 L2      

     

             a.  4 in. x 4 in. x ¼ in. I Beam.  Midspan Load.  Long Span 



 

   y P 

   

  z 

   x  .5L1  .5L1 L2  

   



 b.  3 in. x 3 in. x ¼ in. I Beam.  Midspan.  Near Equal Span





  P

   

    x z 

                      .34L1 .66L1 L2 

 



 c.  3 in. x 3 in. x ¼ in. I Beam.  Off Center Load



 Figure 3.  Two Span GFRP I Beams with Point Loads







//// //// //// 

//// //// //// 

//// //// //// 
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                L1                  .5L2                       .5L2               L1          

 a.  4 in. x 4 in. x ¼ in. I Beam.  Midspan Load.  Center Span



 y P 

  

  z 

  x .5L1     .5L1          L2           L3           

 

 b.  3 in. x 3 in. x ¼ in. I Beam.  Midspan.  Outside Span

  

  y P 

 

   z 

  x          

                                   .34L1                 .66L1    L2  L3 

      

             c.  3 in. x 3 in. x ¼ in. I Beam.  Off Center

   

  y Py Px

    z

                      x                                        

                                                 

  L1.185L2      .315L2 .5L2 L3 

                           d.  4 in. x 4 in. x ¼ in. I Beam.  Off Ctr.  Biaxial 



 Figure 4.  Three Span GFRP I Beams with Point Loads

//// //// //// //// 

//// //// //// //// 

//// //// //// //// 

//// //// //// //// 
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Table 1 provides a list of investigations including span dimensions for each investigation 

shown in Figures 2, 3, and 4. Nine investigations are presented to insure a population size 

sufficient to define and evaluate the objectives without prejudice. To this end, beam lengths, 

cross sections, boundary conditions, and locations of loads are varied. 3 in. x 3 in. x ¼ in. and 4 

in. x 4 in. x ¼ in. cross sections are used in our investigations; beams of one to three span are 

tested to evaluate pinned-pinned, pinned-fixed, and fixed-fixed end conditions on targeted 

spans; and loads are placed at center or off center of targeted spans. L3 



Table 1.  Tabular Summary of Beam Test with Point Loads 

Test No. Beam Type L1 (in.) L2 (in.) L3 (in.) Figure 

1 Single Span 75.00   2a 

2 Single Span 79.50   2b 

3 Two Span 75.00 30.00  3a 

4 Two Span 54.00 51.00  3b

5 Two Span 79.50 25.50  3c

6 Three Span 15.00 75.00 15.00 4a 

7 Three Span 54.00 25.50 25.50 4b

8 Three Span 79.50 15.00 10.50 4c

9 Three Span 13.50 81.00 10.50 4d


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1.5 Assumptions and Conditions 

1. Angle of twist is of equal value for entire cross section.  Cross sections do not remain planar. 

2. Shear effects are not considered negligible 

3. Material obeys Hooke’s law in elastic range.  Materials act homogeneous. 

4. Shear stress distribution within plane of cross section is also distributed along adjacent axial 

planes. 

5. For time being, there are no residual stresses in the FRP beam. 

6. Beam or loading imperfections and eccentricities exists creating torsional loads as well. 

7. Beam sections are thin walled. 

8. Small deflection theory is valid. 

9. Beam ends are simply supported. 

10. Member end warping is unrestrained. 

11. Fiberglass reinforced plastic beams are a layered product and will occasionally show 

imperfections such as delamination.  Will look beyond these imperfections to categorize curves 

and determine critical buckling values from lab experiments consistent with moment versus 

deflection curve relationships discussed by Galambos. 
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CHAPTER 2 

THEORY AND CURRENT PRACTICE 

This chapter presents detailed theoretical formulations for the problems briefly outlined 

in Section 1.3 of this dissertation. The formulations are in the form of coupled simultaneous 

differential equations governing the translational and rotational response of GFRP members 

when subjected to uniaxial or biaxial loads. Finite difference based numerical solutions to the 

governing differential equations are then presented for each of the nine types of loading and 

support conditions shown in Figures 21 – 2b, 3a – 3c, and 4a – 4d. Relevant provisions of the 

ASCE-LRFD Prestandard are also summarized and used for numerical comparisons with the 

results obtained using the analysis presented here-in which accounts for shear deformations. 

Governing equations for biaxial bending of simply supported beams loaded in-plane 

are[1]:  

Bx v’’ – ф( My ) = -Mx           [1a ] 

By u’’ – ф( Mx ) = -My          [1b ] 

Cwф’’’ – ( Ct + K )ф’ + u’(-Mx )  –  v’ ( My ) –  v/L ( My1 + My2 ) – u/L ( Mx1 + Mx2 ) = 0  [1c ] 

In these equations:  

Bx = EIx or Modulus of Elasticity times the Moment of Inertia about x axis.  

Mx = Moment about the x axis. 

Mx1 = Moment about X axis at right end of element 

My = Moment about the y axis 

My1 = Moment about y axis at bottom of element 

My2 = Moment about y axis at top of element 

v = vertical deflection 

u = horizontal deflection.  

ф = angle of twist.  

Cw = EIw  or Warping Constant, Modulus of Elasticity times Warping Moment of Inertia. 
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Ct = Saint Venant Torsional Stiffness.  

K= Mxβ = cross sectional constant that equals zero for doubly symmetric cross sections.  When 

dealing with long spans and slender members, shear deflection can be just as significant as 

deflection caused by bending concerning failure.  As such, the shear moment, Ms , will be included 

for beams under bilateral bending.  Use of this term will allow accurate determination of 

horizontal deflections and out of plane rotations.  This is accomplished by replacing Mx in the 

above equations by Mtx  where  

Mtx  = Mx + Ms and Ms  =  Zw Ps        [2] 

Timoshenko defined the shear moment to be placed on the conjugate beam as a point 

load and equal to 

Ps = (α EIx/AG) P2          [3] 

where “α” is a numerical factor related to the cross section’s ability to carry shear; A is the area 

of the cross section; G is the shear modulus; and P2 is the point load located on the beam when 

including shear. P1 is the point load on the beam when ignoring shear moment.  Zw is a factor 

discussed later in this section. 

We cannot place the shear moment directly on the real beam because it is imaginary; 

however, we can place it on the conjugate beam and determine a relationship between the load 

P1 without shear and the load P2 with shear using the deflection values. From this relationship, 

we can define the moment relationships. This will be demonstrated for each investigation.  

Next. The governing equations for biaxial bending and torsion are modified to include the 

shear moment, Ms, and take the following form:  

Bx v’’ – ф ( Mty ) = - Mtx          [4a ] 

By u’’ – ф ( Mtx ) = - Mty         [4b ] 

Cwф’’’ – ( Ct + K )ф’ + u’(- Mtx )  –  v’ ( Mty ) –  v/L ( Mty1 + Mty2 ) – u/L ( Mtx1 + Mtx2 )  

+ P(yo/2 ) ф0 = 0          [4c ] 
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The term Pyo/2 accounts for the load being placed on the top or bottom of the beam rather than 

at its centroid, and yo is the distance from the centroid to the point of load.  

The solution approach taken herein is a fourth order central difference approach. Though 

it is a finite difference approach, it is as accurate as any other finite element approach. Error is 

minimized by taking a forward difference approach and a backward difference approach and 

combining them. The following terms from a fourth order central difference approach: [16] will be 

used: 

f’(xo) = (-f2 + 8f1 – 8f-1 + f-2 ) /12h        [5a] 

f’’(xo) = (-f2 + 16f1 -30fo + 16f-1 – f-2 ) /12h2       [5b] 

f’’’(xo)= (-f3 + 8f2 -13f1+ 13f-1 – 8f-2 + f-3 ) /8h3       [5c] 

 

Shear moments and bending moments in the modified equilibrium equations may be 

determined from shear and bending moment diagrams. Thus, these terms are given loads and 

do not have to be differentiated. Unknowns to be differentiated are vertical and horizontal 

deflections and the out of plane rotations, u, v, and ф, respectively. Therefore, there are three 

equations and three unknowns related to each system of equations for each segment of the 

beam being differentiated. End boundary conditions and relationships between segments will be 

clearly defined by the global system of equations being solved linearly.  

Central difference terms related to vertical deflection consist of 

v = vo            [6a] 

v’ = [-v2 + 8v1 – 8v-1 + v-2]/12h         [6b] 

 v’’ = [-v2 + 16v1 -30vo + 16v-1 – v-2]/12h2       [6c] 

Difference terms related to the horizontal deflection consist of  

u = uo            [7a] 

u’ = [-u2 + 8u1 – 8u-1 + u-2]/12h        [7b] 

u”=[-u2 + 16u1 – 30uo + 16u-1 – u-2]/12h2       [7c] 
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Difference terms related to the out of plane rotation are  

ф = фo            [8a] 

ф’ = ( -ф2 + 8ф1 - 8ф-1 + ф-2 ) /12h        [8b] 

ф’’ =  ( -ф2 + 16ф1 - 30ф0 + 16ф-1 – ф-2 ) /12h2      [8c] 

ф’’’ =  ( -ф3 + 8ф2 - 13ф1 + 13ф-1 - 8ф-2 + ф-3 ) / 8h3      [8d] 

 

Next, these terms are substituted into our modified lateral-torsion equations to obtain 

Bx [-v2 + 16v1 -30vo + 16v-1 – v-2]/12h2 – фo ( Mty ) = - Mtx      [9a ] 

By [-u2 + 16u1 – 30uo + 16u-1 – u-2]/12h2 – фo ( Mtx ) = - Mty     [9b ] 

Cw( -ф3 + 8ф2 - 13ф1 + 13ф-1 - 8ф-2 + ф-3 ) / 8h3 – ( Ct + K ) ( -ф2 + 8ф1 - 8ф-1 + ф-2 ) /12h + [-u2 + 
8u1 – 8u-1 + u-2]/12h (- Mtx )  –  [-v2 + 8v1 – 8v-1 + v-2]/12h ( Mty ) –  vo/L ( Mty1 + Mty2 )                      
– uo/L ( Mtx1 + Mtx2 ) + P(yo/2 ) ф0 = 0        [9c]  

 

Solving the above finite difference equations simultaneously using a stiffness matrix approach, 

vertical, horizontal, and lateral deflections along the beam are determined.  

To solve for lateral-torsional buckling, replace the first two lower order equations with 

their fourth order equations and set the right side of each equation equal to zero. This also will 

be demonstrated for each investigation. LTB equations typically used by Galambos and ASCE in 

practice for solving Pcr are  

EIy uIV + Mxф’’ + 2M’x ф’  =  0         [10a] 

EIw фIV - ( GKt + Mxβx ) ф’’ - M’xβx ф’  - Mx u’’  =  0      [10b] 

Because shear is included in the modified solution, equations are coupled and we will be 

including equilibrium equation for vertical deflection in our discussion.   It is 

EIx vIV + Mtyф’’ + 2M’tx ф’  =  Mtx        [11] 
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Including additional terms into the third order lateral buckling equation and taking its fourth 

derivative, one obtains =  

CwфIV – ( GKt )ф’’ + u’’(- Mtx )  -  u’( M’tx ) –  u/L ( M’tx1 + M’tx2 ) – u’/L ( Mtx1 + Mtx2 )  

+ P(yo/2 ) ф’0 = 0          [12]  

Note: When considering shear, Mx in the equation becomes Mtx where Mtx = Ms + Mx 

Given a point load on a simple beam, Timoshenko asked us to place a shear moment on 

the conjugate beam as a point load as shown in Figure 5. He further noted that a real point load 

is actually distributed over some small distance e and creates the moment point load. This point 

moment distributed over an eccentric distance e is in k-in. The resultant of the shear moment 

when placed on the conjugate beam is Ps given by: 

Ps – αP2EIx/AG 

P2 is applied point load when including Timoshenko shear term. P1 is applied point load when 

not including shear term. P2 and P1 can be solved using a central difference model and 

determining the buckling limit with and without shear being considered, respectively. Once 

have values P1 and P2, introduce factor SF where 

SF=P2/P1. 

Rather than setting up two central difference models to determine P1 and P2, propose 

calculate SF and use it with P1 or P2 as needed.  P1 and P2 relationship changes with conjugate 

beam and loading.   

Let M1xd = Bending moment diagram without shear and  

M2xd = Bending moment diagram with shear.  On the conjugate beam,  

M1xd  =  M2xd   +  Ms  .    
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For a single span beam with a point load in the middle, 

 P1L/4  P2L/4 αP2EIx/AG 

 =   + 

 

Figure 5. Moments on Conjugate Beam 

   

( ½) P1L/4 (L/2) +  ( ½) P1L/4 (L/2)   =  ( ½) P2L/4 (L/2) +  ( ½) P2L/4 (L/2) +  αP2EIx/AG  [14] 

Where  resultants are  

R1 = ( ½) P1L/4 (L/2)             [15] 

R2 = ( ½) P1L/4 (L/2)            [16] 

R3 = ( ½) P2L/4 (L/2)           [17] 

R4 = ( ½) P2L/4 (L/2)            [18] 

Rearranging [14], 

SF = P2 /P1 = ( L2/8) / [(L2/8) + αEIx/AG ]        [19] 

Use of this factor will be demonstrated throughout. 

 

Knowing the relationship between P1 and P2, we can define the value of Ms in the 

moment equation at midspan. Timoshenko defined the shear moment to be applied to the 

conjugate beam as Ps = P2(αEIx/AG)        [20] 

The moment at midspan of real beam can be shown to be 

M=P1(L/4) = Mt = M bending + Mshear = P2(L/4 + Zw(αElx/AG))     [21] 

concerning moment without shear and moment with shear, respectively. Rearranging  

(L/4)/SF = (L/4 + Zw(αElx/AG));         [22] 

and Zw = (((L/4)/SF) – L/4)/ (αEIx/AG)        [23] 
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2.1 Stability Analysis for Simply Supported Beam with Point Load Midspan 

Numerical formulations for the critical buckling load and translational and rotational 

deflections are presented for Investigation 1 in this section. Numerical methods formulated are 

sine approximation and fourth order central difference. Critical buckling load as determined from 

the ASCE-LRFD Prestandard is also presented. Beam loading with boundary conditions, moments 

on conjugate beam, and shear deflection are defined in Figure 6.  



 P 

 

   

 

 e Ps

                                                                                                      Shear Moment Load Diagram 

                                Located on Conjugate Beam 

          

  PL/4EI  

Bending Moment Diagram 

(M/EI Diagram on Conjugate)

  

  PsL/4EI 

   Shear Deflection 

  

 

  37.5’’ 37.5’’    

  

 

Figure 6. Investigation 1: Deflection Diagrams 

  

//// //// 

//// //// 
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2.1.1 Semi-analytic Solution Including Shear Deformation 

When My = 0 and boundary conditions at ends are pinned-pinned, the equilibrium 

equations for the simple beam in Figure 4 are 

Bxv” = - Mtx           [24] 

Byu” - Mtx ф = 0          [25] 

Cwф’’’ – (Ct + β) ф’ – Mtx ( u’) = 0        [26] 

Where Mtx = Mbending + ZwP2 ( αEIx/AG ) ;  without shear Mtx = Mbending = Mx . 

Let 

ф = Asin(nπ/L)z          [27] 

v = Bsin(nπ/L)z           [28] 

And  u = Csin(nπ/L)z          [29] 

For 

ф = Asin(nπ/L)z 

ф’ = (nπ/L) Acos(nπ/L)z         [30] 

ф’’ =  -(nπ/L)2 Asin(nπ/L)z         [31] 

ф’’’ = - (nπ/L)3 Acos(nπ/L)z         [32] 

v = Bsin(nπ/L)z 

v’ = (nπ/L) Bcos(nπ/L)z         
 [33] 

v’’ = -(nπ/L)2 Bsin(nπ/L)z         [34] 

u = Csin(nπ/L)z 

u’ = (nπ/L) Ccos(nπ/L)z         [35] 

u’’ = -(nπ/L)2 Csin(nπ/L)z         [36] 

Substituting these terms into the aforementioned equilibirium equations we get 

-Bx (nπ/L)2 Bsin(nπ/L)z = Mtx         [37] 

By(nπ/L)2 Csin(nπ/L)z + Mtx Asin(nπ/L)z = 0       [38] 

-Cw(nπ/L)3 Acos(nπ/L)z – (Ct + β) (nπ/L) Acos(nπ/L)z – Mtx ((nπ/L) Ccos(nπ/L)z) = 0  [39] 
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Simplify we get,  

-Bx (nπ/L)2 Bsin(nπ/L)z = Mtx         [40] 

-By(nπ/L)2 C - Mtx A = 0         [41] 

-Cw(nπ/L)3 A – (Ct + β) (nπ/L) A – Mtx ((nπ/L) C = 0      [42] 

where Mtx is taken at a location z from the end of the beam. In our case, it will be midspan. Solving 

the determinant of the equations, we get the following lateral-torsional buckling equation:  

[-Mcr
2 (nπ/L)3] + [By (nπ/L)4 ] [Cw (nπ/L)3 + Ct (nπ/L)] = 0     [43] 

Solving the determinant and using the loads of the equations, we can now solve for ф, v, 

and u. This gives us the ability to plot a second finite element approach. 

Note: The term Pyo/2 results in an end moment and can not be considered in a sine 

approximation.  

Problem 2.1.1. Lab Investigation 1 

Given: 4” x 4” x ¼” fiberglass reinforced plastic beam in Figure 4. L = 75”. E=2997 ksi.  

Ix = 7.935 in.4. G = 450 ksi. I y = 2.67 in.4. kt = .0612.  A = 2.85 in2. Iw = 9.375 in.4. SF = .92 

Find: Buckling limit and vertical deflections with shear. Use Semi-analytic approach.  

The equilibrium equations using sine approximation with pinned-pinned ends are 

-Bx (nπ/L)2 Bsin(nπ/L)z = Mtx         [40] 

-By(nπ/L)2 C - Mtx A = 0         [41] 

-Cw(nπ/L)3 A – (Ct ) (nπ/L) A – Mtx ((nπ/L) C = 0      [42] 

 

Simplifying for buckling calc where determinant equals zero, we get,  

Bx (nπ/L)2 B = 0          

-By(nπ/L)2 C - Mtx A = 0         

-Cw(nπ/L)3 A – (Ct ) (nπ/L) A – Mtx ((nπ/L) C = 0      
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Since Mtx is on right side and right side of equation [40] is zero, it becomes uncoupled.  
Solution to equations [41] and [42] for buckling determinant is 

Mtx = [ By (Cw(π/L)4 + Ct (π/L)2 ].5        [43] 

Plugging in the given, we have 

Mtx = 32.87 kip-in. 

Mtx = Mxbending + Mshear; P2/P1 = .92 

Mtx = P1L/4 without shear, so P1 = 1.76 kips 

P2 = .92 (1.76) = 1.62 kips. Load P1, kips, Mtx (k-in.) 

 

For vertical deflection calc, we can use determinant solution of  

 

a1  d1  c1 

a2  d2  c2 

a3  d3  c3 

 =       vw/s 

a1  b1  c1 

a2  b2  c2 

a3  b3  c3        [44] 

 

where the column of d terms are load values substituted into the coefficient column for the 

unknown vertical deflections. Note that d2 = Mtx/sin (nπz/L), and d1 and d3  equal zero. Plugging 

in values, the solution is 

vw/s =  (Mtx
3(nπ/L)/sin(nπz/L)  -  (Cw(nπ/L)3  +  Ct(nπ/L)By(nπ/L)2 (Mtx/sin(nπz/L)  [45] 

(Mtx
2(nπ/L)3(Bx)  -  Cw(nπ/L)3  +  Ct(nπ/L)BxBy(nπ/L)4) 

So, to find the vertical deflections with shear, we can use P2 load values used in lab. 
Calculate P1, then calculate Mtx. P2 equals 1.55 kips at the buckling limit calculated using this 
approach. Mtx = 32.87 k-in. and vertical deflection are shown in Table 2.  
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Table 2. Vertical Deflection. Investigation I. Semi-Analytic, With Shear Load  

 Load P2, kips Load P1, kips Mtx, k-in. Vert. Deflection, in. 
   
   
   
   
   
   
   
   
   
   
   
   

 

2.1.2 Semi-analytic Solution Without Shear Deformation 

The semi-analytic approach without shear deformation is same as aforementioned 

semi-analytic approach with shear except Ms = 0. Mtx = Mx= Mbx. Lab values are P without shear 

values, P1.  

Problem 2.1.2. Lab Investigation 1  

Given : 4”x 4” x ¼” fiberglass reinforced plastic beam in Figure 4. L = 75” . E = 2997 ksi. 

Ix = 7.935 in.4. G = 450 ksi.  Iy = 2.67 in.4.  kt = .0612. A = 2.85 in2.   Iw = 9.375 in. 4. 

Find: Buckling limit and vertical deflections without shear. 

For vertical deflections without shear, we simply do not apply the shear moment to the 

beam. In other words Ms = 0.0 and Mtx  = Mxbending. Procedure is exactly same as calculating 

critical load and vertical deflection outlined in previous problem which included shear. 

However, P loads from lab experiments are P1 not P2. Therefore, Mcr = P1L/4 for this problem. 

See tabulated vertical deflection values for this problem in Table 3. 

P1 equals 1.75 kips at the buckling limit calculated using this approach. Mtx = 32.87 k-in.  

See Table 3. 
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Table 3. Vertical Deflection. Investigation 1. Semi-Analytic. W/o Shear 

 Load P1, kips Mtx or Mbending, k-in. 


Vert. Deflection, in.

  

  

  

  

  

  

  

  

  

  

  

  
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2.1.3 Central Difference Solution With Shear Deformation 

For this approach, we use the three central difference governing equations previously 

developed to determine vertical, horizontal, and lateral deflection values along the beam. Mx = 

Mtx.  For this approach, we follow the instructions of Timoshenko to the letter. We simply place 

the shear moment point load on the conjugate beam. The ends of the conjugate beam are 

pinned-pinned upon the length of an element or eccentricity, the shear moment Ms value varies 

from model to model. Ps = P2 αEIx /(eAG) where e is the eccentricity or length of the element. 

With shear, Mtx = Mbending + Ms on the conjugate beam.  

Problem 2.1.3. Lab Investigation 1 

Given: 4” x 4” x 1/4” fiberglass reinforced plastic beam in Figure 4.   L = 75” .  E=2997 ksi.  

Ix = 7.935 in.4.  G = 450 ksi.  Iy  = 2.67 in. 4.   Kt = .0612.  A= 2.85 in2.  Iw = 9.375 in. 6. 

Find:  Buckling limit and vertical deflections with shear. 

As shown in Galambos, the 4th order solution of the second order bending equilibrium equation 

including the angle of twist is: 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [46] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV + Gkt ф’’  - Mtx u’’ – M’tx u’  - ( M’tx1 + M’tx2 ) u/L   - ( Mtx1 + Mtx2 ) u’/L   = 0  [47] 

Both equations take into consideration that M’tx is not zero for a beam with a point load. 

Symmetrical properties of I beam have also been taken into consideration. Next, we plug the 4th 

order central difference terms into the aforementioned lateral-torsion equations of equilibrium 

and we have  

a17u3 +a16u2 + a15u1 + a14u0 + a13u-1 + a12u-2 + a11u-3 + b15ф2 + b14ф1 + b13ф0 + b12ф-1 + b11ф-2 = 0 

            [48] 

a25u2 +a24u1 + a23u0 + a22u-1 + a21u-2 + b27ф3 + b26ф2 + b25ф1 + b24ф0 + b23ф-1 + b22ф-2 + b21ф-3 = 0 

            [49] 



24 
 

where a11 = -EIy/6h4 ; a12 = 2EIy/h4 ; a13 = -13EIy/2h4 ; a14 = 28EIy/3h4 ; a15 = -13EIy/2h4 ; 

a16 = 2EIy/h4 ; a17 = -EIy/6h4 ; b11 = (-Mtx/12h2 + M’tx/6h) ; b12 = (4Mtx/3h2 -4 M’tx/3h); 

b13 = -(5Mtx/2h2 ; b14 = (4Mtx/3h2 + 4 M’tx/3h); and b15 = -(Mtx/12h2 + M’tx/6h) , and 

a21 = (Mtx/12h2 - M’tx/12h) – ((Mtx1 +Mtx2)/ 12hL);  

a22 = (-4Mtx/3h2 + 2M’tx/3h) + (2(Mtx1 +Mtx2)/ 3hL); a23 = (5Mtx/2h2 - ((M’tx1 +M’tx2)/ L); 

a24 = (-4Mtx/3h2 - 2M’tx/3h) - (2(Mtx1 +Mtx2)/ 3hL); 

a25 = (Mtx/12h2 + M’tx/12h) + ((Mtx1 +Mtx2)/ 12hL);  

b21 = -EIy/6h4 ; b22 = 2EIy/h4 + GKt/12h2 ; b23 = -13EIy/2h4 - 4GKt/3h2 ; b24 = 28EIy/3h4 ; 

b25 = -13EIy/2h4 - 4GKt/3h2 ; b26 = 2EIy/h4 + GKt/12h2 ; and b27 = -EIy/6h4 . 

 

Next. We define h to be fraction of L. For this problem, L=75.0 in. and h=3.75 in. this gives 

us 21 locations. Boundary conditions are associated locations 1 and 21, and ghost boundary 

conditions are associated with locations 2,3,19, and 20. The term ghost is because we extend the 

columns out by two more imaginary locations beyond the boundary location. This allows us to 

modify equations to identify where supports are pinned or fixed. For example, the term a14 

extended out two terms beyond the boundary gives us the two terms a12 and a11. The modified  

term *a14 goes in the location a14, and *a14 = a14 – a12 ; and *a15 = a15 – a11, if support is pinned.  

For fixed support, *a14 = a14 + a12 ; and *a15 = a15 + a11 .  b13, a23, b24, b25 also need to be 

determined.  Layout of K Matrix is demonstrated in Table 4. 
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Table 4. Central Difference Buckling K Matrix for Investigation 1 

 

 1 2 3 Location 

u ф u ф u ф 

0.0 0.0 0.0 0.0 0.0 Supports at locations 1 and 21 

0.0 0.0 0.0 Zero out boundary  

0.0 0.0 *a14 b13 *a15 b14 a16 b15 a17 0.0 0.0 

0.0 0.0 a23 b24 a24 b25 a25 b26 0.0 b27 0.0 

0.0 0.0 a13 b12 a14 b13 a15 b14 a16 b15 a17 

0.0 0.0 a22 b23 a23 b24 a24 b25 a25 b26 0.0 

0.0 0.0 a12 b11 a13 b12 a14 b13 a15 b14 a16 

0.0 0.0 a21 b22 a22 b23 a23 b24 a24 b25 a25 

  

 Main diagonal 

 

Mtx is the moment at the left end of an element because we are holding the element 

there. Mtx1 is also the moment at the left end while Mtx2 is the moment at the right end of an 

element. Signs are opposite, typically. M’tx is equal to the slope of the moment. M’ = R1 or R2. 

R1L -Mtx1 -PL2+ Mtx2 = 0         [50] 

R2L -Mtx2 -PL1+ Mtx1 = 0         [51] 

Because we are dealing with a point load and discontinuity at its location, the slope is the same 

for each location to the left or right of the point load. Once values are assigned to all matrix 

locations including the shear moment location, we can solve the determinant of the matrix while 

increasing P2 each time. When P2 changes signs, we have crossed zero and reached the critical 

buckling limit. Value of Pcr with shear, P2, for this problem is 1.83 kips. 

The governing equations for deflections when considering lateral torsional buckling are: 

Bx v’’- ф Mty = Mtx 
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By u’’- ф Mtx = Mty 

Cw ф’’’ – (Ct + Mxβ) ф’ – Mtx u’ - Mty v’ – (Mtx1 + Mtx2 ) u/L- (Mty1 + Mty2 ) v/L + P(y0/2) ф = 0 

As we are solving these equations simultaneously using a fourth order central difference 

approach, we will be using the aforementioned central difference expressions. These terms are 

substituted into our modified lateral-torsion equations to obtain: 

Bx ( -v2 +16v1 – 30v0 +16 v-1 - v-2)- ф0  Mty = Mtx 

By ( -u2 +16u1 – 30u0 +16 u-1 - u-2)- ф0 Mtx = Mty 

Cw ( - Ф3 + 8ф2 - 13ф1 +  13ф-1 - 8ф-2 + ф-3 )/8h3 – (Ct + Mxβ) ( -ф2 + 8ф1 - 8ф-1 + ф-2 )  

– Mtx ( -u2 + 8u1 – 8u-1 + u-2 ) - Mty ( -v2 + 8v1 – 8v-1 + v-2 ) 

 – (Mtx1 + Mtx2 ) u0/L- (Mty1 + Mty2 ) v0/L + P(y0/2) ф0 = 0 

Setting My to zero, we have,  

a11v-2 + a12v-1 + a13v0 + a14v1 + a15v2 = Mtx       [52a] 

where a11 = -EIx/12h2 ; a12 = 4EIx/3h2 ; a13 = -5EIx/2h2 ; a14 = 4EIx/3h2 ; a15 = -EIx/12h2 ; 

B21u-2 + b22u-1 + b23u0 + b24u1 + b25u2 + c21ф0 = 0.0      [52b] 

Where b21 = -EIx/12h2 ; b22 = 4EIx/3h2 ; b23 = -5EIx/2h2 ; b24 = 4EIx/3h2 ; b25 = -EIx/12h2 ; 

c21 = - Mtx 

b31u-2 + b32u-1 + b33u0 + b34u1 + b35u2 + c31ф-3 + c32ф-2 + c33ф-1 + c34ф0 + c35ф1 + c36ф2 + c37ф1 = 0.0 

            [52c] 

where b31 = -Mtx/12h ; b32 = 2Mtx/3h ; b33 = -(Mtx1 + Mtx2)/L ; b34 = -2Mtx/3h ; b35 = Mtx/12h ; 

c31 = Cw/8h3 ; c32 = - Cw/h3 – Ct/12h ; c33 = 13Cw/8h3 + 2Ct/3h; c34 = Py0/2 ;  

c35 = -13Cw/8h3 - 2Ct/3h; c36 =  Cw/h3 + Ct/12h; c37 = - Cw/8h3 . 

For the vertical deflection values, we use the same approach we just demonstrated for 

the buckling limit except we use the three governing equations and the load vector is not set to 

zero. [K] u = F. So we solve for the deflections using the inverse K matrix, u = [K]-1 F. The vector u 

contains the unknowns v, u, and phi along the member. Central Difference K Matrix for deflection 

calcs is demonstrated in Table 5.  
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Table 5.  Central Difference K Matrix for Deflection.  Investigation 1 

Location 1  Location 2  Location 3  Location 4 

V u ф v u ф v u ф v u ф 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 *a13 0.0 0.0 a14 0.0 0.0 a15 0.0 0.0 

0.0 0.0 0.0 0.0 b33 c34 0.0 b34 c35 0.0 b35 c36 

0.0 0.0 0.0 0.0 b23 c21 0.0 b24 0.0 0.0 b25 0.0 

0.0 0.0 0.0 a12 0.0 0.0 a13 0.0 0.0 a14 0.0 0.0 

0.0 0.0 0.0 0.0 b32 c33 0.0 b33 c34 0.0 b34 c35 

0.0 0.0 0.0 0.0 b22 0.0 0.0 b23 c21 0.0 b24 0.0 

 Main diagonal 

Zero out boundaries 

 

For this problem, we used h=1.5 inches and 51 locations. Vertical deflections were 

tabulated based upon given info and applied P2 loads from laboratory. Values are shown in Table 

6.  
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Table 6. Vertical Deflections. Investigation 1. Central Difference 

 8” from support  18” from support  29” from support 

Load P, kips V1w/s(in.) V1w/0(in.) V2w/s(in.) V2w/o(in.) V3w/s(in.) V3w/o(in.) 


      

      

      

      

      

      

      

      

      

      

      

      

      

 

2.1.4 ASCE LRFD Method 

The ASCE buckling limit equation was developed using the classical approach solution for 

a simple beam solution introduced by Galambos. The LTB equations used in the classical 

approach were 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [53] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV – (Gkt + Mx β) ф’’  - Mx u’’ – M’x  βx ф     = 0      [54] 

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide 
for Pultruded Members. 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5       [55] 
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where D j = Gkt; Cw = Iw; and Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC). 

Problem 2.1.4. Lab Investigation 1 

Given: 4” x 4” x ¼” fiberglass reinforced plastic beam in Figure 4. L = 75”. ELF= 3194 ksi.  

Ix = 7.935 in.4. G = 450 ksi. Iy = 2.67 in.4. kt = .0612.  A = 2.85 in2. Iw = 9.375 in.4.  

Find: Buckling limit.  

The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross 

section is 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5       [56] 

where Lb is the braced length,  

Cw is the warping constant, 

ELF is the Modulus Elasticity of the longitudinal flange, 

Dj = Gkt and is the torsional rigidity, and  

Cb =  12.5Mmax/(2.5Mmax+3MA+4MB+3MC).       [57] 

and is the moment modification factor. MA, MB and MC are moments at locations .25L, .5L, and 
.75L, respectively. See Figure 7. 

                           

  MB  MC

 MA        MMAX = MB 

 1   2

1 2 

 .25L .5L    .75L

 

  

  Figure 7. Moment Diagram for Investigation 1 

  


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Location of Mmax varies with location of point load and equilibrium conditions. For this 

problem, Mmax = MB = PL/4. Plugging in moment values, Cb = 1.32. Plugging in given values and 

Cb, Mn=43.02 k-in. Knowing the relationship between the critical moment and critical load, P1, 

without shear moment; we can calculate the critical load, P1.  

P1 = 4Mn/L = 2.29 kips. 

Now. We must find relationship of P1, the critical load without shear moment, and P2, the 

critical load with shear moment.  

P1 is associated with the moments on the conjugate beam when Ps is not present. P2 is 

associated with the moments on the conjugate beam when Ps is present. The resultant of the 

moment diagram on the conjugate beam when considering and not considering shear moment 

is of equal value or  

2(1/2) (P1/L/4) (L/2)  = 2(1/2) (P2/L/4) (L/2)   +  P2(αEIx/AG)     [58] 

Rearranged 

P2/P1   = (L2/8)/ ((L2/8) + αEIx/AG)        [59]  

Solving we get   SF = P2/P1  =  .92 

Thus,  

P2 =.92P1 = 2.11 kips 

Using the LRFD buckling limit equation, The buckling load with shear was determined to be 2.03 
ksi.  

Critical loads are summarized in Table 7 and will be compared to experimental load in Chapter 
4. Deflections will be compared also. 
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2.1.5 Summary of Maximum Loads 

Table 7.  Summary Buckling Limits Theory  

Section Method Pcr  
2.1.1 Semi-analytical Solution Including Shear Deformation 1.55 kips 
2.1.2 Semi-analytical Solution Ignoring Shear Deformation 1.75 kips 
2.1.3 Finite Difference Solution Including Shear Deformmation 1.83 kips 
2.1.4 ASCE-LRFD Method 2.11 kips 
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2.2 Stability Analysis for Simply Supported Beam with Point Load Off Center 

Numerical formulations for the critical buckling load and translational and rotational 

deflections are presented for Investigation 2 in this section. Numerical methods formulated 

include fourth order central difference. Critical buckling load as determined from the ASCE-LRFD 

Prestandard is also presented. Beam loading with boundary conditions and moments on 

conjugate beam are defined in Figure 8.  



 P 

 

 

    

 Ps Shear Moment Load Diagram, Ps/EI 

  

 

 PL1L2/EIL 

(M/EI Diagram on Conjugate) 



   

  

 PsL1L2/EIL 

 Shear Deflection Diagram 

 

 

  

 

 27” 52.5” 

Figure 8.  Investigation 2.  Deflection Diagrams 

 

//// //// 

//// //// 
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2.2.1 Central Difference Solution With Shear Deformation 

For this approach, use the three central difference governing equations previously 

developed to determine vertical, horizontal and lateral deflection values along the beam. Mx = 

Mtx. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear 

moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned.  

So, boundary conditions are set for pinned-pinned in the finite difference model. Depending up 

on the length of an element of eccentricity, the shear moment Ps value varies from model to 

model.  Ps = P2 αEIx /(eAG) where e is the eccentricity or length of the element. With shear, Mtx = 

Mbending + Ps on the conjugate beam.  

Problem 2.2.1. Lab Investigation 2 

Given : 3” x 3” x 1/4 “ fiberglass reinforced plastic beam in Figure 5.  L=79.5” .  E= 2997 ksi.  

Ix = 3.17 in. 4 .  G = 450 ksi. Iy = 1.13 in. 4.  Kt = .046 .  A = 2.13 in.2.  Iw = 2.13 in.6 

Find: Buckling limit and vertical deflections with shear.  

As shown in Galambos, the 4th order solution of the second order bending equilibrium 

equation including the angle of twist is: 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [46] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV + Gkt ф’’  - Mtx u’’ – M’tx u’  - ( M’tx1 + M’tx2 ) u/L   - ( Mtx1 + Mtx2 ) u’/L   = 0  [47] 

Both equations take into consideration that M’tx is not zero for a beam with a point load. 

Symmetrical properties of I beam have also been taken into consideration. Next, plug the 4th 

order central difference terms into the aforementioned lateral-torsion equations of equilibrium 

and obtain  

a17u3 +a16u2 + a15u1 + a14u0 + a13u-1 + a12u-2 + a11u-3 + b15ф2 + b14ф1 + b13ф0 + b12ф-1 + b11ф-2 = 0 

            [48] 

a25u2 +a24u1 + a23u0 + a22u-1 + a21u-2 + b27ф3 + b26ф2 + b25ф1 + b24ф0 + b23ф-1 + b22ф-2 + b21ф-3 = 0 

            [49] 
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where a11 = -EIy/6h4 ; a12 = 2EIy/h4 ; a13 = -13EIy/2h4 ; a14 = 28EIy/3h4 ; a15 = -13EIy/2h4 ; 

a16 = 2EIy/h4 ; a17 = -EIy/6h4 ; b11 = (-Mtx/12h2 + M’tx/6h) ; b12 = (4Mtx/3h2 -4 M’tx/3h); 

b13 = -(5Mtx/2h2 ; b14 = (4Mtx/3h2 + 4 M’tx/3h); and b15 = -(Mtx/12h2 + M’tx/6h) , and 

a21 = (Mtx/12h2 - M’tx/12h) – ((Mtx1 +Mtx2)/ 12hL);  

a22 = (-4Mtx/3h2 + 2M’tx/3h) + (2(Mtx1 +Mtx2)/ 3hL); a23 = (5Mtx/2h2 - ((M’tx1 +M’tx2)/ L); 

a24 = (-4Mtx/3h2 - 2M’tx/3h) - (2(Mtx1 +Mtx2)/ 3hL); 

a25 = (Mtx/12h2 + M’tx/12h) + ((Mtx1 +Mtx2)/ 12hL);  

b21 = -EIy/6h4 ; b22 = 2EIy/h4 + GKt/12h2 ; b23 = -13EIy/2h4 - 4GKt/3h2 ; b24 = 28EIy/3h4 ; 

b25 = -13EIy/2h4 - 4GKt/3h2 ; b26 = 2EIy/h4 + GKt/12h2 ; and b27 = -EIy/6h4 . 

 

Next. Define h to be a fraction of L. For this problem, L = 79.5 in. ;  h=3.97in. ; and there 

are 21 location Boundary conditions are associated with locations 1 and 21, and ghost boundary 

conditions are associated with locations 2,3,19, and 20. The term ghost is because we extend the 

columns out by two more imaginary locations beyond the boundary location. This allows us to 

modify equations and identify whether supports are pinned or fixed. For example, the term a14 

extended out two terms beyond the boundary gives us the two terms a12 and a11. The modified 

term *a14 goes in the location of term a14, and *a14 = a14 – a12   ;  and *a15 = a15 – a11, if support is 

pinned. For fixed support, *a14 = a14 +a12; and *a15 = a15 + a11. *b13, *a23, *b24, and *b25 also need 

to be determined.  Layout of the K matrix is demonstrated in Table 8.  
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Table 8 Central Diff. K Matrix for Buckling. Investigation 2 

 

 1 2 3 Location 

u ф u ф u ф 

0.0 0.0 0.0 0.0 0.0 Supports at locations 1 and 21 

0.0 0.0 0.0 Zero out boundary  

0.0 0.0 *a14 b13 *a15 b14 a16 b15 a17 0.0 0.0 

0.0 0.0 a23 b24 a24 b25 a25 b26 0.0 b27 0.0 

0.0 0.0 a13 b12 a14 b13 a15 b14 a16 b15 a17 

0.0 0.0 a22 b23 a23 b24 a24 b25 a25 b26 0.0 

0.0 0.0 a12 b11 a13 b12 a14 b13 a15 b14 a16 

0.0 0.0 a21 b22 a22 b23 a23 b24 a24 b25 a25 

  

 Main diagonal 

 

Mtx is the moment at the left end of an element because the element is being held there. 

Mtx1 is also the moment at the left end while Mtx2 is the moment at the right end of an element. 

Signs are opposite, typically. M’tx is equal to the slope of the moment. M’ = R1 or R2. 

R1L -Mtx1 -PL2+ Mtx2 = 0         [50] 

R2L -Mtx2 -PL1+ Mtx1 = 0         [51] 

When dealing with a point load and discontinuity at its location, the slope is the same for each 
location to the left or right of the point load.  

Once values are assigned to all matrix locations including the shear moment location, 

solve the determinant of the matrix while increasing P2 each time. When the matrix determinant 

value changes signs, the determinant has crossed zero and P2 has reached the critical buckling 

limit. Value of Pcr with shear, P2, for this problem is .84 kips. 
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The governing equations for deflections when considering lateral torsional buckling are: 

Bx v’’- ф Mty = Mtx 

By u’’- ф Mtx = Mty 

Cw ф’’’ – (Ct + Mxβ) ф’ – Mtx u’ - Mty v’ – (Mtx1 + Mtx2 ) u/L- (Mty1 + Mty2 ) v/L + P(y0/2) ф = 0 

Solve the modified  equations of equilibrium simultaneously using a fourth order central 

difference approach and  aforementioned central difference expressions. These terms are 

substituted into our modified lateral-torsion equations to obtain: 

Bx ( -v2 +16v1 – 30v0 +16 v-1 - v-2)- ф0  Mty = Mtx 

By ( -u2 +16u1 – 30u0 +16 u-1 - u-2)- ф0 Mtx = Mty 

Cw ( - Ф3 + 8ф2 - 13ф1 +  13ф-1 - 8ф-2 + ф-3 )/8h3 – (Ct + Mxβ) ( -ф2 + 8ф1 - 8ф-1 + ф-2 )  

– Mtx ( -u2 + 8u1 – 8u-1 + u-2 ) - Mty ( -v2 + 8v1 – 8v-1 + v-2 ) 

 – (Mtx1 + Mtx2 ) u0/L- (Mty1 + Mty2 ) v0/L + P(y0/2) ф0 = 0 

Setting My to zero,  

a11v-2 + a12v-1 + a13v0 + a14v1 + a15v2 = Mtx       [52a] 

where a11 = -EIx/12h2 ; a12 = 4EIx/3h2 ; a13 = -5EIx/2h2 ; a14 = 4EIx/3h2 ; a15 = -EIx/12h2 ; 

B21u-2 + b22u-1 + b23u0 + b24u1 + b25u2 + c21ф0 = 0.0      [52b] 

where b21 = -EIx/12h2 ; b22 = 4EIx/3h2 ; b23 = -5EIx/2h2 ; b24 = 4EIx/3h2 ; b25 = -EIx/12h2 ; 

c21 = - Mtx 

b31u-2 + b32u-1 + b33u0 + b34u1 + b35u2 + c31ф-3 + c32ф-2 + c33ф-1 + c34ф0 + c35ф1 + c36ф2 + c37ф1 = 0.0 

            [52c] 

where b31 = -Mtx/12h ; b32 = 2Mtx/3h ; b33 = -(Mtx1 + Mtx2)/L ; b34 = -2Mtx/3h ; b35 = Mtx/12h ; 

c31 = Cw/8h3 ; c32 = - Cw/h3 – Ct/12h ; c33 = 13Cw/8h3 + 2Ct/3h; c34 = Py0/2 ;  

c35 = -13Cw/8h3 - 2Ct/3h; c36 =  Cw/h3 + Ct/12h; c37 = - Cw/8h3 . 

For the vertical deflection values, use the same approach  just demonstrated for the 

buckling limit except use the three governing equations and the load vector is not set to zero. 

[K]u = F.  So solve for the deflections using the inverse K matrix, u = [K]-1 F. The vector u contains 

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 9.  
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Table 9.  Central Difference K Matrix for Deflection.  Investigation 2 

Location 1  Location 2  Location 3  Location 4 

V u ф v u ф v u ф v u ф 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 *a13 0.0 0.0 a14 0.0 0.0 a15 0.0 0.0 

0.0 0.0 0.0 0.0 b33 c34 0.0 b34 c35 0.0 b35 c36 

0.0 0.0 0.0 0.0 b23 c21 0.0 b24 0.0 0.0 b25 0.0 

0.0 0.0 0.0 a12 0.0 0.0 a13 0.0 0.0 a14 0.0 0.0 

0.0 0.0 0.0 0.0 b32 c33 0.0 b33 c34 0.0 b34 c35 

0.0 0.0 0.0 0.0 b22 0.0 0.0 b23 c21 0.0 b24 0.0 

 Main diagonal 

Zero out boundaries 

 

For this problem, we used h=1.5 inches and 54 locations. Vertical deflections were 

tabulated based upon given info and applied P2 and P1 loads from laboratory. Values are shown 

in Table 10. 
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Table 10.  Vertical Deflections.  Investigation 2.  Central Difference 

 6” from 

support 

6” from 

support

21” from 

support 

21” from 

support

36” from 

support 

36” from 

support

Load P, kips v1w/s (in.) v1w/o v2w/s v2w/o v3w/s v3w/o 



      

      

      

      

      

      



2.2.2 Central Difference Solution Without Shear Deformation 

For this approach, we use the three central difference governing equations previously 

developed to determine vertical, horizontal, and lateral deflection values along the beam. Mx = 

Mbending  and  Ps = 0. The ends of conjugate beam are pinned-pinned. So, boundary conditions are 

set for pinned-pinned in the finite difference model.  

 

Problem 2.2.2. Lab Investigation 2 

Given:  3” x 3” x 1/4 “ fiberglass reinforced plastic beam in Figure 5.  L=79.5” .  E= 2997 ksi.  

Ix = 3.17 in. 4 .  G = 450 ksi. Iy = 1.13 in. 4.  Kt = .046 .  A = 2.13 in.2.  Iw = 2.13 in.6 

Find: Buckling limit and vertical deflections without shear.  

For vertical deflections without shear, we simply do not apply the shear moment to the 

beam. In other words Ps = 0.0 and Mtx = Mxbending.  Procedure is exactly same as calculating critical 

load and vertical deflection outlined in previous problem which included shear. However, P loads 

from lab experiments are P1 not P2. Therefore, Mcr = P1L1L2/L for this problem. See tabulated 
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vertical deflection values for this problem in Table 6. P1 equals .88 kips at the buckling limit 

calculated using this approach. Mtx = 15.69 k-in. 

2.2.3 ASCE LRFD Method 

The ASCE buckling limit equation was developed using the classical approach solution for 

a simple beam solution introduced by Galambos. The LTB equations used in the classical 

approach were 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [53] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV – (Gkt + Mx β) ф’’  - Mx u’’ – M’x  βx ф     = 0      [54] 

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide 

for Pultruded Members. 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5       [55] 

Where D j = Gkt; Cw = Iw; and Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC). 

 

Problem 2.2.3. Lab Investigation 2  

Given: 3” x 3” x ¼” fiberglass reinforced plastic beam in Figure 5. L=79.5”, ELF=3194 ksi.  

Ix=3.17in.4. G=450 ksi. Iy =1.13 in.4.  kt = .046. A=2.13 in2.  Iw = 2.13 in. 6. 

Find: Buckling limit. 

The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross section is 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5  

Where Lb is the braced length, 

Cw is warping constant, 

ELF is the Modulus Elasticity of the longitudinal flange,  

Dj = GKt and is the torsional rigidity, and  

Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC) 

And is the moment modification factor.  
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MA, MB and MC are moments at locations .25L, .5L, and .75L, respectively. See Figure 9. 

Location of Mmax varies with location of point load and equilibrium conditions. For this problem, 

Cb = 1.41. Mmax = PL1L2/L. Plugging in moment values, Mn=18.68 k-in. Knowing the relationship 

between the critical moment and critical load, P1, without shear moment; we can calculate the 

critical load, P1. P1 = ML/L1L2 = 1.05 kips.  



  27.0” MB MC 

  MA MMax = PL1L2/L

1 2 L1 = 27.0” 

 .25L    .5L .75L L2 = 52.5” 

 79.5” 

  



Figure 9. Moment Diagram for Investigation 2 

 

Now. find the relationship of P1, the critical load without shear moment, and P2, the 

critical load with shear moment. P1 is associated with the moments on the conjugate beam when 

Ms is not present. P2 is associated with the moments on the conjugate beam when Ps is present. 

The resultants of the moments on the conjugate beam when considering and not considering 

shear moment are of the same value or  

(½)(P1L1L2/L )(L1)  +  (½)(P1L1L2/L )(L2)  =  (½)(P2L1L2/L )(L1)  +  (½)(P2L1L2/L )(L2)  +  Ps            

Rearranged 

P2/P1 = [(½)(L1L2/L )(L1)  +  (½)(L1L2/L )(L2) ] / [ (½)(P2L1L2/L )(L1)  +  (½)(P2L1L2/L )(L2)  +  αEIx/AG ] 

Solving we get P2/P1 = .956  Therefore, P2 = 1.00 

  


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2.2.4 Summary of Maximum Loads 

Critical loads are summaraized in Table 11 and will be compared to experimental load in 

Chapter 4. Deflections will be compared also.  

 

Table 11. Summary of Buckling Limits. Investigation 2 

Section Method Pcr 
2.2.1 Central Difference with Shear .84 kips 
2.2.2 Central Difference without Shear .88 kips 
2.2.3 ASCE-LRFD Buckling Limit 1.00 kips 
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2.3 Stability Analysis for Two Span Beam with Point Load Midspan. Longer Span. 

Numerical formulations for the critical buckling load and translational and rotational 

deflections are presented for Investigation 3 in this section. Numerical methods formulated 

include fourth order central difference. Critical buckling load as determined from the ASCE-LRFD 

Prestandard is also presented. Beam loading with boundary conditions and moments on 

conjugate beam are defined in Figure 10.               

   

                                                                                      P 

 

 

                                                        

 Ps 

                                                                                                                                                 Shear Moment 

   Diagram, Ps/EI 



 

 

                                                         13.725P/EI  

                                                                                                                                                  M/EI Conjugate 

                                                                                       10.045P/EI Beam

                                                      

                                                            PsL/4EI 

      Shear Deflection Diagram 

 

             37.5” 37.5” 30.0” 

               

                                                  Figure 10. Investigation 3: Deflection Diagrams

  

//// //// //// 

//// 
//// 
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2.3.1 Central Difference Solution With Shear Deformation 

For this approach, use the three central difference governing equations previously 

developed to determine vertical, horizontal and lateral deflection values along the beam. Mx = 

Mtx. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear 

moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned. 

So, boundary conditions are set for pinned-pinned in the finite difference model.  Depending up 

on the length of an element of eccentricity, the shear moment Ps value varies from model to 

model.  Ps = P2 αEIx /(eAG) where e is the eccentricity or length of the element. With shear, Mtx = 

Mbending + Ps on the conjugate beam.  

Problem 2.3.1. Lab Investigation 3 

Given: 4”x4”x1/4” fiberglass reinforced plastic beam in Figure 6. L=75”. E=2997ksi. Ix = 7.935 
in.4. G = 450 ksi .   Iy = 2.67 in.4 .  kt  =.0612.  A = 2.85 in2. Iw = 9.375 in. 6. 

Find: Buckling limit and vertical deflections with shear. 

As shown in Galambos, the 4th order solution of the second order bending equilibrium 

equation including the angle of twist is: 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [46] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV + Gkt ф’’  - Mtx u’’ – M’tx u’  - ( M’tx1 + M’tx2 ) u/L   - ( Mtx1 + Mtx2 ) u’/L   = 0  [47] 

 

Both equations take into consideration that M’tx is not zero for a beam with a point load. 

Symmetrical properties of I beam have also been taken into consideration. Next, plug the 4th 

order central difference terms into the aforementioned lateral-torsion equations of equilibrium 

and obtain  

a17u3 +a16u2 + a15u1 + a14u0 + a13u-1 + a12u-2 + a11u-3 + b15ф2 + b14ф1 + b13ф0 + b12ф-1 + b11ф-2 = 0 

            [48] 

a25u2 +a24u1 + a23u0 + a22u-1 + a21u-2 + b27ф3 + b26ф2 + b25ф1 + b24ф0 + b23ф-1 + b22ф-2 + b21ф-3 = 0 

            [49] 
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where a11 = -EIy/6h4 ; a12 = 2EIy/h4 ; a13 = -13EIy/2h4 ; a14 = 28EIy/3h4 ; a15 = -13EIy/2h4 ; 

a16 = 2EIy/h4 ; a17 = -EIy/6h4 ; b11 = (-Mtx/12h2 + M’tx/6h) ; b12 = (4Mtx/3h2 -4 M’tx/3h); 

b13 = -(5Mtx/2h2 ; b14 = (4Mtx/3h2 + 4 M’tx/3h); and b15 = -(Mtx/12h2 + M’tx/6h) , and 

a21 = (Mtx/12h2 - M’tx/12h) – ((Mtx1 +Mtx2)/ 12hL);  

a22 = (-4Mtx/3h2 + 2M’tx/3h) + (2(Mtx1 +Mtx2)/ 3hL); a23 = (5Mtx/2h2 - ((M’tx1 +M’tx2)/ L); 

a24 = (-4Mtx/3h2 - 2M’tx/3h) - (2(Mtx1 +Mtx2)/ 3hL); 

a25 = (Mtx/12h2 + M’tx/12h) + ((Mtx1 +Mtx2)/ 12hL);  

b21 = -EIy/6h4 ; b22 = 2EIy/h4 + GKt/12h2 ; b23 = -13EIy/2h4 - 4GKt/3h2 ; b24 = 28EIy/3h4 ; 

b25 = -13EIy/2h4 - 4GKt/3h2 ; b26 = 2EIy/h4 + GKt/12h2 ; and b27 = -EIy/6h4 . 

 

Next. Define h to be a fraction of L. For this problem, L=75.0 in. and h=3.75 in. This gives 

21 locations. K matrix is shown in Table 12. Boundary conditions are associated with locations 1 

and 21, and ghost boundary conditions are associated with locations 2,3, 19, and 20. The term 

ghost is because columns are extended out by two more imaginary locations beyond the 

boundary location. This allows modifying the equations to identify where supports are pinned or 

fixed.  For example, the term a14 extended out two terms beyond the boundary gives the two 

terms a12 and a11, The modified term *a14 in the location of term a14, and *a14 = a14 - a12; and *a15 

= a15 – a11, if support is pinned. For fixed support, *a14 = a14 + a12; and *a15 = a15 + a11 *b13, *a23, 

*b24, and *b25 also need to be determined.  
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Table 12. Central Diff. K Matrix for Buckling Limit. Investigation 3 

 

 1 2 3 Location 

u ф u ф u ф 

0.0 0.0 0.0 0.0 0.0 Supports at locations 1 and 21 

0.0 0.0 0.0 Zero out boundary  

0.0 0.0 *a14 b13 *a15 b14 a16 b15 a17 0.0 0.0 

0.0 0.0 a23 b24 a24 b25 a25 b26 0.0 b27 0.0 

0.0 0.0 a13 b12 a14 b13 a15 b14 a16 b15 a17 

0.0 0.0 a22 b23 a23 b24 a24 b25 a25 b26 0.0 

0.0 0.0 a12 b11 a13 b12 a14 b13 a15 b14 a16 

0.0 0.0 a21 b22 a22 b23 a23 b24 a24 b25 a25 

  

 Main diagonal 

 

Mtx is the moment at the left end of an element because the element is being held there. 

Mtx1 is also the moment at the left end while Mtx2 is the moment at the right end of an element. 

Signs are opposite, typically. M’tx is equal to the slope of the moment. M’ = R1 or R2. 

R1L -Mtx1 -PL2+ Mtx2 = 0         [50] 

R2L -Mtx2 -PL1+ Mtx1 = 0         [51] 

When dealing with a point load and discontinuity at its location, the slope is the same for each 

location to the left or right of the point load.  

Once values are assigned to all matrix locations including the shear moment location, 

solve the determinant of the matrix while increasing P2 each time. When the matrix determinant 

value changes signs, the determinant has crossed zero and P2 has reached the critical buckling 

limit. Value of Pcr with shear, P2, for this problem is 2.7 kips. 

The governing equations for deflections when considering lateral torsional buckling are: 



46 
 

Bx v’’- ф Mty = Mtx 

By u’’- ф Mtx = Mty 

Cw ф’’’ – (Ct + Mxβ) ф’ – Mtx u’ - Mty v’ – (Mtx1 + Mtx2 ) u/L- (Mty1 + Mty2 ) v/L + P(y0/2) ф = 0 

Solve the modified equations of equilibrium simultaneously using a fourth order central 

difference approach and aforementioned central difference expressions. These terms are 

substituted into our modified lateral-torsion equations to obtain: 

Bx ( -v2 +16v1 – 30v0 +16 v-1 - v-2)- ф0  Mty = Mtx 

By ( -u2 +16u1 – 30u0 +16 u-1 - u-2)- ф0 Mtx = Mty 

Cw ( - Ф3 + 8ф2 - 13ф1 +  13ф-1 - 8ф-2 + ф-3 )/8h3 – (Ct + Mxβ) ( -ф2 + 8ф1 - 8ф-1 + ф-2 )  

– Mtx ( -u2 + 8u1 – 8u-1 + u-2 ) - Mty ( -v2 + 8v1 – 8v-1 + v-2 ) 

 – (Mtx1 + Mtx2 ) u0/L- (Mty1 + Mty2 ) v0/L + P(y0/2) ф0 = 0 

Setting My to zero,  

a11v-2 + a12v-1 + a13v0 + a14v1 + a15v2 = Mtx       [52a] 

Where a11 = -EIx/12h2 ; a12 = 4EIx/3h2 ; a13 = -5EIx/2h2 ; a14 = 4EIx/3h2 ; a15 = -EIx/12h2 ; 

B21u-2 + b22u-1 + b23u0 + b24u1 + b25u2 + c21ф0 = 0.0      [52b] 

Where b21 = -EIx/12h2 ; b22 = 4EIx/3h2 ; b23 = -5EIx/2h2 ; b24 = 4EIx/3h2 ; b25 = -EIx/12h2 ; 

c21 = - Mtx 

b31u-2 + b32u-1 + b33u0 + b34u1 + b35u2 + c31ф-3 + c32ф-2 + c33ф-1 + c34ф0 + c35ф1 + c36ф2 + c37ф1 = 0.0 

            [52c] 

where b31 = -Mtx/12h ; b32 = 2Mtx/3h ; b33 = -(Mtx1 + Mtx2)/L ; b34 = -2Mtx/3h ; b35 = Mtx/12h ; 

c31 = Cw/8h3 ; c32 = - Cw/h3 – Ct/12h ; c33 = 13Cw/8h3 + 2Ct/3h; c34 = Py0/2 ;  

c35 = -13Cw/8h3 - 2Ct/3h; c36 =  Cw/h3 + Ct/12h; c37 = - Cw/8h3 . 

For the vertical deflection values, use the same approach, just demonstrated for the 

buckling limit except use the three governing equations and the load vector is not set to zero. 

[K]u = F. So solve for the deflections using the inverse K matrix, u = [K]-1 F. The vector u contains 

the unknowns v, u, and phi along the member.  K matrix is demonstrated in Table 13.  
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Table 13.  Central Difference K Matrix for Deflections.  Investigation 3 

 

Location 1  Location 2  Location 3  Location 4 

V u ф v u ф v u ф v u ф 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 *a13 0.0 0.0 a14 0.0 0.0 a15 0.0 0.0 

0.0 0.0 0.0 0.0 b33 c34 0.0 b34 c35 0.0 b35 c36 

0.0 0.0 0.0 0.0 b23 c21 0.0 b24 0.0 0.0 b25 0.0 

0.0 0.0 0.0 a12 0.0 0.0 a13 0.0 0.0 a14 0.0 0.0 

0.0 0.0 0.0 0.0 b32 c33 0.0 b33 c34 0.0 b34 c35 

0.0 0.0 0.0 0.0 b22 0.0 0.0 b23 c21 0.0 b24 0.0 

 Main diagonal 

Zero out boundaries 

 

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were 

tabulated based upon given info and applied P2 loads from laboratory.  See Table 14 

        

 

                     








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

Table 14.  Vertical Deflections.  Investigation 3.  Central Difference 

 32.5” from 

support

32.5” from 

support

29” from 

support

29” from 

support

4” from 

support

4” from 

support

Load P, kips v1w/s(in.) v1w/o v2w/s v2w/o v3w/s v3w/o

      

      

      

      

      

      

      

      

      

      

      

      



2.3.2 Central Difference Solution Without Shear Deformation 

For this approach, we use the three central difference governing equations previously 

developed to determine vertical, horizontal, and lateral deflection values along the beam. 

Mx=Mbending and Ps=0. The ends of the conjugate beam are pinned-pinned. So, Boundary 

conditions are set for pinned-pinned in the finite difference model. 

Problem 2.3.2. Lab Investigation 3 

Given: 4”x4”x1/4” fiberglass reinforced plastic beam in Figure 6. L=75”. E=2997ksi. Ix = 7.935 
in.4. G = 450 ksi .   Iy = 2.67 in.4 .  kt  =.0612.  A = 2.85 in2. Iw = 9.375 in. 6. 

Find: Buckling limit and vertical deflections without shear.  
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For vertical deflections without shear, we simply do not apply the shear moment to the 

beam. In other words Ms = 0.0 and Mtx = Mxbending. Procedure is exactly same as calculating critical 

load and vertical deflection outlined in previous problem which included shear. However, P loads 

from lab experiments are P1 not P2. Therefore, Mcr = 13.73P1 for this problem. P1 equals 3.2 kips 

at the buckling limit calculated using this approach Mtx = 43.97 k-in. and vertical deflections are 

shown in Table 14. 

2.3.3 ASCE LRFD Method 

The ASCE buckling limit equation was developed using the classical approach solution for 

a simple beam solution introduced by Galambos. The LTB equations used in the classical 

approach were 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [53] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV – (Gkt + Mx β) ф’’  - Mx u’’ – M’x  βx ф     = 0      [54] 

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide 

for Pultruded Members. 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5       [55] 

where D j = Gkt; Cw = Iw; and Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC). 

 

Problem 2.3.3. Lab Investigation 3 

Given: 4”x4”x1/4” fiberglass reinforced plastic beam in Figure 6. L=75”. E=2997ksi. Ix = 7.935 
in.4. G = 450 ksi .   Iy = 2.67 in.4 .  kt  =.0612.  A = 2.85 in2. Iw = 9.375 in. 6. 

Find: Buckling limit. 

The ASCE-LRFD equation for lateral-torsional buckling moment for an I-shaped cross 

section is 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5  
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where Lb is the braced length,  

Cw is the warping constant, 

ELF is the Modulus Elasticity of the longitudinal flange,  

DJ = Gkt and is the torsional rigidity, and  

Cb  =  12.5Mmax/(2.5Mmax+3MA+4MB+3MC) 

and is the moment modification factor.  

MA, MB and MC are moments at locations .25L, .5L, and .75L, respectively. See Figure 11.  

                                                                     

 b1 b2



  MA MB MC

   L1 = 37.5”

1 2 L2 = 37.5”

 .25L .5L .75L

  

 75.0”

 

Figure 11. Moment Diagram for Investigation 3  

 

Location of Mmax varies with location of point load and equilibrium conditions. For this 

problem, Mmax = MB = 13.73P and M2 = 10.04. Plugging in moment values, Cb = 1.46. Plugging in 

given values and Cb, Mn = 51.53 k-in.  

Knowing the relationship between the critical moment and critical load, P1, without shear 

moment; we can calculate the critical load, P1.  

P1 = Mn/ 13.73 = 3.75 kips 

Now. We must find the relationship of P1, the critical load without shear moment, and P2, the 
critical load with shear moment.  


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P1 is associated with the moments on the conjugate beam when Ms is not present. P2 is 

associated with the moments on the conjugate beam when Ps is present. The resultant of the 

moments on the conjugate beam when considering and not considering shear moment is of the 

same value or:  

.5 (13.73P1 )L1  +  .5(13.73P1 ) b1  + .5(10.045P1 ) b2 = .5 (13.73P1 )L1  +  .5(13.73P1 ) b1  + 

.5(10.045P1 ) b2  + Ps          [62] 

Rearranged and solved, we get P2/P1  = .843. Therefore, P2 = 3.16 kips 

 

2.3.4 Summary of Maximum Loads 

Critical loads are summarized in Table 15 and will be compared to experimental load in 

Chapter 4. Deflections will be compared also    

 

Table 15. Summary of Buckling Loads. Investigation 3 

Section Method Pcr 
2.3.1 Central Difference with Shear 2.7 kips 
2.3.2 Central Difference without Shear 3.2 kips 
2.3.3 ASCE_LRFD Buckling Limit 3.16 kips 
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2.4 Stability Analysis for Two Span Beam with Point Load Midspan. Spans Near Equal. 

Numerical formulations for the critical buckling load and translational and rotational 

deflections are presented for Investigation 4 in this section. Numerical methods include fourth 

order central difference. Critical buckling load as determined from the ASCE-LRFD Prestandard is 

also presented. Beam loading with boundary conditions and moments on conjugate beam are 

defined in Figures 12.  

 

                                                    P 

 

                        _________________________________ 

 

                                                     Ps

 Shear Moment Load Diagram 

  

 

                                            10.88 P/EI          

                                                                                                                                  M/EI Conjugate Beam

 

                                                                    5.25P/EI            

 PsL/4EI 

                                                      

                                                                                                                                  Shear Deflection

     

                                  27”                     27”                             51”                                                

 

Figure 12. Investigation 4: Deflection Diagrams 

//// //// //// 

//// //// 
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2.4.1 Central Difference Solution With Shear Deformation 

For this approach, use the three central difference governing equations previously 

developed to determine vertical, horizontal and lateral deflection values along the beam. Mx = 

Mtx. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear 

moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned. 

So, boundary conditions are set for pinned-pinned in the finite difference model. Depending up 

on the length of an element of eccentricity, the shear moment Ps value varies from model to 

model.  Ps = P2 αEIx /(eAG) where e is the eccentricity or length of the element. With shear, Mtx = 

Mbending + Ps on the conjugate beam.  

Problem 2.4.1. Lab Investigation 4 

Given: 3”x3” x ¼” fiberglass reinforced plastic beam in Figure 7.  L=54”.  E=2997 ksi. Ix= 3.17in.4. 
G = 450 ksi.   Iy = 1.13 in.4.  kt = .046.  A = 2.13 in2.   Iw  = 2.13  in.6. 

Find: Buckling limit and vertical deflections with shear.  

As shown in Galambos, the 4th order solution of the second order bending equilibrium 

equation including the angle of twist is: 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [46] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV + Gkt ф’’  - Mtx u’’ – M’tx u’  - ( M’tx1 + M’tx2 ) u/L   - ( Mtx1 + Mtx2 ) u’/L   = 0  [47] 

Both equations take into consideration that M’tx is not zero for a beam with a point load. 

Symmetrical properties of I beam have also been taken into consideration.  Next, plug the 4th 

order central difference terms into the aforementioned lateral-torsion equations of equilibrium 

and obtain  

a17u3 +a16u2 + a15u1 + a14u0 + a13u-1 + a12u-2 + a11u-3 + b15ф2 + b14ф1 + b13ф0 + b12ф-1 + b11ф-2 = 0 

            [48] 

a25u2 +a24u1 + a23u0 + a22u-1 + a21u-2 + b27ф3 + b26ф2 + b25ф1 + b24ф0 + b23ф-1 + b22ф-2 + b21ф-3 = 0 

            [49] 
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where a11 = -EIy/6h4 ; a12 = 2EIy/h4 ; a13 = -13EIy/2h4 ; a14 = 28EIy/3h4 ; a15 = -13EIy/2h4 ; 

a16 = 2EIy/h4 ; a17 = -EIy/6h4 ; b11 = (-Mtx/12h2 + M’tx/6h) ; b12 = (4Mtx/3h2 -4 M’tx/3h); 

b13 = -(5Mtx/2h2 ; b14 = (4Mtx/3h2 + 4 M’tx/3h); and b15 = -(Mtx/12h2 + M’tx/6h) , and 

a21 = (Mtx/12h2 - M’tx/12h) – ((Mtx1 +Mtx2)/ 12hL);  

a22 = (-4Mtx/3h2 + 2M’tx/3h) + (2(Mtx1 +Mtx2)/ 3hL); a23 = (5Mtx/2h2 - ((M’tx1 +M’tx2)/ L); 

a24 = (-4Mtx/3h2 - 2M’tx/3h) - (2(Mtx1 +Mtx2)/ 3hL); 

a25 = (Mtx/12h2 + M’tx/12h) + ((Mtx1 +Mtx2)/ 12hL);  

b21 = -EIy/6h4 ; b22 = 2EIy/h4 + GKt/12h2 ; b23 = -13EIy/2h4 - 4GKt/3h2 ; b24 = 28EIy/3h4 ; 

b25 = -13EIy/2h4 - 4GKt/3h2 ; b26 = 2EIy/h4 + GKt/12h2 ; and b27 = -EIy/6h4 . 

Next.  We define h to be a fraction of L.   For this problem, L=54 in. and h=2.7 in.  This 

gives us 21 locations.  K matrix shown in table 16.  Boundary conditions are associated locations 

1 and 21, and ghost boundary conditions are associated with locations 2,3, 19, and 20.  The term 

ghost is because columns extend out by two more imaginary locations beyond the boundary 

locations. This allows us to modify equations to identify whether supports are pinned or fixed. 

For example, the term a14 extended out two terms beyond the boundary gives us the two terms 

a12 and a11. The modified term *a14 goes in the location of term a14, and *a14 = a14 - a12 ; and *a15 

= a15 – a11 , if support is pinned. For fixed support, *a14 = a14 + a12   ; and *a15 = a15 + a11. *b13, *a23, 

*b24, and *b25 also need to be determined.  
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Table 16. Central Difference K Matrix for Buckling Limit. Investigation 4 

 

 1 2 3 Location 

u ф u ф u ф 

0.0 0.0 0.0 0.0 0.0 Supports at locations 1 and 21 

0.0 0.0 0.0 Zero out boundary  

0.0 0.0 *a14 b13 *a15 b14 a16 b15 a17 0.0 0.0 

0.0 0.0 a23 b24 a24 b25 a25 b26 0.0 b27 0.0 

0.0 0.0 a13 b12 a14 b13 a15 b14 a16 b15 a17 

0.0 0.0 a22 b23 a23 b24 a24 b25 a25 b26 0.0 

0.0 0.0 a12 b11 a13 b12 a14 b13 a15 b14 a16 

0.0 0.0 a21 b22 a22 b23 a23 b24 a24 b25 a25 

  

 Main diagonal 

 

Mtx is the moment at the left end of an element because the element is being held there. 

Mtx1 is also the moment at the left end while Mtx2 is the moment at the right end of an element. 

Signs are opposite, typically. M’tx is equal to the slope of the moment. M’ = R1 or R2. 

R1L -Mtx1 -PL2+ Mtx2 = 0         [50] 

R2L -Mtx2 -PL1+ Mtx1 = 0         [51] 

When dealing with a point load and discontinuity at its location, the slope is the same for 

each location to the left or right of the point load. Once values are assigned to all matrix locations 

including the shear moment location, solve the determinant of the matrix while increasing P2 

each time. When the matrix determinant value changes signs, the determinant has crossed zero 

and P2 has reached the critical buckling limit. Value of Pcr with shear, P2, for this problem is 2.3 

kips. 
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The governing equations for deflections when considering lateral torsional buckling are: 

Bx v’’- ф Mty = Mtx 

By u’’- ф Mtx = Mty 

Cw ф’’’ – (Ct + Mxβ) ф’ – Mtx u’ - Mty v’ – (Mtx1 + Mtx2 ) u/L- (Mty1 + Mty2 ) v/L + P(y0/2) ф = 0 

Solve the modified equations of equilibrium simultaneously using a fourth order central 

difference approach and aforementioned central difference expressions. These terms are 

substituted into our modified lateral-torsion equations to obtain: 

Bx ( -v2 +16v1 – 30v0 +16 v-1 - v-2)- ф0  Mty = Mtx 

By ( -u2 +16u1 – 30u0 +16 u-1 - u-2)- ф0 Mtx = Mty 

Cw ( - Ф3 + 8ф2 - 13ф1 +  13ф-1 - 8ф-2 + ф-3 )/8h3 – (Ct + Mxβ) ( -ф2 + 8ф1 - 8ф-1 + ф-2 )  

– Mtx ( -u2 + 8u1 – 8u-1 + u-2 ) - Mty ( -v2 + 8v1 – 8v-1 + v-2 ) 

 – (Mtx1 + Mtx2 ) u0/L- (Mty1 + Mty2 ) v0/L + P(y0/2) ф0 = 0 

Setting My to zero,  

a11v-2 + a12v-1 + a13v0 + a14v1 + a15v2 = Mtx       [52a] 

Where a11 = -EIx/12h2 ; a12 = 4EIx/3h2 ; a13 = -5EIx/2h2 ; a14 = 4EIx/3h2 ; a15 = -EIx/12h2 ; 

B21u-2 + b22u-1 + b23u0 + b24u1 + b25u2 + c21ф0 = 0.0      [52b] 

where b21 = -EIx/12h2 ; b22 = 4EIx/3h2 ; b23 = -5EIx/2h2 ; b24 = 4EIx/3h2 ; b25 = -EIx/12h2 ; 

c21 = - Mtx 

b31u-2 + b32u-1 + b33u0 + b34u1 + b35u2 + c31ф-3 + c32ф-2 + c33ф-1 + c34ф0 + c35ф1 + c36ф2 + c37ф1 = 0.0 

            [52c] 

where b31 = -Mtx/12h ; b32 = 2Mtx/3h ; b33 = -(Mtx1 + Mtx2)/L ; b34 = -2Mtx/3h ; b35 = Mtx/12h ; 

c31 = Cw/8h3 ; c32 = - Cw/h3 – Ct/12h ; c33 = 13Cw/8h3 + 2Ct/3h; c34 = Py0/2 ;  

c35 = -13Cw/8h3 - 2Ct/3h; c36 =  Cw/h3 + Ct/12h; c37 = - Cw/8h3 . 

For the vertical deflection values, use the same approach  just demonstrated for the 

buckling limit except use the three governing equations and the load vector is not set to zero. 

[K]u = F. So solve for the deflections using the inverse K matrix, u = [K]-1 F. The vector u contains 

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 17.  
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Table 17.  Central Difference K Matrix for Deflections.  Investigation 4 

 

Location 1  Location 2  Location 3  Location 4 

V u ф v u ф v u ф v u ф 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 *a13 0.0 0.0 a14 0.0 0.0 a15 0.0 0.0 

0.0 0.0 0.0 0.0 b33 c34 0.0 b34 c35 0.0 b35 c36 

0.0 0.0 0.0 0.0 b23 c21 0.0 b24 0.0 0.0 b25 0.0 

0.0 0.0 0.0 a12 0.0 0.0 a13 0.0 0.0 a14 0.0 0.0 

0.0 0.0 0.0 0.0 b32 c33 0.0 b33 c34 0.0 b34 c35 

0.0 0.0 0.0 0.0 b22 0.0 0.0 b23 c21 0.0 b24 0.0 

 Main diagonal 

Zero out boundaries 

 

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were 

tabulated based upon given info and applied P2 loads from laboratory. See Table 18. 
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Table 18.  Vertical Deflections.  Investigation 4. Central Difference 

 21.5” from support  19” from support  4” from support 

Load P, kips v1w/s(in.) v1w/o v2w/s v2w/o v3w/s v3w/o

      

      

      

      

      

      

      

      

      

      

      

      

      

 

 

2.4.2 Central Difference Solution Without Shear Deformation 

For this approach, we use the three central difference governing equations previously 

developed to determine vertical, horizontal, and lateral deflection values along the beam. Mx= 

Mbending and Ps=0. The ends of the conjugate beam are pinned-pinned. So, boundary conditions 

are set for pinned-pinned in the finite difference model.  

Problem 2.4.2. Lab Investigation 4 

Given: 3”x3” x ¼” fiberglass reinforced plastic beam in Figure 7.  L=54”.  E=2997 ksi. Ix= 3.17in.4. 
G = 450 ksi.   Iy = 1.13 in.4.  kt = .046.  A = 2.13 in2.   Iw  = 2.13  in.6. 

Find: Buckling limit and vertical deflections without shear.  
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For vertical deflections without shear, we simply do not apply the shear moment to the 

beam. In other words Ps = 0.0 and Mtx = Mbending. Procedure is exactly same as calculating critical 

load and vertical deflection outlined in previous problem which included shear. However, P loads 

from lab experiments are P1 not P2. Therefore, Mcr = 10.9P for this problem. P1 equals 2.63 kips 

at the buckling limit calculated using this approach.  Mtx = 28.67 k-in. and vertical deflections are 

shown in Table 18. 

 

2.4.3 ASCE LRFD Method 

The ASCE buckling limit equation was developed using the classical approach solution for 

a simple beam solution introduced by Galambos. The LTB equations used in the classical 

approach were 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [53] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV – (Gkt + Mx β) ф’’  - Mx u’’ – M’x  βx ф     = 0      [54] 

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide 
for Pultruded Members. 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5       [55] 

where D j = Gkt; Cw = Iw; and Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC).  

 

Problem 2.4.3.  Lab Investigation 4 

Given: 3”x3” x ¼” fiberglass reinforced plastic beam in Figure 7.  L=54”.  E=2997 ksi. Ix= 3.17in.4. 
G = 450 ksi.   Iy = 1.13 in.4.  kt = .046.  A = 2.13 in2.   Iw  = 2.13  in.6. 

Find: Buckling limit.  

The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross 

section is 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5 

Where Lb is the braced length,  

Cw is the warping constant,  
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ELF is the Modulus Elasticity of the longitudinal flange,  

Dj = Gkt and is the torsional rigidity, and 

Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC) 

And is the moment modification factor.  

MA, MB and MC are moments at locations .25L, .5L, and .75L, respectively. See Figure 13 

Location of Mmax varies with location of point load and equilibrium conditions. For this problem, 

Mmax = MB = 10.9P and M2 = 5.2P. Plugging in moment values, Cb = 1.42. Plugging in given values 

and Cb, Mn= 32.89 kips. 



    b1 b2



  MB MC 

 MA

1 2 L1 = 27.0”   

 .25L    .5L     .75L L2 = 27.0”   

  

 54.0 ”       

 

 

Figure 13.  Moment Diagram for Investigation 4 

 

 

 

 

 

 

 


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Knowing the relationship between the critical moment and critical load, P1, without 

shear moment; we can calculate the critical load, P1.  

P1 = Mn/10.9 = 3.02 kips  

Now. We must find the relationship of P1, the critical load without shear moment, and P2, the 

critical load with shear moment.  

P1 is associated with the moments on the conjugate beam when Ps is not present. P2 is 

associated with the moments on the conjugate beam when Ms is present. The resultant of the 

moment on conjugate the beam when considering and not considering shear moment is of the 

same value or  

.5(10.9P1 )L1  +  .5(10.9P1) b1 - .5(5.2P1) b2 =  .5(10.9P2)L1  +  .5(10.9P2) b1 - .5(5.2P2) b2 + Ps 

Rearranged and solved, we get P2/P1 = .873. Therefore, P2 = 2.64 kips.  

 

2.4.4 Summary of Maximum Loads  

Critical loads are summarized in Table 19 and will be compared to experimental load in 

Chapter. Deflections will be compared also. Pcr 

 

Table 19. Summary of Critical Buckling Loads. Investigation 4 

Section Method Pcr 
2.4.1 Central Difference with Shear Deformation 2.3 kips 
2.4.2 Central Difference without Shear Deformation 2.63 kips 
2.4.3 ASCE-LRFD Method 2.64 kips 
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2.5 Stability Analysis for Two Span Beam with Point Load Off Center 

Numerical formulations for the critical buckling load and translational and rotational 

deflections are presented for Investigation 5 in this section. Numerical methods formulated are 

sine approximation and fourth order central difference. Critical buckling load as determined from 

the ASCE-LRFD Prestandard is also presented. Beam loading with boundary conditions and 

moments on conjugate beam are defined in Figures 14.           



 P 

 

 

    

 Ps 

 Shear Moment Diagram

 

 

 14.57P/EI 

 M/EI on Conjugate

  9.05P/EI 

 

 PsL1L2/L 

 Shear Deflection 

 

 

 27” 52.5” 25.5” 

 

 Figure 14. Investigation 5: Deflection Diagrams 

  

//// 

//// //// 

//// //// 
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Stability Analysis using Central Difference approach will be presented for beam shown in Figure 
12, then ASCE LRFD guidelines buckling solution will be presented.  

2.5.1 Central Difference Solution With Shear Deformation 

For this approach, use the three central difference governing equations previously 

developed to determine vertical, horizontal and lateral deflection values along the beam. Mx = 

Mtx. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear 

moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned. 

So, boundary conditions are set for pinned-pinned in the finite difference model. Depending up 

on the length of an element of eccentricity, the shear moment Ps value varies from model to 

model.  Ps = P2 αEIx /(eAG) where e is the eccentricity or length of the element. With shear, Mtx = 

Mbending + Ps on the conjugate beam.  

Problem 2.5.1. Lab Investigation 5 

Given: 3”x3” x ¼” fiberglass reinforced plastic beam in Figure 8.  L= 79.5”.  E = 2997 ksi.  Ix = 3.17 
in. 4 .  G = 450 ksi.  Iy = 1.13 in.4.  k = .046.  A = 2.13 in. 2 .  Iw = 2.13 in. 6. 

Find: Buckling limit and vertical deflections with shear.  

As shown in Galambos, the 4th order solution of the second order bending equilibrium 

equation including the angle of twist is: 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [46] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV + Gkt ф’’  - Mtx u’’ – M’tx u’  - ( M’tx1 + M’tx2 ) u/L   - ( Mtx1 + Mtx2 ) u’/L   = 0  [47] 

Both equations take into consideration that M’tx is not zero for a beam with a point load. 

Symmetrical properties of I beam have also been taken into consideration.  Next, plug the 4th 

order central difference terms into the aforementioned lateral-torsion equations of equilibrium 

and obtain  

a17u3 +a16u2 + a15u1 + a14u0 + a13u-1 + a12u-2 + a11u-3 + b15ф2 + b14ф1 + b13ф0 + b12ф-1 + b11ф-2 = 0 

            [48] 
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a25u2 +a24u1 + a23u0 + a22u-1 + a21u-2 + b27ф3 + b26ф2 + b25ф1 + b24ф0 + b23ф-1 + b22ф-2 + b21ф-3 = 0 

            [49] 

where a11 = -EIy/6h4 ; a12 = 2EIy/h4 ; a13 = -13EIy/2h4 ; a14 = 28EIy/3h4 ; a15 = -13EIy/2h4 ; 

a16 = 2EIy/h4 ; a17 = -EIy/6h4 ; b11 = (-Mtx/12h2 + M’tx/6h) ; b12 = (4Mtx/3h2 -4 M’tx/3h); 

b13 = -(5Mtx/2h2 ; b14 = (4Mtx/3h2 + 4 M’tx/3h); and b15 = -(Mtx/12h2 + M’tx/6h) , and 

a21 = (Mtx/12h2 - M’tx/12h) – ((Mtx1 +Mtx2)/ 12hL);  

a22 = (-4Mtx/3h2 + 2M’tx/3h) + (2(Mtx1 +Mtx2)/ 3hL); a23 = (5Mtx/2h2 - ((M’tx1 +M’tx2)/ L); 

a24 = (-4Mtx/3h2 - 2M’tx/3h) - (2(Mtx1 +Mtx2)/ 3hL); 

a25 = (Mtx/12h2 + M’tx/12h) + ((Mtx1 +Mtx2)/ 12hL);  

b21 = -EIy/6h4 ; b22 = 2EIy/h4 + GKt/12h2 ; b23 = -13EIy/2h4 - 4GKt/3h2 ; b24 = 28EIy/3h4 ; 

b25 = -13EIy/2h4 - 4GKt/3h2 ; b26 = 2EIy/h4 + GKt/12h2 ; and b27 = -EIy/6h4 . 

Next. We define h to be a fraction of L. For this problem. L=79.5 in. and h=3.97 in. This 

gives us 21 locations. K matrix set up shown in Table 20. Boundary conditions are associated 

locations 1 and 21, and ghost boundary conditions are associated with locations 2,3,19 and 20. 

The term ghost is because columns extend out by two more imaginary locations beyond the 

boundary locations. This allows us to modify equations to identify whether supports are pinned 

or fixed. For example, the term a14 extended out two terms beyond the boundary gives us the 

two terms a12 and a11. The modified term *a14 goes in the location of term a14, and *a14 = a14 - a12 

; and *a15 = a15 – a11 , if support is pinned. For fixed support, *a14 = a14 + a12   ; and *a15 = a15 + a11. 

*b13, *a23, *b24, and *b25 also need to be determined.  
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Table 20. Central Difference K Matrix for Buckling. Investigation 5 

 

 1 2 3 Location 

u ф u ф u ф 

0.0 0.0 0.0 0.0 0.0 Supports at locations 1 and 21 

0.0 0.0 0.0 Zero out boundary  

0.0 0.0 *a14 b13 *a15 b14 a16 b15 a17 0.0 0.0 

0.0 0.0 a23 b24 a24 b25 a25 b26 0.0 b27 0.0 

0.0 0.0 a13 b12 a14 b13 a15 b14 a16 b15 a17 

0.0 0.0 a22 b23 a23 b24 a24 b25 a25 b26 0.0 

0.0 0.0 a12 b11 a13 b12 a14 b13 a15 b14 a16 

0.0 0.0 a21 b22 a22 b23 a23 b24 a24 b25 a25 

  

 Main diagonal 

 

Mtx is the moment at the left end of an element because the element is being held there. 

Mtx1 is also the moment at the left end while Mtx2 is the moment at the right end of an element. 

Signs are opposite, typically. M’tx is equal to the slope of the moment. M’ = R1 or R2. 

R1L -Mtx1 -PL2+ Mtx2 = 0         [50] 

R2L -Mtx2 -PL1+ Mtx1 = 0         [51] 

When dealing with a point load and discontinuity at its location, the slope is the same for 

each location to the left or right of the point load. Once values are assigned to all matrix locations 

including the shear moment location, solve the determinant of the matrix while increasing P2 

each time. When the matrix determinant value changes signs, the determinant has crossed zero 

and P2 has reached the critical buckling limit. Value of Pcr with shear, P2, for this problem is 1.08 

kips. 
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The governing equations for deflections when considering lateral torsional buckling are: 

Bx v’’- ф Mty = Mtx 

By u’’- ф Mtx = Mty 

Cw ф’’’ – (Ct + Mxβ) ф’ – Mtx u’ - Mty v’ – (Mtx1 + Mtx2 ) u/L- (Mty1 + Mty2 ) v/L + P(y0/2) ф = 0 

Solve the modified  equations of equilibrium simultaneously using a fourth order central 

difference approach and  aforementioned central difference expressions. These terms are 

substituted into our modified lateral-torsion equations to obtain: 

Bx ( -v2 +16v1 – 30v0 +16 v-1 - v-2)- ф0  Mty = Mtx 

By ( -u2 +16u1 – 30u0 +16 u-1 - u-2)- ф0 Mtx = Mty 

Cw ( - Ф3 + 8ф2 - 13ф1 +  13ф-1 - 8ф-2 + ф-3 )/8h3 – (Ct + Mxβ) ( -ф2 + 8ф1 - 8ф-1 + ф-2 )  

– Mtx ( -u2 + 8u1 – 8u-1 + u-2 ) - Mty ( -v2 + 8v1 – 8v-1 + v-2 ) 

 – (Mtx1 + Mtx2 ) u0/L- (Mty1 + Mty2 ) v0/L + P(y0/2) ф0 = 0 

Setting My to zero,  

a11v-2 + a12v-1 + a13v0 + a14v1 + a15v2 = Mtx       [52a] 

where a11 = -EIx/12h2 ; a12 = 4EIx/3h2 ; a13 = -5EIx/2h2 ; a14 = 4EIx/3h2 ; a15 = -EIx/12h2 ; 

B21u-2 + b22u-1 + b23u0 + b24u1 + b25u2 + c21ф0 = 0.0      [52b] 

where b21 = -EIx/12h2 ; b22 = 4EIx/3h2 ; b23 = -5EIx/2h2 ; b24 = 4EIx/3h2 ; b25 = -EIx/12h2 ; 

c21 = - Mtx 

b31u-2 + b32u-1 + b33u0 + b34u1 + b35u2 + c31ф-3 + c32ф-2 + c33ф-1 + c34ф0 + c35ф1 + c36ф2 + c37ф1 = 0.0 

            [52c] 

where b31 = -Mtx/12h ; b32 = 2Mtx/3h ; b33 = -(Mtx1 + Mtx2)/L ; b34 = -2Mtx/3h ; b35 = Mtx/12h ; 

c31 = Cw/8h3 ; c32 = - Cw/h3 – Ct/12h ; c33 = 13Cw/8h3 + 2Ct/3h; c34 = Py0/2 ;  

c35 = -13Cw/8h3 - 2Ct/3h; c36 =  Cw/h3 + Ct/12h; c37 = - Cw/8h3 . 

For the vertical deflection values, use the same approach just demonstrated for the 

buckling limit except use the three governing equations and the load vector is not set to zero.  

[K]u = F. So, solve for the deflections using the inverse K matrix, u = [K]-1 F. The vector u contains 

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 21.  
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Table 21.  Central Difference K Matrix for Deflections.  Investigation 5 

 

Location 1  Location 2  Location 3  Location 4 

V u ф v u ф v u ф v u ф 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 *a13 0.0 0.0 a14 0.0 0.0 a15 0.0 0.0 

0.0 0.0 0.0 0.0 b33 c34 0.0 b34 c35 0.0 b35 c36 

0.0 0.0 0.0 0.0 b23 c21 0.0 b24 0.0 0.0 b25 0.0 

0.0 0.0 0.0 a12 0.0 0.0 a13 0.0 0.0 a14 0.0 0.0 

0.0 0.0 0.0 0.0 b32 c33 0.0 b33 c34 0.0 b34 c35 

0.0 0.0 0.0 0.0 b22 0.0 0.0 b23 c21 0.0 b24 0.0 

 Main diagonal 

Zero out boundaries 

 

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were 

tabulated in Table 22 based upon given info and applied P2 loads from laboratory.  














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Table 22.  Vertical Deflections.  Investigation 5.  Central Difference 

 5” from support  22” from support  35” from support 

Load P, kips v1w/s(in.) v1w/o v2w/s v2w/o v3w/s v3w/o

      

      

      

      

      

      

      

      

      

 

2.5.2 Central Difference Solution Without Shear Deformation 

For this approach, we use the three central difference governing equations previously 

developed to determine vertical, horizontal, and lateral deflection values along the beam. Mx = 

Mbending and Ps = 0. The ends of the conjugate beam are pinned-pinned. So, boundary conditions 

are set for pinned-pinned in the finite difference model.  

Problem 2.5.5. Lab Investigation 5 

Given: 3”x3” x ¼” fiberglass reinforced plastic beam in Figure 8.  L= 79.5”.  E = 2997 ksi.  Ix = 3.17 
in. 4 .  G = 450 ksi.  Iy = 1.13 in.4.  k = .046.  A = 2.13 in. 2 .  Iw = 2.13 in. 6. 

Find: Buckling limit and vertical deflections without shear.  

For vertical deflections without shear, we simply do not apply the shear moment to the 

beam. In other words Ps  =  0.0 and Mtx = Mxbending. Procedure is exactly same as calculating critical 

load and vertical deflection outlined in previous problem which included shear. However, P loads 

from lab experiments are P1 not P2. Therefore, Mcr = 14.76P for this problem. See tabulated 

vertical deflection values for this problem in Table 22. P1 equals 1.18 kips at the buckling limit 

calculated using this approach. Mtx = 17.40 k- 
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2.5.3 ASCE LRFD Method 

The ASCE buckling limit equation was developed using the classical approach solution for 

a simple beam solution introduced by Galambos. The LTB equations used in the classical 

approach were 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [53] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV – (Gkt + Mx β) ф’’  - Mx u’’ – M’x  βx ф     = 0      [54] 

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide 

for Pultruded Members. 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5       [55] 

where D j = Gkt; Cw = Iw; and Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC). 

 

Problem 2.5.3. Lab Investigation 5 

Given: 3”x3” x ¼” fiberglass reinforced plastic beam in Figure 14.  L= 79.5”.  E = 2997 ksi.   

Ix = 3.17 in. 4 .  G = 450 ksi.  Iy = 1.13 in.4.  k = .046.  A = 2.13 in. 2 .  Iw = 2.13 in. 6. 

Find: Buckling limit.  

The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross 

section is 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5 

Where Lb is the braced length,  

Cw is the warping constant, 

ELF is the Modulus Elasticity of the longitudinal flange,  

Dj = Gkt and is the torsional rigidity, and  

Cb =  12.5Mmax/(2.5Mmax+3MA+4MB+3MC). 

And is the moment modification factor.  

MA, MB and MC are moments at locations .25L, .5L, and .75L, respectively. See Figure 15. 
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

 L1 b1 b2



  MA MB MC  L1 = 27.0”   

 L2 = 52.5”

1 2

 .25L .5L .75L

 

   79.5” 



 

Figure 15. Moment Diagram for Investigation 5 

 

Location of Mmax varies with location of point load and equilibrium conditions. For this 

problem, Mmax = 14.76P and M2  = 9.05P. Plugging in moment values, we calculate C b. Plugging 

in given values and C b, Mn = 22.92 k=in. Knowing the relationship between the critical moment 

and critical load, P1, without shear moment; we can calculate the critical load, P1.  

P1 = 22.92/14.76 = 1.55 kips 

Now. We must find the relationship of P1, the critical load without shear moment, and P2, the 
critical load with shear moment. 

P1 is associated with the moments on the conjugate beam when Ps is not present. P2 is 

associate with the moments on the conjugate beam when Mx is present. The resultant of the 

moments on the conjugate beam when considering and not considering shear moment is of the 

same value or 

.5(14.76P1 )L1  +  .5(14.76P1) b1 - .5(9.05P1) b2 = .5(14.76P2)L1  + .5(14.76P2) b1 - .5(9.05P2) b2 + Ps 

Rearranged and solve, we get P2/P1 = .916. Therefore, P2 = 1.42 kips 

 

 


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2.5.4 Summary of Maximum Loads 

Critical loads are summarized in Table 23 and will be complared to experimental load in Chapter 
4. Deflections will be compared also. 

 

Table 23. Summary of Buckling Loads. Investigation 5  

Section Method Pcr 
2.5.1 Central Difference with Shear Deformation 1.08 kips 
2.5.2 Central Difference without Shear Deformation 1.18 kips 
2.5.3 ASCE-LRFD Method 1.42 kips 
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2.6 Stability Analysis for Three Span Beam with Point Load Midspan. Center Span 

Numerical formulations for the critical buckling load and translational and rotational 

deflections are presented for Investigation 6 in this section. Numerical methods formulated are 

sine approximation and fourth order central difference. Critical buckling load as determined from 

the ASCE-LRFD prestandard is also presented. Beam loading with boundary conditions and 

moments on conjugate beam are defined in Figure 16.  



                                                                                        P 

 

 

 

                                                                             Ps

                                                                                                                                                Shear Moment 

  

                                                     

                                                                                        

 10.5 P/EI

                       M/EI on Conjugate

8.27P/EI
          PsL/4EI                                                                                                                             

                                     

                                                                                                                              Shear Deflection

                                                                                                                                                 

       
 

15” 37.5” 37.5” 15” 
  
 

                         Figure 16. Investigation 6: Deflection Diagrams 

//// //// //// //// 

//// //// 
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2.6.1 Central Difference Solution with Shear Deformation 

For this approach, use the three central difference governing equations previously 

developed to determine vertical, horizontal and lateral deflection values along the beam. Mx = 

Mtx. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear 

moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned. 

So, boundary conditions are set for pinned-pinned in the finite difference model.  Depending up 

on the length of an element of eccentricity, the shear moment Ps value varies from model to 

model.  Ps = P2 αEIx /(eAG) where e is the eccentricity or length of the element. With shear, Mtx = 

Mbending + Ps on the conjugate beam.  

Problem 2.6.1. Lab Investigation 6 

Given: 4”x4” x 1/4” fiberglass reinforced plastic beam in Figure 9.  L=75”.  E=2997 ksi.  Ix = 7.935 
in.4.   G = 450 ksi.  Iy = 2.67 in.4  .   kt = .0612.  A = 2.85 in.2  .  Iw = 9.375 in.4 . 

Find: Buckling limit and vertical deflections with shear.  

As shown in Galambos, the 4th order solution of the second order bending equilibrium 

equation including the angle of twist is: 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [46] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV + Gkt ф’’  - Mtx u’’ – M’tx u’  - ( M’tx1 + M’tx2 ) u/L   - ( Mtx1 + Mtx2 ) u’/L   = 0  [47] 

Both equations take into consideration that M’tx is not zero for a beam with a point load. 

Symmetrical properties of I beam have also been taken into consideration. Next, plug the 4th 

order central difference terms into the aforementioned lateral-torsion equations of equilibrium 

and obtain  

a17u3 +a16u2 + a15u1 + a14u0 + a13u-1 + a12u-2 + a11u-3 + b15ф2 + b14ф1 + b13ф0 + b12ф-1 + b11ф-2 = 0 

            [48] 

a25u2 +a24u1 + a23u0 + a22u-1 + a21u-2 + b27ф3 + b26ф2 + b25ф1 + b24ф0 + b23ф-1 + b22ф-2 + b21ф-3 = 0 

            [49] 
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Where a11 = -EIy/6h4 ; a12 = 2EIy/h4 ; a13 = -13EIy/2h4 ; a14 = 28EIy/3h4 ; a15 = -13EIy/2h4 ; 

a16 = 2EIy/h4 ; a17 = -EIy/6h4 ; b11 = (-Mtx/12h2 + M’tx/6h) ; b12 = (4Mtx/3h2 -4 M’tx/3h); 

b13 = -(5Mtx/2h2 ; b14 = (4Mtx/3h2 + 4 M’tx/3h); and b15 = -(Mtx/12h2 + M’tx/6h) , and 

a21 = (Mtx/12h2 - M’tx/12h) – ((Mtx1 +Mtx2)/ 12hL);  

a22 = (-4Mtx/3h2 + 2M’tx/3h) + (2(Mtx1 +Mtx2)/ 3hL); a23 = (5Mtx/2h2 - ((M’tx1 +M’tx2)/ L); 

a24 = (-4Mtx/3h2 - 2M’tx/3h) - (2(Mtx1 +Mtx2)/ 3hL); 

a25 = (Mtx/12h2 + M’tx/12h) + ((Mtx1 +Mtx2)/ 12hL);  

b21 = -EIy/6h4 ; b22 = 2EIy/h4 + GKt/12h2 ; b23 = -13EIy/2h4 - 4GKt/3h2 ; b24 = 28EIy/3h4 ; 

b25 = -13EIy/2h4 - 4GKt/3h2 ; b26 = 2EIy/h4 + GKt/12h2 ; and b27 = -EIy/6h4 . 

 

Next. We define h to be a fraction of L. For this problem, L=75.0 in. and h=3.75. This gives 

us 21 locations K matrix demonstrated in Table 24. Boundary conditions are associated locations 

1 and 21, and ghost boundary conditions are associated with locations 2,3,19 and 20. The term 

ghost is because columns extend out by two more imaginary locations beyond the boundary 

locations. This allows us to modify equations to identify whether supports are pinned or fixed. 

For example, the term a14 extended out two terms beyond the boundary gives us the two terms 

a12 and a11. The modified term *a14 goes in the location of term a14, and *a14 = a14 - a12 ; and *a15 

= a15 – a11 , if support is pinned. For fixed support, *a14 = a14 + a12   ; and *a15 = a15 + a11. *b13, *a23, 

*b24, and *b25 also need to be determined.  
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Table 24. Central Difference K Matrix for Buckling. Investigation 6 

 

 1 2 3 Location 

u ф u ф u ф 

0.0 0.0 0.0 0.0 0.0 Supports at locations 1 and 21 

0.0 0.0 0.0 Zero out boundary  

0.0 0.0 *a14 b13 *a15 b14 a16 b15 a17 0.0 0.0 

0.0 0.0 a23 b24 a24 b25 a25 b26 0.0 b27 0.0 

0.0 0.0 a13 b12 a14 b13 a15 b14 a16 b15 a17 

0.0 0.0 a22 b23 a23 b24 a24 b25 a25 b26 0.0 

0.0 0.0 a12 b11 a13 b12 a14 b13 a15 b14 a16 

0.0 0.0 a21 b22 a22 b23 a23 b24 a24 b25 a25 

  

 Main diagonal 

 

Mtx is the moment at the left end of an element because the element is being held there. 

Mtx1 is also the moment at the left end while Mtx2 is the moment at the right end of an element. 

Signs are opposite, typically. M’tx is equal to the slope of the moment. M’ = R1 or R2. 

R1L -Mtx1 -PL2+ Mtx2 = 0         [50] 

R2L -Mtx2 -PL1+ Mtx1 = 0         [51] 

When dealing with a point load and discontinuity at its location, the slope is the same for each 

location to the left or right of the point load. Once values are assigned to all matrix locations 

including the shear moment location, solve the determinant of the matrix while increasing P2 

each time. When the matrix determinant value changes signs, the determinant has crossed zero 

and P2 has reached the critical buckling limit. Value of Pcr with shear, P2, for this problem is 3.5 

kips. 
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The governing equations for deflections when considering lateral torsional buckling are: 

Bx v’’- ф Mty = Mtx 

By u’’- ф Mtx = Mty 

Cw ф’’’ – (Ct + Mxβ) ф’ – Mtx u’ - Mty v’ – (Mtx1 + Mtx2 ) u/L- (Mty1 + Mty2 ) v/L + P(y0/2) ф = 0 

Solve the modified  equations of equilibrium simultaneously using a fourth order central 

difference approach and  aforementioned central difference expressions. These terms are 

substituted into our modified lateral-torsion equations to obtain: 

Bx ( -v2 +16v1 – 30v0 +16 v-1 - v-2)- ф0  Mty = Mtx 

By ( -u2 +16u1 – 30u0 +16 u-1 - u-2)- ф0 Mtx = Mty 

Cw ( - Ф3 + 8ф2 - 13ф1 +  13ф-1 - 8ф-2 + ф-3 )/8h3 – (Ct + Mxβ) ( -ф2 + 8ф1 - 8ф-1 + ф-2 )  

– Mtx ( -u2 + 8u1 – 8u-1 + u-2 ) - Mty ( -v2 + 8v1 – 8v-1 + v-2 ) 

 – (Mtx1 + Mtx2 ) u0/L- (Mty1 + Mty2 ) v0/L + P(y0/2) ф0 = 0 

Setting My to zero,  

a11v-2 + a12v-1 + a13v0 + a14v1 + a15v2 = Mtx       [52a] 

Where a11 = -EIx/12h2 ; a12 = 4EIx/3h2 ; a13 = -5EIx/2h2 ; a14 = 4EIx/3h2 ; a15 = -EIx/12h2 ; 

B21u-2 + b22u-1 + b23u0 + b24u1 + b25u2 + c21ф0 = 0.0      [52b] 

where b21 = -EIx/12h2 ; b22 = 4EIx/3h2 ; b23 = -5EIx/2h2 ; b24 = 4EIx/3h2 ; b25 = -EIx/12h2 ; 

c21 = - Mtx 

b31u-2 + b32u-1 + b33u0 + b34u1 + b35u2 + c31ф-3 + c32ф-2 + c33ф-1 + c34ф0 + c35ф1 + c36ф2 + c37ф1 = 0.0 

            [52c] 

where b31 = -Mtx/12h ; b32 = 2Mtx/3h ; b33 = -(Mtx1 + Mtx2)/L ; b34 = -2Mtx/3h ; b35 = Mtx/12h ; 

c31 = Cw/8h3 ; c32 = - Cw/h3 – Ct/12h ; c33 = 13Cw/8h3 + 2Ct/3h; c34 = Py0/2 ;  

c35 = -13Cw/8h3 - 2Ct/3h; c36 =  Cw/h3 + Ct/12h; c37 = - Cw/8h3 . 

For the vertical deflection values, use the same approach  just demonstrated for the 

buckling limit except use the three governing equations and the load vector is not set to zero.  

[K]u = F.  So solve for the deflections using the inverse K matrix, u = [K]-1 F. The vector u contains 

the unknowns v, u, and ф along the member. K matrix is demonstrated in Table 25.  
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Table 25.  Central Difference K Matrix for Deflections.  Investigation 6. 

 

Location 1  Location 2  Location 3  Location 4 

V u ф v u ф v u ф v u ф 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 *a13 0.0 0.0 a14 0.0 0.0 a15 0.0 0.0 

0.0 0.0 0.0 0.0 b33 c34 0.0 b34 c35 0.0 b35 c36 

0.0 0.0 0.0 0.0 b23 c21 0.0 b24 0.0 0.0 b25 0.0 

0.0 0.0 0.0 a12 0.0 0.0 a13 0.0 0.0 a14 0.0 0.0 

0.0 0.0 0.0 0.0 b32 c33 0.0 b33 c34 0.0 b34 c35 

0.0 0.0 0.0 0.0 b22 0.0 0.0 b23 c21 0.0 b24 0.0 

 Main diagonal 

Zero out boundaries 

 

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were 

tabulated in Table 26 based upon given info and applied P2 loads from laboratory.  
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Table 26.  Vertical Deflections.  Investigation 6.  Central Difference 

 7” from support  18.5” from support  32” from support 

Load P, kips v1w/s(in.) v1w/o v2w/s v2w/o v3w/s v3w/o

      

      

      

      

      

      

      

      

      

      



 

              

                                                                                      

 

 

 

 

 

 

 

 

 



79 
 

2.6.2 Central Difference Solution Without Shear Deformation 

For this approach, we use the three central difference governing equations previously 

developed to determine vertical, horizontal, and lateral deflection values along the beam.  

Mx = Mbending and Ps = 0. 

The ends of the conjugate beam are pinned-pinned. So, boundary conditions are set for pinned-

pinned in the finite difference model.  

Problem 2.6.2. Lab Investigation 6 

Given: 4”x4” x 1/4” fiberglass reinforced plastic beam in Figure 9.  L=75”.  E=2997 ksi.  Ix = 7.935 
in.4.   G = 450 ksi.  Iy = 2.67 in.4  .   kt = .0612.  A = 2.85 in.2  .  Iw = 9.375 in.4 . 

Find: Buckling limit and vertical deflections without shear.  

For vertical deflections without shear, we simply do not apply the shear moment to the 

beam. In other words Ps = 0.0 and Mtx = Mxbending. Procedure is exactly same as calculating critical 

load and vertical deflection outlined in previous problem which included shear. However, P loads 

from lab experiments are P1 not P2. Therefore, Mcr = 10.48P for this problem. See tabulated 

vertical deflection values for this problem in Table 26. P1 equals 6.05 kips at the buckling limit 

calculated using this approach. Mtx = 63.46 k-in. 
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2.6.3 ASCE LRFD Method 

The ASCE buckling limit equation was developed using the classical approach solution for 

a simple beam solution introduced by Galambos. The LTB equations used in the classical 

approach were 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [53] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV – (Gkt + Mx β) ф’’  - Mx u’’ – M’x  βx ф     = 0      [54] 

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide 

for Pultruded Members. 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5       [55] 

Where D j = Gkt; Cw = Iw; and Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC). 

 

Problem 2.6.3. Lab Investigation 6 

Given: 4”x4” x 1/4” fiberglass reinforced plastic beam in Figure 9.  L=75”.  E=2997 ksi.  Ix = 7.935 
in.4.   G = 450 ksi.  Iy = 2.67 in.4  .   kt = .0612.  A = 2.85 in.2  .  Iw = 9.375 in.4 . 

Find: Buckling limit.  

The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross 

section is 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5  

Where Lb is the braced length, 

Cw is the warping constant,  

ELF is the Modulus Elasticity of the longitudinal flange, 

Dj = Gkt, and is the torsional rigidity, and 

Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC). 

And is the moment modification factor. 
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MA, MB and MC are moments at locations .25L, .5L, and .75L, respectively. See Figure 17. 

  MA, MB MC

 a1 a2 b1 b2

   

 

1 2 

 .25L .5L .75L

 

 75.0”  

Figure 17. Moment Diagram for Investigation 6 

 

Location of Mmax varies with location of point load and equilibrium conditions. For this problem, 

Mmax = MB = 10.48P and M2 = 8.27P. Plugging in moment values, Cb = 2.07. Plugging in given values 

and Cb,  

Mn = 60.46 k-in. 

Knowing the relationship between the critical moment and critical load, P1, without shear 

moment; we can calculate the critical load, P1 

P1 = 5.77 k-in. 

Now. We must find the relationship of P1, the critical load without shear moment, and P2, the 

critical load with shear moment. P1 is associated with the moments on the conjugate beam when 

Ps is not present. P2 is associated with the moments on the conjugate beam when Ps is present. 

The resultant of the moments on the conjugate beam when considering and not considering 

shear moment is of the same value or 

.5(10.48P1 )a2  +  .5(10.48P1) b1 - .5(8.27P1) b2 - .5(8.27P1) a1 =  .5(10.48P2 )a2  +  .5(10.48P2) b1 - 

.5(8.27P2) b2 - .5(8.27P2) a1 + Ps 

Rearranged and solved, we get P2/P1 = .578. Therefore, P2 = 3.33 kips.  

 


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2.6.4 Summary of Maximum Loads 

Critical loads are summarized in Table 27 and will be compared to experimental load in Chapter. 

Deflections will be compared also.   

 

Table 27. Summary of Buckling Loads. Investigation 6  

Section Method Pcr 
2.6.1 Central Difference with Shear Deformation 3.5 kips 
2.6.2 Central Difference without Shear Deformation 6.05 kips 
2.6.3 ASCE-LRFD Method 3.33 kips 
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2.7 Stability Analysis for Three Span Beam with Point Load Midspan. Outside Span. 

Numerical formulations for the critical buckling load and translational and rotational 

deflections are presented for Investigation 7 in this section. Numerical methods formulated 

include fourth order central difference. Critical buckling load as determined from the ASCE-LRFD 

Prestandard is also presented. Beam loading with boundary conditions and moments on 

conjugate beam are defined in Figure 18.  

 

                                           P

 

 

                                                                    

 

                                          Ps 
 Shear Moment Diagram

                                                                                                                                   

                   

 9.92P/EI

                                                                                                                       M/EI on Conjugate Beam

                                                 

                                                                                                                             

                                                                                       7.16P/EI                                                                         

 PsL/4EI  Shear Deflection

                                                  

 

                                                               

                    27.0”                           27.0”          25.5” 25.5” 

 

                    Figure 18.  Investigation 7.  Deflection Diagrams

//// //// 

//// //// //// //// 
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2.7.1 Central Difference Solution With Shear Deformation  

For this approach, use the three central difference governing equations previously 

developed to determine vertical, horizontal and lateral deflection values along the beam. Mx = 

Mtx. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear 

moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned. 

So, boundary conditions are set for pinned-pinned in the finite difference model.  Depending up 

on the length of an element of eccentricity, the shear moment Ps value varies from model to 

model.  Ps = P2 αEIx /(eAG) where e is the eccentricity or length of the element. With shear, Mtx = 

Mbending + Ps on the conjugate beam.  

Problem 2.7.1. Lab Investigation 7 

Given: 3”x3”x1/4” fiberglass reinforced plastic beam in Figure 18. L=54”. E=2997 ksi.  

Ix = 3.17 in. 4 .  G = 450 ksi.  Iy = 1.13 in.4.  k = .046.  A = 2.13 in. 2 .  Iw = 2.13 in. 6. 

Find: Buckling limit and vertical deflections with shear. 

As shown in Galambos, the 4th order solution of the second order bending equilibrium 

equation including the angle of twist is: 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [46] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV + Gkt ф’’  - Mtx u’’ – M’tx u’  - ( M’tx1 + M’tx2 ) u/L   - ( Mtx1 + Mtx2 ) u’/L   = 0  [47] 

Both equations take into consideration that M’tx is not zero for a beam with a point load. 

Symmetrical properties of I beam have also been taken into consideration. Next, plug the 4th 

order central difference terms into the aforementioned lateral-torsion equations of equilibrium 

and obtain  

a17u3 +a16u2 + a15u1 + a14u0 + a13u-1 + a12u-2 + a11u-3 + b15ф2 + b14ф1 + b13ф0 + b12ф-1 + b11ф-2 = 0 

            [48] 

a25u2 +a24u1 + a23u0 + a22u-1 + a21u-2 + b27ф3 + b26ф2 + b25ф1 + b24ф0 + b23ф-1 + b22ф-2 + b21ф-3 = 0 

            [49] 
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where a11 = -EIy/6h4 ; a12 = 2EIy/h4 ; a13 = -13EIy/2h4 ; a14 = 28EIy/3h4 ; a15 = -13EIy/2h4 ; 

a16 = 2EIy/h4 ; a17 = -EIy/6h4 ; b11 = (-Mtx/12h2 + M’tx/6h) ; b12 = (4Mtx/3h2 -4 M’tx/3h); 

b13 = -(5Mtx/2h2 ; b14 = (4Mtx/3h2 + 4 M’tx/3h); and b15 = -(Mtx/12h2 + M’tx/6h) , and 

a21 = (Mtx/12h2 - M’tx/12h) – ((Mtx1 +Mtx2)/ 12hL);  

a22 = (-4Mtx/3h2 + 2M’tx/3h) + (2(Mtx1 +Mtx2)/ 3hL); a23 = (5Mtx/2h2 - ((M’tx1 +M’tx2)/ L); 

a24 = (-4Mtx/3h2 - 2M’tx/3h) - (2(Mtx1 +Mtx2)/ 3hL); 

a25 = (Mtx/12h2 + M’tx/12h) + ((Mtx1 +Mtx2)/ 12hL);  

b21 = -EIy/6h4 ; b22 = 2EIy/h4 + GKt/12h2 ; b23 = -13EIy/2h4 - 4GKt/3h2 ; b24 = 28EIy/3h4 ; 

b25 = -13EIy/2h4 - 4GKt/3h2 ; b26 = 2EIy/h4 + GKt/12h2 ; and b27 = -EIy/6h4 . 

 

Next. We define h to be a fraction of L. For this problem, L=54.0 in. and h=2.7 in. This gives 

us 21 locations. K matrix set up is shown in Table 28. Boundary conditions are associated locations 

1 and 21, and ghost boundary conditions are associated with locations 2,3,19 , and 20. The term 

ghost is because we extend the columns out by two more imaginary locations beyond the 

boundary location. This allows us to modify equations to identify whether supports are pinned 

or fixed. For example, the term a14 extended out two terms beyond the boundary gives us the 

two terms a12 and a11. The modified term *a14 goes in the location of term a14, and *a14 = a14 - 

a12;  and *a15  =  a15 – a11, if support is pinned. For fixed support, *a14  =  a14 + a12 ; and *a15 = a15 + 

a11. *b13, *a23, *b24, and *b25 also need to be determined.  
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Table 28. Central Difference K Matrix for Buckling. Investigation 7 

 

 1 2 3 Location 

u ф u ф u ф 

0.0 0.0 0.0 0.0 0.0 Supports at locations 1 and 21 

0.0 0.0 0.0 Zero out boundary  

0.0 0.0 *a14 b13 *a15 b14 a16 b15 a17 0.0 0.0 

0.0 0.0 a23 b24 a24 b25 a25 b26 0.0 b27 0.0 

0.0 0.0 a13 b12 a14 b13 a15 b14 a16 b15 a17 

0.0 0.0 a22 b23 a23 b24 a24 b25 a25 b26 0.0 

0.0 0.0 a12 b11 a13 b12 a14 b13 a15 b14 a16 

0.0 0.0 a21 b22 a22 b23 a23 b24 a24 b25 a25 

  

 Main diagonal 

 

 

Mtx is the moment at the left end of an element because the element is being held there. 

Mtx1 is also the moment at the left end while Mtx2 is the moment at the right end of an element. 

Signs are opposite, typically. M’tx is equal to the slope of the moment. M’ = R1 or R2. 

R1L -Mtx1 -PL2+ Mtx2 = 0         [50] 

R2L -Mtx2 -PL1+ Mtx1 = 0         [51] 

When dealing with a point load and discontinuity at its location, the slope is the same for each 

location to the left or right of the point load. Once values are assigned to all matrix locations 

including the shear moment location, solve the determinant of the matrix while increasing P2 

each time. When the matrix determinant value changes signs, the determinant has crossed zero 

and P2 has reached the critical buckling limit. Value of Pcr with shear, P2, for this problem is 2.5 

kips. 
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The governing equations for deflections when considering lateral torsional buckling are: 

Bx v’’- ф Mty = Mtx 

By u’’- ф Mtx = Mty 

Cw ф’’’ – (Ct + Mxβ) ф’ – Mtx u’ - Mty v’ – (Mtx1 + Mtx2 ) u/L- (Mty1 + Mty2 ) v/L + P(y0/2) ф = 0 

Solve the modified equations of equilibrium simultaneously using a fourth order central 

difference approach and aforementioned central difference expressions. These terms are 

substituted into our modified lateral-torsion equations to obtain: 

Bx ( -v2 +16v1 – 30v0 +16 v-1 - v-2)- ф0  Mty = Mtx 

By ( -u2 +16u1 – 30u0 +16 u-1 - u-2)- ф0 Mtx = Mty 

Cw ( - Ф3 + 8ф2 - 13ф1 +  13ф-1 - 8ф-2 + ф-3 )/8h3 – (Ct + Mxβ) ( -ф2 + 8ф1 - 8ф-1 + ф-2 )  

– Mtx ( -u2 + 8u1 – 8u-1 + u-2 ) - Mty ( -v2 + 8v1 – 8v-1 + v-2 ) 

 – (Mtx1 + Mtx2 ) u0/L- (Mty1 + Mty2 ) v0/L + P(y0/2) ф0 = 0 

Setting My to zero,  

a11v-2 + a12v-1 + a13v0 + a14v1 + a15v2 = Mtx       [52a] 

Where a11 = -EIx/12h2 ; a12 = 4EIx/3h2 ; a13 = -5EIx/2h2 ; a14 = 4EIx/3h2 ; a15 = -EIx/12h2 ; 

B21u-2 + b22u-1 + b23u0 + b24u1 + b25u2 + c21ф0 = 0.0      [52b] 

Where b21 = -EIx/12h2 ; b22 = 4EIx/3h2 ; b23 = -5EIx/2h2 ; b24 = 4EIx/3h2 ; b25 = -EIx/12h2 ; 

c21 = - Mtx 

b31u-2 + b32u-1 + b33u0 + b34u1 + b35u2 + c31ф-3 + c32ф-2 + c33ф-1 + c34ф0 + c35ф1 + c36ф2 + c37ф1 = 0.0 

            [52c] 

where b31 = -Mtx/12h ; b32 = 2Mtx/3h ; b33 = -(Mtx1 + Mtx2)/L ; b34 = -2Mtx/3h ; b35 = Mtx/12h ; 

c31 = Cw/8h3 ; c32 = - Cw/h3 – Ct/12h ; c33 = 13Cw/8h3 + 2Ct/3h; c34 = Py0/2 ;  

c35 = -13Cw/8h3 - 2Ct/3h; c36 =  Cw/h3 + Ct/12h; c37 = - Cw/8h3 . 

For the vertical deflection values, use the same approach  just demonstrated for the 

buckling limit except use the three governing equations and the load vector is not set to zero. 

[K]u = F. So solve for the deflections using the inverse K matrix, u = [K]-1 F. The vector u contains 

the unknowns v, u, and phi along the member.  K matrix is demonstrated in Table 29.  
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Table 29.  Central Difference K Matrix for Deflection.  Investigation 7 

 

Location 1  Location 2  Location 3  Location 4 

V u ф v u ф v u ф v u ф 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 *a13 0.0 0.0 a14 0.0 0.0 a15 0.0 0.0 

0.0 0.0 0.0 0.0 b33 c34 0.0 b34 c35 0.0 b35 c36 

0.0 0.0 0.0 0.0 b23 c21 0.0 b24 0.0 0.0 b25 0.0 

0.0 0.0 0.0 a12 0.0 0.0 a13 0.0 0.0 a14 0.0 0.0 

0.0 0.0 0.0 0.0 b32 c33 0.0 b33 c34 0.0 b34 c35 

0.0 0.0 0.0 0.0 b22 0.0 0.0 b23 c21 0.0 b24 0.0 

 Main diagonal 

Zero out boundaries 

 

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were 

tabulated as shown in Table 30 based upon given info applied P2 loads from laboratory.  
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Table 30.  Vertical Deflections.  Investigation 7.  Central Difference 

 21.0” from support  18” from support  4”  from support 

Load P, kips v1w/s (in.) v1w/o v2w/s v2w/o v3w/s v3w/o

      

      

      

      

      

      

      

      

      

      

      

      

      

      



2.7.2 Central Difference Solution Without Shear Deformation 

For this approach, we use the three central difference governing equations previously 

developed to determine vertical, horizontal, and the lateral deflection values along the beam. Mx 

= Mbending and Ps = 0. The ends of the conjugate beam are pinned-pinned. So, boundary conditions 

are set for pinned-pinned in the finite difference model.  

Problem 2.7.2. Lab Investigation 7 

Given: 3”x3” x ¼” fiberglass reinforced plastic beam in Figure 10. L=54”. E=2997ksi.  

Ix = 3.17 in. 4 .  G = 450 ksi.  Iy = 1.13 in.4.  k = .046.  A = 2.13 in. 2 .  Iw = 2.13 in. 6. 

Find: Buckling limit and vertical deflections without shear.  
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For vertical deflections without shear, we simply do not apply the shear moment to the 

beam. In other words Ps = 0.0 and Mtx = Mxbending. Procedure is exactly same as calculating critical 

load and vertical deflection outlined in previous problem which included shear. However, P loads 

from lab experiments are P1 not P2. Therefore, Mcr = 9.92P for this problem. See tabulated vertical 

deflection values for this problem in Table 30. P1 equals 2.98 kips at the buckling limit calculated 

using this approach. Mtx = 29.52 k-in. 

2.7.3 ASCE LRFD Method 

The ASCE buckling limit equation was developed using the classical approach solution for 

a simple beam solution introduced by Galambos. The LTB equations used in the classical 

approach were 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [53] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV – (Gkt + Mx β) ф’’  - Mx u’’ – M’x  βx ф     = 0      [54] 

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide 
for Pultruded Members. 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5       [55] 

Where D j = Gkt; Cw = Iw; and Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC). 

 

Problem 2.7.3 Lab Investigation 7 

Given: 3”x3” x ¼” fiberglass reinforced plastic beam in Figure 10. L=54”. ELF=3194 ksi. 

Ix = 3.17 in. 4 .  G = 450 ksi.  Iy = 1.13 in.4.  k = .046.  A = 2.13 in. 2 .  Iw = 2.13 in. 6. 

Find: Buckling limit. 

The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross 

section is 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5  

Where Lb is the braced length,  

Cw is the warping constant,  
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ELF is the Modulus Elasticity of the longitudinal flange, 

D j – Gk t and is the torsional rigidity, and  

C b = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC) 

and is the moment modification factor. 

MA, MB and MC are moments at locations .25L, .5L, and .75L, respectively. See Figure 19 



  MA MB MC  

     

1 2

 .25L .5L .75L

 

 75.0”

Figure 19. Moment Diagram for Investigation 7 

Location of Mmax varies with location of point load and equilibrium conditions. For this problem, 

Mmax = MB = 9.92P and M2 = 7.16P. Plugging in moment values, Cb = 1.49. Plugging in given values 

and Cb, Mn = 34.1 k-in. 

Knowing the relationship between the critical moment and critical load, P1, without shear 

moment; we can calculate the critical load, P1. 

P1 = 3.44 kips 

Now. We must find the relationship of P1, the critical load without shear moment, and P2, the 

critical load with shear moment. P1 is associated with the moments on the conjugate beam 

when Ps is not present. P2 is associated with the moments on the conjugate beam when Ps is 

present. The resultant of the moments on the conjugate beam when considering and not 

considering shear moment is of the same value or:  

.5(9.92P1 )L1  +  .5(9.92P1) b1 - .5(7.16P1) b2 = .5(9.92P2)L1  + .5(9.92P2) b1 - .5(7.16P2) b2 + Ps 

Rearranged and solved, we get P2/P1 = .84. Therefore, P2 = 2.89 kips. 


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2.7.4 Summary of Maximum Loads 

Critical loads are summarized in Table 31 and will be compared to experimental load in 

Chapter 4. Deflections will be compared also.  

 

Table 31. Summary of Buckling Loads. Investigation 7 

Section Method Pcr 
2.7.1 Central Difference with Shear Deformation 2.5 kips 
2.7.2 Central Difference without Shear Deformation 2.98 kips 
2.7.3 ASCE-LRFD Method 2.89 kips 
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2.8 Stability Analysis for Three Span Beam with Point Load Off Center. Outside Span.  

Numerical formulations for the critical buckling load and translational and rotational 

deflections are presented for Investigation 8 in this section. Numerical methods formulated 

include fourth order central difference. Critical buckling load as determined from the ASCE-LRFD 

Prestandard is also presented. Beam loading with boundary conditions and moments on 

conjugate beam are defined in Figure 20.  

 

 P 

 

 

 Ps

 Shear Moment Diagram



 

  14.3P/EI 

 M/EI Diagram 

 10.3P/EI

                  

 PsL1L2/L 

 Shear Deflection

 

  

 27” 52.5”      15” 10.5” 

 

 

Figure 20. Investigation 8. Deflection Diagrams 

  

//// //// 

//// //// //// //// 
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2.8.1 Central Difference Solution With Shear Deformation 

For this approach, use the three central difference governing equations previously 

developed to determine vertical, horizontal and lateral deflection values along the beam. Mx = 

Mtx. For this approach, follow the instructions of Timoshenko to the letter. Simply place the Shear 

moment point load on the conjugate beam. The ends of the conjugate beam are pinned-pinned. 

So, boundary conditions are set for pinned-pinned in the finite difference model. Depending up 

on the length of an element of eccentricity, the shear moment Ps value varies from model to 

model.  Ps = P2 αEIx /(eAG) where e is the eccentricity or length of the element. With shear, Mtx = 

Mbending + Ps on the conjugate beam.  

Problem 2.8.1 Lab Investigation 8 

Given 3” x 3” x ¼” fiberglass reinforced plastic beam in Figure 11. L=79.5”. E=2997 ksi.  

Ix = 3.17 in. 4 .  G = 450 ksi.  Iy = 1.13 in.4.  k = .046.  A = 2.13 in. 2 .  Iw = 2.13 in. 6. 

Find: Buckling limit and vertical deflections with shear. 

As shown in Galambos, the 4th order solution of the second order bending equilibrium 

equation including the angle of twist is: 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [46] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV + Gkt ф’’  - Mtx u’’ – M’tx u’  - ( M’tx1 + M’tx2 ) u/L   - ( Mtx1 + Mtx2 ) u’/L   = 0  [47] 

Both equations take into consideration that M’tx is not zero for a beam with a point load. 

Symmetrical properties of I beam have also been taken into consideration. Next, plug the 4th 

order central difference terms into the aforementioned lateral-torsion equations of equilibrium 

and obtain  

a17u3 +a16u2 + a15u1 + a14u0 + a13u-1 + a12u-2 + a11u-3 + b15ф2 + b14ф1 + b13ф0 + b12ф-1 + b11ф-2 = 0 

            [48] 

a25u2 +a24u1 + a23u0 + a22u-1 + a21u-2 + b27ф3 + b26ф2 + b25ф1 + b24ф0 + b23ф-1 + b22ф-2 + b21ф-3 = 0 

            [49] 
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where a11 = -EIy/6h4 ; a12 = 2EIy/h4 ; a13 = -13EIy/2h4 ; a14 = 28EIy/3h4 ; a15 = -13EIy/2h4 ; 

a16 = 2EIy/h4 ; a17 = -EIy/6h4 ; b11 = (-Mtx/12h2 + M’tx/6h) ; b12 = (4Mtx/3h2 -4 M’tx/3h); 

b13 = -(5Mtx/2h2 ; b14 = (4Mtx/3h2 + 4 M’tx/3h); and b15 = -(Mtx/12h2 + M’tx/6h) , and 

a21 = (Mtx/12h2 - M’tx/12h) – ((Mtx1 +Mtx2)/ 12hL);  

a22 = (-4Mtx/3h2 + 2M’tx/3h) + (2(Mtx1 +Mtx2)/ 3hL); a23 = (5Mtx/2h2 - ((M’tx1 +M’tx2)/ L); 

a24 = (-4Mtx/3h2 - 2M’tx/3h) - (2(Mtx1 +Mtx2)/ 3hL); 

a25 = (Mtx/12h2 + M’tx/12h) + ((Mtx1 +Mtx2)/ 12hL);  

b21 = -EIy/6h4 ; b22 = 2EIy/h4 + GKt/12h2 ; b23 = -13EIy/2h4 - 4GKt/3h2 ; b24 = 28EIy/3h4 ; 

b25 = -13EIy/2h4 - 4GKt/3h2 ; b26 = 2EIy/h4 + GKt/12h2 ; and b27 = -EIy/6h4 . 

Next. We define h to be a fraction of lL. For this problem, L-79.5 in. and h=3.797 in. This 

gives us 21 locations K matrix is setu up in Table 32. Boundary conditions are associated locations 

1 and 21, and ghost boundary conditions are associated with locations 2,3, 19, and 20. The term 

ghost is because we extend the columns out by two more imaginary locations beyond the 

boundary location. This allows us to modify equations to identify whether supports are pinned 

or fixed.  For example, the term a14 extended out two terms beyond the boundary gives us the 

two terms a12 and a11. The modified term *a14 goes in the location of term a14, and *a14 = a14 - 

a12;  and *a15  =  a15 – a11, if support is pinned. For fixed support, *a14  =  a14 + a12 ; and *a15 = a15 + 

a11. *b13, *a23, *b24, and *b25 also need to be determined.  

  



96 
 

Table 32. Central Difference K Matrix for Buckling. Investigation 8 

 

 1 2 3 Location 

u ф u ф u ф 

0.0 0.0 0.0 0.0 0.0 Supports at locations 1 and 21 

0.0 0.0 0.0 Zero out boundary  

0.0 0.0 *a14 b13 *a15 b14 a16 b15 a17 0.0 0.0 

0.0 0.0 a23 b24 a24 b25 a25 b26 0.0 b27 0.0 

0.0 0.0 a13 b12 a14 b13 a15 b14 a16 b15 a17 

0.0 0.0 a22 b23 a23 b24 a24 b25 a25 b26 0.0 

0.0 0.0 a12 b11 a13 b12 a14 b13 a15 b14 a16 

0.0 0.0 a21 b22 a22 b23 a23 b24 a24 b25 a25 

  

 Main diagonal 

 

 

Mtx is the moment at the left end of an element because the element is being held there. 

Mtx1 is also the moment at the left end while Mtx2 is the moment at the right end of an element. 

Signs are opposite, typically. M’tx is equal to the slope of the moment. M’ = R1 or R2. 

R1L -Mtx1 -PL2+ Mtx2 = 0         [50] 

R2L -Mtx2 -PL1+ Mtx1 = 0         [51] 

When dealing with a point load and discontinuity at its location, the slope is the same for each 

location to the left or right of the point load. Once values are assigned to all matrix locations 

including the shear moment location, solve the determinant of the matrix while increasing P2 

each time. When the matrix determinant value changes signs, the determinant has crossed zero 

and P2 has reached the critical buckling limit. Value of Pcr with shear, P2, for this problem is 1.12 

kips. 
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The governing equations for deflections when considering lateral torsional buckling are: 

Bx v’’- ф Mty = Mtx 

By u’’- ф Mtx = Mty 

Cw ф’’’ – (Ct + Mxβ) ф’ – Mtx u’ - Mty v’ – (Mtx1 + Mtx2 ) u/L- (Mty1 + Mty2 ) v/L + P(y0/2) ф = 0 

Solve the modified equations of equilibrium simultaneously using a fourth order central 

difference approach and aforementioned central difference expressions. These terms are 

substituted into our modified lateral-torsion equations to obtain: 

Bx ( -v2 +16v1 – 30v0 +16 v-1 - v-2)- ф0  Mty = Mtx 

By ( -u2 +16u1 – 30u0 +16 u-1 - u-2)- ф0 Mtx = Mty 

Cw ( - Ф3 + 8ф2 - 13ф1 +  13ф-1 - 8ф-2 + ф-3 )/8h3 – (Ct + Mxβ) ( -ф2 + 8ф1 - 8ф-1 + ф-2 )  

– Mtx ( -u2 + 8u1 – 8u-1 + u-2 ) - Mty ( -v2 + 8v1 – 8v-1 + v-2 ) 

 – (Mtx1 + Mtx2 ) u0/L- (Mty1 + Mty2 ) v0/L + P(y0/2) ф0 = 0 

Setting My to zero,  

a11v-2 + a12v-1 + a13v0 + a14v1 + a15v2 = Mtx       [52a] 

where a11 = -EIx/12h2 ; a12 = 4EIx/3h2 ; a13 = -5EIx/2h2 ; a14 = 4EIx/3h2 ; a15 = -EIx/12h2 ; 

B21u-2 + b22u-1 + b23u0 + b24u1 + b25u2 + c21ф0 = 0.0      [52b] 

where b21 = -EIx/12h2 ; b22 = 4EIx/3h2 ; b23 = -5EIx/2h2 ; b24 = 4EIx/3h2 ; b25 = -EIx/12h2 ; 

c21 = - Mtx 

b31u-2 + b32u-1 + b33u0 + b34u1 + b35u2 + c31ф-3 + c32ф-2 + c33ф-1 + c34ф0 + c35ф1 + c36ф2 + c37ф1 = 0.0 

            [52c] 

where b31 = -Mtx/12h ; b32 = 2Mtx/3h ; b33 = -(Mtx1 + Mtx2)/L ; b34 = -2Mtx/3h ; b35 = Mtx/12h ; 

c31 = Cw/8h3 ; c32 = - Cw/h3 – Ct/12h ; c33 = 13Cw/8h3 + 2Ct/3h; c34 = Py0/2 ;  

c35 = -13Cw/8h3 - 2Ct/3h; c36 =  Cw/h3 + Ct/12h; c37 = - Cw/8h3 . 

For the vertical deflection values, use the same approach just demonstrated for the 

buckling limit except use the three governing equations and the load vector is not set to zero. 

[K]u = F. So, solve for the deflections using the inverse K matrix, u = [K]-1 F.  The vector u contains 

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 33.  
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Table 33.  Central Difference K Matrix for Deflections.  Investigation 8 

 

Location 1  Location 2  Location 3  Location 4 

V u ф v u ф v u ф v u ф 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 *a13 0.0 0.0 a14 0.0 0.0 a15 0.0 0.0 

0.0 0.0 0.0 0.0 b33 c34 0.0 b34 c35 0.0 b35 c36 

0.0 0.0 0.0 0.0 b23 c21 0.0 b24 0.0 0.0 b25 0.0 

0.0 0.0 0.0 a12 0.0 0.0 a13 0.0 0.0 a14 0.0 0.0 

0.0 0.0 0.0 0.0 b32 c33 0.0 b33 c34 0.0 b34 c35 

0.0 0.0 0.0 0.0 b22 0.0 0.0 b23 c21 0.0 b24 0.0 

 Main diagonal 

Zero out boundaries 

 

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were 

tabulated in Table 34 based upon given info and applied P2 loads from laboratory.  
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Table 34.  Vertical Deflections.  Investigation 8.  Central Difference     

 7” from support  19” from support  34”  from support 

P Load, kips v1w/s (in.) v1w/o v2w/s v2w/o v3w/s v3w/o

      

      

      

      

      

      

      

      

      

 

2.8.2 Central Difference Solution Without Shear Deformation 

For this approach, we use the three central difference governing equations previously 

developed to determine vertical, horizontal, and lateral deflection values along the beam. Mx = 

Mbending and Ps = 0. The ends of the conjugate beam are pinned-pinned. So, boundary conditions 

are set for pinned-pinned in the finite difference model.  

Problem 2.8.2. Lab Investigation 8 

Given: 3” x 3” x ¼” fiberglass reinforced plastic beam in Figure 11. L=79.5”. E=2997 ksi. 

Ix = 3.17 in. 4 .  G = 450 ksi.  Iy = 1.13 in.4.  k = .046.  A = 2.13 in. 2 .  Iw = 2.13 in. 6. 

Find: Buckling limit and vertical deflections without shear.  

For vertical deflections without shear, we simply do not apply the shear moment to the 

beam. In other words, Ms = 0.0 and Mtx = Mxbending. Procedure is exactly same as calculating critical 

load and vertical deflection outlined in previous problem which included shear. However, P loads 

from lab experiments are P1 not P2. Therefore, Mcr = 14.34P for this problem. See tabulated 

vertical deflection values for this problem in Table 34. P1 equals 1.22 kips at the buckling limit 

calculated using this approach. Mtx = 17.53 k-in. 
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2.8.3 ASCE LRFD Method 

The ASCE buckling limit equation was developed using the classical approach solution for 

a simple beam solution introduced by Galambos. The LTB equations used in the classical 

approach were 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [53] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV – (Gkt + Mx β) ф’’  - Mx u’’ – M’x  βx ф     = 0      [54] 

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide for 

Pultruded Members. 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5       [55] 

Where D j = Gkt; Cw = Iw; and Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC). 

 

Problem 2.8.3 Lab Investigation 8 

Given: 3” x 3” x ¼” fiberglass reinforced plastic beam in Figure 11. L=79.5”. ELF=3194 ksi. 

Ix = 3.17 in. 4 .  G = 450 ksi.  Iy = 1.13 in.4.  k = .046.  A = 2.13 in. 2 .  Iw = 2.13 in. 6. 

Find: Buckling limit. 

The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross 

section is  

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5  

Where Lb is the braced length, 

Cw is the warping constant,  

ELF is the Modulus Elasticity of the longitudinal flange, 

Dj = Gkt and is the torsional rigidity, and 

Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC) 

and is the moment modification factor.  
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MA, MB and MC are moments at locations .25L, .5L, and .75L, respectively. See Figure 21.  

 L1 b1 b2



  MA MB MC  

 

1 2

  .25L .5L .75L

  

 79.5” 

 

Figure 21. Moment Diagram for Investigation 8 

 

Location of Mmax varies with location of point load and equilibrium conditions. For this problem, 

Mmax = Mb = 14.34P and M2 = 10.29P. Plugging in moment values, Cb = 1.73. Plugging in given 

values and Cb, Mn=22.90 k-in. Knowing the relationship between the critical moment and critical 

load, P1, without shear moment; we can calculate the critical load, P1. P1 = 1.60 kips. 

Now. We must find the relationship of P1, the critical load without shear moment, and P2, the 

critical load with shear moment. P1 is associated with the moments on the conjugate beam when 

Ps is not present. P2 is associate with the moments on the conjugate beam when Ps is present. 

The resultant of the moments on the conjugate beam when considering and not considering 

shear moment is of the same value or 

.5(14.34P1 )L1  +  .5(14.34P1) b1 - .5(10.29P1) b2 = .5(14.34P2)L1  + .5(14.34P2) b1 - .5(10.29P2) b2 + 
Ps 

Rearranged and solved, we get P2/P1 = .916 Therefore, P2 = 1.47 kips 

 

 

 


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2.8.4 Summary of Maximum Loads 

Critical loads are summarized in Table 35 and will be compared to experimental load in 

Chapter 4. Deflections will be compared also. 

Table 35. Summary of Buckling Loads. Investigation 8 

Section Method Pcr 
2.8.1 Central Difference with Shear Deformation 1.12 kips 
2.8.2 Central Difference without Shear Deformation 1.22 kips 
2.8.3 ASCE-LRFD Method 1.47 kips 
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2.9 Stability Analysis for Three Span Beam with Point Load Off Center. Biaxial 

Numerical formulations for the critical buckling load and translational and rotational 

deflections are presented for Investigation 9 in this section. Numerical methods formulated 

include fourth order central difference. Critical buckling load as determined from the ASCE-LRFD 

prestandard is also presented. Beam loading with boundary conditions and moments on 

conjugate beam are defined in Figure 22.  

 

                                                                 P      

 

 

                                                  

 Ps

                                                                                                                                  Shear Moment Diagram                  

  

.  

                                                     4.92P/EI M/EI Diagram

                                                                                    

                                      8.34P/EI                                         2.69P/EI 

 PsL1L2/L

  Shear Deflection 

                       

                                 

                                                                                                               

                                     13.5”        15”                                66”                             10.5”                                       

 

 

Figure 22. Investigation 9. Deflection Diagram 

//// //// 

//// //// //// //// 
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2.9.1 Central Difference Solution With Shear Deformation 

For this approach, use the three central difference governing equations previously 

developed to determine vertical, horizontal and lateral deflection values along the beam. Mx = 

Mtx. Follow the instructions of Timoshenko to the letter. Simply place the shear moment point 

load on the conjugate beam. The ends of the conjugate beam are pinned-pinned. So, boundary 

conditions are set for pinned-pinned in the finite difference model. Depending up on the length 

of an element of eccentricity, the shear moment Ps value varies from model to model. Ps = P2 αEIx 

/(AG). 

Problem 2.9.1. Lab Investigation 9 

Given : 4” x 4” x ¼” fiberglass reinforced plastic beam in Figure 12. L=75”. E=3000 ksi.  

Ix = 7.935 in. 4 .  G = 450 ksi.  Iy = 2.67 in.4.  k t = .06.  A = 2.85 in. 2 .  Iw = 9.375 in. 6. 

Find: Buckling limit and vertical deflections with shear.  

As shown in Galambos, the 4th order solution of the second order bending equilibrium 

equations including the angle of twist is: 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0         

EIx vIV + Mty ф’’  + 2M’tx ф’  = 0         

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV + Gkt ф’’  - Mtx u’’ – M’tx u’  - ( M’tx1 + M’tx2 ) u/L   - ( Mtx1 + Mtx2 ) u’/L    

- Mty v’’ – M’ty v’  - ( M’ty1 + M’ty2 ) v/L   - ( Mty1 + Mty2 ) v’/L   = 0 

Equations take into consideration that My,  M’tx, and M’ty  are not zero for a beam loaded biaxially. 

Symmetrical properties of I beam have also been taken into consideration. Next, plug the 4th 

order central difference terms into the aforementioned lateral-torsion equations of equilibrium 

and obtain  

a17v3 +a16v2 + a15v1 + a14v0 + a13v-1 + a12v-2 + a11v-3 + c15ф2 + c14ф1 + c13ф0 + c12ф-1 + c11ф-2 = 0 

b27u3 +b26u2 + b25u1 + b24u0 + b23u-1 + b22u-2 + b21u-3 + c25ф2 + c24ф1 + c23ф0 + c22ф-1 + c21ф-2 = 0  
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b35u2 +b34u1 + b33u0 + b32u-1 + b31u-2 + c37ф3 + c36ф2 + c35ф1 + c34ф0 + c33ф-1 + c32ф-2 + c31ф-3 + 

a35v2 +a34v1 + a33v0 + a32v-1 + a31v-2    = 0.       

where a11 = -EIy/6h4 ; a12 = 2EIy/h4 ; a13 = -13EIy/2h4 ; a14 = 28EIy/3h4 ; a15 = -13EIy/2h4 ; 

a16 = 2EIy/h4 ; a17 = -EIy/6h4 ; c11 = (-Mtx/12h2 + M’tx/6h) ; c12 = (4Mtx/3h2 -4 M’tx/3h); 

c13 = -(5Mtx/2h2 ; c14 = (4Mtx/3h2 + 4 M’tx/3h); and c15 = -(Mtx/12h2 + M’tx/6h) , and 

b31 = (Mtx/12h2 - M’tx/12h) – ((Mtx1 +Mtx2)/ 12hL);  

b32 = (-4Mtx/3h2 + 2M’tx/3h) + (2(Mtx1 +Mtx2)/ 3hL); b33 = (5Mtx/2h2 - ((M’tx1 +M’tx2)/ L); 

b34 = (-4Mtx/3h2 - 2M’tx/3h) - (2(Mtx1 +Mtx2)/ 3hL); 

b35 = (Mtx/12h2 + M’tx/12h) + ((Mtx1 +Mtx2)/ 12hL); 

c31 = -EIy/6h4 ; c32 = 2EIy/h4 + GKt/12h2 ; c33 = -13EIy/2h4 - 4GKt/3h2 ; c34 = 28EIy/3h4 ; 

c35 = -13EIy/2h4 - 4GKt/3h2 ; c36 = 2EIy/h4 + GKt/12h2 ; and c37 = -EIy/6h4 . 

Next. We define h to be a fraction of L. For this problem, L=81.0 in. and h= 3.00 in. This 

gives us 28 locations K matrix set up shown in Table 36.   
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Table 36.  Central Difference K Matrix for Buckling.  Investigation 9 

 

 1 2 3 Location 

u ф u ф u ф 

0.0 0.0 0.0 0.0 0.0 Supports at locations 1 and 21 

Location 1  Location 2  Location 3  Location 4 

V u ф v u ф v u ф v u ф 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 *a13 0.0 0.0 a14 0.0 0.0 a15 0.0 0.0 

0.0 0.0 0.0 0.0 b33 c34 0.0 b34 c35 0.0 b35 c36 

0.0 0.0 0.0 0.0 b23 c21 0.0 b24 0.0 0.0 b25 0.0 

0.0 0.0 0.0 a12 0.0 0.0 a13 0.0 0.0 a14 0.0 0.0 

0.0 0.0 0.0 0.0 b32 c33 0.0 b33 c34 0.0 b34 c35 

0.0 0.0 0.0 0.0 b22 0.0 0.0 b23 c21 0.0 b24 0.0 

 Main diagonal 

Zero out boundaries 

 

Boundary conditions are associated locations 1 and 28, and ghost boundary conditions 

are associated with locations 2,3, 26, and 27. The term ghost is because we extend the columns 

out by two more imaginary locations beyond the boundary location. This allows us to modify 

equations to identify whether supports are pinned or fixed. For example, the term a14 extended 

out two terms beyond the boundary gives us the two terms a12 and a11. The modified term *a14 

goes in the location of term a14, and *a14 = a14 - a12;   if support is pinned. For fixed support, *a14  

=  a14 + a12 .  
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Mtx is the moment at the left end of an element because the element is being held there. 

Mtx1 is also the moment at the left end while Mtx2 is the moment at the right end of an element. 

Signs are opposite, typically. M’tx is equal to the slope of the moment. M’ = R1 or R2. 

R1L -Mtx1 -PL2+ Mtx2 = 0         [50] 

R2L -Mtx2 -PL1+ Mtx1 = 0         [51] 

When dealing with a point load and discontinuity at its location, the slope is the same for each 

location to the left or right of the point load. Once values are assigned to all matrix locations 

including the shear moment location, solve the determinant of the matrix while increasing P2 

each time. When the matrix determinant value changes signs, the determinant has crossed zero 

and P2 has reached the critical buckling limit. Value of Pcr with shear, P2, for this problem is 2.9 

kips. 

The governing equations for deflections when considering lateral torsional buckling are: 

Bx v’’- ф Mty = Mtx 

By u’’- ф Mtx = Mty 

Cw ф’’’ – (Ct + Mxβ) ф’ – Mtx u’ - Mty v’ – (Mtx1 + Mtx2 ) u/L- (Mty1 + Mty2 ) v/L + P(y0/2) ф = 0 

Solve the modified equations of equilibrium simultaneously using a fourth order central 

difference approach and aforementioned central difference expressions. These terms are 

substituted into our modified lateral-torsion equations to obtain: 

Bx ( -v2 +16v1 – 30v0 +16 v-1 - v-2)- ф0  Mty = Mtx 

By ( -u2 +16u1 – 30u0 +16 u-1 - u-2)- ф0 Mtx = Mty 

Cw ( - Ф3 + 8ф2 - 13ф1 +  13ф-1 - 8ф-2 + ф-3 )/8h3 – (Ct + Mxβ) ( -ф2 + 8ф1 - 8ф-1 + ф-2 )  

– Mtx ( -u2 + 8u1 – 8u-1 + u-2 ) - Mty ( -v2 + 8v1 – 8v-1 + v-2 ) 

 – (Mtx1 + Mtx2 ) u0/L- (Mty1 + Mty2 ) v0/L + P(y0/2) ф0 = 0 

For the vertical deflection values, use the same approach just demonstrated for the 

buckling limit except use the three governing equations and the load vector is not set to zero. 

[K]u = F.  So, solve for the deflections using the inverse K matrix, u = [K]-1 F. The vector u contains 

the unknowns v, u, and phi along the member. K matrix is demonstrated in Table 37.  
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Table 37.  Central Difference K Matrix for Deflections.  Biaxial.  Investigation 9 

 

Location 1  Location 2  Location 3  Location 4 

V u ф v u ф v u ф v u ф 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 *a13 0.0 c11 a14 0.0 0.0 a15 0.0 0.0 

0.0 0.0 0.0 a33 b33 c34 a34 b34 c35 a35 b35 c36 

0.0 0.0 0.0 0.0 b23 c21 0.0 b24 0.0 0.0 b25 0.0 

0.0 0.0 0.0 a12 0.0 0.0 a13 0.0 0.0 a14 0.0 0.0 

0.0 0.0 0.0 a32 b32 c33 a33 b33 c34 a34 b34 c35 

0.0 0.0 0.0 0.0 b22 0.0 0.0 b23 c21 0.0 b24 0.0 

 Main diagonal 

Zero out boundaries 

 

For this problem, we used h=1.5 inches and 71 locations. Vertical deflections were 

tabulated in Table 38 based upon given info and applied P2 loads from laboratory.  
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Table 38.  Vertical Deflections.  Investigation 9.  Central Difference  

 21.0” from support  18” from support  4”  from support 

Load P, kips v1w/s (in.) v1w/o v2w/s v2w/o v3w/s v3w/o

      

      

      

      

      

      

      

      

      

      

      

      



 2.9.2 Central Difference Solution Without Shear Deformation 

For this approach, we use the three central difference governing equations previously 

developed to determine vertical, horizontal, and lateral deflection values along the beam. 

Mx=Mbending and Ps = 0. The ends of the conjugate beam are pinned-pinned. So, Boundary 

conditions are set for pinned-pinned in the finite difference model. 

 

Problem 2.9.2. Lab Investigation 9 

Given: 4” x 4” x ¼” fiberglass reinforced plastic beam in Figure 12. L=81”. E=3000 ksi.  

Ix = 3.17 in. 4 .  G = 450 ksi.  Iy = 1.13 in.4.  k = .046.  A = 2.13 in. 2 .  Iw = 2.13 in. 6. 

Find: Buckling limit and vertical deflections without shear. 
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For vertical deflections without shear, we simply do not apply the shear moment to the 

beam. In other words, Ms = 0.0 and Mtx = Mxbending. Procedure is exactly same as calculating critical 

load and vertical deflection outlined in previous problem which included shear. However, P loads 

from lab experiments are P1 not P2. Therefore, Mcr = 8.34P for this problem. See tabulated vertical 

defleciotn values for this problem in Table 38. P1 equals 7.25 kips at the buckling limit calculated 

using this approach. Mtx = 60.46 k-in. 

 

2.9.3 ASCE LRFD Method 

The ASCE buckling limit equation was developed using the classical approach solution for 

a simple beam solution introduced by Galambos. The LTB equations used in the classical 

approach were 

EIy uIV + Mtx ф’’  + 2M’tx ф’  = 0        [53] 

And the 4th order solution of the third order equation of lateral deflection is 

EIw фIV – (Gkt + Mx β) ф’’  - Mx u’’ – M’x  βx ф     = 0      [54] 

The LRFD approach and equations used here-in may be found in the ASCE LRFD Design Guide 

for Pultruded Members. 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5       [55] 

where D j = Gkt; Cw = Iw; and Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC). 

 

Problem 2.9.3 Lab Investigation 9 

Given: 4” x 4” x ¼” fiberglass reinforced plastic beam in Figure 12. L=81”. E=3000 ksi. 

Ix = 3.17 in. 4 .  G = 450 ksi.  Iy = 1.13 in.4.  k = .046.  A = 2.13 in. 2 .  Iw = 2.13 in. 6. 

Find: Buckling limit.  

The ASCE-LRFD equation for lateral-torsional buckling moment of an I-shaped cross section is 

Mn = Cb ( π2 EL f Iy Dj/Lb
2  +  π4 ELf Iy Cw/Lb

4 ).5  

where Lb is the braced length,  

Cw is the warping constant,  
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ELF is the Modulus Elasticity of the longitudinal flange,  

Dj = Gkt and is the torsional rigidity, and  

Cb = 12.5Mmax/(2.5Mmax+3MA+4MB+3MC). 

and is the moment modification factor.  

MA, MB and MC are moments at locations .25L, .5L, and .75L, respectively. See Figure 23. 



 a1       a2 b1 b2

  4.92P





  8.34P 81.0”   2.69P

Figure 23. Moment Diagram for Investigation 9 

 

Location of Mmax varies with location of point load and equilibrium conditions. For this problem, 

Mmax = 8.34P and M2 = 2.69P. Plugging in moment values, Cb = 1.99. Plugging in given and Cb,  Mn 

= 74.1 k-in. 

Knowing the relationship between the critical moment and critical load, P1, without shear 

moment; we can calculate the critical load, P1.  P1 = 74.1/8.34 = 8.88 kips. Now. We must find the 

relationship of P1, the critical load without shear moment, and P2, the critical load with shear 

moment. P1 is associated with the moment son the conjugate beam when Ps is not present. P2 is 

associated with the moments on the conjugate beam when Ms is present. The resultant of the 

same value or:  

.5(4.92P1 )a2  +  .5(4.92P1) b1 - .5(2.69P1) b2 - .5(8.34P1) a1 =  .5(4.92P2 )a2  +  .5(4.92P2) b1 - 

.5(2.69P2) b2 - .5(8.34P2) a1 + Ps 

Rearranged and solved, we get P2/P1 = .41. Therefore, P2 = 3.64 kips. Because we are using 
Biaxial loads, we must use the interaction equation to determine the critical moment, Mx. 
Following procedure outlined, the critical moment Mcry = 84.4 k-in. The applied moment  

My = 3.64 k-in. The interaction equation is 

//// //// 
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Mx/Mcrx + My/Mcry < 1.0 

Or Mx< .96 Mcrx = 71.1 k-in. So, P1 = 8.52 kips and P2 = 3.41 kips.  

 

2.9.4 Summary of Maximum Loads 

Critical loads are summarized in Table 39 and will be compared to experimental loads in 

Chapter 4. Deflections will be compared also. 

Table 39. Summary of Buckling Limit. Investigation 9 

Section Method Pcr 
2.9.1 Central Difference with Shear Deformation 2.9  kips 
2.9.2 Central Difference without Shear Deformation 7.25  kips 
2.9.3 ASCE-LRFD Method 3.64  kips 
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CHAPTER 3 

EXPERIMENTAL INVESTIGATION 

Having determined critical buckling loads and translational and rotational deflections 

analytically in Chapter 2, empirical results are now determined from lab experiments for nine (9) 

investigations shown in Section 1.3. 

Set up of lateral torsional testing apparatus is first discussed, then procedure for 

determining elastic modulus and shear modulus is demonstrated. These material properties vary 

among GFRP beam manufacturers. 

Next, using ASCE-LRFD Prestandard, critical load limits for shear and local failure modes 

are determined then compare with lateral torsional buckling critical load limits. This was done to 

insure that the beams at the lengths and cross sections chosen fail lateral-torsionally. 

Using a lateral torsional testing apparatus with dial gages mounted along its length, we 

gathered rotational and translational deflection data.  Results are presented herein. 

3.1 Experimental Equipment 

Torsional testing to be performed is similar to rotational beam testing and is used to 

determine the angle of twist, the torsion failure load, and the maximum shear stress. The 

maximum angel of twist will be determined as the load at which the I beam fails to elastically 

return to its original state after unloading. Plastic limit will determined as the load at which the 

member is no longer able to support a load. In addition, information from torsional experiments 

will be used to develop an interaction equation and to review preliminary design guidelines for 

pultruded members as proposed by the ASCE. 

To conduct the flexure torsional testing a flexural testing apparatus conceived by Dr. 

Sirjani and Dr. Razzaq is used. It is similar in design to a testing apparatus used by Lehigh 

University when conducting flexural experiments (See Figure 24). Consistency in testing 

procedure and testing equipment gives us a more accurate baseline with which to compare 

testing results from previous dissertations, textbooks, and experiments. 
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Figure 24.  Lateral-Torsional Testing Apparatus at ODU 

 

GFRP beams are held in place by metal supports fastened to the frame of the testing 

apparatus creating specified boundary conditions as shown in Figure 25. Each end of the beam is 

simply supported, one in a pinned-end and one in a roller condition, by a round bar assembly. 

The bar assemblies will be capable of being locked in position to allow different span lengths and 

creation of double and triple spans. 
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Figure 25.  Supports 

 

The test procedure involves providing testing loads through hydraulic pressure from 

hydraulic jacks as shown in Figure 26 and then recording deflections, strains, and the output from 

load cells so that we may evaluate twist, warping, stresses, deflections, and other strength 

parameters.  The loads are to be applied in small increments and will be allowed to stabilize after 

two or three minutes after each increment before data is recorded. 

The hydraulic jacks will be placed on fixed end steel beams located above the GFRP beam. 

This will allow application of loads so as not to inhibit rotation. Pistons pointing upward will be 

pushing upward against 6” x 24” x ½ “ steel plates which are supporting vertical steel rods.  

Vertical steel rods will be pulling up on steel plates which be placed in contact with the bottom 

of the test beam. The loads will be measured by calibrated load cells mounted upon each jack 

and plate assembly. 
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Figure 26.  Hydraulic Jack and Pump 

 

Jack and meter assemblies shown in Figure 27 will create loads through hydraulic pressure 

pumped manually and allow us to read load values. Tie rod assembly will allow the beam to 

develop lateral torsion and horizontal deflection as well as vertical deflection. 

 

 

 

 

 

  



117 
 

 

Figure 27.  Jack and Meter for Hydraulic Pump 

 

To measure translational and rotational deflections, dial gages will be positioned along 

the member as shown in Figure 28. Optionally, strain gages may be mounted along test beams 

to evaluate warping and twist. 
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Dial gage for vertical deflection
 

Dial gage for horizontal deflection

Figure 28.  Dial Gages for Measuring Deflection 

 

3.2 Material Properties and Specimens 

One standard I beam of dimensions 4” x 4” x ¼” or 3” x 3” x ¼” and approximately 105 

inches long is set up using single, double, or triple span boundary conditions and loaded for each 

investigation. The specimen is tested and results graphically compared. Vertical deflections, 

horizontal deflections, and torsional rotations obtained during experiment are compared with 

those predicted using our central difference approach.  In addition, the failure modes of bending, 

lateral torsional buckling, shear, web or flange local buckling are observed and compared with 

those predicted using the ASCE guidelines. Because we are investigating lateral torsional 

buckling, these failure modes should not occur. 

Elastic moduli, Young’s Modulus and Shear Modulus 

Two of the most important elastic properties of the fiberglass reinforced plastic beams 

concerning shear deflection and torsion are associated with Young’s Modulus and the Shear 

Modulus, E and G, respectively. Thus, we will perform lab experiments to confirm their values for 

our 3” x 3” x ¼” and $’ x 4” x ¼” beams before we gin our analysis. Manufacturer’s data for the 
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beams suggest that the range of the Elastic modules is between 2800 and 3200 x 10 ksi. Ex and 

Ey are shown to be the same. 

During lab experiments to determine Modulus of Elasticity, cross sectional values of Ex 

and Ey were determined to be 2800 and 3194 ksi, respectively. These values were at the limits of 

the recommended manufacturer’s range. For analysis purposes, E will be the average of these 

two values, 2997 ksi. 

Shear modulus G from lab experiment was determined be 453 ksi. This is consistent with 

the recommended manufacturer’s value. Analysis approaches to determine lab values of E and 

G are now presented herein. 

Young’s Modulus 

Cantilevered beam is used as shown in Figure 29. This creates a uniform moment on the 

center span which we can consider free of shear deflection when we perform our deflection 

calculation.  Once we determine the equations for deflection and run the experiment modeling 

it in the lab, we have one (1) unknown, E. Using the lab determined deflection value, we can solve 

for our unknown value of E. 
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Figure 29.  Shear and Moment Diagrams for Young’s Experiment 

 

Using a superposition approach on the cantilever beam with hinge AC, we can determine 

what the reaction at the hinge is in the Y direction. Using this information and the moment load 

of the conjugate beam on BC, we can determine the deflection at the centerline BC. 

On the major axis, the experimental deflection at centerline is .083”. With Ex =2800 ksi, 

we calculated a deflection of 1676.44/EI = .0755 without shear and .082 in. with shear. As such, 

Ex to be used in our analysis is 2800 ksi. 

On the minor axis, the experimental deflection is .043”. With the understanding that the 

moment of inertia is about the bottom of the beam cross section and not the centroid. Our 

calculated value compares favorably to our experimental value and is .043” when using 3194 ksi 

for Ey.  So, we have 2800 ksi for Ex, 3194 for Ey, and 2997 ksi for E when needing average. These 

//// //// 
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values compare favorably with manufacturer’s recommended value range of 2800 ksi to 3200 

ksi. 

Shear Modulus 

In addition to the aforementioned experiment, the lateral deflection related to shear 

needs to be used to determine shear modulus which we need to use in our central difference 

calculations.  

In our second material property experiment to determine the Shear Modulus, we load 

the beam as shown in Figure 30 to create a Torque T which is monitored along with the lateral 

deflection in the elastic range.  

 

 P 

 

   

 

 Ps Shear Moment Diagram  

 

 

  

  10.7P/EI M/EI on Conjugate Beam

 

 

 9.25P/EI 9.17P/EI  

 

 

Figure 30.  Shear and Moment Diagrams for Shear Modulus Experiment 
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Once we have experimental deflection values, we then model the experiment in central 

difference using the analytical approach we present herein. Using “G” as our unknown, we place 

known loads and other given info on the beam model then solve for G until we accomplish 

deflection observed in lab to obtain the same straightline deflection curve in the elastic range. 

Solved.  G was determined to be 453 ksi. Could not use typical classical finite difference 

approach because no relationships between in plane deflections and out of plane rotations are 

considered in typical torsion or bending moment equations. Consideration for end shears and 

differential warping between sections are included in the third equilibrium equation being used 

in our analysis approach presented herein. The equation is cited below: 

Cwф’’’ – (Ct + K)ф’ -  Mx u’ -  My v’  -  v/L (My1 + My2)  -  u/L (Mx1 + Mx2)  + (Pyo/2)ф = 0 

The last five terms are not typically addressed in bending or torsion analysis. 
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3.3 Lab Investigations 

Lab Investigation 1 

Experimental results are now presented for investigation 1. Using ASCE-LRFD 

Prestandard, critical load limits for shear and local failure modes are determined then compared 

with lateral torsional buckling critical load limits. Beam established for investigation 1 predicted 

to fail in lateral torsion. 

Experiment involves observance of vertical, horizontal, and lateral torsional deflections 

of a single span beam with point load at midspan. Dial gages are mounted along the beam with 

cross section, supports, and boundary conditions shown in Figure 31. Rotational and translational 

deflection data observed from lateral torsional testing for investigation 1 presented in this 

section. 

 

  P 

 

  37.5” 37.5” 

 

Figure 31.  Investigation 1: Single Span Model 

To determine what size beam to use in the beam testing apparatus, we evaluated the 

shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic I 

beams (See Figure 32).  First, we eliminated the 6” x 6” x ¼” beam because the loading capacity 

of our testing apparatus may be exceeded. 

 

  

//// //// 
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Figure 32.  LTB Comparison of Cross Sections 

Next, to establish a baseline for the investigation, we elected to perform single, double, 

and triple span experiments with the point load at midspan using the 4” x 4” x ¼” cross section.  

Alternatively, the 3” x 3” x ¼” cross section issued for single, double, and triple span experiments 

where the point loads are off-centered and moved toward the supports. The larger cross section 

is being used in the experiments associated with the location where the point load produces 

maximum deflection and max shear. Shorter span experiments were performed using the 3” x 3” 

x ¼” cross section. The objective was to keep buckling loads and deflections within range of 

testing apparatus and dial gages measuring deflections. 

Lastly, beams were evaluated by their failure predictions as determined using the ASCE-

LRFD Design Guide for Pultruded Members (See Appendix). These failures include material 

rupture, lateral torsional buckling, and shear. Since we are interested in lateral torsional buckling 

failure, we want to make sure beams fail lateral-torsionally before other failure modes are 

reached. Our own predictions for lateral-torsional buckling with shear were also considered. 

Graph showing lateral-torsional buckling failure is shown in Figure 33. It compares our central 

difference buckling solution with the ASCE-LRFD Design buckling solution. 
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Figure 33.  Central Diff vs ASCE Buckling Prediction Curves 

A GFRP beam of dimensions 4” x 4” x ¼” x 75” is placed in our beam testing apparatus and 

in-plane loads will be placed upon the beam until it reaches lateral-torsional buckling failure. The 

objective is to identify in-plane deflection increases and out of plane deflections that are 

experienced as a result of shear. These typically unaddressed deflections often lead to premature 

buckling failure of the beam. We then compare buckling and deflection lab results to our 

predictions and ASCE Design values. 

We are using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as determined 

during our material testing discussed earlier in Chapter 3. Looking at the manufacturer’s data for 

the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x 10 6 and 

the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi.  this information confirms our test 

results. 

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place 

loads upon the specimen. Also, a meter for measuring the loads will be used. Dial gages are 

located along the beam as shown in Figure 34 for determination of vertical, horizontal, and lateral 

torsional deflections to be compared with deflection values obtained with our analytical models 

using the central difference approach for same locations. 
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Vertical dial gage(v3) 

Horizontal dial gage(h2) 

Torsion dial gage(l1) 

 

Midspan 

 

8”   5”  9” 18”   17.5”           17” 29”         28”        28”

 

  

Figure 34.  Dial Gage locations for Single Span Point Load Experiment 

Mechanical properties and dimensions of the GFRP beam being used are as follows: 

L = 75 inches; I beam is 4” x 4” x ¼”; Area A = 2.85 in.2; I = 7.93 in.4; F = 30 ksi; E = 2997 ksi; and 

G = 453 ksi.  

Deflection values observed from lab experiment are shown in Table 40. They are 

compared with Central Difference deflection and buckling values and ASCE-LRFD buckling values 

in Chapter 4. 

 

 

  

//// 
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Table 40. Deflections from Lab.  Investigation 1 

 *8” 29” 18” 5” 17.5” 28” 9” 17” 28” 

Load P v1lab v1lab v1lab h1 h1 h1 l1 l1 l1 

0 0 0 0 0 0 0 0 0 0 

.01408 .001 .004 .003 0 0 0 .0002 .00047 .00023 

.12925 .019 .053 .042 .005 .006 .008 .0025 .00506 .00254 

.31489 .043 .121 .093 .011 .017 .022 .0054 .01353 .006 

.49130 .066 .178 .142 .016 .026 .034 .008 .0208 .00931 

.6858 .091 .258 .189 .022 .036 .045 .011 .02871 .01377 

.8787 .117 .329 .243 .029 .047 .056 .014 .03647 .01715 

1.027 .137 .386 .284 .034 .055 .065 .016 .04282 .01977 

1.362 .181 .509 .376 .045 .071 .082 .0208 .05588 .02554 

1.612 .217 .607 .449 .052 .083 .094 .0246 .07153 .02969 

1.832 .238 2.1 .489 .059 .09 .12 .0267 .09506 .03208 

1.88 .248 2.7 .514 .062 .097 .15 .0279 .123 .03354 

* Distance from support 
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Appendix 1.  ASCE-LRFD Design Failure Modes.  Investigation 1 

For each investigation, we are examining several failure modes as defined by the ASCE to 

insure that each experiment fails in lateral-torsional buckling and not in another defined mode. 

Failure modes being evaluated include material rupture, compression flange local buckling, web 

local buckling, and shear.  

For material rupture, the equation is: 

Mn = FL(I/y) where FL = 30 ksi and is the longitudinal strength of the member;  I = 7.935 in. 4; 

And y = 2.0” and is the distance from the neutral axis to the extreme fiber of a member. 

Plugging in values, we have 

Mn =30 (7.935)/2.0 ) = 119.025 k-in. 

The equation for compression flange local buckling is: 

Mn = fcr(I/y) where 

fcr is the minimum critical buckling stress of the compression flange or the web.  For 

compression flange local buckling, 

fcr = (4tf
2/bf

2) ((7/12)(Ex Ey/(1 + 4.1Ԑ)).5 + G),  

Ԑ = Eytf3/(bfkt6), and 

kt  = (Ex tw
3/6h) (1 – ((48tr2h2Ey/(11.1π2tw

2br
2ELF))(G/(1.25(Ey Ex).5 + ExvLT + G))) where vLT is 

Poisson’s ratio , tw is web thickness, and br is flange thickness.  Plugging in values, we have 

 fcr = 19.59 ksi. 

For web local buckling, 

fcr =  (11.1π2tw
2/12h2))(1.25(E y Ex).5 + Ex vLT + G ) = 28.66 ksi . 

Critical stress of 19.59 ksi governs and  

Mn =19.59 (7.936/2.0) = 77.7 k-in. 
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For shear, we will be examining shear and shear buckling failures. The equation for shear 

failure is: 

Vn = FLTAs where FLT = 8 ksi and is the in-plane shear strength; and As = 4 in. x .25 = 1.0 in. 2 

And is the area of the web. Plugging these values in, we have 

Vn = 8.0 x 1.0 = 8 kips. 

The equation for web shear buckling is  

Vn = fcr As where  

fc r = (kLTtw
2/3h2 )(ExEy

3).25 and kLT = 8.1 + 5.0(2G + Ey vLT )/(Ex Ey )  = 11.21.  Plugging in values 

fcr =45.10 ksi  and  

Vn = 45.10(1.0) = 45.10 kips 

For the 4” x 4” x ¼” beam, ASCE-LRFD failure mode values of shear and moment, Vn and 

Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD 

failure modes are shearing of the web and compression flange local buckling. For Investigation 1, 

the ASCE-LRFD P and M values for lateral-torsional buckling are 2.11 kips and 43.02 k-in. Because 

the critical values associated with the other failure modes are higher than the values determined 

using the lateral torsional buckling failure mode, the beam for this investigation is expected to 

fail in lateral torsional-buckling. 
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Lab Investigation 2 

Experimental results are now presented for investigation 2. Using ASCE-LRFD 

Prestandard, critical load limits for shear and local failure modes are determined then compared 

with lateral-torsional buckling critical load limits. Beam established for investigation 2 predicted 

to fail in lateral-torsion. 

Experiment involves observance of vertical, horizontal, and lateral- torsional deflections 

of a single span beam with a point load off center. Lateral- torsional buckling load is also being 

predicted and observed for the beam shown in Figure 35. 

 

  P 

   

  27”                            52.5”  

 

 

Figure 35.  Investigation 2:  Single Span Off Center 

To determine what size beam to use in the beam testing apparatus, we evaluated the 

shear deflection and lateral- torsional buckling characteristics of three fiber reinforced plastic I 

beams (See Figure 36). First, we eliminated the 6” x 6” x ¼” beam because the loading capacity 

of our testing apparatus may be exceeded. 
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Figure 36.  LTB Comparison of Cross Sections 

 

Next, to establish a baseline for the investigation, we elected to perform single, double, 

and triple span experiments with the point load at midspan using the 4” x 4” x ¼” cross section.  

Alternatively, the 3” x 3” x ¼” cross section is used for single, double, and triple span experiments 

where the point loads are off-centered and on the outside span. The larger cross section is being 

used in the experiments associated with the location where the point load will produce maximum 

deflection and max shear. Shorter span experiments were performed using the 3” x 3” x ¼” cross 

section. The objective was to keep buckling loads and deflections within range of testing 

apparatus and dial gages measuring deflections. 

Lastly, beams were evaluated by their failure predictions as determined using the ASCE-

LRFD Design guide for Pultruded Members (See Appendix).  These failures include material 

rupture, lateral- torsional buckling, and shear. Since we are interested in lateral- torsional 

buckling failure, we want to make sure beams fail lateral- torsionally before other failure modes 

are reached. Our own predictions for lateral- torsional buckling with shear were also considered. 

Graph showing lateral- torsional buckling failure is shown in Figure 37. It compares our central 

difference buckling solution with ASCE-LRFD Design buckling solution. 
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Figure 37.  LTB and Failure Prediction Curves for 3 x 3 x ¼ 

 

A GFRP beam of dimensions 3” x 3” x ¼” x 79.5” will be placed in our beam testing 

apparatus and in-plane loads will be placed upon the beam as shown in Figure 35 until it reaches 

lateral- torsional buckling failure. 

The objective is to identify in-plane deflection increases and out of plane deflections that 

are experienced as a result of shear. These typically unaddressed deflections often lead to 

premature buckling failure of the beam. We will then compare buckling results to our predictions 

and ASCE Design values. 

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 psi as 

determined during our material testing discussed in Chapter 3. Looking at the manufacturer’s 

data for the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x 

10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This information confirms 

our test results. 

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place 

loads up on the specimen. Also, a meter for measuring the loads will be used. 
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Dial gages were located along the beam as shown in Figure 38 for determination of 

vertical, horizontal, and lateral- torsional deflections to be compared with deflection values 

obtained with our analytical models using the central difference approach. 

Vertical dial gage(v3) 

Horizontal dial gage(h2) 

Torsion dial gage(l1) 

 

 

 

6”   3.5”   5.5” 21”    22”                22” 36” 36” 36” 

 

 79.5” 

 

Figure 38.  Dial Gage Locations for Single Span Point Load Off Center Experiment 

 

Mechanical properties and dimensions of the GFRP beam being used are as follows: 

L = 79.5 inches; I beam is 3” x 3” x ¼”; Area A = 2.13 in. 2; I = 3.17 in. 4; F = 30 ksi; E = 2997 ksi; 

and G = 453 ksi. 

Deflection values from lab experiment are shown in Table 41. They will be compared with 

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4. 
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Table 41.  Deflections from Lab.  Investigation 2 

 *6” 21” 36” 3.5” 22” 36” 5.5” 22” 36” 
Load P v1 lab v2 lab v3 lab h1 h2 h3 l1 l2 l3 

0 0 0 0 0 0 0 0 0 0 
.1826 .074 .23 .181 .002 0 .001 .077 .131 .0167 
.4244 .132 .309 .399 .004 .003 .029 .14 .226 .0299 
.6514 .206 .476 .593 .009 .005 .087 .199 .308 .0431 
.8653 .338 .64 .792 .012 .008 .175 .263 .384 .0535 

.91 .41 .794 .966 .023 .019 .33 .318 .449 .0763 

.91   1.2   .8   .095 

.91   1.4   .9   .105 
*Distance from support 
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Appendix 2.  ASCE-LRFD Design Failure Modes.  Investigation 2 

For each investigation, we are examining several failure modes as defined by the ASCE to 

insure that each experiment fails in lateral-torsional buckling and not in another defined mode. 

Failure modes being evaluated include material rupture, compression flange local buckling, web 

local buckling, and shear. 

For material rupture, the equation is: 

Mn = FL(I/y) where FL = 30 ksi and is the longitudinal strength of the member;  I = 3.17 in. 4; 

And y = 1.5” and is the distance from the neutral axis to the extreme fiber of a member.  

Plugging in values, we have 

Mn =30 (3.17)/1.5 ) = 63.4  k-in. 

The equation for compression flange local buckling is: 

Mn = fcr(I/y) where 

fcr is the minimum critical buckling stress of the compression flange or the web. For 

compression flange local buckling, 

fcr = (4tf
2/bf

2) ((7/12)(Ex Ey/(1 + 4.1Ԑ)).5 + G),  

Ԑ = Eytf3/(bfkt6), and 

kt  = (Ex tw
3/6h) (1 – ((48tr2h2Ey/(11.1π2tw

2br2ELF))(G/(1.25(Ey Ex).5 + ExvLT + G))) where vLT is 

Poisson’s ratio , tw is web thickness, and br is flange thickness.  Plugging in values, we have 

 fcr = 34.82 ksi. 

For web local buckling, 

fcr =  (11.1π2tw
2/12h2))(1.25(E y Ex).5 + Ex vLT + G ) = 50.96 ksi . 

Critical stress of 34.82 ksi governs and  

Mn =34.82 (3.17/1.5) = 73.6 k-in. 
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For shear, we will be examining shear and shear buckling failures.  The equation for shear 

failure is: 

Vn = FLTAs where FLT = 8 ksi and is the in-plane shear strength; and As = 3 in. x .25 = .75 in. 2 

And is the area of the web.  Plugging these values in, we have 

Vn = 8.0 x .75 = 6 kips. 

The equation for web shear buckling is  

Vn = fcr As where  

fc r = (kLTtw
2/3h2 )(ExEy

3).25 and kLT = 8.1 + 5.0(2G + Ey vLT )/(Ex Ey )  = 11.21.  Plugging in values 

fcr = 80.17  ksi  and  

Vn = 80.17(.75) = 60.13  kips 

 

For the 3” x 3” x ¼” beam, ASCE-LRFD failure mode values of shear and moment, Vn and 

Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD 

failure modes are shearing of the web and compression flange local buckling. For Investigation 2, 

the ASCE-LRFD Pcr and Mcr values for lateral-torsional buckling are 1.0 kips and 18.68 k-in. Because 

the critical values associated with the other failure modes are higher than the values determined 

using the lateral torsional buckling failure mode, the beam for this investigation is expected to 

fail in lateral torsional-buckling. 
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Lab Investigation 3 

Experimental results are now presented for investigation 3. Using ASCE-LRFD 

Prestandard, critical load limits for shear and local failure modes are determined then compared 

with lateral- torsional buckling critical load limits. Beam established for investigation 3 predicted 

to fail in lateral torsion. 

Experiment involves observance of vertical, horizontal, and lateral torsional deflections 

of a two span beam with a point load at midspan of the longer span. Lateral-torsional buckling 

load is also being predicted and observed for the beam shown in Figure 39. 

 

  P  

 

  37.5” 37.5” 30.0” 

 

 

Figure 39.  Investigation 3.  Two Span Model 

 

To determine what size beam to use in the beam testing apparatus, we evaluated the 

shear deflection and lateral-torsional buckling characteristics of three fiber reinforced plastic I 

beams (See Figure 40). First, we eliminated the 6” x 6” x ¼” beam because the loading capacity 

of our testing apparatus may be exceeded. 
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Figure 40.  LTB Comparison of Cross Sections 

 

Next, to establish a baseline for the investigation, we elected to perform single, double, 

and triple span experiments with the point load at midspan using the 4” x 4” x ¼” cross section. 

Alternatively, the 3” x 3” x ¼” cross section is used for single, double, and triple span experiments 

where the point loads are off-centered or on an outside span. The larger cross section is being 

used in the experiments associated with the location where the point load will produce maximum 

deflection and max shear. Shorter span experiments were performed using the 3” x 3” x ¼” cross 

section. The objective was to keep buckling loads and deflections within range of testing 

apparatus and dial gages measuring deflections. 

Lastly, beams were evaluated by their failure predictions as determined using the ASCE-

LRFD Design Guide for Pultruded Members (See Appendix). These failures include material 

rupture, lateral-torsional bucking, and shear.  Since we are interested in lateral-torsional buckling 

failure, we want to make sure beams fail lateral- torsionally before other failure modes are 

reached.  Our own predictions for lateral-torsional buckling with shear were also considered. 

Graph showing lateral-torsional buckling failure is shown in Figure 41. It compares our central 

difference buckling solution with the ASCE-LRFD Design buckling solution. 
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Figure 41.  Central Diff vs ASCE Buckling Prediction Curves 

A GFRP  beam of dimensions 4” x 4” x ¼” x 105” will be placed in our beam testing 

apparatus and in-plane loads will be placed upon the beam as shown in Figure 39 until it reaches 

lateral torsional buckling failure. 

The objective is to identify in-plane deflection increases and out of plane deflections that 

are experienced as a result of shear. These typically unaddressed deflections often lead to 

premature buckling failure of the beam. We will then compare buckling results to our predictions 

and ASCE Design values. 

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as 

determined during our material testing discussed in Chapter 3. Looking at the manufacturer’s 

data for the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x 

10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This information confirms 

our test results.   

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place 

loads upon the specimen. Also, a meter for measuring the loads will be used. 
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Dial gages were located along the beam as shown in Figure 42 for determination of 

vertical, horizontal, and lateral torsional deflections to be compared with deflection values 

obtained with our analytical models using the central difference approach. 

Vertical dial gage(v3) 

Horizontal dial gage(h2) 

Torsion dial gage(l1) 

 

 

 

32.5”  27.5”  30.0” 24.0”   19.0”      30.0” 4” 4” 5” 

 

75” 



Figure 42.  Dial Gages for Two Span Point Load Experiment 

Mechanical properties and dimensions of the GFRP beam being used are as follows: 

L1 = 30 inches; L2 = 75 inches; I beam is 4” x 4” x ¼”; Area A = 2.85 in.2; I = 7.93 in. 4;       F = 

30ksi; e = 2997 ksi; and G = 453 ksi. 

Deflection values from lab experiment are shown in Table 42. They will be compared with 

Central Difference deflection and buckling values and AXCE-LRFD buckling values in Chapter 4. 

 

 

 

 

 

 

//// //// 
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Table 42.  Deflections from Lab.  Investigation 3 

 *32.5” 29” 4” 27.5” 24” 4” 30” 30” 5” 

Load P v1 lab v2 lab v3 lab h1 h2 h3 l1 l2 l3 

0 0 0 0 0 0 0 0 0 0 

.3464 .0897 .046 .022 0 0 0 .0081 .00554 0 

.5803 .1503 .104 .037 .008 .002 .002 .0145 .01023 .00115 

.8144 .2109 .146 .052 .009 .003 .003 .021 .01477 .00231 

1.047 .2711 .202 .069 .016 .009 .004 .0272 .01931 .00354 

1.245 .3223 .255 .083 .021 .014 .005 .0329 .02338 .00454 

1.418 .3671 .3 .095 .027 .015 .006 .0374 .02662 .00546 

1.617 .4188 .353 .109 .032 .02 .008 .043 .03046 .00646 

1.794 .4645 .401 .122 .035 .022 .009 .0477 .03385 .00746 

2.028 .5251 .464 .14 .05 .026 .011 .0544 .03862 .00877 

2.326 .6023 .549 .163 .061 .038 .012 .0615 .04354 .00992 

2.5 1.2   .07 .055  .12   

2.6 1.5   .16 .09  .15   

*Distance from support 
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Appendix 3.  ASCE-LRFD Design Failure Modes.  Investigation 3 

For each investigation, we are examining several failure modes as defined by the ASCE to 

insure that each experiment fails in lateral-torsional buckling and not in another defined mode. 

Failure modes being evaluated include material rupture, compression flange local buckling, web 

local buckling, and shear. 

For material rupture, the equation is: 

Mn = FL(I/y) where FL = 30 ksi and is the longitudinal strength of the member;  I = 7.935 in. 4; 

And y = 2.0” and is the distance from the neutral axis to the extreme fiber of a member.  

Plugging in values, we have 

Mn =30 (7.935)/2.0 ) = 119.025 k-in. 

The equation for compression flange local buckling is: 

Mn = fcr(I/y) where 

fcr is the minimum critical buckling stress of the compression flange or the web.  For 

compression flange local buckling, 

fcr = (4tf
2/bf

2) ((7/12)(Ex Ey/(1 + 4.1Ԑ)).5 + G),  

Ԑ = Eytf3/(bfkt6), and 

kt  = (Ex tw
3/6h) (1 – ((48tr2h2Ey/(11.1π2tw

2br2ELF))(G/(1.25(Ey Ex).5 + ExvLT + G))) where vLT is 

Poisson’s ratio , tw is web thickness, and br is flange thickness.  Plugging in values, we have 

 fcr = 19.59 ksi. 

For web local buckling, 

fcr =  (11.1π2tw
2/12h2))(1.25(E y Ex).5 + Ex vLT + G ) = 28.66 ksi . 

Critical stress of 19.59 ksi governs and  

Mn =19.59 (7.936/2.0) = 77.7 k-in. 
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For shear, we will be examining shear and shear buckling failures.  The equation for shear 

failure is: 

Vn = FLTAs where FLT = 8 ksi and is the in-plane shear strength; and As = 4 in. x .25 = 1.0 in. 2 

And is the area of the web.  Plugging these values in, we have 

Vn = 8.0 x 1.0 = 8 kips. 

The equation for web shear buckling is  

Vn = fcr As where  

fc r = (kLTtw
2/3h2 )(ExEy

3).25 and kLT = 8.1 + 5.0(2G + Ey vLT )/(Ex Ey )  = 11.21.  Plugging in values 

fcr =45.10 ksi  and  

Vn = 45.10(1.0) = 45.10 kips 

For the 4” x 4” x ¼” beam, ASCE-LRFD failure mode values of shear and moment, Vn and 

Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD 

failure modes are shearing of the web and compression flange local buckling. For Investigation 3, 

the ASCE-LRFD P and M values for lateral-torsional buckling are 3.16 kips and 51.53 k-in. Because 

the critical values associated with the other failure modes are higher than the values determined 

using the lateral-torsional buckling failure mode, the beam for this investigation is expected to 

fail in lateral-torsional-buckling. 
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Lab Investigation 4 

Experimental results are now presented for investigation 4.  Using ASCE-LFRD 

Prestandard, critical load limits for shear and local failure modes are determined then compared 

with lateral torsional buckling critical load limits. Beam established for investigation 4 predicted 

to fail in lateral torsion. 

Experiment involves observance of vertical, horizontal, and lateral torsional deflections 

of a two span I beam with point load at midspan and spans are near equal. Lateral torsional 

buckling load is also being predicted and observed on beam shown in Figure 43. 

 

  P

 

       

 27” 27” 51”



Figure 43.  Investigation 4:  Two Span Near Equal 

To determine what size beam to use in the beam testing apparatus, we evaluated the 

shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic I 

beams (See Figure 44).  First, we eliminated the 6” x 6” x ¼” beam because the loading capacity 

of our testing apparatus may be exceeded. 

 

 

 

 

 

  

//// //// //// 
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Figure 44.  LTB Comparison of Cross Sections 

Next, to establish a baseline for the investigation, we elected to perform single, double, 

and triple span experiments with the point load at midspan using the 4” x 4” x ¼” cross section. 

Alternatively, the 3” x 3” x ¼” cross section is used for single, double, and triple span experiments 

where the point loads are off-centered and moved toward the supports. The larger cross section 

is being used in the experiments associated with the location where the point load will produce 

maximum deflection and max shear. Shorter span experiments were also performed using the 3” 

x 3” x ¼” cross section. The objective was to keep buckling loads and deflections within range of 

testing apparatus and dial gages measuring deflections. 

Lastly beams were evaluated by their failure predictions as determined suing the ASCE-

LRFD Design Guide for Pultruded Members (See Appendix). These failures include material 

rupture, lateral torsional buckling, and shear. Since we are interested in lateral- torsional buckling 

failure, we want to make sure beams fail lateral- torsionally before other failure modes are 

reached. Our own predictions for lateral- torsional buckling with shear were also considered. 

Graph showing lateral- torsional buckling with shear were also considered. Graph showing lateral 

torsional buckling failure is shown in Figure 45. It compares our central difference buckling 

solutions with ASCE-LRFD Design buckling solutions. 
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Figure 45.  Central Diff vs ASCE Buckling Prediction Curves 

A GFRP beam of dimensions 3” x 3” x ¼” x 105” will be placed in our beam testing 

apparatus and in-plane loads will be placed upon the beam as shown in Figure 43 until it reaches 

lateral-torsional buckling failure. 

The objective is to identify in-plane deflection increases and out of plane deflections that 

are experienced as a result of shear. These typically unaddressed deflections often lead to 

premature buckling failure of the beam. We will then compare buckling results to our predictions 

and ASCE Design values. 

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as 

determined during our material testing discussed in chapter 1. Looking at the manufacturer’s 

data for the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x 

10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This information confirms 

our test results. 

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place 

loads upon the specimen.  Also, a meter for measuring the loads will be used. 
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Dial gages were located along the beam as shown in Figure 46 for determination of 

vertical, horizontal, and lateral torsional deflections to be compare with deflection values 

obtained with our analytical models using the central difference approach. 

Vertical dial gage(v3) 

Horizontal dial gage(h2) 

Torsion dial gage(l1) 

 



 

21.5”   19”   22.5” 19”       19” 19” 4” 4” 5” 

 

 54” 



Figure 46.  Dial Gage Locations for Two Span Near Equal Experiment 

Mechanical properties and dimensions of the GFRP beam being used are as follows: 

L1 = 54.0 inches; I beam is 3” x 3” x ¼”; Area A = 2.13 in. 2; I = 3.17 in. 4; F = 30 ksi; E = 2997 ksi; 

and G = 453 ksi. 

Deflection values from lab experiment are shown in Table 43.  They will be compare with 

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4. 

 

 

  

//// //// 
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Table 43.  Deflections from Lab.  Investigation 4 

 *21.5” 19” 4” 19” 19” 4” 22.5” 19” 5” 

Load P v1 lab v2 lab v3 lab h1 h2 h3 l1 l2 l3 

0 0 0 0 0 0 0 0 0 0 

.2770 .1129 .0760 .02 .001 0 0 .0061 .0083 .00276 

.6562 .2182 .1588 .046 .006 .004 0 .0165 .017 .00476 

.8359 .2709 .2005 .06 .01 .007 .001 .0214 .0211 .00562 

1.006 .3295 .2393 .076 .014 .01 .002 .0264 .025 .00548 

1.154 .3762 .2766 .089 .016 .012 .003 .0309 .0287 .00724 

1.385 .445 .3318 .109 .019 .015 .004 .0374 .0342 .00838 

1.571 .5019 .3772 .126 .024 .019 .005 .043 .0387 .0092 

1.733 .552 .419 .142 .028 .022 .006 .0477 .0425 .01 

2.038 .6471 .495 .169 .039 .027 .007 .0559 .049 .01238 

2.37 .8 .5696 .196 .058 .042 .008 .0666 .0582 .01828 

2.37 1.43   .116     .0225 

*Distance from support 
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Appendix 4.  ASCE-LRFD Design Failure Modes.  Investigation 4 

For each investigation, we are examining several failure modes as defined by the ASCE to 

insure that each experiment fails in lateral-torsional buckling and not in another defined mode. 

Failure modes being evaluated include material rupture, compression flange local buckling, web 

local buckling, and shear. 

For material rupture, the equation is: 

Mn = FL(I/y) where FL = 30 ksi and is the longitudinal strength of the member;  I = 3.17 in. 4; 

And y = 1.5” and is the distance from the neutral axis to the extreme fiber of a member.  

Plugging in values, we have 

Mn =30 (3.17)/1.5 ) = 63.4  k-in. 

The equation for compression flange local buckling is: 

Mn = fcr(I/y) where 

fcr is the minimum critical buckling stress of the compression flange or the web.  For 

compression flange local buckling, 

fcr = (4tf
2/bf

2) ((7/12)(Ex Ey/(1 + 4.1Ԑ)).5 + G),  

Ԑ = Eytf3/(bfkt6), and 

kt  = (Ex tw
3/6h) (1 – ((48tr2h2Ey/(11.1π2tw

2br2ELF))(G/(1.25(Ey Ex).5 + ExvLT + G))) where vLT is 

Poisson’s ratio , tw is web thickness, and br is flange thickness.  Plugging in values, we have 

 fcr = 34.82 ksi. 

For web local buckling, 

fcr =  (11.1π2tw
2/12h2))(1.25(E y Ex).5 + Ex vLT + G ) = 50.96 ksi . 

Critical stress of 34.82 ksi governs and  

Mn =34.82 (3.17/1.5) = 73.6 k-in. 
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For shear, we will be examining shear and shear buckling failures.  The equation for shear 

failure is: 

Vn = FLTAs where FLT = 8 ksi and is the in-plane shear strength; and As = 3 in. x .25 = .75 in. 2 

And is the area of the web.  Plugging these values in, we have 

Vn = 8.0 x .75 = 6 kips. 

The equation for web shear buckling is  

Vn = fcr As where  

fc r = (kLTtw
2/3h2 )(ExEy

3).25 and kLT = 8.1 + 5.0(2G + Ey vLT )/(Ex Ey )  = 11.21.  Plugging in values 

fcr = 80.17  ksi  and  

Vn = 80.17(.75) = 60.13  kips 

 

For the 3” x 3” x ¼” beam, ASCE-LRFD failure mode values of shear and moment, Vn and 

Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD 

failure modes are shearing of the web and compression flange local buckling. For Investigation 4, 

the ASCE-LRFD Pcr and Mcr values for lateral-torsional buckling are 2.64 kips and 32.89  k-in. 

Because the critical values associated with the other failure modes are higher than the values 

determined using the lateral-torsional buckling failure mode, the beam for this investigation is 

expected to fail in lateral-torsional buckling. 
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Lab Investigation 5 

Experimental results are now presented for investigation 5. Using ASCE-LRFD 

Prestandard, critical load limits for shear and local failure modes are determined then compared 

with lateral-torsional buckling critical load limits. Beam established for investigation 5 predicted 

to fail in lateral-torsion. 

Experiment involves observance of vertical, horizontal, and lateral- torsional deflections 

of a two span beam with point load off center. Lateral- torsional buckling load is also being 

predicted and observed for the beam shown in Figure 47. 

 

  P  

 

      

  27” 52.5” 25.5”

 

 

Figure 47.  Investigation 5:  Two Span Off Center Model 

To determine what size beam to use in the beam testing apparatus, we evaluated the 

shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic I 

beams (See Figure 48).  First, we eliminated the 6” x 6” x ¼” beam because the loading capacity 

of our testing apparatus may be exceeded. 

 

 

 

  

//// //// 
//// 
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Figure 48.  LTB Comparison of Cross Sections 

Next, to establish a baseline for the investigation, we elected to perform single, double, 

and triple span experiments with the point load at midspan using the 4” x 4” x ¼” cross section.  

Alternatively, the 3” x 3” x ¼” cross section is used for single, double, and triple span experiments 

where the point loads are of-centered and moved toward the supports. The larger cross section 

is being used in the experiments associated with the location where the point load will produce 

maximum deflection and max shear. Shorter span experiments were performed using the 3 x 3 x 

¼ cross section. The objective was to keep buckling loads and deflections within range of testing 

apparatus and dial gages measuring deflections. 

Lastly, beams were evaluated by their failure predictions as determined using the ASCE-

LRFD Design Guide for Pultruded Members (See Appendix). These failures include material 

rupture, lateral torsional buckling, and shear. Since we are interested in lateral torsional buckling 

failure, we want to make sure beams fail lateral- torsionally before other failure modes are 

reached.  Our own predictions for lateral torsional buckling with shear were also considered. 

Graph showing lateral torsional buckling failure is shown in Figure 49. It compares the central 

difference buckling solutions with the ASXE-LRFD Design buckling solutions. 
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Figure 49.  Central Diff vs ASCE Buckling Prediction Curves 

A GFRP beam of dimensions 3” x 3” x ¼” x 105” will be placed in our beam testing 

apparatus and in-plane loads will be placed upon the beam as shown in Figure 47 until it reaches 

lateral torsional buckling failure. 

The objective is to identify in-plane deflection increases and out of plane deflections that 

are experienced as a result of shear. These typically unaddressed deflections often lead to 

premature buckling failure of the beam. We will then compare buckling results to our predictions 

and ASCE Design values. 

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as 

determined during our material testing discussed in Chapter 3. Looking at the manufacturer’s 

data for the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x 

10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This information confirms 

our test results. 

Dial gages were located along the beam as shown in Figure 50 for determination of 

vertical, horizontal, and lateral torsional deflections to be compare with deflection values 

obtained with our analytical modes using the central difference approach. 
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Vertical dial gage(v3) 

Horizontal dial gage(h2) 

Torsion dial gage(l1) 

 

 

 

5”   21”   21” 22”   18”   18” 35”   4”    5”

 

 79.5” 
 

Figure 50.  Dial Gage Locations for Two Span Point Load Off Ctr Experiment 

 

Mechanical properties and dimensions of the GFRP beam being used are as follows: 

L1 = 79.5 inches; I beam is 3” x 3” x ¼”; Area A = 2.13 in. 2; I = 3.17 in. 4; F = 30 ksi; E = 2997 ksi; 

and G = 453 ksi. 

Deflection values from lab experiment are shown in Table 44.  They will be compared with 

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4. 
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Table 44.  Deflections from Lab.  Investigation 5 

 *5” 22” 35” 21” 18” 4” 21” 18” 5” 
Load P v1 lab v2 lab v3 lab h1 h2 h3 l1 l2 l3 

0 0 0 0 0 0 0 0 0 0 
.2285 .069 .103 .129 0 0 0 .00191 .00482 .00158 
.4446 .109 .222 .266 0 0 0 .00445 .01518 .01579 
.625 .147 .339 .402 .002 .004 .004 .00709 .02591 .03042 

.8108 .184 .456 .499 .004 .007 .007 .01018 .03664 .04484 
1.001 .222 .575 .595 .011 .012 .011 .01355 .04755 .05947 
1.12 .252 .664 .7 .023 .021 .017 .01664 .05609 .0707 
1.2 .28 .747 .801 .036 .031 .022 .02009 .06427 .08158 
1.2 .31 .866 .939 .05 .032 .031 .02445 .07582 .09642 

 

*Distance from support 
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Appendix 5.  ASCE-LRFD Design Failure Modes.  Investigation 5 

For each investigation, we are examining several failure modes as defined by the ASCE to 

insure that each experiment fails in lateral-torsional buckling and not in another defined mode. 

Failure modes being evaluated include material rupture, compression flange local buckling, web 

local buckling, and shear. 

For material rupture, the equation is: 

Mn = FL(I/y) where FL = 30 ksi and is the longitudinal strength of the member;  I = 3.17 in. 4; 

And y = 1.5” and is the distance from the neutral axis to the extreme fiber of a member.  

Plugging in values, we have 

Mn =30 (3.17)/1.5 ) = 63.4  k-in. 

The equation for compression flange local buckling is: 

Mn = fcr(I/y) where 

fcr is the minimum critical buckling stress of the compression flange or the web.  For 

compression flange local buckling, 

fcr = (4tf
2/bf

2) ((7/12)(Ex Ey/(1 + 4.1Ԑ)).5 + G),  

Ԑ = Eytf3/(bfkt6), and 

kt  = (Ex tw
3/6h) (1 – ((48tr2h2Ey/(11.1π2tw

2br2ELF))(G/(1.25(Ey Ex).5 + ExvLT + G))) where vLT is 

Poisson’s ratio , tw is web thickness, and br is flange thickness.  Plugging in values, we have 

 fcr = 34.82 ksi. 

For web local buckling, 

fcr =  (11.1π2tw
2/12h2))(1.25(E y Ex).5 + Ex vLT + G ) = 50.96 ksi . 

Critical stress of 34.82 ksi governs and  

Mn =34.82 (3.17/1.5) = 73.6 k-in. 
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For shear, we will be examining shear and shear buckling failures.  The equation for shear 

failure is: 

Vn = FLTAs where FLT = 8 ksi and is the in-plane shear strength; and As = 3 in. x .25 = .75 in. 2 

And is the area of the web.  Plugging these values in, we have 

Vn = 8.0 x .75 = 6 kips. 

The equation for web shear buckling is  

Vn = fcr As where  

fc r = (kLTtw
2/3h2 )(ExEy

3).25 and kLT = 8.1 + 5.0(2G + Ey vLT )/(Ex Ey )  = 11.21.  Plugging in values 

fcr = 80.17  ksi  and  

Vn = 80.17(.75) = 60.13  kips 

 

For the 3” x 3” x ¼” beam, ASCE-LRFD failure mode values of shear and moment, Vn and 

Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD 

failure modes are shearing of the web and compression flange local buckling. For Investigation 4, 

the ASCE-LRFD Pcr and Mcr values for lateral-torsional buckling are 1.42  kips and 22.92  k-in. 

Because the critical values associated with the other failure modes are higher than the values 

determined using the lateral-torsional buckling failure mode, the beam for this investigation is 

expected to fail in lateral-torsional buckling. 
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Lab Investigation 6 

Experimental results are now presented for investigation 6. Using ASCE-LRFD 

Prestandard, critical load limits for shear and local failure modes are determined then compared 

with lateral torsional buckling critical load limits. Beam established for investigation 6 predicted 

to fail in lateral- torsion. 

Experiment involves observance of vertical, horizontal, and lateral torsional deflections 

of a three span I beam with point load at midspan of center span. Lateral torsional buckling load 

is also being predicted and observed for the beam shown in Figure 51. 

 

   P 

   

      

 15” 37.5” 37.5” 15” 

 

Figure 51.  Investigation 6.  Three Span Model 

 

To determine what size beam to use in the beam testing apparatus, we evaluated the shear 

deflection and lateral torsional buckling characteristics of three fiber reinforced plastic I beams 

(See Figure 52). First, we eliminated the 6” x 6” x ¼” beam because the loading capacity of our 

testing apparatus may be exceeded. 

 

  

//// //// //// //// 
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Figure 52.  LTB Comparison of Cross Sections 

Next, to establish a baseline for the investigation, we elected to perform single, double, 

and triple span experiments with the point load at midspan using the 4” x 4” x ¼” cross section. 

Alternatively, the 3” x 3” x ¼” cross section is used for single, double, and triple span experiments 

where the point loads are off-centered and moved toward the supports. The larger cross section 

is being used in the experiments associated with the location where the point load will produce 

maximum deflection and max shear. Shorter span experiments were performed using the 3” x 3” 

x ¼” cross section. The objective was to keep buckling loads and deflections within range of 

testing apparatus and dial gages measuring deflections. 

Lastly, beams were evaluated by their failure predictions as determined suing the ASCE-

LRFD Design Guide for Pultruded Members (See Appendix). These failures include material 

rupture, lateral- torsional buckling, and shear. Since we are interested in lateral torsional buckling 

failure, we want to make sure beams fail lateral- torsionally before other failure modes are 

reached. Our own predictions for lateral torsional buckling with shear were also considered. 

Graph showing lateral torsional buckling with shear were also considered. Graph showing lateral 

torsional buckling failure is shown in Figure 53.  It compares our central difference buckling 

solutions with ASCE-LRFD Design buckling solutions. 
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Figure 53.  Central Diff vs ASCE Buckling Prediction Curves 

A GFRP beam of dimensions 4” x 4” x ¼” x 105” will be placed in our beam testing 

apparatus and in-plane loads will be placed upon the beam as shown in Figure 51 until it reaches 

lateral torsional buckling failure. 

The objective is to identify in-plane deflection increases and out of plane deflections that 

are experienced as a result of shear.  These typically unaddressed deflections often lead to 

premature buckling failure of the beam. We will then compare buckling results to our predictions 

and ASCE Design values. 

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as 

determined during our material testing discussed in Chapter 3. Looking at the manufacturer’s 

data for the fiberglass reinforced plastic beams, we see that the shear modulus is listed at .450 x 

10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This information confirms 

our test results. 

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place 

loads upon the specimen.  Also, a meter for measuring the loads will be used. 
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Dial gages were located along the beam as shown in Figure 54 for determination of 

vertical, horizontal, and lateral torsional deflections to be compared with deflection values 

obtained with our analytical models using the central difference approach. 

Vertical dial gage(v3) 

Horizontal dial gage(h2) 

Torsion dial gage(l1) 

 



 

7”   5.5”   6” 18.5”   20”            20” 32”       32”          32”

 Midspan 

  37.5” 
 

Figure 54.  Dial Gage Locations Three Span Point Load at Midspan 

 

Mechanical properties and dimensions of the GFRP beam being used are as follows: 

L1 = 30 inches; L2 = 75 inches; I beam is 4” x 4” x ¼”; Area A = 2.85 in.2; I = 7.93 in. 4; F = 30ksi;  

E = 2997 ksi; and G = 453 ksi. 

Deflection values from lab experiment are shown in Table 45.  They will be compared with 

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4. 

 

  

//// 
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Table 45.  Deflections from Lab.  Investigation 6 

 *7” 18.5” 32” 5.5” 20” 32” 6” 20” 33” 

Load P v1 v2 v3 h1 h2 h3 l1 l2 l3 

0 0 0 0 0 0 0 0 0 0 

.2209 .008 .017 .0242 .003 .007 .007 .0013 .005 .0059 

.6017 .023 .047 .0678 .013 .015 .02 .0041 .0128 .0152 

.9826 .042 .088 .127 .029 .027 .038 .0081 .0234 .0284 

1.176 .052 .11 .157 .035 .035 .045 .01 .0287 .0351 

1.357 .059 .127 .1829 .041 .038 .051 .0119 .0332 .0407 

1.55 .069 .148 .2134 .043 .043 .058 .0135 .0381 .0458 

1.76 .08 .174 .2503 .053 .051 .071 .0163 .0442 .0534 

2.04 .093 .205 .296 .057 .061 .085 .0243 .0514 .0601 

2.29 .107 .2342 .338 .0667 .071 .101 .0319 .0577 .067 

*Distance from support 
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Appendix 6.  ASCE-LRFD Design Failure Modes.  Investigation 6 

For each investigation, we are examining several failure modes as defined by the ASCE to 

insure that each experiment fails in lateral-torsional buckling and not in another defined mode. 

Failure modes being evaluated include material rupture, compression flange local buckling, web 

local buckling, and shear. 

For material rupture, the equation is: 

Mn = FL(I/y) where FL = 30 ksi and is the longitudinal strength of the member;  I = 7.935 in. 4; 

And y = 2.0” and is the distance from the neutral axis to the extreme fiber of a member.  

Plugging in values, we have 

Mn =30 (7.935)/2.0 ) = 119.025 k-in. 

The equation for compression flange local buckling is: 

Mn = fcr(I/y) where 

fcr is the minimum critical buckling stress of the compression flange or the web. For 

compression flange local buckling, 

fcr = (4tf
2/bf

2) ((7/12)(Ex Ey/(1 + 4.1Ԑ)).5 + G),  

Ԑ = Eytf3/(bfkt6), and 

kt  = (Ex tw
3/6h) (1 – ((48tr2h2Ey/(11.1π2tw

2br2ELF))(G/(1.25(Ey Ex).5 + ExvLT + G))) where vLT is 

Poisson’s ratio , tw is web thickness, and br is flange thickness. Plugging in values, we have 

 fcr = 19.59 ksi. 

For web local buckling, 

fcr =  (11.1π2tw
2/12h2))(1.25(E y Ex).5 + Ex vLT + G ) = 28.66 ksi . 

Critical stress of 19.59 ksi governs and  

Mn =19.59 (7.936/2.0) = 77.7 k-in. 
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For shear, we will be examining shear and shear buckling failures. The equation for shear 

failure is: 

Vn = FLTAs where FLT = 8 ksi and is the in-plane shear strength; and As = 4 in. x .25 = 1.0 in. 2 

And is the area of the web.  Plugging these values in, we have 

Vn = 8.0 x 1.0 = 8 kips. 

The equation for web shear buckling is  

Vn = fcr As where  

fc r = (kLTtw
2/3h2 )(ExEy

3).25 and kLT = 8.1 + 5.0(2G + Ey vLT )/(Ex Ey )  = 11.21.  Plugging in values 

fcr =45.10 ksi  and  

Vn = 45.10(1.0) = 45.10 kips 

 

For the 4” x 4” x ¼” beam, ASCE-LRFD failure mode values of shear and moment, Vn and 

Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD 

failure modes are shearing of the web and compression flange local buckling. For Investigation 6, 

the ASCE-LRFD P and M values for lateral-torsional buckling are 3.33 kips and 60.46  k-in. Because 

the critical values associated with the other failure modes are higher than the values determined 

using the lateral-torsional buckling failure mode, the beam for this investigation is expected to 

fail in lateral- torsional buckling. 
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Lab Investigation 7 

Experimental results are now presented for investigation 7. Using ASCE-LRFD 

Prestandard, critical load limits for shear and local failure modes are determined then compared 

with lateral- torsional buckling critical load limits. Beam established for investigation 7 predicted 

to fail in lateral- torsion. 

Experiment involves observance of vertical, horizontal, and lateral torsional deflections 

of a three span I beam with point load at midspan of center span. Lateral torsional buckling load 

is also being predicted and observed for the beam shown in Figure 55. 

 

 

  P 

 

         

 27” 27”  25.5” 25.5” 

 

Figure 55.  Investigation 7:  Three Span.  Outside Span 

To determine what size beam to use in the beam testing apparatus, we evaluated the 

shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic I 

beams (See Figure 56). First, we eliminated the 6” x 6” x ¼” beam because the loading capacity 

of our testing apparatus may be exceeded. 

 

  

//// //// //// //// 
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Figure 56.  LTB Comparison of Cross Sections 

Next, to establish a baseline for the investigation, we elected to perform single, double, 

and triple span experiments with the point load at midspan using the 4” x 4” x ¼” cross section.  

Alternatively, the 3” x 3” x ¼” cross section is used for single, double, and triple span experiments 

where the point loads are off-centered and moved toward the supports. The larger cross section 

is being used in the experiments associated with the location where the point load will produce 

maximum deflection and max shear. Shorter span experiments were performed using the 3” x 3” 

x ¼” cross section. The objective was to keep buckling loads and deflections within range of 

testing apparatus and dial gages measuring deflections. 

Lastly, beams were evaluated by their failure predictions as determined suing the ASCE-

LRFD Design Guide for Pultruded Members (See Appendix). These failures include material 

rupture, lateral torsional buckling, and shear. Since we are interested in lateral torsional buckling 

failure, we want to make sure beams fail lateral- torsionally before other failure modes are 

reached. Our own predictions for lateral torsional buckling with shear were also considered. 

Graph showing lateral- torsional buckling with shear were also considered. Graph showing 

lateral- torsional buckling failure is shown in Figure 57. It compares our central difference 

buckling solutions with ASCE-LRFD Design buckling solutions. 
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Figure 57.  Central Diff vs ASCE Buckling Prediction Curves 

A GFRP beam of dimensions 3” x 3” x ¼” x 105” will be placed in our beam testing 

apparatus and in-plane loads will be placed upon the beam as shown in Figure 55 until it reaches 

lateral torsional buckling failure. 

The objective is to identify in-plane deflection increases and out of plane deflections that 

are experienced as a result of shear. These typically unaddressed deflections often lead to 

premature buckling failure of the beam. We will then compare buckling results to our predictions 

and ASCE Design values. 

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as 

determined during our material testing discussed earlier in Chapter 3. Looking at the 

manufacturer’s data for the fiberglass reinforced plastic beams, we see that the shear modulus 

is listed at .450 x 10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This 

information confirms our test results. 

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place 

loads upon the specimen.  Also, a meter for measuring the loads will be used.   
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Dial gages were located along the beam as shown in Figure 58 for determination of 

vertical, horizontal, and lateral- torsional deflections to be compared with deflection values 

obtained with our analytical models using the central difference approach. 

Vertical dial gage(v3) 

Horizontal dial gage(h2) 

Torsion dial gage(l1) 

 

 

 

21”    21”   21” 18”   18”         18” 4”   4”        4” 

 

 54” 

 

Figure 58.  Dial Gage Locations for Three Span Point Load Midspan.  Outside  

 

Mechanical properties and dimensions of the GFRP beam being used are as follows: 

L1 = 54.0” ; I beam is 3” x 3” x ¼” ; A = 2.13 in. 2 ; I = 3.17 in. 4 ;  E = 2997 ksi ; G = 453 ksi. 

Deflection values from lab experiment are shown in Table 46. They will be compared with 

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4. 

 

  

//// //// 
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Table 46.  Deflections from Lab.  Investigation 7 

 *4” 18” 21” 21” 18” 4” 21” 18” 5” 

Load P v1 v2 v3 h1 h2 h3 l1 l2 l3 

0 0 0 0 0 0 0 0 0 0 

.2285 .01136 .04872 .05674 .001 .001 0 .0054 .0035 .0012 

.4446 .022 .0974 .1135 .003 .002 0 .0134 .0103 .0023 

.625 .03266 .1403 .1633 .005 .003 0 .0203 .0171 .0039 

.8108 .04331 .1848 .2158 .007 .006 0 .0263 .0231 .0053 

1.001 .05396 .2285 .268 .011 .007 0 .0344 .029 .0066 

1.112 .06106 .257 .30088 .012 .008 0 .0388 .0326 .0072 

1.317 .07242 .302 .355 .015 .009 0 .0461 .039 .0088 

1.518 .084 .351 .412 .02 .011 .005 .0538 .0454 .0108 

1.714 .095 .3998 .469 .024 .017 .006 .0618 .0522 .0117 

1.909 .107 .4477 .527 .028 .021 .007 .0699 .0593 .0133 

2.065 .116 .49 .575 .033 .024 .008 .08 .0654 .0146 

2.227 .127 .532 .75 .045 .027 .009 .09 .0719 .0161 

 Distance from support 
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Appendix 7.  ASCE-LRFD Design Failure Modes.  Investigation 7 

For each investigation, we are examining several failure modes as defined by the ASCE to 

insure that each experiment fails in lateral- torsional buckling and not in another defined mode. 

Failure modes being evaluated include material rupture, compression flange local buckling, web 

local buckling, and shear. 

For material rupture, the equation is: 

Mn = FL(I/y) where FL = 30 ksi and is the longitudinal strength of the member;  I = 3.17 in. 4; 

And y = 1.5” and is the distance from the neutral axis to the extreme fiber of a member.  

Plugging in values, we have 

Mn =30 (3.17)/1.5 ) = 63.4  k-in. 

The equation for compression flange local buckling is: 

Mn = fcr(I/y) where 

fcr is the minimum critical buckling stress of the compression flange or the web.  For 

compression flange local buckling, 

fcr = (4tf
2/bf

2) ((7/12)(Ex Ey/(1 + 4.1Ԑ)).5 + G),  

Ԑ = Eytf3/(bfkt6), and 

kt  = (Ex tw
3/6h) (1 – ((48tr2h2Ey/(11.1π2tw

2br2ELF))(G/(1.25(Ey Ex).5 + ExvLT + G))) where vLT is 

Poisson’s ratio , tw is web thickness, and br is flange thickness.  Plugging in values, we have 

 fcr = 34.82 ksi. 

For web local buckling, 

fcr =  (11.1π2tw
2/12h2))(1.25(E y Ex).5 + Ex vLT + G ) = 50.96 ksi . 

Critical stress of 34.82 ksi governs and  

Mn =34.82 (3.17/1.5) = 73.6 k-in. 
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For shear, we will be examining shear and shear buckling failures.  The equation for shear 

failure is: 

Vn = FLTAs where FLT = 8 ksi and is the in-plane shear strength; and As = 3 in. x .25 = .75 in. 2 

And is the area of the web.  Plugging these values in, we have 

Vn = 8.0 x .75 = 6 kips. 

The equation for web shear buckling is  

Vn = fcr As where  

fc r = (kLTtw
2/3h2 )(ExEy

3).25 and kLT = 8.1 + 5.0(2G + Ey vLT )/(Ex Ey )  = 11.21.  Plugging in values 

fcr = 80.17  ksi  and  

Vn = 80.17(.75) = 60.13  kips 

 

For the 3” x 3” x ¼” beam, ASCE-LRFD failure mode values of shear and moment, Vn and 

Mn are as shown.  The governing values of critical shear and critical moment for the ASCE-LRFD 

failure modes are shearing of the web and compression flange local buckling. For Investigation 7, 

the ASCE-LRFD Pcr and Mcr values for lateral-torsional buckling are 2.89  kips and 34.12  k-in. 

Because the critical values associated with the other failure modes are higher than the values 

determined using the lateral-torsional buckling failure mode, the beam for this investigation is 

expected to fail in lateral-torsional buckling. 
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Lab Investigation 8 

Experimental results are now presented for investigation 8. Using ASCE-LRFD 

Prestandard, critical load limits for shear and local failure modes are determined then compared 

with lateral torsional buckling critical load limits. Beam established for investigation 8 predicted 

to fail in lateral- torsion. 

Experiment involves observance of vertical, horizontal, and lateral- torsional deflections 

of a three span I beam with point load at midspan of center span.  Lateral- torsional buckling load 

is also being predicted and observed for the beam shown in Figure 59. 

 

  P 

 

       

 

 27” 52.5” 15” 10.5” 

Figure 59.  Investigation 8.  Three Span Off Center 

 

To determine what size beam to use in the beam testing apparatus, we evaluated the 

shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic I 

beams (See Figure 60).  First, we eliminated the 6” x 6” x ¼” beam because the loading capacity 

of our testing apparatus may be exceeded. 

 

  

//// //// //// //// 
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Figure 60.  LTB Comparison of Cross Sections 

Next, to establish a baseline for the investigation, we elected to perform single, double, 

and triple span experiments with the point load at midspan using the 4” x 4” x ¼” cross section. 

Alternatively, the 3” x 3” x ¼” cross section is used for single, double, and triple span experiments 

where the point loads are off-centered and moved toward the supports. The larger cross section 

is being used in the experiments associated with the location where the point load will produce 

maximum deflection and max shear. Shorter span experiments were performed using the 3” x 3” 

x ¼” cross section. The objective was to keep buckling loads and deflections within range of 

testing apparatus and dial gages measuring deflections. 

Lastly, beams were evaluated by their failure predictions as determined using the ASCE- 

LRFD Design Guide for Pultruded Members (See Appendix). These failures include material 

rupture, lateral- torsional buckling, and shear. Since we are interested in lateral- torsional 

buckling failure, we want to make sure beams fail lateral- torsionally before other failure modes 

are reached. Our own predictions for lateral torsional buckling with shear were also considered. 

Graph showing lateral- torsional buckling with shear were also considered. Graph showing 

lateral- torsional buckling failure is shown in Figure 61. It compares our central difference 

buckling solutions with ASCE-LRFD Design buckling solutions. 
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Figure 61.  Central Diff vs ASCE Buckling Prediction Curve 

A GFRP beam of dimensions 3” x 3” x ¼” x 105” will be placed in our beam testing 

apparatus and in-plane loads will be placed upon the beam as shown in Figure 59 until it reaches 

lateral torsional buckling failure. 

The objective is to identify in-plane deflection increases and out of plane deflections that 

are experienced as a result of shear. These typically unaddressed deflections often lead to 

premature buckling failure of the beam. We will then compare buckling results to our predictions 

and ASCE Design values. 

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as 

determined during our material testing discussed earlier in Chapter 3. Looking at the 

manufacturer’s data for the fiberglass reinforced plastic beams, we see that the shear modulus 

is listed at .450 x 10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This 

information confirms our test results. 

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place 

loads upon the specimen.  Also, a meter for measuring the loads will be used. 
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Dial gages were located along the beam as shown in Figure 58 for determination of 

vertical, horizontal, and lateral torsional deflections to be compared with deflection values 

obtained with our analytical models using the central difference approach. 

Vertical dial gage(v3) 

Horizontal dial gage(h2) 

Torsion dial gage(l1) 

 

 

 

 7”   3”   5” 19”   19”               19”                   34”        50”        34” 

 

 79.5” 



Figure 62.  Dial Gage Locations for Three Span Point Load  Off Center 

Mechanical properties and dimensions of the GFRP beam being used are as follows: 

L1 = 79.5”;  I beam is 3” x 3” x ¼” ; A= 2.13 in.2; Ix = 7.935 in. 4 ; F = 30 ksi; E= 2997 ksi; G = 453 

ksi. 

Deflection values from lab experiment are shown in Table 47. They will be compared with 

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4. 

 

  

//// //// 
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Table 47.  Deflections from Lab.  Investigation 8 

 *7” 19” 34” 3” 19” 50” 5” 19” 34” 

Load P v1 v2 v3 h1 h2 h3 l1 l2 l3 

0 0 0 0 0 0 0 0 0 0 

.22 .021 .063 .122 0 0 0 .0008 .00524 .01 

.44 .096 .136 .242 .018 .002 .004 .0033 .00924 .01886 

.71 .175 .216 .364 .029 .008 .01 .0073 .01429 .028 

.89 .227 .335 .513 .034 .014 .02 .0099 .02438 .04076 

1.07 .279 .455 .627 .037 .034 .036 .0132 .02448 .05286 

1.19 .325 .567 .763 .041 .084 .041 .0177 .03267 .0639 

1.2 .371 .675 .879 .042 .122 .047 .0211 .03905 .07029 

1.2 .371 .787 1.012 .042 .14 .047 .0211 .03905 .07476 

*Distance from support 
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Appendix 8.  ASCE-LRFD Design Failure Modes.  Investigation 8 

For each investigation, we are examining several failure modes as defined by the ASCE to 

insure that each experiment fails in lateral-torsional buckling and not in another defined mode. 

Failure modes being evaluated include material rupture, compression flange local buckling, web 

local buckling, and shear. 

For material rupture, the equation is: 

Mn = FL(I/y) where FL = 30 ksi and is the longitudinal strength of the member;  I = 3.17 in. 4; 

And y = 1.5” and is the distance from the neutral axis to the extreme fiber of a member.  

Plugging in values, we have 

Mn =30 (3.17)/1.5 ) = 63.4  k-in. 

The equation for compression flange local buckling is: 

Mn = fcr(I/y) where 

fcr is the minimum critical buckling stress of the compression flange or the web. For 

compression flange local buckling, 

fcr = (4tf
2/bf

2) ((7/12)(Ex Ey/(1 + 4.1Ԑ)).5 + G),  

Ԑ = Eytf3/(bfkt6), and 

kt  = (Ex tw
3/6h) (1 – ((48tr2h2Ey/(11.1π2tw

2br2ELF))(G/(1.25(Ey Ex).5 + ExvLT + G))) where vLT is 

Poisson’s ratio , tw is web thickness, and br is flange thickness. Plugging in values, we have 

 fcr = 34.82 ksi. 

For web local buckling, 

fcr =  (11.1π2tw
2/12h2))(1.25(E y Ex).5 + Ex vLT + G ) = 50.96 ksi . 

Critical stress of 34.82 ksi governs and  

Mn =34.82 (3.17/1.5) = 73.6 k-in. 
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For shear, we will be examining shear and shear buckling failures.  The equation for shear 

failure is: 

Vn = FLTAs where FLT = 8 ksi and is the in-plane shear strength; and As = 3 in. x .25 = .75 in. 2 

And is the area of the web.  Plugging these values in, we have 

Vn = 8.0 x .75 = 6 kips. 

The equation for web shear buckling is  

Vn = fcr As where  

fc r = (kLTtw
2/3h2 )(ExEy

3).25 and kLT = 8.1 + 5.0(2G + Ey vLT )/(Ex Ey )  = 11.21.  Plugging in values 

fcr = 80.17  ksi  and  

Vn = 80.17(.75) = 60.13  kips 

 

For the 3” x 3” x ¼” beam, ASCE-LRFD failure mode values of shear and moment, Vn and 

Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD 

failure modes are shearing of the web and compression flange local buckling. For Investigation 8, 

the ASCE-LRFD Pcr and Mcr values for lateral-torsional buckling are 1.47  kips and 22.9  k-in. 

Because the critical values associated with the other failure modes are higher than the values 

determined using the lateral-torsional buckling failure mode, the beam for this investigation is 

expected to fail in lateral- torsional buckling. 
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Lab Investigation 9 

Experimental results are now presented for investigation 9. Using ASCE-LRFD 

Prestandard, critical load limits for shear and local failure modes are determined then compared 

with lateral torsional buckling critical load limits. Beam established for investigation 9 predicted 

to fail in lateral- torsion. 

Experiment involves observance of vertical, horizontal, and lateral- torsional deflections 

of a three span I beam with point load at midspan of center span.  Lateral- torsional buckling load 

is also being predicted and observed for the beam shown in Figure 63. 



  Py 

   Px 

                                          

  

 13.5”     15.0”      25.5”            40.5”              10.5” 

Figure 63.  Investigation 9.  Three Span Biaxial Model 

 

To determine what size beam to use in the beam testing apparatus, we evaluated the 

shear deflection and lateral torsional buckling characteristics of three fiber reinforced plastic I 

beams.  We then eliminated the 6” x 6” x ¼” beam because the loading capacity of our testing 

apparatus may be exceeded. 

 

  

//// /////// /// 
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Next, to establish a baseline for the investigation, we elected to perform single, double, 

and triple span experiments with the point load at midspan using the 4” x 4” x ¼” cross section.  

Alternatively, the 3” x 3” x ¼” cross section is used for single, double, and triple span experiments 

where the point loads are off-centered and moved toward the supports. The larger cross section 

is being used in the experiments associated with the location where the point load will produce 

maximum deflection and max shear. Shorter span experiments were performed using the 3” x 3” 

x ¼” cross section. The objective was to keep buckling loads and deflections within range of 

testing apparatus and dial gages measuring deflections. 

Lastly, beams were evaluated by their failure predictions as determined suing the ASCE-

LRFD Design Guide for Pultruded Members. See Appendix at end of each lab investigation. These 

failures include material rupture, lateral torsional buckling, and shear. Since we are interested in 

lateral torsional buckling failure, we want to make sure beams fail lateral- torsionally before other 

failure modes are reached. Our own predictions for lateral torsional buckling with shear were 

also considered. Graph showing lateral torsional buckling with shear were also considered.  

Graph showing lateral torsional buckling failure is shown in Figure 64. It compares our central 

difference buckling solutions with ASCE-LRFD Design buckling solutions. 

 

Figure 64.  Central Diff vs ASCE Buckling Prediction Curves 
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A GFRP beam of dimensions 4” x 4” x ¼” x 105” will be placed in our beam testing 

apparatus and in-plane loads will be placed upon the beam as shown in Figure 63 until it reaches 

lateral- torsional buckling failure. 

The objective is to identify in-plane deflection increases and out of plane deflections that 

are experienced as a result of shear. These typically unaddressed deflections often lead to 

premature buckling failure of the beam. We will then compare buckling results to our predictions 

and ASCE Design values. 

We will be using an elastic modulus of 2997 ksi and a shear modulus of 453 ksi as 

determined during our material testing discussed earlier in Chapter 3. Looking at the 

manufacturer’s data for the fiberglass reinforced plastic beams, we see that the shear modulus 

is listed at .450 x 10 6 and the elastic modulus is typically between 2.8 and 3.2 x 10 6 psi. This 

information confirms our test results. 

Beam Testing Apparatus shown previously includes a hydraulic pump and jack to place 

loads upon the specimen. Also, a meter for measuring the loads will be used. 

Dial gages were located along the beam as shown in Figure 65 for determination of 

vertical, horizontal, and lateral torsional deflections to be compared with deflection values 

obtained with our analytical models using the central difference approach. 
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Vertical dial gage(v3) 

Horizontal dial gage(h2) 

Torsion dial gage(l1)

 

 

 

 21”  18” 5” 4”

 

 81”
  

Figure 65.  Dial Gage Locations for Three Span Biaxial Point Load 

 

Mechanical properties and dimensions of the GFRP beam being used are as follows: 

L2 = 81.0 inches; I beam is 4” x 4” x ¼”; A=2.85 in. 2;  I x = 7.935 in. 4 ;F = 30 ksi; E= 2997 ksi; and 

G= 453 ksi.   

Deflection values from lab experiment are shown in Table 48. They will be compared with 

Central Difference deflection and buckling values and ASCE-LRFD buckling values in Chapter 4. 

 

  

//// //// 



183 
 

Table 48.  Deflections from Lab.  Investigation 9 

 

 *21” 18” 4” 21” 18” 4” 21” 18” 5” 

Load P v1 lab v2 lab v3 lab h1 h2 h3 l1 l2 l3 

0 0 0 0 0 0 0 0 0 0 

.513 .0247 .0193 .018 .007 .004 .003 .118 .0036 .009 

.809 .0483 .0423 .026 .007 .007 .004 .183 .00728 .009 

1.11 .0723 .065 .0337 .009 .008 .005 .261 .012 .012 

1.29 .088 .0807 .04 .009 .008 .006 .309 .016 .014 

1.4 .0973 .0893 .043 .009 .008 .007 .338 .01824 .017 

1.55 .1097 .1017 .0473 .009 .008 .008 .38 .02152 .021 

1.68 .121 .1123 .0513 .009 .009 .008 .417 .02456 .023 

1.82 .134 .1247 .0553 .009 .01 .008 .454 .02744 .026 

1.93 .146 .1373 .0597 .012 .011 .008 .493 .0304 .04 

2.11 .162 .153 .0653 .013 .012 .008 .533 .03392 .043 

2.32 .183 .173 .0723 .013 .015 .008 .595 .03896 .047 

 *Distance from support 
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Appendix 9.  ASCE-LRFD Design Failure Modes.  Investigation 9 

For each investigation, we are examining several failure modes as defined by the ASCE to 

insure that each experiment fails in lateral-torsional buckling and not in another defined mode. 

Failure modes being evaluated include material rupture, compression flange local buckling, web 

local buckling, and shear. 

For material rupture, the equation is: 

Mn = FL(I/y) where FL = 30 ksi and is the longitudinal strength of the member;  I = 7.935 in. 4; 

And y = 2.0” and is the distance from the neutral axis to the extreme fiber of a member.  

Plugging in values, we have 

Mn =30 (7.935)/2.0 ) = 119.025 k-in. 

The equation for compression flange local buckling is: 

Mn = fcr(I/y) where 

fcr is the minimum critical buckling stress of the compression flange or the web.  For 

compression flange local buckling, 

fcr = (4tf
2/bf

2) ((7/12)(Ex Ey/(1 + 4.1Ԑ)).5 + G),  

Ԑ = Eytf3/(bfkt6), and 

kt  = (Ex tw
3/6h) (1 – ((48tr2h2Ey/(11.1π2tw

2br2ELF))(G/(1.25(Ey Ex).5 + ExvLT + G))) where vLT is 

Poisson’s ratio , tw is web thickness, and br is flange thickness.  Plugging in values, we have 

 fcr = 19.59 ksi. 

For web local buckling, 

fcr =  (11.1π2tw
2/12h2))(1.25(E y Ex).5 + Ex vLT + G ) = 28.66 ksi . 

Critical stress of 19.59 ksi governs and  

Mn =19.59 (7.936/2.0) = 77.7 k-in. 
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For shear, we will be examining shear and shear buckling failures.  The equation for shear 

failure is: 

Vn = FLTAs where FLT = 8 ksi and is the in-plane shear strength; and As = 4 in. x .25 = 1.0 in. 2 

And is the area of the web.  Plugging these values in, we have 

Vn = 8.0 x 1.0 = 8 kips. 

The equation for web shear buckling is  

Vn = fcr As where  

fc r = (kLTtw
2/3h2 )(ExEy

3).25 and kLT = 8.1 + 5.0(2G + Ey vLT )/(Ex Ey )  = 11.21.  Plugging in values 

fcr =45.10 ksi  and  

Vn = 45.10(1.0) = 45.10 kips 

 

For the 4” x 4” x ¼” beam, ASCE-LRFD failure mode values of shear and moment, Vn and 

Mn are as shown. The governing values of critical shear and critical moment for the ASCE-LRFD 

failure modes are shearing of the web and compression flange local buckling. For Investigation 9, 

the ASCE-LRFD P and M values for lateral-torsional buckling are 3.64 kips and 74.1  k-in. Because 

the critical values associated with the other failure modes are higher than the values determined 

using the lateral-torsional buckling failure mode, the beam for this investigation is expected to 

fail in lateral-torsional-buckling. 

 

 

 

 

 

 



186 
 

CHAPTER 4 

COMPARISON OF THEORY AND EXPERIMENT 

This chapter presents a comparison of theoretical formulations of the problems 

presented in Section 1.3 with the experimental lab results of the same problems.  Translational 

and rotational deflections from theoretical formulations which include shear deformation and 

laboratory experiments are tabulated for each investigation. Critical load values from theoretical 

formulations which include shear deformations, ASCE-LRFD Prestandard provisions, and 

laboratory experiments concerning lateral- torsional buckling are plotted versus translational and 

rotational deflection for each investigation. Theoretical critical buckling values are noted to 

compare favorably or unfavorably with empirical results and percentage differences noted for 

each investigation. 

4.1 Investigation 1 

This section presents a comparison of analytical and experimental translational and 

rotational deflections for investigation 1. Translational and rotational deflections from 

theoretical formulations which includes shear deformation and laboratory experiments are 

shown for investigation 1 in Table 49. Critical load values from theoretical formulations which 

include shear deformations, ASCE-LRFD Prestandard provisions and laboratory experiments 

concerning lateral torsional buckling are plotted versus translational and rotational deflection for 

investigation 1 in Figures 66, 67, and 68. Favorable or unfavorable differences are noted. 

 

 

  P 

 

  37.5” 37.5” 

 

 

 

//// //// 



187 
 

Table 49.  Deflections.  Investigation 1 

 

 

 

 

 

 

 

VERTICAL 8" 8" from support 29" 29" from support 18" 18" from support
LOAD P v1 lab v1calcw/s v1calcw/o v2 lab v2calcw/s v2calcw/o v3lab v3calcw/s v3calcw/o

1E-07 0 0 0 0 0 0 0 0 0
0.014078 -0.001 0.001974 0.001814 0.004 0.003735 0.003414 0.003 0.005384 0.004849

0.12925 -0.019 0.017997 0.016534 0.053 0.034052 0.031127 0.042 0.049084 0.044208
0.31489 -0.043 0.043845 0.040281 0.121 0.082959 0.075832 0.093 0.11958 0.1077

0.491298 -0.066 0.068407 0.062846 0.178 0.129434 0.118313 0.142 0.186569 0.168035
0.685838 -0.091 0.095494 0.087732 0.258 0.180687 0.165162 0.189 0.260446 0.234572

0.87873 -0.117 0.122352 0.112407 0.329 0.231505 0.211614 0.243 0.333696 0.300545
1.0271 -0.137 0.143012 0.131387 0.386 0.270595 0.247346 0.284 0.390043 0.351294
1.3618 -0.181 0.189611 0.174199 0.509 0.358767 0.327942 0.376 0.517135 0.465761
1.6124 -0.217 0.224503 0.206254 0.607 0.424787 0.38829 0.449 0.612298 0.551469
1.8316 -0.238 0.243786 0.22397 2.1 0.461272 0.42164 0.489 0.664888 0.598835

1.88 -0.248 0.255034 0.234303 2.7 0.482555 0.441094 0.514 0.695566 0.626465

5" 17.5" 28" 9" 17" 28"
LOAD P h1 h2 h3 l1 l2 l3

1E-07 0 0 0 0 0 0
0.014078 0 0 0 0.0002 0.000471 0.000231

0.12925 0.005 0.006 0.008 0.0025 0.005059 0.002538
0.31489 0.011 0.017 0.022 0.0054 0.013529 0.006

0.491298 0.016 0.026 0.034 0.008 0.020824 0.009308
0.685838 0.022 0.036 0.045 0.0111 0.028706 0.013769

0.87873 0.029 0.047 0.056 0.0141 0.036471 0.017154
1.0271 0.034 0.055 0.065 0.0162 0.042824 0.019769
1.3618 0.045 0.071 0.082 0.0208 0.055882 0.025538
1.6124 0.052 0.083 0.094 0.0246 0.071529 0.029692
1.8316 0.059 0.09 0.12 0.0267 0.095059 0.032077

1.88 0.062 0.097 0.15 0.0279 0.123 0.033538
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Figure 66.  Vertical Deflections.  Investigation 1 

 

 

Figure 67.  Angle of Twist.  Investigation 1 
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Figure 68.  Horizontal Deflections.  Investigation 1 

 

Experimental deflections for investigation 1 are shown in Table 49. The experimental 

critical buckling value was determined to be 1.88 kips from Figures 67 and 68. The Central 

Difference critical moment value is 37.29 kip-in. The lab moment value is 38.31 kip-in; and the 

ASCE guideline calculated value is 43.0 kip-in.Knowing the relationship and solving for P, P = 1.83 

kips. 

This value compared favorably with the lab experiment value of 1.88 kips and the ASCE 

calculated value of 2.11 kips is considered a little high. Our experimental value was within 95% 

of the lab value while the ASCE value was within 88%. 

Because there is no load in the x direction and M is zero, the horizontal deflections and 

the angle of twist within the elastic range will be zero for Central difference calcs. Central 

Difference vertical deflection values were taken at same locations along the beam as the 

locations of the vertical deflection dial gages observed during experiments. As shown in Figure 

66, they compare favorably. As the length of the beam decreases, the percentage of the vertical 

deflection due to shear moment increases. Fixed supports increase the value of the moment 

contribution due to shear moment. 
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4.2 Investigation 2 

This section presents a comparison of analytical and experimental translational and 

rotational deflections for investigation 2. Translational and rotational deflections from 

theoretical formulations which include shear deformation and laboratory experiments are shown 

for investigation 2 in Table 50.  Critical load values from theoretical formulations which include 

shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning 

lateral- torsional buckling are plotted versus translational and rotational deflection for 

investigation 2 in Figures 69, 70, and 71. Favorable or unfavorable differences are noted. 

  P 

   

  27”                            52.5”  

 
 
 

Table 50.  Deflections.  Investigation 2 

 

VERTICAL 6" from Support 21" from Support 36" from Support
LOAD P v1 lab v1calcw/s v1calcw/o v2 lab v2calcw/s v2calcw/o V3LAB v3calcw/s v3calcw/o

0 0 0 0 0 0 0 0 0 0
0.1826 0.074 -0.04672 -0.04426 0.23 -0.14554 -0.13692 0.181 -0.18109 -0.17191
0.4244 0.132 -0.1086 -0.10287 0.309 -0.33829 -0.31824 0.399 -0.42092 -0.39957
0.6514 0.206 -0.16669 -0.1579 0.476 -0.51924 -0.48846 0.593 -0.64607 -0.61329
0.8653 0.338 -0.22141 -0.20973 0.64 -0.6897 -0.64881 0.792 -0.85816 -0.81462

0.91 0.41 -0.27445 -0.25997 0.794 -0.85491 -0.80423 0.966 -1.06372 -1.00976
0.91 1.2
0.91 1.4

3.5" 22" 36" 5.5" 22" 36"
LOAD P h1 h2 h3 l1 l2 l3

0 0 0 0 0 0 0
0.1826 0.002 0 0.001 0.077 0.131 0.0167
0.4244 0.004 0.003 0.029 0.14 0.226 0.0299
0.6514 0.009 0.005 0.087 0.199 0.308 0.0431
0.8653 0.012 0.008 0.175 0.263 0.384 0.0535

0.91 0.023 0.019 0.33 0.318 0.449 0.0763
0.91 0.8 0.095
0.91 0.9 0.105

X. DEFLECTIONS OF A SINGLE SPAN W/ PT. LOAD.  OFF CENTER.
ANALYTICAL AND EXPERIMENTAL VERTICAL DEFLECTIONS.
EXPERIMENTAL HORIZONTAL AND LATERAL TORSIONAL DEFLECTIONS

//// //// 
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Figure 69.  Vertical Deflections.  Investigation 2 

 

 

Figure 70.  Angle of Twist.  Investigation 2 
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Figure 71.  Horizontal Deflections.  Investigation 2 

 

Experimental deflections for investigation 2 are shown in Table 50.  The experimental 

critical buckling value was determined to be .91 kips from Figures 70 and 71.  The Central 

Difference critical moment value Mcr is 15.69 k-in.  The lab moment value is 16.97 kip-in; and the 

ASCE guideline calculated value is 18.68 kip-in.Knowing the relationship and solving for P, P = .84 

kips. 

This value compared favorably with the lab experiment value of .91 kips and the ASCE 

calculated value of 1.0 kips compares favorably. Our experimental value was within 92% of the 

lab value while the ASCE value was within 90%. 

Because there is no load in the x direction and M is zero, the horizontal deflections and 

the angle of twist within the elastic range will be zero for Central difference calcs. Central 

Difference vertical deflection values were taken at same locations along the beam as the 

locations of the vertical deflection dial gages observed during experiments. As shown in Figure 

69, they compare favorably. As the length of the beam decreases, the percentage of the vertical 

deflection due to shear moment increases. Fixed supports increase the value of the moment 

contribution due to shear moment. 
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4.3 Investigation 3 

This section presents a comparison of analytical and experimental translational and 

rotational deflections for investigation 3. Translational and rotational deflections from 

theoretical formulations which include shear deformation and laboratory experiments are shown 

for investigation 3 in Table 51.  Critical load values from theoretical formulations which include 

shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning 

lateral- torsional buckling are plotted versus translational and rotational deflection for 

investigation 3 in Figures 72, 73, and 74. Favorable or unfavorable differences are noted. 

 

  P  
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Table 51.  Deflections.  Investigation 3 

 

 

 

  

VERTICAL 32.5" 29" 4"
LOAD P v1 lab v1calcw/s v1calcw/o v2 lab v2calcw/s v2calcw/o v3lab v3calcw/s v3calcw/o

0 0 0 0 0 0 0 0 0 0
0.346381 0.08969 -0.08967 -0.07595 0.046 -0.07794 -0.06553 0.022 -0.00634 -0.00503
0.580324 0.150266 -0.15024 -0.12725 0.104 -0.13058 -0.10979 0.037 -0.01062 -0.00843
0.814432 0.210884 -0.21085 -0.17859 0.146 -0.18326 -0.15407 0.052 -0.01491 -0.01184
1.046892 0.271076 -0.27103 -0.22956 0.202 -0.23557 -0.19805 0.069 -0.01916 -0.01521

1.24473 0.322303 -0.32225 -0.27294 0.255 -0.28009 -0.23548 0.083 -0.02278 -0.01809
1.417838 0.367126 -0.36706 -0.3109 0.3 -0.31904 -0.26823 0.095 -0.02595 -0.0206
1.617324 0.41878 -0.41871 -0.35464 0.353 -0.36393 -0.30597 0.109 -0.02961 -0.0235

1.79373 0.464457 -0.46438 -0.39332 0.401 -0.40362 -0.33934 0.122 -0.03283 -0.02607
2.027838 0.525076 -0.52498 -0.44466 0.464 -0.4563 -0.38363 0.14 -0.03712 -0.02947
2.326243 0.602343 -0.60224 -0.51009 0.549 -0.52345 -0.44008 0.163 -0.04258 -0.03381

2.5 1.2 -0.6876 -0.58239 -0.59765 -0.50246 -0.04862 -0.0386
2.6 1.5

27.5" 24" 4" 30" 30" 5"
LOAD P h1 h2 h3 l1 l2 l3

0 0 0 0 0 0 0
0.346381 0 0 0 0.0081 0.005538 0
0.580324 0.008 0.002 0.002 0.0145 0.010231 0.001154
0.814432 0.009 0.003 0.003 0.021 0.014769 0.002308
1.046892 0.016 0.009 0.004 0.0272 0.019308 0.003538

1.24473 0.021 0.014 0.005 0.0329 0.023385 0.004538
1.417838 0.027 0.015 0.006 0.0374 0.026615 0.005462
1.617324 0.032 0.02 0.008 0.043 0.030462 0.006462

1.79373 0.035 0.022 0.009 0.0477 0.033846 0.007462
2.027838 0.05 0.026 0.011 0.0544 0.038615 0.008769
2.326243 0.061 0.038 0.012 0.0615 0.043538 0.009923

2.5 0.07 0.055 0.12
2.6 0.16 0.09 0.15
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Figure 72.  Vertical Deflections.  Investigation 3 

 

 

Figure 73.  Angle of Twist.  Investigation 3 
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Figure 74.  Horizontal Deflections.  Investigation 3 

Experimental deflections for investigation 3 are shown in Table 51. The rise in the curve 

after the elastic range represents strain hardening and lateral- torsion. The experimental critical 

buckling value was determined to be 2.6 kips from Figures 73 and 74. The Central Difference 

critical moment value Mcr is 43.97 k-in. The lab moment value is 42.28 kip-in; and the ASCE 

guideline calculated value is 51.52 kip-in.Knowing the relationship of P and solving for P,  P = 2.7 

kips. 

This value compared favorably with the lab experiment value of 2.6 kips and the ASCE 

calculated value of 3.16 kips compares favorably. Our experimental value was within 95% of the 

lab value while the ASCE value was within 78%; however, the ASCE buckling load value is not 

conservative. 

Because there is no load in the x direction and M is zero, the horizontal deflections and 

the angle of twist within the elastic range will be zero for Central difference calcs. Central 

Difference vertical deflection values were taken at same locations along the beam as the 

locations of the vertical deflection dial gages observed during experiments. As shown in Figure 

72, they compare favorably. As the length of the beam decreases, the percentage of the vertical 

deflection due to shear moment increases. Fixed supports increase the value of the moment 

contribution due to shear moment. 
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4.4 Investigation 4 

This section presents a comparison of analytical and experimental translational and 

rotational deflections for investigation 4. Translational and rotational deflections from 

theoretical formulations which include shear deformation and laboratory experiments are shown 

for investigation 4 in Table 52.  Critical load values from theoretical formulations which include 

shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning 

lateral-torsional buckling are plotted versus translational and rotational deflection for 

investigation 4 in Figures 75, 76, and 77. Favorable or unfavorable differences are noted. 
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Table 52.  Deflections.  Investigation 4 

 

 

 

  

VERTICAL 21.5" from support 19" from support 4"
LOAD P v1 lab v1calcw/s v1calcw/o v2 lab v2calcw/s v2calcw/o v3 lab v3calcw/s v3calcw/o

0 0 0 0 0 0 0 0 0 0
0.276973 0.112948 -0.077 -0.0663 0.076046 0.062518 0.054018 0.02 -0.00974 -0.00832
0.656163 0.218252 -0.18241 -0.15707 0.158803 0.148107 0.127971 0.046 -0.02308 -0.01971
0.835866 0.270905 -0.23237 -0.20009 0.200553 0.188669 0.163019 0.06 -0.02941 -0.0251
1.005677 0.329502 -0.27958 -0.24074 0.239322 0.226999 0.196137 0.076 -0.03538 -0.0302
1.154055 0.376209 -0.32083 -0.27626 0.2766 0.26049 0.225075 0.089 -0.0406 -0.03466
1.384866 0.444997 -0.38499 -0.33151 0.331771 0.312588 0.27009 0.109 -0.04872 -0.04159
1.571163 0.501896 -0.43678 -0.37611 0.377249 0.354639 0.306424 0.126 -0.05527 -0.04718
1.732731 0.552 -0.4817 -0.41479 0.419 0.391107 0.337934 0.142 -0.06096 -0.05204
2.037731 0.647114 -0.56649 -0.4878 0.495047 0.459951 0.397418 0.169 -0.07169 -0.0612

2.37 0.8 -0.65082 -0.56042 0.569602 0.528423 0.456581 0.196 -0.08236 -0.07031
2.37 1.43

19" 19" 4" 22.5" 19" 5"
LOAD P h1 h2 h3 l1 l2 l3

0 0 0 0 0 0 0
0.276973 0.001 0 0 0.006087 0.008333 0.002762
0.656163 0.006 0.004 0 0.016522 0.017 0.004762
0.835866 0.01 0.007 0.001 0.021391 0.021083 0.005619
1.005677 0.014 0.01 0.002 0.026435 0.025 0.006476
1.154055 0.016 0.012 0.003 0.03087 0.028667 0.007238
1.384866 0.019 0.015 0.004 0.037391 0.034167 0.008381
1.571163 0.024 0.019 0.005 0.042957 0.03875 0.0092
1.732731 0.028 0.022 0.006 0.047739 0.0425 0.01
2.037731 0.039 0.027 0.007 0.055913 0.049 0.012381

2.37 0.058 0.042 0.008 0.066609 0.05825 0.018275
2.37 0.116 0.0225
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Figure 75.  Vertical Deflections.  Investigation 4 

 

 

Figure 76.  Angle of Twist.  Investigation 4 
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Figure 77.  Horizontal Deflections.  Investigation 4 

Experimental deflections for investigation 4 are shown in Table 52. The experimental 

critical buckling value was determined to be 2.37 kips from Figures 76 and 77. The Central 

Difference critical moment value Mcr is 28.67 k-in. The lab moment value is 29.59 kip-in; and the 

ASCE guideline calculated value is 32.89 kip-in.Knowing the relationship of P and solving for P, P 

= 2.3 kips. 

This value compared favorably with the lab experiment value of 2.37 kips and the ASCE 

calculated value of 2.64 kips is not conservative. Our experimental value was within 95% of the 

lab value while the ASCE value was within 88%. 

Because there is no load in the x direction and M is zero, the horizontal deflections and 

the angle of twist within the elastic range will be zero for Central difference calcs. Central 

Difference vertical deflection values were taken at same locations along the beam as the 

locations of the vertical deflection dial gages observed during experiments.  As shown in Figure 

75, they compare favorably.  As the length of the beam decreases, the percentage of the vertical 

deflection due to shear moment increases. Fixed supports increase the value of the moment 

contribution due to shear moment. 
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4.5 Investigation 5 

This section presents a comparison of analytical and experimental translational and 

rotational deflections for investigation 5. Translational and rotational deflections from 

theoretical formulations which include shear deformation and laboratory experiments are shown 

for investigation 5 in Table 53.  Critical load values from theoretical formulations which include 

shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning 

lateral-torsional buckling are plotted versus translational and rotational deflection for 

investigation 5 in Figures 78, 79, and 80. Favorable or unfavorable differences are noted. 
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Table 53.  Deflections.  Investigation 5 

 

 

 

 

 

 

 

 

 

 

 

 

VERTICAL 5" from support 22" from support 35" from support
LOAD P v1LAB v1calcw/s v3calcw/o V22LAB V2calcw/s v3calcw/o v33LAB v3calcw/s v3calcw/o

0 0 0 0 0 0 0 0 0 0
0.2285189 0.069 -0.0402638 -0.03729 0.103 -0.12299 -0.1125705 0.129 -0.14193 -0.13084
0.4446483 0.109 -0.07901504 -0.07317 0.222 -0.24135 -0.2209091 0.266 -0.27854 -0.25676
0.6249855 0.147 -0.11776692 -0.10906 0.339 -0.35972 -0.3292476 0.402 -0.41514 -0.38267
0.8108292 0.184 -0.15621623 -0.14466 0.456 -0.47717 -0.4367398 0.499 -0.55068 -0.50761
1.0008027 0.222 -0.19436265 -0.17999 0.575 -0.59369 -0.5433856 0.595 -0.68515 -0.63156
1.1219453 0.252 -0.22282089 -0.20634 0.664 -0.68062 -0.6229467 0.7 -0.78547 -0.72403

1.2 0.28 -0.24855422 -0.23017 0.747 -0.75922 -0.6948903 0.801 -0.87618 -0.80765
1.2 0.31 -0.28488335 -0.26382 0.866 -0.87019 -0.7964577 0.939 -1.00424 -0.9257

21" 18" 4" 21" 18" 5"
LOAD P h11LAB h22LAB h33LAB l11LAB l22LAB l33LAB

0 0 0 0 0 0 0
0.2285189 0 0 0 0.001909 0.004818 0.00157895
0.4446483 0 0 0 0.004455 0.015182 0.01578947
0.6249855 0.002 0.004 0.004 0.007091 0.025909 0.03042105
0.8108292 0.004 0.007 0.007 0.010182 0.036636 0.04484211
1.0008027 0.011 0.012 0.011 0.013545 0.047545 0.05947368
1.1219453 0.023 0.021 0.017 0.016636 0.056091 0.07073684

1.2 0.036 0.031 0.022 0.020091 0.064273 0.08157895
1.2 0.05 0.032 0.031 0.024455 0.075818 0.09642105
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Figure 78.  Vertical Deflections.  Investigation 5 

 

 

 

Figure 79.  Angle of Twist.  Investigation 5 
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Figure 80.  Horizontal Deflections.  Investigation 5 

Experimental deflections for investigation 5 are shown in Table 53. The experimental 

critical buckling value was determined to be 1.2 kips from Figures 79 and 80. The Central 

Difference critical moment value Mcr is 17.40 k-in. The lab moment value is 19.34 kip-in; and the 

ASCE guideline calculated value is 22.92 kip-in. Knowing the relationship of P and  solving, P = 

1.08 kips. 

This value compared favorably with the lab experiment value of 1.2 kips and the ASCE 

calculated value of 1.419 kips is not conservative. Our experimental value was within 90% of the 

lab value while the ASCE value was within 80%. 

Because there is no load in the x direction and M is zero, the horizontal deflections and 

the angle of twist within the elastic range will be zero for Central difference calcs. Central 

Difference vertical deflection values were taken at same locations along the beam as the 

locations of the vertical deflection dial gages observed during experiments. As shown in Figure 

78, they compare favorably. As the length of the beam decreases, the percentage of the vertical 

deflection due to shear moment increases. Fixed supports increase the value of the moment 

contribution due to shear moment. 
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4.6 Investigation 6 

This section presents a comparison of analytical and experimental translational and 

rotational deflections for investigation 6. Translational and rotational deflections from 

theoretical formulations which include shear deformation and laboratory experiments are shown 

for investigation 6 in Table 54.  Critical load values from theoretical formulations which include 

shear deformations, ASCE-LRFD prestandard provisions, and laboratory experiments concerning 

lateral torsional buckling are plotted versus translational and rotational deflection for 

investigation 6 in Figures 81, 82, and 83. Favorable or unfavorable differences are noted. 
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Table 54.  Deflections.  Investigation 6 

 

 

 

  

VERTICAL 7" from support 18.5" from support 32" from support
LOAD P v1 v1calcw/s v1calcw/o v2 v2calcw/s v2calcw/o v3 v3calcw/s v3calcw/o

0 0 0 0 0 0 0 0 0 0
0.2209191 0.00836 -0.0068606 -0.0047631 0.017004944 -0.0238077 -0.0179347 0.0241996 -0.0360449 -0.0268159

0.60175725 0.0228 -0.0186875 -0.0129742 0.047150072 -0.0648494 -0.0488521 0.0678381 -0.098182 -0.07304331
0.9825954 0.0418 -0.0305145 -0.0211853 0.088116528 -0.1058912 -0.0797694 0.1273452 -0.1603191 -0.11927073

1.17614691 0.05168 -0.0365252 -0.0253583 0.109759184 -0.1267496 -0.0954824 0.1570987 -0.1918987 -0.14276466
1.35683895 0.0589 -0.0421366 -0.0292542 0.127150604 -0.1462222 -0.1101514 0.1828852 -0.2213803 -0.16469766

1.549731 0.06878 -0.0481269 -0.033413 0.148020308 -0.1670096 -0.1258108 0.2134321 -0.2528524 -0.18811155
1.7640555 0.08056 -0.0547827 -0.038034 0.1739142 -0.1901067 -0.1432102 0.2503265 -0.2878213 -0.21412698

2.044326 0.09348 -0.0634865 -0.0440767 0.20483228 -0.2203106 -0.1659632 0.2963454 -0.3335501 -0.24814715
2.2916235 0.10716 -0.0711664 -0.0494086 0.234204456 -0.2469612 -0.1860394 0.338 -0.3738989 -0.27816495

3 0.58
3.2 0.8
3.3 1
3.5 1.5

5.5" 20" 32" 6" 20" 33"
LOAD P h1 h2 h3 l1 l2 l3

0 0 0 0 0 0 0
0.2209191 0.003 0.007 0.007 0.0013 0.005 0.0059

0.60175725 0.013 0.015 0.02 0.0041 0.0128 0.0152
0.9825954 0.029 0.027 0.038 0.0081 0.0234 0.0284

1.17614691 0.035 0.035 0.045 0.01 0.0287 0.0351
1.35683895 0.041 0.038 0.051 0.0119 0.0332 0.0407

1.549731 0.043 0.043 0.058 0.0135 0.0381 0.0458
1.7640555 0.053 0.051 0.071 0.0163 0.0442 0.0534

2.044326 0.057 0.061 0.085 0.0243 0.0514 0.0601
2.2916235 0.066 0.071 0.101 0.0319 0.0577 0.067

3 0.09 0.09069869
3.2 0.12 0.1
3.3 0.15 0.125
3.5 0.165 0.14
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Figure 81.  Vertical Deflections.  Investigation 6 

 

 

Figure 82.  Angle of Twist.  Investigation 6 
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Figure 83.  Horizontal  Deflections.  Investigation 6 

Experimental deflections for investigation 6 are shown in Table 54. The experimental 

critical buckling value was determined to be 3.5 kips from Figures 82 and 83. The Central 

Difference critical moment value Mcr is 63.46 k-in. The lab moment value is 63.46 kip-in; and the 

ASCE guideline calculated value is 60.46 kip-in.Knowing the relationship of P and solving,  P = 3.5 

kips. 

This value compared favorably with the lab experiment value of 3.5 kips. The ASCE 

calculated value of 3.33 kips is conservative. Our experimental value was within 99% of the lab 

value while the ASCE value was within 95%. 

Because there is no load in the x direction and M is zero, the horizontal deflections and 

the angle of twist within the elastic range will be zero for Central difference calcs. Central 

Difference vertical deflection values were taken at same locations along the beam as the 

locations of the vertical deflection dial gages observed during experiments. As shown in Figure 

81, they compare favorably. As the length of the beam decreases, the percentage of the vertical 

deflection due to shear moment increases. Fixed supports increase the value of the moment 

contribution due to shear moment. 
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4.7  Investigation 7 

This section presents a comparison of analytical and experimental translational and 

rotational deflections for investigation 7. Translational and rotational deflections from 

theoretical formulations which include shear deformation and laboratory experiments are shown 

for investigation 7 in Table 55.  Critical load values from theoretical formulations which include 

shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning 

lateral-torsional buckling are plotted versus translational and rotational deflection for 

investigation 7 in Figures 84, 85, and 86. Favorable or unfavorable differences are noted. 
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Table 55.  Deflections.  Investigation 7 

 

 

 

  

4" from support 18" From Support 21" from support
P v3lab v3calcw/s v3calcw/o v2lab v2calcw/s v2calcw/o v1lab v1calcw/s v1calcw/o

0 0 0 0 0 0 0 0 0 0
0.22851892 0.01136 -0.00587 -0.0047 0.04872 -0.0436748 -0.03666 0.056737 -0.05444 -0.04626
0.44464826 0.02201 -0.01143 -0.00915 0.09744 -0.0849817 -0.07134 0.113474 -0.10593 -0.09001
0.62498548 0.03266 -0.01606 -0.01287 0.14028 -0.1194479 -0.10027 0.163334 -0.14889 -0.12652
0.81082918 0.04331 -0.02084 -0.01669 0.1848 -0.1549666 -0.13008 0.215772 -0.19316 -0.16414
1.00080274 0.05396 -0.02572 -0.0206 0.22848 -0.1912746 -0.16056 0.268211 -0.23842 -0.20259

1.1219453 0.06106 -0.02883 -0.02309 0.25704 -0.2144275 -0.18 0.300878 -0.26728 -0.22711
1.31742534 0.07242 -0.03386 -0.02712 0.3024 -0.2517878 -0.21136 0.355035 -0.31385 -0.26669
1.51841186 0.08449 -0.03902 -0.03126 0.35112 -0.2902006 -0.2436 0.411772 -0.36173 -0.30737

1.7138919 0.09514 -0.04405 -0.03528 0.39984 -0.327561 -0.27497 0.469369 -0.4083 -0.34694
1.90937194 0.10721 -0.04907 -0.0393 0.44772 -0.3649213 -0.30633 0.526965 -0.45487 -0.38651

2.06493 0.11644 -0.05307 -0.04251 0.48972 -0.3946518 -0.33128 0.575106 -0.49193 -0.418
2.22737116 0.12709 -0.05724 -0.04585 0.53172 -0.4256977 -0.35735 0.75 -0.53063 -0.45089

2.51 1.6
2.51

21" 18" 4" 21" 18" 5"
LOAD P h1 h2 h3 l1 l2 l3

0 0 0 0 0 0 0
0.22851892 0.001 0.001 0 0.0054 0.0035 0.0012
0.44464826 0.003 0.002 0 0.0134 0.0103 0.0023
0.62498548 0.005 0.003 0 0.0203 0.0171 0.0039
0.81082918 0.007 0.006 0 0.0263 0.0231 0.0053
1.00080274 0.011 0.007 0 0.0344 0.029 0.0066

1.1219453 0.012 0.008 0 0.0388 0.0326 0.0072
1.31742534 0.015 0.009 0 0.0461 0.039 0.0088
1.51841186 0.02 0.011 0.005 0.0538 0.0454 0.0108

1.7138919 0.024 0.017 0.006 0.0618 0.0522 0.0117
1.90937194 0.028 0.021 0.007 0.0699 0.0593 0.0133

2.06493 0.033 0.024 0.008 0.08 0.0654 0.0146
2.22737116 0.045 0.027 0.009 0.09 0.0719 0.0161

2.51 0.06 0.12
2.51 0.0725 0.15
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Figure 84.  Vertical Deflections.  Investigation 7 

 

 

 

Figure 85.  Angle of Twist.  Investigation 7 
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Figure 86.  Horizontal Deflections.  Investigation 7 

Experimental deflections for investigation 7 are shown in Table 55. The experimental 

critical buckling value was determined to be 2.53 kips from Figures 85 and 86. The Central 

Difference critical moment value Mcr is 29.52 k-in. The lab moment value is 29.88 kip-in; and the 

ASCE guideline calculated value is 34.12 kip-in.Knowing the relationship of P and  solving, P = 2.5 

kips. 

This value compared favorably with the lab experiment value of 2.53 kips. The ASCE 

calculated value of 2.89 kips is not conservative. Our experimental value was within 99% of the 

lab value while the ASCE value was within 85%. 

Because there is no load in the x direction and M is zero, the horizontal deflections and 

the angle of twist within the elastic range will be zero for Central difference calcs. Central 

Difference vertical deflection values were taken at same locations along the beam as the 

locations of the vertical deflection dial gages observed during experiments. As shown in Figure 

84, they compare favorably. As the length of the beam decreases, the percentage of the vertical 

deflection due to shear moment increases. Fixed supports increase the value of the moment 

contribution due to shear moment.  
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4.8 Investigation 8 

This section presents a comparison of analytical and experimental translational and 

rotational deflections for investigation 8. Translational and rotational deflections from 

theoretical formulations which include shear deformation and laboratory experiments are shown 

for investigation 8 in Table 56.  Critical load values from theoretical formulations which include 

shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning 

lateral-torsional buckling are plotted versus translational and rotational deflection for 

investigation 8 in Figures 87, 88, and 89. Favorable or unfavorable differences are noted. 
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Table 56.  Deflections.  Investigation 8 

 

 

 

  

VERTICAL 7" from support 19" from support 34" from support
LOAD P V1LAB v1calcw/s v1calcw/o V22LAB v2calcw/s v2calcw/o V33LAB v3calcw/s v3calcw/o

0 0 0 0 0 0 0 0 0 0
0.22043 0.021 -0.037921 -0.03499646 0.063 -0.1031695 -0.0943754 0.122 -0.13383028 -0.12214
0.44086 0.096 -0.0759916 -0.06999291 0.136 -0.2067462 -0.1887507 0.242 -0.26818903 -0.24428

0.708995 0.175 -0.1222129 -0.11256323 0.216 -0.3324985 -0.3035506 0.364 -0.43131376 -0.39285
0.889945 0.227 -0.1534062 -0.14129166 0.335 -0.4173647 -0.3810229 0.513 -0.54140147 -0.49312

1.06925 0.279 -0.1843166 -0.16975893 0.455 -0.5014612 -0.4577909 0.627 -0.65049074 -0.59247
1.19 0.325 -0.2112573 -0.19456985 0.567 -0.5747577 -0.5246988 0.763 -0.74557015 -0.67906

1.2 0.371 -0.2381984 -0.21938077 0.675 -0.6480552 -0.5916067 0.879 -0.84065077 -0.76566
1.2 0.371 -0.2623039 -0.24158002 0.787 -0.7136378 -0.6514716 1.012 -0.92572369 -0.84313
1.2 1.23

3" 19" 50" 5" 19" 34"
LOAD P H11LAB H22LAB H33LAB L11LAB L22LAB L33LAB

0 0 0 0 0 0 0
0.22043 0 0 0 0.0008 0.0052381 0.01
0.44086 0.018 0.002 0.004 0.0033 0.0092381 0.0188571

0.708995 0.029 0.008 0.01 0.0073 0.01428571 0.028
0.889945 0.034 0.014 0.02 0.0099 0.02438095 0.0407619

1.06925 0.037 0.034 0.036 0.0132 0.02447619 0.0528571
1.19 0.041 0.084 0.041 0.0177 0.03266667 0.0639048

1.2 0.042 0.122 0.047 0.0211 0.03904762 0.0702857
1.2 0.042 0.14 0.047 0.0211 0.03904762 0.0747619
1.2 0.09
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Figure 87.  Vertical Deflections.  Investigation 8 

 

 

 

Figure 88.  Angle of Twist.  Investigation 8 
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Figure 89.  Horizontal Deflections.  Investigation 8 

Experimental deflections for investigation 8 are shown in Table 56. The experimental 

critical buckling value was determined to be 1.2 kips from Figures 88 and 89. The Central 

Difference critical moment value Mcr is 17.53 k-in. The lab moment value is 18.78 kip-in; and the 

ASCE guideline calculated value is 22.9 kip-in.Knowing the relationship of P and solving, P = 1.12 

kips. 

This value compared favorably with the lab experiment value of 1.2 kips. The ASCE 

calculated value of 1.47 kips is not conservative. Our experimental value was within 90% of the 

lab value while the ASCE value was within 78%. 

Because there is no load in the x direction and M is zero, the horizontal deflections and 

the angle of twist within the elastic range will be zero for Central difference calcs. Central 

Difference vertical deflection values were taken at same locations along the beam as the 

locations of the vertical deflection dial gages observed during experiments. As shown in Figure 

87, they compare favorably. As the length of the beam decreases, the percentage of the vertical 

deflection due to shear moment increases. Fixed supports increase the value of the moment 

contribution due to shear moment.  
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4.9 Investigation 9 

This section presents a comparison of analytical and experimental translational and 

rotational deflections for investigation 9. Translational and rotational deflections from 

theoretical formulations which include shear deformation and laboratory experiments are shown 

for investigation 9 in Table 57. Critical load values from theoretical formulations which include 

shear deformations, ASCE-LRFD Prestandard provisions, and laboratory experiments concerning 

lateral-torsional buckling are plotted versus translational and rotational deflection for 

investigation 9 in Figures 90, 91, and 92. Favorable or unfavorable differences are noted. 


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Table 57.  Deflections.  Investigation 9 

 

 

 

21" 18" 4"
P load V1LAB V1w/s V1w/o V22LAB V2w/s V2w/o V33LAB V3w/s V3w/o

0 0 0 0 0 0 0 0 0 0
0.512929 -0.02467 -0.03884 -0.02364 -0.01933 -0.03276 -0.024 -0.018 -0.00682 -0.00427
0.808902 -0.04833 -0.06119 -0.03728 -0.04233 -0.05156 -0.03785 -0.026 -0.01073 -0.00673
1.111758 -0.07233 -0.08407 -0.05123 -0.065 -0.0708 -0.05202 -0.03367 -0.01473 -0.00925
1.292096 -0.088 -0.09769 -0.05954 -0.08067 -0.08226 -0.06046 -0.04 -0.01711 -0.01075
1.398095 -0.09733 -0.10569 -0.06443 -0.08933 -0.08899 -0.06542 -0.043 -0.01851 -0.01163
1.549523 -0.10967 -0.11713 -0.0714 -0.10167 -0.09861 -0.0725 -0.04733 -0.0205 -0.01289
1.681679 -0.12133 -0.12711 -0.07749 -0.11233 -0.107 -0.07869 -0.05133 -0.02225 -0.01399
1.817964 -0.13367 -0.13741 -0.08377 -0.12467 -0.11566 -0.08506 -0.05533 -0.02405 -0.01513
1.934977 -0.14567 -0.14625 -0.08917 -0.13733 -0.12309 -0.09054 -0.05967 -0.02559 -0.0161
2.113938 -0.162 -0.15976 -0.09741 -0.153 -0.13446 -0.09891 -0.06533 -0.02796 -0.01759
2.317677 -0.18267 -0.17515 -0.1068 -0.173 -0.14741 -0.10845 -0.07233 -0.03065 -0.01929

2.61 0.21
2.8 0.25

3 0.31
3.05 0.36

21" 18" 4" 21" 18" 3"
H11LAB H22LAB H33LAB L11LAB L22LAB L33LAB

0 0 0 0 0 0 0
0.512929 0.007 0.004 0.003 0.118 0.0036 0.009
0.808902 0.007 0.007 0.004 0.183 0.00728 0.009
1.111758 0.009 0.008 0.005 0.261 0.012 0.012
1.292096 0.009 0.008 0.006 0.309 0.016 0.014
1.398095 0.009 0.008 0.007 0.338 0.01824 0.017
1.549523 0.009 0.008 0.008 0.38 0.02152 0.021
1.681679 0.009 0.009 0.008 0.417 0.02456 0.023
1.817964 0.009 0.01 0.008 0.454 0.02744 0.026
1.934977 0.012 0.011 0.008 0.493 0.0304 0.04
2.113938 0.013 0.012 0.008 0.533 0.03392 0.043
2.317677 0.013 0.015 0.008 0.595 0.03896 0.047

2.61 0.021 0.048
2.8 0.027 0.05496

3 0.035 0.068
3.05 0.043 0.0776
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Figure 90.  Vertical Deflections.  Investigation 9 

 

 

 

Figure 91.  Angle of Twist.  Investigation 9 
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Figure 92.  Horizontal Deflections.  Investigation 9 
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Central Difference critical moment value Mcr is 60.46 k-in. The lab moment value is 63.17 kip-in; 

and the ASCE guideline calculated value is 74.1 kip-in. Knowing the relationship of P and solving, 

P = 2.9 kips. 

This value compared favorably with the lab experiment value of 3.03 kips. The ASCE 

calculated value of 3.64 kips is not conservative. Our experimental value was within 95% of the 

lab value while the ASCE value was within 80%. 

The load in the x direction was approximately 6% of the load in the y direction. It changed 

the critical load P2 by approximately only 3% and, as such, it does not explain the large difference 

in critical load we encountered while comparing the ASCE-LRFD Design buckling value to our 

Central Difference value including shear. 

When the load P which is perpendicular to the weak axis is zero, the critical point load Pcr 

in the y-direction and perpendicular to the strong axis is 3.0 kips.  When the load Px which is 

perpendicular to the weak axis is 1 kip, the critical point load Pcr in the y-direction and 

perpendicular to the strong axis is 0.0 kips (See Figure 93).  This graph is based upon the Central 

0

1

2

3

4

5

6

0 0.01 0.02 0.03 0.04 0.05 0.06

Lo
ad

 P
, k

ip
s

Horizontal deflection, in.

LEGEND 

P2                            

PASCE-LRFD          

P1                            

Expt               
 



221 
 

Difference Biaxial solution for P2.  Moreover, it confirms the fact that the critical buckling value 

for lateral torsional buckling is proportionate to moment of inertia, Ix and Iy.  The ratio of Ix to Iy 

is 2.97 for our 4” x 4” x ¼” beam section. 

 

 

Figure 93.  P2x  vs P2cry 

Central Difference vertical deflection values were taken at same locations along the beam 

as the locations of the vertical deflection dial gages observed during experiments. As shown in 

Figure 90, they compare favorably. As the length of the beam decreases, the percentage of the 

vertical deflection due to shear moment increases. Fixed supports increase the value of the 

moment contribution due to shear moment. 

Using the 3 equilibrium equations typically used for out of plane rotations, we can solve 

the determinant to obtain buckling values.  Galambos solves this problem with end moments and 

no loading in the weak axis direction.  Thus, we are solving for point loads, end moments, and 

the biaxial solution. 

Following procedure is outlined in Galambos and small deflection theory. The first two 

equations reduce to 
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u’’ = - Mx ф/EIy     [69] 

and  

v’’ = - My ф/EIx     [70] 

After plugging the first two equations into the third equation, it becomes: 

EIw фIV   -  (GKt) ф’’ + (M2
tx/EIy) ф +  (M2

ty/EIx) ф = 0     [71] 

For doubly symmetric sections such as I beams, βx reduces to 0, so it was deleted.  For constant 

end moments, M’t = 0.0 

Now, the ordinary differential equation is of the form 

ФIV   - ʎ1 Ф’’     -  ʎ 2 Ф    = 0.0       [72] 

For pinned-pinned and loading of the beam biaxially, it can be shown that the solution of 

this equation yields the same 4th order solution form established by Galambos and being used by 

the ASCE today. 

ʎ2  =   (M2
tx/EIwEIy)  +  (M2

ty/EIwEIx)  for biaxial loading and not (M2
tx/EIwEIy)  . 
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4.10  COMPARATIVE SUMMARY AND PROPOSAL 

As shown in Table 58, Central Difference critical load values fall within an average of more 

than 95% of laboratory experiment values. ASCE-LRFD critical load values fall within an average 

of only 86% of laboratory experiment values. As such, propose a new ASCE design approach 

which considers shear deflection.   

Table 58.  Comparative Summary of Labs with Analysis 

1.  Single Span with Point Load Ctr Mcr (k-in.) P1 (kips) P2 (kips) CD/Lab ASCE/Lab 

(4 in. x 4 in. x 1/4 in. )    .97 1.12 

a. Lab 38.31 2.04 1.88   

b.  Central Diff 37.29 1.99 1.83   

c.  ASCE 43.02 2.29 2.11   

2.  Single Span w/ Pt Load Off Ctr      

(3 iin. X 3 in. x ¼ in. )    .93 1.10 

a. Lab 16.97 .95 .91   

b.  Central Diff 15.69 .88 .84   

c.  ASCE 18.58 1.05 1.00   

3.  Two Span w/ Pt Load Ctr      

(4 in. x 4 in. x 1/4 in. )    1.04 1.22 

a. Lab 43.28 3.1 2.6   

b.  Central Diff 43.97 3.2 2.7   

c.  ASCE 51.53 3.75 3.16   

4.  Two Span w/ Pt Ld Near Equal      

(3 iin. X 3 in. x ¼ in. )    .97 1.11 

a. Lab 29.59 2.71 2.37   

b.  Central Diff 28.67 2.63 2.3   

c.  ASCE 32.89 3.02 2.64   
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Table 58  (Continued) 

5.  Two Span w/ Pt Load Off Ctr Mcr (k-in.) P1 (kips) P2 (kips) CD/Lab ASCE/Lab 

(3 iin. X 3 in. x ¼ in. )    .90 1.19 

a. Lab 19.34 1.31 1.2   

b.  Central Diff 17.40 1.18 1.08   

c.  ASCE 22.92 1.55 1.42   

6.  Three Span w/ Pt Ld Ctr. Mid      

(4 in. x 4 in. x 1/4 in. )    1.0 .95 

a. Lab 63.46 6.05 3.5   

b.  Central Diff 63.46 6.05 3.5   

c.  ASCE 60.46 5.77 3.33   

7.  Three Span w/ Pt Load Ctr. 

Out 

     

(3 iin. X 3 in. x ¼ in. )    .99 1.14 

a. Lab 29.88 3.01 2.53   

b.  Central Diff 29.52 2.98 2.5   

c.  ASCE 34.12 3.44 2.89   

8.  Three Span w/ Pt Ld Off Ctr      

(3 iin. X 3 in. x ¼ in. )    .93 1.22 

a. Lab 18.78 1.31 1.2   

b.  Central Diff 17.53 1.22 1.12   

c.  ASCE 22.90 1.60 1.47   

9.  Three Span w/ Pt Lds. Biaxial      

(4 in. x 4 in. x 1/4 in. )    .96 1.13 

a. Lab 29.59 2.71 2.37   

b.  Central Diff 28.67 2.63 2.3   

c.  ASCE 32.89 3.02 2.64   
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Proposed Solutions 

Proposed values represent Critical moments for lateral torsional buckling when 

considering shear deflection. These values are based upon an equation developed based upon 

observation of second order and fourth order classical and semi-analytical solutions. The 

proposed equation being used is: 

Mx
2 – ( Mx

 (*M’x1  +  *M’x2 )/L)/ (π/L)2  = C w By ( π/L)4  +  Ct By ( π /L)2   [73] 

Mx is the bending moment contribution, when shear moment is being considered;                  ;  

*M’x1  = s(Mx - Mx1 ) /L1   and   *M’x1  = t(Mx - Mx2 ) /L2 ; and s and t are defined by end conditions 

and the location of the point load. Once we determine Mx and determine the relationship of the 

moment with shear and without shear, we can find Mtx   , the total moment. 

Rearranging and solving for Mx, we get: 

Mx = ( ( C w By ( π/L)4  +  Ct By ( π /L)2  ) / (1-f)).5 

and Mxs   =  Mx/SF 

where SF = P2/P1 

and f = (( s/L1)(1- Mx1)  + (t/L2)(1- Mx2)(L/π2) 

Note: Mx1 and Mx2 are a function of Mx. 
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Steps for Defining Factors s and t 

Define a and b from end conditions. For a simple beam, ends are labeled as shown.  If 

ends a and b are pinned-pinned than a and b are equal to .5.  If ends a and b are fixed-fixed, then 

a and b are equal to .5 also. However, if ends a and b are pinned-fixed, then a and b are .7 and 

.3, respectively. 

    P 

 a = .5 b = .5 

 L1 L2 

 C = L2/L d = L1/L 

Define c and d from location of point on the beam. 

c= L2/L 

d= L1/L 

Calculate p and q. 

p = ac 

q = bd 

Now, calculate s and t. 

s = p/(p + q) 

t = q/ ( q + p) 

Proposed Biaxial Stress Approach 

Our proposed biaxial equation is not of similar form. While we have considered buckling, 

we have not considered biaxial stresses. They must also be evaluated. The longitudinal stress 

relationship for biaxial loading is: 
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σ = Mx cy/Ix -  My cx/Iy      [74] 

Including the warping stress term, 

σ = Mx cy/Ix -  My cx/Iy + EIw ф’’       [75] 

For longitudinal stress of a fiberglass reinforced pultruded member, the limit is 30 ksi. 

Thus, setting the limit, our modified equation for stress becomes: 

σ = Mx cy/Ix -  My cx/Iy + EIw ф’’   = 30 ksi. 

Our solution of this equation includes applying the Timoshenko shear moment as previously 

demonstrated in our central difference approach. 

Applying equation [73] for Investigations 1 through 8 and biaxial equation [75] for 

Investigation 9, we get the Proposed critical moments shown in Table 59. They include shear 

deflection. All values are within 10% of central difference calculated values of critical loads. 
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Table 59.  Modified Comparative Summary of Investigation 

1.  Single Span with Point Load Ctr Mcr (k-in.) P2/P1 100(CD-Proposed)/CD(%) 

(4 in. x 4 in. x 1/4 in. )  .92  

a. Lab 38.31   

b.  Central Diff 37.29   

c.  Proposed 39.76  6.6 

2.  Single Span w/ Pt Load Off Ctr    

(3 iin. X 3 in. x ¼ in. )  .956  

a. Lab 16.97   

b.  Central Diff 15.69   

c.  Proposed 15.62  .3 

3.  Two Span w/ Pt Load Ctr    

(4 in. x 4 in. x 1/4 in. )  .843  

a. Lab 43.28   

b.  Central Diff 43.97   

c.  Proposed 43.39  1.3 

4.  Two Span w/ Pt Ld Near Equal    

(3 iin. X 3 in. x ¼ in. )  .873  

a. Lab 29.59   

b.  Central Diff 28.67   

c. Proposed 28.2  1.8 
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Table 59 ( Continued) 

5.  Two Span w/ Pt Load Off Ctr Mcr (k-in.) P2/P1 100(CD-Proposed)/CD(%) 

(3 iin. X 3 in. x ¼ in. )  .916  

a. Lab 19.34   

b.  Central Diff 17.40   

c. Proposed 16.38  5.9 

6.  Three Span w/ Pt Ld Ctr. Mid    

(4 in. x 4 in. x 1/4 in. )  .578  

a. Lab 63.46   

b.  Central Diff 63.46   

c.  Proposed 57.86  8.8 

7.  Three Span w/ Pt Load Ctr. Out    

(3 iin. X 3 in. x ¼ in. )  .84  

a. Lab 29.88   

b.  Central Diff 29.52   

c.  Proposed 29.1  1.4 

8.  Three Span w/ Pt Ld Off Ctr    

(3 iin. X 3 in. x ¼ in. )  .9  

a. Lab 18.78   

b.  Central Diff 17.53   

c.  Proposed 16.76  4.2 

9.  Three Span w/ Pt Lds. Biaxial    

(4 in. x 4 in. x 1/4 in. )    

a. Lab 29.59 .4  

b.  Central Diff 28.67   

c.  Proposed 54.21  10.0 
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Problem 4.1  For the 4” x 4” x ¼” fiberglass I beam with moments shown in Figure 94, 

determine its lateral-torsional buckling moment.  Include shear deflection moment.  Beam was 

used in Investigation 1.  E = 2997 ksi;  Ix = 7.935 in.4; Iy = 2.67 in. 4;  k t = .06; G = 453 ksi; A = 2.85 

in. 2;     α = 3.23; and I w = 9.375 in. 6 .  

 M Mx = PL/4 

 

 MA = Mx1 = 0 MB = Mx2 = 0 z 

  A L1 = 37.5” B 

 L = 75.0” 

 

Figure 94.  Moments on Targeted Beam. Investigation 1  

 

1.  Proposed equation for lateral-torsional buckling including shear is 

Mx = ( ( C w By ( π/L)4  +  Ct By ( π /L)2  ) / (1-f)).5 

And Mxs   =  Mx /SF 

Where SF = P2/P1 

And f = (( s/L1)(1- Mx1)  + (t/L2)(1- Mx2)(L/π2) . 

Note: Mx1 and Mx2 are relative to Mx. 

Mx = PL/4 and Mx1 and Mx2 = 0.   

2.  Define Factors s and t 

a.  Define a and b from end conditions.  Ends A and B are pinned-pinned, so a and b are equal to 

.5.    

b.  Define c and d from location of point on the beam. 

c= L2/L = .5 

d= L1/L = .5 



231 
 

c.  Calculate p and q. 

p = ac = .5* .5 = .25 

q = bd= .5* .5 = .25 

d.  Now, calculate s and t. 

s = p/(p + q) = .5 

t = q/ ( q + p) = .5 

3.  Plug in all the knowns 

a.  C w By ( π/L)4  +  Ct By ( π /L)2  =  1070.34  

b.  Plug in Mx1 and Mx2 relative to Mx. Solve 1- f. 

4. Solve for Mx.   

Mx2 = 1070.34/.80 =  1337.92   

or Mx = 36.58 k-in. 

Mx   represents the bending contribution to the total moment. 

Mtx = Mx bending + Mx shear 

5.  Find the shear factor, SF. 

a.  Place moment diagram on conjugate beam without and with shear moment.  Set resultants 
equal to each other. 

 

 R1 R2  R3 R4    Ps 

 =  + 

   

 L  

 Figure 95.  Moments on Targeted Conjugate Beam  
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b.  Write Resultant equation 

R1   +  R2   =  R3  +  R4  +  Ps 

(1/2)(L/2) P1L/4   +   (1/2)(L/2) P1L/4     =  1/2) (L/2)P2L/4    +   1/2) (L/2)P2L/4    +     αP2EIx/AG 

Rearrange, 

P2/P1   =  (L2/8) /[ (L2/8) + αEIx/AG ] 

Solving SF = .92.  Therefore,  

Mtx  = Mx/.92 = 39.76 k-in. 

This value is within 6.6% of the value obtained using Central Difference. 

where 

R1 = R2 = (1/2)(L/2) P1L/4 ;  R3  = R4 = (1/2) (L/2)P2L/4  ;  and Ps =  αP2EIx/AG  . 
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Problem 4.2  For the 3” x 3” x ¼” fiberglass I beam with moments shown in Figure 96, 

determine its lateral-torsional buckling moment.  Include shear deflection moment.  Beam was 

used in Investigation 2.  E = 2997 ksi;  Ix = 3.17 in.4; Iy = 1.13 in. 4;  kt = .046; G = 453 ksi; A = 2.13 

in. 2;       α = 3.26; and Iw = 2.13  in. 6 .  

 M Mx = PL1L2/L L1 = 27.0” 

 

 MA = Mx1 = 0 MB = Mx2 = 0 z 

  A  B 

 L1  L2 = 52.5” 

 

Figure 96.  Moments on Targeted Beam. Investigation 2  

 

1.  Proposed equation for lateral-torsional buckling including shear is 

Mx = ( ( C w By ( π/L)4  +  Ct By ( π /L)2  ) / (1-f)).5 

And Mxs   =  Mx /SF 

where SF = P2/P1 

And f = (( s/L1)(1- Mx1)  + (t/L2)(1- Mx2)(L/π2) . 

Note: Mx1 and Mx2 are relative to Mx. 

Mx = PL1L2/L and Mx1 and Mx2 = 0.   

2.  Define Factors s and t 

a.  Define a and b from end conditions.  Ends A and B are pinned-pinned, so a and b are equal to 

.5.    

b.  Define c and d from location of point on the beam. 

c= L2/L = .66 

d= L1/L = .34 
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c.  Calculate p and q. 

p = ac = .5* .66 = .33 

q = bd= .5* .34 = .17 

d.  Now, calculate s and t. 

s = p/(p + q) = .66 

t = q/ ( q + p) = .34 

3.  Plug in all the knowns 

a.  C w By ( π/L)4  +  Ct By ( π /L)2  =  167.5 

b.  Plug in Mx1 and Mx2 relative to Mx. Solve 1- f. 

4. Solve for Mx.   

Mx
2 = 167.5/.7516  

And  Mx = 14.93  k-in. 

Mx   represents the bending contribution to the total moment. 

Mtx = Mx bending + Mx shear 

5.  Find the shear factor, SF. 

a.  Place moment diagram on conjugate beam without and with shear moment.  Set resultants 
equal to each other.  

 

 R1  R2   R3  R4 Ps 

 =  + 

  L2  

 L  L1 

 Figure 97.  Moments on Targeted Conjugate Beam  
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b.  Write Resultant equation 

R1   +  R2   =  R3  +  R4  +  Ps 

(1/2)(L1) P1L1L2/L   +   (1/2)(L2) P1L1L2/L     =  (1/2) (L1)P2L1L2/L    +   (1/2) (L2)P2L1L2/L    +     
αP2EIx/AG 

Rearrange, 

P2/P1   =   [(.5)(L1)L1L2/L + (.5)(L2) L1L2/L ] / [ (.5) (L1)L1L2/L + (.5)(L2)L1L2/L +  αEIx/AG ] 

 

Solving SF = .956.  Therefore,  

Mtx  = Mx/.956 = 15.62 k-in. 

This value is within .3% of the value obtained using Central Difference. 
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Problem 4.3  For the 4” x 4” x ¼” fiberglass I beam with moments shown in Figure 98, 

determine its lateral-torsional buckling moment.  Include shear deflection moment.  Beam was 

used in Investigation 3.  E = 2997 ksi;  Ix = 7.935 in.4; Iy = 2.67 in. 4;  k t = .06; G = 453 ksi; A = 2.85 

in. 2;     α = 3.23; and I w = 9.375 in. 6 .  

 M Mx = 13.73P b1 b2 

 

 MA = Mx1 = 0  z 

  A L1 = 37.5” B MB = Mx2 = 10.045P 

 L = 75.0” 

 

Figure 98.  Moments on Targeted Beam. Investigation 3  

 

1.  Proposed equation for lateral-torsional buckling including shear is 

Mx = ( ( C w By ( π/L)4  +  Ct By ( π /L)2  ) / (1-f)).5 

And Mxs   =  Mx /SF 

where SF = P2/P1 

and f = (( s/L1)(1- Mx1)  + (t/L2)(1- Mx2)(L/π2) . 

Note: Mx1 and Mx2 are relative to Mx. 

Mx = 13.73P and Mx1 = 0 and Mx2 = 10.045P.   

2.  Define Factors s and t 

a.  Define a and b from end conditions.  Ends A and B are pinned-fixed, so a and b are .7 and .3, 

respectively.    

b.  Define c and d from location of point on the beam. 

c= L2/L = .5 

d= L1/L = .5 
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c.  Calculate p and q. 

p = ac = .7* .5 = .35 

q = bd= .3* .5 = .15 

d.  Now, calculate s and t. 

s = p/(p + q) = .7 

t = q/ ( q + p) = .3 

3.  Plug in all the knowns 

a.  C w By ( π/L)4  +  Ct By ( π /L)2  =  1070.34  

b.  Plug in Mx1 and Mx2 relative to Mx. Solve 1- f. 

4. Solve for Mx.   

Mx2 = 1070.34/.80 =  1337.92   

or Mx = 36.58 k-in. 

Mx   represents the bending contribution to the total moment. 

Mtx = Mx bending + Mx shear 

5.  Find the shear factor, SF. 

a.  Place moment diagram on conjugate beam without and with shear moment.  Set resultants 
equal to each other. 

 

 R1 R2 R4 R5 Ps 

 =  b2 + 

  b1  

  R3  R6  L/2 

  

 Figure 99.  Moment Diagrams on Targeted Conjugate Beam  
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b.  Write Resultant equation 

R1   +  R2  + R3 =  R4  +  R5  +  R6  +  Ps 

(.5)13.73P1L1  +   (.5)13.73P1b1 - (.5)10.045P1b2    =  (.5)13.73P2L1  +   (.5)13.73P2b1 - 
(.5)10.045P2b2  +  αP2EIx/AG 

Rearrange, 

P2/P1 =  

[ (.5)13.73L1 + (.5)13.73b1 - (.5)10.045b2 ] / [ (.5)13.73L1 + (.5)13.73b1 - (.5)10.045b2 +  αEIx/AG ] 

Solving SF = .843.  Therefore,  

Mtx  = Mx /.843 = 43.39 k-in. 

This value is within 1.3% of the value obtained using Central Difference. 
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Problem 4.4  For the 3” x 3” x ¼” fiberglass I beam with moments shown in Figure 100, 

determine its lateral-torsional buckling moment.  Include shear deflection moment.  Beam was 

used in Investigation 4.  E = 2997 ksi;  Ix = 3.17 in.4; Iy = 1.13 in. 4;  kt = .046; G = 453 ksi; A = 2.13 

in. 2;     α = 3.26; and Iw = 2.13 in. 6 .  

 M Mx = 10.9P b1 b2 

 

 MA = Mx1 = 0  z 

  A L1 = 27.0” B MB = Mx2 = 5.2P 

 L = 54.0” 

 

Figure 100.  Moments on Targeted Beam. Investigation 4  

 

1.  Proposed equation for lateral-torsional buckling including shear is 

Mx = ( ( C w By ( π/L)4  +  Ct By ( π /L)2  ) / (1-f)).5 

and Mxs   =  Mx /SF 

where SF = P2/P1 

and f = (( s/L1)(1- Mx1)  + (t/L2)(1- Mx2)(L/π2) . 

Note: Mx1 and Mx2 are relative to Mx. 

Mx = 10.9P and Mx1 = 0 and Mx2 = 5.2P.   

2.  Define Factors s and t 

a.  Define a and b from end conditions.  Ends A and B are pinned-fixed, so a and b are .7 and .3, 

respectively.    

b.  Define c and d from location of point on the beam. 

c= L2/L = .5 

d= L1/L = .5 
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c.  Calculate p and q. 

p = ac = .7* .5 = .35 

q = bd= .3* .5 = .15 

d.  Now, calculate s and t. 

s = p/(p + q) = .7 

t = q/ ( q + p) = .3 

3.  Plug in all the knowns 

a.  C w By ( π/L)4  +  Ct By ( π /L)2  =  502.22  

b.  Plug in Mx1 and Mx2 relative to Mx. Solve 1- f. 

4. Solve for Mx.   

Mx
2 = 502.22/.8265   

And  Mx = 24.65 k-in. 

Mx   represents the bending contribution to the total moment. 

Mtx = Mx bending + Mx shear 

5.  Find the shear factor, SF. 

a.  Place moment diagram on conjugate beam without and with shear moment.  Set resultants 
equal to each other. 

 

 R1 R2 R4 R5 Ps 

 =  b2 + 

  b1  

  R3  R6  L/2 

  

 Figure 101.  Moment Diagrams on Targeted Conjugate Beam  
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b.  Write Resultant equation 

R1   +  R2  + R3 =  R4  +  R5  +  R6  +  Ps 

(.5)10.9P1L1  +   (.5)10.9P1b1 - (.5)5.2P1b2    =  (.5)10.9P2L1  +   (.5)10.9P2b1 - (.5)5.2P2b2  +  
αP2EIx/AG 

Rearrange, 

P2/P1 =  

[ (.5)10.9L1 + (.5)10.9b1 - (.5)5.2b2 ] / [ (.5)10.9L1 + (.5)10.9b1 - (.5)5.2b2 +  αEIx/AG ] 

Solving SF = .873.  Therefore,  

Mtx  = Mx /.873 = 28.2 k-in. 

This value is within 1.6% of the value obtained using Central Difference. 
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Problem 4.5  For the 3” x 3” x ¼” fiberglass I beam with moments shown in Figure 102, 

determine its lateral-torsional buckling moment.  Include shear deflection moment.  Beam was 

used in Investigation 5.  E = 2997 ksi;  Ix = 3.17 in.4; Iy = 1.13 in. 4;  kt = .046; G = 453 ksi; A = 2.13 

in. 2;     α = 3.26; and Iw = 2.13 in. 6 .  

 M  L1 = 27.0 in. ; L = 79.5 in.; 

 Mx = 14.76P L2 = 52.5 in. 

 MA = Mx1 = 0  z 

  A L1 b1 B MB = Mx2 = 9.05P 

  b2 

 

Figure 102.  Moments on Targeted Beam. Investigation 5 

 

1.  Prposed equation for lateral-torsional buckling including shear is 

Mx = ( ( C w By ( π/L)4  +  Ct By ( π /L)2  ) / (1-f)).5 

and Mxs   =  Mx /SF 

where SF = P2/P1 

and f = (( s/L1)(1- Mx1)  + (t/L2)(1- Mx2)(L/π2) . 

Note: Mx1 and Mx2 are relative to Mx. 

Mx = 14.76P and Mx1 = 0 and Mx2 = 9.05P.   

2.  Define Factors s and t 

a.  Define a and b from end conditions.  Ends A and B are pinned-fixed, so a and b are .7 and .3, 

respectively.    

b.  Define c and d from location of point on the beam. 

c= L2/L = .66 

d= L1/L = .34 
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c.  Calculate p and q. 

p = ac = .7* .66 = .462 

q = bd= .3* .34 = .102 

d.  Now, calculate s and t. 

s = p/(p + q) = .82 

t = q/ ( q + p) = .18 

3.  Plug in all the knowns 

a.  C w By ( π/L)4  +  Ct By ( π /L)2  =  167.5  

b.  Plug in Mx1 and Mx2 relative to Mx. Solve 1- f. 

4. Solve for Mx.   

Mx
2 = 167.5/.7444   

And  Mx = 15.0 k-in. 

Mx   represents the bending contribution to the total moment. 

Mtx = Mx bending + Mx shear 

5.  Find the shear factor, SF. 

a.  Place moment diagram on conjugate beam without and with shear moment.  Set resultants 
equal to each other. 

 

 R1 R2 R4  R5  Ps 

 =  b2 + 

  b1  L1  

  R3  R6   

  

 Figure 103.  Moment Diagrams on Targeted Conjugate Beam  
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b.  Write Resultant equation 

R1   +  R2  + R3 =  R4  +  R5  +  R6  +  Ps 

(.5)14.76P1L1  +   (.5)14.76P1b1 - (.5)9.05P1b2    =  (.5)14.76P2L1  +   (.5)14.76P2b1 - (.5)9.05P2b2  +  
αP2EIx/AG 

Rearrange, 

P2/P1 =  

[ (.5)14.76L1 + (.5)14.76b1 - (.5)9.05b2 ] / [ (.5)14.76L1 + (.5)14.76b1 - (.5)9.05b2 +  αEIx/AG ] 

Solving SF = .916.  Therefore,  

Mtx  = Mx /.916 = 16.38 k-in. 

This value is within 6% of the value obtained using Central Difference. 
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Problem 4.6  For the 4” x 4” x ¼” fiberglass I beam with moments shown in Figure 104, 

determine its lateral-torsional buckling moment. Include shear deflection moment. Beam was 

used in Investigation 6.  E = 2997 ksi;  Ix = 7.935 in.4; Iy = 2.67 in. 4;  k t = .06; G = 453 ksi; A = 2.85 

in. 2;     α = 3.23; and I w = 9.375 in. 6 .  

 M Mx = 10.48P 

 a1 b2 

   0 z 

  A  a2 b1 B 

 Mx1 = 8.27P     Mx2 = 8.27P 

 L1 = 37.5” L2 = 37.5” 

 

Figure 104.  Moments on Targeted Beam. Investigation 6  

 

1.  Proposed equation for lateral-torsional buckling including shear is 

Mx = ( ( C w By ( π/L)4  +  Ct By ( π /L)2  ) / (1-f)).5 

and Mxs   =  Mx /SF 

where SF = P2/P1 

and f = (( s/L1)(1- Mx1)  + (t/L2)(1- Mx2)(L/π2) . 

Note: Mx1 and Mx2 are relative to Mx. 

Mx = 10.48P and Mx1 and Mx2 = 8.27P.   

2.  Define Factors s and t 

a.  Define a and b from end conditions.  Ends A and B are fixed-fixed, so a and b are equal to .5.   

b.  Define c and d from location of point on the beam. 

c= L2/L = .5 

d= L1/L = .5 
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c.  Calculate p and q. 

p = ac = .5* .5 = .25 

q = bd= .5* .5 = .25 

d.  Now, calculate s and t. 

s = p/(p + q) = .5 

t = q/ ( q + p) = .5 

3.  Plug in all the knowns 

a.  C w By ( π/L)4  +  Ct By ( π /L)2  =  1070.34  

b.  Plug in Mx1 and Mx2 relative to Mx. Solve 1- f. 

4. Solve for Mx.   

Mx2 = 1070.34/.9573   

and Mx = 33.44 k-in. 

Mx   represents the bending contribution to the total moment. 

Mtx = Mx bending + Mx shear 

5.  Find the shear factor, SF. 

a.  Place moment diagram on conjugate beam without and with shear moment.  Set resultants 
equal to each other. 

 R2 R3  R6 R7    Ps 

 =  + 

   

 R1  R4 R5 R8 

 a1 a2 b1 b2  

 Figure 105.  Moments on Targeted Conjugate Beam  
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b.  Write Resultant equation 

R1   +  R2  + R3  +  R4  = R5   +  R6  + R7  +  R8   +  Ps 

-(.5)8.27P1(a1 )  +   (.5)10.48P1(a2)  +  (.5)10.48P1(b1)  -  (.5)8.27P1(b2) =   

-(.5)8.27P2(a1 )  +   (.5)10.48P2(a2)  +  (.5)10.48P2(b1)  -  (.5)8.27P2(b2) +  αP2EIx/AG 

Rearrange, 

P2/P1   = [- (.5)8.27(a1 )  +   (.5)10.48(a2)  +  (.5)10.48(b1)  -  (.5)8.27(b2) ]  

             [ -(.5)8.27(a1 )  +   (.5)10.48(a2)  +  (.5)10.48(b1)  -  (.5)8.27(b2) +  αEIx/AG ] 

Solving SF = .578.  Therefore,  

Mtx  = Mx/.578 = 57.86 k-in. 

This value is within 9% of the value obtained using Central Difference. 
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Problem 4.7  For the 3” x 3” x ¼” fiberglass I beam with moments shown in Figure 106, 

determine its lateral-torsional buckling moment.  Include shear deflection moment. Beam was 

used in Investigation 7.  E = 2997 ksi;  Ix = 3.17 in.4; Iy = 1.13 in. 4;  kt = .046; G = 453 ksi; A = 2.13 

in. 2;     α = 3.26; and Iw = 2.13 in. 6 .  

 M Mx = 9.92P b1 b2 

 

 MA = Mx1 = 0  z 

  A L1 = 27.0” B MB = Mx2 = 7.16P 

 L = 54.0” 

 

Figure 106.  Moments on Targeted Beam. Investigation 7  

 

1.  Proposed equation for lateral-torsional buckling including shear is 

Mx = ( ( C w By ( π/L)4  +  Ct By ( π /L)2  ) / (1-f)).5 

and Mxs   =  Mx /SF 

where SF = P2/P1 

and f = (( s/L1)(1- Mx1)  + (t/L2)(1- Mx2)(L/π2) . 

Note: Mx1 and Mx2 are relative to Mx. 

Mx = 9.92P and Mx1 = 0 and Mx2 = 7.16P.   

2.  Define Factors s and t 

a.  Define a and b from end conditions.  Ends A and B are pinned-fixed, so a and b are .7 and .3, 

respectively.    

b.  Define c and d from location of point on the beam. 

c= L2/L = .5 

d= L1/L = .5 
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c.  Calculate p and q. 

p = ac = .7* .5 = .35 

q = bd= .3* .5 = .15 

d.  Now, calculate s and t. 

s = p/(p + q) = .7 

t = q/ ( q + p) = .3 

3.  Plug in all the knowns 

a.  C w By ( π/L)4  +  Ct By ( π /L)2  =  502.22  

b.  Plug in Mx1 and Mx2 relative to Mx. Solve 1- f. 

4. Solve for Mx.   

Mx
2 = 502.22/.84   

And  Mx = 24.45 k-in. 

Mx   represents the bending contribution to the total moment. 

Mtx = Mx bending + Mx shear 

5.  Find the shear factor, SF. 

a.  Place moment diagram on conjugate beam without and with shear moment.  Set resultants 
equal to each other. 

 

 R1 R2 R4 R5 Ps 

 =  b2 + 

  b1  

  R3  R6  L/2 

  

 Figure 107.  Moment Diagrams on Targeted Conjugate Beam  
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b.  Write Resultant equation 

R1   +  R2  + R3 =  R4  +  R5  +  R6  +  Ps 

(.5)9.92P1L1  +   (.5)9.92P1b1 - (.5)7.16P1b2    =  (.5)9.92P2L1  +   (.5)9.92P2b1 - (.5)7.16P2b2  +  
αP2EIx/AG 

Rearrange, 

P2/P1 =  

[ (.5)9.92L1 + (.5)9.92b1 - (.5)7.16b2 ] / [ (.5)9.92L1 + (.5)9.92b1 - (.5)7.16b2 +  αEIx/AG ] 

Solving SF = .84.  Therefore,  

Mtx  = Mx /.84 = 29.11 k-in. 

This value is within 1.4% of the value obtained using Central Difference. 
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Problem 4.8  For the 3” x 3” x ¼” fiberglass I beam with moments shown in Figure 108, 

determine its lateral-torsional buckling moment. Include shear deflection moment. Beam was 

used in Investigation 8.  E = 2997 ksi;  Ix = 3.17 in.4; Iy = 1.13 in. 4;  kt = .046; G = 453 ksi; A = 2.13 

in. 2;     α = 3.26; and Iw = 2.13 in. 6 .  

 M  L1 = 27.0 in. ; L = 79.5 in.; 

 Mx = 14.34P L2 = 52.5 in. 

 MA = Mx1 = 0  z 

  A L1 b1 B MB = Mx2 = 10.29P 

  b2 

 

Figure 108.  Moments on Targeted Beam. Investigation 8  

 

1.  Proposed equation for lateral-torsional buckling including shear is 

Mx = ( ( C w By ( π/L)4  +  Ct By ( π /L)2  ) / (1-f)).5 

and Mxs   =  Mx /SF 

where SF = P2/P1 

and f = (( s/L1)(1- Mx1)  + (t/L2)(1- Mx2)(L/π2) . 

Note: Mx1 and Mx2 are relative to Mx. 

Mx = 14.34P and Mx1 = 0 and Mx2 = 10.29P.   

2.  Define Factors s and t 

a.  Define a and b from end conditions.  Ends A and B are pinned-fixed, so a and b are .7 and .3, 

respectively.    

b.  Define c and d from location of point on the beam. 

c= L2/L = .66 

d= L1/L = .34 
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c.  Calculate p and q. 

p = ac = .7* .66 = .462 

q = bd= .3* .34 = .102 

d.  Now, calculate s and t. 

s = p/(p + q) = .82 

t = q/ ( q + p) = .18 

3.  Plug in all the knowns 

a.  C w By ( π/L)4  +  Ct By ( π /L)2  =  167.5  

b.  Plug in Mx1 and Mx2 relative to Mx. Solve 1- f. 

4. Solve for Mx.   

Mx
2 = 167.5/.736  

And  Mx = 15.086 k-in. 

Mx   represents the bending contribution to the total moment. 

Mtx = Mx bending + Mx shear 

5.  Find the shear factor, SF. 

a.  Place moment diagram on conjugate beam without and with shear moment.  Set resultants 
equal to each other. 

 

 R1 R2 R4  R5  Ps 

 =  b2 + 

  b1  L1  

  R3  R6   

  

 Figure 109.  Moment Diagrams on Targeted Conjugate Beam  
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b.  Write Resultant equation 

R1   +  R2  + R3 =  R4  +  R5  +  R6  +  Ps 

(.5)14.34P1L1  +   (.5)14.34P1b1 - (.5)10.29P1b2    =  (.5)14.34P2L1  +   (.5)14.34P2b1 - (.5)10.29P2b2  
+  αP2EIx/AG 

Rearrange, 

P2/P1 =  

[ (.5)14.34L1 + (.5)14.34b1 - (.5)10.29b2 ] / [ (.5)14.34L1 + (.5)14.34b1 - (.5)10.29b2 +  αEIx/AG ] 

Solving SF = .9.  Therefore,  

Mtx  = Mx /.9 = 16.76 k-in. 

This value is within 5% of the value obtained using Central Difference. 
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Problem 4.9  For the 4” x 4” x ¼” fiberglass I beam with moments shown in Figure 110, 

determine the critical stress when the max normal stress is 30 ksi. Include shear deflection 

moment. Beam was used in Investigation 9.  E = 2997 ksi;  Ix = 7.935 in.4; Iy = 2.67 in. 4;  k t = .06; 

G = 453 ksi; A = 2.85 in. 2;     α = 3.23; and I w = 9.375 in. 6 .  

 M Mx = 4.92P 

  b2 

   0 z 

  A  a2  b1  B Mx2 = 2.69P 

 Mx1 = 8.34P      

 a1   

 

Figure 110.  Moments on Targeted Beam. Investigation 6  

 

Using the central difference procedure presented in Chapter 2 for calculation of unknown 

deflections u, v, and ф; increase the applied point load P2 until the max normal stress is reached. 

The governing biaxial stress equation will include a warping stress and is 

    σmax    =  Mx cy / Ix  - My cx / Iy  + E Iw ф’’  = 30 ksi     [75] 

At P2 = 2.6 kips, v’’ = 4.87 x 10-3, u’’ = 1.25 x 10-4, and  ф’’ = 1.04 x 10-5, and the max stress 

at the point of load is 30.0 ksi. Primary stresses and  warping stress are found using the unknowns 

and the following relationships:  Mx = EIx v’’;  My = EIy u’’; and Mw = EIw ф’’ .  Knowing the applied 

load P2, determine P1 and the moment using the shear factor, SF. 
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Find the shear factor, SF. 

a.  Place moment diagram on conjugate beam without and with shear moment.  Set resultants 
equal to each other. 

 R2 R3  R6 R7    Ps 

 =  + 

   

 R1  R4 R5 R8 

 a1 a2 b1 b2  

 Figure 111.  Moments on Targeted Conjugate Beam  

 

b.  Write Resultant equation 

R1   +  R2  + R3  +  R4  = R5   +  R6  + R7  +  R8   +  Ps 

-(.5)8.34P1(a1 )  +   (.5)4.92P1(a2)  +  (.5)4.92P1(b1)  -  (.5)2.69P1(b2) =   

-(.5)8.34P2(a1 )  +   (.5)4.92P2(a2)  +  (.5)4.92P2(b1)  -  (.5)2.69P2(b2) +  αP2EIx/AG 

Rearrange, 

P2/P1   = [- (.5)8.34(a1 )  +   (.5)4.92(a2)  +  (.5)4.92(b1)  -  (.5)2.69(b2) ]  

             [ -(.5)8.34(a1 )  +   (.5)4.92(a2)  +  (.5)4.92(b1)  -  (.5)2.69(b2) +  αEIx/AG ] 

Solving SF = .40.  Therefore,  

P1 = P2/.40 = 6.5 kips 

M t x = 6.5 x 8.34 = 54.21 k-in. 

This value is within 10% of the value obtained using Central Difference. 

Proposed equations introduced here and our design approach will be discussed further in next 
chapter. 
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CHAPTER 5 

DESIGN 

Using design equations and material properties of the I beams used in the investigations, 

calculated the lateral- torsional buckling moments for the I beams varying span lengths. Curves 

are shown in Figure 112.  Shorter beams fail in material rupture before lateral torsional buckling.  

The flat part of each curve is the rupture limit for an I beam of that cross section. The equation 

used for rupture is 

Mn = FLI/y where the rupture limiting stress is 30000 psi. 

 

 

 

Figure 112.  Lateral-Torsional Buckling Moment for  

Single Span I Beam.  Pinned-Pinned 

 

Example 6.1:  a.  Calculate the material rupture for a 6 in. x 6 in. x 3/8 in.   I beam. 

b.  Would a 6 x 6 x 3/8 I beam 35 inches long fail lateral-torsionally?   

c.  What about a 6 x 6 x 3/8 with a span of 70 inches?   

d.  What is its buckling limit? 
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Solution: 

a.  Mn = FLI/y = 30 (28.28)/3  = 282.8 k-in.. 

b.  No.  According to the curve for a 6x6x1/4, it will fail in material rupture at 35 inches. 

c.  at 70 inches, the 6x6x1/4 will fail lateral-torsionally versus material rupture.   

d.  From the curve, its critical moment is approximately 210 k-in. 

5.1 Buckling Design Curves 

While for many of the cases defined by our equations of equilibrium, the present lateral 

torsional buckling equation without shear and our proposed buckling equation fall within 0 to 

20% of each other, there are instances where they disagree drastically from each other within 

the lateral-torsional buckling design range. Single span, two span, and three span beam buckling 

limits were graphed for 4 in. x 4 in. x ¼ in. , 6 in. x 6 in. x 3/8 in., 8 in. x 8 in. x  3/8 in. , and  12 in. 

x 12 in. x 1/2 in. fiberglass beams. See Figures 113 thru 124 below. Approximately 25% of ASCE-

LRFD Prestandard critical buckling values fall within 20% of Proposed critical values and 50% of 

ASCE-LRFD Prestandard critical buckling values fall within 20 to 100% of Proposed critical values,  

However, 25% of ASCE-LRFD Prestandard critical buckling limits are over 100% higher than critical 

buckling limits. Buckling limits using the present lateral-torsional buckling equations without 

shear are not conservative and need to be addressed to reduce design liabilities. 
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Figure 113.  4 in. x 4 in. x 1/4 in.  Single Span I beam.  Point Load Center Span 

 

 

Figure 114.  6 in. x 6 in. x 3/8 in.  Single Span I beam.  Point Load Center Span 

ASCE critical load value 
here 19.6% higher than 
Proposed. Unconservative. 

ASCE critical load value 
here 1.5% higher than 
Proposed. Unconservative. 



259 
 

 

Figure 115.  8 in. x 8 in. x 3/8 in.  Single Span I beam.  Point Load Center Span 

 

 

Figure 116.  12 in. x 12 in. x 1/2 in.  Single Span I beam.  Point Load Center Span 

ASCE critical load value 
here 122.6% higher than 
Proposed. Unconservative. 

ASCE critical load value 
here 17.5% higher than 
Proposed. Unconservative. 
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Figure 117.  4 in. x 4 in. x 1/4 in.  Two Span I beam.  Point Load Center Span 

 

 

Figure 118.  6 in. x 6 in. x 3/8 in.  Two Span I beam.  Point Load Center Span 

ASCE critical load value 
here 38.4% higher than 
Proposed. Unconservative. 

ASCE critical load lalue here 
36.5% higher than 
Proposed. Unconservative. 
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Figure 119.  8 in. x 8 in. x 3/8 in.  Two Span I beam.  Point Load Center Span 

 

 

Figure 120.  12 in. x 12 in. x 1/2 in.  Two Span I beam.  Point Load Center Span 

ASCE critical load value 
here 158.5% higher than 
Proposed. Unconservative. 

ASCE critical load value 
here 36.5% higher than 
Proposed. Unconservative. 
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Figure 121.  4 in. x 4 in. x 1/4 in.  Three Span I beam.  Point Load Center Span 

 

 

Figure 122.  6 in. x 6 in. x 3/8 in.  Three Span I beam.  Point Load Center Span 

ASCE critical load value 
here 45.7% higher than 
Proposed. Unconservative. 

ASCE critical load value 
here 43.8% higher than 
Proposed. Unconservative. 
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Figure 123.  8 in. x 8 in. x 3/8 in.  Three Span I beam.  Point Load Center Span 

 

 

 

Figure 124.  12 in. x 12 in. x 1/2 in.  Three Span I beam.  Point Load Center Span 

 

 

 

 

ASCE critical load value 
here 172.9% higher than 
Proposed. Unconservative. 

ASCE critical load value 
here 42.7% higher than 
Proposed. Unconservative. 
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5.2  Biaxial Bending Design 

Example 5.2:  Using the modified stress equation which includes induced torsion , plot Mx 
versus ф at a stress of 30 ksi for single span 4” x 4” x ¼”;  two span 6” x 6” x 3/8”; three span 8” 
x 8” x 3/8” ; and single 12” x 12” x ½” loaded biaxially as shown in Figures 125a thru 125d.  Plot 
with and without Timoshenko shear moment.  Beam properties shown in Table 60. 



  y Py

   Px

   z 

  x 37.5 in. 37.5 in.      

 



a.  4 in. x 4 in. x 1/4 in. I Beam.  Midspan Biaxial loads. 



 

 

 

  y Py 

   Px 

   x    z 

  37.5 in. 37.5 in.              30.0 in.        

     

 

b.  6 in. x 6 in. x 3/8 in.  I Beam.  Midspan Biaxial loads 

//// //// 

//// //// //// 
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

 

Py 

  y   Px

   x z 

  

            15.0 in.           37.5 in. 37.5 in. 15.0 in. 

 

c.  8 in. x 8 in. x 3/8 in.  I Beam.  Midspan Biaxial loads. 



 y Py 

   Px 

  x  z 

                      34.5 in. 40.5 in. 

 

 

d.  12 in. x 12 in. x ½ in.  I Beam.  Off Center Biaxial loads 

 

Figure 125.  GFRP I Beams with Point Loads   

 

 

Table 60.  Fiberglass I Beam Properties 

Dimensions 
(in.) 

Area 
(in. 2) 

Iw (in. 4) Kt Ix (in. 4) Iy (in. 4) G(ksi) E(ksi) 

4x4x1/4 2.85 9.735 .06 7.935 2.67 450 3000 
6x6x3/8 4.375 74.39 .091 28.27 9 450 3000 
8x8x3/8 8.72 465.1 .41 99.19 32.03 450 3000 

12x12x1/2 24.50 4761 1.46 256.21 83.43 450 3000 
 

 

 

//// //// //// //// 

//// //// 
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With Central Difference procedure demonstrated in problems found in Chapter 2, solve 

for unknown deflections u, v, and ф. For deflection values, [K]u  =  F. So, solve for the deflections 

using the inverse K matrix , u = [K]-1 F.  The vector u contains the unknowns u, v, and ф   along 

the member . The modified stress equation to be used is  

    σmax    =  Mx cy / Ix  - My cx / Iy  + E Iw ф’’  = 30 ksi     [75] 

Knowing Mx = EIx v’’; My = EIy u’’; and Mw = EIw ф’’; and plugging in our unknowns while varying 

the applied load with shear, Px, we find values of the applied load with or without considering 

shear. The max stress is 30 ksi. Figures 127, 129, 131, 133 show how the magnitude of the 

applied loads vary when considering versus not considering shear moment. Graph showing the 

moment Mx versus the angle of twist are also shown for each example. See figures 128, 130, 

132, and 134.   

 

 

Figure 126.  Py vs Px   .  Biaxial Bending , 4 in. x 4 in. x 1/4  in. Single Span.   
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Figure 127.  Moment vs Angle of Twist.  Biaxial Bending.  4 in. x 4 in. x ½ in. Single Span 

 

 

Figure 128.  Py vs Px  . Biaxial Bending , 6 in. x 6 in. x 3/8 in. Two Span.   
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Figure 129.  Moment vs Angle of Twist.  Biaxial Bending.  6 in. x 6 in. x 3/8 in. Two Span 
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Figure 130.  Py vs Px .  Biaxial Bending, 8 in. x 8 in. x 3/8 in.  Three Span.   
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Figure 131.  Moment vs Angle of Twist.  Biaxial Bending.  8 in. x 8 in. x 3/8 in. Three Span 
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Figure 132.  Py vs Px   .  Biaxial Bending , 12 in. x 12 in. x ½  in.  Three Span.   
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Figure 133.  Moment vs Angle of Twist.  Biaxial Bending.  12 in. x 12 in. x ½ in. Three Span 
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the moment Mx fall within 10% of the laboratory values for the same problem. However, the 

biaxial stress value is slightly lower. Biaxial load was less than 10% of the in-plane load. 

 

Table 61.  Applied Load at Mxcr and Max Normal Stress of 30ksi. Pasce/ P2 

Beam Type P2 

(kips,w/ shear) 
Pasce 

(kips,w/o shear) 
Pasce/ P2 

Single Span, 4 in. x 4 in. x ¼ in. 2.045 6.48 3.17 
Two Span, 6 in. x 6 in. x 3/8 in. 2.67 20.6 7.71 

Three Span, 8 in. x 8 in. x 3/8 in. 4.27 70.8 16.58 
Single Span, Off Ctr, 12 in. x 12 in. x 1/2 in. 3.29 68.9 20.94 

 

 

Table 62.  Bending and Warping Stresses at 12.5% Mxcr and Max Normal Stress of 30 ksi.  

Beam Type 
(in.) 

σxbending 

(Mxc/Ix ) 
σybending 

( Myc/Iy ) 
σw 

( Ewn ф’’) 
σw/ σtotal 

( σw/30.0 ksi) 
Single Span,  
4 x 4 x ¼  

.0007993 x 3000 
x 2.0 = 
4.8 ksi 

-.0005696x 3000 
x 2.0 = 
3.4 ksi 

.001956 x 3000 x 
3.75 = 

22.0 ksi 

.728 

Two Span,  
6  x 6  x 3/8  

3.9 ksi 2.8 ksi 23.4 ksi .777 

Three Span, 
 8 x 8 x 3/8  

3.7 ksi 2.5 ksi 24.1 ksi .795 

Single Span, Off 
Ctr, 12 x 12 x1/2  

3.8 ksi .6 ksi 25.8 ksi .854 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

 

6.1 Conclusions 

The following conclusions are drawn based on the present study of GFRP beams: 

1.  The theoretically predicted behavior of beams is in good agreement with that observed 

experimentally. 

2.  Inclusion of shear deformation effects resulted in significantly different lateral-torsional 

buckling loads compared to those found using ASCE - LRFD Prestandard. 

3.  The lateral-torsional buckling formula in the ASCE- LRFD Prestandard is found to be up to 20% 

on the unconservative side as compared with the experimental results. 

4.  The degree of unconservativesness in the buckling load estimates when ASCE - LRFD 

Prestandard increases with a decrease in beam slenderness when compared with predicted 

values based on the theoretical analysis presented , and is found to be over 100% is some cases.   

5.  For biaxially bent beams , the induced warping normal stresses are found to be in the range 

from moderate to very high in comparison with the primary bending stresses with warping 

stresses accounting for over 75% of the total maximum stress. 

6.  The proposed lateral-torsional buckling formula accounting for the shear deformation effects 

is in good agreement with the experimental results. 

Based on the findings presented in this dissertation , it is concluded that the current ASCE-

LRFD Prestandard can result in unconservative results in practical applications for lateral-

torsional buckling and biaxial flexure of GFRP beams. 
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6.2  Future  Research 

Additional experimental study is needed in the future on deep GFRP beams susceptible 

to lateral-torsional buckling. Experiments also need to be conducted on biaxially bent beams with 

a variety of load types and boundary conditions including both large induced warping effects and 

shear deformations. 
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