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RESEARCH ARTICLE

Factors affecting the microbiome of Ixodes

scapularis and Amblyomma americanum

R. Jory BrinkerhoffID
1,2*, Chris Clark1, Kelly Ocasio1, David T. Gauthier3, Wayne L. Hynes3

1 Department of Biology, University of Richmond, Richmond, Virginia, United States of America, 2 School of

Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 3 Department of Biological

Sciences, Old Dominion University, Norfolk, Virginia, United States of America

* jbrinker@richmond.edu

Abstract

The microbial community composition of disease vectors can impact pathogen establish-

ment and transmission as well as on vector behavior and fitness. While data on vector

microbiota are accumulating quickly, determinants of the variation in disease vector micro-

bial communities are incompletely understood. We explored the microbiome of two human-

biting tick species abundant in eastern North America (Amblyomma americanum and

Ixodes scapularis) to identify the relative contribution of tick species, tick life stage, tick sex,

environmental context and vertical transmission to the richness, diversity, and species com-

position of the tick microbiome. We sampled 89 adult and nymphal Ixodes scapularis (N =

49) and Amblyomma americanum (N = 40) from two field sites and characterized the micro-

biome of each individual using the v3-v4 hypervariable region of the 16S rRNA gene. We

identified significant variation in microbial community composition due to tick species and

life stage with lesser impact of sampling site. Compared to unfed nymphs and males, the

microbiome of engorged adult female I. scapularis, as well as the egg masses they pro-

duced, were low in bacterial richness and diversity and were dominated by Rickettsia, sug-

gesting strong vertical transmission of this genus. Likewise, microbiota of A. americanum

nymphs and males were more diverse than those of adult females. Among bacteria of public

health importance, we detected several different Rickettsia sequence types, several of

which were distinct from known species. Borrelia was relatively common in I. scapularis but

did not show the same level of sequence variation as Rickettsia. Several bacterial genera

were significantly over-represented in Borrelia-infected I. scapularis, suggesting a potential

interaction of facilitative relationship between these taxa; no OTUs were under-represented

in Borrelia-infected ticks. The systematic sampling we conducted for this study allowed us to

partition the variation in tick microbial composition as a function of tick- and environmentally-

related factors. Upon more complete understanding of the forces that shape the tick micro-

biome it will be possible to design targeted experimental studies to test the impacts of indi-

vidual taxa and suites of microbes on vector-borne pathogen transmission and on vector

biology.
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Introduction

Microbial communities associated with arthropod disease vectors have been a focus of study

for over a decade (eg [1, 2, 3, 4, 5, 6]). Low-cost, high-throughput parallel sequencing has facili-

tated rapid growth in metagenomic studies (reviewed in [7]). While the majority of metage-

nomic studies of disease vectors focus on bacterial communities, rather than eukaryotic

microbes or viruses, there is still much to learn about the factors that affect bacterial commu-

nity composition in arthropod vectors and how these microbial communities might impact

pathogen transmission [7]. In addition to the obvious importance of pathogen occurrence,

abundance, and genotypic diversity in disease vectors, there is increasing recognition that

non-pathogenic microbes might affect acquisition and transmission of vector-borne pathogens

[8, 9]. For example, the presence of specific bacterial genera may inhibit the growth of patho-

gens, and some non-pathogenic bacteria may facilitate colonization by pathogens or affect vec-

tor behavior in ways that impact transmission dynamics [10, 11]. In other cases, pathogen

occurrence may enhance vector survival [12, 13] and thus affect range expansion and abun-

dance of such vectors in the environment [9, 14, 15].

The public health and veterinary importance of ticks makes this group of vectors highly

attractive candidates for microbiome analysis. Ticks transmit a variety of bacterial pathogens

to humans (Borrelia spp, Francisella tularensis, Coxiella burnettii) and livestock (Ehrlichia spp.,

Anaplasma spp.); they also serve as vectors for eukaryotic (Babesia spp., Theileria spp.) and

viral (Crimean-Congo hemorrhagic fever virus, tick-borne encephalitis virus) pathogens.

Although enzootic transmission for some of these pathogens is reasonably well-understood

(eg tick-borne encephalitis, [16]), the roles of opportunistic or symbiotic bacteria in pathogen

transmission are much less clear [17, 7]. Some intriguing data on the inhibitory or faciliatory

roles of non-pathogen microbes in vector-borne disease dynamics is emerging. Ticks treated

with antibiotics were less able to transmit Borrelia burgdorferi [10] and acquisition of Ana-
plasma marginalemay be facilitated by the presence of Rickettsia bellii in Dermacentor ander-
soni [11]. Presence or absence of particular microbial species can affect vector survival:

Anaplasma phagocytophilummay stimulate production of an antifreeze glycoprotein that

improves freeze tolerance in the Lyme borreliosis vector, Ixodes scapularis [12]; this mecha-

nism of increased pathogen survival may emerge by pathogen manipulation of the gut micro-

biome [18]. Similarly, B. burgdorferi (sensu lato) infection in I. ricinus affects host-seeking

behavior [19], improves survival under stressful environmental conditions [13], and is associ-

ated with higher fat content in nymphal ticks [20]. Manipulation of the tick microbiome can

also impact tick fitness, potentially opening opportunities for biocontrol applications [21, 22].

Drivers of tick microbiome composition are variable and likely to depend on tick species

and study system. For example, variation in the tick microbiome has been noted in compara-

tive studies of multiple species within (eg [23]) and among genera [24, 25]. Similarly, tick life

stage is an important determinant of microbial community composition and bacterial species

diversity in a variety of species [26], potentially due to different host utilization at different

stages, or the accumulation of environmental bacteria over time. Sampling location may

account for much of the microbiome variation, especially over large spatial scales (eg [27, 23].

Whether this variation is due, in part, to soil composition (eg [28]) or other environmental fac-

tors is not clear. In some studies, blood-feeding affected the relative abundance of different

bacterial lineages, but not overall species diversity or richness [29]. In another study, blood

feeding strongly shaped microbial community structure as well as richness and diversity [30],

suggesting certain microbial genera react to the presence of blood by increasing in relative

abundance. The host from which a bloodmeal originates also impacts microbiome composi-

tion [29, 30] just as host immune factors in blood can affect the persistence of certain
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pathogenic microbes [31, 32, 33]. However, different tick species feeding on the same host do

not have identical microbiomes [25], suggesting that some of the tick microbiome is species-

specific. Plant- and soil-associated bacteria are commonly detected in tick microbiota, contrib-

uting to site-specific heterogeneity in microbial community composition, but it is not clear

whether these bacteria are part of the tick gut microbiome or whether they are contaminants

from the body surface [34, 28]. Broadly, effects of host and environmental drivers of tick

microbiome are not well understood.

Our goal for this study was to conduct targeted, stratified sampling to assess the relative

impacts of tick species, sampling site, and life stage on microbiome composition in field-sam-

pled Amblyomma americanum and I. scapularis, two common tick species in eastern North

America that are of high public health concern [35, 36]. To assess potential vertical transmis-

sion of the microbiome, we conducted a second series of analyses on mated male and engorged

female I. scapularis as well as on the egg masses produced by the engorged female ticks. Specifi-

cally, our first objective was to use a fully-factorial sampling design to partition the effects of

tick species, sampling site, and life stage on microbial diversity and species richness in ticks.

Our second objective was to characterize the microbiome of I. scapularis egg masses compared

to engorged females and the males with which they mated to determine the relative contribu-

tions of male and female microbiota to the bacterial communities associated with egg masses.

Materials and methods

Sampling

Ticks were collected during two periods and using different methods to meet the objectives of

this study. For analysis of host-seeking ticks, ticks were sampled from two field sites in east-

central Virginia by drag and flag sampling in May and June 2017 (Fig 1). Sampling sites were

selected based on occurrence of established populations of both Amblyomma americanum and

Ixodes scapularis with each site existing in a different physiographic region: coastal plain and

piedmont plateau. Previous analyses have shown that B. burgdorferi prevalence in I. scapularis
nymphs varies between these regions and I. scapularis population genetic histories differ sig-

nificantly between the coastal plain and populations farther to the west [37, 38], possibly indi-

cating differences in the underlying metagenomic profiles of ticks at these sites. Microbiota of

individual ticks from the same population may vary substantially [39] so our goal was to collect

ten adult male, ten adult female, and ten nymphal Ixodes scapularis and the same number of

Amblyomma americanum from each site and we visited each site on several occasions to maxi-

mize our chances of meeting this objective. Collected ticks were placed in 70% ethanol and

stored at -20 degrees C prior to DNA extraction.

To assess consistency of the microbiome from engorged females to the egg masses they pro-

duce, we collected engorged females and, when possible, mated males, from white-tailed deer

(Odocoileus virginianus) carcasses processed at Burks Farm in New Kent County, Virginia.

Carcasses for which locality data were available were searched for engorged female I. scapularis
ticks with males attached. Pairs of ticks were removed with fine-pointed forceps and placed in

individual sterile 10 ml glass tubes sealed with mesh fabric. Live ticks were held in a desiccator

at 21 degrees C and 90–95% humidity until egg masses were produced. After oviposition, egg

masses were separated from adult ticks using sterile 25 gauge needles and all samples were fro-

zen in separate tubes at -80 degrees C. Prior to DNA extraction, all ticks (both species, all life

stages except eggs) were washed twice with 95% ethanol. Egg masses were not washed with

ethanol so as to preserve as much sample material as possible. No permits were required for

collection of the samples in this study and permission to collect samples was granted by the
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owner-operators of the deer processing facility from which deer-derived ticks were collected

and from the Virginia Department of Forestry (drag-sampled ticks).

DNA extraction, library preparation, and sequencing

Ticks were flash frozen in liquid nitrogen and pulverized in individual microcentrifuge tubes

using sterile pestles; egg masses were not pulverized. DNA was extracted from individual ticks

and egg masses using a Nucleospin Soil kit (Macherey-Nagel, Inc., Bethlehem, PA, USA) fol-

lowing the manufacturer’s protocol. Bacterial 16S rDNA was amplified from each sample by

targeting the v3-v4 hypervariable regions of the 16S gene following the protocol outlined in

the 16S Metagenomic Sequencing Library Preparation manual [40]. Briefly, following the ini-

tial 16S PCR, amplicons were purified using AMPure XP beads (Beckman Coulter Life Sci-

ences, Indiana, USA). Barcodes were added to individual samples using Nextera XT Index kit

using PCR conditions in the 16S library preparation manual [40]. Resulting amplicons were

again purified using AMPure XP beads and the amplicon size was measured using an Agilent

Fig 1. Location of study area and study sites in Virginia, USA. Red circles indicate sampling sites for host-derived adult Ixodes scapularis and

green triangles represent locations from which host-seeking I. scapularis and Amblyomma americanum were collected. Site labels are as follows:

BC = Botetourt County, LC = Loudon County, UR = University of Richmond property, PG = Prince George County, CSF = Crawfords State Forest,

NK = New Kent County, JC = James City County. Site coordinates can be found in S1 Table.

https://doi.org/10.1371/journal.pone.0232398.g001
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Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA, USA) using the high-sensitivity

DNA protocol. DNA concentrations were determined using a Qubit spectrophotometer and

normalized to ensure equal representation among samples, and then pooled to a final concen-

tration of 4 nM. Sequencing was conducted on an Illumina MiSeq using a MiSeq V3 2 x 300

bp reagent kit (Illumina, Inc., California, USA). Sequences reported here were generated from

two separate MiSeq runs, each identical in library preparation and sequencing protocol.

Informatic and statistical analysis

Raw fastq files were first paired by sample/index with forward and reverse reads merged into

individual contigs, grouped by sample/index. Paired reads were screened for quality and fil-

tered by read length to an average of 446 basepairs, reduced to 440 basepairs after quality trim-

ming. Operational taxonomic units (OTUs) were characterized using QIIME [41, 42]; OTUs

were assigned using open-reference picking and taxa were assigned from the Greengenes 8_13

reference database. Sequences that showed similarity of at least 97% were then clustered into

the same OTU. We also used QIIME to analyze alpha and beta diversity. We used adonis2 in

the R [43] package vegan 2.4.2 [44] to perform permuted multiple analyses of variance (per-

MANOVA) to test for variation in microbiome composition by site, tick genus, and life stage,

and sex as well as to compare microbial taxa composition between engorged females, egg mas-

ses, and mated males. For the purposes of these analyses, we define life stage as egg mass,

nymph, adult male, and adult female; male and female are not different life stages, but because

sex cannot be differentiated at the nymph or egg mass stage, we found it convenient to include

sex information within the adult life stage rather than include a separate variable encoding sex.

Where possible, we used post hoc testing to make comparisons of microbial community com-

position among life stages (as defined here).

In addition to using raw OTU richness counts for each sample, we rarefied OTU counts

using the rarefy command in R package vegan [44] to account for variable sequencing depth.

We calculated Shannon’s diversity index for each sample and analyzed variation in bacterial

diversity and richness with linear models in R. We performed indicator species analysis using

PC-Ord 7 [45] to test for non-random associations between Borrelia and other bacterial taxa in

Ixodes samples. Briefly, samples were coded as Borrelia positive or negative and the relative

abundance of each other taxon in samples belonging to each group is multiplied by the relative

frequency of that taxon in each sample in that group to generate an indicator value (IV). Monte

Carlo randomizations (N = 15,999) were then run to generate distributions of randomized IVs

for each taxon in each group; statistical significance is determined based on comparisons

between observed and expected IVs under the null hypothesis of no associations between taxa

and group assignment. We adjusted the critical p-value to account for analysis of each of 492

OTUs in this dataset. We explored the overlap in core OTUS, defined initially as OTUs that

were present in at least 80% of samples of a given group and at 1% minimum relative abundance

[46], between engorged females, egg masses, and mated males. To explore the impact of Rickett-
sia on microbiome diversity estimates, we removed all reads assigned to Rickettsia, re-calculated

diversity metrics, and re-ran diversity analyses. Finally, we assessed sequence variation and

diversity of selected bacterial lineages (Rickettsia and Borrelia) using MEGA 7 [47] by first align-

ing OTU sequences from our dataset with reference sequences downloaded from GenBank and

calculating the percent match of each OTU we detected to the reference sequences.

Results

We collected 27 adult A. americanum (13 female and 14 male), 21 A. americanum nymphs, 3

adult I. scapularis (two female, one male), and 18 I. scapularis nymphs by drag sampling (S1
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Table). Consistent with previous sampling efforts [37, 38], we had difficulty collecting adult I.
scapularis is eastern Virginia during spring and summer months; as a result, we did not have

equal representation of all life stages from each sampling site for I. scapularis. Thirteen

engorged female I. scapularis collected from deer produced egg masses. Of these females, eight

were mated to males at the time of collection. Egg masses were laid within 5 weeks of tick col-

lection and in one case, an egg mass hatched into larvae prior to being frozen. PCR and library

preparation was carried out on 92 samples (S1 Table). Microbiome data were obtained from

90 samples, 89 of which provided more than 1000 sequences (range = 1,051–932,918,

mean = 67,703, median = 32,851; Table 1 and S1 Table); for subsequent analyses, we discarded

sample CC51F which produced only 230 reads. For rarefied estimates of OTU counts we used

a sample of 1,051 sequences per tick, corresponding to the cutoff value described above. We

detected a total of 3,672 operational taxonomic units (OTUs), or unique sequences, in our

dataset prior to clustering. When classified at the genus level, using the GreenGenes database

where sequences are clustered at 97% similarity, we were left with 546 OTUs. Sequences that

could not be characterized as any taxon within the Kingdom Bacteria (N = 41,010) were

grouped into a single “unassigned” category. Except where noted, all analyses were conducted

on the genus-level dataset of 546 OTUs.

Microbial community structure

Microbiome composition varied significantly by tick species (PerMANOVA: F = 24.68,

P = 0.0001; Fig 2A), life stage (PerMANOVA: F = 4.43, P = 0.001; Fig 2B), but not by sampling

site (PerMANOVA: F = 2.23, P = 0.051; Fig 2C); there was also a significant site-by-tick species

interaction (PerMANOVA: F = 2.93, P = 0.014). Because we did not have equal representation

of all life stages of each species at each site, we performed a restricted analysis using only host-

seeking nymph samples and found that species (PerMANOVA: F = 14.38, P = 0.0001) and

sampling site (PerMANOVA: F = 2.51, P = 0.03) as well as the interaction between site and

species (PerMANOVA: F = 2.53, P = 0.027) were all important determinants of OTU composi-

tion. For A. americanum only, where we had sufficient representation of each life stage and

both sexes at both life sites, stage (PerMANOVA: F = 5.26, P = 0.0001) and site (PerMANOVA:

F = 3.40, P = 0.011) were significant predictors of the tick microbiome but the interaction

between site and stage was not (PerMANOVA: F = 1.39, P = 0.20). When comparing microbial

Table 1. Sample size, average sequencing depth, OTU richness and OTU diversity for each life stage and each tick species.

Species Stage N Sequences (mean) Richness (mean) Diversity (mean)

A. americanum
Female 11 102,392 86.0 1.66

Male 9 15,097 99.1 2.64

Nymph 20 62,906 116.9 2.34

TOTAL 40 63,008 104.4 2.22
I. scapularis

Egg mass 12 107,993 46.5 0.71

Female (fed) 12 98,857 39.6 0.55

Female (unfed) 2 15,616 131.0 3.39

Larval mass 1 35,752 48.0 0.66

Male 7 67,392 88.6 2.45

Nymph 16 34,500 111.3 2.70

TOTAL 50 71,459 74.9 1.66
Grand Total 90 67,703 88.0 1.91

https://doi.org/10.1371/journal.pone.0232398.t001
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Fig 2. Weighted unifrac plots differentiating samples by A) tick species, B) life stage site (only A. americanum
data shown; males in green, nymphs in purple, and females in orange), and C) sampling site (only A. americanum
data shown; red represents site CSF and green represents site UR). The entire dataset is found in S1 Dataset and can

be downloaded and manipulated to highlight subsets of data related to any variable in the metadata file.

https://doi.org/10.1371/journal.pone.0232398.g002
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composition among I. scapularis life stages (engorged female, mated male, nymphs and egg

mass), we found significant variation by life stage (PerMANOVA: F = 5.03, P = 0.004) as well

as significant variation in OTU richness (PerMANOVA: F = 19.32, P�0.0001, r2 = 0.55) and

diversity (PerMANOVA: F = 37.38, P�0.0001, r2 = 0.71) among life stages.

Microbial richness and diversity

Rarefied OTU richness varied significantly by life stage for Ixodes (F = 19.95, P<0.001,

adjusted R2 = 0.55) with nymphs (T = 6.81, P<0.0001) and males (T = 3.91, P = 0.008) having

greater richness than females and eggs. For Amblyomma, where we could model OTU richness

as a function of site and life stage, there was no effect of either predictor, or the interaction

term, on the rarefied OTU richness (F = 2.28, P = 0.068, adjusted R2 = 0.014). OTU diversity

in Ixodes varied significantly by life stage (F = 18.11, P<0.0001, R2 = 0.55), with nymphs

(t = 6.19, P<0.001) and males (t = 4.35, P<0.001) having highest OTU diversity. OTU diversity

in Amblyomma also varied significantly as a function of site and stage (F = 2.86, P = 0.029,

adjusted R2 = 0.19) where males (T = 2.30, P = 0.028) and nymphs (T = 2.95, P = 0.006) had

higher OTU diversity than females. In a nymphs-only analysis, there was no effect of site, spe-

cies, or the interaction between the variables on either rarefied OTU richness (F = 1.65,

P = 0.20, adjusted R2 = 0.05) or diversity (F = 2.83, P = 0.054, adjusted R2 = 0.14). When all

host-seeking ticks (ie exclusive of Ixodes collected from deer) were included in a single analy-

sis, rarefied OTU richness did not depend on tick species, sampling site, or life stage (F = 1.65,

P = 0.18, adjusted R2 = 0.04). In all analyses, results from tests of raw OTU richness counts

were qualitatively similar to those of rarefied OTU estimates.

Qualitatively, it is apparent that OTU composition varies by tick species and life stage (Figs

2A, 2B and 3). For example, Coxiellaceae are the most common and abundant lineage in A.

americanum whereas Rickettsia dominate engorged female I. scapularis and their egg masses

(Fig 3). OTU variation and diversity (Table 1) in host-seeking female I. scapularis are similar

to that of host-seeking males and nymphs. We detected very few OTUs that qualified as core

OTUs under the initial definition (1 in engorged females, 4 in egg masses, and 8 in males, with

one in common among all stages) so we broadened the definition to OTUs that occurred in at

least 50% of samples and 1% minimum relative abundance and found that the core microbiota

of eggs were largely similar to male and engorged female I. scapularis (Fig 4A). Although rich-

ness and diversity were equivalent among A. americanum and I. scapularis nymphs, there were

14 OTUs unique to I. scapularis nymphs and 2 unique to A. americanum nymphs, with 4

OTUs present in nymphs of both tick species (Fig 4B).

Removal of Rickettsia
Because Rickettsia was present in every sample and dominated the microbiome of engorged

female I. scapularis and I. scapularis egg masses (Fig 3), we re-ran all analyses after informati-

cally removing Rickettsia sequences from the dataset. Comparisons of microbiome composi-

tion in host-seeking ticks were not qualitatively affected by this modification; we still found

significant variation among species, life stage, and site, as well as genus and site-dependent var-

iation when exploring the nymphs-only dataset. However, after removing Rickettsia, the

microbiome composition of I. scapularis egg masses, engorged females, and males could no

longer be differentiated (F = 0.822, P = 0.71), although OTU richness still varied significantly

by life stage (overall F = 5.9, P = 0.003). Prior to removal of Rickettsia, linear regression analysis

showed a weak but significant negative relationship between OTU diversity and the natural

log of the number of sequences per sample (F = 8.87, P = 0.004, adjusted R2 = 0.08; Fig 5A).

However, there was no relationship between the natural log of the number of sequences
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produced per sample and OTU richness (F = 1.78, P = 0.19, adjusted R2 = 0.01; Fig 5B). After

removing Rickettsia, there was no dependence of OTU diversity on sequencing depth

(F = 1.06, P = 0.31, adjusted R2 = 0.001; Fig 5C) but there was a strong and significant relation-

ship between sequencing depth per sample and OTU richness (F = 42.8, P< 0.001, adjusted

R2 = 0.32; Fig 5D). We note that the minimum number of reads per sample after removal of

Rickettsia dropped to 22, so these results should be interpreted with caution. Rarefied OTU

richness (F = 6.51, P = 0.014, adjusted R2 = 0.11) and OTU diversity (F = 4.96, P = 0.031,

adjusted R2 = 0.08) were significantly higher in I. scapularis (all life stages included) that car-

ried Borrelia. To test whether this was an effect of reduced OTU diversity in engorged females,

where Borrelia prevalence and relative abundance is lower because of bacteriolytic effects of

deer blood on Borrelia, we re-ran these analyses using only host-seeking I. scapularis nymphs

(N = 16). For the nymphs-only analysis, neither rarefied OTU richness (F = 3.43, P = 0.09,

R2 = 0.14) or diversity (F = 1.44, P = 0.25, adjusted R2 = 0.03) were dependent on Borrelia

Fig 3. Relative abundance of the 15 most commonly-detected OTUs in this study, organized by tick species and life stage. Taxa (order, family, and

genus where available) are listed below the figure. Sample numbers are listed alphabetically within a life stage group and areindicated along the x-axis.

Specific samples can be identified either by their labels along the x-axis or, if unlabeled, can be derived from the list of samples (S1 Table). Asterisks

indicate two unengorged host-seeking female ticks that were collected during drag sampling; all other female ticks included in this figure were engorged

and the time of processing.

https://doi.org/10.1371/journal.pone.0232398.g003
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Fig 4. Core OTUs, defined as taxa present in at least 50% of samples within a group and occurring at 1% minimum relative abundance. Overlap

A) among I. scapularis engorged females (FF), mated males (M), and egg masses (E) generated from deer carcasses and B) overlap between Amblyomma
and Ixodes nymphs. Graphs were generated with Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/).

https://doi.org/10.1371/journal.pone.0232398.g004

Fig 5. Relationship between sequencing depth per sample and microbial diversity (Shannon’s Index) in ticks with (A) and without (C) Rickettsia
included in the analysis. Panels B and D show the relationship between sequencing depth and taxonomic richness with and without Rickettsia,

respectively. Asterisks indicate significance at P = 0.01 (��) and P = 0.001 (���).

https://doi.org/10.1371/journal.pone.0232398.g005
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infection status (F = 6.51). We found significant over-representation of several genera in I. sca-
pularis that were carrying Borrelia (Table 2).

We explored phylogenetic diversity of Rickettsia 16S DNA in our samples compared to other

tick-associated and pathogenic Rickettsia species [48]. Twelve sequences were identified as

genus Rickettsia but for phylogenetic analysis we used only the six sequences that were detected

at least 200 times and in multiple ticks to reduce impacts of PCR or sequencing error. In addi-

tion to sequences similar to Ixodes- and Amblyomma-associated Rickettsia species from eastern

North America (R. buchneri-like and R. amblyommatis-like, respectively), we detected several

Rickettsia sequences that have sequences distinct from known lineages (Table 3). Similarly, we

performed phylogenetic analysis of the two Borrelia sequences from our dataset compared to

other known Borrelia species, however, a number of B. burgdorferi (eg N40, CA4, MM1, JD1)

and B. bisettii (eg 13–80, DN127) strains are identical at this 440 bp portion of 16S rDNA.

Discussion

There is considerable interest in characterizing the microbiota of disease vectors [7], in part

because interactions among bacteria may affect pathogen viability and transmission [10]. Tick

microbiota are highly variable, particularly in the relative abundance of specific bacterial

Table 2. Taxa over-represented in Borrelia-positive ticks as identified by indicator-species analysis with 15,999

simulations, arranged by probability of null association. Indicator values (IV) represent the combined relative abun-

dance of a given taxon in a group (Borrelia positive/negative) and the proportion of samples within that group that had

that taxon; an IV of 100 indicates perfect association of a taxon with a group due to exclusive occurrence and high rela-

tive abundance. Significance is determined by comparison of observed IVs with IVs generated from randomizations.

No taxa were identified as being under-represented in Borrelia-positive ticks. Results were qualitatively similar whether

or not Rickettsia sequences were included in the dataset. Asterisks indicate statistical significance at P = 0.0001 with the

two taxa associated with P� 0.0005 listed as marginally-significant indicator taxa.

Taxon Indicator Value (IV) Probability of result under the null hypothesis of no association

Borrelia‡ 100 0.0001�

Tepidomonas 77.7 0.0001�

Luteibacter 85.7 0.0001�

Francisella 58.3 0.0004

Fibriimonas 72.3 0.0005

‡This taxon was used to define the groups so an IV of 100 is an artefact of the analysis

https://doi.org/10.1371/journal.pone.0232398.t002

Table 3. Percent identity of Rickettsia OTUs detected in this study to tick-associated Rickettsia and Rickettsia representing the three major Rickettsia clades: Spotted

fever group (SFG), transitional group (TG), and typhus group (TRG) [48]. Each OTU included in this table is represented by at least 200 reads. Asterisks denote OTUs

that were detected only in I. scapularis; all other OTUs were detected in both tick species.

A. americanum and I. scapularis-associated Rickettsia SFG TRG TG

OTU R. monacensis
LN794217.1

R buchneri
NR_134842.2

Rickettsia sp. (I.
scapularis symbiont)

D84558.1

R. amblyommatis
CP015012.1

R. rickettsii
NR_118678.1

R. parkeri
L36673

R. felis
DQ102712.1

R. typhi
NR_074394.1

2 100 100 100 99.48 99.48 99.48 99.48 99.48

874� 100 100 100 99.47 99.47 99.47 99.47 99.47

3009 99.2 99.2 99.2 98.67 98.67 98.67 98.67 98.67

1020� 99.45 99.45 99.45 98.9 98.9 98.9 98.9 98.9

1303 97.37 97.37 97.37 97.89 97.63 97.37 97.37 97.37

732 97.11 97.11 97.11 96.59 97.11 97.11 96.85 96.85

https://doi.org/10.1371/journal.pone.0232398.t003
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genera [26, 49, 29, 30]. Previously identified factors associated with variation in tick micro-

biome composition include: tick species [23], sampling location and environmental conditions

[23, 28], engorgement status and host bloodmeal [30], tick life stage [27], and tick age [50].

However, the effects of these factors are not always consistent. For example, host species iden-

tity affected I. pacificusmicrobiome in one study [30] but did not significantly affect tick

microbiome in another [24]. Some of this heterogenetiy among studies could result from anal-

ysis of different molecular targets [51], stochastic variation among individual ticks [39], or

methodological approaches regarding sample preparation or sequence processing and analysis.

Our goal for this study was to compare the relative importance of environmental and organis-

mal predictors of the microbiome composition of two common human-biting tick species in

eastern North America using a stratified and factorial study design.

Effects of species and life stage on the tick microbiome

Tick species identity accounted for the largest portion of microbiome variation in our study,

although life stage was also a major determinant of bacterial species composition for each tick.

This is consistent with previous studies [52] where the microbiota of lab-reared and field-sam-

pled Ixodes scapularis, fed on different host species, were compared and shown to vary as a

function of environment more than host species identity. Similarly, Rynkiewicz et al. [25]

described significant microbiome variation between Ixodes scapularis and Dermacentor varia-
bilis larvae, even when ticks fed on the same individual hosts. Immature I. scapularis and A.

americanum do not generally overlap in host species use, but as adults, both species commonly

parasitize white-tailed deer (Odocoileus virginianus) [53]. If host species identity was a strong

determinant of tick microbiome, we might expect convergence of microbial community com-

position when comparing engorged I. scapularis to A. americanum, but this pattern was not

observed (Fig 3). While the composition of the microbial community in our study varied sig-

nificantly between A. americanum and I. scapularis (Figs 2A and 3), OTU richness and diver-

sity did not when we restricted our analyses to the same life stage (nymphs). Within species,

however, richness and diversity did tend to vary by stage and by sex with male and nymphal

ticks having higher richness and diversity than female ticks, whether engorged or host-seeking,

though we note the small number of host-seeking adult I. scapularis collected during dragging

(Table 1). Interestingly, this pattern was observed in A. americanum where females were

unfed, suggesting the lower diversity and richness of OTUs is not a simple artefact of blood-

feeding. A previous study of the A. americanummicrobiome [26] also reported lower micro-

bial diversity in females than males or nymphs, and a similarly high relative abundance of

Rickettsia, particularly in females. Williams-Newkirk et al. [49] also found the microbiome in

A. americanum to vary by life stage and by sex for adult ticks with the microbiome of all stages

dominated by Rickettsia and Coxiella, as in our study. In addition to life stage, tick age may

affect microbial diversity and richness in Amblyomma americanum with the microbiome

apparently losing taxa from time of molting from nymph to adult to 100 days post-molt [50].

For I. scapularis, eggs and females had similar microbial richness, diversity, and species com-

position, suggesting potential vertical transmission of microbes from a female to her offspring.

We do not know for certain whether the microbiota detected in egg masses were on or inside

of the eggs themselves, and cannot conclude that these bacteria were definitively vertically

transmitted. However, one larval mass (CC46L; S1 Table) was included in our analysis and it

was also dominated by Rickettsia, clustering tightly with egg masses and engorged females in

unifrac analysis (S1 Dataset). Moreover, Zolnik et al. [52] demonstrated that larvae emerged

from egg masses with high relative abundance of Rickettsia, which is also consistent with verti-

cal transmission of this genus. Of the six core OTUs detected in egg masses, five were also core
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OTUs for males (N = 2), engorged females (N = 1), or common to both adult sexes (N = 2)

with only one unique core OTU (Fig 4A). Similarly, engorged females were found to have only

one unique core OTU whereas males had eight. Whether the overlap in core OTUs between

egg masses and the adults from which they were generated and fertilized indicates vertical

transmission is to be determined, but the relative paucity of characteristic core OTUs in

engorged females and eggs is noteworthy.

Effects of local environment on the tick microbiome

There was substantial variation in microbiome composition within a site and, on average, sam-

pling location explained very little of the variation in microbial community structure and did

not affect bacterial richness or diversity. We do not have data on host bloodmeal identification

for the ticks we tested, with the exception of the adult I. scapularis females removed from deer,

and it is possible that different host use accounts for some of the spatial heterogenetiy in

microbiome composition we detected. Controlled experiments whereby microbiome varied

among lab-reared immature ticks were fed on various hosts supports this speculation (eg [25,

30]. Other studies have demonstrated that lab-reared ticks have depauperate and distinct

microbiomes when compared to field-collected individuals of the same species [52, 54], sug-

gesting that existence in the natural environment drives accumulation of specific microbial

taxa, whether or not colonization occurs through feeding.

It is possible that the overall similarity in tick microbiota between sites in our study was due

to the relative proximity (< 100 km) of our sites to each other. Variation between sampling

sites at larger spatial scales have shown strong geographical differences in the microbiome

composition of particular tick species [23, 39]. Trout-Fryxell and DeBruyn [28] found signifi-

cant differences in the microbiota of A. americanum among sites that had different soil types

and drainage, suggesting local environmental conditions that affect soil and environmental

bacteria (eg [55]) can also affect tick microbiota. Given that much of the tick microbiome is

likely environmentally-derived rather than host-derived [52, 30, 54], it is reasonable to assume

that regional variation in environmental bacteria would lead to differences in local tick micro-

biota. We expected some variation in tick microbiota between the coastal plain and piedmont

plateau, but the within-site variation in microbiota masked any potential differences in micro-

bial community composition between sites. Our results indicate that relatively little of the core

microbiome is shared between species (Fig 4b) when life stage is held constant, suggesting

there are bacteria specifically adapted to different tick genera or species.

As with any community sampling approach, there is a trade-off between accurate represen-

tation of species occurrence and relative abundance and sampling effort. Rarefaction can be

used to mitigate some of the effects of unequal sampling effort (here, sequencing depth)

among samples; our results were equivalent with rarefied and non-rarefied data. However, it is

important to acknowledge the effects of sequencing depth on measurement of species richness

and diversity. When all samples were analyzed together, there was no effect of sequencing

depth on detected OTU richness but there was a weak negative relationship between sequenc-

ing depth and OTU diversity. This suggests we characterized the microbiome of our ticks rea-

sonably well and that increased sequencing depth tends to lead to the accumulation of

sequences from the most abundant OTUs. However, when we removed the most abundant

OTU (OTU2, Rickettsia) from our dataset there was a significant positive relationship between

sequence depth and OTU richness, particularly at lower sequencing depth (Fig 5d). Thus, for

samples dominated by Rickettsia and for which sequencing depth was low, we likely failed to

detect less abundant OTUs. This information is useful for design of future studies. With a pri-
ori knowledge or suspicion of low-diversity samples due to dominance by one or two OTUs,
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added sequencing depth, achievable by enrichment of such samples in pooled sequencing

libraries, may result in better characterization of the composition of the remaining micro-

biome, especially after informatic removal of the most abundant taxa.

Rickettsia and Borrelia
In our study, the microbiota of blood-fed female I. scapularis were dominated by Rickettsia, as

were their egg masses. This result is consistent with vertical transmission of this taxon, as has

been shown in previous studies [52, 56]. The observation that engorged females had lower

microbial richness than both males and nymphal ticks suggests that blood-feeding may allow

for increased populations of Rickettsia, potentially at the expense of maintaining other line-

ages. Although we tested relatively few unengorged females for comparison to engorged

females, both clustered with male and nymphal I. scapularis in terms of microbiome composi-

tion (S1 Dataset). Given that male and nymphal I. scapularis showed similar microbial richness

and diversity, and that the two unengorged female I. scapularis showed microbial profiles simi-

lar to the other unengorged stages (Fig 3), we suggest that bloodfeeding has a strong impact on

microbial richness and diversity. The relative lack of unique taxa in engorged females when

compared to males (Fig 4A) suggests that the remaining non-RickettsiaOTUs in these ticks

represent a subset of the taxa found in other life stages. We speculate that blood-feeding serves

to reduce microbial richness in Ixodes ticks, as has been demonstrated previously [30], with

the ticks subsequently being colonized by environmental bacteria that then restore the micro-

biome to levels of richness detected in host-seeking ticks. However, we cannot rule out the pos-

sibility that the disappearance of some microbial genera in engorged female microbiota is

artefactual. The low relative abundance of certain OTUs may preclude their detection after

increases in the populations of other bacteria (eg Rickettsia) during and after blood-feeding.

Several engorged females yielded relatively high sequence depth (ie>100,000 sequences; S1

Table) and still produced relatively little OTU richness, suggesting true absence rather than

failure to detect certain bacterial genera.

A. americanum is associated with a number of Rickettsia species, both pathogenic and pur-

portedly endosymbiotic [57, 58, 59, 60]. Rickettsia parkeri, the agent of tidewater spotted fever,

has been detected in I. scapularis [61], but we are aware of no data indicating its ability to

transmit this agent. Far more common in I. scapularis are Rickettsia similar or identical to R.

buchneri, [62, 63, 64], a species whose pathogenic capacity is undescribed. We were are unable

to confidently identify the Rickettsia in our study to species because of the low phylogenetic

resolution associated with the portion of the v3-v4 region of 16S rRNA gene we analyzed.

Moreover, R.monacensis, a species indistinguishable from R. buchneri and other species based

on the locus used in this study, can be acquired through feeding by A. americanum, though it

does not disseminate from the gut the way it does in I. scapularis [65]. Detection of bacterial

DNA in a tick does not indicate bacterial viability or ability of the tick to transmit, and we

stress that we are not able to definitively identify these Rickettsia to species; the most com-

monly-detected OTU in our study (OTU2, Table 3) is identical to several tick-associated Rick-
ettsia including R. buchneri andmonacensis, as well as a purported symbiont of I. pacificus
(Table 3). Interestingly, we detected this OTU in both tick species and we did not find any

OTUs that matched exactly to R. amblyommatis (amblyommii) type strains Ac37 or An13.

However, these type strains were isolated from different Amblyomma species (A. cajennense
and A. neumanni, respectively), both in South America, and they only differed at two positions

from OTU2 in our dataset. Irrespective of the species represented by OTU2, we did find that

the genetic diversity of Rickettsia in our sample is relatively high with several of the sequences

we detected differing from known from major Rickettsia groups (Table 3). Although Rickettsia
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are common endosymbionts of ticks and previous studies have demonstrated substantial

genotypic diversity of Rickettsia-like organisms [66], our data suggest that there may be addi-

tional diversity of undescribed Rickettsia or Rickettsia-like organisms in both A. americanum
and I. scapularis (Table 3). Further analyses of Rickettsia to the species level will require follow-

up molecular analyses with makers that allow for higher-resolution phylogenetic analysis.

As was the case with Rickettsia, the segment of the 16S rRNA gene we used for this metage-

nomic analysis does not differentiate between Borrelia species; B. burgdorferi strain B31 and B.

bissettii strain DN137 (among others) are identical at this locus and both species may be pres-

ent at our study sites [67, 68, 37]. Prior to clustering, we identified two sequences that were

classified as genus Borrelia: one (N = 1,579) matched exactly to the B31 type strain whereas the

other (N = 18,628) had one polymorphism out of 440 nucleotide positions. In a previous meta-

genomic analysis of Virginia I. scapularis, all of the Borrelia sequences were confirmed to be B.

burgdorferi upon sequence analysis of other loci in the B. burgdorferi genome [23]. We note

that 16S microbiome analysis was found to be more sensitive for Borrelia detection than even

nested PCR [23] so it is possible that some of the reads in the current study represent other

Borrelia species that occur at very low relative abundance and may not be detectable by Sanger

sequencing. Neither of the Borrelia sequences in this study was a close match to B. lonestari
(~95.4% identity), suggesting that B. lonestari was not present in the ticks we sampled. Among

the ticks in which at least 500 Borrelia sequences were detected, two were adult I. scapularis,
four were I. scapularis nymphs and one was an A. americanum nymph. Several additional sam-

ples produced small number of reads for this OTU (N = 17, 1–18 reads per sample, median of

2 reads per sample). Given that A. americanum can acquire, but cannot transmit, B. burgdorferi
through bloodfeeding, we decided to include in our characterization of Borrelia occurrence

only samples for which several hundred reads was detected per sample. Specific components

of the I. scapularismicrobiome have been linked with inhibition and facilitation of B. burgdor-
feri transmission [10, 69] and members of the B. burgdorferi (sensu lato) complex in particular

have been shown to affect vector survival and behavior [19]. Whether any of the bacteria we

detected in our samples play similar roles is unknown, but we did detect several bacterial gen-

era that were positively associated with Borrelia spp. in I. scapularis (Table 2). Such an associa-

tion could be spurious, or could result from inoculation of Borrelia and another taxon from a

common host source. Alternatively, the association could indicate an underlying mechanism

of facilitated infection or persistence in the tick; gut bacterial communities in I. scapularis can

affect the ability of B. burgdorferi to colonize the gut [10, 69]. Such indicator species analyses

can identify potential interacting microbial genera for future transmission and co-infection

studies or in vitro analyses of species interactions.

Conclusions

As more data on vector microbiota are collected and published, patterns emerge and become

reinforced, allowing for a clearer picture of the factors that may affect the tick microbiome,

and, ultimately, consequences of microbiome variation. Whereas data on tick microbiota are

accumulating rapidly, there are relatively few studies where stratified sampling designs are

used to partition microbiome variation in natural populations. We showed that tick micro-

biota are largely species-specific and tend to be dominated by a handful of highly abundant lin-

eages. We also suggest, based on our findings and previous results, that bloodfeeding may

serve to ‘reset’ the microbiome and that exposure to the local environment (including subse-

quent hosts) allows for recolonization of certain microbial taxa. We also suggest that some of

the maternal microbiome may be vertically transmitted to egg masses, at least in the case of I.
scapularis. Descriptive and hypothesis-driven analyses of tick microbiomes are paving the way
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for additional experimental and functional studies wherein the roles of, and interactions

among, specific bacterial genera and species can be studied in detail. Given the potential effects

of microbes on tick host-seeking behavior, pathogen transmission, fitness, and survival, it is

critical to advance our understanding of tick-microbiome relationships and interactions.

Supporting information

S1 Table. Sample information for all ticks included in this study. Data include Sample iden-

tifier, tick species, tick life stage, sampling location and coordinates, sampling date, number of

sequence reads, OTU richness, and OTU diversity (Shannon’s Index).

(XLSX)

S1 Dataset. Weighted unifrac plot representing all samples included in the study. Metadata

associated with this plot can be found in the dataset DOI: 10.13140/RG.2.2.15215.38560. The

three axes account for 65.03% of the variation in this dataset. Regarding stage designations,

“E” represents eggs, “F” represents engorged female I. scapularis or unengorged female A.

americanum, “L” represents larval mass, “M” represents unfed males, “N” represents nymphs,

and “UF” represents unfed female I. scapularis. Site names and geographic coordinates can be

found in S1 Table.
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