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We use scanning tunneling microscopy (STM) and spectroscopy (STS), and x-ray photoelectron spec-
troscopy (XPS) to investigate the effect of nitrogen doping on the surface electronic and chemical
structures of cutouts from superconducting Nb radio-frequency cavities. The goal of this work is to get
insights into the fundamental physics and materials mechanisms behind the striking decrease of the surface
resistance with the radio-frequency magnetic field, which has been observed on N-doped Nb cavities. Our
XPS measurements reveal significantly more oxidized Nb 34 states and a thinner metallic suboxide layer
on the N-doped Nb surfaces, which is also confirmed by tunneling spectroscopy measurements. In turn,
tunneling measurements performed on native surfaces as well as on Ar-ion sputtered surfaces allow us to
separate the effect of N doping on the surface-oxide layer from that on the density of states in the bulk.
Analysis of our tunneling spectra in the framework of a model of a proximity-coupled normal layer at the
surface [A. Gurevich and T. Kubo, Phys. Rev. B 96, 184515 (2017)] is consistent with the hypothesis that
N-doping ameliorates lateral inhomogeneities of superconducting properties on the surface and shrinks
the metallic suboxide layer. For the Ar sputtered surfaces, we also find evidence that N doping changes
the contact resistance between the metallic suboxide and the bulk niobium toward an optimum value cor-
responding to a minimum surface resistance. The totality of our experimental data suggests that the N
doping provides an effective tuning of the density of states in such a way that it can result in a decrease
of the surface resistance with the radio-frequency field, as predicted by calculations of the nonlinear low-
frequency electromagnetic response of dirty superconductors. Furthermore, STM imaging of vortex cores
shows a slightly reduced average superconducting gap and a shorter coherence length in the N-doped Nb
samples as compared to typically prepared Nb samples, indicating a stronger impurity scattering caused

by nitrogen doping in a moderately disordered material.

DOI: 10.1103/PhysRevApplied.13.044044

I. INTRODUCTION

The fundamental limits of dissipation in the supercon-
ducting Meissner state under rf fields has attracted much
attention, particularly in light of recent advances in the
improvement of the performance of microresonators for
quantum computing or resonator cavities for particle accel-
erators [1-7]. This interest has been motivated by the fact
that s-wave superconductors have very small surface resis-
tance R; o< exp(—A /T) at temperatures 7 well below the
critical temperature 7, and rf frequencies w smaller than
the gap frequency 2A /A [8]. Indeed, the Nb cavities typi-
cally have Ry ~ 10 nQ2 at 2 K and 1 GHz, which translates
into huge quality factors Q o 1/R, ~ 10'—10"" [4,5,7].
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The surface resistance depends on the amplitude Hj of the
rf magnetic field H (f) = Hy sin wt and can be significantly
altered by the materials treatments. For instance, R; of
electropolished Nb cavities [4] at 2 K and 1 GHz increases
with the rf-field amplitude, consistent with the well-known
reduction of a quasiparticle gap and the superfluid den-
sity by the rf pairbreaking currents [9—11], grain bound-
aries, nonsuperconducting precipitates, and other materials
defects [5,12], or trapped vortices [13—21]. However, the
Nb cavities doped with nitrogen [22-25], titanium [26], or
other impurities [27,28] can exhibit a striking reduction of
Ry(Hy) by factors of 2—4 as H increases from 0 to <0.5H,.,
where H. is the thermodynamic critical field.

These discoveries of the microwave reduction of
Ry (Hy) have triggered intense investigations of its micro-
scopic mechanisms, as well as the materials modifications

© 2020 American Physical Society
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[29-34], by which it can be further enhanced and extended
to higher rf fields of prime importance for the supercon-
ducting rf- (SRF) cavity applications. The investigations
indicate that the behavior of the nonlinear surface resis-
tance at high rf fields is controlled by the physics of
nonequilibrium superconductivity and nonlinear rf current
pairbreaking interconnected with subtle materials features
and impurity distributions in the first few nm at the surface.
One of the outstanding issues is to understand the mech-
anism by which the impurity doping turns the conven-
tional increase of R;(Hy) with Hj into the counterintuitive
decrease of R,(Hy) as a function of H,. Several scenar-
ios for this effect have been proposed in the literature.
It was shown [35] that the well-known effect of broad-
ening the gap peaks of the quasiparticle density of states
(DOS) by the pairbreaking current [9,10,36—40] can result
in a pronounced minimum in R (Hj), in agreement with
experiment [25,26]. Such a microwave reduction of the
surface resistance [41] is a manifestation of a general effect
by which R; can be significantly reduced by engineer-
ing an optimum broadening of the gap peaks in the DOS
at the surface using different pairbreaking mechanisms.
These mechanisms can be due to rf Meissner currents
[35,40,41], paramagnetic impurities [42,43], local reduc-
tion of the pairing constant, or a proximity-coupled normal
layer, which models surface nonstoichiomentry and subox-
ide layers [44,45]. The latter are particularly relevant to the
Nb surface, which is typically covered by a few-nm-thick
layers of metallic Nb monoxide (NbO), semiconducting
Nb dioxide (NbO,), and insulating Nb pentoxide (Nb,Os)
[5,46,47]. Low-oxidation-state Nb suboxides tend to be
metallic with known magnetic moments appearing as the
oxide approaches the Nb** state [48—50]. Another mecha-
nism of the field reduction of R, (H,) based on the existence
of two-level atomic states at the Nb surface was proposed
[51] although neither the nature of the two-level atomic
states nor their relation to the N doping of Nb cavities
have been well understood. Recently, a contribution to a
negative Q(Hp) slope coming from trapped vortices was
suggested [52].

Identifying the materials and physical mechanisms by
which the N doping causes the field-induced reduction of
Ry (H)y) requires surface probes that can pinpoint the spe-
cific superconducting properties affected by the N doping.
In turn, these experiments should be combined with a the-
ory that relates these materials changes to the correspond-
ing changes in superconducting characteristics affecting
the behavior of R;(Hp). One of such key characteristics
is the local DOS at the surface, which can be directly
probed by tunneling experiments. For instance, calcula-
tions of microwave suppression of R;(Hj) using the kinetic
Usadel equations for dirty superconductors [35,41,44,45]
suggest that the N doping of a few-um-thick surface layer
can result in the field-induced reduction of R,(Hj) in two
different ways: (1) N doping mostly reduces the DOS

peaks’ broadening in the entire layer of rf-field penetra-
tion ~2X ~ 100 nm, which brings about the microwave
reduction of R;(Hy) characteristic of the idealized BCS
model [35,40,41]. (2) The key effect of the N doping is
in modifying the surface-oxide structure, and partial or
complete conversion of the metallic suboxides into dielec-
tric (Nb,Os) or semiconductor (NbO;) forms, which do
not cause significant rf losses and DOS broadening. In
this case, the effect of the N doping in the bulk mostly
manifests itself in the reduction of the mean free path with-
out much effect on the DOS broadening. The effect of a
thin proximity-coupled normal layer on the field-induced
reduction of R (Hp) was recently calculated in Ref. [45].
The purpose of the present work is to identify the mate-
rial modifications caused by the N doping using combined
scanning tunneling microscopy (STM) and spectroscopy
(STS), and x-ray photoelectron spectroscopy (XPS) to
probe the electronic and chemical states of Nb both in the
bulk and at the surface.

We perform tunneling spectroscopy and XPS of typ-
ically prepared Nb and N-doped Nb cutouts from SRF
cavities. The main goal is to reveal the changes produced
by the N doping in the native oxide and the bulk DOS of
typically prepared Nb and understand how these changes
manifest themselves in the tunneling spectra in terms of
superconducting gap, DOS broadening, and subgap states.
Recent work on point-contact tunneling spectroscopy of
N-doped Nb samples [53] addressed the same issues but
our work pursues a different approach. We first study native
surfaces of Nb and N-doped SRF cavities cutouts to get
insights into the native oxide. Then we perform scanning
tunneling microscopy and spectroscopy on the Ar-ion sput-
tered surfaces of Nb and N-doped SRF cutouts to infer
the bulk DOS underneath the native oxide. This combined
approach allows us to discriminate the effect of N dop-
ing on the oxide surface and the bulk DOS. Furthermore,
since the sputtered surfaces are metallic it is possible to use
the full capability of the scanning tunneling microscope
to obtain much larger statistics of tunneling spectra, infor-
mation about spatial distribution of superconducting prop-
erties on submicron scale, and vortex imaging. Scanning
tunneling measurements of vortices can directly probe the
coherence length by measuring the vortex core size for typ-
ically prepared and N-doped samples. Furthermore, since
tunneling spectra also contain information about metallic
suboxide overlayers, fitting the observed spectra with a
proximity effect theory [44] gives insight into the change of
thickness of this layer and the contact resistance between
the superconductor and the metallic suboxide layer after
the N doping. These parameters can significantly affect
the microwave reduction of the surface resistance [44,45].
Although the Ar-ion sputtering is known to affect the oxide
layer and those findings cannot be directly related to the
rf performance of cavities, a better understanding of the
physics and the materials science that emerges from this
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study can indicate important mechanisms by which the
performance of Nb resonant cavities can be improved by
the materials treatments.

The paper is organized as follows. In Sec. I we describe
the experimental setup and procedures as well as typi-
cally prepared Nb and nitrogen-doped Nb samples that are
investigated. In Sec. III the results of XPS measurements
are presented. Section IV contains the results of tunneling
spectroscopy measurements. In Sec. V we present STM
imaging of vortices. In Sec. VI we discuss the totality of
our experimental data and their implications on the effects
of N doping on the electrodynamics of superconducting
Nb, with the conclusions summarized in Sec. VII.

II. EXPERIMENTAL DETAILS

The samples studied in this work [5(/) x 5(w) x
3(f) mm?] are cut out from typically prepared Nb and N-
doped superconducting rf cavities. The typically prepared
Nb samples are cut from a single-cell 1.3-GHz cavity,
labeled 42, made with ingot niobium from Companhia
Brasileira de Matalurgia e Mineracao (CBMM). The cav-
ity shape is that of the center cell of TESLA and XFEL
cavities [54]. The residual resistivity ratio (RRR) of the
niobium is around 260 and the cavity is processed through
standard buffered chemical polishing (BCP) to remove
approximately 24 um from the inner surface followed by
high-pressure rinsing prior to testing. At 2 K, the cavity
reached the quality factor, Qp, of around 6 x 10° at its
peak magnetic field, B, of 120 mT. The N-doped Nb sam-
ples are cut from a single-cell 1.3-GHz N-doped cavity,
with the same shape as 42, labeled TD4. The cavity is
fabricated from ingot niobium from Tokyo Denkai with
RRR of around 300 with a large grain size of few cm?.
Prior to N doping, the cavity has gone through standard
BCP and high-pressure rinsing with ultra-pure water. The
nitrogen-doping process for this cavity involved heat treat-
ment at 800 °C and exposure to nitrogen at a pressure of
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around 25 mTorr for 20 min. After the nitrogen is removed,
the cavity is heated again at 800 °C for 30 min. Finally,
approximately 10 um of the inner surface of the cavity is
removed by electropolishing. At 2 K, this cavity achieved
a quality factor of 4 x 10!° at its peak magnetic field of
88 mT. Figure 1(a) shows a plot of Qy(B,) for the BCP-
treated cavity 42 and N-doped cavity TD4 measured at 2
and 1.6 K. A thermometry system [55] allows measuring
the temperature of the cavities’ outer surface with increas-
ing rf field. Figures 1(b) and 1(c) show temperature maps
at the highest rf field in cavities 42 and TD4, respectively.
The location where “cold spot” samples are cut is shown
by a white rectangle in the maps.

All the samples are cut using a CNC milling machine
with no lubricant. During the cutting process, the steady
flow of compressed helium is applied at the drilling region
in order to prevent the sample from heating. The temper-
ature is monitored throughout the process to make sure it
did not raise above 32 °C. To verify this cutting process,
a TOF SIMS analysis is done on a 16 x 16 mm? niobium
sample, and the measurements are repeated near the same
location after cutting out an 8 x 8 cm? sample. The analy-
sis showed some increase in carbon concentration but did
not show any new impurities after cutting.

Only cold spots of both types of cavities are measured
in order to identify the main differences that improve
the performance of the N-doped Nb cavities. XPS mea-
surements are performed using a PHI Versaprobe 5000
XPS at the Drexel University Core Facilities. The x-ray
source used is AlKa (1486.6 eV, 200 W). The binding
energy is calibrated to the accidental carbon impurity C s,
C—C bond, at 284.6 eV. The depth profile is performed
using Ar-ion sputtering at 1 keV, 2-uA beam current, and
2 x 2 mm? beam size. The calibration performed on Nb
provided a sputtering rate of 1.1 nm/min. As explained in
detail in Sec. III, XPS measurements on native surfaces
allow us to get detailed information about the native oxide.
Using the depth-profile measurements we then compare

400 FIG. 1. (a) Qo vs B, curve for

BCP-treated (42) and N-doped
3002 Nb (TD4) cavities at 1.6 and 2.0
200 f K. (b),(c) Temperature maps at
100 9 1.6 K on 42 and TD4, respec-
. tively, at the highest 1f field. The x

axis is the azimuthal angle around
the cavity, and the thermometer
numbers indicate the longitudi-
nal positions with the thermome-
o) ter N.8 at the equator of the cav-
5 ity. The cold-spot samples cut out
<

200 300
Angle (degree)

from the locations labeled 4 are
measured with STM tips breaking
0 the oxide, B with XPS, and C with

200 300 STM after Ar-ion sputtering.
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the oxide-layer thickness of the typically prepared Nb
and N-doped Nb samples. Since Ar sputtering can cause
changes in the native oxide, the absolute values of its thick-
ness cannot be readily obtained, yet qualitative conclusions
about the effect of N doping can still be made.

Low-temperature STM and STS measurements are per-
formed at temperatures ranging from 1.0 to 1.7 K, using a
Unisoku ultrahigh vacuum STM system equipped with a
9-T superconducting magnet and with a base pressure of
4 x 10! Torr. Pt—Ir tips are used in all measurements.
Because the top layer of Nb is dominated by a thick layer of
Nb,Os insulating oxide, it is not possible to tunnel through
the native surface. In order to measure the tunneling spec-
tra of the underlying Nb, it is necessary either to break
the oxide with the STM tip or to remove the oxide layer
by Ar-ion sputtering. Each of these techniques has limita-
tions, but combining them as described below allows us
to probe superconducting properties affected by the com-
plex surface-oxide layer in the first few nanometers at the
surface of Nb and to trace the effect of N doping on the
density of states.

For the tunneling measurements performed on native Nb
surfaces the tip is used to break the oxide by pushing the
tip into the oxide layer until a high current is detected.
Typically, this current saturates the preamplifier. After this
operation is repeated several times the tip is retracted and
using the feedback loop a current of the order of 100 pA is
stabilized with a bias of 10 mV and tunneling spectra are
acquired. This is repeated at different locations on the sam-
ple’s surface at a typical distance of several microns away
from each other. Furthermore, several measurements are
performed on similar samples with different tips to obtain
more data statistics. This procedure allows us to get some
statistics of spectra but poor correlation between topogra-
phy and spectra, as the scanning capability of the STM
cannot be used at all. Our approach yields information
about the electronic structure of a native oxide that acts
as a tunnel barrier and proximity layer. When the STM
tip is crashing into the complex oxide surface, the tunnel
barrier is provided by the oxide itself. In this case tun-
neling to the bulk superconductor occurs through both a
nonuniform normal layer and the sides of the tip. Com-
plex contributions to the tunneling spectrum coming from
variable thicknesses of the normal layer and side tunnel-
ing from the tip are not well understood and have not yet
been taken into account by the existing theoretical models.
As discussed in detail in Secs. IV B and VI the limitation
of this technique lies in the low statistics and low amount
of data that can be adequately fitted and lack of spatial
information.

Cleaning the Nb surface with Ar-ion sputtering is done
in situ soon before transferring the sample to the STM
scanner. The sputtering is performed in a preparation
chamber attached to the STM with a base pressure of low
107" Torr. The Ar (purity: 99.999%) partial pressure of

10~ Torr with an energy E = 1 keV for 1 h are the con-
ditions used for all samples. Our estimated removal rate
is 0.27 nm/min. This guarantees removal of the known
insulating oxide layer from the Nb surface and yields a
metallic surface that can be studied by STM, using the
full capability of STM and allowing therefore a correla-
tion between topography and spectroscopy. Ar sputtering
is known to change the Nb native oxide, but it is not
expected to affect the bulk materials properties. Indeed,
our simulations of the Ar distribution in Nb using SRIM
software [56] have shown that typical penetration depths
for 1-KeV Ar ions are about 1-3 nm. Therefore, this
method allows us to access the bulk quasiparticle den-
sity of states in Nb through a thin layer of metallic oxide
and obtain more statistically meaningful data that can
be fitted by a proximity effect model, as described in
Sec. [V B.

Maps of tunneling spectra are acquired at different loca-
tions at a distance of approximately 500 um from each
other to probe regions far away and collect more statistics.
Typical maximum scan areas of the order of about 800 nm
x 800 nm allow mapping also inhomogeneities on submi-
cron length scales. Furthermore, when using this sample
preparation procedure in the presence of an applied mag-
netic field perpendicular to the sample surface, vortices
are imaged by acquiring conductance maps at the Fermi
energy. The conductance maps are acquired by scanning
the tip over the sample surface at an energy higher than
the superconducting gap (10 mV), acquiring the lock-in
signal at the Fermi energy at each location. Conductance
maps reveal therefore, vortices by tracking the differ-
ence of the electronic density of states inside and outside
the vortex cores. Topography is always acquired simul-
taneously to check the location where the spectroscopic
information is recorded. All differential conductance spec-
tra dI /dV are taken with the same tunneling parameters,
with the junction stabilized at V' = 10 mV, I = 60 pA, or
100 pA.

III. X-RAY PHOTOELECTRON SPECTROSCOPY

It is well known that niobium is very reactive to oxygen,
and the surface oxidation of niobium has been extensively
investigated. The initial stages of oxidation of niobium
have been characterized through many studies using XPS
[57-61], ultraviolet photoemission [62], Auger electron
spectroscopy [63,64], and high-resolution electron-energy-
loss spectroscopy [64]. It has been observed that NbO
and NbO, are initially formed on niobium as a protec-
tive layer, with Nb,Os being formed after further oxidation
[57-59,62,64]. Furthermore, Nb,Os is reduced to NbO,
and NbO by annealing in ultrahigh vacuum at elevated
temperatures above 600 K due to the dissolution of oxygen
into the bulk metal [59].
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FIG. 2. Nb 3d spectral line together with the deconvolution spectra for different oxidation states for native typically prepared Nb
(a) and N-doped Nb (b). (c) Table shows the spectra deconvolution fitting results for both native surfaces. The native surface of the
N-doped sample shows a significantly more oxidized state with a smaller contribution from the metallic NbO peak. The inset of (a)
shows a simplified depiction of the surface-oxide layers of the Nb surface. (d),(e) Color maps of the XPS depth profile obtained while
Ar-ion sputtering typically prepared and N-doped Nb surfaces, respectively. The depth profile shows that the N-doped sample retains
a higher oxidation state, Nb,Os in particular, as a function of depth. The map is in logarithmic scale to emphasize the retention of
higher oxides at the surface. (f) XPS spectra taken at 0, 30, 600, and 1200 s have been offset for clarity. The peaks of the Nb 3d5,, and
3ds,, are shown with vertical lines. Ar-ion sputtering is performed at normal incidence. The electron takeoff angle is 30°.

While it is known that the oxidation states of metals
determined by XPS can be in part changed by ion bom-
bardment [65], a qualitative comparison between typically
prepared Nb and N-doped Nb surfaces can still be made.
The Nb 3d core level of the native surface of the typically
prepared and N-doped samples can be found in Figs. 2(a)
and 2(b), respectively, together with the spectra deconvo-
lution. The Nb 3d peaks from Ref. [59] can be summarized
as follows: Nb° (Nb,Os) peaks are located at 210.0 and
207.3 eV, Nb*" (NbO,) peaks are located at 208.8 eV
and 206.0 eV, Nb*? (NbO) peaks are located at 206.8 and
204 eV and Nb° peaks are at 205.0 and 202.2 eV. The table
summarizing the results of the XPS spectra deconvolu-
tion is reported in Fig. 2(c). The surface of both natively
oxidized surfaces is dominated by Nb,Os, as expected. It
should be outlined that it is difficult to distinguish stoi-
chiometric Nb,Os from nonstoichiometric Nb,Os_, com-
pounds with XPS [66], since the predominant oxidation
state is +5 in all compounds. In general, numerous oxy-
gen vacancies exist in Nby,Os [43,57,67]. Therefore, the
large Nb,Os peaks suggest that a combination of Nb,Os,
nonstoichiometric and locally oxygen-deficient Nb,Os are
present in the samples. The comparison between the two
types of surfaces shows a clear difference in the NbO peak

for the two surfaces where the N-doped sample hardly
shows any contribution [Figs. 2(b) and 2(c)].

The XPS spectra obtained while sputtering the typically
prepared and N-doped Nb surfaces with 1 keV Ar ions
[Figs. 2(d)—2(f)] show that the sputtering process shifts
spectral weight from Nb,Os5 to lower Nb oxidation states.
Ar-ion sputtering of oxidized Nb is believed to both pref-
erentially remove oxygen from Nb,Os and diffuse oxygen
into bulk Nb [68], thickening the lower oxidation state
layers [presented schematically in the inset of Fig. 2(a)].
Despite this, notably the N-doped Nb surface, while show-
ing the same qualitative behavior as a conventionally
prepared Nb surface, appears different as the higher oxi-
dation state seems to be thicker compared to the typically
prepared Nb surfaces as shown in the depth profile in
Fig. 2(e) and the NbO peak is always lower than that of
typically prepared Nb. The same panel also shows that the
Nb peaks at 205.0 and 202.2 eV are deeper below the sur-
face compared to the typically prepared Nb surfaces. Even
though Ar sputtered surfaces might be partially modified
compared to the native surfaces these results unambigu-
ously show that for N-doped surfaces the higher oxidation
states layer of Nb is thicker and that the NbO layer is
thinner.
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IV. TUNNELING SPECTROSCOPY RESULTS

A schematic of our tunneling measurements is shown
in Fig. 3. The STM data are analyzed using the standard
expression for the tunneling current that flows between a
metallic tip and a sample [69]:

. 4e
T h
x |M(¢)|*de, (1)

1 / [f (6) — f (€ + eV INs(€)Nr(e + el)

where f (€) is the Fermi distribution function, Ng(e) and
Nr(e) are the density of states of the sample and tip,
respectively, V is the applied voltage between the tip and
the sample and M (¢) is the tunneling matrix element as a
function of the quasiparticle energy €. At low temperature
T <« A, Eq. (1) can be simplified if the applied voltage
is much lower than the tunneling energy barrier. If the
metallic tip [such as platinum iridium (Ptlr)] has a nearly
constant density of states in the energy region of interest,
€ ~ A at the Fermi surface, Nr(¢) in Eq. (1) can be taken
out of the integral. In this case the tunneling differential
conductance takes the form

ﬂo(_/“ f (e +eV)

2
7 < Ty Ms@M@Fde. @)

The density of states in a superconductor with an ideal
surface can be approximated by the widely used phe-
nomenological Dynes formula [69,70]

e+il
VEe+ir?— A2

Here N; is the DOS at the Fermi surface in the normal
state, and the parameter I' quantifies a finite quasiparti-
cle lifetime approximately i/ I resulting in the broadening

Ns(e) = NyRe

3)

(a) Feedback Loop (b) Feedback Loop

FIG. 3. Schematics of the tunneling measurements performed
on (a) native surfaces by crashing the tip into the surface, (b) on
Ar-ion sputtered metallic surfaces. The surfaces are metallic after
Ar-ion cleaning and this allows operation in the typical scan-
ning modality of the STM. The top image of the sketch is a real
representative STM topography image acquired on a Nb surface
after Ar-ion sputtering. The scan area is 156 x 156 nm? and the
scanning parameters are Iyt = 60 pA, Ve = 100 mV.

of the gap peaks in the DOS. Different mechanisms can
contribute to I" (see, e.g., Ref. [44]) but irrespective of
microscopic details, this broadening and the resulting sub-
gap quasiparticle states at |€| < A can produce a nonexpo-
nential temperature dependence of the surface resistance
Ry (T) at T <« T, and contribute to the residual resistance
[41,44,45]. Electron tunneling is a surface-sensitive tech-
nique, which directly probes the quasiparticle density of
states with high-spatial and high-energy resolution. This
makes it a very powerful instrument to investigate the
mechanisms that contribute most to the surface resistance
of SRF cavities.

A more realistic model that accounts for weakened
superconductivity or a thin normal layer at the supercon-
ductor surface was recently developed [44,45] based on the
Usadel equations [11] for a proximity-coupled dirty nor-
mal layer (V) on a surface of a bulk superconductor (\S).
In particular, this theory describes a thin metallic suboxide
layer at the Nb surface. The position-dependent quasipar-
ticle density of states Ny (e,x) across a thin normal layer
coupled to the bulk superconductor is determined by a
set of equations given in the Appendix. These equations
are used to fit our tunneling spectra acquired on Ar-ion
sputtered surfaces. The behavior of Ny (€, x) is mostly con-
trolled by two dimensionless parameters « and 8, which
quantify the effect of the N-layer thickness and the N—S
interface transparency, respectively:

dN, 4¢?
= —", B=—RpN,Ad. 4
=N PR @

Here d is the thickness of the N layer, & = (D,/2A)'/? is
the coherence length in the bulk superconductor, Dy is the
electron diffusivity, N; and N, are the DOS at the Fermi
surface in the normal state, the subscripts » and s corre-
sponds to the parameters of the N layer and the S substrate,
respectively, and Rp is a contact resistance of the N-S
interface.

A. Native Nb surfaces

Tunneling measurements are performed on the Nb sur-
faces to get an insight into the native oxide layers of both
typically prepared and N-doped Nb. The oxide layers are
too thick [see Fig. 2(b)] to allow direct tunneling into
the Nb. Therefore, the STM tip is used to locally break
the oxide and by using the feedback loop the tip is then
retracted until a stable junction is obtained. Several such
junctions are investigated at different locations separated
by several microns. At each location 2050 spectra are
acquired and averaged to improve the signal-to-noise ratio.

To analyze the tunneling spectra we first use Eq. (3)
of the Dynes model to get a qualitative understanding of
the gap distribution as well as the typical values of the
DOS broadening parameter I". In Figs. 4(a) and 4(b) typ-
ical tunneling spectra recorded on typically prepared Nb

044044-6



ELECTRON TUNNELING AND X-RAY PHOTOELECTRON...

PHYS. REV. APPLIED 13, 044044 (2020)

(a) (b)
2 3
ad
S5 1515
4=l St o
S It
I I
£0.5 £0.5
=) ) =} 3 £
~ LN Z 4 -
-4 =2 0 2 4 -4 =2 0 2 -+
(c) \%4 I(ITI\/) (d) l \'4 (m'V) ‘
0 Nb = Nb =
203 N-doped Nb == 204 N-doped Nb == |
2 F
802 8
o 202 1
0.1 [-» l|
O 0 L i 1 1
0.5 1 1.5 0 0.5 1 1.5
A (meV) I'/A
FIG. 4. (a),(b) Typical tunneling spectrum (dots) and BCS-

Dynes fit (red line) acquired on Nb and N-doped Nb, respec-
tively, at 7= 1.5 K. The fitting parameters in (a) are A =
1.60 meV and I' = 0.08 meV. The fitting parameters in (b) are
A =139 meV and I' = 0.01 meV. (c),(d) Histogram compari-
son of BCS-Dynes fitting parameters A and I'/A, respectively.
All parameters are extracted by fitting the model described in the
text to the tunneling conductance. Spectra have been acquired
several um away from each other. For all spectra the tunnel junc-
tion is stabilized at Iy = 100 pA and Ve = 10 mV, conductance
spectra are acquired with Vi, = 200 uV and f = 373.1 Hz.

and N-doped Nb are presented together with the fits to Eq.
(3) and the resulting fitting parameters. The so-obtained
gap values and the ratio I'/ A are summarized in Figs. 4(c)
and 4(d). The distribution of the A values indicate that
the average value of A is higher for typically prepared
Nb but also that there is a larger distribution of A and a
higher value of I'/ A, indicating stronger inhomogeneities
of superconducting properties in the typically prepared
Nb surface layers. The background of the tunneling spec-
tra at higher energy (eV/ > A) exhibits a more parabolic
behavior in spectra acquired on typically prepared Nb. A
parabolic background is usually related to lower average
work function between tip and sample as already reported
in other tunneling experiments [53,71]. This difference
between the two surfaces appears to be significant and it
provides further evidence that the surface is more oxidized
in the case of N-doped Nb, consistent with the data gath-
ered from XPS. This is also in agreement with the earlier
results of Ref. [53]. We note that only about 50% of the
tunneling spectra acquired on typically prepared Nb sur-
faces and 70% of the N-doped Nb tunneling spectra could
be properly fitted. Those spectra that could not be prop-
erly fitted include gapless spectra obtained more frequently
on typically prepared Nb surfaces while about 10% of

the spectra for both surfaces present subgap quasiparticle
states or zero conductance peaks.

B. Scanning tunneling spectroscopy

Ar-ion sputter cleaning of the surface is used to remove
the insulating Nb,Os layer in situ. As mentioned above, Ar
sputtering may modify the oxide layer by thickening the
metallic suboxide layer. Therefore, the surface layer after
Ar sputtering may not be fully representative of the native
surface of the cavities. Yet, since the penetration depth
of Ar ions at 1 keV is only a few nm [56], this method
does not affect the bulk properties and allows us to access
directly the DOS of the underlying bulk superconductor
that significantly contributes to the cavity rf performance.
Moreover, this technique allows us to separate the effect
of N doping on the bulk from that of the oxide layer.
Such a surface-cleaning procedure yields metallic surfaces
where the full potential of scanning capability of STM
and STS can be used and a correlation between topogra-
phy and spectroscopy be investigated. Calibration of the
removal rate is obtained using atomic force microscopy.
The removed thickness is estimated to be about 15 nm.
A schematic of how the measurements are performed is
shown in Fig. 3(b). The sample studied consists of the bulk
superconducting and a metallic overlayer. The top image
of the schematics is a typical STM topography acquired on
an Ar-ion sputtered Nb sample. The roughness of the sur-
face is due in part to the sputtering process and it is of the
order of several nm over a scan area of 800 x 800 nm?.
Tunneling conductance spectra are acquired on the sam-
ple surface with a spacing of 32.6 nm in 390 x 390 nm?
or 780 x 780 nm? scan areas. Several spectroscopy grids
are acquired on scan areas separated by a typical distance
of 500 um. The spectra are fit using the proximity model
[44] with the equations presented in the Appendix. The
results of the fitting are summarized in Fig. 5. Figures 5(a)
and 5(b) show typical tunneling spectra acquired on typi-
cally prepared Nb and N-doped Nb together with the fitting
curve and the fitting parameters. The histograms of the gap
values and the broadening parameter I'/ A are reported in
Figs. 5(c) and 5(d). The average value of A is reduced in
the N-doped Nb samples, but its distribution is narrower
than that obtained for the typically prepared Nb surfaces.
The values of the Dynes broadening parameter I" are larger
for the typically prepared Nb surfaces. The broadening of
the gap peaks in the quasiparticle density of states N (€)
in the bulk gives rise to a weakly temperature-dependent
residual surface resistance [44].

The fits show that the parameter o [Fig. 5(e)], propor-
tional to the thickness of the normal suboxide layer, is in
average larger for the typically prepared Nb. The param-
eter B [Fig. 5(f)], proportional to the contact resistance
between the superconductor and the normal layer, is more
distributed for the typically prepared Nb. Interestingly, the
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(a),(b) Typical tunneling spectra (dots) acquired on typically prepared Nb and N-doped Nb surfaces. The red lines are the fit

obtained using the model of Ref. [44] described in the text and equations presented in the Appendix. (¢),(d) Histogram comparison of
the fit parameters A and I'/ Ay, respectively. (e),(f) Histogram comparison of the fit parameters o and S, respectively. For typically

prepared samples the number of spectra analyzed is N =

1440 (red) and for N-doped samples N = 576 (blue). Spectra are taken

32.6 nm away from each other, at 7 = 1.5 K with Iy = 60 pA, Vs = 10 mV with a lock-in modulation Vy,oq = 200 #V and f =

373.1 Hz.

fit values of 8 cluster around 8 ~ 0.3—0.4 for the N-doped
samples. As follows from the calculations of Ref. [44],
low values of I" together with 8 ranging between 0.3 and
0.4, can significantly reduce the surface resistance. This is
due to the long-range disturbance in the density of states
produced by the N layer into the superconductor, which
outweighs the contribution of the subgap states in the prox-
imity coupled normal layer. Finally, in the case of sputtered
surfaces we find that the tunneling spectra of typically pre-
pared Nb present a nonlinear background that indicates a
lower tunnel barrier than for N-doped Nb, in agreement
with the results previously observed in Ref. [53].

Figure 6 shows the spatial variation of some of the fitting
parameters on a typical scan area of 780 x 780 nm?. The
comparison between the typically prepared Nb and the N-
doped Nb in Figs. 6(a) and 6(b) shows that for typically
prepared Nb there are variation of A and 8 on a submicron
scale. More uniform values for the N-doped Nb are instead
obtained.

V. VORTICES

If a magnetic field is applied, Abrikosov vortices can
penetrate into the sample and modify the local density of
states. Hot spots resulting from vortex bundles trapped dur-
ing the cavity cooldown through 7, can not only limit the
performance of SRF cavities [13—20] but also contribute
to the field-induced decrease of R, (Hp) [52]. Imaging of

vortices can give valuable information about the electronic
structure of the vortex core in the first few nm at the sur-
face, which plays the key role in rf dissipation. Vortices can

0= . 1.4
0 200 400 600  Ag
X (nm)

' N-doped
[ Nb -

X (nm)

- ®

0
0 200 400 600
X (nm)

0
0 200 400 600
X (nm)

FIG. 6. Local maps of Ay (a) and S (b) over 24 x 24 pix-
els. The parameters are extracted by fitting the tunneling spec-
tra acquired at each location with the proximity model [44]
described in the text. Spectra are taken 32.6 nm away from each
other at the tunneling parameters of Iy = 60 pA, Vier = 10 mV,
Viod = 200 uV, f =373.1Hz,and T = 1.0-1.7 K.
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Tunneling conductance-map images acquired at the Fermi level Ex showing the vortex lattice at 7 = 1.5 K on a typically

prepared Nb surface (a) and on a N-doped Nb surface (b). The images are acquired in magnetic fields of 100 mT (a) and 150 mT
(b) applied perpendicular to the surface. The scan area is 745 x 745 nm? for both images. (c),(d) High-resolution single-vortex image
at the same temperature and same field for Nb (c) and N-doped Nb (d). The scan area is 134 x 134 nm?. (e),(f) A series of 100
tunneling spectra (dI /dV) acquired along the red dashed lines shown in (¢) and (d). In all images and line spectra the tip is stabilized at
V'=10mV and I = 60 pA and a lock-in bias modulation amplitude V,0¢ = 0.2 mV is used. (g),(h) Evolution of normalized zero bias
conductance (ZBC) as a function of position from the vortex core. The ZBC is extracted for each vortex in images (a) and (b) except
those close to the edges, the average is then normalized by the ZBC value at the vortex core.

be imaged by STM by mapping the local conductance at an
energy where a vortex alters the density of states. There-
fore, STM is a direct experimental technique to visualize
vortices in superconductors with a subnanometer spatial
resolution.

Figures 7(a) and 7(b) show the vortex lattice imaged on
typically prepared Nb and N-doped Nb. A triangular vor-
tex lattice has been observed for both types of samples with
their intervortex spacing in agreement with the theoret-
ical predictions [48,72,73]. High-resolution single-vortex
images are shown in Figs. 7(c) and 7(d). A series of 100
tunneling spectra is acquired across the vortex core for the
two samples [Figs. 7(e) and 7(f)]. The line spectra show the
spatial evolution of the tunneling spectra with the coher-
ence peak vanishing at the vortex core on a length scale
given by the coherence length. In the clean limit, in con-
ventional BCS-like superconductors the tunneling spectra
at the vortex center reveal the presence of a peak at zero
energy (Fermi level), which is a signature of low-lying
Caroli-de Gennes-Matricon bound states [74] localized in
the vortex core [75]. These states are similar to ballis-
tic Andreev trajectories in short superconductor—normal-
superconductor junctions. However, in dirty superconduc-
tors, where the superconducting coherence length & ~
(I£y)!/? is larger than the mean free path / the core lev-
els are broadened by impurity scattering, resulting in a flat
DOS in the vortex core [76]. The absence of discrete vortex
core levels suggests that both samples are in a moderately
dirty limit. The vortex shape seems to be dependent on the

surface roughness, which is about several nm over the lat-
eral scale of ~800 nm. The coherence length is estimated
using several methods, which yield similar results.

In Figs. 7(g) and 7(h) the coherence length & is evaluated
by azimuthally averaging the zero bias conductance around
vortex centers on the conductance maps. The azimuthally
averaged tunneling conductance, for all the vortices in the
maps neglecting the ones on edges, is then fitted to an
exponential function of the form g = gy + F exp(—r/£),
where g is the conductance far from the vortex core, F
is a scaling factor, and r is the distance from the vortex
core. For the typically prepared Nb we obtain a coherence
length of £ ~ 26.9 &+ 1.8 nm smaller than & ~ 38 nm for
a clean Nb. This suggests that the surface of the untreated
Nb sample is in a moderately dirty limit. For the N-doped
Nb, we obtain a yet shorter coherence length £ ~ 20.4 +
1.9 nm. This result clearly shows that the nitrogen dop-
ing results in additional impurity scattering, which reduced
the mean free path and the coherence length at the surface.
Using these values of £ in the Ginzburg-Landau expres-
sion [72,73] for the upper critical field B, = /272, we
find B, = 460 mT for typically prepared Nb and B, =
790 mT for N-doped Nb. These numbers are consistent
with the values of the upper critical field measured from the
tunneling spectra acquired in applied magnetic field. The
tunneling spectra acquired as a function of applied mag-
netic field, away from vortices, on the typically prepared
Nb sample are presented in the inset of Fig. 8. The zero bias
conductance (i.e., the density of states at the Fermi energy),
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FIG. 8. Normalized zero bias conductance as a function of the

applied magnetic field at 7 = 1.5 K for typically prepared Nb.
The estimated upper critical field is approximately 450—500 mT.
The inset shows tunneling spectra dI /dV acquired at 1.5 K at
different magnetic fields (from 0 to 0.7 T) applied perpendicular
to the sample’s surface. Tunneling conditions are V' =10 mV,
I = 60 pA, lock-in modulation Vg = 0.2 mV and frequency
f = 373.1 Hz for all spectra.

acquired at the midpoint between vortices, is shown as a
function of field in the main panel of Fig. 8. Here B,; is
estimated as the intersection of the high field slope and the
normalized zero-bias-conductance value at H > H,,.

VI. DISCUSSION

The top surface of Nb has a complex oxide structure
revealed by XPS measurements. Tunneling measurements
performed on native surfaces probe mostly the very top
layer through a tunnel barrier produced by the native sur-
face oxide. However, Ar sputtering removes the dielectric
oxide so the top surface layer becomes metallic and tun-
neling probes the electronic state of the Nb underneath the
suboxide layer through a vacuum barrier.

The tunneling spectra shown in Fig. 4 reveal a large
spread of gap values down to very small A on both typ-
ically prepared Nb and N-doped native surfaces. These
very low values of A are indicative of strong spatial inho-
mogeneities of superconducting properties that may result
from thick metallic suboxide islands. Our results show that
nitrogen doping reduces the spread of A making proper-
ties more uniform. This conclusion is consistent with the
more uniform distribution of A observed by first tunneling
measurements on titanium-doped Nb cavities exhibiting
the extended Q(H) rise [26].

It should be noted that about 50% of the data obtained
on native typically prepared Nb surfaces and 30% of the
data obtained on N-doped Nb surfaces cannot be properly

fitted by either the Dynes model or the proximity model
[44]. This is hardly surprising given the complexity of the
electronic structure of the oxidized surface and its manifes-
tations in superconducting properties. Moreover, the inter-
pretation of experimental data for the STM tip crashing
into the complex oxide surface requires proper theoretical
analysis of tunneling through the complex oxide of vari-
able thickness and the side tunneling from the tip, which
has not been done yet. Nevertheless, our tunneling data
and their analysis based on simple models may capture the
essential effects of N doping on the thickness of the normal
suboxide layer and the resistive barrier between this layer
and the bulk Nb. The fact that some spectra cannot be prop-
erly fitted with the existing theoretical models reinforces
the need for a better understanding of the rich physics and
materials science of the Nb surface. For instance, many
spectra appear gapless, possibly indicating the presence of
a thick metallic oxide with very small minigap energies
of quasiparticles [44]. Some spectra have zero bias peak
or deep subgap states, which could indicate the presence
of magnetic impurities [43] or perhaps two-level states at
the surface [51]. Some spectra exhibit higher energy fea-
tures characteristic of inelastic tunneling. Some of these
features may result from the fact that extracting reliable
quantitative information from tunneling spectra obtained
on native Nb surfaces by crashing the tunneling tip through
the oxide structure is not a very controlled and consistent
procedure. Yet, the typically prepared Nb surfaces gener-
ally have a parabolic background typical of a lower work
function compared to N-doped surfaces. This indicates that
the surface of N-doped samples are more oxidized, con-
sistent with XPS measurements and earlier point-contact
measurements [53].

Our tunneling measurements on Ar-ion sputtered typi-
cally prepared Nb and N-doped Nb cannot give informa-
tion about the native Nb oxide but allow us to get important
information about the bulk superconducting properties and
their lateral inhomogeneities underneath the oxide layer.
These results can give insights into new ways of boosting
the performance of SRF cavities by materials treatments
and surface nanostructuring [44,45], even though the infor-
mation about the oxide layer obtained after ion sputtering
cannot be related directly to SRF cavities since the native
oxide layer changes upon Ar sputtering.

These measurements reveal clear differences of the Nb
underneath the oxide layer for typically prepared and N-
doped Nb, as shown in Fig. 5. Generally, the typically
prepared Nb has higher gap and the Dynes broadening
parameter I' as compared to the N-doped Nb, but also a
significantly larger spread of local A and I" values. This
means that typically prepared Nb has stronger spatial inho-
mogeneities of superconducting properties, consistent with
the above results for native surfaces. Moreover, the fits of
the tunneling spectra to the N-S proximity-coupled model
[44] have shown that the nitrogen doping reduces both the
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parameter o, proportional to the thickness of the metallic
suboxide layer, and the lateral spread of the local « val-
ues. As follows from Fig. 5(e), the nitrogen doping reduces
the peak values of o ~ d/&; from ~ 0.1 down to approx-
imately equal to 0.06. Therefore, tunneling measurements
suggest that the metal suboxide layer gets thinner after N
doping, in agreement with XPS data. Since Ar sputtering
is expected to thicken the metallic suboxide layer, our tun-
neling data can only be understood if the metallic suboxide
layer is thinner in the N-doped samples of the native sur-
face. While the surface of Ar sputtered samples may not
be fully representative of the inner surface of Nb cavities,
the Ar sputtering technique can nevertheless give impor-
tant insights into the effect of N doping on the nanoscale
oxide layer.

The effect of the nitrogen doping on the parameter
proportional to the N-S contact resistance Rp is also quite
striking. As follows from Fig. 5(f), the nitrogen doping
significantly shrinks the wide spread of B and eliminates
most of the low-8 and high-8 values observed on the typ-
ically prepared Nb. Moreover, the nitrogen doping results
in a much narrower distribution of local 8 values clustered
at around B8 = 0.3—0.4, where the N-S proximity model
[44] predicts a minimum in R, which can become smaller
than R, for an ideal surface. This optimal surface resis-
tance results from a long-range disturbance of the local
DOS into the superconductor, which reduces R, and out-
weighs an increase of R, due to minigap states in the
proximity-coupled normal layer. The elimination of low-8
values likely comes from the increase in the contact resis-
tance, Rp, due to the increase in oxidation of the surface
corroborated by XPS. Materials mechanisms by which
high-temperature treatment during the nitrogen doping
affects the contact resistance Rp are not well understood,
but their effect on Rp can be quite significant. For exam-
ple, an optimal heat treatment can reduce Rz between Ag
and YBa,Cu;07 by several orders of magnitude [77,78].
In any case, changing the parameter 8 towards its optimum
value revealed by the results shown in Fig. 5(f) would help
push the quality factor towards or beyond its theoretical
maximum for a perfect surface. The effect of N doping
on the metallic suboxide layer inferred from the tunnel-
ing data of this work can help optimize both the low-field
and high-field surface resistance by tuning the DOS by sur-
face nanostructuring, as predicted by recent calculations
[44,45].

The values of « and B cannot be directly related to the
native surface of the Nb cavities, as these values have been
obtained after Ar sputtering. Yet because both the typically
prepared Nb and N-doped Nb samples are subject to the
same Ar sputtering process, which however produce dif-
ferent values for o and g, it is reasonable to suggest that
these differences do result from the N doping. Thus, our
integrated approach that combines such complementary
techniques as XPS, and STM and STS coupled to theory

allows us to separate the effect of N doping in the oxide
layer from that in the bulk. This, in turn, can give insights
into a rather complex interplay of the materials science and
superconductivity at the Nb surface, suggesting new ways
of further reducing rf losses of already extremely high-QO
niobium resonators.

VII. CONCLUSIONS

We perform XPS and tunneling measurements on native
surfaces and Ar sputtered surfaces of typically prepared
and N-doped Nb cutouts from SRF cavities. The results
presented above suggest that the nitrogen doping gives
rise to the following effects: (1) slightly reduces the aver-
age superconducting gap A while significantly reducing
spatial inhomogeneities of A and the DOS broadening
parameter I in the bulk, as shown by STM of the Ar-ion
sputtered surfaces. (2) Reduces the thickness of the metal-
lic suboxide layer because of its partial conversion into
semiconducting or dielectric oxides NbO, and Nb,Os as
clearly shown by the XPS results and supported by tunnel-
ing data on Ar sputtered surfaces. (3) Significantly reduces
spatial inhomogeneities of the Nb suboxide thickness and
the interface contact resistance parameter 8 on the Ar sput-
tered surfaces. Interestingly, the 8 values for the N-doped
samples become clustered at 0.3—0.4 close to an optimum
B that would yield a minimum theoretical low-field surface
resistance in the dirty limit [44]. All in all, these effects of
the nitrogen doping drastically reduce the material’s broad-
ening of the quasiparticle density of states and bring it
toward an optimal DOS, which can theoretically minimize
R,. These experimental results give insight into some pos-
sible scenarios by which the nitrogen doping causes the
decrease of the surface resistance with the rf field.

The decreases of Ry(Hp) with the rf field can possi-
bly result from the current-induced broadening of DOS at
I' « T and w <« T, as shown by calculations of R,(Hy)
from the time-dependent Usadel equations in the dirty limit
[35,41,45]. The reduction of R (Hjy) due to this mech-
anism becomes more pronounced at higher frequencies
as the effect of the current-induced broadening of DOS
on R,(Hp) gets amplified by nonequilibrium effects [41].
However, if the native materials broadening of the DOS
peaks due to thick suboxide metallic layer and large I"
is strong enough, the current-induced broadening of DOS
at high rf fields is not sufficient to turn the conventional
decrease of R (Hp) with Hy into the descending R(Hp).
But if the materials broadening of DOS is ameliorated
by the nitrogen doping, as we observe in this work, the
current-induced broadening of DOS can take over and
Ry (H)) starts decreasing with Hy. In this scenario R,(Hy)
can be reduced by engineering an optimum DOS at the
surface using pairbreaking mechanisms, such as magnetic
impurities or surface nanostructuring [44]. Detailed calcu-
lations of the interplay of the effects of proximity-coupled
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N layer, Dynes parameter, and current-induced broadening
of DOS on the field dependence of the nonlinear sur-
face resistance R;(H)) are performed recently in Ref. [45].
Using the theory of Refs. [35,41,44,45], we can infer that
the STM results of this work indicate that the decrease of
Ry (Hy) with Hy caused by the nitrogen doping primarily
results from the shrinkage of the metallic suboxide layer
rather than the decrease of the parameter I in the bulk.

STM imaging of vortices has clearly shown that the
nitrogen doping decreases the mean free path / and the
coherence length down to & ~ 20 nm, nearly half of
&y ~ 38 nm in the clean limit. This suggests that the N-
doped surface is in a moderately dirty limit with the mean
free path [ ~ &2 /&y ~ 10 nm. It should be noted that the
presence of a proximity-coupled N layer at the surface
increases the diameter of the vortex core at the surface,
as shown by recent calculations of N-S bilayers [79,80].
Yet these calculations show that for a thin N layer with
d < & characteristic of our Nb surfaces, the effect of the
metallic suboxide on the vortex core diameter observed
by STM is rather weak so the actual & underneath the
metallic suboxide is only a bit shorter than the estimates
given above. Therefore, tunneling spectroscopy coupled to
other surface analysis techniques such as XPS are effective
methods to reveal the evolution of the surface DOS due to
the materials treatments. This, in turn, can help engineer an
optimum DOS by impurity management and surface-oxide
nanostructuring to boost the performance of SRF resonant
cavities.
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APPENDIX: LOCAL DOS IN A PROXIMITY
COUPLED N LAYER ON THE S SUBSTRATE

Here we present the formulas obtained in Ref. [44] for
the local DOS in a thin N layer coupled with a bulk
superconductor (S) by the proximity effect. We use these
formulas to fit the STM spectra measured on the typically
prepared Nb and nitrogen-doped Nb samples. The local

DOS is given by

cosh 6y — ife
V1 — B2&2 —2iBé cosh b

Ny(e,x) = N,Re |:

i€x(x 4 2d) sinh?® 6, (AD)
262(1 — B2e2 — 2iBé cosh6y) |’

(1462 + %) + 41(1 + )
(1 —7£)2/e2 -1
where € = € 4+ il", &y = (AD,/2A)'/?, the parameters o

and B are defined by Eq. (4), and x is the coordinate across
the NV layer located at —d < x < 0. Furthermore,

6y — O
Hx) = (tanh 0 2 )ekfx.

Ns(e,x) = NyRe [ } . (A2)

(A3)

Here k. = [A2 — &2]4Q2/hDy)"?,  sinhfx = A/
/& — A2, and 0, satisfiers the following self-consistency
equation:

0o — 6
2k, sinh 5 X — jedsinh 6y + iV coshby, (Ad)

which takes into account the proximity effect in the NV layer
and a local reduction of A(x) in the S region at the N-S
interface. The parameters @ and W are given by

o
/1 - p2&2 —2ipé coshy

® (AS)

po2f-D
1+ p2
a o AHBNE+VI+EY

Y N e T iy
(A6)

where A = h2/A, and Q is the Debye frequency. For Nb
with A >~ 17.5K and hQ2/kp ~ 275K, we have A ~ 15.7.
Since the STM spectra are taken at low temperatures 7'~
1-1.5 K well below T, = 9.2 K, we use the bulk pair poten-
tial A in the S region at 7' = 0. In the case of weak DOS
broadening (I' «< A), A simplifies to [44]

A=Ag—T, Ay=1.84kgT.. (A7)
We calculate the local DOS by solving Egs. (A1)~+(A7)
numerically using a MATLAB code for different values of
the fit parameters « and S, assuming that Ny = N, and
I'y =T, =T. In the relevant case of d < &y, the local
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DOS probed by STM is nearly constant across the thin N
layer, so we calculate Ny from Eq. (A1) atx = 0.
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