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Abstract: Quality control studies have dealt with symmetrical data having the same shape with
respect to left and right. In this research, we propose the residual (r) control chart for binary
asymmetrical (non-symmetric) data with multicollinearity between input variables via combining
principal component analysis (PCA), functional PCA (FPCA) and the generalized linear model with
probit and logit link functions, and neural network regression model. The motivation in this research
is that the proposed control chart method can deal with both high-dimensional correlated multivariate
data and high frequency functional multivariate data by neural network model and FPCA. We show
that the neural network r control chart is relatively efficient to monitor the simulated and real binary
response data with the narrow length of control limits.

Keywords: Residual Control Chart; binary data; PCA; FPCA; multicollinearity

1. Introduction

The current available quality control research has focused on symmetrical data having the same
shape with respect to left and right. Data are getting bigger and highly correlated with each other
and have asymmetric (non-symmetric) distributions. Therefore, the quality control is facing difficulty
to handle highly correlated data so that we have a hard time to get accurate information from the
current available control charts. In order to monitor a process mean vector, there have been a number
of multivariate control charts including Hotelling T2 distribution [1], mulvariate CUSUM [2] and
multivariate EWMA [3]. These current available multivariate control charts have limitations to handle
high-dimensional data because of the complexity of the covariance structure. Neural network based
methods have been applied to quality control research areas, but there is no research available for
residual (r) control charts for binary asymmetrical data with highly correlated multivariate covariates
by using neural network regression model. Hence, this is a motivation to propose the r control chart
for binary asymmetrical data with multicollinearity between input variables via principal component
analysis (PCA), functional PCA (FPCA), and neural network model. To deal with high correlations
among independent variables, [4] proposed Poisson, negative binomial, COM-Poisson-based principal
component regression-based r-control charts for monitoring dispersed count data. More detailed
information for diverse control charts can be found in [5,6]. The novelties with respect to existing
strategies in this research have two things. The first one is that the proposed control chart method can
deal with high-dimensional correlated multivariate data by neural network model and the second one
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is that the proposed control chart method can deal high frequency functional multivariate data by FPCA.
One of the applications by the proposed statistical process control is monitoring clinical performance
which measures binary asymmetrical data such as mortality with patient medical information.

2. Statistical Methods

In this research, we present regression-based r-control charts combining principal component
analysis methods (PCA and FPCA) and binary response regression models (generalized linear model
and neural network regression model) for binary asymmetrical data with multicollinearity among
independent variables.

2.1. Generalized Linear Model and Neural Network Model for Binary Response Data

To introduce the binary response regression models, the generalized linear model (GLM) should
be considered first because GLM is both a generalized and flexible model which can consider binary
asymmetrical data. The GLM has the following probability density distribution which comes from the
exponential family:

g(y|λ, δ) = exp
[

y(λ)− a2(λ)

a1(δ)
+ a3(y, δ)

]
(1)

where we denote the response variable to be y, the location parameter to be λ, the dispersion parameter
to be δ, and arbitrary functions to be a1(·), a2(·), and a3(·). We denote ζ to be the linear predictor for the
response, y so that ζ is a linear combination of unknown parameters b = (b0, b1, · · · , bp)′ and input
variables x = (1, x1, · · · , xp)′. A link function f such that E(y) = f−1(ı) provides the relationship
between the linear predictor and the mean of the distribution function. The link function f (·) specified
how to convert the expected value µ = E(y) to the linear predictor ζ: i.e.,

ζ = f (µ) = x′b. (2)

Using a logit model as an example, we have

Logit[P(y = 1|x)] = x′b, (3)

where b is the column vector of the fixed-effects regression coefficients. For the (3), it can be written as

P(y = 1|x) = 1
1 + e−x′b = m(x) (4)

With the (4), we can derive the likelihood function for GLMs as follows:

L(b) =
n

∏
i=1

m(xi)
yi{1−m(xi)}1−yi . (5)

and so the log-likelihood function is given by

l(b) = log L(b) =
n

∑
1=1

[yi log m(xi) + (1− yi) log{1−m(xi)}]. (6)

Then the maximum-likelihood estimating equation for b is easily solved via standard softwares
(e.g., SAS or R) using the Fisher scoring or Newton-Raphson method.

The GLM with probit link function requires the assumptions that the response is binary and that
an underlying latent variable governing the binary process follows a normal distribution. In some cases
the GLMs with probit link function can probably gives best goodness-of-fit of the test where response
variables are assumed to have normal distributions [7] because the response probability distribution
of the GLMs belongs to an exponential family of distributions which employ the methods analogous
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to the normal linear methods for the normal data [8,9]. Therefore, for asymmetrical (non-normal)
distributed data, the GLM with probit link function may not be the best model. Hence, this is another
motivation to propose a neural network model based on r control chart for the better predictive
accuracy with the non-normal data.

An artificial neural network (ANN) is originally inspired from human brain and ANN resembles
biological neural networks which imitate human brain activity through a computer simulations [10–12].
Physically, an ANN contains neurons connected by synapses that connected them. The ANN learning
process heavily relies on both weights of the connections between the neurons specifying which
variables involved in the network and activities of the neurons. The weights are computed by
optimizing a learning algorithm. The ANN uses the concept of competition to select the highest
probability of inhibiting all neurons [10–12]. Specifically, the most basic form of an ANN is a single
layer feedforward type of connection among neurons. ANNs have input layers and multiple hidden
layers. Lastly, the hidden layers are connected to the output layer, which produces the outputs.
In the last decade, the ANN-based statistical process control research has been actively studied.
Research papers such as [13] proposed the pattern recognition for bivariate process mean shifts using
feature-based ANN and [14] proposed control chart pattern recognition using Radial Basis Function
(RBF) neural networks. Recently, [15] proposed statistical process control with Intelligence Based on
the Deep Learning Model and reviewed the neural network-based statistical process control. In this
paper, we used ’nnet’ R packge [16] for feed-forward neural networks with a single hidden layer, and
for multinomial log-linear models. With repeated simulated data (each sample size 1,000 and 10,000
different replications for the case of PCA and each sample size 1000 and 30 different replications for
the case of FPCA) and real data, we employed single layer and 30 neurons for the simulation study
and real data analysis.

The r-control charts for binary response data uses the GLM models with logit and probit
link functions and neural network models employ deviance residuals being independent and
asymptotically normally distributed with zero mean and unit variance, i.e., ri∼N(0, 1) for i = 1, . . . , n.
In this research, we chose a deviance residual for the GLM models with logit and probit link functions
and a neural network model because the R packages for the GLM models with logit and probit link
functions and neural network model have a command for producing the deviance residual. It is easy to
compare the residuals from both models which are the GLM-based model and neural network model.
Ref. [17] proposed Shewhart control limits for the deviance residuals are

E(ri)± k
√

Var(ri) ≈ ± k (7)

where k is defined by the false alarm probability, α = 1/ARL0, and ARL0 is the average run length
(ARL) under the process in-control. The ARL is a measure of the performance of control charts for
monitoring a process.

2.2. Dimension Reduction by Principal Component Analysis

The principal component analysis (PCA) is a statistical orthogonal transformation method
converting multivariate data set of correlated variables into a set of values of linearly uncorrelated
variables called principal components. Hence, the PCA is the most common dimension reduction
statistical method which can reduce the dimensionality of multivariate data to the smaller uncorrelated
principal components which account for the variation of the original data. The r control chart for
binary response regression model with primary principal components by the PCA is a new statistical
process control which monitors the binary response variable as a function of uncorrelated PCs. In this
paper, we propose a binary response regression model-based r control charts for binary response data
overcoming a multicollinearity issue among independent variables.

To verify our proposed method in terms of the model flexibility and performance, we have
run simulations for various circumstances: in-control, one inflated, or zero inflated binary data.
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Through both simulation study and a real data example, we illustrated the good performance of our
proposed method.

Ref. [4] denotes X to be an n× q matrix of independent variables and W be the standardized matrix
of X so that each column has mean 0 and standard deviance 1. Let Q be the matrix of eigenvectors
of W′W and D be the diagonal matrix with eigenvalues of W′W on the diagonal and values of zero
everywhere else. Hence, we sort the eigenvalues from largest to smallest such as λ1 > λ2 > · · · > λq

and sort the eigenvectors in Q accordingly, and let Q∗ be this sorted matrix of eigenvectors. Then, the
principal components, W∗, are given by

W∗ = WQ∗. (8)

We can perform a dimensional reduction to the uncorrelated variables W∗ from the original
multivariate high correlated data. Our proposed procedure uses these uncorrelated variables W∗ to
perform GLM with probit, GLM with logit, and neural network regression models.

2.3. Dimension Reduction by Functional Principal Component Analysis

Ref. [18] proposed a functional PCA (FPCA) for functional data, which is another dimensional
reduction statistical method for explaining the variance of components by using non-liner
eigenfunctions and for the multivariate highly correlated data, because FPCA overcomes the
high-dimensionality difficulty and efficiently examines the sample covariance structure.

The functional form of yi(t) is given by the sum of the weighted basis functions, φp(t), across the
set of times T.

yi(t) =
P

∑
k=1

cipφp(t), (9)

where P is a number of basis functions. In this study, a Fourier basis is used to represent smooth
functions as a basis function due to its flexibility and computational advantages. Here, our goal is to
obtain a smooth function which fits well into the observed time series, yi(tj). For calculating functional
PCA, we employ ’fdapace’ R package [19]. This package is for functional principal component
analysis (FPCA) via the principal analysis by the conditional estimation (PACE) algorithm which yields
covariance and mean functions, eigenfunctions and principal component (scores). PACE provides
fitted continuous trajectories with confidence bands [20,21].

2.4. New Binary response statistical process control Procedure

A new binary response statistical process control procedure for the deviance residuals, r, from
binary response regression models that have high correlated multivariate covariates is proposed
through the following steps:

1. Apply the (functional) principal component analysis in input variables X and obtain the principal
components w∗ from (8).

2. Fit the binary response regression model by using the binary response variable y and the
(functional) principal components w∗ through probit link function, logit link function, and
neural network regression models, respectively.

3. Obtain the deviance residuals from each model.
4. Set k value and obtain the lower and upper control limits of the r-charts using (7).

3. Illustrated Examples

With the proposed method in Section 2, we perform the efficiency comparison among the proposed
methods with simulated data and real data.
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3.1. Simulation Study

In order to compare the r-charts based on binary regression models, we generate simulated data
denoting x = (x1, x2, x3, x4)

′ as input variables which are generated from the multivariate normal

distribution with mean ~(1, 2, 3, 4)
′

and covariance matrix M as follows:

M =


1 0.9 0.2 0.1

0.9 1 0.4 0.3
0.2 0.4 1 0.7
0.1 0.3 0.7 1


With each simulated data x, we define the coefficients of parameters (β’s) to be β0 = 0.1, β1 = 0.25,

β2 = −0.5, β3 = 0.25, β4 = 0.1 so that P(y = 1) = 1
1+exp(−0.1−0.25x1+0.5x2−0.25x2−0.1x4))

which passes
through an inverse logit function. Then, we generate response variable y randomly by using the
Bernoulli distribution with the probability P(y = 1) with sample size 1000. For the one (‘1’) inflated
case of binary response data, we added 0.1 to the probability P(y = 1) such as P(y = 1) + 0.1 and for
the zero (‘0’) inflated case of binary response data, we subtracted 0.1 from the probability P(y = 1)
such as P(y = 1)− 0.1. Also, P(y = 1) is used for the in-control dispersion case. In each setup, we
perform 10, 000 different replications of sample size of 1000. Table 1 shows the simulation results.
By using the deviance residuals for each model and (7) for k = 1, 2, 3, we compute the lower control
limit (LCL) and upper control limit (UCL) for the process. The expected length of the confidence
interval is computed by the average of the length of control limits. The coverage probability is the
proportion of the deviance residuals contained in the control limits. The lower control limit and the
upper control limit value for r-chart are calculated by means of y minus and plus its one, two and
three standard deviations.

The summary statistics of P(y = 1) in Figure 1 are that the minimum is 0.3450, the first quartile is
0.5723, the median is 0.6222, the mean is 0.6172, the third quartile is 0.6654 and the maximum is 0.8477.
The skewness of P(y = 1) is -0.3272 which proves the shape of the simulated data is asymmetry so
that it can be more inclined to produce zero value data rather than one value data.

Figure 1. Histogram of P(y = 1) with simulated asymmetrical data.

Based on PCA, Table 1 presents the average run length (ARL) results for simulated in-control,
one inflated-, and zero inflated-dispersion data via r-charts based on the GLM with probit and logit
link function and neural network models. Changes in w that resulted in one, two and three standard
deviations from the mean of y are considered. From Table 1, and based on PCA, we can see that the
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coverage probabilities by the GLMs with probit and logit link functions are slightly greater or equal to
the coverage probabilities by the neural network regression model, but the length of the confidence
intervals (CIs) for the neural network regression model are much smaller than the the length of the
confidence intervals (CIs) for the GLMs with probit and logit link functions and the ARLs of the neural
network regression model are much smaller than the the ARLs for the GLMs with probit and logit link
function because of the smaller length of CIs.

Table 1. Based on PCA, the coverage probability, expected confidence interval (CI) length, and control
limits for the simulated in-control, one inflated-, and zero inflated-dispersion binary data via various
r-charts based on GLM with probit, GLM with logit, and neural network models. Neural network
model used single layer and 30 neurons. ‘NA’ in the table means that there is no points out of control
limits and the number of simulations is 10, 000 different replications of sample size of 1000.

Probit Logit Neural Network

Case E(ri)± w
√

Var(ri) k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

In-control ARL 2.590 520.152 NA 2.586 536.938 NA 2.453 322.806 NA
Center 0.013 0.013 0.013 0.013 0.013 0.013 0.000 0.000 0.000

LCL −1.063 −2.202 −3.340 −1.063 −2.201 −3.340 −0.455 −0.911 −1.366
UCL 1.215 2.354 3.492 1.215 2.354 3.492 0.455 0.911 1.366

CI Length 2.278 4.555 6.833 2.278 4.555 6.833 0.911 1.821 2.732
Coverage 0.610 1.000 1.000 0.610 1.000 1.000 0.591 0.998 1.000

One Inflated ARL 3.532 291.492 NA 3.528 302.546 NA 3.094 62.599 429.500
Center 0.013 0.013 0.013 0.013 0.013 0.013 0.000 0.000 0.000

LCL −0.934 −2.002 −3.069 −0.934 −2.002 −3.069 −0.421 −0.842 −1.263
UCL 1.200 2.268 3.335 1.200 2.268 3.335 0.421 0.842 1.263

CI Length 2.135 4.269 6.404 2.135 4.269 6.404 0.842 1.684 2.527
Coverage 0.717 0.997 1.000 0.717 0.998 1.000 0.677 0.981 1.000

Zero Inflated ARL 2.177 NA NA 2.178 NA NA 2.197 429.347 NA
Center 0.013 0.013 0.013 0.013 0.013 0.013 0.000 0.000 0.000

LCL −1.154 −2.320 −3.486 −1.154 −2.320 −3.486 −0.469 −0.938 −1.406
UCL 1.179 2.345 3.512 1.179 2.345 3.512 0.469 0.938 1.406

CI Length 2.333 4.665 6.998 2.333 4.665 6.998 0.938 1.875 2.813
Coverage 0.536 1.000 1.000 0.536 1.000 1.000 0.555 0.999 1.000

From Figures 2–4 in case of the in-control dispersion based on PCA, we can observe that the
residuals of a neural network regression model are much closer to zero than the residuals of the GLM
with probit and logit model. Therefore, it is not a surprising result in Table 1 that the r-chart based on the
neural network model shows a superiority in all cases in terms of the expected length of the confidence
interval. We can say that the r-chart based on the neural network model for monitoring observations
has the smallest expected length of the confidence interval with the reasonable coverage probability.

We also see that the r-charts based on the neural network model give the superior performance
following the (7), E(ri)± k

√
Var(ri) ≈ ± k but the r-charts based on the GLM with logit and probit

link functions do not give the good performance following the (7). The reason for the difference is
probably the tails of the distribution in the GLMs.

For calculating FPCA, we employ ’fdapace’ R package [19] to represent smooth functions with
Fourier basis. In order to generate the functional data, we set the number of subjects (N=1000)
and the number of measurements per subjects (M=1000). We define the four covariates (x) with
four eigencomponents and we define the coefficients of parameters (β’s) to be β0 = 0.1, β1 = 0.25,
β2 = −0.5, β3 = 0.25, β4 = 0.1 so that P(y = 1) = 1

1+exp(−0.1−0.25x1+0.5x2−0.25x2−0.1x4))
which passes

through an inverse logit function. To apply the simulated data to the proposed methods, we generate
30 different functional simulated data replications of sample size of 1000 in this study. Based on FPCA,
Table 2 presents the average run length (ARL) results for simulated in-control, one inflated-, and zero
inflated-dispersion data via r-charts based on the GLM with probit and logit link function and neural
network models. Changes in w that resulted in one, two and three standard deviations from the mean
of y are considered.
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Figure 2. Based on PCA, r control charts (E(ri)±
√

Var(ri)) for probit, logit and neural network in the
in-control case with the number of simulations is 10, 000 different replications of sample size of 1000.

Figure 3. Based on PCA, r control charts (E(ri)± 2
√

Var(ri)) for probit, logit and neural network in the
in-control case with the number of simulations is 10, 000 different replications of sample size of 1000.
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Figure 4. Based on PCA, r control charts (E(ri)± 3
√

Var(ri)) for probit, logit and neural network in the
in-control case with the number of simulations is 10, 000 different replications of sample size of 1000.

Table 2. Based on FPCA, the coverage probability, expected confidence interval (CI) length, and control
limits for the simulated in-control, one inflated-, and zero inflated-dispersion binary data via various
r-charts based on GLM with probit, GLM with logit, and neural network models. Neural network
model used single layer and 30 neurons. ‘NA’ in the table means that there is no points out of control
limits and and the number of simulations is 30 different replications of sample size of 1000.

Probit Logit Neural Network

Case E(ri)± w
√

Var(ri) k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

In-control ARL 2.9 NA NA 2.9 NA NA 3.0 NA NA

Center 0.076 0.076 0.076 0.076 0.076 0.076 0.000 0.000 0.000
LCL −1.074 −2.225 −3.375 −1.074 −2.225 −3.375 −0.482 −0.964 −1.446
UCL 1.226 2.376 3.527 1.226 2.376 3.527 0.482 0.964 1.446

CI Length 2.301 4.601 6.902 2.301 4.601 6.902 0.964 1.927 2.891
Coverage 0.617 1.000 1.000 0.617 1.000 1.000 0.604 1.000 1.000

One Inflated ARL 4.467 NA NA 4.467 NA NA 4.533 423.833 NA
Center 0.139 0.139 0.139 0.139 0.139 0.139 0.001 0.001 0.001

LCL −0.935 −2.009 −3.084 −0.935 −2.009 −3.084 −0.442 −0.884 −1.326
UCL 1.214 2.288 3.362 1.214 2.288 3.362 0.443 0.885 1.328

CI Length 2.149 4.298 6.446 2.149 4.298 6.446 0.885 1.769 2.654
Coverage 0.725 1.000 1.000 0.725 1.000 1.000 0.723 0.999 1.000

Zero Inflated ARL 2.100 NA NA 2.100 NA NA 2.400 NA NA
Center 0.016 0.016 0.016 0.016 0.016 0.016 0.000 0.000 0.000

LCL −1.160 −2.335 −3.510 −1.160 −2.335 −3.510 −0.495 −0.990 −1.484
UCL 1.191 2.366 3.542 1.191 2.366 3.542 0.495 0.989 1.484

CI Length 2.351 4.701 7.052 2.351 4.701 7.052 0.990 1.979 2.969
Coverage 0.527 1.000 1.000 0.527 1.000 1.000 0.520 1.000 1.000

From Table 2 which is based on FPCA, we can see the same results as the ones in Table 1 based
on PCA. The coverage probabilities by the GLMs with probit and logit link functions are slightly
greater or equal to the coverage probabilities by the neural network regression model. The length of
the confidence intervals (CIs) for the neural network regression model are much smaller than the the
length of the confidence intervals (CIs) for the GLMs with probit and logit link functions but the ARLs
of the neural network regression model are not smaller than the the ARLs for the GLMs with probit
and logit link function. This result based on FPCA is different from the result based on PCA.

r-Control Chart with 3*sigma by GLM Probit Model r-Control Chart with 3*sigma by GLM Logit Model 
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From Figures 5–7, in case of the in-control dispersion based on FPCA, we can observe that the
residuals of a neural network regression model are much closer to zero than the residuals of the GLM
with probit and logit model, which are the same as the figures based on PCA.

Figure 5. Based on FPCA, r control charts (E(ri)±
√

Var(ri)) for probit, logit and neural network in
the in-control case with the number of simulations is 30 different replications of sample size of 1000.

Figure 6. Based on FPCA, r control charts (E(ri)± 2
√

Var(ri)) for probit, logit and neural network in
the in-control case with the number of simulations is 30 different replications of sample size of 1000.

Figure 7. Based on FPCA, r control charts (E(ri)± 3
√

Var(ri)) for probit, logit and neural network in
the in-control case with the number of simulations is 30 different replications of sample size of 1000.

From Tables 1 and 2, we can compare the results for the neural network regression model, the
GLMs with probit and logit link functions based on PCA and FPCA. We found the that, for the
in-control and the one-inflated cases, the ARLs based on PCA are smaller than the ARLs based on
FPCA but, for zero-inflated case, the ARLs based on FPCA are smaller than the ARLs based on PCA.
Another interesting result is that, in terms of the ARLs, the GLMs with probit and logit link functions
based on FPCA is overall superior than the the neural network regression model. This result is an
opposite result compared with the one based on PCA.

3.2. Real Data Analysis

Ref. [22] proposed R package “mlbench" which included Wisconsin breast cancer database named
as Breast Cancer. We used Breast Cancer for the illustration of real data analysis in this paper.
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The objective of the Wisconsin breast cancer database is to identify each of a number of benign
or malignant classes which are binary data (‘0’ and ‘1’). Samples arrive periodically as Dr. Wolberg
reports his clinical cases. The database is the chronological grouping of the data. A data frame with
699 observations on 11 variables, one being a character variable, nine being ordered or nominal,
and 1 target class. In this paper, We used nine covariates and one target variable such as the
Cl.thickness (Clump Thickness), Cell.size (Uniformity of Cell Size), Cell.shape (Uniformity of Cell
Shape), Marg.adhesion (Marginal Adhesion), Epith.c.size (Single Epithelial Cell Size), Bare.nuclei (Bare
Nuclei), Bl.cromatin (Bland Chromatin), Normal.nucleoli (Normal Nucleoli), Mitoses and Class which
is the target binary variable (Y) (‘0’=benigh and ‘1’=malignant).

Table 3 presents the Pearson correlation coefficients with the Breast Cancer real data. It shows
that nine covariates have strong positive correlation coefficients It means that nine covariates in breast
cancer real data positively correlated each other. Figure 8 also showed high correlated pairwise scatter
plots of nine covariates in breast cancer real data.

Table 3. Pearson correlation coefficients of 9 covariates in Breast Cancer.

Cl.thickness Cell.size Cell.shape Marg.adhesion Epith.c.size Bare.nuclei Bl.cromatin Normal.nucleoli Mitoses

Cl.thickness 1.000 0.642 0.653 0.488 0.524 0.593 0.554 0.534 0.355

Cell.size 0.642 1.000 0.907 0.707 0.754 0.692 0.756 0.719 0.465

Cell.shape 0.653 0.907 1.000 0.686 0.722 0.714 0.735 0.718 0.447

Marg.adhesion 0.488 0.707 0.686 1.000 0.595 0.671 0.669 0.603 0.425

Epith.c.size 0.524 0.754 0.722 0.595 1.000 0.586 0.618 0.629 0.481

Bare.nuclei 0.593 0.692 0.714 0.671 0.586 1.000 0.681 0.584 0.349

Bl.cromatin 0.554 0.756 0.735 0.669 0.618 0.681 1.000 0.666 0.354

Normal.nucleoli 0.534 0.719 0.718 0.603 0.629 0.584 0.666 1.000 0.437

Mitoses 0.355 0.465 0.447 0.425 0.481 0.349 0.354 0.437 1.000

Figure 8. Pairwise scatter plots of nine covariates in Breast Cancer real data.
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Table 4 showed the PCA summary with nine covariates in breast cancer real data. To avoid
multicollinearity of the nine covariates, we used principal components for binary response data
(Y=Class) via various r-charts based on GLM with probit, GLM with logit, and neural network models.

Table 4. PCA summary with nine covariates in Breast Cancer real data.

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

Standard deviation 2.430 0.875 0.734 0.680 0.617 0.550 0.543 0.511 0.297

Proportion of Variance 0.656 0.085 0.060 0.051 0.042 0.034 0.033 0.029 0.010

Cumulative Proportion 0.656 0.741 0.801 0.853 0.895 0.928 0.961 0.990 1.000

Based on PCA, Table 5 shows that the r-chart based on neural network model has narrow control
limits compared with the r-charts based on the GLM with probit and logit link function models. From
Figures 9–11, we can observe that the residuals of a neural network regression model are much closer
to zero than the residuals of the GLM with probit and logit model. With the narrow control limits of a
neural network model, we can monitor the class of the patients with breast cancer by r control chart
with important covaraites’ information.

Table 5. Based on PCA, control limits for binary response data (Y=Class) via various r-charts based on
GLM with probit, GLM with logit, and neural network models. Neural network model used single
layer and 30 neurons.

Probit Logit Neural Network

E(ri)± w
√

Var(ri) k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Center 0.022 0.022 0.022 0.038 0.038 0.038 −0.002 −0.002 −0.002

LCL −0.381 −0.785 −1.188 −0.368 −0.773 −1.178 −0.123 −0.244 −0.365

UCL 0.426 0.829 1.233 0.443 0.849 1.254 0.119 0.240 0.361

CL Length 0.807 1.614 2.421 0.811 1.622 2.433 0.242 0.485 0.727

Figure 9. Based on PCA, r control charts (E(ri)±
√

Var(ri)) for probit, logit and neural network.

r-COfllrol Chart with 1"sigma by GLM Prol:ltt Mode l r-Control Chart wittl 1"sig m11 by GLM Logit Mode l 

r-Co ntro l Chart with 1•s lgm a by Neu ra l Network Model 
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Figure 10. Based on PCA, r control charts (E(ri)± 2
√

Var(ri)) for probit, logit and neural network.

Figure 11. Based on PCA, r control charts (E(ri)± 3
√

Var(ri)) for probit, logit and neural network.

Figure 12 showed the plots of FPCA with nine covariates in Breast Cancer real data so that
two main components explain the 94% proportion of variance by FPCA. Hence, we used two main
components for the r-chart based regression models.

r-Control Chan with 2'slgma by GLM Prob II Model r-ContJol Chan wttt1 2'slgma by GLM Loglt Mode l 

r -Cont ro l Chan with 2'sigma by Neural Network Model 

r-Control Chan with 3'slgma by GLM Prob II Model r-ContJol Chan wttt1 3'slgma by GLM Loglt Mode l 

r -Contro l Chan with 3' slgma by Neural Network Model 
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Figure 12. FPCA Plots with nine covariates in Breast Cancer real data.

Based on FPCA, Table 6 shows that the r-chart based on the neural network model has narrow
control limits compared with the r-charts based on the GLM with probit and logit link function models.
From Figures 13–15, we can observe that the residuals of a neural network regression model are much
closer to zero than the residuals of the GLM with the probit and logit model which concur to the same
result based on PCA. With the narrow control limits of a neural network model, we can monitor the
class of the patients with breast cancer by r control chart with important covaraites’ information.

Similar to the simulation data analysis, the r-chart based regression models based on PCA have
the the narrower control limits than the r-chart based regression models based on FPCA.

Table 6. Based on FPCA, control limits for binary response data (Y=death) via various r-charts based
on GLM with probit, GLM with logit, and neural network models. Neural network model used a single
layer and 30 neurons.

Probit Logit Neural Network

E(ri)± w
√

Var(ri) k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Center 0.095 0.095 0.095 0.095 0.095 0.095 −0.003 −0.003 −0.003

LCL −1.034 −2.163 −3.293 −1.034 −2.163 −3.293 −0.470 −0.937 −1.403

UCL 1.225 2.354 3.484 1.225 2.354 3.483 0.464 0.930 1.397

CL Length 2.259 4.518 6.776 2.259 4.518 6.776 0.933 1.867 2.800

Figure 13. Based on FPCA, r control charts (E(ri)±
√

Var(ri)) for probit, logit and neural network.

Design Plot Mean Function 

Obs~1 ime~ 

Scree-plot First 3 Eigenfunctions 

-2 

Numbefofcompooenl s FPC1 scores 76% 

r-Con!rol Chart with 1's lgma by GLM Prob It Model r-Conlfol Chart with 1's lgma by GLM Loglt Model r<:ona-ol Chartwlth1's lgmabyN eural Networ11Model 
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Figure 14. Based on FPCA, r control charts (E(ri)± 2
√

Var(ri)) for probit, logit and neural network.

Figure 15. Based on FPCA, r control charts (E(ri)± 3
√

Var(ri)) for probit, logit and neural network.

4. Conclusions

In this research, we have presented the binary response regression model-based statistical process
control r-charts for dispersed binary asymmetrical data with multicollinearity among input variables.
We have demonstrated the proposed method in terms of the model flexibility and performance by
running simulations for various circumstances: in-control, one inflated-, or zero inflated-dispersion
data. With both simulated data and real data, our proposed method has shown a superiority of
the performance. Furthermore, we compared PCA-based binary response regression model-based
statistical control r-charts and FPCA-based binary response regression model-based statistical control
r-charts with the GLM with probit and logit link function models and neural network model. In case of
the dimension reduction by PCA, our proposed approach by a neural network is superior in handling
cases of dispersed binary asymmetrical data with multicollinearity among explanatory variables.
However, in case of the dimension reduction by FPCA, our proposed approach by neural network
is superior in handling cases of dispersed binary asymmetrical data with multicollinearity among
explanatory variables but it is not more efficient than the proposed method by the dimension reduction
by PCA in this research.

The conclusion in this research is that for the high-dimensional correlated multivariate covariate
data, the binary control chart by neural network model is a good statistical process control method
and, for high-frequency functional multivariate data, the proposed GLM-based control charts by FPCA
are good statistical process control methods. Hence, a cancer clinical study can be investigated by the
proposed statistical process control.

Our future research will address the following topics. More general versions of binary asymmetric
data will be considered with other machine learning models such as deep learning or multi-layer
neural network model. Instead of the deviance residual, quantile residual can also be considered in
the binary response regression control charts. Lastly, we need to consider other types of bases for
constructing FPCA for further comparison studies with PCA-based models.
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