
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Biological Sciences Faculty Publications Biological Sciences 

2020 

Conserving Spawning Stocks Through Harvest Slot Limits and No-Conserving Spawning Stocks Through Harvest Slot Limits and No-

Take Protected Areas Take Protected Areas 

Gaya Gnanalingam 
Old Dominion University, ggnan001@odu.edu 

Holly Gaff 
Old Dominion University, hgaff@odu.edu 

Mark J. Butler IV 
Old Dominion University, mbutler@odu.edu 

Follow this and additional works at: https://digitalcommons.odu.edu/biology_fac_pubs 

 Part of the Biology Commons, and the Marine Biology Commons 

Original Publication Citation Original Publication Citation 
Gnanalingam, G., Gaff, H., & Butler, M. J. (2020). Conserving spawning stocks through harvest slot limits 
and no-take protected areas. Conservation Biology, 30 pp. doi:http://dx.doi.org/10.1111/cobi.13535 

This Article is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has 
been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ODU 
Digital Commons. For more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/biology_fac_pubs
https://digitalcommons.odu.edu/biology
https://digitalcommons.odu.edu/biology_fac_pubs?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=digitalcommons.odu.edu%2Fbiology_fac_pubs%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


 

 

 

This article has been accepted for publication and undergone full peer review but has not been 

through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1111/cobi.13535. 

 

This article is protected by copyright. All rights reserved. 

 

Conserving spawning stocks through harvest slot limits and no-take protected areas 

 

Gaya Gnanalingam
1,2*

, Holly Gaff
1
, Mark J Butler IV

1 

 

1
Department of Biological Sciences, Old Dominion University, 5115 Hampton Boulevard, Norfolk 

Virginia USA 23529 

2
Department of Marine Science, University of Otago, PO Box 56 Dunedin 9054, New Zealand 

 

*
Corresponding author: Gaya Gnanalingam, Department of Marine Science, University of Otago, 

PO Box 56, Dunedin New Zealand, gaya.gnanalingam@otago.ac.nz  

Keywords: MPA, lobster, size limit, conservation, harvest   

Running head: MPA footprint 

Article Impact Statement 

Marine protected areas and harvest slot limits together can conserve large breeding individuals and 

support population sustainability. 

 

Abstract  

The key to the conservation of harvested species is the maintenance of reproductive success. Yet for 

many marine species large, old individuals are targeted despite their disproportionate contribution 

to reproduction. We hypothesized that a combination of no-take marine protected areas (MPAs) and 

harvest slot limits (maximum and minimum size limits) would result in the conservation of large 
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spawning individuals under heavy harvest. We tested this approach under different harvest 

intensities with a 2-sex, stage-structured metapopulation model for the Caribbean spiny lobster 

(Panulirus argus). P. argus is intensively harvested in the Caribbean, and in many localities large, 

mature individuals no longer exist. No-take MPAs and harvest slot limits combined rebuilt and 

maintained large mature individuals even under high harvest pressure. The most conservative model 

(a 30% MPA and harvest slot limit of 75-105 mm) increased spawner abundance by 5.53E
12

 

compared with the fishing status quo at the end of 30 years. Spawning stock abundance also 

increased by 2.76-9.56E
12

 individuals at a high harvest intensity over 30 years with MPAs alone. 

Our results demonstrate the potential of MPAs and harvest slot limits for the conservation of large 

breeding individuals in some marine and freshwater environments. Decisions on which 

management strategy best suits a fishery, however, requires balancing what is ecologically desirable 

with what is economically and socially feasible. 

 

Conservación de Stocks Reproductivos por medio de Límites de Espacios de Producción y  

Áreas Protegidas de Cero Captura 

Gnanalingam et al. 

19-839 

 

Palabras clave: área marina protegida, conservación, crianza, langosta, límite de tamaño 

 

Resumen. La clave para la conservación de las especies en criaderos es la manutención del éxito 

reproductivo. Aún así, para muchas especies marinas los individuos grandes y viejos son 

seleccionados a pesar de su contribución desproporcionada para la reproducción. Nuestra hipótesis 

supone que una combinación de áreas marinas protegidas (AMPs) de cero captura y los límites de 

espacio de producción (límites máximos y mínimos de tamaño) resultaría en la conservación de 

individuos reproductivos grandes durante una producción intensiva. Probamos esta estrategia bajo 

diferentes intensidades de crianza con un modelo metapoblacional de dos sexos y estructurado por 

etapas aplicado a la langosta espinosa del Caribe (Panulirus argus). P. argus es producida 

intensivamente en el Caribe y en muchas de las localidades, los individuos grandes y maduros ya no 

existen. La combinación de las AMPs de cero captura y los límites de espacio de producción 

regeneró y mantuvo individuos grandes y maduros incluso bajo una presión alta de producción. El 

modelo más conservador (un 30% de MPA y un límite de espacio de producción de 75-105 mm) 
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incrementó la abundancia de individuos reproductivos por 5.53E
12

 comparado con el status quo de 

la pesca después de treinta años. La abundancia del stock reproductivo también incrementó por 

2.76-9.56E
12

 individuos en una intensidad alta de producción durante 30 años sólo con las AMPs. 

Nuestros resultados demuestran el potencial de las AMPs y los límites de espacio  de producción 

para la conservación de individuos reproductivos grandes en algunos ambientes marinos y de agua 

dulce. Sin embargo, las decisiones sobre cuál es la mejor estrategia de manejo para una pesquería 

requieren del equilibrio entre lo que es ecológicamente deseable y lo que es económica y 

socialmente factible . 

 

通过捕捞箱大小限制和禁止捕捞的海洋保护区来保护产卵种群 

【摘要】保护被捕捞物种的关键是保障其成功繁殖。然而，对于许多海洋物种来说，体型大

的老龄个体尽管对繁殖贡献的比例更大，但仍是捕捞的目标。我们假设，将禁止捕捞的海洋

保护区和捕捞箱限制（最大和最小尺寸限制）相结合，可以在捕捞量较大的情况下保护产卵

的大型物种。我们用加勒比海的眼斑龙虾（Panulirus argus）两种性别、有年龄结构的复合

种群模型检验了这一方法。眼斑龙虾在加勒比海地区被广泛捕捞，许多地点已不存在大型成

熟个体。结果显示，结合禁止捕捞的海洋保护区和捕捞箱限制，即使在高捕捞压力下也能重

建和维持成熟个体数量。最保守的模型（30%海洋保护区和75-105毫米的捕捞箱限制）相比

于继续维持现状，在30年后产卵雌性的数量可以增加5.53E12。而单独建立海洋保护区，也

可以在30年的高捕捞强度下使产卵种群数量增加2.76-9.56E12只个体。我们的结果证明，海

洋保护区和捕捞箱限制在某些海洋和淡水环境中对大型繁殖个体具有较好的保护潜力。不

过，对渔场的最适管理战略决策还需要在生态和经济、社会方面之间取得平衡。【翻译：胡

怡思；审校：聂永刚】 

关键词：海洋保护区，龙虾，尺寸限制，保护，捕捞 

 

Introduction 

The targeted harvest of a population’s largest or oldest individuals can disrupt social hierarchies, 

mate choice, sexual competition, and resilience to environmental change, eventually undermining 

population stability and reproductive success (Whitman et al. 2004, Hsieh et al. 2006, Barnett et al. 

2017). In many species, particularly in the marine environment, large and typically old individuals 

are the most fecund (Hixon et al. 2014). Where there is hyperallometric scaling, large individuals 

can contribute disproportionately to population replenishment (Barneche et al. 2018). Large 

individuals and  old individuals can also produce offspring of higher fitness (Berkeley et al. 2004; 

Birkeland & Dayton 2005). Overharvesting of large, old, or more experienced individuals can 
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therefore shift the majority of reproduction and hence population survival to small, young, and less-

experienced individuals. In extreme cases, overharvesting of the largest individuals has driven the 

selection of life-history characteristics favoring earlier size or age of first reproduction and has 

contributed to population collapse (Hutchings & Rowe 2008, Allendorf et al. 2008, Therkildsen et 

al. 2019). There are, however, management tools explicitly designed to protect mature breeding 

individuals from harvest, including prohibitions on the take of pregnant or nursing individuals, 

temporal or spatial closures, and maximum size limits (Hixon et al. 2014, Barnett et al. 2017).  

 

Spatial closures (e.g., parks and reserves) were originally designed to conserve natural and cultural 

resources (IUCN 2008). Where harvesting in these areas is prohibited (e.g., no-take marine 

protected areas [MPAs]), closures are credited with increasing the density, biomass, size, and 

diversity of a number of species in their boundaries (Halpern & Warner 2002, Coetzee et al. 2014, 

Gill et al. 2017). With increases in body size translating to increases in per capita fecundity and 

reproductive output, MPAs have an enormous potential to replenish populations (Barneche et al. 

2018, Marshall et al. 2019). No-take MPAs have been used to conserve and rebuild spawning 

biomass in species as diverse as Atlantic cod (Gadhus morhua) (Moland et al. 2013)  and spiny 

lobsters (Panulirus argus, Jasus edwardsii) (Bertelsen & Matthews 2001, Cox & Hunt 2005, Jack 

& Wing 2013). Marine protected areas can also contribute to larval dispersal and movement of 

adults beyond their boundaries (Di Lorenzo et al. 2016, Kough et al. 2019, Marshall et al. 2019). 

Despite their potential to conserve spawning populations, however, they are generally too small, too 

few, and too poorly enforced to affect the sustainability of species whose populations extend 

beyond their borders (Steneck et al. 2009, Gaines et al. 2010, Krueck et al. 2018). Spatial closures 

are also often politically controversial (Sale et al. 2005). 

 

Another means of protecting large individuals in exploited populations is maximum size limits 

(MSL) in which only individuals below a given size are harvested. Such measures are common in 
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recreational freshwater and shallow-water marine finfish fisheries (e.g., northern pike [Esox lucius], 

common snook [Centropomus undecimalis]), but less so in commercial marine fisheries. Maximum 

size limits are designed to conserve spawning individuals and are particularly well suited to species 

with high recruitment, slow growth, and moderate natural mortality. Slot limits (combined 

maximum and minimum size limits) in which individuals of an intermediate range may be 

harvested (harvest slot limits [open slot]) or protected (protected slot limit [closed slot]) are 

designed to protect young recruits and spawning individuals (Gwinn et al. 2013). They may be 

particularly useful when reproductive output or the provisioning of young increases with maternal 

size (Ahrens et al. 2020) and when harvesting depletes spawning biomass (McPhee 2008, 

Arlinghaus et al. 2010). The success of MSLs and harvest slot limits to reduce fishing mortality and 

increase spawning stock without severely restricting catch rates, however, may be limited by the 

size or sizes chosen for harvest. If the MSL is too high or the harvest slot is too broad, such 

regulations are unlikely to succeed because few individuals will make it through to protection, 

particularly if harvest is intense. If the MSL is too low or the harvest slot too narrow, then catch 

rates are likely to decline (Law et al. 2012).  

 

Yet, if harvest slot limits and spatial closures were combined this integrated management strategy 

could rebuild exploited populations and conserve the most fecund individuals while allowing 

harvest (Steneck et al. 2009). The use of these mechanisms together, however, has not been 

assessed previously. We assessed the potential use of harvest slot limits and MPAs to rebuild 

spawning biomass of the Caribbean spiny lobster with a 2-sex, stage-based, matrix population 

model. The model linked P. argus populations from the 10 largest fisheries in the Caribbean and 

considered 4 management scenarios: fishing (status quo), MPAs + fishing, slot limits + fishing, and  

MPAs + slot limits. 
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P. argus supports some of the largest and most economically valuable fisheries in the Caribbean 

(CRFM, 2011), but decades of intense fishing has left many regional populations fully capitalized 

or overfished (Ehrhardt, 2010), and except in a few well-enforced MPAs, size-selective fishing has 

nearly eliminated the largest individuals (e.g., Bertelsen & Matthews 2001). These large individuals 

produce disproportionately more offspring of higher quality (MacDiarmid & Butler, 1999; 

Gnanalingam & Butler, 2018a). Management of P. argus is complicated by a long postlarval period 

(5-9 months), dispersal, and widespread distribution (Goldstein et al. 2008; Butler et al. 2011, 

Kough et al. 2013). Although some spatial genetic patchiness may exist in oceanographically 

retentive regions of the Caribbean, overall there is significant demographic connectivity among 

Caribbean nations (Kough et al. 2013; Truelove et al. 2017; Segura-Garcia et al. 2019). At present, 

however, no standardized management measures aim to rebuild or provide long-term conservation 

of P. argus spawning biomass in the Caribbean. 

 

Methods 

Our lobster metapopulation model included the 10 countries with the highest landings of P. argus 

(highest to lowest: Bahamas, Cuba, Nicaragua, United States, Dominican Republic, Honduras, 

Mexico, Haiti, Venezuela, Belize). Commercial landings from these 10 countries constitute 

approximately 95% of the total catch (CRFM, 2011). Because fisheries for P. argus are fully or 

overexploited (Ehrhardt, 2010), we considered landings (catch) a reasonable estimator of population 

abundance, thus we used landings as a relative estimate of population magnitudes. Populations were 

linked by larval connectivity as estimated by Kough et al. (2013), whose model results were 

corroborated with empirical data on larval supply and population genetic structure (Truelove et al. 

2017). Larvae produced every year by each population were split among the 10 populations 

according to these larval-connectivity probabilities. Lobster demographics (growth, mortality, 

immigration, emigration, reproduction) in each population were depicted in a 2-sex, stage-specific 

model (Fig 1). Although demographic models typically model only female dynamics, we opted for 
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a 2-sex model to account for differences in vital rates, size-selective mating, and sperm limitation 

(MacDiarmid & Butler, 1999; Butler et al. 2015). Data for model inputs came from published 

literature (Supporting Information), except for fecundity estimates, which were derived empirically 

(Gnanalingam & Butler, 2018b).  

Figure 2 shows the model’s  basic form. Where Nt  is a vector of lobsters in each sex and stage class 

at time t, and At is the sex-specific life-history projection matrix composed of survival and 

fecundities for each sex and stage at time t (Caswell, 2001). Model stages reflect P. argus’s 4 main 

life stages: larvae, juvenile, subadult, and adult (Supporting Information). The adult stage is divided 

into 10-mm carapace length (CL) classes (males, A1-A15; females, A1-A10) to account for 

differences in reproductive output, growth, and mortality. We used a 6-month time step to constrain 

growth within these size classes. This necessitated the creation of reproductive and nonreproductive 

matrices to prevent overestimation of fecundities and the number of young produced every year. 

Annual survival and growth probabilities were adjusted to fit the 6-month time step so entire 

populations transitioned smoothly between matrices.   

 

Sex ratio at birth is  (set to 0.5 for a 1:1 sex ratio). For stage i and sex s, Gi,s is the probability of an 

individual surviving (      and moving to the next stage (    ). The Pi,s is the probability of an 

individual surviving (       and remaining in its current stage (      ), and fi, is stage-specific 

fertility (size-specific fecundity        [probability of an individual surviving]). We estimated       

as 1- (           , where      is age-specific natural mortality derived from a decay function 

centered on a mortality of 0.51 for a 1-year-old irrespective of sex (Forcucci et al. 1994) 

(Supporting Information) and     
 
is average age and sex-specific fishing mortality based on 

estimates from the Florida Integrated Catch at Age model (SEDAR 2010). The matrix without 

reproduction was identical except for 0s in place of the fertility coefficients fi. (Supporting 

Information contains further information on how reproduction was incorporated in the model.) Each 

simulation ran for at least 30 years.   
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Management scenarios 

Four management scenarios (Table 1) were uniformly applied across populations and each was 

assessed at low (mean fishing mortality [F] = 0.18), intermediate, or status quo (mean F = 0.36) and 

high (mean F = 0.72) harvest intensities (Supporting Information). We applied F only to lobsters 

outside MPAs and between maximum and minimum size limits in slot limit scenarios. To account 

for effort displacement in scenarios with MPAs and slot limits, fishing effort that would have 

ordinarily applied to all size classes in a fishable population was redistributed equally across all 

fishable size classes outside MPAs (where implemented) in accordance with the fishery-squeeze 

assumption (Smith & Wilson 2003, Pelc et al. 2010).  A minimum size limit of 75 mm CL (close to 

minimum legal size in several countries in the Caribbean) was applied in all 4 scenarios. Fishing 

mortality for subadult lobsters was included to account for the take of undersized lobsters (SEDAR 

2010). At intermediate harvest intensity subadult F was 0.13 (SEDAR 2010), and it was adjusted 

proportionally to high and low intensities. Model response variables were total abundance (N), 

spawning stock abundance (SSA) (number of breeding individuals only), total egg production (RO) 

(reproductive output = number of breeding females   fecundity), harvest biomass (FB), number of 

migrants moving from MPAs to harvestable areas (emigrants), and population growth rate (). 

 

In scenarios with MPAs, a carrying capacity for the harvestable area (Kf) was based on the 

estimated area occupied by P. argus in the Caribbean multiplied by the highest densities of lobsters 

observed in a Florida MPA (0.031/m
2
) (Eggleston & Parsons, 2008). We assumed habitat was 

homogenous. The carrying capacity of MPAs (Kp) was the percentage of the population protected   

Kf. Emigrant mortality (spillover) was 0.8 regardless of fishing effort. Effort concentration at MPA 

boundaries regardless of catch rates in the fishable area can be high for spiny lobsters (Stobart et al. 

2009, Goñi et al. 2010); thus, this rate was kept constant across all fishing efforts. Probability of 

movement between MPA and fished areas varied according to rates and patterns of movement 
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described by Bertelsen and Hornbeck (2009) for P. argus in the Florida Keys. (Supporting 

Information contains further information on how lobster movement was incorporated.) 

 

The effect of stochasticity in 4 life-history parameters (natural mortality [M], larval and emigrant 

mortality, and fecundity) on model results was assessed with scenario 3: MPA with 30% no-take 

protection at an intermediate fishing intensity. The influence of larval connectivity and discard 

mortality was assessed in additional simulations (description and results in Supporting Information). 

 

Results 

Harvest intensity and management scenario affected response variables in all 10 populations. When 

harvest intensity was low (mean F = 0.17), N, SSA, RO, and FB increased exponentially regardless 

of management scenario (Table 2, Fig. 3, & Supporting Information). But when harvest intensity 

was high (F = 0.72), lobster populations under fishing status quo and slot limit only scenarios 

collapsed (Table 2, Fig. 3, & Supporting Information). Meanwhile, lobster populations in models 

with MPAs only and MPAs + slot limits increased after 3 years, following an initial decline at the 

highest intensity (Fig 3, Supporting Information). Regardless of harvest intensity, after 30 years, the 

most conservative management option (30% MPA + MSL 105 mm CL) performed the best, 

followed by the 30% MPA + MSL 135, in terms of N, SSA, and RO, even with inclusion of discard 

mortality for lobsters in the slot size classes (Table 2 & Supporting Information). The values 

produced by 30% MPA + MSL 105 were not merely additive of a 30% MPA and 105 MSL. For 

values produced by the 30% MPA + MSL 105 to be matched by an MPA alone, the proportion of 

the population requiring protection was >75% regardless of harvest intensity. Even the narrowest of 

slot limits (MSL 85) applied to all 10 populations could not produce a SSA that matched the SSA of 

the 30% MPA + MSL 105 scenario after 30 years. Harvestable biomass was the exception; 30% 

MPA + MSL 135 outperformed 30% MPA + MSL 105 at a medium harvest intensity and the 30% 
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MPA + MSL 105 FB value was lower than the other MPA + slot limit models and MPA models at 

high harvest intensity (Supporting Information). At low harvest intensity, it took 18 years for FB in 

scenarios 2-4 to overtake the value in the fishing status quo (10 years for MPA 30 + slot limit, and 

MPA 30), whereas at moderate harvest intensity it took 10 years (7 years for MPA 30 + slot limit, 

MPA 30, and MPA 10). At high harvest intensity, only MPA and MPA + slot limit models retained 

harvestable biomass by the end of 30 years (Supporting Information). 

 

Depending on model run time and harvest intensity, MPAs and slot limits alone sometimes 

improved response values compared with the fishing status quo. At a high fishing intensity, for 

example, SSA doubled from its initial value with MPAs alone in 5-10 years, depending on MPA 

size (Fig 3). This change is somewhat obscured by the log scales in Fig 3, which are useful for 

discerning the long-term changes in SSA. Slot limit models also produced higher values for N, SSA, 

RO, and FB compared with the fishing status quo but only after 5-10 years at low and medium 

harvest intensities (Fig 3 & Supporting Information) and only if discard mortality was excluded 

(Supplementary Information). At high harvest intensity, slot limits alone failed to prevent 

population decline (Fig 3 & Supporting Information).  

 

After 30 years, spawning individuals (A1-15 males, A1-10 females) represented a very small 

percentage of the total N regardless of management scenario. However, where MPAs were applied, 

large spawning individuals (>100 mm CL) were more protected than where they were not (Fig 4). 

For status quo and slot limit only scenarios at high fishing intensity, large spawning individuals 

were relatively unprotected, and by year 30 they were not present. The consequences for 

reproductive output were obvious when combined over time for these scenarios (Supporting 

Information) and demonstrated the importance of hyperallometric scaling in P. argus. A single A9 

female surviving to reproduce in a given year would produce 2.35 x10
6
 eggs, whereas a single A1 

female would produce only 8.83 x 10
4
. Thus, models with the highest numbers of the largest male 
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and female size classes  (i.e., 30% MPA + MSL 105/135, followed by 30% MPA and 10% MPA) 

ensured reproductive output remained high over 30 years.  

 

Populations inside MPAs, always reached carrying capacity by year 30, and individuals had to 

migrate into the fished population. Populations within MPAs typically maintained a high proportion 

of spawning individuals; thus, reproductive output inside MPAs remained high even when harvest 

intensity was high outside the MPA. Because the carrying capacities for the MPAs varied relative to 

the level of MPA protection, the number of migrants that spilled over into the fished areas also 

varied. However, without the additional protection of harvest slot limits , up to 41% of lobsters 

emigrating from MPAs would be lost to fishing mortality.  

Discussion 

Our model demonstrated that a combination of regulations (i.e., slot limits, MPAs, and a decrease in 

harvest intensity) can rebuild and conserve P. argus spawning-stock abundance and ensure 

population sustainability throughout the seascape. The most conservative model  (i.e., largest MPA 

coverage and lowest maximum size limit) quickly rebuilt spawning biomass and produced the 

largest population abundance regardless of harvest intensity after 30 years. However, strong 

positive effects on lobster sustainability were also predicted for MPAs applied alone (2%, 10%, and 

30%) at all 3 harvest intensities, just not to the extent of the 30% MPA + slot limit models.  

 

The MPA + slot limit scenario produced the highest values for the response variables after 30 years, 

but this was not simply a reflection of the additive nature of increasing protection by combining 

MPAs and slot limits. Rather, it reflected interactions among several factors including the size 

classes that were protected, hyperallometric scaling in fecundity, reallocation of fishing effort to 

size classes that were not protected, and length of model run. Adding results of a 30-year run of the 

30% MPA and MSL 105 models, for example, did not produce the values obtained in the 30% 
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MPA + MSL 105 model. Nor could the 30% MPA + 105 MSL values be matched by any MPA or 

slot limit scenario alone, unless the MPA covered >75% of the population. Results from the less-

restrictive MPA + slot limit combinations (i.e., 2% MPA MSL 135) run over 30 years, however, 

were surpassed by a 10% or 30% MPA applied alone even at high fishing intensities -  particularly 

if discard mortality was included (Supporting Information). Thus, MPAs + slot limits may not 

always be the best option for conserving spawning-stock abundance or reproductive potential in a 

population, and ultimately a balancing between what is ecologically desirable and what is 

economically feasible or acceptable to fishers will be required (Klein et al. 2008).  

Slot limits, applied alone were less effective at rebuilding and maintaining spawning biomass. 

Fishing removed individuals before they could grow into the protected size classes and the loss of 

large individuals translated into poor reproductive output. For lobsters in Florida to reach the 

protection of a 105 or 135 mm CL MSL, they would have to avoid capture for at least 4-5 years if 

male and 5-8 years if female. Yet, approximately 90% of the lobsters caught in Florida are 1.5 - 2.5 

years old (76 - 90 mm CL) (SEDAR, 2010). Lobsters >105 mm CL make up <0.2% of Florida’s 

fishery landings (SEDAR, 2010).  Hence, there is scant probability that lobsters in the currently 

intense Florida fishery could avoid harvest long enough to reach the size refuge offered by the 

MSLs modeled here. This problem has been empirically observed in other fisheries, including an 

experimental fishery for northern pike in Finland (Tiainen et al. 2017). Although harvest slot limits 

preserved mature age and size structure  compared with minimum size limits applied alone, they 

could not prevent a decline in the abundance of large pike at high harvest intensity,  and slow-

growing fish were caught before they reached the MSL (Tiainen et al. 2017).  

 

Our results also confirm the profound impact harvest intensity has on spawning individuals in the 

absence of management tools such as MPAs and slot limits. Lowering exploitation rates is the most 

direct way to ease pressure on harvested populations (Allendorf et al. 2008). When harvest intensity 

was halved from present-day levels without any other management measures, population size, 
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spawning abundance, and reproductive output increased 100-fold over 3 decades. Although a large 

reduction in harvest intensity is unlikely to be economically feasible, if lobster populations are 

severely depleted a reduction in fishing mortality may be the only way to rebuild populations. One 

need only look to species protected under the U.S. Endangered Species Act (e.g., American 

crocodile [Crocodylus acutus])  or the recovery of fish stocks in the North Sea during World War II 

for examples of species that recovered following cessation of intense harvesting (Beare et al. 2010, 

US Fish & Wildlife Service 2019). Typically, such drastic measures are poorly received by the 

public, but they can lead to dramatic recoveries, as was the case for the Atlantic striped bass 

(Morone saxatilis) following a 5-year moratorium on harvest in the 1980s in the eastern United 

States (Secor, 2000). 

 

Of course, the effectiveness of all demographic models is constrained by the quality of data inputs 

and model assumptions. For example, good estimates of the spatiotemporal variation in natural 

mortality, growth, fecundity, and fishing effort around the Caribbean is currently lacking for P. 

argus. Therefore, we used the same values for every population based on the best available data. 

The growth function, for example, was derived from Ehrhardt (2008) and was based on tag 

recapture and molt increment data from south Florida, where growth is typically slower than it is for 

P. argus at lower latitudes. Likewise, our estimates of fecundity were based on a noninvasive 

technique that yields more conservative estimates of size-specific fecundity than those based on 

gravimetric methods (Gnanalingam & Butler, 2018b). Maternal effects on larval survival were 

ignored, as were density dependent effects because density dependence for P. argus has not been 

reported in the literature and may be uncommon in the wild (Behringer & Butler 2006). Therefore, 

we believe the results from our model are likely to be conservative. 

 

In the Caribbean, the idea of using harvest slot limits and MPAs for the conservation of spawning 

biomass and the long-term sustainability of P. argus is gaining traction among fisheries managers 
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(e.g., St Georges Declaration 2015) and perhaps even fishers. In a preliminary survey we conducted 

of lobster fishers (n = 25) in the Florida Keys and The Bahamas, the majority of respondents (64%) 

were in favor of using slot limits and MPAs in their own area. Strikingly, 59% of those fishers were 

supportive of this management strategy throughout the Caribbean even if there was little or no 

obvious benefit to their own geographic area. However, the addition of any new management tool 

intended to constrain fishing mortality is likely to have a negative effect on catch rates in the short 

term, with commensurate effects for the fishers and those dependent on the fisheries. Potential 

economic losses will no doubt weigh heavily on the minds of fisheries managers and government 

officials looking to implement new policies. Ultimately, decision makers will need to decide what 

policy goals to pursue in the short and long term, particularly if it could take a decade or more for 

harvestable biomass to surpass levels under the fishing status quo. Any potential short-term loss, 

however, could be offset by other business opportunities (Sala et al. 2013, 2016; Davis et al. 2019), 

and over long periods, spillover could offset catch losses resulting from the reduction in area open 

to fishing (Goñi et al. 2010).  

 

Regulatory mechanisms that restrict harvests are likely to be contentious (e.g., Jones et al. 2008), 

but the long-term benefits of protecting mature spawning individuals are undeniable. Large 

individuals are often more fecund and produce offspring of a higher fitness,  and  mature population 

structures provide resilience (the storage effect) when environmental conditions are unfavorable 

(Chesson & Warner 1981, Anderson et al. 2008).  This is true for a number of harvested species, 

particularly in shallow marine or freshwater environments, where fishing-related barotrauma is less 

of a problem. We therefore advocate the use of MPAs, and MPAs + harvest slot limits for the 

rebuilding and long-term conservation of Caribbean spiny lobster spawning biomass and suggest 

that it be considered for other intensively harvested marine and freshwater species.  
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Table 1. Management scenarios and fishing restrictions for spiny lobster applied to each model run 

and the justification for the selection of each simulation. 

 

Scenario Fishing restrictions Justification 

1. Fishing status quo min size limit 75 mm minimum size limit similar to 

that in Florida (76 mm); no 

maximum size limit or MPAs 

2. Slot limit slot limit* 75 – 105 mm 105 mm CL is the size at 

which fisheries landings 

sharply decline in the Florida 

trap fishery 

slot limit 75 - 135 mm 135 mm CL is the point at 

which a significant number of 

female lobsters produce a 3
rd

 

clutch 

3. Marine protected area 

(MPA) 

min size limit 75 mm + 2% no 

take protection 

2% = current area protected by 

MPA in the Caribbean 

(Knowles et al. 2015) 

min size limit 75 mm + 10% 

no take protection 

10% = target for MPA 

protection from the Convention 

on Biological Diversity 1993, 

Aichi Target 11 2010. 

min size limit 75 mm + 30% 

no take protection 

30% = target for MPA 

protection from the World 

Parks Congress 2014 

4. MPA + slot limit 2% no take protection + slot 

limit 75 – 105 mm 

as for scenarios 2 and 3  

2% no take protection + slot 

limit 75 – 135 mm 

as for scenarios 2 and 3  

30% no take protection + slot 

limit 75 – 105 mm 

as for scenarios 2 and 3  

30% no take protection + slot 

limit 75 – 135 mm 

as for scenarios 2 and 3  

* Combined minimum and maximum size limits between which lobsters are harvested.  
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Table 2. Summary of deterministic model runs incorporating management scenario and fishing 

effort on total abundance (N), spawning stock abundance (SSA), reproductive output (RO), harvest 

biomass (FB) , number of migrants, and population growth rate () for the 10 populations of spiny 

lobsters combined over 30 years.  

 

Management 

scenario 

Scenario 

particulars 

n Spawning 

stock 

Reproductive 

output 

Harvest 

biomass 

(Mt) 

Migrants
a 

b 

Low harvest  

   intensity 

 

   fishing  

     status 

quo 

  

 

 

2.31E+12 

 

 

 

1.34E+10 

 

 

 

1.09E+15 

 

 

 

3.20E+07 

 

 

 

NA 

 

 

 

1.26-

1.28 

   harvest 

slot  

      limits 

MSL 

(maximum size 

limit) 105 

8.53E+12 4.51E+10 3.68E+15 8.79E+07 NA 1.32-

1.34 

MSL 135 3.85E+12 2.18E+10 1.77E+15 5.09E+07 NA 1.28-

1.31 

   MPA   

     (marine  

     protected  

     area) 

2% coverage 1.14E+14 5.22E+11 6.66E+16 6.18E+08 8.77E+08 - 

10% coverage 2.38E+14 1.24E+12 1.74E+17 1.42E+09 1.66E+09 - 

30% coverage 5.37E+14 2.65E+12 3.64E+17 1.39E+09 2.04E+09 - 

   MPA +  

     harvest  

     slot limit
c 

MSL 105 + 

MSL 2% 

1.39E+14 6.07E+11 7.32E+!6 6.96E+08 3.40E+09 - 

MSL 135 + 

MPA 2%  

1.24E+14 5.78E+11 6.85E+16 7.97E+08 3.36E+09 - 

MSL 105 + 

MPA 30%  

1.42E+15 6.09E+12 7.08E+17 4.14E+09 7.23E+09 - 

MSL 135 + 

MPA 30%  

6.59E+14 3.05E+12 3.90E+17 2.48E+09 8.27E+09 - 

 

cc
e 

- ~'
 

A
 

te
dA

rt
ic

le
 



 

 

 
This article is protected by copyright. All rights reserved. 
 

Medium harvest  

intensity 

 

        

   fishing  

     status 

quo 

 1.80E+07 1.46E+05 6.95E+09 1.49E+02 NA 0.84-

0.86 

   harvest 

slot  

      limits 

MSL 105 7.73E+08 5.06E+06 2.52E+11 4.12E+03 NA 0.94-

0.96 

MSL 135 1.02E+08 7.62E+05 3.66E+10 7.89E+02 NA 0.88-

0.91 

   MPA 2% coverage 8.24E+13 3.79E+11 4.83E+16 2.08E+08 1.06E+09 - 

10% 

coverage 

1.60E+14 8.70E+11 1.30E+17 3.88E+08 3.63E+09 - 

30% 

coverage 

2.05E+14 1.24E+12 2.03E+17 3.08E+08 6.67E+09 - 

   MPA +  

     harvest  

    slot limit 

MSL 105 + 

MPA 2% 

1.02E+14 4.20E+11 5.10E+16 2.60E+08 4.38E+09 - 

MSL 135 + 

MPA 2%  

8.49E+13 4.13E+11 4.86E+16 3.41E+08 4.71E+09 - 

MSL 105 + 

MPA 30%  

1.18E+15 4.54E+12 4.69E+17 1.04E+09 1.06E+10 - 

MSL 135 + 

MPA 30%  

8.43E+14 2.99E+12 3.19E+17 9.99E+08 1.70E+10 - 
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High harvest  

intensity 

        

   fishing  

     status  

     quo 

 0.00 0.00 0.00 0.00 NA - 

   harvest  

    slot 

limits 

MSL 105 3.96E+06 2.14E+04 2.35E+09 0.00 NA 0.81 

MSL 135 2.43E+05 1.51E+03 5.90E+07 0.00 NA -  

   MPA 2% coverage 6.84E+13 2.76E+11 3.94E+16 5.16E+07 1.02E+09 - 

10% 

coverage 

1.36E+14 7.41E+11 1.15E+17 9.21E+07 3.96E+09 - 

30% 

coverage 

1.65E+14 9.56E+11 1.83E+17 0.00 8.21E+09 - 

   MPA +  

     harvest  

       slot  

        limit 

MSL 105 + 

MPA 2% 

5.27E+13 2.94E+11 4.00E+16 2.84E+08 3.46E+09 - 

MSL 135 + 

MPA 2%  

6.85E+13 2.37E+11 3.94E+16 4.16E+08 4.89E+09 - 

MSL 105 + 

MPA 30%  

2.90E+14 5.53E+12 3.32E+17 0.00 4.00E+11 - 

MSL 135 + 

MPA 30%  

2.02E+14 2.93E+12 1.02E+18 0.00 6.22E+10 - 

 

a
Average number of lobsters that moved into the fishery minus emigrant mortality from MPAs for 

the 10 populations over 30 years.  

b
A (-)indicates a fluctuating  after 30 years.  

c
 Combined minimum and maximum size limits between which lobsters are harvested.  
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Figure 1. Stage-based matrix model of reproductive and nonreproductive cycles used for the 10 

countries in the Western Atlantic that harvest the most P. argus: (a) larval connectivity matrix 

among the 10 countries (HAI, Haiti; BEL, Belize; DR, Dominican Republic; HON, Honduras; 

MEX, Mexico; BAH, Bahamas; CUB, Cuba; VEN, Venezuela; NIC, Nicaragua; USA, United 

States) and (b) sex- and stage-based structure of the model depicted for  Belize, where reproductive 

(top) and nonreproductive (bottom) portions of the population are modeled separately before 

summing to obtain results for the entire population (arrows, individuals surviving and growing to 

the next stage [Gx] or probability of an individual surviving and remaining in its current stage [Px]; 

Fx, stage-specific fertility; J, juvenile; SA, subadult; A, adult; numbered codes for life-history stages 

described in Supporting Information).  
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Figure 2. The model’s basic form with reproduction included.  Nt  is a vector of lobsters in each sex 

and stage class at time t, and At is the sex-specific life-history projection matrix. 

Variables (G, P, F, ) and life stages (L, J, SA, A for males [m] and females [f]) are defined in 

Methods  

0) 
' ~ u . ~ 

~ } 

~ 

< 

N1 t 1 

L.. 
Jm 
SA"' 
1\ I • 

A I S.,, 
Lr 
Jr 
SA, 
Ai r 

J\ IU 

0 0 a "8.(AI) 
-'i'li & 0 0 
0 YJ.M 0 0 
0 0 ~· 0 
0 0 0 G....,., 
0 0 a a 
0 0 0 ( J.p)Em{A I ) 
0 0 a 
0 0 0 

0 
0 
0 

PEm(tl. l 5), 0 pf, (Al) pfi( Al O) 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 
0 0 0 0 
P.-.1!.6,IJ 0 a 0 0 I S■ 
(l , p)f.o[ A l.l ) 0 0 ( l . p)f,(AI) ( l ..p)B( Al.l J Lr 
0 {ii. ~ 0 0 0 Jr 
0 0 ~ 0 0 0 SA, 
0 0 w..AI 0 0 0 A l r 
0 0 0 GM.!<2 0 0 
0 0 0 0 l"A_W1ti A IOr 



 

 

 
This article is protected by copyright. All rights reserved. 
 

 

Figure 3. Effect of management scenario and harvest intensity on spiny lobster spawning stock 

abundance for the 10 modeled lobster populations  combined over 30 years (MPA, marine protected 

area; slot, harvestable size range 75-105 or 135 mm carapace length [CL] ). Logarithmic y-axis 

scales are used to permit easier visualization of results among scenarios. 
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Figure 4. Stock structure of fisheries sized lobsters (> 85 mm carapace length [CL]) at year 30 for 

each of the management scenarios run at moderate fishing effort (F = 0.34) (MPA, marine protected 

area; slot, harvestable size range 75-105 or 135 mm CL; black bars, male; white bars, female). The 

smallest adult lobsters (75-85 mm CL) are not included in the figure because their much higher 

abundances obscured the stock structure of larger size classes.  The y-axis scales differ to permit 

easier visualization of the relative results among scenarios. 
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