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Review of upwelling off the southeastern United States
and its effect on continental-shelf
nutrient concentrations and primary productivity

Larry P. Atkinson and James A. Yoder

Skidaway Institute of Oceanography
P.O. Box 13687, Savannah, Georgia 31416, USA

Thomas N. Lee
University of Miami
Rosenstiel School of Marine and Atmospheric Sciences 
4600 Rickenbacker Causeway, Miami, Florida 33149, USA

Gulf Stream induced upwelling occurs along the length of the southeastern United 
States continental shelf break. Upwelling events are produced by northward prop­
agating Gulf Stream frontal meanders and eddies and travel northwards with these 
features. Meanders and eddies occur throughout the year in a period band of 2 —14 
days; however, resultant upwellings can affect the shelf quite differently. During fall, 
winter, and spring, upwelling is restricted to the outer shelf by cross-shelf density 
distributions, but in the summer upwelled water may penetrate across as a subsurface 
intrusion if aided by upwelling-favorable winds. If water does penetrate across the 
shelf, it may become stranded, detached from its deep-water Gulf Stream source, and 
may reside on the shelf for many weeks. The mass of nitrate within stranded water 
masses has been observed to be over 2500 metric tonnes nitrate-nitrogen covering an 
area of 2500 km2.

Gulf Stream upwelling-induced nutrient inputs dominate all other sources to the 
South Atlantic Bight (SAB) and have a profound effect on phytoplankton produc­
tion. During the fall, winter, and spring, high phytoplankton coincides with outer 
shelf upwelling, while in the summer production also occurs in the lower layer over 
the inner and middle shelf. Over one-half the phytoplankton production is consi­
dered “ new” production.

Introduction
The continental shelf of the southeastern United States 
extends from Cape Canaveral, Florida, to Cape Hat- 
teras, North Carolina (Fig. 1). The shelf varies in width 
from less than 50 km off Cape Canaveral and 30 km off 
Cape Hatteras to a maximum of 120 km off Savannah, 
Georgia. The bathymetry generally follows the coastline 
with cuspate bays formed between the shoals off Capes 
Fear, Lookout, and Hatteras. Depths over the shelf are 
quite uniform with typical relief less than 2 m, although 
in the vicinity of the sparse rock outcrops relief may 
reach 5 m. In contrast to other continental shelves, 
there are no basins or sills. The shelf break is at about 
55 m.

A  distinctive aspect of the southeastern United States 
shelf is the proximity of the Gulf Stream, which flows 
northwards along the shelf break. The western edge of 
the Gulf Stream generally lies within ±15 km of the 
shelf break south of 32°N latitude (Bane and Brooks,

1979). Between 32° and 33°N a topographic feature 
known as the “Charleston Bump” forces an offshore 
flow of the Gulf Stream (Brooks and Bane, 1978; Piet- 
rafesa et al., 1978; Legeckis, 1979). Downstream of the 
“Bump” enlarged east—west meanders displace the 
Gulf Stream front up to 100 km from the shelf break 
(Legeckis, 1979; Bane and Brooks, 1979). Northward- 
propagating Gulf Stream frontal disturbances in the 
form of meanders and eddies exert considerable control 
over the oceanography of the adjacent shelf waters. 
Current meter and temperature records from the shelf 
edge south of the Charleston Bump show large- 
amplitude subtidal current and temperature fluctuations 
with periods of 5 — 10 days that are produced by these 
propagating frontal disturbances (Lee et al., 1981; Lee 
and Atkinson, 1983). Figure 2 shows the effect of a 
frontal eddy on the sea surface temperature. The cold 
upwelling core, between 29° and 30°N and about 80°W, 
is embedded in the Gulf Stream front. A warm streamer 
of Gulf Stream water curls cyclonically around the cold
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Gulf Stream front up to 100 km from the shelf break 
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over the oceanography of the adjacent shelf waters. 
Current meter and temperature records from the shelf 

edge south of the Charleston Bump show Large­
amplitude subtidal current and temperature fluctuations 
with periods of 5-10 days that are produced by these 
propagating frontal disturbances (Lee et al., 1981; Lee 
and Atkinson, 1983). Figure 2 shows the effect of a 

frontal eddy on the sea surface temperature . The cold 
upwelling core, between 29 ° and 30 °N and about 80°W, 

is embedded in the Gulf Stream front. A warm streamer 
of Gu lf Stream water cu rls cyclonically around the cold 



82 81 80  79 78 77 76 75
36 36

35

34 34

?  t ø ?  
/  
S

J  / /  ^

33 33

32 32

31 31

30 30

29 29

28 28

26 26

25 25
82 81 80 79 78 77 76 75

Figure 1. The southeastern United States continental shelf. 
Mean position of Gulf Stream is indicated.

upwelling core. The occurrence of a frontal eddy pro­
duces a cyclonic perturbation of the flow field with up­
welling of deeper, cooler, and nutrient-rich Gulf Stream 
water onto the outer shelf. Long-term current meter 
records indicate that these eddy-induced velocity and 
temperature fluctuations tend to occur every 5 to 10 
days throughout the year (Lee and Atkinson, 1983).

The upwelling process is clearly shown in a series of 
near synoptic cross-shelf sections made from Savannah 
(32°N) south to Ormond Beach (29°N) (Fig. 3). Off 
Savannah the Gulf Stream was close to the shelf break 
and nutrient concentrations were relatively low over the 

oshelf, while to the south upwelling was evident. Water 
temperature decreased to 15°C over the outer shelf, and 
a large dome feature with high nutrient concentrations 
was observed. High nutrient concentrations did not 
reach the surface as might be observed in a classical 
upwelling situation, but the high concentrations were 
well within the euphotic zone (1 % light at 50 m). 
Qualitatively we observe a zone of shelf-break upwell­
ing propagate northwards, causing variations in nutrient 
concentrations. This, of course, must be quantified.

Deeper waters in the Gulf Stream have a reliable 
nutrient/temperature relationship where, in the case of 
nitrate, the empirical relationship is:

[N 0 3] = 53 - 2 - 6  T (1)

for temperatures below 20°C. Because nutrients corre­
late well with temperature, we have been able to use 
temperature records to determine changes in nitrate 
with time at current meter locations. We can then cal­
culate nitrate flux, using the relationship

« 'N O ' =  (m—m) ( N 0 3—N O ,) (2)

where u is the daily mean onshore/offshore velocity 
component. N 0 3 is the daily mean nitrate concentration 
calculated from temperature, and the overbar repre­
sents a time average. A negative m'NO, corresponds to 
a net onshore nitrate flux. Using data obtained between 
December 1976 and April 1977, we determined an 
eddy-induced nitrate flux of —8 5 (xmoles m-2 s-1. We 
converted this to a mean annual nitrate flux by consid­
ering the alongshore length of upwelling events and 
their frequency. The result was a calculated upwell- 
ing-induced flux of 55 000 t nitrogen/year. This com­
pares to riverine input of 12 600 t and atmospheric in­
put of 7 500 t N. Recent recalculations of the shoreward 
nitrate flux using more extensive current meter and 
hydrographic data indicate a yearly flux in excess of 
190 000 t nitrogen per year (Lee and Atkinson, 1983). 
These quantities are summarized in Figure 4.

Our discussion so far has been limited to onshore 
nitrogen flux at the shelf break. During stratified condi­
tions, which occur from June to September (Atkinson et 
al., 1983), dense water upwelled at the shelf break can 
penetrate across the shelf, usually as a response to wind- 
driven Ekman flow (Atkinson, 1977; O ’Malley, 1981). 
Upwelled nutrient-rich waters may then reach the inner 
shelf and remain in the euphotic zone for days or weeks 
(O ’Malley, 1981). This process is enhanced off north­
east Florida where upwelling-favorable winds are more 
frequent than elsewhere along the southeastern U.S. 
(Green, 1944; Taylor and Stewart, 1959), and diverging 
isobaths can amplify upwelling (Blanton et al., 1981). 
Such an upwelling event was observed off northeast 
Florida in the summer of 1979. Prior to the upwelling 
event the cross-shelf distribution of properties was 
similar to that shown in Figure 5. Temperatures were 
above 23°C and nitrate and chlorophyll were low. One 
week later upwelled water (<  22 • 5°C) intruded ~ 30  
km onto the middle shelf, and the water temperature at 
the outer shelf was less than 15°C (Fig. 6). In the fol­
lowing two weeks (Fig. 6 b, c) the intrusion moved 10 
km farther shoreward and minimum water temperature 
in the intrusion core was less than 16°C. By week 7, 
upwelled water had penetrated more than 50 km from 
the outer shelf, and stranded water of less than 18°C 
covered an area of greater than 500 km2. The stranding 
was caused by an apparent onshore meander of the Gulf 
Stream between weeks 6 and 7 that resulted in warmer 
shelf-break bottom temperatures.
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Figure 1. The southeastern United Stat es continental shelf. 
Mean position of Gulf Stream is indicate d. 
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duces a cyclonic perturbation of the flow field with up­
welling of deeper , cooler, and nutrient-rich Gulf Stream 
water onto the outer shelf. Long-term current meter 
records indicate that these eddy-induced velocity and 
temperature fluctuations tend to occur every 5 to 10 
days throughout the year (Lee and Atkinson , 1983) . 

The upwelling process is clearly shown in a series of 
near synoptic cross-shelf sections made from Savannah 
(32°N) south to Ormond Beach (29°N) (Fig. 3). Off 
Savannah the Gulf Stream was close to the shelf break 
and nutrient concentrations were relatively low over the 

cshelf , while to the south upwelling was evident. Wate r 
temperature decreased to l5 °C over the outer shelf, and 
a large dome feature with high nutrient concentrations 
was observed. High nutrient concentrations did not 
reach the surface as might be observed in a classical 
upwelling situation, but the high concentrations were 
well within the euphotic zone (1 % light at 50 m) . 
Qualitatively we observe a zone of shelf-break upwell ­
ing propagate northwards, causing variations in nutrient 
concentrations . This, of course , must be quantified . 

Deeper waters in the Gulf Stream have a reliable 
nutrient / temperature relationship where , in the case of 
nitrate , the empirical re lationship is: 

(1) 

for temperatures below 20°C. Because nutrients corre­
late well with temperature, we have been able to use 
temperature records to determine changes in nitrate 
with time at current meter locations. We can then cal­
culate nitrate flux, using the relationship 
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where u is the daily mean onshore /offshore velocity 
component. N0 3 is the daily mean nitrate concentration 
calculated from temperature, and the overbar repre­
sents a time average. A negative u 'N0 3 corresponds to 
a net onshore nitrate flux. Using data obtained between 
December 1976 and April 1977, we determined an 
eddy-induced nitrate flux of -8 · 5 µmoles m-2 s- 1

. We 
converted this to a mean annual nitrate flux by consid­
ering the alongshore length of upwelling events and 
their frequency. The result was a calculated upwell­
ing-induced flux of 55 000 t nitrogen /year. This com­
pares to riverine input of 12 600 t and atmospheric in­
put of 7 500 t N. Recent recalculations of the shoreward 
nitrate flux using more extensive current meter and 
hydrographic data indicate a yearly flux in excess of 
190 000 t nitrogen per year (Lee and Atkinson , 1983). 
These quantities are summarized in Figure 4 . 

Our discussion so far has been limited to onshore 
nitrogen flux at the shelf break. During stratified condi­
tions , which occur from June to September (Atkinson et 
al., 1983 ), dense water up welled at the shelf break can 
penetrate across the shelf, usually as a response to wind­
driven Ekman flow (Atkinson, 1977; O'Malley, 1981) . 
Upwelled nutrient -rich waters may then reach the inner 
shelf and remain in the euphotic zone for days or weeks 
(O'Malley, 1981) . This process is enhanced off north­
east Florida where upwelling-favorable winds are more 
frequent than elsewhere along the southeastern U.S. 
(Green , 1944; Taylor and Stewart , 1959), and diverging 
isobaths can amplify upwelling (Blanton et al., 1981 ). 
Such an upwelling event was observed off northeast 
Florida in the summer of 1979. Prior to the upwelling 
event the cross-shelf distribution of properties was 
similar to that shown in Figure 5. Temperatures were 
above 23°C and nitrate and chlorophyll were low. One 
week late r upwelled water ( < 22 · 5°C) intruded -30 
km onto the middle shelf , and the water temperature at 
the outer shelf was less than 15°C (Fig. 6). In the fol­
lowing two weeks (Fig. 6 b, c) the intrusion moved 10 
km farther shorewa rd and minimum water temperature 
in the intrusion core was less than 16°C. By week 7, 
upwelled water had penetrated more than 50 km from 
the outer shelf, and stranded water of less than l 8°C 
covered an area of greater than 500 km 2

. The stranding 
was caused by an apparent onshore meander of the Gulf 
Stream between weeks 6 and 7 that resulted in warmer 
shelf-break bottom temperatures. 
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Augustine where a frontal eddy is over the shelf break and upwelling occurs.

The cross-shelf distributions for weeks 4 - 7  are 
shown in Figures 7 a —d, 8 a —d, and 9 a—d. The intru­
sion event occurred between weeks 4 and 5 when 17°C 
water was advected over the outer shelf. During week 6 
the intrusion shifted onshore and by week 7 it was iso­
lated from a new intrusion at the shelf edge where 
<17°C was observed. Nitrate concentrations correlated 
with the colder waters; however, the stranded mid-shelf 
intrusion (see station 439, week 6, and station 
535—534, week 7) had lower nitrate concentrations by 
week 7, no doubt due to phytoplankton assimilation. 
The new intrusion at the outer shelf in week 7 carried 
high nitrate concentrations and low chlorophyll. Phyto­
plankton had not yet developed in the intrusion.

The stranded intrusions we have observed carry 
2000—3000 t of nitrate-nitrogen and cover approxi­
mately 2000 km3 (O ’Malley, 1981). When an intrusion 
is stranded, nitrate concentrations are reduced to near 
zero within a week or two.

The effect of shelf-break upwelling on plant produc-

Nitrogen Inputs to the SAB
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Figure 4. Schematic diagram of annual nitrogen input to the 
Georgia shelf as computed by Haines (1974). Values are in 
tonnes nitrogen per year. Eddy flux measurements are shown 
in brackets. (Figure from Lee et al., 1981).
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shown in Figures 7 a-d, 8 a-d, and 9 a-d. The intru­
sion event occurred between weeks 4 and 5 when l 7°C 
water was advected over the outer shelf. During week 6 
the intrusion shifted onshore and by week 7 it was iso­
lated from a new intrusion at the shelf edge where 
<17°C was observed. Nitrate concentrations correlated 
with the colder waters; however , the stranded mid-shelf 
intrusion (see station 439, week 6, and station 
535-534, week 7) had lower nitrate concentrations by 
week 7, no doubt due to phytoplankton assimilation. 
The new intrusion at the outer shelf in week 7 carried 
high nitrate concentrations and low chlorophyll. Phyto­
plankton had not yet developed in the intrusion. 

The stranded intrusions we have observed carry 
2000-3000 t of nitrate-nitrogen and cover approxi­
mately 2000 km 3 (O'Malley, 1981). When an intrusion 
is stranded, nitrate concentrations are reduced to near 
zero within a week or two . 
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tion has recently been summarized by Yoder et al. 
(1981). Their study indicates that when shelf waters are 
not stratified, upwelling causes productive phytoplank-
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ton blooms on the outer shelf. Phytoplankton produc­
tion averages about 2 g C m-2 day-1 during upwelling 
events, and “ new” production is 50 %, or more, of the 
total (Dugdale and Goering, 1967). When shelf waters 
are stratified and upwelled waters penetrate well onto 
the shelf as a subsurface intrusion, phytoplankton pro­
duction averages about five times higher than in the 
nutrient-depleted overlying mixed layer. Phytoplankton 
within the intrusion can deplete upwelled nitrate in 
about 7 - 1 0  days, after which no further net increase in 
phytoplankton biomass is observed.

Current meter records show that upwelling in the 
Gulf Stream frontal disturbances occurs roughly 50 % 
of the time on the outer shelf during November—April 
(shelf not stratified), leading us to estimate that sea­
sonal primary production in these upwelled waters is 
175 g C itT2 6 m o s r1 of which at least 50 % is “new” 
production. More than 90 % of production occurs dur­
ing upwelling at the outer shelf, and thus Gulf Stream 
induced upwelling is the dominant process affecting 
primary productivity of the outer shelf. Our seasonal 
estimates of outer shelf plant production are, respec­
tively, two and ten times higher than previous estimates 
that did not account for upwelling by Gulf Stream dis­
turbances.
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tion has recently been summarized by Yoder et al. 
( 1981 ). Their study indicates that when shelf waters are 
not stratified , upwelling causes productive phytoplank-
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ton blooms on the outer shelf. Phytoplankton produc­
tion averages about 2 g C m-2 day- 1 during upwelling 
events , and " new" production is 50 %, or more, of the 
total (Dugdale and Goering, 1967). When shelf waters 
are stratified and upwelled waters penetrate well onto 
the shelf as a subsurface intrusion , phytoplankton pro­
duction averages about five times higher than in the 
nutrient-depleted overlying mixed layer. Phytoplankton 
within the intrusion can deplete upwelled nitrate in 
about 7-10 days, after which no further net increase in 
phytoplankton biomass is observed. 

Current meter records show that upwelling in the 
Gulf Stream frontal djsturbances occurs roughly 50 % 
of the time on the outer shelf during November-April 
(shelf not stratified), leading us to estimate that sea­
sonal primary production in these upwelled waters is 
175 g C m- 2 6 mos.- 1 of which at least 50 % is "new " 
production. More than 90 % of production occurs dur­
ing upwelling at the outer shelf , and thus Gulf Stream 
induced upwelling is the dominant process affecting 
primary productivity of the outer shelf . Our seasonal 
estimates of outer shelf plant production are, respec­
tively, two and ten times higher than previous estimates 
that did not account for upwelling by Gulf Stream dis­
turbanc es. 
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