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ABSTRACT
We present a feasibility study on different tomographic algorithms to overcome the issues of finite sets of projection data, limited viewing
angles, and noisy data, which cause the tomographic reconstruction to be an ill-posed inversion problem. We investigated three approaches:
single angle Abel inversion, two angle approach, and multiple angle 2D plasma tomography. These methods were tested on symmetric and
asymmetric sample functions and on experimental results from a supersonic flowing argon microwave plasma sustained in a cylindrical quartz
cavity. The analysis focused on the afterglow region of the microwave flow where a plasmoid-like formation was observed. We investigated
the effects of the uniform random noise added to the simulated data by applying smoothing techniques. The quality of reconstructed images
was assessed by using peak signal-to-noise ratio and universal quality image measures. The results showed that the Abel inversion approach
could be employed only when the system is radially symmetric, while the systems with slight asymmetry could be reconstructed with the two
angle approach. In the complete absence of symmetry, full 2D tomographic reconstruction should be applied. The data analysis showed that
the best results were obtained by employing either the filtered back projection or the simultaneous algebraic reconstruction technique. The
total variation minimization method proved to be the best denoising technique. Each approach was used to obtain the spatial distributions
of argon excited states taken at three positions along the plasmoid-like structure. The results indicated that the plasma was asymmetric with
argon populating the cavity surface.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5138921., s

I. INTRODUCTION

The importance of understanding and characterizing the main
plasma parameters has been a focal point of academic and indus-
trial research for decades.1,2 Various experimental and numerical
methods have been developed in an attempt to fully describe dynam-
ics of gas discharges.3–6 Often it is necessary to apply non-intrusive
and in situ measurement techniques. Optical emission and absorp-
tion spectroscopy represent primary tools in achieving these goals
since they allow direct and indirect measurements of fundamental
plasma parameters, such as velocities, temperatures, and popula-
tion densities.7–12 However, these optical techniques provide only
insight into integrated effects of collective plasma behavior. In order

to look into the internal dynamics of the discharge, the integrated
data need to be transformed into the spatial distributions. A com-
monly used method for reconstruction of an inner plasma structure
is the Abel inversion, which assumes radial symmetry of the plasma
configuration.13–18 However, Abel inversion is not applicable in the
case of non-stationary, inhomogeneous plasmas with strong radial
asymmetry. It follows that the discharge should be observed from
at least two angles of observation. One way to obtain spatial dis-
tributions of various emitters in the plasma is to employ plasma
tomography methods based on observing the discharge at several
projections distributed at different viewing angles.19 The idea to
employ tomography as a tool for solving physics problems has long
been present in both theoretical and numerical research fields.19–23
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However, implementing the tomography methods for specific prob-
lems represents a challenge due to the limited number of data and
views in plasma. Over the years, extensive studies have been con-
ducted to develop a simplified method where only two mutually
perpendicular directions were used to obtain the inner plasma struc-
ture.24,25 This approximation includes only the first two terms in
the Fourier transform of the Radon integral, making it difficult to
depict the entire angular distribution of plasma parameters. There-
fore, whenever possible, a full two-dimensional tomography, where
the plasma is observed at multiple viewing projections and angles,
should be applied. A number of valuable approaches were devel-
oped for tomographic reconstruction and are available in the lit-
erature. The commonly used reconstruction algorithms belong to
three main groups: analytical methods [such as Filtered Back Pro-
jection (FBP)26,27 and GRIDREC28,29], algebraic methods [such as
Algebraic Reconstruction Technique (ART) and Simultaneous Alge-
braic Reconstruction Technique (SIRT)],26,30 and statistical methods
(such as maximum likelihood method).31,32

One of the main issues when applying reconstruction tech-
niques to experimental data is the limited number of viewing projec-
tions and the presence of noise. Over the years, numerous interpo-
lation (i.e., Lagrange interpolation and cubic spline approximation)
and smoothing [i.e., moving average filter,33 non-local means algo-
rithm,34,35 and total variation (TV) minimization36,37] techniques
were developed to overcome this problem. Specifically, the tech-
niques based on the Tikhonov problem formulation proved to be
highly successful in the case of the sparse data where some prior
information is known.38–41

In this study, we evaluated the applicability of all reconstruction
techniques discussed above (Abel inversion, two angle approach,
and 2D tomography) for their use in plasmas with the cylindrical
geometry. The tomographic methods were tested with three differ-
ent testing functions. To simulate experimental conditions, a ran-
dom uniform noise of 1%, 5%, and 10% was added to theoretical val-
ues generated from the testing functions. We estimated the quality of
the reconstructed images by employing two well-known measures:
universal image quality index (UQI)42 and peak signal-to-noise ratio
(PSNR).

We employed the proposed inversion techniques to evaluate
spatial population distributions of the neutral argon excited state
[3s23p5(2P0

1/2)4p, J = 1] obtained from the spectral line intensity at
714.70 nm. Argon plasma was generated inside a microwave super-
sonic flowing cavity with the inner diameter of 32 mm.43 The exper-
imental setup only allowed measurements at 21 viewing angles in
the range of 46○–168○ with 17 viewing projections. Reconstruction
algorithms were tested based on these constraints.

In Secs. II–IV, we briefly describe these approaches to improve
data stability and to estimate the quality of the reconstructed images.
Then we provide the detailed description of the proposed inver-
sion techniques and discuss their applicability (Sec. V). Finally, we
present and discuss the experimental results (Sec. VI).

II. RADON TRANSFORM
Currently, the image reconstruction in many research fields is

based on the application of a Radon transform integral.19 The Radon
transform is an integral transform whose inverse offers a means of
determining the total density of a certain function along a line, L.

To illustrate this, let us start by looking at light leaving plasma at an
angle θ with respect to the x-axis of the coordinate system outlined
in Fig. 1. To better visualize the problem, it is useful to transfer to
new coordinates s and p that are rotated by the given angle θ with
respect to x and y coordinates. Then,

s = x cos θ + y sin θ, (1)

p = −x sin θ + y cos θ. (2)

Figure 1 shows that the total light intensity, I(p, θ), emitted
from the plasma at an angle θ and distance p from the center of
the plasma represents the sum of light intensities from all plasma
emitters, aligned along a line parallel to the s-axis. This effect was
studied by Radon19 who showed that for a large number of emit-
ters, the sum of line intensities becomes the line integral, also called
a Radon integral,

I(p, θ) = R[ε(x, y)] = ∫
L
ε(x, y)ds, (3)

where L is the line of integration, ds is the increment of the length
along that line, and ε(x, y) is a two-dimensional emissivity function
of the plasma.

Radon theorem asserts that if intensities, I(p, θ), along every
projection, p, and over all directions, θ, are known, then the inverse
Radon integral exists and the emissivity function can be uniquely
reconstructed from I(p, θ),

ε(x, y) = R−1[I(p, θ)]. (4)

However, in plasma physics, the number of projection intensi-
ties together with the number of available viewing angles is often
limited due to the complexity of the experimental and diagnostic
systems. Specifically, in the case of low-pressure plasma systems,
where the plasma is generated in vacuum chambers, the number
of viewing angles is limited mostly by the available optical access
(i.e., the presence of windows on the usually opaque chamber walls).
From the mathematical point of view, the problem of plasma recon-
struction is a highly ill-posed problem. Furthermore, the experimen-
tal projection data are almost always disturbed by the presence of
noise. This means that there exists an infinite number of functions

FIG. 1. Parallel beam projection scheme at a specific angle.

Rev. Sci. Instrum. 91, 053102 (2020); doi: 10.1063/1.5138921 91, 053102-2

Published under license by AIP Publishing

https://scitation.org/journal/rsi


Review of
Scientific Instruments ARTICLE scitation.org/journal/rsi

ε(x, y) that satisfy Eq. (3) within the experimental error. Therefore, it
is crucial to increase the stability and precision of the reconstruction
techniques by smoothing and interpolating the limited experimental
data and providing alternate solutions when the number of viewing
angles is limited.

III. DATA STABILITY
In practical applications, projections are measured as a discrete

set of experimental data points. In order to provide a larger num-
ber of projections and obtain smoothing of the existing data, various
interpolation techniques are usually applied. The commonly used
techniques, such as Lagrange interpolation and cubic spline approx-
imation, belong to a family of functions that is based on the spatial
domain filtering. In the case when a priori information about the
smoothness of the experimental data exists, it is beneficial to employ
smoothing functions based on moving average filters.33 A moving
average filter smooths the data by replacing each data point with the
average of the neighboring data points defined within the span and
is given with the following equation:

ys(i) =
y(i + N) + y(i + N − 1) +⋯ + y(i −N)

2N + 1
, (5)

where ys(i) is the smoothed value for the i-th data point, N is the
number of neighboring data points on either side of ys(i), and 2N +
1 is the number of data points. Currently, the widely used approach
is a non-local algorithm for image denoising.34,35 In this algorithm,
the image is divided into i pixels with a value I(i) of each pixel. The
image is then scanned in search of all pixels that really resemble the
pixel that needs to be denoised. The estimate value Î(i) is computed
based on the weighted average of all the pixels j on the image,

Î(i) =∑
j
ωijI( j), (6)

where the family of weights ωij depends on the similarity between
the pixels i and j and is determined as

ωij =
1
Zi

e−
Gd∗∣I(Nd(i))−I(Nd( j))∣2

h2 . (7)

The constant Zi =∑jωij is a normalizing term, Gd is a Gaussian spa-
tial kernel, I(Nd(i)) − I(Nd(j)) is an Euclidean distance between the
neighborhoods Nd(i) and Nd(j) of the gradient orientation at pixels
xi and xj, and h acts as a filtering parameter. The filtering parame-
ter controls the decay of the exponential function and therefore the
decay of the weights as a function of the Euclidean distances. This
parameter is typically adjusted manually in the algorithm.

The general approach when reconstructing noisy data with a
limited number of angles is to apply different regularization meth-
ods developed by Tikhonov.38,39 These methods designate the family
of algorithms that adjust the values of the pixels in the reconstructed
image until its projections resemble most closely the measured ones.
The solution, however, is not unique, and it is necessary to establish
a priori criteria for its convergence. Various theoretical approaches
have been developed in order utilize the Tikhonov approach for

plasma tomography out of which the most commonly used is total
variation minimization.36,37

Total variation (TV) minimization is based on minimizing the
norm of the discrete gradient (i.e., total variation) of the recon-
structed image. The goal is to find the solution to the reconstruction
problem that has the lowest total variation. This can be achieved
by applying the well-known steepest descent method given by the
iterative relation

εk+1 = εk − λ∇TV ∣εk , (8)

where∇TV is the gradient of the total variation of the given function
and λ is the regularization parameter.

The role of the regularization parameter, λ, is to regulate rel-
ative weights between the prior information and the noisy data.
Estimating this parameter represents a very important step in the
iterative algorithm. A very large λ provides a reconstruction where
noise is suppressed, but some useful information about the resulting
reconstruction may also be lost. An underestimation of λ leads to a
case where both artifacts and noise will be present in the reconstruc-
tion. In practice, the regularization parameter is either adaptively
selected for each iteration step or set as a constant that is estimated
empirically.

In conclusion, when no a priori knowledge about the smooth-
ness of the experimental data exists, it is beneficial to apply spatial
domain filters. Spatial filters eliminate noise to a reasonable extent
but at the cost of image blurring, which in turn loses sharp edges.
When a priori information about the experimental data is available,
it is recommended to employ either total variation or non-local reg-
ularization methods. Specifically, the total variation regularization
has achieved great success in image denoising because it can not only
effectively calculate the optimal solution but also retain sharp edges.
However, in the case of very noisy data, even with good estimation
of the regularization parameter λ, images tend to be over-smoothed,
flat areas are approximated by a constant surface, resulting in a
stair-case effect, and the image suffers from losses of contrast.46 At
present, most research on image denoising is focused on the adaptive
algorithm based on combining non-local methods with total varia-
tion regularization. The results showed that the combination of these
two models was successful in removing noise.47 Nevertheless, struc-
tural information is not well preserved by these methods when noisy
data are present, which degrades the visual image quality. This study
will discuss the benefits of employing all techniques depending on
the experimental system at hand.

IV. QUALITY OF RECONSTRUCTED IMAGES
Objective image quality measures play a very important role in

tomographic image reconstruction. There are two classes of objec-
tive quality image assessment approaches. One is based on using the
human visual system (HVS) characteristics to incorporate the per-
ceptual quality measure.45 The other class is mathematically defined
measures such as the widely used mean squared error (MSE) and
the peak signal-to-noise ratio (PSNR) but also the less popular uni-
versal image quality index (UQI).42 The mean squared error (MSE)
between two signals x and y is given as

MSE(x, y) = 1
N

N

∑
i=1
(xi − yi)2. (9)
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One issue with the MSE is that it depends strongly on the image
intensity scaling. A 10-bit image with a MSE of 100.0 looks much
better than an 8-bit image with the same MSE. This is why the MSE
is usually expressed as the peak signal-to-noise ratio (PSNR) as

PSNR = 10 log10
L2

MSE
, (10)

where L is the dynamic range of allowable pixel intensities. The
PSNR is a useful tool when comparing restoration results for the
same image, but the reconstruction quality of different images
cannot be compared using this method.

Unlike MSE and PSNR methods that use error summation
methods, the universal image quality index (UQI) is based on three
factors: loss of correlation, luminance distortion, and contrast dis-
tortion. It also does not depend on the reconstructed images, the
viewing conditions, or the individual observers. Therefore, it can
provide a meaningful comparison between various types of images.

In this study, we used both the PSNR and the UQI method to
obtain the quality of the reconstructed test images.

V. INVERSION TECHNIQUES
As already stated, tomographic reconstruction of noisy data

with a limited number of projections and viewing angles still
presents a challenge for the scientific community. Due to the
complexity of the modern experimental systems, it is often diffi-
cult to observe the plasma from every angle. Therefore, it is very
useful when it is possible to reconstruct the inner structure of
the plasma when only one or two observing angles are available.
In Subsections V A–V C, we will discuss three approaches applica-
ble for plasma reconstruction. The simplest approach is Abel inver-
sion, possible only when the plasma is radially symmetric. The main
advantage of this approach is that it allows measurements from only
one viewing angle. In the case of asymmetric discharges, when only a
small observation window is available, it is possible to obtain spatial
distributions of plasma parameters by using two mutually perpen-
dicular directions. However, if possible, the full two-dimensional
plasma tomography on the 0○–180○ angle range would provide the
most accurate and stable data.

The validity of these approaches was tested on the examples of
the Gaussian distribution function

f (x, y) = exp(−x2 − y2) (11)

and the two asymmetric sample functions

f (x, y) = x + 3y (12)

and

f (x, y) = (1 − x
2

+ x5 + y3) exp(−x2 − y2). (13)

The Gaussian distribution function was chosen because it is
radially symmetric and provides a good testing example for Abel
inversion, while the asymmetric sample functions would show the
applicability of the two angle approach. Since the first asymmet-
ric sample function [Eq. (12)] deviates only slightly from the axial
symmetry, we expect that employing the two angle approach would

provide an accurate reconstruction of this function. On the other
hand, using the second asymmetric sample function [Eq. (13)] will
explore the limits of the two angle approach. Finally, we tested the
sample asymmetry function [Eq. (13)] with 2D plasma tomography
techniques to provide the information on the stability and overall
precision of the applied methods.

To simulate the experimental conditions, all reconstructed
images were presented on a circle with 32-mm diameter.

A. Abel inversion
The Abel transform represents a special case of Radon trans-

form when the distribution function is radially symmetric and
depends only on r =

√
x2 + y2, so ε(x, y) = ε(r). This means that

the set of projections I(p, θ) is equivalent for any angle θ. After these
simplifications, the Radon integral given in Eq. (3) becomes

I(y) = 2
∞

∫
0

ε(r)dx = 2
∞

∫
y

ε(r)rdr√
r2 − y2

, (14)

where x =
√

r2 − y2 and x dx = r dr.
The inverse integral of Abel transform is the widely used

formula in the literature,19

ε(r) = − 1
π

∞

∫
r

I′(y)dy√
y2 − r2

, (15)

where I′(y) is the first derivative of I(y) with respect to y.
Figure 2 shows a comparison between the original Gaussian

distribution and the values of the same function obtained after
performing direct and inverse Abel transforms. To mimic the real
experimental conditions and to test the stability of the numerical
codes, a random noise of 1%, 2%, 5%, and 10% was added to the
projections obtained after the direct Abel integral.

As shown in Fig. 2, even at a random noise of 2%, it was hard to
reconstruct the original function. However, when the reconstructed
data were smoothed by applying the smoothing function [Eq. (5)]

FIG. 2. The inverse Abel transform of the Gaussian distribution function and com-
parison between the original function and Gaussian profiles with no error, 1%, 2%,
5%, and 10% error.
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FIG. 3. The inverse Abel transform of the Gaussian distribution function and comparison between the original function and unregularized and regularized Gaussian profiles
with (a) 2%, (b) 5%, and (c) 10% random noise.

and then regularized with the total variation (TV) minimization
method [Eq. (8)], we were able to reproduce the original data even
at a random noise of 10%. A comparison between the original Gaus-
sian function and unregularized and regularized reconstruction at
various noise levels (2%, 5%, and 10%) is presented in Fig. 3. The
regularization parameter λ was chosen independently for each case.
For low noise levels (1% and 2% noise), when the data were smooth,
small values of λ (λ = 0.1–0.2) were used. On the other hand, large
values of λ (λ = 0.5–0.9) were necessary to reconstruct noisy data
(5% and 10% noise). The results in Fig. 3 show that with some a
priori knowledge about the noise introduced into the experimen-
tal dataset, it is possible to fully reconstruct spatial distributions of
atoms/molecules in the radially symmetric plasma.

To better visualize the effects of TV regularization, Fig. 4 shows
a comparison between the original Gaussian function and unregu-
larized and regularized Gaussian profiles with 10% random noise.
We applied the universal image quality index (UQI) and peak signal-
to-noise ratio (PSNR) to quantitatively measure the discrepancy

between the original and reconstructed images. In the case of the
unregularized reconstruction, PSNR = 25.41 dB and UQI = 0.89,
while in the case of TV regularized reconstruction, PSNR = 35.48 dB
and UQI = 0.996, where UQI = 1 would correspond to the perfect
match.

Obviously, the Abel inversion approach is only meaningful if
the system possesses radial symmetry. The Abel inversion method
uses the data observed at only one direction and produces a 2D
image that is always represented by a set of concentric circles. Thus,
in the case of asymmetric systems [such as test functions given by
Eqs. (12) and (13)], Abel inversion is not a good choice of the recon-
struction method because the results depend highly on that one
viewing angle chosen.

B. Two angle approach
Abel inversion represents a very useful tool for reconstruction

of radially symmetric discharges, but in the case of radial asymmetry,

FIG. 4. 2D plot of the inverse Abel transform of the Gaussian distribution function and comparison between the original function and unregularized and regularized Gaussian
profiles with 10% random noise.
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two-dimensional plasma tomography with multiple viewing angles
should be employed. However, due to the limited access to the
plasma and due to the cost and complexity of the diagnostic sys-
tems, experimental setups often allow only two viewing directions.
Over the years, multiple attempts with various degrees of success
were achieved. In this work, we will discuss the approach to recon-
struct the plasma emissivity function based on the measurements
of spectral line intensities in two mutually perpendicular directions.
This method is based on the assumption that the emissivity function
is given by leading three terms in its Fourier expansion,24,25

ε(x, y) = ε(r, θ) = H(r) + K(r)cosθ + L(r) sin θ, (16)

where H(r), K(r), and L(r) are monotonous functions of radius.
After applying above assumptions and combining Eq. (16) with

Radon integral (3), we get

I(y) =
xmax

∫
xmin

(H(r) + K(r) cos θ + L(r) sin θ)dx,

I(x) =
ymax

∫
ymin

(H(r) + K(r) cos θ + L(r) sin θ)dy,

where xmax = −xmin =
√

R2 − y2, ymax = −ymin =
√

R2 − x2, cos θ
= x/r, and sin θ = y/r.

By applying the symmetry properties of the sine and cosine
functions on the symmetric interval within an angle θ interval

(−π
2

,
π
2
) and combining the symmetric and asymmetric parts of the

observed distributions, we derive

H(r) = − 1
π

R

∫
r

( I(x) + I(−x)
2

)
′ dx√

x2 − r2
,

K(r)
r
= − 1

π

R

∫
r

( I(x) − I(−x)
2x

)
′ dx√

x2 − r2

(17)

and

H(r) = − 1
π

R

∫
r

( I(y) + I(−y)
2

)
′ dy√

y2 − r2
,

L(r)
r
= − 1

π

R

∫
r

( I(y) − I(−y)
2y

)
′ dy√

y2 − r2
.

(18)

Function H(r) can be evaluated either from horizontal or verti-
cal measurements, and this can serve as a good test of the applied
technique.

Restricting the distribution to only three terms introduces
greater probability for inhomogenities and phantom images to
appear, which presents difficulties for formulating the entire angu-
lar distribution of plasma parameters. However, if the emissivity
distribution shows only a small departure from the axial symme-
try, this approach provides accurate reconstruction of the origi-
nal function.24,25 Therefore, having a priori information about the
plasma system at hand represents a crucial step when choosing this
reconstruction technique.

We have simulated the experimental measurement of spectral
line intensities with the direct Radon integral, and the algorithm
proved to have sufficient accuracy.43 Then, we have employed the
measurements at 0○ and 90○ to reconstruct the test functions.

A comparison between the original function, ε(x, y) = x + 3y,
and the function reconstructed from the two path method when
no error is introduced is given in Fig. 5. We applied the universal
image quality index (UQI) and peak signal-to-noise ratio (PSNR)
to quantitatively measure the discrepancy between the original and
reconstructed images. In this case, UQI was equal to 0.97, where 1
corresponds to the perfect match.

Similarly, as in Sec. V A, to test the stability of the applied two
path method, we introduced a random noise of 1%, 5%, and 10% to
the projections after the direct Radon transform was performed. The
reconstructions were smoothed by applying various smoothing fil-
ters described in Sec. III. The best results were obtained when using
the non-local means (NL-means) algorithm and the total variation
minimization (TV) method.

Figure 6 shows the comparison between the reconstruction
images. The regularization parameter λ was chosen independently

FIG. 5. Emissivity reconstruction for asymmetric discharge, represented by ε(x, y)
= x + 3y, UQI = 0.97, and PSNR = 9.46 dB.
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FIG. 6. Comparison between reconstructions of the asymmetric distribution represented by Eq. (12) obtained using the two path method with the 1%, 5%, and 10% error.
Smoothing algorithms used in the process are NL-means (top row) and TV regularization (bottom row).

for each case: λ = 0.1 at 1% error, λ = 0.5 at 5% error, and λ = 0.6 at
10% error, the same as in the case of the Abel inversion technique.
The difference between the reconstruction images was obtained
quantitatively by employing the UQI and PSNR, which is shown in
Table I. The values obtained in Table I show that the experimental
data with 5% or less percentage error could be smoothed with either
NL-means or TV regularization methods to obtain similar results,
but for percentage errors higher than 5%, TV regularization methods
should be used.

It should be noted that the two angle method is only useful
when the distribution function possesses some limited symmetry,
such as the distribution given by Eq. (12). In the case of fully asym-
metric distribution functions, such as Eq. (13), observing the sys-
tem at only two perpendicular angles will result in some informa-
tion missing. Furthermore, the quality of the reconstruction highly
depends on which two perpendicular angles are available for obser-
vation, as shown in Fig. 7. Figure 7 shows the comparison between

TABLE I. Quality of the image reconstructed with the two angle approach by applying
UQI and PSNR methods.

NL-means TV regularization

UQI PSNR (dB) UQI PSNR (dB)

1% error 0.913 9.46 0.929 9.59
5% error 0.895 9.22 0.908 9.41
10% error 0.853 8.66 0.884 9.38

the original function and its reconstruction when projections were
taken at 0○ and 90○ and at 45○ and 135○ relative to the horizon-
tal. No error was introduced. The universal image quality index was
0.69 and 0.68 for each set of projections, respectively, while the peak
signal-to-noise ratio was 15.26 and 15.21. Even though, visually,
the two images look very different, the quantitative analysis shows
similar results for both.

Clearly, for the systems with radial symmetry (such as the Gaus-
sian distribution function), there is no need to employ the two angle
approach since the internal structure of these systems can be recon-
structed by employing the Abel inversion technique that requires
only one observation direction. The above testing showed that a pri-
ori knowledge of the experimental system at hand is crucial when
choosing the two angle approach.

C. Two dimensional tomography
In order to fully recover the desired information about the

internal structure of the observed experimental system, the system
should be observed at multiple angles in a half circle from 0○ to 180○.
A range of reconstruction algorithms have been developed and are
available in the literature. The commonly used reconstruction algo-
rithms fall under three families: analytical, algebraic, and statistical
methods.

1. Analytical methods
The most common analytical method used nowadays is Filtered

Back Projection (FBP).26 The Filtered Back Projection technique is
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FIG. 7. Comparison between the original distribution, represented by Eq. (13), and its reconstruction obtained using the two path method when projections were taken at 0○
and 90○ (UQI = 0.69 and PSNR = 15.26) and at 45○ and 135○ relative to the horizontal (UQI = 0.68 and PSNR = 15.21).

based on solving the inverse Radon transform integral [Eq. (4)] by
finding the Fourier transform of the distribution function ε(x, y),

ε(x, y) = ∫
∞

−∞
∫
∞

−∞

E(νs, νp) exp[i2π(sνs + pνp)]dνsdνp. (19)

Then, by applying the Fourier slice theorem,20 the measured spec-
tral line intensities can be expressed as a set of projections Iθ(p)
for different angles θ, and the equation for the unknown spatial
distribution function in polar coordinates becomes

ε(x, y) = ∫
π

0
dθ∫

∞

−∞

dν∣ν∣F(Iθ(p)) exp(i2πνp0), (20)

where p0 = sνs + pνp.
In principle, the integration in the filtered projection given by

Eq. (20) has to be carried over all frequencies. However, in practice,
the energy contained in the Fourier transform components above a
certain frequency is negligible, and we may consider the projections
bandlimited. When the highest frequency in the projections is finite,
Eq. (20) becomes

ε(x, y) = ∫
π

0
dθ∫

∞

−∞

F(Iθ(p))H(ν) exp(i2πνp0)dν, (21)

where H(ν) is a high frequency noise filter.
Experimentally obtained line intensities are presented as a dis-

crete set of projections, measured with the spatial sampling interval
τ. Thus, p = nτ, where n is an integer. If we assume that each projec-
tion Iθ(kτ) is zero outside the index range k = 0, 1, . . ., K − 1, where
K is the number of angles at which the projections are sampled, we
may express the filtered projection as

ε(x, y) = π
K

K

∑
i=1

τ
K−1

∑
k=0

h(nτ − kτ)Iθ(kτ), n = 0, 1, . . . , K − 1. (22)

Here, we applied the inverse Fourier transform and the convolution
theorem. This means that each filtered projection has to be back-
projected.

In this work, we used the Shepp–Logan filter,48 a commonly
used filter in the literature,

h(nτ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2
π2τ2 , n = 0

− 2
n2π2(4ν2 − 1) , n ≠ 0.

(23)

Filtered Back Projection is an often employed reconstruction
method because it is computationally very efficient and is already
implemented in countless software packages.

Recently, another approach based on Fourier transform, named
GRIDREC,28,29 is developed. The algorithm for GRIDREC makes
use of the gridding method for resampling the Fourier space from
polar to Cartesian coordinates, offering both computational effi-
ciency and negligible artifacts. The idea is to pass a convolution
kernel W(νs, νp) over the data sampled on the polar grid, with the
convolutions’ output evaluated at the points of the Cartesian grid.
The contribution of W(νs, νp) is then removed after the inverse
Fourier transform. In polar coordinates, the convolution step can
be expressed as follows:

H(νs, νp) = F(νs, νp) ∗W(νs, νp)

= ∫
π

0
dθ∫

∞

−∞

dν∣ν∣F(Iθ(p))W(νs − ν cos θ, νp − ν sin θ),

(24)

where the multiplication F(Iθ(p))|ν| in Eq. (24) corresponds to
the filtering operation in FBP routines. As is the case of FBP,
Eq. (24) needs to be discretized in order to implement the GRIDREC
method. Consequently, computer implementation of tomographic
reconstruction algorithms, based on both GRIDREC and FBP rou-
tines, can lead to several artifacts adversely affecting the recon-
structed images as a result of the inherent discretization required.

2. Algebraic reconstruction techniques
The algebraic reconstruction techniques form a family of algo-

rithms that aims at solving the tomographic problem iteratively.
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FIG. 8. Parallel beam projection scheme at a specific angle.

In these techniques, the distribution function to be reconstructed is
modeled as a discrete array of pixels with an unknown value. The
algorithm is based on altering the value of each pixel in such a way
that their sum agrees with the values of the measured projections.26

Figure 8 shows a grid superimposed on the unknown distribu-
tion ε(x, y). Let us assume that within each cell, the function ε(x, y)
is represented with εj and is uniform but different from other cells.

For algebraic techniques, the calculated projections, pi, are rep-
resented with the finite width lines (rays) running through the (x,
y)-plane. The calculated projection, pi, is then the weighted sum of
the rays that crossed the line of pixels in the distribution,

pi =
N

∑
j=1

wijεj, i = 1, 2, . . .M, (25)

where M is the total number of rays (in all the projections), N is
the total number of cells, and wij is the weighting factor that repre-
sents the contribution of the jth cell to the ith ray integral. Algebraic
reconstruction techniques are iterative techniques. After q iterations,
the calculated projection, p(q)i , is compared to the measured projec-
tion, Ii, and the values of the unknown distribution, ε(q)j , are updated
as

ε(q)j = ε(q−1)
j + wij

Ii − p(q)i

∑N
j=1 w

2
ij

, (26)

with initial values chosen as ε(0)j = 0.
Various computer implementations were developed for alge-

braic reconstruction techniques. In this study, we will discuss
the application of the Algebraic Reconstruction Technique (ART)
and Simultaneous Algebraic Reconstruction Technique (SIRT) for
tomography purposes. In both of these methods, wij

′s in Eq. (26) are
simply replaced by ones and zeroes, depending upon whether the
center of the jth image cell is within the ith ray. In this case, the num-
ber of pixels under projection ray pi is defined as Ni = ∑N

j=1 w
2
ij. The

approximations used for wij’s lead to the poor agreement between
the computed projections pi and measured projections Ii. Further-
more, in ART implementation, the value of the cell εj is changed
every time a computed projection ray passes through it, thus increas-
ing inconsistencies between the measured and calculated projec-
tions. This problem is solved in the SIRT algorithm by changing
the value of εj after all the equations are performed and taking the
average value of all the changes proposed in each step.

3. Statistical reconstruction methods
The main idea behind the statistical methods is to incorporate

the counting statistics of the detected particles into the reconstruc-
tion process.31,32 This means that the detected intensity of particles
(measured projection) will become a random variable.

Statistical reconstruction methods are a very useful tool in cases
where the signal-to-noise ratio of the reconstructed image plays

FIG. 9. Comparison between reconstructions of the asymmetric distribution [Eq. (13)] obtained with FBP, GRIDREC, and SIRT tomography methods.
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TABLE II. Quality of the image reconstructed using FBP, GRIDREC, and SIRT
approaches with no, 1%, 5%, and 10% random noise on the 0○–180○ range of angles.

FBP GRIDREC SIRT

UQI PSNR (dB) UQI PSNR (dB) UQI PSNR (dB)

No error 0.862 24.50 0.831 23.9 0.874 27.35
1% error 0.814 24.35 0.831 23.88 0.873 27.31
5% error 0.803 24.27 0.823 23.82 0.870 27.22
10% error 0.801 24.07 0.816 23.87 0.864 26.88

the most important role, i.e., medical image reconstructions. How-
ever, in emission plasma tomography based on optical emission
spectroscopy, the reconstructed distribution function represents the
population densities of the various plasma species. Therefore, it is
crucial to reconstruct the absolute values of the unknown distribu-
tion, thus making these approaches not optimal for the purposes of
this study.

4. Testing results
Python module TomoPy was implemented to employ

GRIDREC, ART, and SIRT algorithms, while the algorithm for
FBP was written by the authors. The algorithms were tested on the
asymmetric distribution function given with Eq. (13). As expected,
with a sufficiently large number of observed angles and projections,
employing any of the methods resulted in a high quality recon-
structed image (UQI between 0.93 and 0.98 and PSNR = 33–38
dB). However, a large number of viewing angles and projections are

not often available under experimental conditions. Specifically, in
the experimental setup used for testing the reconstruction methods,
reconstructions were calculated at only 17 projections at 21 angles.
Thus, to simulate the data obtained in the experimental setup, we
tested the quality of reconstruction techniques at exactly 17 projec-
tions and 21 angles. The angles were first generated on the 0○–180○

interval.
Since ART and SIRT algorithms are very similar and SIRT

showed better results during testing, only the images reconstructed
using the SIRT algorithm are presented in this paper. Figure 9 shows
the comparison between the applied methods when there was no
error introduced to the system. By visual inspection of Fig. 9, it is
very hard to determine which reconstruction matches the original
image the best. We tested the quality of the reconstructed images
with two quantitative methods, UQI and PSNR. Additionally, the
image quality of the results reconstructed when a random noise of
1%, 5%, and 10% is added is presented in Table II. All results were
denoised by employing the total variation minimization denoising
method that proved to be the best denoising technique. The reg-
ularization parameter was 0.01, 0.05, and 3 for FBP, SIRT, and
GRIDREC, respectively. Even though the UQI of FBP is compara-
ble to the UQI of the SIRT method, when no error is introduced to
the system (see Table II), the PSNR shows that better matching is
obtained by applying the SIRT algorithm. As given in Table II, when
the error is introduced to the system, the best results are obtained
from the SIRT algorithm.

As the last step in testing, we have addressed the problem of
a limited range of measured angles. In our experiment, it was not
possible to approach the plasma from every angle. We were able to
collect data only on the 48○–168○ interval. Thus, we tested the algo-
rithms on this exact range of angles. We used the cubic spline fit to

FIG. 10. Comparison between the reconstructions (FBP, GRIDREC, and SIRT) of the distribution function given by Eq. (13) with the 1% and 10% error.
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TABLE III. Quality of the image reconstructed using FBP, GRIDREC, and SIRT
approaches with 1%, 5%, and 10% random noise on the 48○–168○ range of angles.

FBP GRIDREC SIRT

UQI PSNR (dB) UQI PSNR (dB) PSNR PSNR (dB)

1% error 0.777 19.13 0.765 20.01 0.758 20.21
5% error 0.755 19.17 0.761 20.06 0.758 20.18
10% error 0.727 19.16 0.760 20.14 0.758 20.15

extrapolate the missing data. All results were denoised by employing
the total variation minimization denoising method that proved to be
the best denoising technique. The regularization parameter was 0.01,
3, and 3 for FBP, SIRT, and GRIDREC, respectively. The effects of
the percentage error on the reconstructed test function are presented
in Fig. 10. As expected, missing and noisy data did result in a poorer
tomographic reconstruction. Even with the use of the spline extrapo-
lation of the data, Fig. 10 shows that the areas with missing data were
reconstructed as zero values. The quantitative values of the recon-
structed image quality are presented in Table III. Table III shows an
interesting fact that the UQI and PSNR had very similar values for all
three applied algorithms. Even though the iterative technique, SIRT,
and the algebraic technique, GRIDREC, possess slightly better UQI
and PSNR values than FBP, both methods required a very large regu-
larization parameter of three in order to achieve comparable results
as FBP. The disadvantage is that using a very large regularization
parameter in tomographic reconstruction may result in losing some
useful information about the reconstructed image.

We can conclude that in the case when the data are sparse (17
projections at 21 angles), at limited range (48○–168○ angle interval),
and noisy, using any of the three approaches would result in a similar
reconstruction image that should be taken with great caution.

VI. EXPERIMENTAL RESULTS
The proposed inversion techniques were used to analyze the

experimental data obtained in a supersonic flowing tube in combi-
nation with the microwave cavity discharge, shown in Fig. 11. The
discharge was generated inside a cylindrical quartz tube with the

FIG. 11. Scheme of the supersonic flowing microwave discharge. Reprinted with
permission from M. Nikolic, “Characterization of microwave discharge plasmas for
surface processing,” Ph.D. dissertation (Old Dominion University, 2013).43

inner diameter of 32 mm. The working pressure in the evacuated
quartz tube was kept between 1 Torr and 3 Torr. A Mach 2, cylin-
drical convergent–divergent De Laval nozzle was used to sustain the
supersonic flowing discharge downstream of the microwave cavity,
which operated in the TE111 mode. The measurements were per-
formed in pure argon. A detailed explanation of the experimental
setup is given in Ref. 43.

In the afterglow of the MW supersonic flow region, we observed
a plasmoid-like formation as a secondary downstream phenomenon
coupled to the microwave cavity. The plasmoid appears to be sus-
tained by a low power surface wave, which propagates along its sur-
face and the surface of the quartz tube. Our initial analysis led to the
conclusion that plasmoid formation may be caused by aerodynamic
effects in the supersonic flow. The full interpretation of the plasmoid
discharge requires knowledge of all effects causing its formation.
For that reason, we calculated spatial population distributions of the
neutral Ar excited state [3s23p5(2P0

1/2)4p, J = 1].
We employed optical emission spectroscopy as a diagnostic

tool to observe the spectra of the Ar excited states. Emission spec-
tra were recorded using an imaging spectrograph (Acton Spec-
traPro) connected to the charged-coupled device (CCD) camera
(Apogee, Hamamatsu, Back-Illum). All spectral measurements were
performed side-on with respect to the direction of the discharge
flow. In order to increase the precision of experimental measure-
ments, we have built an automated measurement system (AMS).
It consists of a flat mirror and a set of feedback sensors connected
to two high-precision stepper motors driven by a microcontroller-
based system, as shown in Fig. 12. As shown in Fig. 12, instead of
rotating the detecting system around the plasma, we set the detect-
ing system at the fixed position and collected light emitted from
the plasma at different angles by using a rotating mirror. This was
achieved by applying the simple rules of trigonometry, as shown in
Fig. 13. The details on AMS can be found in Ref. 43. The observed
spectra were calibrated using a Newport/Oriel absolute black body
irradiance source. The calibration graphs were taken under the same
conditions and by repeating the same geometry of the experiment
as the experimental data. We evaluated the calibration graphs of

FIG. 12. Schematic of the automated measurement system. Reprinted with per-
mission from M. Nikolic, “Characterization of microwave discharge plasmas for
surface processing,” Ph.D. dissertation (Old Dominion University, 2013).43
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FIG. 13. Schematic of a setup used for spatial measurements at a given angle θ
and two different projections.

spectral irradiance per count vs wavelength for wavelengths between
500 and 1100 nm. Using these graphs, we determined the popula-
tion densities of the upper energy levels of particular Ar excited state
transitions. A detailed procedure of how this was done is given in
Ref. 43. By using a standard back reflector procedure, we eliminated
the possibility that the optical thickness of the measured spectral line
intensity was interfering with our measurement.44 All spectral line
intensities were higher by a factor of two in comparison to the direct
plasma observation.43 Therefore, we assumed that the plasma was
optically thin, and the radiation trapping along the observation path
could be neglected. In the case of the optically thin plasma, the spec-
tral line intensity is proportional to the number of atoms populating
the higher energy level. An example of the optical emission spectra
used for data analysis is given in Fig. 14.

Based on the cylindrical geometry of the experimental system,
we assumed that the plasma would be radially symmetric too. This
meant that it would be sufficient to obtain projections at only one

FIG. 14. Example of the optical emission spectroscopy measurement. Data are
taken in pure argon at 2.4 mTorr.

angle and then to perform Abel inversion. However, due to the
turbulent flow downstream of the supersonic region, it was possi-
ble that the plasmoid-like formation did not possess radial symme-
try. For that reason, we first observed the plasmoid at three differ-
ent angles and performed Abel inversion at each angle. Figure 15
shows the spatial distributions of population densities of the Ar I
[3s23p5(2P0

1/2)4p, J = 1] state obtained from the spectral line inten-
sity at 714.70 nm after applying the Abel inversion integral taken at
distance 3 cm from the cavity at three different angles: 48○, 138○,
and 90○. It can be deduced from Fig. 15 that since reconstructions
differ from each other, the plasmoid-like formation did not possess
radial symmetry. Thus, Abel inversion would not be a good choice
as the reconstruction technique. However, all three reconstructed
distributions showed very similar trend, indicating that, possibly,
spatial distributions of Ar I energy levels deviate only slightly from
radial symmetry. Hence, reconstructing the spatial distributions of
Ar I states, using a two angle approach described in Subsection V B,
could result in quality reconstruction of the internal plasma states.

We applied the two angle approach to obtain spatial distri-
bution of Ar I excited states at 714.70 nm. The populations were
evaluated at three different positions across the plasmoid relative to
the cavity. The first measurements were taken 3 cm from the cavity
corresponding to the beginning of the plasmoid. The next position
measured was at 4.5 cm from the cavity that corresponds to the
middle range of the plasmoid. Finally, we observed the end of the
plasmoid by taking measurements 8 cm from the cavity. All data
were smoothed by applying the TV-regularization method with the
regularization parameter, λ, of 0.5.

Figure 16 shows how the spatial distribution of Ar I excited
states at 714.70 nm is changing along the plasmoid when the two
angle approach was employed. It could be seen from the figure that
the argon atoms are mainly populated close to the inner surface
of the quartz tube, specifically at only one side of the quartz tube.
This could indicate the turbulent behavior of the discharge, which
could be described only when time-resolved diagnostic methods are
applied. The maximal value population density reaches at the surface
of the tube is N = 1.6 × 105 cm−3.

As a final test, we applied full 2D tomography to obtain spa-
tial distributions of the excited Ar I [3s23p5(2P0

1/2)4p, J = 1] state
obtained from the spectral line intensity at 714.70 nm. Similarly,
as in the above work, all results were smoothed by applying the
TV-regularization method. The regularization parameter was 0.01,
3, and 3 for FBP, SIRT, and GRIDREC, respectively. The results
from the three reconstruction techniques tested in Sec. V C 4 are
presented in Fig. 17.

It is shown in Fig. 17 that similar results are obtained; argon
atoms are distributed mostly at the inner surface of the tube. The
maximal population density was N = 1.3 × 105 cm−3 for FBP, N
= 1.5× 105 cm−3 for SIRT, and N = 1.5× 105 cm−3 for the GRIDREC
technique, which is in good agreement with the results obtained by
employing the two angle method.

Even though reconstructed spatial distributions from SIRT and
GRIDREC compare better visually to the two angle approach recon-
structions (Fig. 16) and had a slightly better PSNR for the test-
ing function [Eq. (13)], a large regularization parameter used for
denoising may have caused the loss of some valuable information.
Therefore, we have chosen to use the FBP technique to reconstruct
spatial distributions of the excited Ar I state at 714.70 nm since it
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FIG. 15. Calibrated measured spectral line intensities (top row) and spatial distributions (bottom row) of Ar I [3s23p5
(

2P0
1/2)4p, J = 1] population density obtained by

applying the Abel inversion integral taken at distance 3 cm from the cavity.

FIG. 16. Spatial distributions of the Ar I [3s23p5
(

2P0
1/2)4p, J = 1] population density obtained using the two angle approach at distances of 3 cm, 4.5 cm, and 8 cm from the

cavity.
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FIG. 17. Spatial distributions of Ar I [3s23p5
(

2P0
1/2)4p, J = 1] population density obtained by FBP, SIRT, and GRIDREC algorithms, respectively, measured at distance

3 cm from the cavity.

offers similar quality reconstructions with a very small regularization
parameter λ = 0.01 even for very noisy and sparse data.

Figure 18 presents spatial distributions of the excited Ar I state
at 714.70 nm at three different positions across the plasmoid relative
to the cavity: 3 cm from the cavity (at the beginning of the plas-
moid), 4.5 cm from the cavity (in the middle of the plasmoid), and
8 cm away from the cavity (at the end of the plasmoid). It is evident
that at each position, argon atoms are mainly populated close to the
inner surface and that the plasmoid-like formation is sustained by a
surface wave.

The lack of cylindrical symmetry in the distributions of pop-
ulation densities could be attributed to two factors: our ability to

measure at a limited range of angles (48○–168○) and the possibil-
ity that the supersonic microwave discharge was driven mainly by
the turbulent flow. To test the validity of the first statement, we sim-
ulated experimental conditions on the symmetric Gaussian distribu-
tion function. When we applied the cubic spline extrapolation func-
tion to extend the viewing angle range, we were able to completely
reconstruct the original function. Therefore, we can conclude that
the internal structure of the plasmoid-like formation in the afterglow
of the MW supersonic plasma varies constantly due to the turbu-
lent flow in the supersonic region. To fully understand the effects
of aerodynamics on the supersonic plasma flow, it would be benefi-
cial to observe the plasmoid formation in the time-resolved regime.

FIG. 18. Spatial distributions of Ar I [3s23p5
(

2P0
1/2)4p, J = 1] population density obtained using the FBP algorithm with the Shepp–Logan filter measured at distances

3 cm, 4.5 cm, and 8 cm from the cavity.
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The details on how the spatially averaged population densities of the
excited argon states are changing in time could be found in Ref. 49.

From the data analysis, we can conclude that in the case of the
supersonic microwave discharge experiment that is highly affected
by the turbulent flow, the full two-dimensional tomography algo-
rithms provide more reliable reconstructions of the internal plasma
structure. When the number of viewing angles at the given exper-
imental system at hand is limited and it is impossible to employ
full, 2D plasma tomography, we recommend applying the two angle
approach to obtain at least a qualitative insight into the spatial
distributions of the plasma constituents.

VII. CONCLUSION
Various tomographic reconstruction methods and image

denoising techniques were employed and tested in order to choose
the best approach to study the internal plasma structure for the
experiment at hand. The reliability and performance of the devel-
oped reconstruction methods were demonstrated for the case of the
experimental setup of the supersonic flowing argon MW discharge
sustained inside the cylindrical quartz tube. The analysis was focused
on the afterglow region of the MW flow where a plasmoid-like
formation was observed.

The application of the tomographic methods was tested with
three different functions chosen in such a way to simulate vari-
ous experimental setups: one that possesses radial symmetry, one
possessing slight radial asymmetry, and one with an asymmetric
function. A random noise between 1% and 10% was added to each
function to mimic the error in the experimental data. The quality
of reconstructed images was obtained by two methods: universal
image quality index and signal-to-noise ratio. It was shown that in
order to smooth and denoise the data, the best results were obtained
when using the total variation minimization method. To deduce the
type of symmetry of the experimental data, the inverse Abel integral
at one angle should be performed. In the case of radial symme-
try, high quality reconstructions could be obtained by employing
Abel inversion at only one angle. Slightly asymmetric data could
be reconstructed by applying the two angle approach where data
were obtained at two mutually perpendicular angles. Finally, in the
complete absence of radial symmetry, full 2D tomographic recon-
struction should be applied. The data analysis showed that the best
results were obtained by employing either the analytical method, fil-
tered back projection, or the simultaneous Algebraic reconstruction
technique.

Each tomographic approach (Abel inversion, two angle
approach, and 2D tomography) was applied to obtain the spatial dis-
tributions of the Ar I excited state [3s23p5(2P0

1/2)4p, J = 1] observed
at 714.7 nm in the supersonic flowing MW discharge experiment.
Spectral measurements were taken at three different positions along
the plasmoid-like structure by employing optical emission spec-
troscopy. The results from all three approaches indicated the lack
of radial symmetry of the plasma constituents, meaning that the
discharge was highly affected by the turbulent supersonic flow and
should be reconstructed by either the two angle approach or the 2D
tomography. Both approaches showed similar results; argon atoms
were mainly populated close to the inner surface of the quartz tube
at only one side of the quartz tube, indicating that the discharge is
probably sustained by a surface wave that varies with the turbulent

flow. Finally, the full 2D tomography FBP technique in combination
with the TV-regularization denoising method was chosen as the best
reconstruction technique in this case due to its high-quality recon-
struction with a very small regularization parameter λ = 0.01, even
for very noisy and sparse data.
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