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The Effects of School Location on Math and Science 
Achievement Trends: A Primer on Growth Modeling 
in Education Policy Research 

Abstract 

The effect of school location on math and science learning is currently an 
important policy issue in the United States and in other countries, such as 
Australia. The present paper uses a 5-year series of math and science achievement 
data from the state of Kentucky to determine the effects of school location on 
learning in these subject areas. Adopting an organizational assessment approach, I 
show how growth models may be used to estimate achievement trends.  I also 
demonstrate methods for discovering two important sources of invalidity in 
growth models:  regression artifacts and spuriousness.  Failure to account for these 
sources of invalidity may lead to erroneous policy conclusions.  Two examples of 
growth models are provided—a linear model and a nonlinear model.  The results 
of these analyses do not support the common contention that there is a rural 
achievement gap in math and science.  One implication of these findings is that, if 
policymakers wish to enhance math learning, they will accomplish this more 
effectively by interventions and programs that increase the motivation and 
opportunity to learn among low-income students, regardless of school location.  
Because current U.S. education policy is focused on documenting “adequate 
yearly progress” in schools, growth modeling is likely to become the preferred 
methodology of policy researchers. 
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The Effects of School Location on Math and Science 
Achievement Trends: A Primer on Growth Modeling 

in Education Policy Research 

During the past 20 years, education policy research in the USA has focused on 
tracking student and school achievement trends for the purposes of insuring 
accountability, making equity adjustments in school resources, and ascertaining the 
effectiveness of learning interventions (Ladd, 1996; National Research Council, 2001).  
This direction in education policy research was inaugurated by education reform 
initiatives in states like Minnesota, Texas, and Kentucky and was subsequently codified 
as national policy by the U.S. No Child Left Behind Act of 2001.   

This paper examines growth modeling, an important research tool that is available to 
researchers who want to inform policymakers about school achievement trends.  Growth 
modeling is adaptable to the investigation of a broad array of policy-related issues, and it 
is equally useful for experimental and quasi-experimental research designs (Nye, 
Konstantopoulos, & Hedges, 2004; Raudenbush & Bryk, 2002).  Although growth models 
may be used to study student-level achievement, for example, the relationships between 
where students start and how rapidly they progress (Seltzer, Choi, & Thum, 2003), in this 
paper I adopt an organizational assessment perspective that focuses on grade-level 
achievement trends (Reeves & Bylund, 2005).  I will demonstrate how growth curves of 
math and science achievement may be estimated.  In addition, I will show how to test for: 
(1) the effects of a policy-relevant covariate—school location—on the growth curve 
parameters, (2) the effect of a regression artifact (regression toward the mean), and (3) 
spuriousness of the results.  Since learning trends are not always monotonic, I will offer 
an example of a nonlinear (quadratic) growth model following my example of a linear 
growth model. 

The empirical issue dealt with in the examples presented below is an important one for 
education policy.  It concerns the effects of school location on math and science 
achievement trends.  A school cannot usually change its location, yet location 
conceivably may have consequences for how well students learn at the school.  The 
investigation of a rural gap in academic achievement has been recently explored in 
studies conducted in the USA (Fan & Chen, 1999; Greenberg & Teixeira, 1995; Roscigno 
& Crowley, 2001; Reeves & Bylund, 2005), in Australia (Webster & Fisher, 2000; Young, 
1998, 2000), and in cross-national comparisons (Williams, 2004).  In the USA, rural 
education is associated with disadvantage in the public discourse.  While research on this 
matter has not yielded consistent results (Fan & Chen, 1999; Roscigno & Crowley, 2001; 
Israel, Beaulieu, & Hartless, 2001), it is reasonable to hypothesize that, if rural 
disadvantage does exist, it is likely to be found in significant learning gaps in mathematics 
and science.  Rural schools are disproportionately likely to have an inadequate pool of 
teachers qualified in these subjects and insufficient funds to maintain up-to-date 
computers, instructional software, and laboratory facilities (Education Alliance, 2004; 
Williams, 2005).   

I will examine a 5-year time series of math and science achievement trends in 
Kentucky public schools to find out if a significant rural school achievement gap exists.  If 
the growth models indicate such a gap, I will then determine (a) how much of the gap 
may be attributable to a regression artifact and (b) if the gap is spurious (that is, it can be 
better explained by a factor other than school location).  Limited space does not allow for 
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an exhaustive analysis of all Kentucky grade levels that are tested each year in math and 
science.  Therefore, I have chosen examples of two growth models that have instructive 
features.  These analyses, shown below, were estimated with Hierarchical Linear 
Modeling software (HLM 6).1   

Eyeballing Achievement Trends using Graphs 

The first step in gaining an understanding of achievement trends is to plot them.  The 
growth curves plotted in Figure 1 show that, from 1999 to 2003, 5th grade math 
achievement increased consistently in rural and nonrural Kentucky public schools alike.  
These plotted trends also indicate the presence of approximately a 7-point gap between 
the rural and nonrural schools at the start of the series.  By 2003, this gap had closed to 
around 4 points.  An examination of these plots may lead us to ask questions like the 
following:  Is the initial rural gap large enough to be statistically significant?  How 
significant is the apparent closing of the gap in later years? 

The growth curves plotted in Figure 2 of 11th grade science achievement tell a 
somewhat different story.  In 1999, the rural school gap in science achievement appears 
to be slightly greater than 2.5 points; and, although there are fluctuations in the trend 
lines, the gap appears little changed in 2003.  In these examples, however, in contrast 
with 5th grade math scale scores where the trends are monotonic, the 11th grade science 
scale scores appear to level off in rural schools and are actually on a downward trend in 
nonrural schools by the end of the series.  The plotted trends raise additional questions:  
Is the rural school gap in 11th grade science achievement statistically significant?  Is the 
slowdown or reversal in the rate of growth after 2002 significant?  Is the decline in 
science achievement indicated for nonrural schools in 2003 significantly greater than the 
slowdown indicated for rural schools, which occurs at the same time? 

Eyeballing growth curves in this manner leads us to ask questions like the ones posed 
above.  Growth modeling has the great advantage that it will provide precise answers to 
these questions.  There are other questions that must be answered if policymakers are to 
make informed decisions about what the trends in achievement really mean.  These 
questions include: What is the effect of regression toward the mean on the trends 
depicted in Figures 1 and 2?  Are the apparent rural/nonrural differences shown in the 
graphs the result of spuriousness?  Growth modeling, again, will provide precise answers 
to questions such as these.  

                                                      
1 The 5th grade math and 11th grade science scale scores that are used in this study 
were acquired from the Kentucky Department of Education.  KDE also provided 
data on the annual percentage of students taking the tests who were eligible for 
free or reduced-price lunch.  Information about Kentucky’s testing program may be 
obtained by visiting the following web site:  http://www.edication.ky.gov/KDE. The 
measurement of school location is a dummy variable (rural = 1; nonrural = 0).  
“Rural location” means that the school is in a community with less than 2,500 
inhabitants.  This variable was extracted from the Common Core of Data, National 
Center for Educational Statistics, U.S. Department of Education, and matched to 
Kentucky public schools.   
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Figure 1 
Kentucky 5th Grade Math Achievement Trends 
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Figure 2 
Kentucky 11th Grade Science Achievement Trends 

An Example of a Linear Growth Model 

A second look at the trend lines plotted in Figure 1 will illuminate the parameters that a 
linear growth model must estimate.  First, it must estimate the starting point of the trend.  
This is the mean scale score for 5th grade math in 1999.  I refer to this parameter of the 
growth model as ‘achievement status’.  Second, the model must estimate the annual 
average rate of growth in the math score throughout the time series—in other words, the 
mean annual increase in the scale score from 1999 to 2003.  I term this second 
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parameter ‘achievement growth’.  If the plot of the time series of data indicates an 
approximately linear (i.e., straight-line) rate of growth, then no other parameters need to 
be estimated in order for the growth model to describe the trend.  Although the trend lines 
shown in Figure 1 are not absolutely straight, they always move upwards and do not 
reverse direction or display a marked tendency to level off.  Thus, a linear growth model 
will be adequate to estimate such growth curves.  (If we suspected otherwise, there is a 
means to test for nonlinearity of trends as I will show in the second example.) 

I will not provide a lengthy explanation of how growth models are estimated with HLM.  
Interested readers will want to consult several excellent treatments of this topic (Luke, 
2004; Raudenbush & Bryk, 2002; Singer & Wilbert, 2003).  My purpose here will be to 
present the results of the HLM growth model analysis, discussing the estimated 
parameters and what they tell us about the policy-relevant issue of a rural achievement 
gap in math and science learning in Kentucky public schools. 

Table 1A presents the descriptive statistics for the variables that I use to analyze the 
growth curves for 5th grade math achievement.  The three variables shown in the upper 
panel of Table 1A are within-school, time-dependent variables.  This means that they take 
on different values for each year in the time series.  The variable listed first is the school’s 
math scale score for 5th graders.  In Kentucky, the math scale scores are constructed 
following Item Response Theory methods and have a theoretical variation between 325 
and 800 points.  As Table 1A shows, the actual range in scale scores across the 5-year 
time series is from 488 to 620 points, with a mean of 556.1 and standard deviation of 
17.6.  The next variable shown in the top panel of Table 1A is the year index.  This 
variable is coded in integer values that range from 0 to 4, marking the position in the time 
series.  Therefore, the starting year, 1999, is coded 0; the final year, 2003, is coded 4.  
Years are coded in this manner so that the HLM-generated models will estimate 
‘achievement status’ (the intercept) for the starting year and ‘achievement growth’ (the 
year slope) for the annual gain in math scores.   

   Percent low-income students is the final time-dependent variable shown in the upper 
panel of Table 1A.  This variable refers to the percent of students taking the 5th grade 
math test in a given year who are eligible for free or reduced-price lunch.  Percent 
eligibility for participation in the federally subsidized lunch program is frequently used in 
the USA to indicate the proportion of low-income students.  From 1999 to 2003, the 
average of such students at the 5th-grade level in Kentucky public schools was 52.3 
percent, with standard deviation of 22.2.  Across all schools in the sample, the range of 
the proportion of low-income 5th graders varied in the extreme, from zero to 100 percent.   

The lower panel in Table 1A contains a single time-invariant, between-school variable.  
This variable is binary, coded 1 if the school is in a rural location and 0 if not.  For the 
purposes of this study, school location is considered time-invariant because it is very 
unlikely that a school’s classification by location has altered during the 5-year period for 
which I have data to analyze.  Of course, the analysis of trends across longer time 
intervals of (say) 10 to 20 years could very well require that school location be treated as 
a time-dependent variable.  As Table 1A shows, there are 661 Kentucky public 
elementary schools for which there is time-series data on 5th grade math scale scores, 
and 44 percent of these schools are rural.   

I construct three linear growth models to estimate the effects of the variables 
discussed above.  The first of these models estimates only the basic growth curve  
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Table 1A 
Descriptive Statistics for 5th Grade Variables 
Withnin-school variables (N = 3284) Mean SD Min. Max. 
Math scale score       556.1 17.6 488 620 
Year index 2 1.4 0 4 
% low-income students 52.3 22.2 0 100 
Between-school variables (N = 661)     
Rural location 0.44 0.50 0 1 
 

Table 1B 
Linear Growth Models for 5th Grade Math Achievement Trends 
Parameters   Model 1  Model 2    Model 3 
Achievement status (intercept) 549.4**    552.4**      550.6** 
   Rural location        --       –6.7**        –1.8 
Achievement growth (year slope)         3.4**         3.0**          2.9** 
   Rural location        --         0.9**          0.5 
% low-income students (avg. effect)        --        --        –0.3**  
% low-income students x year        --        --          0.0 
Goodness of fit X2(df)     870.4(2)**     899.6(2)**    1223.1(2)** 
*p<.05  **p<.01    
 
parameters of achievement status and achievement growth.  The second model 
estimates the growth curves depicted in Figure 1 and tests the effects of rural location on 
achievement status and on achievement growth.  The third model tests for spuriousness 
of the results obtained from the second model.   

Turning to Model 1, which is shown in Table 1B, we find that achievement status (the 
mean 5th grade math scale score in 1999) is estimated to be 549.4, while achievement 
growth is estimated to average 3.4 per annum.  From these results we can estimate, by 
extrapolation, that the mean 5th grade math score in 2003 is 563, 13.6 points above the 
achievement status benchmark.  Not only is this rate of growth in math achievement 
statistically significant, the effect size is substantively important.  The annual growth rate 
is equal to 0.2 standard deviation (3.4/17.6 = 0.2). 

Model 2 tests the effects of rural location on achievement status and achievement 
growth, and therefore estimates the trends displayed in Figure 1.  In 1999, rural 5th 
graders are found to score an average of 6.7 points below comparable students in 
nonrural schools.  The average math score of the nonrural students is 552.4.  With 
respect to achievement growth, Model 2 indicates that the rural 5th graders are gaining at 
a rate that is statistically significantly greater than the nonrural 5th graders.  The 
achievement growth in nonrural schools is estimated to be 3.0, while in rural schools it is 
3.9 (3.0 + 0.9).  The results in Model 2 might be used to support the conclusion that, 
although 5th graders in rural schools started out behind their nonrural counterparts, this 
gap is closing by 13 percent (0.9/6.7 = 0.13) each year.  If this rate of improvement 
continues, it will take rural 5th graders only eight years to catch up with and even to 
surpass their nonrural peers in math achievement.  However, this optimistic projection 
may be erroneous and could lead to incorrect policy decisions if taken at face value.  It is 
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possible that the results obtained in Model 2 artificially inflate the rural growth rate 
because of a commonly overlooked regression artifact. 

Regression toward the mean poses a problem whenever repeated measurements are 
taken on a sample, as is the case here where 5th grade math achievement is being 
measured annually.  ‘Regression toward the mean’ refers to the tendency for cases in the 
sample that are in the tails of the distribution when first measured to be found closer to 
the mean when measured later in time.  Campbell and Kenny (1999) offer numerous 
examples of this regression artifact and how policy research can be seriously misled by a 
failure to take it into account.  In the present study, the effect of the regression artifact 
leads to the result that schools which scored either above or below the mean math scale 
score in 1999 are likely to score closer to the mean in a subsequent year.  As a 
consequence, schools scoring lower than the mean in 1999 will appear to improve at an 
above-average rate in later years, while schools scoring higher than the mean in 1999 will 
appear to improve at a below-average rate.  Because rural schools have been shown to 
score significantly below nonrural schools in 1999, their positive achievement growth is 
confounded with this effect of regression toward the mean.  Growth analysis with HLM 
gives us a means to assess how much the regression artifact may affect the results 
obtained by Model 2.   

A thorough explanation of how to test for the regression artifact with HLM is beyond 
the scope of this paper.  Interested readers will want to consult Raudenbush and Bryk 
(2002, pp. 361-364; see also, Seltzer, Choi, & Thum, 2003).  Following the procedures 
that they describe, I add a parameter to the HLM equation that represents the effect of 
achievement status on achievement growth (not shown), which simulates regression 
toward the mean.  We may then determine if controlling this effect influences the 
estimated effect of rural location on the achievement growth coefficient.  The result that I 
obtained is that the rural location coefficient is reduced by a statistically significant 
amount, from 0.9 (shown in Model 2) to 0.5, a reduction of 44 percent.  Although this 
adjusted rural location effect remains statistically significant at the 0.05 level, it compels 
us to revise the estimation of how rapidly the rural 5th graders are improving their math 
scores relative to the nonrural students.  The revised achievement growth for rural 5th 
graders is 3.5, and at this rate it will take them about 13 years to catch up, instead of 8 
years as previously forecast.  In summary, by testing for the effect of regression toward 
the mean, it was shown that nearly half of the apparent growth advantage of rural 
location, which is presented in Model 2, is not real but is the result of a regression artifact. 

Model 3 in Table 1B tests another possible source of invalidity for the results obtained 
by Model 2.  I refer to the possibility that the significant effects of rural location on 
achievement status and achievement growth may be spurious.  That is, the relationships 
that were found to be significant in Model 2 could be the result of an omitted variable, one 
that is not included in the model.  Research in Kentucky (Reeves, 2000, 2003) and 
elsewhere (Roscigno & Crowley, 2001; Williams, 2005) finds academic achievement is 
often quite sensitive to students’ family incomes.  Furthermore, families of rural students 
earn on average lower incomes than the families of nonrural students.  The association 
between rural location, low family income, and low academic achievement suggests the 
hypothesis that the relationships found between rural location and achievement status 
and achievement growth (Model 2) may be spurious.2  To test this possibility, two within-

                                                      
2 Spuriousness is a separate issue from regression toward the mean and must be tested 
separately.  In this instance, spuriousness is an issue regardless if we accept the results 
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school parameters are added in Model 3: the first parameter represents the average 
overall effect of the percent of low-income students on the mean math scale score; the 
second parameter is an interaction that represents the effect of low-income students on 
the annual change in the score.   

The results after adding these variables are shown in Model 3 (Table 1B).  The 
average low-income student effect and the interaction effect together sharply reduce the 
size of the rural location coefficients and render them both statistically insignificant.  This 
is strong evidence that the earlier findings of significant rural location effects are indeed 
spurious.  The proportion of low-income students, rather than rural location, is the 
significant factor that affects 5th grade math achievement trends.  In absolute terms, the 
effect size of low-income students is about twice the effect size of rural location:  One 
standard deviation increase in the percent of low-income students is associated with 0.4 
standard deviation decrease in the average math score.  The effect of low-income 
students on the annual change in the math score, as revealed by the interaction, is nil, 
however.  Therefore, the effect of low-income students is constant across the time series.  
This being the case, regression toward the mean may not be an issue with respect to the 
effect of the low-income student variable.3

An Example of a Nonlinear (Quadratic) Growth Model 

The previous example of growth modeling estimated trends that were deemed linear.  
The next example deals with trends that are curvilinear and, therefore, require the 
addition of a squared (quadratic) term to the growth modeling equation in order to 
account for this nonlinearity.  Only two models will be estimated in this example.  The 
reason for this will become clear.  Table 2A displays the descriptive statistics for the 
variables used in this example.  Two within-school, time-dependent variables are shown.  
These are 11th grade science scale scores and the year index.  Descriptive statistics for 
the quadratic term, which is simply the square of the year index, are not shown in the 
table.  The mean science scale score for this sample is 537.8 with standard deviation of 
12.2.  Once again, the theoretical range of these scores as determined by IRT methods 
varies from 325 to 800.  The actual range in the scores is from 481 to 577.  The year 
index is calculated as in the previous example.  Rural location is the only between-school 
variable, and, as before, it is assumed to be constant across the 5-year time series.   
Among the 217 high schools whose 11th graders were tested for science achievement, 34 
percent were located in rural areas. 

Table 2B presents the results of estimating nonlinear (quadratic) growth models using 
the variables just described.  Model 1 shows three growth curve parameters.   
Achievement status is the same as in the linear growth model example.  The other two 

                                                                                                                                                 

of Model 2 shown in Table 1B, or the revised results that accounted for the regression 
artifact. 
3 Technically, there is a regression artifact with low-income students too.  Due to 
regression toward the mean, the effect of the percent of low-income students actually has 
a negative sign; that is, low-income students really exert a small negative influence on 
achievement growth.  This effect is not significant, however.  Consequently, I allow the 
results in Model 3 to stand.   
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Table 2A 
Descriptive Statistics of 11th Grade Variables 
Withnin-school variables (N = 1082) Mean SD Min. Max. 
Science scale score 537.8 12.2 481 577 
Year index 2 1.4 0 4 
Between-school variables (N = 217)     
Rural location 0.34 0.47 0 1 

Table 2B 
Nonlinear (Quadratic) Growth Models for 11th Grade  
Science Achievement Trends 
Parameters Model 1 Model 2 
Achievement status (intercept)   533.6**    534.5** 
   Rural location        --      –2.7      
Initial achievement growth (year slope)       3.2**        3.1** 
   Rural location        --        0.1 
Deceleration (year2)     –0.4**      –0.3** 
   Rural location         --        0.0 
Goodness of fit X2(df) 222.8(2)** 224.9(2)** 
*p<.05  **p<.01   

 

parameters are different, since they address the nonlinearity of the trend estimated 
by the present model.  The year slope now estimates ‘Initial achievement growth’.  
This term refers to the estimated annual rate of increase net of the effect of 
deceleration (i.e., the decline in the growth rate).  ‘Deceleration’, the effect that is 
obtained by squaring the year index, is used to test the nonlinearity of achievement 
growth.  When interpreting the growth trend estimated with this nonlinear model, 
both initial achievement growth and deceleration must be considered together, 
because the actual annual rate of growth in science achievement is calculated as 
the sum of these two parameter estimates.     

The results of Model 1 in Table 2B estimate an achievement status of 533.6 for 
11th graders in the average high school.  An average initial achievement growth of 
3.2 is also estimated.  However, the actual growth rate is less than this because of 
the effect of deceleration.  Deceleration averages negative 0.4 per annum.  
Therefore, the actual growth rate in science achievement is 2.8 (3.2 – 0.4).  Even 
after deceleration is taken into account, the effect size of the actual growth rate is 
substantial.  The annual increase is 0.2 standard deviation (2.8/12.2 = 0.2).  
Extrapolating from the estimates in Model 1, 11th graders average 544.8 on the 
science test in 2003, a gain of 11.2 in four years.   

Model 2 in Table 2B estimates the nonlinear growth curves shown in Figure 2 
and tests for the influence of rural location on these trends.  As the results indicate, 
the effects of rural location are too small to be statistically significant influences on 
achievement status, initial achievement growth, or deceleration.  Furthermore, while 
Figure 2 appears to indicate a different deceleration for rural and nonrural 11th 
graders, the results in Model 2 do not support a significant difference in the two  
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groups of students.  Because the location effects are not significant in this example, I do 
not test for regression toward the mean or for spuriousness. 

Policy Implications and Uses 

The importance of addressing resource deficiencies in rural schools is part of the current 
policy agenda in the USA (United States Government Accountability Office, 2004).  While 
the analyses presented above are intended to be instructive, rather than thoroughgoing in 
their investigation of location effects on math and science achievement trends in 
Kentucky, the implications for policy, though limited, are nevertheless clear.   

Rural location does not significantly influence the achievement trends of 5th grade 
math or 11th grade science, at least insofar as these trends are accurately measured by 
Kentucky’s official tests.  In the case of 5th grade math learning, the apparently significant 
rural gap is not real.  The gap is explained by the presence of a greater percentage of 
low-income students in rural schools.  Moreover, the negative effect of student poverty on 
math learning transcends location.  To increase 5th grade math performance, 
policymakers could focus on initiatives that enhance the motivation and opportunity to 
learn of economically disadvantaged students regardless of where their schools are 
located.  With respect to 11th grade science learning, the effects of location on 
achievement status and the actual growth rate (after the correction for deceleration) are 
too small and insignificant to warrant immediate attention by policymakers.  My second 
example did not explore the effects of low-income students on science achievement 
trends in the 11th grade, because the focus of this study was to assess the effects of 
school location on these trends.  This omission should not be construed to suggest that 
student poverty has little influence on science achievement scores.  Only additional 
analysis can determine if this is true. 

The results presented above do not support the claim that rural students achieve less 
well than their nonrural peers in math and science.  This being the case, it cannot be 
suggested that rural schools necessarily are deprived of qualified teachers in these 
subjects or that their learning technology and laboratory facilities are inadequate 
compared with nonrural schools.  As I stated previously, all of these conclusions are 
provisional.  They are not the result of an exhaustive analysis of Kentucky test score 
trends, but are intended instead to present the rudiments of how such an analysis would 
proceed.  A more complete analysis would examine all of the Kentucky test results that 
are available for the different grade levels in science and math, and it would include other 
characteristics of schools and of their student populations in order to diagnose more 
comprehensively the reasons for variation in test score trends.  Only a comprehensive 
approach such as this would present policymakers with the needed wide-ranging 
information that could guide the fashioning of new interventions and programs. 

Growth modeling is a flexible tool for use in education policy research.  This brief 
presentation has shown some basic ways in which this technique may be used to 
address policy concerns regarding math and science achievement trends.  Because The 
No Child Left Behind Act mandates that U.S. public schools must demonstrate “adequate 
yearly progress” toward the goal of 100 percent proficiency, it is likely that growth 
modeling will become the policy research tool of choice when studying multiyear trends in 
school and student achievement.  Another use of growth modeling that bears a 
resemblance to the examples presented in this paper is that of testing the effectiveness of 
a policy intervention.  In such a test, the policy intervention may be measured either 
categorically or with a continuous scale.  The intervention can also be either time-
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invariant, as rural location was in my examples above, or time-dependent, as the percent 
of low-income students was.  An example of a time-dependent policy intervention could 
be one in which different stages of intervention are allowed to occur at different time 
intervals for various target organizations or populations.  The procedures described in the 
examples that were presented above, including the tests for a regression artifact and 
spuriousness, would remain essentially the same. 

Note 
This paper was presented at the 12th Annual International Learning Conference held at 
the University of Granada, Granada, Spain during July 2005.  The present version of the 
paper has benefited from comments by Debbie Abell, Louise Cooper, and Jesse Lowe.  
Any errors that remain are the author’s responsibility. 
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