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ABSTRACT:  This paper provides a brief discussion and demonstration of regression 
toward the mean, a subtle statistical artifact that appears in the effort to measure change.  
Regression toward the mean frequently arises in educational assessment when repeated 
testing is used to determine achievement growth among students or schools at the 
extremes of the achievement distribution.  This statistical artifact is important because it 
can lead to erroneous inferences about what is causing the observed changes in test 
scores.  The demonstration makes use of Kentucky Core Content Test data.  
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A Demonstration of ‘Regression Toward the Mean’ 
 

 
This paper provides a brief discussion and demonstration of ‘regression toward the 
mean’, a statistical phenomenon that is also referred to by the following terms: 
‘regression to the mean’, ‘mean reversion’, and ‘regression artifacts’.1  Regression toward 
the mean arises in the attempt to measure change using repeated measures.  The effects of 
regression toward the mean are frequently noted in educational testing, although they are 
often incorrectly attributed to measurement error or to unique conditions affecting the test 
results such as outstanding teaching, student motivation, and the like.  Stated simply, 
regression toward the mean may be present when students (or schools) that scored at the 
high or low ends of the test score distribution on the initial test are found to score closer 
to the mean on subsequent testing.  Because of this, the regression artifact has a 
characteristic “signature”: the change score is negatively correlated with the initial 
test score.   
 
Regression toward the mean may mislead policymakers, education administrators, 
teachers, and others to wrongly interpret the reason for test score changes.  The following 
examples illustrate how this can happen: 
 

1. The state legislature authorizes a program of special assistance to very low 
performing schools.  After a year of receiving this assistance, these schools 
achieve an above average improvement on their state’s assessment tests.  The 
news media report the improvement as evidence that the assistance program is 
working. 
 

2. One of the state’s top performing high schools finds that its test scores have 
declined a year later.  The exasperated principal tells parents that the decline in 
performance can be explained by a change in school policy:  a major 
rearrangement of teachers’ schedules took place during the year.  Teachers 
experienced difficulties adjusting to the new schedule and this caused them to be 
less effective in the classroom. 

 
In both of these hypothetical examples, the reasons given for the change in test scores 
(highly welcomed in the first instance and a source of worry in the second) could be 
correct.  However, regression toward the mean could also bring about the very same 
changes.  Therefore, the explanations given for the changes in the scores are confounded 
by regression toward the mean. 
 
The phenomenon was first identified by Francis Galton who noted that the children of tall 
parents were generally shorter as adults than their parents while the children of short 
parents were generally taller adults than their parents.  These regression artifacts were not 
the result of any biological process, Galton realized, but were intrinsic to the comparison 
of height differences between generations.  The same general phenomenon is encountered 
in educational assessment of achievement growth.   
                                                 
1 The author wishes to thank Ben Oldham and David Sloan for their helpful comments. 
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If the goal is solely that of estimating the average growth of achievement for the student 
population as a whole, we needn’t be concerned about regression toward the mean 
disturbing the results.  The problem only arises if we select a case or a group of cases 
where the initial test score diverges from the mean.  For example, if we want to ascertain 
whether a low-achieving or a high-achieving school has brought about growth in 
achievement, we do this by comparing the first year’s test results of its students with the 
next year’s results.  But when schools are selected in this manner, regression artifacts will 
appear:  for example, the low-achieving school may be observed to make above-average 
gains in its test scores while the high-achieving school is discovered making below-
average gains.   
  
Regression toward the mean may appear to be a mysterious force that drives the members 
of a population toward the average condition, but it is actually a well-understood 
statistical artifact that is a direct product of the imperfect correlation between the two sets 
of scores that are used to construct the change score.  Campbell & Kinney (1999) show 
that regression toward the mean increases as the correlation coefficient (Pearson r) 
relating the two sets of test scores departs from unity and that its effects are most 
noticeable at the extremes of the distribution.  Campbell & Kinney offer a mathematical 
proof that regression toward the mean will necessarily occur provided that the two test 
score distributions have similar variances and are correlated at less than unity.  Because 
of its close relationship to the correlation coefficient, the formula for estimating the 
percent of regression effects is given below: 
 

(1 – r)*100 
 
where r is the Pearson correlation coefficient.  Thus, if two tests are correlated such that r 
= 0.5, then the percent of regression toward the mean is 50 percent. 
 
I have prepared a demonstration of the effects of regression toward the mean using 
Kentucky Core Content Test (KCCT) data from prior years.  I chose to focus on 4th grade 
reading scale scores.  (If I had chosen 5th grade math scale scores instead, the results 
would not have been substantially different.)  I had available scores from 1999 to 2005 
(see Table 1).  By inspection, I settled on the medial years in the series, 2002 and 2003.  
These two sets of test scores (RDSS_02 and RDSS_03) had similar standard deviations 
and were correlated (r = 0.737) in the middle range of the Pearson r coefficients for 
adjacent years in the series (see the diagonal in Table 2).  The average reading scale score 
increased from 547.97 in 2002 to 549.52 in 2003, a change or growth of 1.55 points from 
one spring’s testing to the next (see Table 3).  This growth estimate is termed the ‘raw 
change score’ because it is calculated by subtracting the initial test score from the 
subsequent test score (without any adjustments).  It is this method of estimating change 
that bears the “signature” of regression toward the mean that was mentioned previously. 
 
The scatter plot with the fit line in Figure 1 shows the effect of regression toward the 
mean on the raw change score.  Elementary schools that scored lowest in reading in 2002 
tended to have raw change scores that were larger than elementary schools that posted the 
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highest reading scores in 2002.  Furthermore, the scatter plot and fit line show that 
schools with high reading scores on the 2002 test more often registered negative raw 
change scores than did the lesser performing schools.  Table 4 and Table 5 confirm these 
findings in more detail, showing the raw change scores for the fifty lowest scoring 
elementary schools and the fifty highest scoring elementary schools respectively.  The 
bottom panels of Tables 4 and 5 reveal the fifty lowest performing schools have a mean 
raw change score of +8.1 (well above the overall mean of 1.55) while the fifty highest 
performing schools have a mean raw change score equal to -6.1. 
 
Campbell & Kinney (1999, Chapter 6, “Regression Artifacts in Change Scores”) review 
several ways of correcting the errors in estimating change scores that are brought about 
by regression artifacts.  I calculated one of these, called the ‘residualized change score’, 
to compare it with the raw change score.  Campbell & Kinney note that the residualized 
change score has been around for decades and is well known among psychometricians.  
Stated intuitively, it estimates the expected change score, absent the effect of regression 
toward the mean.  There are two main drawbacks to using the residualized change score 
calculation: it may not be as easily understood by the public as the raw change score, and 
those who benefit from the regression artifact elevating their raw change score will not 
like it. 
 
The formula for calculating the residualized change score is shown below (note: 
Campbell & Kinney use different symbols): 
         _        _ 

Yi  –  bxy*(Xi  –  X)  –  Y 
 

With respect to the present study, these symbols represent the following: 
 
Yi is the school’s 2003 reading scale score. 
 
bxy is the regression coefficient obtained when the 2003 readings scores were regressed 
on the 2002 scores (in this case, bxy = 0.741). 
           _ 
(Xi  –  X) is the school’s 2002 reading score expressed as a deviation from the mean 
score. 
_ 
Y is the 2003 mean reading score. 
 
The effects of using the residualized change score are shown in Figure 2 and in Tables 4 
and 5.  The scatter plot and fit line in Figure 2 show very clearly that using this modified 
form of the change score eliminates the negative correlation seen in Figure 1.  Table 4 
shows that the residualized change scores moderate the big raw score gains seen in some 
of the lowest scoring schools.  Meanwhile, low scoring schools that had a negative raw 
change score receive an even more negative residualized change score, after regression 
toward the mean has been controlled.  In Table 5, the residualized change scores show 
the opposite results.  The low raw change scores of high performing schools are elevated 
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by the residualized change score adjustment, and some instances of negative growth are 
reversed in this top scoring group of schools.   
 
It is important to note that the formula for residualized change scores cited above 
employs a simple linear estimate of regression toward the mean.  This calculation 
assumes that regression toward the mean has a constant effect across the distribution.  
This may be an unwarranted assumption in some situations.  Chay, McEwan, and 
Urquiola (2005) have recommended the use of a cubic polynomial function, instead of 
the linear function, when accounting for regression to the mean.  The cubic function 
models the assumption that regression artifacts are disproportionately larger in the tails of 
the distribution than they are closer to the mean.  In other words, the effects of regression 
toward the mean are modeled to be non-linear.  I explored if this method would produce 
substantially different results from those reported above, which used the linear function.  
In this instance, there were negligible differences in the results obtained from using the 
two methods.   
 
The conclusion to be drawn from this brief discussion and demonstration is that 
regression toward the mean may well exert an influence when test score change (or 
achievement growth) is used as an assessment criterion.  The likelihood this will happen 
increases when the correlation between the test scores departs substantially from unity.  
Then, if precautions to minimize regression artifacts are not taken, erroneous inferences 
about what test score changes mean for low and high performing schools may result.  
And such erroneous inferences may lead to the implementation of policies, including 
penalties and rewards for teachers and for schools, that have unintended consequences.    
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Table 1.  Descriptive Statistics 

 

  N Minimum Maximum Mean Std. Deviation 
RDSS_99 733 495 596 543.73 14.516 
RDSS_00 735 504 586 545.02 13.784 
RDSS_01 732 503 593 546.53 13.009 
RDSS_02 735 508 595 547.97 13.400 
RDSS_03 735 511 608 549.52 13.485 
RDSS_04 727 515 596 553.69 13.078 
RDSS_05 725 517 606 554.20 13.860 
Valid N (listwise) 721      

 
 

Table 2.  Correlations

1 .739** .693** .642** .583** .532** .495**
.000 .000 .000 .000 .000 .000

733 733 731 733 733 727 723
.739** 1 .718** .675** .595** .543** .513**
.000 .000 .000 .000 .000 .000
733 735 732 735 735 727 725
.693** .718** 1 .740** .680** .606** .595**
.000 .000 .000 .000 .000 .000
731 732 732 732 732 725 722
.642** .675** .740** 1 .737** .678** .622**
.000 .000 .000 .000 .000 .000
733 735 732 735 735 727 725
.583** .595** .680** .737** 1 .748** .677**
.000 .000 .000 .000 .000 .000
733 735 732 735 735 727 725
.532** .543** .606** .678** .748** 1 .752**
.000 .000 .000 .000 .000 .000
727 727 725 727 727 727 723
.495** .513** .595** .622** .677** .752** 1
.000 .000 .000 .000 .000 .000
723 725 722 725 725 723 725

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

RDSS_99

RDSS_00

RDSS_01

RDSS_02

RDSS_03

RDSS_04

RDSS_05

RDSS_99 RDSS_00 RDSS_01 RDSS_02 RDSS_03 RDSS_04 RDSS_05

Correlation is significant at the 0.01 level (2-tailed).**. 
 

 
 
 Table 3.  Descriptive Statistics 
 

  N Minimum Maximum Mean Std. Deviation 
RDSS_02 735 508 595 547.97 13.400 
RDSS_03 735 511 608 549.52 13.485 
Raw Change Score 735 -31.00 42.00 1.5510 9.75377 
Residualized 
Change Score 735 -31.51 45.12 -.0003 9.11753 

Valid N (listwise) 735      
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Fig. 1 Scatter Plot with Fit Line Relating Raw Change Score and Reading Scale 
Score 2002
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Fig. 2 Scatter Plot with Fit Line Relating Residualized Change Score and 
Reading Scale Score 2002
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Table 4.  50 Lowest Scoring Elementary Schools, 4th Grade Reading 2002 
Case # RDSS_02 RDSS_03 Raw Chg Score Residualized Chg Score 

1 508 524 16 4.1 
2 509 519 10 -1.7 
3 509 532 23 11.4 
4 513 538 25 14.4 
5 514 511 -3 -13.4 
6 516 523 7 -2.8 
7 517 525 8 -1.6 
8 517 550 33 23.4 
9 518 528 10 0.7 

10 518 530 12 2.7 
11 519 516 -3 -12.1 
12 519 516 -3 -12.1 
13 519 528 9 -0.1 
14 519 542 23 13.9 
15 520 539 19 10.2 
16 521 516 -5 -13.5 
17 521 521 0 -8.5 
18 522 525 3 -5.3 
19 522 537 15 6.7 
20 523 534 11 3.0 
21 524 522 -2 -9.8 
22 524 539 15 7.2 
23 524 543 19 11.2 
24 524 543 19 11.2 
25 525 519 -6 -13.5 
26 525 527 2 -5.5 
27 525 530 5 -2.5 
28 525 531 6 -1.5 
29 525 537 12 4.5 
30 525 538 13 5.5 
31 525 542 17 9.5 
32 525 545 20 12.5 
33 526 528 2 -5.2 
34 526 533 7 -0.2 
35 527 511 -16 -23.0 
36 527 527 0 -7.0 
37 527 528 1 -6.0 
38 527 542 15 8.0 
39 528 526 -2 -8.7 
40 528 528 0 -6.7 
41 528 533 5 -1.7 
42 528 533 5 -1.7 
43 528 547 19 12.3 
44 528 547 19 12.3 
45 529 511 -18 -24.5 
46 529 525 -4 -10.5 
47 529 533 4 -2.5 
48 529 533 4 -2.5 
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49 529 542 13 6.5 
50 529 549 20 13.5 

Mean 522.8 530.9 8.1 0.0 
SD 5.6 10.3 10.5 10.1 
Min  508 511 -18 -24.5 
Max 529 550 33 23.4 
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Table 5.  50 Highest Scoring Elementary Schools, 4th Grade Reading 2002 

Case 
# RDSS_02 RDSS_03 Raw Chg Score Residualized Chg Score 
1 569 542 -27 -23.1 
2 569 552 -17 -13.1 
3 569 562 -7 -3.1 
4 569 568 -1 2.9 
5 570 549 -21 -16.9 
6 570 559 -11 -6.9 
7 570 562 -8 -3.9 
8 570 570 0 4.2 
9 571 542 -29 -24.6 

10 571 557 -14 -9.6 
11 571 558 -13 -8.6 
12 571 559 -12 -7.6 
13 571 565 -6 -1.6 
14 571 567 -4 0.4 
15 571 568 -3 1.4 
16 571 570 -1 3.4 
17 571 571 0 4.4 
18 571 577 6 10.4 
19 572 562 -10 -5.3 
20 572 563 -9 -4.3 
21 572 563 -9 -4.3 
22 572 566 -6 -1.3 
23 572 578 6 10.7 
24 573 571 -2 2.9 
25 573 572 -1 3.9 
26 574 553 -21 -15.8 
27 574 595 21 26.2 
28 575 559 -16 -10.6 
29 575 571 -4 1.5 
30 576 566 -10 -4.3 
31 576 567 -9 -3.3 
32 576 573 -3 2.7 
33 576 581 5 10.7 
34 577 566 -11 -5.0 
35 577 579 2 8.0 
36 577 582 5 11.0 
37 578 553 -25 -18.8 
38 578 570 -8 -1.8 
39 578 593 15 21.2 
40 579 564 -15 -8.5 
41 582 568 -14 -6.7 
42 582 582 0 7.3 
43 582 587 5 12.3 
44 585 579 -6 2.0 
45 585 582 -3 5.0 
46 586 585 -1 7.3 
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47 586 591 5 13.3 
48 588 585 -3 5.8 
49 590 581 -9 0.3 
50 595 591 -4 6.6 

Mean 575.6 569.5 -6.1 -0.5 
SD 6.2 12.6 9.8 10.2 
Min  569 542 -29 -24.6 
Max 595 595 21 26.2 

 


