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Fracton phases are recent entrants to the roster of topological phases in three dimensions. They
are characterized by subextensively divergent topological degeneracy and excitations that are con-
strained to move along lower dimensional subspaces, including the eponymous fractons that are
immobile in isolation. We develop correlation function diagnostics to characterize Type I fracton
phases which build on their exhibiting partial deconfinement. These are inspired by similar diag-
nostics from standard gauge theories and utilize a generalized gauging procedure that links fracton
phases to classical Ising models with subsystem symmetries. En route, we explicitly construct the
spacetime partition function for the plaquette Ising model which, under such gauging, maps into
the X-cube fracton topological phase. We numerically verify our results for this model via Monte
Carlo calculations.

Introduction.—Recent studies1–7 of exactly-solvable
stabilizer codes in three dimensions have identified a
new class of topologically ordered states that exhibit
subextensive topological degeneracy on closed manifolds.
Unlike the emergent gauge theories of topological or-
der these “fracton” models lack a point-like excitation
free to propagate in 3D. Owing to this, they exhibit
translationally-invariant glassy dynamics even at nonzero
energy density8,9. Instead of fully deconfined point parti-
cles, their excitation spectrum generically includes immo-
bile “fractons”, as well as a hierarchy of other excitations
free to move along lower-dimensional subspaces. Depend-
ing on whether fractons may be created at the corners of
two-dimensional membranes, or only upon the applica-
tion of fractal operators, fracton models may be further
divided into ‘Type I’ or ‘Type II’ fracton phases, in turn
related to distinct subsystem symmetries of the classical
spin models related to them via a generalized gauging
procedure6,7. Finally we note that resonating plaquette
phases as discussed in Ref. 10–12 have the potential to
describe fracton phases.

Despite rapid progress13–25 in advancing the theory of
these novel 3D topological phases, there is a paucity of
sharp characterizations of fracton deconfinement away
from the stabilizer limit, e.g. when fractons acquire dy-
namics or are at finite density. One possible diagnostic
is to extract topological contributions to the entangle-
ment entropy26–28, but this requires an exact computa-
tion of ground states, typically challenging in 3D, and
does not immediately generalize to T > 0. For topolog-
ical orders described by standard lattice gauge theories,
a trio of loop observables suitably oriented in Euclidean
space-time serves this role, and furthermore may be di-
rectly computed from, e.g. quantum Monte Carlo simu-
lations. Can such diagnostics be adapted to study these
new states in the presence of dynamical fractonic matter?

Here, we answer this in the affirmative for the so-called
X-cube model, and argue that our results may be gen-
eralized to all Type-I fracton phases of which it is the
paradigmatic example. We do so by formulating a gener-
alized “plaquette gauge theory” (PGT) for the plaquette
Ising model, a classical spin model with spin-flip symme-

tries along planar subsystems. The PGT (and its dual,
which we will introduce) describes a perturbed X-cube
model. Although quasiparticle excitations of these mod-
els are always constrained to lower-dimensional subspaces
and are hence not truly deconfined, they are in a sense
partially deconfined within these subspaces. We show
that the standard technology for diagnosing the decon-
fined and confined phases29,30, reviewed next, can indeed
be generalized in a straightforward manner to detect this
partial deconfinement that can be viewed as a defining
property of fractonic matter.
Ising Gauge Theory.— To orient our discussion, we

first review the gauging procedure that leads to the Ising
gauge theory (IGT), and discuss its deconfinement diag-
nostics29. We begin with the classical Ising Hamiltonian
on the square lattice, with matter degrees of freedom
τzs on the site s, and nearest-neighbor Jτzτz interactions
(we will often suppress the site subscript when the mean-
ing is obvious). This model has a global Z2 symmetry,
which is a flip of all τz, that can be ‘gauged’ by intro-
ducing an Ising spin σzl on each link l, and modifying the
interaction term accordingly: Jτzτz → Jσzτzτz. This
expands the global Ising symmetry to a local Z2 gauge
symmetry Gs on each site, obtained by considering a si-
multaneous flip of τzs and each σz coupled to it by an
interaction term — i.e., those on the 4 links surrounding
site s. The IGT is obtained by restricting to the sub-
space where Gs = +1 for all s. Finally, we give quantum
dynamics to both gauge and matter degrees of freedom
by adding terms Γσx and ΓMτ

x to our Hamiltonian. To
complete our construction of the IGT Hamiltonian, we
add a gauge ‘potential energy’ by identifying the sim-
plest gauge-invariant pure-σz term that commutes with
τx, here a product of σz around a plaquette p, with cou-
pling strength K, yielding

HIGT = −K
∑
p

∏
l∈∂p

σzl − ΓM
∑
s

τxs (1)

−J
∑
l

σzl
∏
s∈∂l

τzs − Γ
∑
l

σxl

subject to the constraint Gs = τxs
∏
l∈∂s σ

x
l = 1, where
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s, l, p denote links, sites, and plaquettes, and we denote
by ∂s, ∂l, ∂p the objects touching them (in this case the
4 links surrounding a site, the 2 sites straddling a link,
and the 4 links encircling a plaquette).

Precisely at J = Γ = 0, this model reduces to Kitaev’s
Toric code31 (this can be seen by enforcing the constraint
to replace τxs by

∏
l∈∂s σ

x
l ). Introducing nonzero J or Γ

can then be thought of as perturbations from the Toric
code point. Turning Γ too high will drive the gauge the-
ory into a trivial confined phase, and turning J too high
will result in a Higgs transition into a symmetry broken
phase where 〈τz〉 obtains an expectation value. These
two limits are smoothly connected32, thus we will refer
to both as the confined limits, and small perturbations
of the Toric code point as the deconfined limit (charac-
terized by Z2 topological order).

Let us now consider moving along the “pure gauge the-
ory” axis, Γ > 0, J = 0, along which the matter is static,
τxs = 1 and therefore can be ignored. Here, the spatial
Wilson loop, W =

∏
l∈C σ

z
l , where C is a closed loop

(taken for simplicity to be an L × L square), serves as
a diagnostic that can distinguish the confined and de-
confined phases. At the Toric code point Γ = 0, we
have 〈W 〉 = 1. Small perturbations in Γ create local
fluctuations of pairs of “visons”, plaquettes on which∏
l∈∂p σ

z
l = −1 (the magnetic flux excitations of the

theory). As the Wilson loop measures the average par-
ity of visons contained within it, these fluctuations will
cause the expectation value to decay proportionally to
the perimeter of the loop, following a perimeter law:
log〈W 〉 ∼ −L for large L. In the confined phase at large
Γ, the visons are condensed and so here log〈W 〉 ∼ −L2

follows an area law for large L. However, as soon as we
add dynamical matter J > 0, the Wilson loop follows
a perimeter law everywhere. To see this, notice that in
perturbation theory in J about the J = 0 ground state
|ψ0〉, a term matching the Wilson loop operator appears
at O(JL): |ψ〉 = |ψ0〉+αe−βLW |ψ0〉+ . . . for some num-
bers α ∼ O(1) and β ∼ − ln J , so that there is at least
a perimeter law component to 〈W 〉 which dominates as
L→∞. Thus, the Wilson loop fails as a deconfinement
diagnostic as soon as J > 0.

Now, consider moving along the “pure matter theory”
axis, with J > 0,Γ = 0. Here, the gauge field exhibits no
fluctuations, and it is convenient to work with σz = 1,
and project onto the gauge invariant subspace if needed.
In this subspace, the Hamiltonian is simply the origi-
nal Ising model, in a transverse field. Beyond a critical
J , there is a transition to an ordered phase where 〈τz〉
gains an expectation value. However, τz alone does not
correspond to a gauge invariant operator; only pairs of
τz do. This transition can therefore be diagnosed by an
open Wilson loop τzs τ

z
s′
∏
l∈Css′

σzl where Css′ is a path

connecting sites s and s′, which in this subspace is sim-
ply the spin-spin correlation function 〈τzs τzs′〉. As one
takes |s− s′| → ∞, this either goes to zero in the decon-
fined (paramagnetic) phase, or approaches a constant in
the confined (Higgs ferromagnetic) phase. This can also

be understood without referring to the matter theory as
the vanishing of a line-tension in the Euclidean action29.
Now consider adding in a small Γ perturbatively: σx an-
ticommutes with the σz chain, and so 〈τzs σz . . . σzτzs′〉
decays to zero exponentially with |s− s′| in both phases.
We therefore again are in a situation where a diagnostic
that works exactly along this axis fails as soon as Γ > 0.

How then can we distinguish the confined from the
deconfined phase away from these special axes? The an-
swer is to measure an appropriate line tension, using wis-
dom gained from the Euclidean path integral represen-
tation which maps the problem on to an isotropic 3D
statistical mechanical problem of edges and surfaces29,33.
This can be linked to the expectation value of a “horse-
shoe operator”, viz. an L × L Wilson loop cut in half
(with τz inserted at the ends for gauge invariance),
W1/2 = τzs τ

z
s′
∏
l∈C1/2

σzl , where C1/2 defines the half-

Wilson loop of dimension L/2 × L, terminating at sites
s and s′. The ratio of expectation values as L→∞,

R(L) =
〈W1/2〉√
〈W 〉

L→∞−−−−→

{
0 deconfined

const. confined
(2)

can then be understood as measuring the “cost” of open-
ing the Wilson loop. In the deconfined phase, opening
a Wilson loop will cause the expectation value to decay
exponentially with the size of the gap. In the confined
phase, the expectation value of the Wilson loop follows a
perimeter law regardless of whether it is opened or closed,
thus the scaling with L is exactly cancelled out by divid-
ing by the square root of the full Wilson loop.

Since the Euclideanized IGT is space-time symmetric,
by choosing distinct orientations and ‘cuts’ of the loop,
we can identify three different diagnostics. Besides (1)
the ‘spatial loop’ discussed above, the two possible cuts
for the orientation extending along the time direction also
have elegant physical interpretations29: either (2) as the
Fredenhagen-Marcu diagnostic34,35, measuring the over-
lap between the ground state and the normalized two-
spinon state; or (3) as a measure of delocalized spinon
(electric-charge) excitations. By the self-duality of the
IGT this exercise could have been done in the dual model,
which defines a different Wilson loop object and exactly
interchanges the role of the gauge (Γ, K) and matter (J ,
ΓM ) sectors36.
Euclidean Path Integral and Wilson Loops for Plaque-

tte Gauge Theory .— We will now proceed with our anal-
ysis of the “plaquette gauge theory” (PGT), which arises
from applying the generalized gauging procedure to the
classical plaquette Ising model6,7,38 and produces X-cube
fracton topological order in its deconfined phase, by anal-
ogy with the IGT of the preceding section. The main de-
viation from the standard gauging procedure is that we
place σ at the center of each interaction in the Hamilto-
nian (the plaquettes in this model), rather than always
on the links (these are the “nexus” spins of Ref. 6).

The classical (3D) plaquette Ising model (CPIM) is de-
scribed by HCPIM = −J

∑
p

∏
s∈∂p τ

z
s , where the sum is
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over plaquettes and the product is over the four sites at
the corner of plaquette p. Applying the gauging proce-
dure, we arrive at the PGT Hamiltonian,

HPGT = −K
∑
c,i

∏
p∈bi(c)

σzp − ΓM
∑
s

τxs (3)

−J
∑
p

σzp
∏
s∈∂p

τzs − Γ
∑
p

σxp

where now the σs live at the center of plaquettes p, c
denotes a cube, and bi(c) for i = 1, 2, 3 correspond to
the three distinct combinations of four plaquettes that
wrap around the cube c (sometimes aptly called “match-
boxes”). We further have a constraint defined on each
site s, Gs = τxs

∏
p∈∂s σ

x
p = 1, where the product is over

the 12 plaquettes touching s. Note that this model, for
small J and Γ, is just a perturbed X-cube model (which
is usually defined on the dual lattice where our plaque-
ttes become links) and that the topological order is sta-
ble to small perturbations41. The deconfined phase of
this model hosts two types of excitations: the “electric”
(τx = −1) excitations are fractons, while the “magnetic”
excitations are one-dimensionally mobile quasiparticles,
which we will refer to as lineons (short for “line vison”).

In standard gauge theory, one is often only concerned
about the deconfinement of the electric charge excita-
tions. The X-cube model (unlike the Toric code) does not
possess an electro-magnetic (σz ↔ σx) self-duality, so for
completeness we also consider the “electromagnetic” dual
to the PGT. This dual model arises naturally from the
same generalized gauging procedure on the classical dual
of the CPIM, which can be written as an anisotropically
coupled Ashkin-Teller model39,40. Note that the duality
discussed here maps between two full gauge-matter theo-
ries; the “F-S duality” between a pure matter theory and
pure fracton gauge theory6 is a limiting case. We con-
struct deconfinement diagnostics for the electric charge
in both the PGT and its dual, thus providing diagnostics
for both fracton and lineon excitations.

For a full space-time discussion of Wilson loop ana-
logues, we construct a discrete-time Euclidean path in-
tegral for the PGT Hamiltonian Eq. (3) via the usual
Suzuki-Trotter decomposition. The gauge constraint is
enforced by the introduction of auxiliary spin-1/2 de-
grees of freedom along the time-links of the 4D hyper-
cubic lattice36,37, that we will denote λ (in the IGT one
has a space-time symmetric structure so these spins can
be thought of as σ spins along the time-links, but this
is not the case here). After a straightforward calculation
(for details, see42), we find ZPGT = Tr{τ,σ,λ}e

−SPGT , with
the Euclidean action

SPGT = −K̃
∑
t,c,i

∏
p∈bi(c)

σ(t)
p − Γ̃M

∑
t,s

τ (t)s λ(t)s τ (t+1)
s (4)

−J̃
∑
t,p

σ(t)
p

∏
s∈∂p

τ (t)s − Γ̃
∑
t,p

σ(t)
p σ(t+1)

p

∏
s∈∂p

λ(t)s

where the integer t labels the Euclidean time slice (which

extends to infinity for zero temperature), τ
(t)
s (σ

(t)
l ) is

c

b

a

Plaquette Ising Plaquette Ising Dual

Spatial Loop

Temporal Loop

Horseshoes

FIG. 1: The Euclidean time representation of the Wilson loop
and horseshoe generalizations for the PGT and its dual, which
realize the X-cube topological phase. Blue circles represents
τ (which lie on vertices), red represent σ (which lie on the
spatial plaquettes in the PGT, but on spatial links in its dual),
and green lines represent the auxiliary spin λ (which lie on
the links along the imaginary time direction). Non-equal time
operators are shown projected to a 2+1D subspace, with the
time direction pointing “up” in the page. The three possible
cut orientations are labeled by a,b, and c.

now a classical Ising variable associated with sites (links)

in the time slice t, and λ
(t)
s is similarly associated with

the link connecting site s between time slices t and t+ 1.
The couplings in SPGT are related to those in HPGT

and the Trotter time step ε via K̃ = εK, J̃ = εJ , and
Γ̃(M) = − 1

2 log tanh εΓ(M). This can be viewed as a sta-
tistical mechanical model of edges, surfaces, and volumes
in 4D, but with a more subtle set of rules for how to build
allowed objects from these.

Proceeding by analogy with the IGT, we construct the
Wilson loops for the PGT and its dual (Fig. 1). Spa-
tial loops are constructed by choosing a set of cubes c
whose centers lie in a plane and taking the product of
their ‘matchbox’ terms (terms multiplying K in the ac-
tion) such that the vacant squares of each matchbox lie
parallel to the plane, resulting in a ‘ribbon loop’ encir-
cling it. This can equivalently can be thought of as the
dynamical process of moving a two-dimensionally mo-
bile combination of charges around in a loop lying in a
plane, via applications of the term multiplying J in the
action. For the PGT, this is a pair of fractons, while for
the dual it is a pair of parallel-moving lineons. Tempo-
ral Wilson loops are constructed in a similar fashion, by
taking the product of the six-spin terms (that multiply
Γ) corresponding to each space-time cube in an L × Lτ
spacetime sheet, leaving open spatial ribbons at the ini-
tial and final slices, whose corners are linked by strings
of λs. This can equivalently be constructed by moving a
one-dimensionally mobile combination of charges a dis-
tance L apart, evolving both for Lτ in imaginary time,
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and bringing them back together again. The combination
again consists of a fracton-pair in the PGT, but now only
a single lineon in the dual. The corresponding horseshoes
(or cut Wilson loop) operators are then obtained by cut-
ting open the loop and terminating it with appropriate
combination of τs, with three distinct possible orienta-
tions labeled a, b, and c in Fig. 1.

Diagnostic behaviors.— We now consider the expec-
tation value of these operators at various points in the
phase diagram. First, note that the spatial Wilson loop
alone functions as a diagnostic only in the pure gauge
theory. When J = 0, for small Γ, vison-pair fluctuations
occur only on small length scales, so that only pairs along
the perimeter of the loop will affect the expectation value.
In contrast, flux excitations are condensed in the confined
phase at large Γ, so that the loop now exhibits an area
law. As in the IGT, for any J > 0 the loop obeys a
perimeter law in both phases.

Next, notice also that the spatial horseshoe alone
serves as a diagnostic only along the Γ = 0 axis, where
it can be understood as measuring the vanishing of a
macroscopic string tension. To understand why this ex-
pectation value is nonzero in the Higgs/confined phase,
we draw on known results for the CPIM38. Early work
on the “fuki-nuke” model44, which may be thought of
as an anisotropic limit of the CPIM with J = 0 for the
plaquettes in the xy plane, reveals that this model maps
on to a stack of decoupled 2D (xy-planar) Ising mod-
els. In terms of the original spins, the local observable
〈τzs τzs+ẑ〉 gains a nonzero expectation value in the ordered
phase, but is free to spontaneously break the symmetry
in different directions for each xy plane. Now, the horse-
shoe operator (a) obtained by cutting open a xy Wilson
loop is exactly the correlation function of this observ-
able: 〈τzs τzs+ẑτzs′τzs′+ẑ〉 for s,s′ which are constrained to
be in the same xy plane, which therefore approaches a
constant as |s − s′| → ∞ in the ordered phase. This
correlator continues to function as a diagnostic even for
the isotropic model, where we are free to choose planes
oriented in any direction43,45,46.

Away from the J = 0 or Γ = 0 cases, we must rely on
the ratios R(L) (Eq. (2)) to distinguish between the con-
fined and (partially) deconfined phases. The ratio for the
spatial cut (a in Fig. 1) as before measures of the cost
of opening up a gap in the loop, which depends expo-
nentially on the size of the gap in the deconfined phase,
but not in the confined phase. In the supplementary
material42, we verify numerically using quantum Monte
Carlo that R(L) shows the expected behavior crossing
the transition at a generic point in the phase diagram.
At Γ = 0, R(L) reduces to the “fuki-nuke” correlation
function above.

Next, we examine the temporal loops. Consider the cut
b of the PGT, W1/2 = τzs τ

z
s+uτ

z
s′τ

z
s′+u

∏
p∈Cu

ss′
σzp(−T/2),

where s,s′ are two sites on the same plane orthogonal to

u = x̂, ŷ, ẑ, and Cull′ defines the set of plaquettes form-
ing a path between them (as in Figure 1). We have
also defined σz(T ) = eHTσze−HT , and T = L/c for a
velocity c in the continuum time limit ε → 0. Calling
our candidate two-fracton-pair (4 fractons in total) state
|χ〉 = W1/2|G〉, created from the ground state |G〉, we

see that R(L) = 〈G|χ〉/
√
〈χ|χ〉 measures the overlap be-

tween the ground state and our candidate state. This is a
generalization of the Fredenhagen-Marcu diagnostic34,35

measuring the deconfinement of fracton-pairs, with the
constraint that the two fracton-pairs must be in the same
plane of movement. The final orientation of the horse-
shoe (cut c) probes the existence of delocalized fracton-
pair states in the spectrum, in exactly the same way as
the delocalized spinons are probed the IGT29.

Thus, rather than measuring the deconfinement of sin-
gle spinons as in the IGT, our Wilson loop and horseshoe
generalizations instead measure the same quantities but
for the smallest mobile combinations of quasiparticles in
their subspace of allowed movement. For the PGT, this
is a fracton-pair. As stated, these diagnostics only probe
the deconfinement properties of fracton-pairs, and not
single fractons. To identify the deconfinement of individ-
ual fractons one can do the same calculation but using
Wilson loops and horseshoes with a finite width that also
scale with L. This distinction can be important, for ex-
ample, in an anisotropic version of the PGT42 which ex-
hibits an intermediate phase in which single fractons are
confined into pairs, while pairs remain deconfined (remi-
niscent of quark confinement into mesons).

Concluding Remarks.— We have shown that decon-
finement diagnostics for the Ising gauge theory (or con-
ventional topological order) can be generalized to the
plaquette Ising gauge theory, which exhibits the X-cube
fracton topological order in its deconfined phase. Despite
never being fully deconfined in the sense of having exci-
tations free to move in all three dimensions, the expec-
tation value of our generalized Wilson loops and horse-
shoes diagnoses the partial deconfinement of these exci-
tations, with various physical interpretations depending
on their orientation in Euclidean space-time. The proce-
dure for identifying Wilson loop type operators is quite
general, and can be extended to other similar type-I frac-
ton models, such as the checkerboard model6. However,
the extension to type-II fracton theories where the frac-
tons (and their composites) are fully immobile remains
an open question worthy of future study.
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