
Sarah Lawrence College Sarah Lawrence College

DigitalCommons@SarahLawrence DigitalCommons@SarahLawrence

Senior Theses Undergraduate Scholarship and Creative Works

5-2020

A Program For Surface Classification A Program For Surface Classification

Sarah Dennis
Sarah Lawrence College

Follow this and additional works at: https://digitalcommons.slc.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Dennis, Sarah, "A Program For Surface Classification" (2020). Senior Theses. 5.
https://digitalcommons.slc.edu/senior_theses/5

This Senior Thesis - Open Access is brought to you for free and open access by the Undergraduate Scholarship and
Creative Works at DigitalCommons@SarahLawrence. It has been accepted for inclusion in Senior Theses by an
authorized administrator of DigitalCommons@SarahLawrence. For more information, please contact
alester@sarahlawrence.edu.

https://digitalcommons.slc.edu/
https://digitalcommons.slc.edu/senior_theses
https://digitalcommons.slc.edu/undergrad
https://digitalcommons.slc.edu/senior_theses?utm_source=digitalcommons.slc.edu%2Fsenior_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.slc.edu%2Fsenior_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.slc.edu/senior_theses/5?utm_source=digitalcommons.slc.edu%2Fsenior_theses%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:alester@sarahlawrence.edu

A Program For Surface Classification

Sarah Dennis

May 16, 2020

Abstract

This thesis presents the classification theorem of compact connected surfaces, its proof, and a com-
puter implementation. The theorem, first stated by Möbius in 1861 and more formally by Jordan in
1866, states that every compact, connected surface is homeomorphic to either a 2-sphere, a connected
sum of tori, or a connected sum of projective planes. The proof we present consists of an algorithm to
take a polygon representation to normal form. A polygon representation of a surface is essentially the
result of cutting the surface up until it lies flat, where we identify the cut edges such that we could paste
it back together again. A polygon representation in normal form has distinguishable tori or projective
plane components and can be easily classified from this state. The computer implementation is written
in JavaScript and includes a graphical interface that allows the user to progress through the algorithm
by cut and paste operations. The program is intended as a learning tool for students in introductory
topology courses.

1 Introduction

Classification sorts a set of objects into distinct categories. Through the process of classification, objects
can be recognised, differentiated, and understood more easily. We put resources towards the cause of
classification so that we can simplify problems and generalise knowledge in this complicated world.

One classic example of classification in mathematics is that of quadratic polynomials. An equation of
the form ax2 +bx+c = 0 with a, b, c ∈ R has at most two solutions x1 and x2. We can find out what form
x1 and x2 take by analysing the discriminant d = b2 − 4ac. If d > 0 we know that x1 and x2 exist in R
and are distinct. If d = 0 we know that x1 = x2. And if d < 0 we know x1 and x2 are complex conjugates.
This classification is enlightening for a number of reasons. When dealing integer coefficients, we may try
to find a solution finding a solution through trial and error and this process is greatly simplified once
we know the form of the solutions. Furthermore, we learn how the graph y = ax2 + bx+ c will interact
with the x axis, either crossing it twice, or touching once or not at all. Finally, we get a sense of a
certain symmetry in the quadratic equation, particularly in that complex roots come in conjugate pairs.
Classifying a quadratic polynomial provides us insight to the functions behaviour with minimal work,
and the classification process is independent of the form of the polynomial.

The Classification Theorem for Surfaces is central to elementary topology and to our discussion here.
In a broad sense, this theorem states that we have a small number of building block surfaces from which
all other surfaces may be constructed. The Classification Theorem is not dissimilar to our classification
of natural numbers through prime decomposition. We know that any natural number n can be written
as n = pα1

1 pα2
2 · · · p

αk
k where the set {pαi

i } of primes and corresponding exponents are unique to n. Then
when n has 2 as a prime factor, we say n is even. And when two natural numbers m > n share a prime
factor, we know that m is divisible by n. Prime decomposition demonstrates the importance of prime
numbers as the building blocks for our basic numerical system. The building block surfaces described in
the Classification Theorem are similarly important to topology as prime numbers are to number theory
in that the properties of a composite surface are uniquely determined by the building block surfaces it is
composed of.

Students of mathematics will likely learn how to find a prime decomposition by hand through a
division algorithm. Trying to find the prime decomposition of a very large number by hand is an arduous
task however, and the increased number of steps for determining the prime decomposition of a large
number leaves more room for human error. The same goes for surfaces. Classifying ‘simple’ surfaces
by hand is not difficult once the method is learned, but the process becomes increasingly complicated

1

with the complexity of the surface. There are many freely available programs that can find the prime
decomposition of a natural number. So why do we not also have a program for classifying surfaces?

The following paper will present a proof of the Classification Theorem, and the necessary background
in topology to follow the details of this proof. This proof was chosen for is algorithmic nature, which
lends itself well to constructing a program for surface classification. Following the proof, we will outline
a program for classifying surfaces. This program allows for immediate surface classification and also
provides a drawing window for performing cut and paste operations. We also present a thorough example
of how cut and paste operations can be used to classify a surface from start to finish; this process could be
easily carried out in our program. Finally, we present the underlying algorithm that allows our program
to perform immediate surface classification.

2 The Classification Theorem for Surfaces

Theorem 1. Every compact, connected surface is homeomorphic to a 2-sphere, a connected sum of tori,
or a connected sum of projective planes. The Euler characteristic and orientability distinguish among
these possibilities.

The Classification Theorem for Surfaces essentially states that every ‘nice’ surface has either some
number of holes, or some number of twists. In the physical world around us, we encounter very few real
objects containing twists – most everyday objects have zero or more holes. For example, a coffee cup
and a donut both have one hole. A pair of pants and a pair of scissors both have two holes. Well known
examples of surfaces with twists include the möbius strip (with one twist) and Klein bottle (with two
twists); I think the most common place to find these objects is on a mathematician’s desk.

2.1 Preliminary definitions

We will now outline some elementary definitions from topology so we can understand the statement of
The Classification Theorem more thoroughly.

Definition 1. A homeomorphism between two topological spaces (X, τX) and (Y, τY) is a continuous
bijection f : X → Y with a continuous inverse f−1 : Y → X. When such a function exists, we say X is
homeomorphic to Y .

The important notion behind a homeomorphism is that it is a smooth operation that can be undone.
In terms of surfaces, stretching, compressing, moulding and reorienting are all smooth, continuous oper-
ations that can be described by a homeomorphism. On the other hand, cutting, tearing, and gluing are
not continuous operations and cannot be undone, and hence have no corresponding homeomorphism.

Previously we have been using the term ‘surface’ very generally, but now we will be more specific.
The Classification Theorem specifically refers to surfaces that are compact and connected.

Definition 2. A compact connected surface S is a topological space (X, τ) where all points in
the interior of S have open balls around them of arbitrarily small radius locally homeomorphic to the
plane, and all points on the boundary of S have half open balls around them of arbitrarily small radius.
Furthermore, S cannot be written as the disjoint union of two open sets, and every open cover of S has
some finite subcover.

Compactness is difficult to define informally. Most things we think of as finite surfaces are compact,
but we must also remember that any open subset of Rn is not compact. Connectedness means, informally,
that the surface is all in one piece. For example, a dinner plate is connected, but a dinner plate that has
shattered after being dropped on the ground is not connected.

Finally, the Classification Theorem mentions the notions connected sum, orientability and Euler
characteristic. We postpone a formal definition of these terms for later on. Informally, the connected sum
of two compact connected surfaces M and N is the result gluing them together; the Euler characteristic of
a surface is an integer determined algebraically from inherent properties of the surface; and orientability
is determined by the presence of a twist in the surface.

2.2 Three fundamental surfaces

The following surfaces are referenced in the classification theorem as our three building block surfaces.

? The 2-sphere: we know this surface in R3 as {(x, y, z) : x2 + y2 + z2 = 1}. Going forward, we will
denote a 2-sphere by S2.

2

? The torus: we can describe the torus in R3 as the surface of revolution, obtained by revolving a
circle in plane E around some disjoint line also in E. We will denote a torus by T2.

? The projective plane: The projective plane can be realised by adding a line at infinity. Take a
plane in R3, and say that parallel lines of any one specific direction in this plane meet at a unique
point at infinity. Then, connecting all these points at infinity for all possible directions of parallel
lines we obtain a line at infinity. The union of the plane with this line at infinity is a real projective
plane. We will denote a projective plane by P2.

A 2-sphere
A torus A projective plane

Figure 1: Surface diagrams of three fundamental surfaces

3 Polygons

The proof of The Classification Theorem relies on representing a compact connected surface as a polygon
in R2, and then manipulating this polygon into a form that we can recognise.

Definition 3. Given a natural number n > 2, a point c in R2 and a real number a > 0, place n points
v0, v1, ..., vn = v0 on a circle centred at c with radius a such that the distance between any vi and vi+1

is equal. Connect each vi to vi+1 with a line segment ei. A polygon P is the set of vertices {vi}i, the
set of edges {ei}i and the region of R2 bounded by the closed path e0, e1, ...en−1 from v0 to vn = v0. See
figure 2.1

Figure 2: A polygon with edges {ei}n−1
0 and vertices {vi}n−1

0

Definition 4. We will also extend the definition of a polygon to cover n = 2 vertices. Then the polygon
P is a bi-gon in R2 centered at the origin with vertices at v1 = (−1, 0) and v2 = (1, 0) and two ‘edges’
e1 and e2 (now half-circle arcs) between v1 and v2.

Definition 5. Given an edge e between vertices a and b, an orientation on e is an ordering of a and
b. The first vertex is called the initial point of e, and the second vertex is called the terminal point of e.
If a is the initial point of e, and b the terminal point, we say that e is an edge from a to b.

1In any of the following polygonal diagrams, dots between vertices vi and vj represent the presence of zero or more edges
between vi and vj . If there are zero edges, then vi = vj .

3

Definition 6. If l is a line segment from a to b and l′ is a line segment from c to d in R2, then the
positive linear map of l onto l′ is the homeomorphism h that carries a point x = (1− t)a+ tb on l to
a point h(x) = (1− t)c+ td on l′.

In essence, a positive linear map is way of mapping one edge onto another such that their initial
points line up, their terminal points line up, and all points in between follow as we expect.

Definition 7. A labelling of a polygon P is a bijective mapping between the edges of P and an alphabet.

We can now describe a polygon with a sequence of labels corresponding to its edges, given in counter-
clockwise order. For example, in Figure 2 we would write P = e0e1 · · · en−1.

Definition 8. Let P be a polygon with oriented, labelled edges, and with vertices v0, v1, ..., vn where
(v0 = vn). Let a1, ..., an denote the edge labels for P . Then for each k = 1, ..., n, let aik be the label for the
edge vk−1vk, and let εk = +1 if the edge is oriented vk−1 to vk or εk = −1 if the edge is oriented vk to vk−1.
Then the oriented polygon P is fully described by the labelling scheme w = (ai1)ε1(ai2)ε2 · · · (aik)εk .
The exponents of +1 are normally omitted.

We can extend this definition to cover the case of multiple polygons in a single space. Given a
finite number P1, ..., Pk of disjoint polygons in R2, along with orientations and labelling of their edges,
we say the collection of polygons {Pi}k1 has labelling scheme w1, ..., wk where each wi is a subscheme
corresponding to Pi.

3.1 Surfaces as polygons

We will now describe how an arbitrary compact connected surface can be represented by a polygon in
R2. We start with the notion of triangulation.

Definition 9. A triangulation of a space X is a simplicial complex K homeomorphic to X where each
1-simplex belongs to exactly two 2-simplexes.

Informally, a triangulation is a tiling of the surface using triangles (possibly of different shapes and
sizes). We then have the following useful theorem:

Theorem 2. Every compact surface admits a finite triangulation.

The proof of this theorem is long and beyond our scope so we will omit it. As a very general overview,
the proof relies heavily on the compactness of the surface. Given a compact surface S we can find an open
cover C with a finite sub-cover C′. We find the finite triangulation of S by transforming each element
of C′ into a triangulated cell complex. The result of this theorem is very powerful and is essential for us
to recognise surfaces in a polygon representation.

Lemma 1. If S is a compact connected surface then there exists a polygon P and a proper labelling
scheme w such that the quotient space arising from these is homeomorphic to S.

The proof of this lemma requires two further definitions.

Definition 10. Given a labelling scheme w for polygons {Pi}, define an equivalence relation ∼ on
{Pi} as follows. If a point x is in the interior of some Pi then x ∼ x only. Given any two edges e1 and e2
(of the same or disjoint polygons in {Pi}) with the same label, paste e1 to e2 through the positive linear
map h, defining each point x of the first edge to be equivalent to the point h(x) on the second edge.

Definition 11. LetQ andR be polygonal regions with vertices r0, r1, ...rk−1, rk, r0 and q0, qk, qk+1...qn−1, q0
respectively. Let a be the edge a from q0 to qk and let b be the edge from r0 to rk. To paste together
Q and R along a and b is to identify a and b through a positive linear map, obtaining the new polygonal
region P with vertices r0, r1, ..., rk = qk, ..., qn−1, q0 with q0 = r0. See figure 3.

Now we can proceed to the proof of Lemma 1.

Proof. Let S is a compact connected surface. Take an n-triangulation T of S. Give each 1-simplex an
orientation and label each 1-simplex uniquely. Then each 2-simplex is a polygon with a length 3 labelling
scheme ti, and our triangulation T has labelling scheme t = t1, t2, ..., tn.

Starting with any triangle in our collection, for one of its edges there is a second triangle with an
edge of the same label. Paste the two triangles together along this edge giving a rectangle. For one of
this rectangles edges, there is a triangle with an edge of the same label, and we paste this triangle to the
rectangle along this edge. We continue this process. It may be the case that for some edge, its pair has
already been adjoined, in this case we move on to a different edge. When this is the case for all edges, we
must have used all the n triangles because S was connected so the triangulation of S is connected. We

4

−→

Figure 3: The paste operation along q0qk and r0rk

also have edges identified in pairs since every label was given to exactly two edges, so if an edge occurs
on the boundary of our new polygon, so must its pair.

The quotient space arising from applying ∼ to the new polygon is homeomorphic to S since T was
homeomorphic to S and, due to our labelling and orienting, reorganising the triangulation did not disrupt
the quotient space.

We have already defined a paste operation on polygons (see definition 11). We wish to define the
inverse of this operation: the cut operation.

Definition 12. Let P be a polygonal region with n > 3 vertices v0, v1, ..., vk, ..., vn−1, v0 where 1 < k <
n− 1. To cut P from v0 to vk is to transform P into two new disjoint polygons Q and R with vertices
v0, vk, ..., vn−1, v0 and v0, v1..., vk, v0 respectively. The polygons Q and R inherit the the relation ∼ as it
was on the points of P , with the added identification that points on the edge {v0vk}Q are identified in
the natural way with points on the edge {v0vk}R. See figure 4.

−→

Figure 4: The cut operation from v0 to vk

3.2 Polygon operations and the quotient space

Now we will see why polygon representations and the cut and paste operations are useful: we can
manipulate the olygon representations of surfaces without changing the surface in the resulting quotient
space

Theorem 3. Suppose w1, w2, ..., wn is the labelling scheme for a collection of polygons {Pi}n1 where wi is
the labelling scheme for Pi. Let X be the quotient space obtained from this labelling scheme. The following
operations on this labelling scheme and its associated polygons do not change X up to homeomorphism.

5

? Relabelling: Any label a can be replaced with a free label e occurring nowhere else in the scheme
without affecting the resulting space. Furthermore, all exponents of a particular label in the labelling
scheme can by flipped (-1 to 1 and 1 to -1).

? Permuting: Any subscheme wi can be replaced with a cyclic permutation of itself without affecting
the resulting scheme.

? Cutting: Take some Pi with labelling scheme wi = y0y1 where y0, y1 are sub-labelling schemes with
at least 2 elements. We can cut Pi from the terminal point of y0 to the initial point of y1 without
changing the quotient space. In other words, suppose e is a label not appearing anywhere in the
scheme. Then w1, ..., y0ee

−1y1, ..., wn is a labelling scheme representing represents the same space.

? Pasting: Take polygons Pi and Pj with respective labelling schemes wi = y0e and wj = e−1y1
where e appears in only these two locations in the scheme. We can paste Pi to Pj along e, then
w1, ..., y0y1, ...wn represents the same space.

? Reflecting: Any subscheme wi = (ai1)ε1(ai2)ε2 · · · (aik)εk can be replaced by its inverse

w−1
i = (aik)−ε1 · · · (ai2)−ε2(ai1)−ε1

without affecting the resulting scheme.

? Folding: Suppose wi = y0aa
−1y1 is a subscheme and that a does not appear anywhere else in the

scheme. Then we can replace wi with y0y1 without changing the resulting scheme.

Proof.

? Relabelling is a superficial operation that will not change the resulting quotient space X.

? Permuting is also a superficial operation that will not change the resulting quotient space X.

? Let P be a polygonal region with vertices v0, ..., vn where vn = v0. Cut P along the edge vivk for
some 0 ≤ i, k < n − 1. This gives disjoint polygons Q and r with edges v0, v1, ..., vi, vk, ..., v0 and
vk, vi, ..., vj , ..., vk where the edge from vi to vk in Q is identified with the edge from vi to vk in
R.Then P is homeomorphic to the quotient space of Q and R obtained by pasting the edge qiqk of
Q to this edge in R using a positive linear map.

? Suppose we have polygons Q and R with vertices q0, ..., qi, qk, q0 and r0, rk, ri, ..., rn where rn = r0
respectively. The vertices of R lie in a circle arranged counterclockwise. Place new points s1, ..., sk−1

such that r0, s1, ..., sk−1, rk, ..., rn with rn = r0 lie on the circle in this counterclockwise order. Let
S be the polygon with these k − 1 vertices.There is a homeomorphism between polygons S and Q
that carries si to qi and maps the edge q0qk linearly onto the edge r0rk of R. The quotient space
obtained by gluing Q and R together is homeomorphic to the region P that is the union of R and
S. So P gives rise to the same quotient space.

? Reflecting is again simply the operation of reversing the direction of all edges and will not change
the resulting quotient space.

? Let b and c be labels that do not appear elsewhere in the total labelling scheme. First replace
y0aa

−1y1 with the scheme y0ab and b−1ay1 using the cut operation. Now combine the edges ab into
a single new edge with label c (not appearing anywhere else). This operation is one of relabelling,
and will not change the scheme since a and b do not appear anywhere else in the scheme. We then
have the scheme y0c and c−1y1 which we can paste together along c giving y0y1.

4 Connected Sum and Euler Characteristic

We previously deferred the formal definitions for connected sum, Euler characteristic, and orientability
used in the Classification Theorem. We now have to appropriate terminology to understand and explain
these definitions.

Definition 13. For two compact, connected surfaces M and N we define the connected sum M#N
to be the surface we obtain through removing an open disc from both M and N , then pasting M and N
together along the boundaries of these discs. An example of forming the connected sum is give in figure
5.

6

surface representation
polygon representation

Figure 5: Forming the connected sum of two tori

Definition 14. A surface is non-orientable if there exists a closed path such that the normal vector is
reversed when moved around this path. In other words, the a non-orientable surface contains a möbius
strip. An orientable surface is one containing no möbius strip.

Definition 15. The Euler characteristic of a compact connected surface S is an integer denoted χ(S).
For some finite triangulation of S with e edges, v vertices, and f faces, we calculate χ(S) = v − e+ f .

We now present several lemmas that relate orientability, Euler characteristic and connected sum, and
that we will need in proving the Classification Theorem.

Lemma 2. The connected sum of two orientable surfaces M and N is orientable, and the connected sum
of any surface Q with a non-orientable surface P is non-orientable.

Proof. Since M and N are orientable, we know that neither contains a Möbius strip. So M#N cannot
contain a Möbius strip and is orientable. Likewise, if P is non-orientable then P does contain a Möbius
strip, so P#Q still contains a Möbius strip and is non-orientable.

Lemma 3. For two compact connected surfaces M and N , we have

χ(M#N) = χ(M) + χ(N)− 2. (1)

Proof. Take a triangulation FM = {TMi}i for M and a triangulation FN = {TNj}j for N . When forming
M#N , we can remove the interior of some TMi and some TNj instead open discs, then glue M and N
together along the boundaries of TMi and TNj joining vertex to vertex and edge to edge. This gives us
M#N as usual with a new triangulation Fn#m where

vertices(FN#M) = vertices(FM) + vertices(FN)− 3 (2)

edges(FN#M) = edges(FM) + edges(FN)− 3 (3)

faces(FN#M) = faces(FM) + faces(FN)− 2 (4)

Now,

χ(M#N) = vertices(FN#M)− edges(FN#M) + faces(FN#M) (5)

= χ(M) + χ(N)− 2 (6)

7

5 Proving the Classification Theorem

Theorem 1. Every compact, connected surface is homeomorphic to a 2-sphere, a connected sum of tori,
or a connected sum of projective planes. The Euler characteristic and orientability distinguish among
these possibilities.

The proof of this theorem relies on showing that every surface can be represented as a polygon, and
that this polygon can be transformed into a normal form without changing quotient space. A polygon
in normal form will then be trivial to classify.

5.1 Normal form

Previously we introduced three fundamental surfaces: S2, T2 and P2. It is important that we also know
their polygon representation and labelling scheme.

Definition 16. A projective plane can described most simply by the labelling scheme w = aa. A
torus can be described by the labelling scheme u = aba−1b−1, and a 2-sphere can be described by the
labelling scheme v = aa−1. See figure 6.

2-sphere
v = aa−1

Torus
u = bcb−1c−1

Projective plane
w = dd

Figure 6: Three fundamental surfaces

As we mentioned above, part of the classification theorem is bringing polygons to normal form where
classification is then trivial. Notice how each normal form is in correspondence with the three fundamental
surfaces.

Definition 17. A polygon in normal form has a labelling scheme in one of three forms:

? v = aa−1 (see figure 6)

? u = aba−1b−1cdc−1d−1efe−1f−1 · · · with length at least 4. (see figure 7)

? w = aabbcc · · · with length of at least 2. (see figure 7).

5.2 Distinct fundamental surfaces

We need two more lemmas for our proof of The Classification Theorem. These lemmas that will help us
to show that a connected sum of n-tori is distinct from the connected sum of m-projective planes.

Lemma 4. The connected sum of n tori is orientable with Euler characteristic 2− 2n.

Proof. The torus T is orientable with χ(T) = 0. By lemma 2 a connected sum of n tori will remain
orientable. By lemma 3,

χ(T#T#...#T︸ ︷︷ ︸
n

) = n(0)− (n− 1)(2) = 2− 2n. (7)

Lemma 5. The connected sum of n > 0 projective planes is non-orientable with Euler characteristic
2− n.

8

u = aba−1b−1cdc−1d−1... w = aabbcc...

Figure 7: Polygons in normal form

Proof. The projective plane P is non-orientable with χ(P) = 1. By lemma 2 a connected sum of n > 0
projective planes will remain non-orientable. We specify n > 0 since if n = 0 we have no projective
planes and no Möbius strips so the surface will be orientable.By lemma 3,

χ(P#P#...#P︸ ︷︷ ︸
n

) = n(1)− (n− 1)(2) = 2− n. (8)

Now note that 2 − 2n = 2 − n only for n = 0. The n = 0 case represents the 2-sphere, i.e. a sphere
with no holes and no twists. Therefore T2, P2 and S2 are all distinct.

5.3 Proof of the classification theorem

Proof. By lemmas 4 and 5, Euler characteristic and orientability together are sufficient to distinguish
between a 2-sphere, a connected sum of tori, and a connected sum of projective planes.

Form a single polygon with edges identified in pairs from a triangulation T of the compact connected
surface.

Suppose the polygon of our surface has only two edges. They are either arranged in the same direction
(aa) or in opposite directions (aa−1). In the first case we have the projective plane, and in the second
case we have a 2-sphere.

Otherwise, suppose our polygon has more than two edges. We will provide a sequence of steps that
will transform this polygon into a normal from where we can identify it up to homeomorphism as one of
the three standard surfaces.

The first step is to cancel any adjacent edges of opposite directions (aa−1) by gluing them together.
We obtain a polygon with two fewer edges. This may bring us to a polygon with only two edges, in
which case we refer back and identify it as a projective plane or a 2-sphere.

Next, identify all vertices to a single equivalence class if they are not already. This can be done by
the following procedure: if an edge a has endpoints P and Q in different equivalence classes, where b is
adjacent to a with endpoints A and R, make a cut from P to R, labelling this new edge c. We cut off
the triangle PQR and glue it back to the polygon along the other edge a. This will reduce the number
of vertices in equivalence class Q by one. We continue this process until Q has only one member, at
which time we can close it up and eliminate Q altogether. We similarly eliminate all other equivalence
classes until only one remains. Now that there is only one vertex present, it will continue to be the only
vertex present. All further cut and past operations will not generate any new vertices. Also note that

9

this process may bring us to a polygon with only two edges, in which case we refer again may identify it
as a projective plane or a 2-sphere. All further operations will preserve the number of edges present.

The third step is to bring all like-oriented edges into adjacent pairs. That is, (...a...a...) will become
(...cc...). We can perform this operation by cutting from the tip of one a to the tip of the other a,
labelling this cut c. Then gluing along a will bring the like-oriented c edges next to one another. Notice
that any adjacent pairs already present in the polygon will remain so during this operation.

Now if any pairs of oppositely oriented edges (...a...a−1...) remain, they must occur in ’crossed pairs’
(...a...b...a−1...b−1). Why? Suppose that (...a...a−1...) is not separated by any other pair of oppositely
oriented edges. Let α be the sequence of edges between a and a−1 and let β be the sequence of edges
between a−1 and a so that aαa−1β = ...a...a−1... . Now each edge in α is identified with another edge in
α and each edge in β is identified with another edge in β. So α and β are valid polygonal representations.
Now if we were to paste along a, we would create a tube with the surface α on one end and the surface
β on the other. But this implies that the tip of a is not identified with the tail of a, contrary to our
previously collecting all vertices to a single equivalence class. therefore, all pairs of oppositely oriented
edges occur in crossed pairs.

The fourth step is to bring all crossed pairs (...a...b...a−1...b−1) into adjacency (...cdc−1d−1...) by the
following procedure. First cut from the tip of a to the tip of a, labelling this new edge c. Now paste
along b. This will give the polygon (...aca−1...c−1...). Now cut from the tip of c to the tip of c, labelling
this edge d, and glue along a. This will give (...cdc−1d−1...). Again any adjacent edges of like-orientation
will remain adjacent through this process. If there are no edges of like orientation after we collect crossed
pairs, the surface is isomorphic to the connected sum of n tori where n is the number of crossed pairs.

Otherwise, if there are edges of like-orientation, we must transform (...aa...bcb−1c−1...) into (...eeffgg...).
Cut from where a adjoins to a to where c adjoins to b−1, labelling this edge d, then paste along a. This
gives (...dcbdbc...). Finally, perform the operation of collecting these like-oriented edges into adjacency.
We must do this in the order b, c, d or c, b, d (see section 10.1). Now if the polygon contains any like-
oriented edges, they are all like-oriented edges. We know such a surface is the connected sum of n
projective planes where n is the number of edge pairs.

6 Example: classification by cut and paste operations

Now we present a full example of how to use cut and paste operations to classify a surface from arbitrary
polygon representation. Take surface represented by the labelling scheme acbffc−1a−1b−1gg.

Step 1: Note that not all vertices are in the same equivalence class. The vertex at the ac intersection is
not identified the other vertices. To fix this, we cut from the tail of a to the tip of c creating a new
edge e. We then paste the triangle eac back along the sides c−1a−1. This buries the second vertex
class in the interior of our polygon. This leaves us with the octagon ebffe−1b−1gg.

Step 2: At this point all like oriented edges are adjacent. So our next step is to bring the crossed pair
eb...e−1b−1... into adjacency. We make a cut from the tip of one e to the tip of the other e creating
a new edge h. We then paste the square hbff back along the side b−1. This gives us the octagon
ehe−1ffh−1gg.

Step 3: We are continuing to bring what was the crossed pair e, b into adjacency. We cut from the tip of
one h to the other h creating a new edge k. We then paste the square ke−1ff back along the edge
e. This gives us the octagon ffk−1hkh−1gg. Now the crossed pair is normalised.

Step 4: While the crossed pair is normalised, we have edges of like-orientation present. So we must transform
the crossed pair into two like-oriented pairs. We start by cutting from the tip of the first f (at
the ff vertex) to the tip of h (at the hk vertex) creating a new edge m. We now take the square
mfk−1h and paste it back along f giving the octagon mh−1kmkh−1gg.

Step 5: Now we must bring the three pairs of like-oriented edges (m, h, and k) into adjacency, being careful
to do m last. We will normalise the pair k first. To do this we cut from the tip of one k to the
tip of the other k creating the edge p. We paste the triangle pmk back along the edge k giving the
octagon mhm−1pphgg.

Step 6: Now we will normalise the like-oriented pair h. Cut from the tip of one h to the tip of the other h
creating the edge q. Now paste the pentagon qm−1pph back along the edge h giving the octagon
mppmqqgg.

Step 7: Finally we can normalise the like-oriented pair m. Cut from the tip of one m to the tip of the other
m creating an edge r. Take the square rppm and paste it back along the edge m. This gives us the
octagon pprrqqgg which is in normal form.

10

Figure 8: Steps 1-3 of Cut and Paste classification of polygon acbffc−1a−1b−1gg

Figure 9: Steps 4-6 of Cut and Paste classification of polygon acbffc−1a−1b−1gg

Step 8: A polygon in the form pprrqqgg is the connected sum of four projective planes P#P#P#P .

Figure 10: Steps 7, 8 of Cut and Paste classification of polygon acbffc−1a−1b−1gg

7 Programming surface classification

The remainder of this paper is dedicated to presenting the program Surface Classification we have
developed for determining surface classification from polygon representation.

11

7.1 Program overview

Surface Classification is a web based interface and uses JavaScript for underlying operations Given an
edge list representation of a compact connected surface, the user can experiment with cut and paste
operations through the drawing environment, or chose to find an immediate classification through the
classify function.

The interface has a minimal number of interactive elements:

• An input text field for entering a polygon’s string representation

• A drawing window for visualising cut and paste operations

• The generate button for drawing the entered string representation as a polygon.

• The classify button for finding an immediate classification, bypassing cut and paste operations.

• The reset button to erase the current drawing.

• A message field for reporting classification, cut and paste results as string representation, and any
errors; A clear button to erase the message field.

• The cut, paste and flip buttons to perform cut and paste operations, further explained below.

• The hint button for reporting the next cut and paste operation to reach normal form

• The undo and redo buttons to undo and redo cut and paste operations in the drawing window.

• The note button and adjacent input field for annotating the polygon in the drawing window.

Figure 11: Surface Classification interface

To use the Surface Classification program, the user should start by entering a string representation
into the text field. A string representation of a surface is a list of alphabetic characters where capitalisa-
tion of a character denotes an inverse edge, and each letter (in capital or lower case form) occurs exactly
twice. Classification can then be carried out in two ways. The user can press the classify button and

12

the final classification will immediately be reported in the message window along with the sequence of
cut and paste steps to reach this classification. Otherwise, the user can press the generate button and a
polygon corresponding to the user’s input will be appear in the drawing window. In either case, if the
input text does not correspond to a valid polygon representation, an appropriate error will be reported
in the message window and neither drawing nor classification will occur.

If the user elected to draw the polygon, the cut, paste and invert operations can be carried out in the
drawing window as follows:

To perform a cut, select two vertices (they will turn blue) and press the cut button. A new edge will
be created between the two selected vertices and will be given the next available label. The user can never
select more than two vertices at a time; a vertex can be de-selected by clicking it again. Furthermore, the
user cannot perform a cut between two adjacent vertices; since this operation corresponds to the trivial
cutting off of an S2, it has not been implemented.

The cut button leads us to distinguish between two states: one where the polygon is whole, one where
it is separated). No further cuts can be made while the polygon is in a separated state. Furthermore,
this state influences how the paste and flip buttons operate.

To perform a paste, select two edges (they will turn red) and press the paste button. When the
polygon is in its ‘whole’ state, the paste button can only be used to paste together pairs of adjacent
inverse edges. When the polygon is in its ‘separated’ state, the paste button can only be used to paste
together a pair of edges from separate segments and of opposite orientation.

The flip button allows the user to reverse the orientation of a polygon or cut polygon segment. When
the polygon is in its ‘whole’ state, the user can simply press the flip button and the polygon will be
redrawn with reversed orientation. When the polygon is in its ‘separated’ state, the user can select a
segment to flip by clicking its interior (a purple dot will appear). Once this choice has been made, clicking
the flip button will redraw only that segment with reversed orientation.

These three buttons correspond to the only operations needed to take a polygon to normal form. One
further button has been included to allow the user to make annotations in the drawing window. Clicking
the note button will initiate this annotation mode until it is clicked again. While annotating, whatever
text is present in the note input field will be placed within the drawing window where the user clicks.
Annotations can be especially helpful for tracking vertex equivalence classes. However, once the user
performs any cut, paste or flip operation, the annotations will disappear.

Finally, while in drawing mode, pressing the hint button will display the recommended next step in
bringing the polygon into normal form for classification. These hints are non-specific, such as ’cancel
adjacent inverse edges’ or ’bring to a single vertex equivalence class’ or ’collect crossed pairs’. The task
of determining which edges these hints are referring to is left up to the user.

7.2 Programming cut & paste operations

The follow section will outline how we represent polygons in the underlying code, and how the cut, paste
and invert operations are implemented in our program.

7.2.1 Polygon representation

Many programmers will be familiar with the concept of circular linked lists. A circular linked list is
an ordered set of nodes such that each node has a predecessor and a successor node. In a simple
implementation of a circular list, each node has a pointer to its successor node 2. The circular list itself
keeps track of only one node, knows as the head. The list is then formed by following the successor line
starting at the head; it is circular in that eventually we will reach a node whose successor is the head
again.

We chose to build our own circular list construction: the CircList class, see code fragment 1. Each
node in a CircList is intended to be an instance of the Edge class. An Edge has 3 properties: a pointer
to its successor node, a lower-case letter denoting its label, and a boolean tag denoting if the edge is
inverse or not. A CircList of Edges then represents a polygon. We opted for CircLists to also keep track
of their length and the set of labels used by the nodes in the list. The head node of a circular list as it
relates to a polygon is arbitrary. We will build our lists from a word representation of the polygon, and
thus the head node will represent the first letter in the word.

2There are several variations on circular lists. In some constructions, each node keeps track of its predecessor or in the case
of a doubly-linked circular list each node knows both its predecessor and successor nodes. The former variation is no different
to a successor implementation. The latter has the advantage that traversal can operate in two directions, but subsequently the
insertion and deletion process more involved.

13

Our circular list implementation provides two methods for adding nodes: append and prepend. Both
methods take the new node to add as an argument. The main distinction is that append inserts the new
node such that its successor is the head, whereas prepend inserts the new node at the new head such
that the old head is the successor of the new node. While the prepend method is not necessary, it is very
helpful in the process of inverting/flipping over polygons. Our circular lists have no delete or remove
methods. If ever we need to remove a node, we simply build up a new circular list leaving out the node
to be removed. Finally, we have the buildEdges method which takes a string as input and returns a
corresponding circular list.

Now we will describe how the cut, paste, and invert operations work on these circular list polygon
representations.

7.2.2 Function: paste

The paste function takes three arguments: two circular lists to paste together, and a single letter edge
label along which to paste. Denote the two circular lists to paste by e1 and e2, and denote the label by
λ. First, we makes a new circular list e. This will be built up to the polygon resulting from the paste
operation. Traverse through e1, pushing each node onto e, until we reach the node in e1 with label λ.
Save the successor of this node as our position in the traversal of e1. Then traverse through e2 until we
reach the other node with label λ. Starting with the successor to this node, push nodes from e2 onto
e until we return to the node with label λ. Finally, continue the traversal of e1 and push nodes from
e1 onto e until we return to label λ again. The paste function then returns the circular list e. See code
fragment 2.

7.2.3 Function: cut

The cut function also takes three arguments: a circular list e to cut, and indices to cut from and to
(denote by i and j respectively). In general, we should avoid indices in circular lists as it somewhat
deconstructs the circular property. However, we found that in the case of cutting, indices were necessary
because nodes in a list are not necessarily unique. The indices used for the cut operation are measured
from the head of the list. To cut from 0 would be to start a cut at the vertex between the head edge and
its predecessor. Likewise to cut to 2 would be to finish a cut at the vertex between the head’s successor
and its successor. The process of determining these indices relies on whether the cut operation is used
in the classification algorithm or in the graphical interface.

First, the program will check that j < i. If not, i and j are switched so this inequality holds 3. Then,
the cut function makes two new circular lists e1 and e2 that will correspond to the result of the cut,
and a new label λ that will mark the newly cut edge. Whenever a new label is needed, a sub-method is
called that takes the set of labels in a given circular list (our lists of edges keep track of this property)
and returns the first letter alphabetically that does not occur in the set.

Starting with the head element of e, iterate through e until we reach index i. Then, create a new edge
with label λ and push it onto e1. Starting with index i in the list e, push edges onto e1 until reaching the
index j. Now e1 represents one of the cut segments. We build up e2 through a similar process. Start by
pushing a new edge with label λ onto e2. Then, starting with index j, push edges from e onto e2 until
we reach the index i again. Now e2 represents the second of the cut segments. The cut function returns
a length two list containing e1 and e2. See code fragment 3.

7.2.4 Function: invert

The invert function has the simplest implementation of the three main operations. The invert function
takes a single argument: the circular list of edges e to invert. The program begins by creating a new
circular list inv. Starting with the head element of e, negate the inverse tag of each element in e and
prepend them to the list inv. Then, since prepend adds to the front of the list, inv is a copy of e in
reverse order where each edge has a reversed direction. Finally, the invert function returns this new list
inv. See code fragment 4.

3This does prevent the user from choosing the direction of a cut, but the direction of two edges with the same label is
arbitrary and this simplification allows for much more compact code.

14

8 Classification algorithm

In this section, we will present the underlying classification algorithm triggered by the classify button.
This algorithm draws heavily from the proof of The Classification Theorem, and is a terminable algorithm.

8.1 Function: classify

The classify function serves as a crank for the classification algorithm and various external sub-methods
determine and perform the necessary cut and paste operations. The classify function takes a string of
characters as an input. In regards to the html page, clicking the classify button sends the exact text in
the input field to the classify function. First, we check if this string represents a valid polygon. This
is done using a sub-method validPolygon. If we encounter an invalid polygon, this is reported to the
message box on the html page and the classify function ends. Otherwise, we use the function buildEdges
to create a CircList of Edges.

Now we can properly begin the classification process. Start by calling the function simplify ; this will
cancel any edges of the form ...aa−1... and will write a final classification of S2 or P2 to the html window
if our polygon has only length 2. Next, call the collectVertices function to bring the polygon down to
a single vertex equivalence class. This can cause edges of the form ...aa−1... to resurface, so follow up
by calling simplify again. The next step is to transform edges of the form ...a...a... into ...aa.... This
is done using the collectLikeOriented function. Again, call simplify before proceeding to the next step:
calling the collectCrossedPair function. This will transform all edges of the form ...a...b...a−1...b−1... into
...cdc−1d−1....

At this point the polygon only has edges of the form ...aa... and ...bcb−1c−1.... Now use the function
countP2 to count the number of projective planes p in the polygon (where ...aa... counts as one projective
plane). Then, if p > 0, and the polygon has n sides, we know that the number of tori T = n−2p

4
. Following

the rule that in the presence of a projective plane, a torus translates to two additional projective planes,
we now know our total number of projective planes is p + 2T . Otherwise, if the number of projective
planes is zero, the number of tori is simply n

4
. The final classification is reported to the html window

and the classify function terminates. See code fragment 5

8.2 Function: validPolygon

Th function validPolygon takes a string of characters α as input and will return true if this string
represents a valid polygon input, and returns false otherwise. First, if α has odd length or is an empty
string the function returns false right away. Otherwise, it uses a regular expression to ensure our string
only uses alphabetic characters. If α does not match the regular expression ‘ˆ [a-zA-Z]+$’ it returns false.
Finally, we need to check that every letter used in the string is used twice. Create a map of letters in
α to their number of occurrences in α. If the count for any letter is not exactly 2, the function returns
false. If α has passed all the above checks, it is a valid polygon representation and the function returns
true.

8.3 Function: simplify

Between each step in the surface classification algorithm, we need to make sure that our polygon has no
edges of the form ...aa−1.... Furthermore, if our polygon has been reduced to a 2-gon we can move to a
final classification as S2 or RP2. We created the simplify to carry out these two operations.

The function simplify takes a CircList e as input. First, it calls the function cancelAdjInverse on
e. This submethod will return a circular list e′ with no adjacent inverse pairs. If e′ has length 2, the
final classification of e′ is written to the html window and the function returns null. Determining the
classification of a 2-gon as S2 or P2 involves checking if the two edges or of like or opposite orientation.
Otherwise, if e′ has length greater than 2, simplify returns e′.

8.3.1 Function: cancelAdjInvs

The function cancelAdjInvs takes a CircList of Edges e as input. It begins by retrieving the set of edges
labels from e and then iterates through this set. For each label, it calls the function areAdjInv. If this
function returns true, and e has length greater than 2, we perform the paste operation on e along the label
λ. Then, so as to capture nested adjacent inverse pairs such as ...abb−1a−1..., the function cancelAdjInvs
calls itself again on the now modified circular list e. The function will terminate and return the circular

15

list e when either there are no more adjacent inverse pairs, or the number of edges has decreased to 2.
See code fragment 6.

8.3.2 Function: areAdjInv

The areAdjInv function takes a CircList of Edges e and a single label λ, and checks if the edges in e
with label λ are of the form ...λλ−1.... Starting with the head element, traverse through e until we reach
an occurrence of the label λ. If the very next element also has label λ and is of opposite orientation,
the function returns true. Otherwise, continue to iterate through e until the second occurrence of λ.
Then perform the same check: if the very next element also has label λ and is of opposite orientation,
return true; otherwise, return false. This method could be greatly simplified by a circular list in which
nodes know both their successor and predecessor. However, the small loss in compactness here does not
warrant this implementation that would make the more commonly performed insertion operations more
complex. See code fragment 6.

8.4 Function: collectVertices

As in the proof of The Classification Theorem, the first major step is to collect all the polygon’s vertices
into a single equivalence class. This is performed using the function collectVertices. This function takes
a circular list of edges e as input. First, it calls the function buildVertices on e which returns a list v of
Vertexs. A Vertex object has three properties: left and right record the Edges to the left and right of
the Vertex in the polygon; the property eqClass is an integer denoting which equivalence class the Vertex
belongs to. The buildVerticesoperation leaves the eqClass property as null. The collectVertices function
then calls the function makeEqClasses on v. This returns the number of equivalence classes n in e, as
well as a modified list of vertices v′ where the eqClass property is no longer null. If n = 1 the function
returns e without modification. Otherwise, we proceed to the process of collecting vertices to a single
equivalence class.

Given a list of vertices v with marked equivalence classes and a corresponding circular list of edges
e, the function ‘collects’ vertices in the following way. Traverse v until the first vertex with eqClass = 0
and record this index as i. Then traverse to the first vertex with eqClass 6= 0, and remember this eqClass
as eq. Finally, traverse to the second vertex with eqClass = 0 and record this index as j. Now, perform
a cut on e from i to j. The cut functionreturns two new CircLists e1 and e2. We wish to paste these
two segments back together along an edge label with some specific properties: (1) as with any paste,
the label must be present in both e1 and in e2; (2) one of this edge’s two associated vertices must be of
equivalence class eq, (3) this edge cannot be the one we just now created with our cut. This edge label λ
is found using the sub-method findPasteLabel. Finally, paste e1 to e2 along λ creating e′. This will have
decreased the number of vertices in equivalence class eq by at least one. The problem now is that the
list of vertices corresponds to e, and not to e′. Instead of attempting to adjust the vertex list to match
e′, we will just start the process over. Perform cancelAdjInvs on e′ and then call collectVertices again.
Eventually the number of vertex equivalence classes will have decreased to one and the the function will
return e. See code fragment 7.

8.4.1 Function: makeEqClasses

The function makeEqClasses takes the list of vertices v as input. It will use several helper functions
to recursively mark out the vertex equivalence classes. First, define variables eq and i that initialise to
0. Then call the mark function on v and i. This will return a new v where all vertices in the same
equivalence class as the vertex in position i have been marked as such. Then increment the value eq by
1 and update the index i using the nextToMark function. The nextToMark function searches through
the list of vertices until it finds one whose eqClass property is null, it will then return the index of this
vertex, or -1 if all have been marked. Hence, once i has the value -1 the makeEqClasses function will
return the list of vertices v and the number of equivalence classes eq. See code fragment 8.

8.4.2 Function: mark

The mark function takes a list of vertices v, a starting index i and an integer eq denoting the equivalence
class we are working in. Let x be the vertex at index i in v. First, mark x as being in equivalence class
eq. Then, mark all equivalence classes that follow directly from the equivalence class of x.

Recall that a Vertex knows the Edges to its left and right. The remainder of the mark function is
split up into two cases to deal with the left and right edges.

16

If the Edge l to the left of x is an inverse, then (1) the vertices where l is on the left and l is not an
inverse and (2) where l is on the right and l is an inverse, are also in equivalence class eq. Search through
the vertex list looking for any such vertices that have not already been marked. Then recurse: let v be
the result of calling mark with arguments v, i and eq. Note that since we only recurse when a vertex is
not already marked, this process will eventually terminate.

Otherwise, if the Edge l to left of x is not an inverse, then (1) the vertices where l is on the left and l
is an inverse and (2) where l is on the right and l is not an inverse, are also in equivalence class eq. We
perform the same recursive process on all such vertices.

Now consider the Edge r to the right of x. If r is an inverse, then (1) the vertices where r is on the
left and is an inverse and (2) where r is on the right and is not an inverse are also in equivalence class
eq and recursively mark them as such. Likewise, if r is not an inverse, then (1) the vertices where r is on
the left and is not an inverse and (2) where r occurs on the right and is an inverse are also in equivalence
class eq. Again, recurse and mark these vertices using the function mark.

Eventually the recursion of will terminate having found and marked all the vertices in equivalence
class eq. The function mark returns the list of vertices v back to makeEqClasses. See code fragment 9.

8.4.3 Function: findPasteLabel

The function findPasteLabel takes two CircLists e1 and e2, a list of vertices v and an integer eq denoting
an equivalence class. First, create a new set E. Traverse through v and if a vertex has equivalence class
eq, add the label of both its left and right edges to the set E. Now E is the set of all edge labels incident
to vertices in equivalence class eq.

Since the second criteria for a paste label was that it not be the edge just created with a cut, we will
disregard the head elements of both e1 and e2. Begin traversing e1 starting at the successor to the head.
For each Edge in e1 perform a traversal of e2 starting at the successor to its head. In this inner traversal,
check if the two edges have same label, and check if this label is in the set E; this satisfies conditions (1)
and (3) for our desired paste label. If so, return this label. Otherwise, continue the double traversal. See
code fragment 11. Note that there is always an appropriate edge label to paste along, otherwise there
would not be multiple equivalence classes.

8.5 Function: collectLikeOriented

At this time, the polygon should have exactly one equivalence class of vertices. The next task is to bring
all pairs of edges of like orientation into adjacency. For example, ...a...a... should become ...bb.... The
function collectLikeOriented takes a CircList e as an argument. For each edge label used in e, we want
to check if these edges have the same orientation and are non-adjacent. Start by saving the head element
of e into a variable left and initialise a counter variable i to 0. Then, begin a traversal by setting a
variable right to the successor of left, and set a second counter j equal to i + 1. We will need these
counters if we want to make a cut. Then, while left and right have different labels, set left equal to its
successor. Once left and right have the same label, check if they have the same orientation and are not
already adjacent. If so, perform a cut from i to j and then paste the cut segments along the common
label giving e′. Since the order of Edges in e has changed, restart by calling collectLikeOriented on e′.
Otherwise, if left and right were either of opposite orientation or already adjacent, set left equal to its
successor and if left is not yet equal to the head element of e, continue the traversal. Finally, return e.
See code fragment 10.

8.6 Function: collectCrossedPair

Perhaps the most involved step in the classification process is that of collecting crossed pairs. The
function collectCrossedPairs relies on the function findCrossedPair to return the pair of labels, say a,
b that make up a crossed pair such as ...a...b...A...B. The work of transforming ...a...b...A...B into
...cdCD... is then done by collectCrossedPair. If findCrossedPair finds no crossed pair, it will return
an empty list, and the loop in collectCrossedPair terminates. The function collectCrossedPair begins
by calling findCrossedPair ; we will save this in the variable pair = (a, b). Now start a counter n at
0. Unfortunately, our function cannot distinguish between crossed pairs that are and are not already
collected. This counter n will help us to ensure we do not collect the same crossed pair twice. Then,
begin a loop with the condition that pair has length greater than 0. Set x to be the head element of e
and set an index counter i = 0.

17

Start by looking for the two indices of the edge labeled a in e. Then, until x has the label a and x is
an inverse, set x to the successor of x and increment i modulo the length of e. At this point, save the
value of i as index a 1. Set x to be its successor. Then, once again, until x has the label a and x is not
an inverse, set x to the successor of x and increment i modulo the length of e. Save the current value
of i into index a 2. Now cut e from a index 1 to a index 2. Save these two segments as a pair pasteA.
Then paste these segments along the second edge label in the pair b. Save this new circular list as e′.

Next, we need to know the label of the edge created in the cut we just made. This can be found as
the head element of either segment in pasteA; save this label as c. Now we wish to search for the indices
of the edges with label c. Set x to be the head of e′ and set i back to 0. As before, until x has the label
of the c and x is an inverse, set x to the successor of x and increment i modulo the length of e′. Save
this value of i as c index 1 and set x to be its successor. Now we will search for the second index of c:
until x has the label of the c and x is not an inverse, set x to the successor of x and increment i modulo
the length of e′. Now save the value of i as c index 2. Finally, cut e′ from c index 1 to c index 2 and
paste these segments along the label a.

Before repeating the loop, ensure the pasted segments are saved back in the variable e, increment the
variable n, and pass e and n into findCrossPair setting pair to be the result. Eventually, there will be
no further crossed pairs and our loop will end. At this time we simply return e. See code fragment 12.

8.6.1 Function: findCrossedPair

The function findCrossedPair takes a CircList of edges e and the pair counter n. Begin by building a list
of the labels of all inverse pairs in e. Iterate through the set of labels in e, and for each label λ, check if
the first occurrence of λ in e is of opposite orientation to the second occurrence of λ in e. If so, add λ to
the list of inverse labels. Now, we will split this list of inverse labels, removing the first n labels – these
inverse pairs will already have been collected. If the list of inverse labels is empty, there are no crossed
pairs remaining so findCrossedPair returns an empty list.

Otherwise, let a be the first label in the list of inverse pairs. We need to find the appropriate crossed
pair partner b for a. First, find the two indices i and j of the label a in e and build up two lists left and
right such that left has edges from index i up to (not including index j and right has edges from index
j up to (not including) index i. We need to find a label from the list of inverse pairs that occurs once in
the list left and once in right. Begin by iterating through the list of inverse labels (skipping a). Let λ
denote the current label in the iteration. First, check for the presence of λ in the list left and then check
for λ in the list right. If λ is found, findCrossedPair terminates and returns the pair a, λ. Otherwise it
continues the loop. See code fragment 13. As the proof of The Classification Theorem demonstrates, all
...a...a−1... edges must occur in crossed pairs; hence this final loop will always find an appropriate λ.

8.7 Function: countP2

The function countP2 takes the CircList of edges e and returns an integer as output. It starts by
initialising a counter i to 0 and then begins a traversal of e. For each edge x in e, if x and its suc-
cessor have the same label and are not inverses, then we increment i. When the successor of x is
the successor of the head element of e, countP2 terminates and returns i. See code fragment 14.

This completes the collection of functions we use to implement the surface classification algorithm.
JavaScript code fragments for the majority of the functions discussed above are given in the addendum,
section 10.2.

9 Discussion

The Surface Classification program was developed over the course of a few months, and there are several
limitations to resolve and features we would like to have implemented but did not have sufficient time to
do so.

Perhaps main limitation we see in the Surface Classification program is that only one cut can be
made at a time. Much work is needed to allow for arbitrary cutting and this could not happen in our
time frame. Instead, when the user cuts, they must make a paste before making a second cut. In the
future, it would be beneficial for a user to be able to make several cuts to a polygon at one time. In
particular, this would help with collecting vertices to one equivalence class since all vertices could be
cut off and collected in one go. Likewise, there is no option to cancel adjacent inverses in a single cut

18

segment. This is less limiting since thee adjacent inverse edges will remain after any paste, but would
certainly be a useful operation for classifying surfaces.

The main feature we would like to implement in the future is continuous animation in the graphical
interface. This would help the user to develop a clearer understanding of the cut and paste operations
that are taking place. Currently, when two segments are pasted back together, we do not see the paste
operation taking place and are instead jump straight to the resulting polygon. Visually, this is a large
transition to make and for new users or those with little experience in cut and paste operations, it can
be difficult to follow what has happened. With full animation implemented in the graphics window, the
program could provide a full sequential animation of the cut and paste operations for classification rather
than just a text description. Implementing such animation, however, would require a full reworking of
the program from its current state.

While implementing the Surface Classification program, and in writing this paper, we came across
several interesting, related questions. In particular, what are the smallest (in terms of number of edges)
and simplest (in terms of fundamental group) polygons that require every step in The Classification
Theorem in order to be classified using cut and paste operations? We came across this question while
trying to develop an insightful example, see section 6. The best example we could find has string
representation acbffc−1a−1b−1gg, and it does require every step of The Classification Theorem. Such
examples are important because they are very useful test cases for programs such as ours. We are able
to verify that every operation in the Surface Classification program performs correctly since the polygon
acbffc−1a−1b−1gg can be correctly classified as the connected sum of four projective planes.

Other interesting questions arose in considering test cases for our program. For example, should we
consider the empty string a valid polygon representation? In one sense, we could achieve the empty string
by cancelling the last remaining pair of edges of the form aa−1. As an operation on surfaces, we are left
with a point. A point is homeomorphic to S2, but it is not generally seen as a surface at all. In the end,
we chose not to allow the empty string as an input polygon representation in the Surface Classification
program for a few (less mathematical) reasons. If one enters the empty string, a point could appear in
the drawing window, but there are then no interesting cut and paste operations to perform. Furthermore,
we decided it would be confusing to allow a lack of input to be a valid input – a user may have pressed
a button accidentally and not realise this has triggered the drawing window and classification process.

Certainly the Surface Classification program has limitations and room for further work, but it does
perform the task we initially intended. That is, the Surface Classification program is able to classify
compact connected surfaces from a string representation with the option to visualize the classification
process through cut and paste operations. Even in its current state, this program will be a valuable
learning tool for students and teachers of introductory topology courses.

19

10 Addendum

10.1 Collecting projective planes

We noted in our proof that collecting projective planes in a polygon with scheme ...dcbdbc... must be
done in the order b, c, d or c, b, d. There are only six possible orders to collect 3 projecting planes in, we
will show here why b, c, d and c, b, d work, and why the other four orders do not.

First, here are the cut and paste diagrams for b, c, d and c, b, d. They allow us to obtain a polygon of
normal form with all identified edges adjacent.

Figure 12: Cut and paste in order of b, c, d

Figure 13: Cut and paste in order of c, b, d

Here are the cut and paste diagrams for what happens when we try the other four orders. In figure
14 a), we paste along b first. This gives us ...d...d−1.... When we try to make a cut f that brings d and
d−1 into different polygons and then glue along d we obtain ...f...f−1... so no progress has been made.
Likewise, in figure 14 b) we paste along c first and also obtain ...d...d−1... which has the same issues.
Finally, in figure 14 c), we paste along d first. Now we cannot paste along b or along c next since we have
both ...b...b−1... and ...c...c−1... so we encounter the same problems as before.

So in general, when we have a polygon of scheme ...dbcdcb... we must collect the projective plane d
last or else we will revert to a form containing a torus.

20

(a) Order b, d, c (b) Order c, d, b (c) Orders d, c, b and d, b, c

Figure 14: Attempts to collect projective planes

10.2 JavaScript code fragments

1 class CircList{

2 constructor (){

3 this.length = 0;

4 this.head = null;

5 this.labels = new Set();

6 }

7
8 append(node){

9 var temp = this.head;

10 if (this.head !== null){

11 while(temp.next !== this.head){

12 temp = temp.next;

13 }

14 temp.next = node;

15 node.next = this.head;

16 }else{

17 this.head = node;

18 node.next = this.head;

19 }

20 this.length ++;

21 this.labels.add(node.label);

22 }

23
24 prePend(node){

25 if(this.head === null){

26 this.head = node;

27 node.next = this.head;

28 }else{

29 node.next = this.head

30 var temp = this.head;

31 while(temp.next !== this.head){

32 temp = temp.next;

33 }

34 temp.next = node;

35 node.next = this.head;

36 this.head = node;

37 }

38 this.length ++;

39 this.labels.add(node.label);

40 }

21

41 }

Code fragment 1: CircList Class

1 function paste(e1 , e2 , label){

2 var e = new CircList ();

3 var temp1 = e1.head;

4 while(temp1.label !== label){

5 e.push(new Edge(temp1.label , temp1.inverse));

6 temp1 = temp1.next;

7 }

8 temp1 = temp1.next

9 var temp2 = e2.head;

10 while(temp2.label !== label){

11 temp2 = temp2.next;

12 }

13 temp2 = temp2.next;

14 while(temp2.label !== label){

15 e.push(new Edge(temp2.label , temp2.inverse));

16 temp2 = temp2.next;

17 }

18 while(temp1.label !== e1.head.label){

19 e.push(new Edge(temp1.label , temp1.inverse));

20 temp1 = temp1.next;

21 }

22 return e;

23 }

Code fragment 2: Paste operation

1 function cut(edges , i, j){

2 if(j < i){

3 var hold = i;

4 i = j;

5 j = hold;

6 }

7 e1 = new CircList ();

8 e2 = new CircList ();

9 var new_label = newLabel(edges.labels);

10 var temp = edges.head

11 var n = 0;

12 while(n < i){

13 temp = temp.next;

14 n++;

15 }

16 e1.push(new Edge(new_label , false));

17 while (n < j){

18 e1.push(new Edge(temp.label , temp.inverse));

19 temp = temp.next;

20 n++;

21 }

22 e2.push(new Edge(new_label , true));

23 while(i < edges.length){

24 e2.push(new Edge(temp.label , temp.inverse));

25 temp = temp.next;

26 n++;

27 }

28 n = 0

29 while(n < i){

30 e2.push(new Edge(temp.label , temp.inverse));

31 temp = temp.next;

32 n++;

33 }

34 return [e1, e2];

35 }

Code fragment 3: Cut Operation

22

1 function invert(edges){

2 var inv = new CircList ();

3 var temp = edges.head;

4 inv.prePend(new Edge(temp.label , !temp.inverse));

5 while (temp.next != edges.head){

6 temp = temp.next;

7 inv.prePend(new Edge(temp.label , !temp.inverse));

8 }

9 return inv;

10 }

Code fragment 4: Invert Operation

1 function classify(polygon){

2 if(! validPolygon(polygon)){

3 writeMessage("Invalid polygon " + polygon);

4 return;

5 }

6 var edges = simplify(buildEdges(polygon));

7 if(edges === null){

8 return;

9 }

10 edges = collectVertices(edges);

11 edges = simplify(edges);

12 if(edges === null){

13 return;

14 }

15 edges = collectLikeOriented(edges);

16 edges = simplify(edges);

17 if(edges === null){

18 return;

19 }

20 edges = collectCrossedPair(edges);

21 var numrp2 = countRP2(edges);

22 if (numrp2 > 0){

23 var numtori = (edges.length - (2* numrp2))/4;

24 numrp2 += (numtori * 2);

25 writeMessage(edges.string () + ": " + numrp2 + " P2");

26 }else{

27 var numtori = edges.length /4;

28 if(numtori === 1){

29 writeMessage(edges.string () + ": torus");

30 return;

31 }else{

32 writeMessage(edges.string () + ": " + numtori + " tori");

33 return;

34 }

35 }

36 }

Code fragment 5: The Classification Algorithm

1 function cancelAdjInvs(edges){

2 var labelList = Array.from(edges.labels);

3 var i = 0;

4 var label;

5 while(i < labelList.length){

6 label = labelList[i];

7 if(areAdjInv(edges , label) && edges.length > 2){

8 edges = pasteAdjInv(edges , label)

9 return cancelAdjInvs(edges);

10 }

11 i++;

12 }

13 return edges;

14 }

15
16 function areAdjInv(edges , label){

23

17 var temp = edges.head;

18 while(temp.label !== label){

19 temp = temp.next;

20 }

21 if(temp.next.label === label && inverses(temp , temp.next)){

22 return true;

23 }else{

24 temp = temp.next;

25 while(temp.label !== label){

26 temp = temp.next;

27 }

28 return (temp.next.label === label && inverses(temp , temp.next));

29 }

30 }

31
32 function pasteAdjInv(edges , label){

33 var e = new CircList ();

34 var temp = edges.head;

35 do{

36 if(temp.label !== label){

37 e.push(new Edge(temp.label , temp.inverse));

38 }

39 temp = temp.next;

40 }while(temp !== edges.head);

41 return e;

42 }

Code fragment 6: The Adjacent-inverse functions

1 function collectVertices (edges){

2 var v = makeEqClasses(buildVertices(edges));

3 var eqClasses = v.eqClass;

4 var vertices = v.vertices;

5 if(eqClasses === 1){

6 return edges;

7 }else{

8 var len = vertices.length;

9 for(var j = 0; j < len; j++){

10 if (vertices[j%len]. eqClass === 0){

11 var index0 = j%len;

12 break;

13 }

14 }

15 for(var j = index0; j < len; j++){

16 if (vertices[j%len]. eqClass !== 0){

17 var index1 = j%len;

18 var eq = vertices[j%len]. eqClass;

19 break;

20 }

21 }

22 for(var j = index1; j < len; j++){

23 if (vertices[j%len]. eqClass === 0){

24 var index2 = j%len;

25 break;

26 }

27 }

28 var cutBits = cut(edges , index0 , index2);

29 var pasteLabel = findPasteLabel(cutBits [0], cutBits [1], vertices , eq);

30 cutBits = prePaste(cutBits [0], cutBits [1], pasteLabel);

31 edges = paste(cutBits [0], cutBits [1], pasteLabel);

32 edges = cancelAdjInvs(edges);

33 return collectVertices(edges);

34 }

35 }

Code fragment 7: The collectVertices Function

1 function makeEqClasses(vertices){

24

2 var eqClass = 0;

3 var index = 0;

4 do{

5 vertices = mark(vertices , index , eqClass);

6 eqClass ++;

7 index = nextToMark(vertices);

8 }while(index !== -1);

9 return {eqClass: eqClass , vertices: vertices };

10 }

Code fragment 8: The makeEqClasses Function

1 function mark(vertices , index , eqClass){

2 var v = vertices[index];

3 v.eqClass = eqClass;

4 if(v.left.inverse){

5 for(var i = 0; i < vertices.length; i++){

6 var u = vertices[i];

7 if(u.eqClass === null){

8 if(u.left.label === v.left.label && u.left.inverse){

9 vertices = mark(vertices , i, eqClass)

10 }else if(u.right.label === v.left.label && !u.right.inverse){

11 vertices = mark(vertices , i, eqClass)

12 }

13 }

14 }

15 }else{

16 for(var i = 0; i < vertices.length; i++){

17 var u = vertices[i];

18 if(u.eqClass === null){

19 if(u.left.label === v.left.label && !u.left.inverse){

20 vertices = mark(vertices , i, eqClass);

21 }else if(u.right.label === v.left.label && u.right.inverse){

22 vertices = mark(vertices , i, eqClass);

23 }

24 }

25 }

26 }

27 if(v.right.inverse){

28 for(var i = 0; i < vertices.length; i++){

29 var u = vertices[i];

30 if(u.eqClass === null){

31 if(u.right.label === v.right.label && u.right.inverse){

32 vertices = mark(vertices , i, eqClass);

33 }else if(u.left.label === v.right.label && !u.left.inverse){

34 vertices = mark(vertices , i, eqClass);

35 }

36 }

37 }

38 }else{

39 for(var i = 0; i < vertices.length; i++){

40 var u = vertices[i];

41 if(u.eqClass === null){

42 if(u.right.label === v.right.label && !u.right.inverse){

43 vertices = mark(vertices , i, eqClass);

44 }else if(u.left.label === v.right.label && u.left.inverse){

45 vertices = mark(vertices , i, eqClass);

46 }

47 }

48 }

49 }

50 return vertices;

51 }

Code fragment 9: The mark Function

1 function collectLikeOriented(edges){

2 var left = edges.head;

25

3 var i = 0;

4 var right;

5 var j;

6 do{

7 right = left.next;

8 j = i + 1;

9 while(right.label !== left.label){

10 right = right.next;

11 j++;

12 }

13 if(right.inverse === left.inverse &&

14 right.next !== left && left.next !== right){

15 var [e0, e1] = cut(edges , i, j);

16 e1 = invert(e1);

17 edges = paste(e0 , e1 , left.label);

18 return collectLikeOriented(edges);

19 }

20 left = left.next;

21 i++;

22 }while(left !== edges.head);

23 return edges;

24 }

Code fragment 10: The collectLikeOriented Function

1 function findPasteLabel(e0 , e1 , vertices , eq){

2 var eq_edges = new Set();

3 for(var i = 0; i < vertices.length; i++){

4 var v = vertices[i];

5 if(v.eqClass === eq){

6 eq_edges.add(v.left.label);

7 eq_edges.add(v.right.label);

8
9 }

10 }

11 var temp0 = e0.head.next;

12 var temp1;

13 while(temp0 !== e0.head){

14 temp1 = e1.head.next;

15 while(temp1 !== e1.head){

16 if(temp0.label === temp1.label && eq_edges.has(temp0.label)){

17 return temp0.label;

18 }

19 temp1 = temp1.next;

20 }

21 temp0 = temp0.next;

22 }

23 }

Code fragment 11: The findPasteLabel Function

1 function collectCrossedPair(edges){

2 var pair = findCrossPair(edges , 0);

3 var n = 0;

4 while(pair.length > 0){

5 var temp = edges.head;

6 var i = 0;

7 while(temp.label !== pair [0] || temp.inverse){

8 temp = temp.next;

9 i = (i + 1) % edges.length;

10 }

11 var a_index1 = i;

12 temp = temp.next;

13 while(temp.label !== pair [0] || !temp.inverse){

14 temp = temp.next;

15 i = (i + 1) % edges.length;

16 }

17 var a_index2 = (i + 2) % edges.length;

26

18 var cutA = cut(edges , a_index1 , a_index2);

19 var pasteB = paste(cutA[0], cutA[1], pair [1]);

20 var labelC = cutA [0]. head.label;

21 temp = pasteB.head;

22 var i = 0;

23 while(temp.label !== labelC || temp.inverse){

24 temp = temp.next;

25 i = (i + 1) % pasteB.length;

26 }

27 var c_index1 = i;

28 temp = temp.next;

29 while(temp.label !== labelC || !temp.inverse){

30 temp = temp.next;

31 i = (i + 1) % pasteB.length;

32 }

33 var c_index2 = (i + 2) % pasteB.length;

34 var cutC = cut(pasteB , c_index1 , c_index2);

35 var pasteA = paste(cutC[0], cutC[1], pair [0]);

36 edges = pasteA;

37 n++;

38 pair = findCrossPair(edges , 2*n);

39 }

40 return edges;

41 }

Code fragment 12: The collectCrossedPair Function

1 function findCrossPair(edges , n){

2 var labelList = Array.from(edges.labels);

3 var invs = []

4 for(var i = 0; i < labelList.length; i++){

5 var label = labelList[i];

6 var temp = edges.head;

7 while(temp.label !== label){

8 temp = temp.next;

9 }

10 var inv1 = temp.inverse;

11 temp = temp.next;

12 while(temp.label !== label){

13 temp = temp.next;

14 }

15 var inv2 = temp.inverse;

16 if(inv1 !== inv2){

17 invs.push(label);

18 }

19 }

20 invs = invs.slice(n);

21 if (invs.length === 0){

22 return [];

23 }

24 temp = edges.head;

25 var left = [];

26 var right = [];

27 while(temp.label !== invs [0]){

28 temp = temp.next;

29 }

30 left.push(temp);

31 temp = temp.next;

32 while(temp.label !== invs [0]){

33 left.push(temp);

34 temp = temp.next;

35 }

36 right.push(temp);

37 temp = temp.next;

38 while(temp.label !== invs [0]){

39 right.push(temp);

40 temp = temp.next;

41 }

27

42 for(var j = 1; j < invs.length; j++){

43 var inLeft = false;

44 var inRight = false;

45 for(var k = 1; k < left.length; k++){

46 if (left[k]. label === invs[j]){

47 inLeft = true;

48 }

49 }

50 for(var k = 1; k < right.length; k++){

51 if (right[k]. label === invs[j]){

52 inRight = true;

53 }

54 }

55 if (inRight && inLeft){

56 return [invs[0], invs[j]];

57 }

58 }

59 }

Code fragment 13: The findCrossPair Function

1 function countP2(edges){

2 var temp = edges.head;

3 var numRp2 = 0;

4 do{

5 if (temp.next.label === temp.label && !inverses(temp.next , temp)){

6 numRp2 ++;

7 }

8 temp = temp.next;

9 }while(temp.next != edges.head.next);

10 return numRp2;

11 }

12 \label{countP2}

Code fragment 14: The countP2 Function

28

References

[1] Mark A. Armstrong, Basic Topology, 3rd edition ed., Springer-Verlag, 1990.

[2] George K. Francis and Jeffrey R. Weeks, Conway’s ZIP Proof, American Mathematical Monthly
106 (1999), no. 5.

[3] W. Randolph Franklin, Point Inclusion in Polygon Test, November 2018.

[4] Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002.

[5] Marc Lackenby, Topology and Groups, October 2016.

[6] William S. Massey, A Basic Course in Algebraic Topology, Springer-Verlag, 1991.

[7] Robert Messer and Philip Straffin, Topology Now, The Mathematical Association of America, 2006.

[8] James R. Munkres, Topology, Prentice Hall Inc, 2000.

[9] Seifert and Threlfall, A Textbook of Topology, Academic Press, INC., 1980.

[10] Michael Siff, Introduction to Web Programming, 2016.

[11] John Stillwell, Geometry of Surfaces, Springer, 1993.

[12] Agnes Szilard, Introduction to Topology, 2018.

29

	A Program For Surface Classification
	Recommended Citation

	tmp.1591711701.pdf.mePMR

