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Abstract

Abstract

ER-associated protein degradation (ERAD) is a protein quality control pathway at the

ER membrane mediated by membrane-embedded ubiquitin ligase complexes. During

ERAD, membrane and luminal proteins are ubiquitinated and retrotranslocated back

into the cytosol where they are degraded by the proteasome. The conserved ubiquitin

ligase Doa10 mediates degradation of ER membrane proteins as well as cytosolic and

nuclear proteins. It acts with the E2 enzymes Ubc6 and Ubc7. How Doa10 substrates

are recognized, ubiquitinated and retrotranslocated is not well understood.

In this thesis, I have established a system to investigate the mechanism of Doa10-

mediated ERAD using purified components from S. cerevisiae. Membrane proteins are

hereby reconstituted into separate sets of phospholipid vesicles and co-reconstituted

upon SNARE-mediated fusion. Using this approach, I was able to recapitulate ubiq-

uitination and extraction of the tail-anchored membrane protein Ubc6 which is itself

unstable and degraded in a Doa10-dependent manner. In the presence of Doa10, I

observe spontaneous retrotranslocation of the transmembrane (TM) anchor of Ubc6.

A folded luminal domain attached to Ubc6 inhibits spontaneous retrotranslocation.

Extraction can be restored upon ubiquitination and extraction by the Cdc48/UN com-

plex. My results show that Doa10 is a retrotranslocase and indicate that Doa10 and

Cdc48 cooperate in extraction of membrane proteins.

In order to characterize structural elements in Doa10, I tested Doa10 truncations

as well as previously described Doa10 mutants in the reconstituted system. My results

show that the Doa10 TM domain is required for ubiquitination and spontaneous retro-

translocation of Ubc6. The tested Doa10 mutants did not show any differences. Thus,

to identify interaction sites between the TM domains of Ubc6 and Doa10, a site-specific

photocrosslinking approach was optimized.

To extend conclusions obtained from Ubc6 to another Doa10 substrate, ERAD

of the tail-anchored membrane protein Sbh2 was investigated. To characterize the

machinery required for ERAD of Sbh2, we first performed a screen, as the machinery for

cytosolic, but not membrane-bound Doa10 substrates has been characterized in screens

until now. The screen identified described ERAD components as the most conclusive

hits. Thus, I next characterized Sbh2 in a reconstituted system and identified a minimal

machinery for Doa10-mediated ubiquitination of Sbh2.

In conclusion, this thesis provides mechanistic insights into Doa10-mediated ERAD

of membrane proteins. It also provides a tool for co-reconstituting membrane proteins

for studying ERAD as well as other membrane-associated processes in the future.
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1. Introduction

1.1 Protein degradation by the ubiquitin proteasome system

Proteins carry out a vast amount of different functions in the cell. The cell controls their

biogenesis and abundance transcriptionally and post-transcriptionally. Protein degra-

dation is thereby an important post-transcriptional mechanism that controls protein

biogenesis as well as protein half-life and that occurs via different pathways. Proteins

are delivered to the lysosome for degradation by autophagy and other pathways. In

addition, the ubiquitin proteasome system operates by selectively degrading proteins.

1.1.1 The E1/E2/E3 enzymatic cascade for ubiquitination

Covalent modification of proteins with ubiquitin serves as a signal for proteasomal

degradation. The 8.5 kDa protein ubiquitin is attached to substrates by an enzymatic

cascade that is also employed to attach ubiquitin-like proteins. The ubiquitin-activating

enzyme (E1) activates ubiquitin. It first catalyzes the adenylation of the carboxy ter-

minus of ubiquitin using ATP and subsequently forms a thioester bond between the

catalytic cysteine of the E1 enzyme and the C-terminus of ubiquitin. The activated

ubiquitin is then transferred to the active-site cysteine of a ubiquitin-conjugating en-

zyme (E2). Ubiquitin ligases (E3) bind to this ubiquitin-bound E2 enzyme as well as

to substrates. Ubiquitin transfer to the substrate occurs by formation of an isopeptide

bond between the carboxy-terminus of ubiquitin and the ε-amino group of a lysine

residue of the substrate. E3 ubiquitin ligases usually do not only act as a scaffold for

the E2 enzyme and the substrate, but also stimulate the ubiquitin transfer activity

of the E2 enzyme. Different types of ubiquitin ligases exist. RING ligases contain a

catalytic RING domain that stimulates ubiquitin transfer. In contrast, other ubiquitin

ligase classes such as HECT and RBR ligases bind ubiquitin via a thioester bond,

before transfer to the substrate occurs (Kleiger and Mayor, 2014).

Apart from lysine modification, also non-canonical ubiquitination on serine, thre-

onine and cysteine residues as well as the amino terminus has been observed (Finley

et al., 2012). Ubiquitin chains are formed by repeated action of E1, E2 and E3 en-

zymes and can be formed via one of the 7 lysine residues of ubiquitin as well as its

amino-terminus. Different linkage types serve as different signals within the cell and

1



Chapter 1. Introduction

thus create a ubiquitin code. K48-linked ubiquitin chains are the main signal for pro-

teasomal degradation (Chau et al., 1989; Xu et al., 2009; Grice and Nathan, 2016).

The ubiquitin code has proteolytic and non-proteolytic functions. Besides proteasomal

degradation, ubiquitination also serves as a signal for lysosomal degradation via the

ESCRT-pathway. Moreover, ubiquitination can affect the localization of a protein or

recruit binding partners. The ubiquitin code is read by ubiquitin binding domains that

bind specific ubiquitin signals, and can be erased by deubiquitinating enzymes (Ko-

mander and Rape, 2012).

1.1.2 Degradation by the proteasome

Polyubiquitinated substrates are degraded by the proteasome. The 26S proteasome is

a 2.5 MDa complex that consists of a 20S catalytic subunit and two 19S regulatory sub-

units. The 20S catalytic core forms a cylindric structure that contains proteolytically

active subunits that face the inside of the cylinder. The 19S regulatory subunit binds

polyubiquitinated substrates, deubiquitinates them and unfolds them before translocat-

ing them into the 20S catalytic subunit for proteolysis. It contains ubiquitin receptors

that bind polyubiquitinated substrates (Rpn10, Rpn13 and probably Rpn1), a deubiq-

uitinating enzyme (Rpn11) as well as a hexameric ring consisting of AAA ATPases

(Rpt1-6) that unfold the substrate using ATP-hydrolysis (Grice and Nathan, 2016;

Kleiger and Mayor, 2014).

Moreover, additional non-proteasomal factors as Rad23 and Dsk2 function in re-

cruiting substrates to the proteasome by binding to K48-linked ubiquitin chains via

their UBA domain and to the proteasome via their UBL domain (Grice and Nathan,

2016).

1.1.3 The UPS operates with multiple pathways for protein degradation

Whereas S. cerevisiae has only one E1 enzyme (Uba1), it has 11 E2 enzymes and

60 to 100 putative E3 ubiquitin ligases (Finley et al., 2012). In humans, more than

600 genes are predicted to encode for ubiquitin ligases (Li et al., 2008). Ubiquitination

systems are localized throughout the cell to ensure protein degradation. Examples from

S. cerevisiae are used in the following section to illustrate the cellular distribution of

ubiquitin ligases.

In the nucleus, the ubiquitin ligases San1, the Asi-complex as well as Doa10 ubiq-

uitinate substrates (Enam et al., 2018). In the endoplasmic reticulum (ER), the ubi-

quitin ligases Doa10 and Hrd1 function in ER-associated protein degradation (ERAD).

Recently, a pathway similar to ERAD has been identified in the Golgi, where the
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Dsc ubiquitin ligase has been shown to ubiquitinate Orm2 and target it for degrada-

tion (Schmidt et al., 2019). A protein degradation pathway using the UPS has been

also identified in the outer membrane of chloroplasts (Ling et al., 2019). Moreover, a

cooperative pathway eliminates mistargeted tail-anchored proteins from mitochondria

which requires the ER-localized ubiquitin ligase Doa10 (Dederer et al., 2019; Mat-

sumoto et al., 2019). Cytosolic protein quality control involves multiple ubiquitin

ligases, such as Ubr1 and Doa10 (Amm et al., 2014; Ravid et al., 2006; Furth et al.,

2011). These examples show that E1/E2/E3 systems are distributed throughout the

cell, ensuring protein degradation.

1.2 ER-associated protein degradation (ERAD)

ERAD is a protein quality control pathway at the ER. In ERAD, substrates are rec-

ognized, ubiquitinated, retrotranslocated into the cytosol and degraded by the pro-

teasome (Zattas and Hochstrasser, 2014). Conserved, membrane-embedded ubiquitin

ligase complexes recognize and ubiquitinate substrates. In S. cerevisiae, three ubi-

quitin ligase complexes have been identified that operate in ERAD - the Hrd1, Doa10

and Asi complex. Whereas Hrd1 exclusively localizes to the ER membrane, Doa10

localizes to the ER membrane as well as the inner nuclear membrane (INM) (Deng and

Hochstrasser, 2006). The Asi complex is localized at the INM (Khmelinskii et al., 2014;

Foresti et al., 2014). Figure 1.1 illustrates the localization of those ubiquitin ligases

complexes. ERAD substrates are very diverse and it has been shown that different

ligase complexes recognize different substrates. After ubiquitination of substrates by

different ligase complexes, all ERAD pathways converge on the step of retrotransloca-

tion into the cytosol by the AAA ATPase Cdc48 (p97 in metazoans) in complex with

its cofactors Ufd1 and Npl4 (Rabinovich et al., 2002; Jarosch et al., 2002; Ye et al.,

2001; Bays et al., 2001; Huyer et al., 2004).

This thesis investigates the mechanism of ERAD mediated by the ubiquitin ligase

Doa10. Therefore, the focus of this introduction will be on Doa10-mediated ERAD.

However, many features of ERAD are common for all ERAD pathways and thus the

Hrd1 as well as the Asi complex will be introduced and used for comparison. This thesis

investigates ERAD in the model organism S. cerevisiae. Many ERAD components are

conserved and have homologs in the mammalian system (Zattas and Hochstrasser,

2014). Mammalian ERAD is quite more complex. More than 10 ubiquitin ligases have

already been implicated in ERAD in mammalian cells (Olzmann et al., 2012). As S.

cerevisiae was the model organism studied in this thesis, this introduction will focus
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nucleus
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Hrd1 Doa10

Asi1/3

Figure 1.1: Localization of the ERAD ubiquitin ligases. Scheme illus-
trating the localization of the ubiquitin ligases Doa10 (red), Hrd1 (purple) and
Asi1/Asi3 (green). Hrd1 localizes to the ER membrane, Asi1/3 to the inner nu-
clear membrane, and Doa10 to both, the ER and inner nuclear membrane.

on ERAD in S. cerevisiae, but draw parallels to ERAD in other eukaryotes.

Over the last years, the list of substrates that are degraded by ERAD has been

growing. These discoveries have provided many insights into the different functions of

ERAD. In this introduction, I will first give an overview of the identified substrates and

thereby illustrate the different functions of ERAD (section 1.2.1). Next, the machinery

involved in ERAD will be introduced and the characteristics of the conserved ubiquitin

ligase complexes Hrd1 as well as Doa10 explained in more detail (section 1.2.2 and

1.2.3). Following this overview over ERAD substrates and the ERAD machinery, I

will summarize the available literature on two steps of ERAD whose mechanism is

not well understood and has been investigated during this thesis: recognition and

retrotranslocation of substrates.

1.2.1 ERAD substrates

The ERAD machinery has a wide substrate range. Studies on different substrates have

elucidated many functions of protein degradation by ERAD. ERAD has been exten-

sively studied using model substrates which contain point mutations that render the

protein constitutively misfolded. Those, in contrast to their wildtype version, are de-

graded by ERAD. It has been further shown that also subunits that are not assembled

into complexes are recognized by ERAD. These observations led to the identifcation of

ERAD as a quality control pathway for the biogenesis of proteins destined for the se-

cretory pathway (Lippincott-Schwartz, 1988; Bonifacio and Lippincott-Schwartz, 1991;
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Meusser et al., 2005). Moreover, ERAD plays an important role in regulating the

abundance of enzymes of the sterol synthesis pathway that reside in the ER mem-

brane. Upon accumulation of certain metabolites, they are recognized by the ERAD

machinery. Moreover, also proteins that are mislocalized or destined to other organelles

such as lipid droplets are degraded by ERAD (Ruggiano et al., 2014; Mehrtash and

Hochstrasser, 2018). These studies indicate that ERAD has a role in maintaining the

identity of organelles. Examples of such substrates are described in more detail in the

next sections.

1.2.1.1 ERAD is a quality control pathway for the biogenesis of proteins

destined for the secretory pathway

ERAD has been identified by studying the degradation of proteins destined for the se-

cretory pathway that contain a mutation and thus are retained in the ER and degraded

by ERAD.

Proteins destined for the secretory pathway are synthesized at the ER. Soluble

and membrane proteins are translocated into the ER or integrated into the ER mem-

brane via different pathways (for review, see Barlowe and Miller (2013)). Translocation

across the ER membrane occurs through the Sec61-translocon (Rapoport et al., 2017).

Tail-anchored (TA) proteins are targeted to the ER posttranslationally in a Sec61-

independent manner, by the GET-pathway (Stefanovic and Hegde, 2007; Schuldiner

et al., 2008; Mateja and Keenan, 2018). Recent studies have shown that many tar-

geting pathways act in parallel and have overlapping functions. One example is the

recently identified EMC-complex, an ER-resident protein complex that can also target

TA-proteins to the ER (Jonikas et al., 2009; Guna et al., 2017). It has been proposed

that it can also function during SRP-dependent translocation to ensure the correct

topology of multipass transmembrane proteins, e.g. GPCRs (Chitwood et al., 2018).

In the ER, polypeptides undergo folding into tertiary structures and assemble into

protein complexes. The oligosaccharyltransferase (OST) complex attaches an oligosac-

charide onto consensus sequences (N-linked glycosylation). Chaperone systems assist

in protein folding. The Hsp70 (heat shock protein) Kar2 (BiP in mammals) interacts

with hydrophobic regions of substrates. Protein disulfide isomerases (PDIs) and pro-

lyl peptidyl cis-trans isomerases (PPIs) ensure that the polypeptide assembles into its

correct tertiary structure (Braakman and Hebert, 2013; Barlowe and Miller, 2013).

Proteins that do not fold into their correct tertiary structure and are thus misfolded

are degraded by ERAD. A mutant version of the vacuolar protease Carboxypeptidase

Y that contains a single point mutation is a substrate of Hrd1 (Hiller et al., 1996;
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Finger et al., 1993; Bordallo et al., 1998). Also misfolded membrane proteins have

been described as Hrd1 substrates, like the ATP-binding cassette transporter Pdr5

containing a point mutation (C1427Y) (Plemper et al., 1998). Doa10 also recognizes

mutant versions of proteins such as the a-factor ATP-binding cassette transporter Ste6

containing a premature STOP codon (Ste6*) (Loayza et al., 1998; Vashist and Ng,

2004) and a mutant version of the plasma membrane ATPase Pma1 (D378S) (Wang

and Chang, 2003, 1999; Han et al., 2007).

These initial studies have identified some key rules of substrate selection by different

ubiquitin ligase complexes. Whereas ER-luminal proteins are exclusively recognized by

the Hrd1 complex, both Doa10 and Hrd1 recognize ER membrane proteins. Vashist

and Ng identified ERAD pathways based on model substrates that harbor a muta-

tion (Vashist and Ng, 2004). The authors show that whereas substrates with a mutated

and thus misfolded domain in the ER-lumen (ERAD-L) or ER membrane (ERAD-M)

are degraded by Hrd1, substrates with a misfolded cytosolic domain (ERAD-C) are

degraded by Doa10.

Further evidence for a role of ERAD in degradation of terminally misfolded proteins

comes from studies that show that ERAD is linked to the unfolded protein response

(UPR). When misfolded proteins accumulate in the ER, UPR is triggered. ER-stress

sensors activate transcription factors that lead to downregulation of general protein

biosynthesis as well as upregulation of factors involved in protein folding (Hetz and

Papa, 2018). Two observations link ERAD to the UPR. It has been shown that com-

ponents of the Hrd1 complex are upregulated during the UPR (Friedlander et al., 2000;

Travers et al., 2000). Moreover, double deletion of DOA10 and HRD1 and thus defec-

tive ERAD leads to a pronounced induction of the UPR (Swanson et al., 2001; Jonikas

et al., 2009). These studies show the importance of ERAD in degradation of misfolded

proteins.

Besides ERAD, also autophagy takes place at the ER which leads to degradation of

ER membrane material as well as ER proteins in the lysosome (Grumati et al., 2018).

This process, termed ER-phagy, has been also shown to remove aggregated proteins

which cannot be cleared by ERAD (Ishida et al., 2009; Kruse et al., 2006). Moreover, it

has been shown that ERAD and ER-phagy can function in parallel for the degradation

of certain proteins (Schultz et al., 2018).

After translocation into the ER, polypeptides assemble into multi-subunit com-

plexes. It has been shown that certain proteins are degraded when they do not assem-

ble into a complex. Sbh2 is part of the Ssh1 translocon in S. cerevisiae (Finke et al.,

1996). When Sbh2 is overexpressed or when its interaction partner Sss1 is deleted,
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it becomes unstable and is degraded in a Doa10-dependent manner (Habeck et al.,

2015). Interestingly, its homolog Sbh1 which is part of the Sec61 translocon becomes a

Doa10 substrate when OPI3, an enzyme involved in synthesis of phosphatidylcholine, is

deleted. OPI3 deletion leads to changes in lipid composition and a reduced interaction

of Sbh1 with Sec61 (Shyu et al., 2019).

Concluding, ERAD is a protein quality control pathway that controls the biogenesis

of proteins destined for the secretory pathway. Doa10 mediates degradation of model

substrates harboring a misfolded domain as well as unassembled subunits (Figure 1.2A).

1.2.1.2 ERAD regulates the abundance of enzymes for sterol synthesis

The ER is a major compartment for synthesis of sterols. Cholesterol synthesis in

animals as well as ergosterol synthesis in fungi is regulated by multiple mechanisms.

Besides transcriptional control, it has been shown that ERAD degrades certain lipid

synthesis enzymes in a feedback regulation (Espenshade and Hughes, 2007).

Sterols are synthesized at the ER from Acetyl-CoA by the mevalonate pathway.

Condensation of three Acetyl-CoA molecules leads to 3-methylglutaryl-Coenzyme A

(HMG-CoA) which is then reduced to mevalonate by HMG-CoA reductase. Through

subsequent steps, farnesylpyrophosphate (FPP) is formed that is the precursor for

sterols as well as other molecules such as dolichol and ubiquinone. Squalene, formed

from two molecules of FPP, is converted into squalene epoxide by squalene monooxy-

genase under consumption of oxygen. The downstream product lanosterol is then in

multiple steps converted to ergosterol in fungi or cholesterol in animals (Klug and

Daum, 2014; Espenshade and Hughes, 2007).

HMG-CoA reductase as well as squalene monooxygenase are ERAD substrates in

response to accumulation of downstream products. S. cerevisiae has two isozymes of

HMG-CoA reductase, Hmg1 and Hmg2. It has been shown that Hmg2 is a substrate

of Hrd1 (Hampton, 1994; Hampton et al., 1996; Bays et al., 2001) and degraded in a

regulated manner by two signals. Hmg2 interacts with the INSIG Nsg1 in the presence

of lanosterol. This interaction protects it from ERAD (Theesfeld and Hampton, 2013).

When lanosterol levels are low, Nsg1 is degraded and a second control mechanism

becomes important: In the absence of its interaction partner Nsg1, Hmg2 is degraded by

ERAD when the downstream product FPP accumulates, but rendered stable when FPP

levels are low (Garza et al., 2009b; Theesfeld and Hampton, 2013). The FPP-derivative

geranylgeranyl pyrophosphate is most likely the endogenous signal for ERAD-mediated

degradation of Hmg2 (Garza et al., 2009b; Theesfeld and Hampton, 2013; Wangeline

and Hampton, 2018).
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Figure 1.2: Substrates of Doa10-mediated ERAD. Doa10 recognizes a
plethora of different substrates as discussed in this section (1.2.1). Here, sub-
strates are schematically illustrated and presented in groups showing different
functions of Doa10-mediated ERAD, as (A) quality control of protein biosyn-
thesis, (B) regulation of lipid synthesis, (C) maintenance of organelle identity,
(D) degradation of the E2 enzyme Ubc6 and (E) cytosolic and nuclear quality
control. Asterisks indicate a mutation (point mutation or deletion of a fragment).
The lipid bilayer is indicated by a grey bar. Dots around lipid bilayer indicate
that it is unclear if Doa10 recognizes this substrate in a membrane-inserted state.
This is the case for Pex15∆30 that due to its mislocalization to mitochondria is
extracted by Msp1 and then most likely ubiquitinated by Doa10. See text for
more details.

Moreover, the squalene monooxygenase Erg1 is degraded in a Doa10-dependent

manner when the downstream product lanosterol accumulates (Foresti et al., 2013).

Interestingly, homologs of Erg1 in mammals and plants are also degraded in a Doa10-

dependent manner, indicating that the function of Doa10 in lipid regulation is con-
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served. When cholesterol-deprived human cells are treated with cholesterol, otherwise

stable squalene monooxygenase SM is rapidly degraded in a process dependent on

the Doa10 homolog TEB4/MARCH6 (Foresti et al., 2013; Zelcer et al., 2014; Gill

et al., 2011). In Arabidopsis thaliana, a mutation in squalene monooxygenase causing

a growth defect can be rescued by a mutation in the SUD-1 gene. SUD1 shows sequence

similarity to DOA10 and TEB4 (Doblas et al., 2013).

In accordance with the involvement of Doa10 in regulating the abundance of a lipid

synthesis enzyme, deletion of DOA10 changes the cellular lipid profile. In the absence

of Doa10, cells contain less ergosterol but accumulate intermediates. This effect is even

more pronounced when the enzymes involved in esterification of sterol intermediates,

ARE1 and ARE2, are also deleted (Foresti et al., 2013).

In summary, ERAD has a role in regulating lipid synthesis by degrading lipid syn-

thesis enzymes in a feedback regulation. Degradation of squalene monooxygenase is

thereby a conserved process mediated by Doa10 (Figure 1.2B).

1.2.1.3 ERAD maintains organelle identity

Lipid droplets (LDs) are lipid reservoirs that consist of a lipid monolayer and a hy-

drophobic core containing neutral lipids like triacylglycerols and sterol esters and are

formed at the ER. The lipid monolayer harbors proteins that are associated with the LD

either through an amphipathic helix or a hydrophobic hairpin. LD proteins containing

such a hydrophobic hairpin are targeted to the LD via insertion into the ER (Olzmann

and Carvalho, 2018). The PG (phosphatidylglycerol)-specific phospholipase Pgc1 is

primarily localized to lipid droplets (Ruggiano et al., 2016; Kubalová et al., 2019) and

is important for degradation of the anionic phospholipid PG. Upon deletion of PGC1,

PG accumulates on lipid droplets, but also in the ER and in mitochondria indicating

that Pgc1 has a broad role in regulating cellular PG levels (Kubalová et al., 2019).

The ER-localized fraction of Pgc1 is subjected to Doa10-mediated ERAD. Recognition

by Doa10 seems to be specific for the ER-localized pool of Pgc1, as in the absence of

LDs, the degradation of Pgc1 is enhanced whereas when oleate is fed to stimulate LD

synthesis, Pgc1 is stable. Moreover, Doa10 plays a role in degradation of other LD

proteins such as Dga1 and Yeh1 (Ruggiano et al., 2016).

Proteins localized to mitochondria are also degraded in a Doa10-dependent manner.

Recently, it has been shown that TA-proteins that are mislocalized to mitochondria are

degraded by the proteasome. This degradation is dependent on the mitochondrial AAA

ATPase Msp1 as well as Doa10 (Dederer et al., 2019; Matsumoto et al., 2019). Msp1

seems to act prior to ubiquitination and upon DOA10 deletion, substrates accumulate
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at the ER, suggesting that TA-proteins are transferred to the ER by Msp1 and then

ubiquitinated by Doa10 (Matsumoto et al., 2019).

Interestingly, a mitochondrial Pgc1 pool and activity has been reported (Simocková

et al., 2008; Kubalová et al., 2019) and it is therefore possible that Doa10 also has a

role in clearance of mitochondrially localized Pgc1. Recent evidence suggests that by

degrading a pool of Pgc1 localized to the ER and possibly to mitochondria, Doa10

influences the activity of Pgc1 and thus turnover of PG. Pgc1 activity depends on its

localization. Wheres it is inactive in lipid droplets, it is active when inserted into a lipid

bilayer such as the ER- or mitochondrial membrane (Kubalová et al., 2019). Indeed,

upon deletion of Doa10 or Msp1, the phospholipase activity of a mitochondrial fraction

is increased (Kubalová et al., 2019). Thus, Pgc1 turnover might be a an important

control mechanism to regulate Pgc1 activity.

Overall, these studies indicate that Doa10 plays an important role in maintaining

the identity of organelles by degrading mislocalized proteins or selected pools of proteins

(Figure 1.2C).

1.2.1.4 Role of ERAD ubiquitin ligases in cytosolic and nuclear protein

quality control

The ERAD machinery is not only involved in degradation of proteins in the ER, but

also proteins with cytosolic or nuclear localization (Figure 1.2D). The transcription

factor Matα2 is a Doa10 substrate (Swanson et al., 2001). It contains a 76 amino

acid stretch termed Deg1 that is sufficient to transform a stable protein into a Doa10

substrate (Chen et al., 1993). Doa10 was identified by screening for components re-

quired for degradation of a Deg1-containing reporter construct, Deg1-Ura3 (Swanson

et al., 2001). In line with its function in degrading a transcription factor, Doa10

also localizes to the inner nuclear membrane and functions in the nucleus (Deng and

Hochstrasser, 2006). Another example is a mutant version of the kinetochore protein

Ndc10 (Ndc10-2) that is degraded in a Doa10-dependent manner (Kopski and Huffaker,

1997; Ravid et al., 2006). Besides those soluble proteins, the inner nuclear membrane

proteins Asi2 as well as a mutant version of Mps2 have been also identified as Doa10

substrates (Boban et al., 2014, 2015; McBratney and Winey, 2002; Kreft et al., 2006).

Many artificial degrons fused to the amino- or carboxy-terminus of reporter proteins

have been identified for Doa10 (Gilon et al., 2000; Ravid et al., 2006; Khmelinskii

et al., 2012; Kats et al., 2018) and it has been shown that soluble proteins are de-

graded in a Doa10-dependent manner in the nucleus as well as the cytoplasm (Deng

and Hochstrasser, 2006; Ravid et al., 2006; Samant et al., 2018). Also Hrd1 has been
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implicated in cytosolic quality control (Samant et al., 2018).

Besides Doa10, also the Asi-complex functions in quality control at the inner nuclear

membrane. The Asi-complex consists of Asi2 and the RING domain containing proteins

Asi1 and Asi3 (Foresti et al., 2014). It is involved in degradation of the transcription

factor Spt1 (Forsberg et al., 2001; Boban et al., 2006; Zargari et al., 2007; Omnus and

Ljungdahl, 2014; Khmelinskii et al., 2014). Moreover, it targets membrane proteins

at the inner nuclear membrane for degradation. The E2 enzymes Ubc6 and Ubc7

(with its cofactor Cue1) are involved in Asi-mediated ERAD (Foresti et al., 2014;

Khmelinskii et al., 2014). Those E2 enzymes are further described in the following

sections (section 1.2.2 and 1.2.3). A scheme of the components of the Asi complex is

shown in Figure 1.3A. As ER membrane proteins as well as vacuolar proteins have been

identified as substrates, it was hypothesized that the Asi complex degrades mislocalized

substrates at the INM (Foresti et al., 2014; Khmelinskii et al., 2014). Smoyer et al.

(2019) have recently identified INM proteins as substrates of the Asi complex suggesting

a broader role in protein quality conrol at the INM. In contrast to Doa10 and Hrd1,

the Asi complex does not have homologs in higher eukaryotes (Foresti et al., 2014).

Concluding, ERAD has multiple roles in protein quality control. Doa10-mediated

ERAD contributes to quality control of protein biogenesis as well as regulation of

lipid synthesis. Moreover, it plays a role in maintaining the identity of organelles and

contributes to cytosolic and nuclear protein quality control.

1.2.2 The Hrd1 complex

Doa10, Hrd1 as well as Asi1 and Asi3 are RING ubiquitin ligases. RING domains

bind to E2 ubiquitin conjugating enzymes and catalyze the direct transfer of ubiquitin

from the E2 enzyme to the substrate (Deshaies and Joazeiro, 2009). The catalytic

RING domain contains a consensus sequence of cysteine and histidine residues that

coordinate two Zinc atoms (Freemont et al., 1991; Deshaies and Joazeiro, 2009).

The ubiquitin ligase Hrd1 has been identified in a screen for components neces-

sary for degradation of Hmg2 (HMG-CoA reductase degradation) (Hampton et al.,

1996). Another screen using a CPY* reporter construct also identified Der3 (Knop

et al., 1996) which was later shown to be identical to Hrd1 (Bordallo et al., 1998).

Hrd1 acts with the E2 enzyme Ubc7 (Bays et al., 2001). Ubc7 is anchored to the

ER membrane via the membrane protein Cue1 (Biederer et al., 1997) and activates

Ubc7 (Bazirgan and Hampton, 2008). Cue1 activates Ubc7 by binding to Ubc7 via

its UB7R domain (Metzger et al., 2013; Bagola et al., 2013) and binds to ubiquitin

chains via its CUE domain allowing for processive ubiquitination (Bagola et al., 2013;
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von Delbrück et al., 2016). Ubc7 catalyzes the formation of K48-linked polyubiquitin

chains (Bazirgan and Hampton, 2008; Bagola et al., 2013). Besides Ubc7, Ubc1 has

been shown to be partially required for some substrates (Bays et al., 2001).

Hrd1 is part of a complex consisting of Hrd1, Hrd3, Usa1 and Der1 (Carvalho et al.,

2006). Figure 1.3B depicts the components of the Hrd1 complex. Hrd1 contains 8 trans-

membrane (TM) segments and a cytosolic, carboxy-terminal RING domain (Schoebel

et al., 2017). It interacts with Hrd3 which consists of a large luminal domain and a

carboxy-terminal TM segment. This interaction is required for Hrd1 stability. Upon

deletion of HRD3, Hrd1 is unstable and degraded (Gardner et al., 2000). Usa1 contains

two TM segments and an amino-terminal Ubl-domain. It has been shown that it is re-

quired for the interaction of Hrd1 with the multipass TM protein Der1 (Carvalho et al.,

2006; Horn et al., 2009). Interestingly, Usa1 and Der1 are required for degradation of

ERAD-L, but not for ERAD-M substrates suggesting that different subcomplexes of

Hrd1 exist (Carvalho et al., 2006).
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Figure 1.3: The Asi, Hrd1 and Doa10 complex and its components.
The complex components of the Doa10, Hrd1 and Asi complex are schematically
illustrated. (A) The Asi complex is localized at the inner nuclear membrane. It
consists of the two RING domain containing proteins Asi1 and Asi3, and Asi2.
The Cdc48-complex is also required for degradation of Asi-substrates. (B) Hrd1
interacts with Hrd3 which is together with Yos9 and Kar2 involved in substrate
recognition. Moreover, Usa1 links the membrane protein Der1 to the complex.
Polyubiquitinated substrates are extracted by the Cdc48-complex. Ubx2 has been
also identified as part of the Hrd1 complex. (C) Doa10 functions with the E2
enzymes Ubc6 and Ubc7 which is anchored to the ER membrane by its co-factor
Cue1. Doa10 contains 14 TM segments and both the amino-terminus containing
the RING domain as well as the carboxy-terminus face the cytosol. Doa10 is
not only localized at the ER membrane but also at the INM. Polyubiquitinated
substrates are extracted by the Cdc48-complex containing the co-factors Npl4
and Ufd1. Cdc48 is recruited to the Doa10-complex by Ubx2. Dfm1 contains
a carboxy-terminal SHP-box and plays a role in retrotranslocation. Scheme for
Doa10 and Hrd1 complex modified from Zattas and Hochstrasser (2014). Figure
for Asi complex based on topological analysis (Zargari et al., 2007; Boban et al.,
2006) and studies identifiying components involved in Asi-mediated degradation
(Foresti et al., 2014; Khmelinskii et al., 2014). See text for further details.
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1.2.3 The Doa10/TEB4 complex

Yeast Doa10 has a molecular mass of 151 kDa and contains an amino-terminal RING

domain (Swanson et al., 2001). Doa10 contains probably 14 TM segments with both

termini facing the cytosol (Kreft et al., 2006). Figure 1.3C shows a scheme of the

components of the Doa10 complex which will be introduced in the following sections.

1.2.3.1 Doa10 acts with the E2 enzymes Ubc6 and Ubc7

The E2 enzymes Ubc6 and Ubc7 as well as its cofactor Cue1 have been identified in

several screens conducted to identify components necessary for Doa10-mediated degra-

dation. The Deg1-Ura3 reporter construct was used both in a mutagenesis screen

which initially identified Doa10 as well as a genetic screen which tested 4753 dele-

tion strains (Swanson et al., 2001; Ravid et al., 2006). A screen for suppressors of

the temperature-sensitive ndc10-2 mutation identified as well Ubc6, Ubc7, Cue1 and

Doa10 (Kopski and Huffaker, 1997; Ravid et al., 2006).

Doa10 functions with the E2 enzymes Ubc6 and Ubc7 (Swanson et al., 2001). Ubc6

is a tail-anchored membrane protein (Sommer and Jentsch, 1993). Whereas deletion

of UBC7 leads to complete stabilization of ERAD substrates, UBC6 deletion often has

less strong effects, as observed for Ste6*, Erg1 and Sbh2 (Huyer et al., 2004; Foresti

et al., 2013; Habeck et al., 2015). However, Ubc6 is absolutely required for ERAD

when substrates lack lysine residues. It has been shown that Ubc6 ubiquitinates those

substrates via the hydroxylgroups of serines or threonines (Boban et al., 2015; Weber

et al., 2016). In line with this, an Sbh1 variant lacking lysine residues is still a Doa10

substrate (Shyu et al., 2019). Moreover, the function of Ubc6 and Ubc7 has been

investigated using autoubiquitination of the RING domain as a readout (Weber et al.,

2016). Using cytosolic fragments of Ubc6, Ubc7 and the Doa10 RING domain, the

authors observed that Ubc6 and Ubc7 act sequentially. Whereas Ubc6 primes the

RING domain with ubiquitin, Ubc7 forms a polyubiquitin chain. Such a sequential

ubiquitination mechanism by separate E2 enzymes has been also observed for other

ubiquitin ligases (Deshaies and Joazeiro, 2009). One example is the ubiquitination

of cyclin B mediated by the anaphase promoting complex (APC/C). Reconstitution

studies showed that whereas Ubc4 monoubiquitinates cyclin B at multiple sites, Ubc1

catalyzes polyubiquitination on preattached ubiquitins (Rodrigo-Brenni and Morgan,

2007).

Ubc6 itself is unstable and degraded in a Doa10-dependent manner (Walter et al.,

2001; Swanson et al., 2001). Degradation of Ubc6 is dependent on its own activ-
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ity, as catalytically inactive Ubc6 is stable even when active Ubc6 is expressed as

well (Walter et al., 2001). Requirement for catalytic activity can be bypassed by

mono-ubiquitination, as a Ubc6 construct containing a ubiquitin moieity fused to the

amino-terminus of Ubc6 is degraded in a Doa10-dependent manner (Weber et al., 2016).

This indicates that Ubc6 monoubiquitination mediated by its autoubiquitination ac-

tivity generates a signal for Doa10-dependent degradation.

Besides the ubiquitination machinery, the ER membrane protein Ubx2 as well as

Cdc48 and its cofactors Ufd1 and Npl4 have been identified as part of the Doa10

complex and Hrd1 complex (Carvalho et al., 2006). Moreover, the multipass trans-

membrane protein Dfm1 has been shown to interact with Doa10 as well as Hrd1 and

is involved in ERAD of Doa10 and Hrd1-substrates (Stolz et al., 2010; Neal et al.,

2018). The Cdc48-complex as well as Ubx2 and Dfm1 are introduced in more detail in

section 1.2.5 where retrotranslocation is discussed.

1.2.3.2 Structural elements of Doa10

Besides the RING domain, two conserved elements have been described for Doa10.

Doa10 contains a conserved 16-residue C-terminal element (CTE). Deletion of this

region or mutation of a conserved asparagine (N1314A) results in impaired degradation

due to impaired ubiquitination of substrates. This has been shown for soluble and

membrane-bound substrates containing the Deg1 degron or a degron derived from

Ndc10-2 (DegAB) (Zattas et al., 2016). The role of this CTE for ERAD of membrane

proteins is however unclear. Whereas Zattas et al. show that disrupting the CTE does

not affect degradation of Ubc6 or Ste6*, Kreft et al. show that Ubc6 degradation is

impaired when a Doa10 version lacking the CTE is expressed (Zattas et al., 2016; Kreft

et al., 2006).

Moreover, Doa10 contains a conserved domain spanning the TM segments 5-7

termed the TEB4-Doa10 (TD) domain (Swanson et al., 2001). The TD domain seems

to be important for Doa10 function, as mutations in this region lead to stabilization of

Doa10 substrates (Kreft and Hochstrasser, 2011).

1.2.3.3 The mammalian Doa10 ortholog TEB4/MARCH6

The mammalian Doa10 ortholog TEB4/MARCH6 probably has a similar topology as

Doa10, with both termini facing the cytosol and contains a TD-domain (Swanson et al.,

2001; Kreft et al., 2006). It localizes to the ER and has E3 ubiquitin ligase activity (Has-

sink et al., 2005; Zattas et al., 2016). It has been shown that TEB4 itself is unstable

and its degradation is dependent on its autoubiquitination activity (Hassink et al.,
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2005). It also contains a CTE that seems to be important for its function as mutation

of the conserved asparagine of the CTE (N890A) impairs degradation of TEB4 (Zattas

et al., 2016). The E2 enzymes Ubc6 and Ubc7 each have two mammalian homologs,

Ube2j1, Ube2j2 and Ube2g1, Ube2g2, respectively (Kostova et al., 2007). Recently

E2 enzymes involved in TEB4-mediated degradation of squalene monooxygenase have

been identified. Ube2j2 and Ube2g2, but not Ube2j1 are involved in degradation of

squalene monooxygenase (Tan et al., 2019).

1.2.4 Substrate recognition

A major question in ERAD is how substrates are recognized, especially given the

diversity of substrates. Several features in substrates are important for proteolytic

processing. First, they have to contain a region that is recognized by the ubiquitin ligase

as well as sites where ubiquitination can occur. Moreover, the substrate has to contain

an unstructured region that is, in addition to ubiquitination, required for proteasomal

processing (Ravid and Hochstrasser, 2008). A sequence that can be transferred onto

a stable protein to intiate its degradation is termed degron (Varshavsky, 1991; Ravid

and Hochstrasser, 2008). Degrons thus are defined as elements that are directly or

indirectly recognized by a ubiquitin ligase and lead to ubiquitination and subsequent

degradation of the substrate. In this definition, the ubiquitination site as well as the

unstructured region required for proteasomal degradation, do not have to reside within

the degron but can be also within the rest of the protein whose stability is determined

by the degron (Ravid and Hochstrasser, 2008). It becomes clear that different ligase

complexes are specialized to recognize different features. Examples of degrons have

provided insight into how substrates are recognized.

1.2.4.1 Recognition of a luminal degron

For ERAD-L substrates, a bipartite signal consisting of a misfolded region as well

as an N-glycan structure is recognized by the ERAD machinery. In the ER lumen,

Hrd3 interacts with misfolded substrates and also binds to Kar2 and the luminal pro-

tein Yos9 (Carvalho et al., 2006; Denic et al., 2006; Gauss et al., 2006). Yos9 is

a lectin that recognizes glycosylated proteins and it has been also shown to recog-

nize misfolded proteins (Bhamidipati et al., 2005; Szathmary et al., 2005; Kim et al.,

2005). During N-linked glycosylation, an oligosaccharide chain composed of three

glucose (Glc), nine mannose (Man) and two N-acetylglucosamine (GlcNAc) moieities

(Glc3Man9GlcNAc2) is transferred onto the protein. The glycan is further processed

by glucosidases. This process is linked to chaperones. Substrates containing at least
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one glucose are bound by sugar-binding chaperones called lectins. In a second step,

mannosidases trim the glycan structure to Man8GlcNac2. Folded proteins are usually

exported with a Man8GlcNac2 structure. Misfolded proteins however are further pro-

cessed by the mannosidase Htm1/Mnl1 in complex with the disulfide isomerase Pdi,

resulting in a Man7GlcNac2 glycan that is recognized by Yos9 (Nakatsukasa et al.,

2001; Jakob et al., 2001; Gauss et al., 2011; Liu et al., 2016; Pfeiffer et al., 2016).

1.2.4.2 Recognition of an intramembrane degron

For ERAD-M substrates, it has been shown that hydrophilic residues in the Hrd1

TM region are important for substrate degradation indicating that Hrd1 recognizes an

intramembrane degron (Sato et al., 2009).

Doa10 also recognizes intramembrane degrons. The carboxy-terminal region com-

prising the TM anchor of Sbh2 and the hydrophobic hairpin of Pgc1 are necessary and

sufficient for their Doa10-dependent degradation (Habeck et al., 2015; Ruggiano et al.,

2016). The TM anchor of Ubc6 is also probably important for its degradation. When

the Ubc6 TM anchor is attached to the stable cytosolic E2 enzyme Ubc4, this fusion

protein is degraded in a Doa10-dependent manner (Walter et al., 2001). However, the

Ubc6 TM anchor seems to be not sufficient for Doa10-dependent degradation, as a

construct containing the soluble Ura3 fused to the Ubc6 TM anchor is stable (Kreft

and Hochstrasser, 2011). This is in agreement with experiments showing that catalyt-

ically inactive Ubc6 is stable. Concluding, the TM anchor as well as catalytic activity

are required for degradation of Ubc6. These studies show that Doa10 can recognize

intramembrane degrons. It has been shown that mutations in the TD-domain affect

Ubc6 degradation, but not the degradation of soluble or membrane proteins that con-

tain the soluble Deg1 degron suggesting that the TD-domain of Doa10 is involved in

recognition of intramembrane degrons (Kreft and Hochstrasser, 2011).

1.2.4.3 Recognition of a cytosolic degron

Several degrons have been identified for soluble substrates of Doa10. It has been

shown that an amphipathic helix in Deg1 is important for Doa10-dependent degrada-

tion (Johnson et al., 1998). Since then, more soluble degrons have been identified like

the synthetic CL1 degron as well as a 55 aa carboxy-terminal part of the mutant pro-

tein Ndc10-2 (DegAB). Disrupting the hydrophobic surface of predicted amphipathic

helices interferes with Doa10-mediated degradation of those substrates (Gilon, 1998;

Gilon et al., 2000; Furth et al., 2011).
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1.2.4.4 Exposure of degrons

It is still unclear how substrates are recognized in response to certain metabolites. This

is best understood for the Hrd1 substrate HMG-CoA reductase. Studies indicate that

the presence of the isoprenoid GGPP results in conformational changes in Hmg2 (Wan-

geline and Hampton, 2018). These structural changes probably expose a degron that

is recognized by the Hrd1 complex. For degradation of squalene monooxygenase, an

amphipathic helix localized at the N-terminal region seems to be important for its

TEB4-dependent degradation (Zelcer et al., 2014).

A common feature of substrate recognition is masking of a degron by interaction

partners. The degron of Sbh2 and Sbh1 only gets exposed when it does not interact

with the translocon complex (Habeck et al., 2015; Shyu et al., 2019). Moreover, Matα2

is stable in diploid cells when it interacts with Mata1 (Johnson et al., 1998). By

interacting with the INSIG Nsg1, Hmg2 is protected from Hrd1-mediated ERAD in S.

cerevisiae (Flury et al., 2005).

1.2.4.5 Role of chaperones

ER-luminal and cytosolic chaperones are involved in ERAD. The ER-localized chap-

erone Hsp70 Kar2 is involved in ERAD-L. It keeps substrates soluble and forms a

complex with Hrd3/Yos9 (Nishikawa et al., 2001; Denic et al., 2006).

It is unclear which role chaperones play in substrate recognition by Doa10. Chap-

erones might play a role in substrate recognition and delivery to Doa10. Moreover, it

is possible that chaperones are involved in maintaining substrate solubility after ubiq-

uitination as well as extraction from the ER membrane. It has been hypothesized that

the C-terminal element of Doa10 serves as a platform for chaperone binding (Kreft and

Hochstrasser, 2011).

The Hsp70 chaperone Ssa1 as well as its Hsp40 co-chaperones Ydj1, Hlj1 and Sis1

have been shown to play a role in Doa10-mediated ERAD. Ssa1 is required for degra-

dation of substrates containing an Ndc10-derived degron or the synthetic CL1 de-

gron (Metzger et al., 2008; Furth et al., 2011; Shiber et al., 2013). Moreover, the

co-chaperone Sis1 is required for normal degradation of substrates containing Ndc10-

derived degrons or Deg1. Interestingly, Ubc6 degradation is independent of Sis1 (Shiber

et al., 2013). Ssa1 and Ydj1/Hlj1 are also required for normal degradation of Ste6*

and Pma1 D378S (Huyer et al., 2004; Nakatsukasa et al., 2008; Han et al., 2007).

Several studies indicate that chaperones play a role in the interaction of substrates

with Doa10. When a temperature-sensitive mutant of Sis1 (sis1-85) is expressed, a

18



1.2. ER-associated protein degradation (ERAD)

membrane protein containing an Ndc10-derived degron (Vma12-DegAB) does not in-

teract with Doa10 in contrast to wildtype cells (Shiber et al., 2013). Moreover, sub-

strates containing a CL1 or Ndc10-derived degron as well as mutant versions of Ste6

and Pma1 are not ubiquitinated when chaperones are deleted or mutant versions ex-

pressed (Metzger et al., 2008; Furth et al., 2011; Shiber et al., 2013; Nakatsukasa et al.,

2008; Han et al., 2007).

1.2.4.6 Summary

In summary, ERAD recognizes exposed degrons which can be localized in the ER

lumen, ER membrane or INM as well as the cytosol. Exposure of hydrophobic residues

as well as posttranslational modification by glycosylation can serve as a signal for

degradation. Moreover, chaperones at the luminal and cytosolic side are involved in

substrate recognition at least for some ERAD substrates. Additionally, competition

of ubiquitination and DUB-mediated deubiquitination might contribute to substrate

discrimination (Zhang et al., 2013).

For Doa10-mediated ERAD, examples for intramembrane degrons as well as soluble

degrons exist. It is unclear how those degrons are recognized. Doa10 might recognize

those degrons directly. Alternatively, additional factors might be involved in substrate

recognition. Chaperones might play a role, especially in the recognition of soluble

degrons. As no screen has been carried out for components required for degradation of

Doa10 substrates that are membrane proteins, we might be still missing components of

the degradation machinery. It is possible that for intramembrane degrons, additional

factors might be required for recognition of those substrates and delivery to Doa10.

1.2.5 Retrotranslocation of substrates

ERAD of ER luminal and membrane proteins requires a retrotranslocation step in

which ubiquitinated substrates are retrotranslocated from the ER into the cytosol by

the Cdc48 ATPase in complex with its cofactors Ufd1 and Npl4 (Cdc48/UN) (Ra-

binovich et al., 2002; Jarosch et al., 2002; Ye et al., 2001; Bays et al., 2001; Huyer

et al., 2004). Whereas the role of Cdc48/UN was initially discovered by studying

Hrd1 substrates, it has been shown that the Cdc48 complex is also required for ERAD

of membrane proteins mediated by the Asi complex (Foresti et al., 2014) and Doa10

complex (Huyer et al., 2004; Ravid et al., 2006; Wang and Chang, 2003; Ruggiano

et al., 2016; Foresti et al., 2013). Mechanistically, this process of retrotranslocation

is poorly understood. The following sections summarize the current understanding of

this process.
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1.2.5.1 The Cdc48/Ufd1 Npl4 complex

Cdc48 is a hexameric ATPase that belongs to the AAA family (ATPases associated

with diverse cellular activities). Each Cdc48 subunit consists of an N-terminal domain

and two ATPase domains (D1 and D2) that form two rings (Bodnar and Rapoport,

2017a). The cofactors Ufd1 and Npl4 associate with Cdc48 at the top side of the D1

ring. Npl4 associates with Cdc48 by contacting the D1 ring as well as the N-terminal

domain (Bodnar et al., 2018; Twomey et al., 2019). Ufd1 contains a ubiquitin-binding

domain (UT3), an unstructured UT6 domain that can bind to Npl4 and an SHP motif

interacting with Cdc48 (Hetzer et al., 2001). Npl4 has a ubiquitin binding domain

that binds to K48, but not K63-linked ubiquitin chains that contain at least 6 linked

ubiquitin moieities (Tsuchiya et al., 2017).

Reconstitution and structural studies have recently expanded our understanding

of the mechanism of the Cdc48/UN complex. Cdc48 gets recruited to polyubiquiti-

nated substrates via its cofactors Ufd1/Npl4 (Stein et al., 2014; Bodnar and Rapoport,

2017b). Subsequently, the substrate is unfolded by ATP-hydrolysis in the D2 do-

main and translocation of the substrate through the central pore of Cdc48 (Bodnar

and Rapoport, 2017b; Twomey et al., 2019). A structure of the Cdc48/UN complex

bound to a polyubiquitinated substrate shows that an unfolded ubiquitin moieity is

present in the pore, suggesting that unfolding of ubiquitin initiates unfolding of the

substrate (Twomey et al., 2019). Substrate release from Cdc48 requires the deubiq-

uitinating enzyme Otu1 and ATP-hydrolysis in the D1 domain. Reconstitution ex-

periments have shown that Otu1 deubiquitination is not complete, leaving up to 10

ubiquitin moieties attached to the substrate (Stein et al., 2014; Bodnar and Rapoport,

2017b) which are probably important for recognition by proteasome receptors.

1.2.5.2 Recruitment of the Cdc48-complex by Ubx2

Cdc48, Ufd1, Npl4 as well as the membrane protein Ubx2 are part of the Doa10 and

Hrd1 complex (Carvalho et al., 2006). Multiple studies have shown that Ubx2 is im-

portant for ERAD and that it recruits Cdc48 to the ER membrane. Ubx2 contains

a UBA-domain and a UBX-domain and interacts with polyubiquitinated proteins as

well as with Cdc48 (Schuberth et al., 2004). Whereas UBA-domains have been shown

to interact with ubiquitin, UBX-domains can interact with the N-terminal domain of

Cdc48 (Scott et al., 2014; Schuberth and Buchberger, 2008). In vivo, Ubx2 is required

for the interaction of Cdc48 with Hrd1 as well as Doa10, indicating that it recruits

Cdc48 to the ubiquitin ligase (Schuberth and Buchberger, 2005; Neuber et al., 2005).
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Interestingly, interaction between Doa10 and Ubx2 only occurs when Doa10 is active,

indicating that Ubx2 is recruited to polyubiquitinated substrates or Doa10, potentially

via its UBA-domain (Neuber et al., 2005). Deletion of UBX2 affects the degrada-

tion of multiple ERAD substrates (Schuberth and Buchberger, 2005; Neuber et al.,

2005). For Doa10 substrates, the requirement for Ubx2 has been shown for Ubc6 and

Ste6* (Neuber et al., 2005; Nakatsukasa and Kamura, 2016). In agreement with Ubx2

being a recruitment factor, it has been shown in a reconstituted system that Ubx2

binds to mono- and poly-ubiquitinated Hrd1 and that it can recruit the Cdc48/UN

complex (Stein et al., 2014).

Experiments using microsomes have provided useful insights into retrotransloca-

tion. In these in vitro assays, microsomes are incubated with cytosol. Soluble and

retrotranslocated proteins are separated from membranes by ultracentrifugation. Sub-

sequently, substrate is detected in both fractions by immunoprecipitation followed by

blotting against ubiquitin (Neal et al., 2019). Such assays have been performed for

the Hrd1 substrate Hmg2 as well as the Doa10 substrate Ste6*. The retrotransloca-

tion of Hmg2 and Ste6* is dependent on Cdc48, as no retrotranslocation occurs when

microsomes are prepared from cdc48-3 cells (Garza et al., 2009a; Nakatsukasa et al.,

2008). Also Ubx2 has been shown to be required for retrotranslocation of those sub-

strates (Garza et al., 2009a; Nakatsukasa and Kamura, 2016).

1.2.5.3 A protein conduit for retrotranslocation

Whereas it is established that Cdc48 provides the driving force for retrotranslocation,

the identity and role of protein conduits in this process is not clear yet.

Retrotranslocation of ERAD-L substrates requires the substrate to fully cross the

ER membrane. Recent studies indicate that Hrd1 forms a channel for retrotranslo-

cation of substrates. Upon Hrd1 overexpression, Hrd3, Der1 as well as Usa1 are

not required for substrate degradation indicating that Hrd1 alone can form such a

channel (Carvalho et al., 2010). Moreover, recent reconstitution studies as well as a

cryo-electron microscopy structure of a Hrd1/Hrd3 complex suggest that Hrd1 forms a

protein conduit for luminal substrates (Baldridge and Rapoport, 2016; Schoebel et al.,

2017).

It is unclear if a protein conduit is involved in retrotranslocation of membrane

proteins. Candidates for such a protein conduit are the membrane-embedded ubiquitin

ligases Hrd1 and Doa10 themselves as well as the multipass membrane protein Dfm1.

Dfm1 as well as the Hrd1-complex component Der1 are rhomboid pseudoproteases.

They are homologous to rhomboid proteases but lack an active site (Avci and Lemberg,

21



Chapter 1. Introduction

2018). Dfm1 localizes to the ER and contains an SHP-box motif that is probably

involved in binding the N-terminal domain of Cdc48 (Hitt and Wolf, 2004). Dfm1

interacts with Hrd1 as well as Doa10 (Stolz et al., 2010). Moreover, Hrd1 complex

components, but not Doa10 were identified by immunoprecipitation of Dfm1 (carboxy-

terminally tagged with calmodulin peptide and protein A module) followed by mass

spectrometric identification (Goder et al., 2008). However, previous Doa10 and Hrd1

immunoprecipitation experiments have not identified Dfm1 (Carvalho et al., 2006).

Two observations make it difficult to interpret some studies about Dfm1. First, early

studies (Sato and Hampton, 2006; Goder et al., 2008) have used a carboxy-terminally

hemagglutinin (HA)-tagged Dfm1 construct that has later been shown to be unstable in

contrast to wildtype Dfm1 (Stolz et al., 2010). Moreover, a DFM1 deletion is suppressed

when substrates are overexpressed. It has been shown that this suppression is due to

duplication of chromosome XV leading to elevation of Hrd1 levels (Neal et al., 2018).

This might explain why other studies did not identify a role of Dfm1 in ERAD (Sato

and Hampton, 2006; Goder et al., 2008).

Using a microsome-based assay as described above, it has been shown that a self-

ubiquitinating ERAD substrate that does not require ubiquitination by Hrd1, is retro-

translocated independent of the presence of Hrd1. In contrast, it is only retrotranslo-

cated in the presence of Dfm1 suggesting that Dfm1 forms a protein conduit for ERAD-

M substrates (Garza et al., 2009a; Neal et al., 2018). Neal et al. have also shown that

Dfm1 is required for retrotranslocation of Ste6*. These results are in agreement with

stabilization of Ste6* in the absence of Dfm1 (Stolz et al., 2010). Further studies are

necessary to understand the function of Dfm1 in retrotranslocation of Ste6* and to test

if Dfm1 is also involved in degradation of other Doa10 substrates.

Besides Dfm1, it has been hypothesized that Doa10 forms a protein conduit for

retrotranslocation of membrane proteins, due to its large TM region comprising 14

TM segments (Swanson et al., 2001). The role of Doa10 in retrotranslocation has not

been investigated yet and thus it remains unclear if Doa10 has besides its role as a

ubiquitin ligase such a function in retrotranslocation of substrates.

1.2.6 Questions regarding the mechanism of Doa10-mediated ERAD

We lack a mechanistic understanding of processes such as substrate recognition, ubiqui-

tination and retrotranslocation during Doa10-mediated ERAD. Moreover, it is unclear

if the components identified are sufficient for Doa10-mediated ERAD. The following

questions remain to be answered:

• How are substrates recognized? In one model, substrates are directly recog-

22



1.3. Reconstitution approaches to study the function of membrane proteins

nized by Doa10. Alternatively, chaperones or adaptors recognize substrates and

deliver them to Doa10. Moreover, it is unclear how substrates such as Erg1 are

recognized in a regulatory manner upon accumulation of certain metabolites.

• What is the role of Ubc6 and Ubc7 in substrate ubiquitination? Ubc6

and Ubc7 have been shown to have different functions. However, Ubc6/Ubc7-

mediated ubiquitination of Doa10 substrates has not been investigated yet in a

reconstituted system. Moreover, it is unclear how Doa10 coordinates these two

E2 enzymes.

• What is the function of Ubc6 turnover? Ubc6 has a short half life and is

degraded in a Doa10-dependent manner, but the physiological relevance of this

process is unclear.

• How does Cdc48/UN extract substrates? Cdc48/UN action at the cytosolic

side leads to extraction of transmembrane and ER-luminal domains of substrates.

How this is achieved is unclear. Moreover, whereas it is known that Ubx2 can

recruit Cdc48 to the ERAD-machinery, its precise function is unclear.

• How is retrotranslocation coordinated? It is unclear if a protein conduit

exists for retrotranslocation of membrane proteins. Doa10 as well as Dfm1 might

have such a role in retrotranslocation.

To address these questions and get mechanistic insight, reconstitution studies with

purified components were used in this thesis. Different approaches exist for the recon-

stitution of reactions consisting of multiple membrane proteins.

1.3 Reconstitution approaches to study the function of mem-

brane proteins

Reconstitution of reactions with membrane proteins requires the presence of amphiphilic

molecules that shield the TM segments from the aqueous solution and therefore prevent

aggregation of the protein. Different model membrane systems exist that can be used

to incorporate membrane proteins into lipid bilayers such as unilamellar phospholipid

vesicles (liposomes) and nanodiscs which are self-assembled structures of a lipid bilayer

surrounded by a protein scaffold (Civjan et al., 2003). Reconstitution protocols usually

are based on the solubilization of lipids with detergent, addition of membrane proteins

and subsequent detergent removal to allow for incorporation of the membrane proteins
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into the spontaneously forming lipid bilayer. The conditions for this protocol (e.g.

detergent used, concentration of proteins and lipids) mostly depend on the membrane

protein used and have to be determined experimentally (reviewed by Shen et al., 2013).

For the reconstitution of pathways, often multiple membrane proteins have to be

co-reconstituted. To overcome the problem of limited conditions for co-reconstitution

as well as to avoid interaction of membrane proteins before reconstitution into the lipid

bilayer, approaches based on fusion of liposomes have been developed. In those assays,

proteins are reconstituted into separate liposomes and co-reconstituted upon fusion of

liposomes.

In cells, many fusion events are mediated by SNARE (soluble N-ethylmaleimide-

sensitive factor attachment protein receptors) proteins. SNAREs are anchored to the

membrane via a TM segment or a lipid anchor and contain a conserved SNARE mo-

tif that can be classified into Qa, Qb, Qc and R-motifs. SNAREs form heterotypic

complexes between two membranes (QabcR complexes). During neuronal exocytosis,

synaptic vesicles containing the SNARE synaptobrevin 2 (Syb) fuse with the plasma

membrane where the SNAREs SNAP25-A (SNAP25) and syntaxin-1A (syntaxin) are

localized (reviewed by Jahn and Scheller, 2006). In a reconstituted system using li-

posomes, they are sufficient to catalyze fusion (Weber et al., 1998). SNARE-based

systems have been used to develop assays for co-reconstitution of membrane proteins.

Nordlund et al. co-reconstituted parts of the respiratory chain from E. coli into

liposomes (Nordlund et al., 2014). F1F0 ATP synthase was co-reconstituted into lipo-

somes with SNAP25/syntaxin and bo3-oxidase with synaptobrevin. As a readout for

fusion, the authors measured the ATP-production upon addition of the electron donors

DTT and ubiquinol Q1. ATP-production was specific for the presence of SNAREs in-

dicating co-reconstitution. Later, Biner et al. (2016) showed that membrane proteins

of the respiratory chain can be also co-reconstituted in the absence of SNAREs, by

fusing liposomes with co-reconstituted lipids of opposite charge. They have also used

this approach for co-reconstitution of different membrane proteins into giant unilamel-

lar vesicles (GUVs). To do so, liposome sets containing different membrane proteins

were fused with GUVs. For reconstition of the membrane protein bacteriorhodopsin

into GUVs, another approach has been reported. Kahya et al. (2001) reconstituted

bacteriorhodopsin into liposomes and used a small peptide that when anchored to

the membrane serves as a fusogen to fuse liposomes with GUVs. Moreover, SNARE-

mediated fusion was employed to deliver the F0F1 ATP synthase (from the thermophilic

Bacillus PS3) co-reconstituted with SNAREs to synaptic vesicles that contain Syb (Pre-

obraschenski et al., 2014). In this study, an acceptor SNARE complex was used that
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has been shown to catalyze efficient membrane fusion in vitro (Pobbati, 2006; Her-

nandez et al., 2012). This complex termed ∆N complex consists of syntaxin, SNAP25

and a C-terminal Syb fragment that gets displaced by full-length Syb upon formation

of the trans-SNARE complex. The ∆N complex is more efficient in fusion than the

individual SNARE proteins, as syntaxin and SNAP25 alone form 2:1 complexes which

blocks the binding of synaptobrevin (Pobbati, 2006).

Although all of these studies report co-reconstitution of membrane proteins, the

co-reconstitution efficiency that they achieved is not known. This can be only de-

termined by biochemical assays such as pulldowns of individual proteins after fusion

or other functional readouts that show a fusion-specific activity relative to the total

protein content. To reconstitute ERAD and study reactions such as ubiquitination,

a high co-reconstitution efficiency is required. We therefore decided to use the well

studied SNARE-fusion system, in particular the highly fusogenic ∆N complex with

synaptobrevin, to co-reconstitute the membrane proteins Doa10, Ubc6 and Cue1.
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1.4 Aims

During this thesis, I have established a reconstituted system using purified components

and liposomes. Using this system, the following topics have been addressed:

Reconstitution of Doa10-mediated ERAD of Ubc6 (Chapter 3 and 4)

I have investigated the behaviour of Ubc6 as E2 enzyme and substrate and

recapitulated Doa10-mediated polyubiquitination of Ubc6. Moreover I have

recapitulated retrotranslocation of Ubc6 by the Cdc48/UN-complex. I observe that

Doa10 acts as a retrotranslocase that facilitates removal of Ubc6 from the membrane.

Identification of structural elements important for Doa10 function

(Chapter 5)

I have tested the behaviour of previously described Doa10 mutants in ubiquitination

of Ubc6 as well as their retrotranslocase activity. Moreover, I have optimized a

protocol for site-specific photocrosslinking to identify interaction sites between the

TM anchor of Ubc6 and Doa10 in collaboration with Iwan Parfentev (Laboratory of

Prof. Urlaub, MPI for Biophysical Chemistry, Göttingen).

Analysis of Doa10-mediated ERAD of Sbh2 (Chapter 6)

We have performed a screen to identify components necessary for degradation of

Sbh2 in collaboration with Ákos Farkas (Laboratory of Prof. Schwappach-Pignataro,

University Medical Center, Göttingen). In combination with reconstitution studies,

we have identified the minimal machinery for ubiquitination of Sbh2.
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2. Materials and Methods

2.1 Materials

The following section lists materials used in this thesis.

Table 2.1: Lipids used in this thesis.

Name Company Catalog

number

1-palmitoyl-2-oleoyl-glycero3-phosphocholine

(POPC)

Avanti Polar

Lipids

850457P

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

(DOPE)

Avanti Polar

Lipids

850725P

1,2,-dioleoyl-sn-glycero-3-phospho-L-serine

(DOPS)

Avanti Polar

Lipids

840035P

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-

(biotinyl)

Avanti Polar

Lipids

870282P

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-

(lissamine rhodamine B sulfonyl) (Rhd-PE)

Avanti Polar

Lipids

810150P

Ergosterol (≥95%, HPLC) Sigma-Aldrich 45480

Table 2.2: Detergents used in this thesis.

Name Company

Anapoe-X-100 (Triton X-100) Anatrace

Decyl Maltose Neopentyl Glycol (DMNG) Anatrace

n-Decyl β-maltoside Glycon Biochemicals (DM) Glycon Biochemicals

GDN101 (GDN) Anatrace

n-Octyl β-D-glucopyranoside (OG) Glycon Biochemicals

Sodium cholate hydrate, ≥ 99% Sigma-Aldrich
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Table 2.3: Miscellanous materials used in this thesis.

Name Company Catalog number

ATP PanReac AppliChem A1348

AlexaFluor488 maleimide Thermo Fisher

Scientific

A10254

BSA: Bovine serum albumin PanReac AppliChem A1391

Coomassie Brilliant blue G-250 PanReac AppliChem A3480

DyLight 680 maleimide Thermo Fisher

Scientific

46618

DyLight 800 maleimide Thermo Fisher

Scientific

46621

Dithiothreitol (DTT) Formedium DTT025

HisPur NiNTA resin Thermo Fisher

Scientific

88223

Nycodenz Alere Technologies 1002424

Pepstatin A Peptide Institute 4397

Phenylmethyl sulphonyl fluoride (PMSF) Carl Roth 6367

Pierce Complete Protease Inhibitor

Tablets

Thermo Fisher

Scientific

A32963

Pierce Detergent removal spin columns Thermo Fisher

Scientific

87777

Pierce High Capacity Streptavidin

Agarose

Thermo Fisher

Scientific

20361

Pierce Streptavidin Magnetic Beads Thermo Fisher

Scientific

88817

Tris(2-carboxyethyl)-phosphin-

hydrochlorid (TCEP)

Sigma-Aldrich C4706

Trypsin Roche 11047841001

Ubiquitin (WT) Boston Biochem U-100Sc

Ubiquitin (K0) LifeSensors SI209

Ubiquitin (K48R) Enzo Lifesciences BML-UW8615-

0001

Ubiquitin (K48) Enzo Lifesciences BML-UW0235-

0001
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Table 2.4: Materials used for culturing E. coli and S. cerevisiae in this thesis.

Name Company Catalog

number

4-Benzoyl-L-phenylalanine (BpA) Iris Biotech HAA6010

D-(+)-Galactose PanReac AppliChem A1131

CSM quadruple dropout (-HTLU) Formedium DCS1389

Histidine Formedium DOC0142

Leucine Formedium DOC0154

L-(+)-Arabinose Sigma-Aldrich A3256

IPTG, dioxane free Formedium IPTG025

D-Mannitol Serva 28410.02

Uracil Formedium DOC0214

Tryptophan Formedium DOC0186

YEP broth Formedium CCM0410

Yeast Nitrogen Base (YNB) US Biological Life Sciences C19032801

Table 2.5: Commercial kits used in this thesis.

Name Company

Gibson Assembly Master Mix New England Biolabs

Q5 Site-Directed Mutagenesis Kit New England Biolabs

B-PER Bacterial Protein Extraction Reagent Thermo Fisher Scientific

MasterPure Yeast DNA Purification Kit Epicentre (Lucigen)

2.2 General methods for DNA cloning and protein expression

For cloning, the Gibson assembly kit and the Site-directed mutagenesis kit (both from

New England Biolabs) were used according to the manufacturer’s protocol. Oligonu-

cleotides used for cloning are listed in the Supplement (Tables S4, S5, S6, S7, S8, S9).

Plasmids used in this study are listed in Table S2, and S. cerevisiae strains are listed

in Table S3. NEB 5-alpha Competent E. coli (New England Biolabs) were used for

cloning purposes. All bacterial transformations were carried out according to the man-

ufacturer’s protocol. Yeast transformations were carried out using an adapted protocol

from Gietz et al. (1995). Briefly, cells were diluted to an OD600 of 0.2 and grown until

an OD600 of approximately 1. After harvesting (3000 x g, 5 min, RT) cells were washed
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in H2O. The cell pellet was then resuspended in 1 mL 100 mM lithium acetate. Cells

were pelleted (table centrifuge, max. speed, 5 s) and the cell pellet resuspended again

in 100 mM lithium acetate (500 µL for 50 mL yeast culture). The cell suspension

was aliquoted into 50 µL aliquots, again pelleted and the supernatant removed. Sub-

sequently, a transformation mix was added, consisting of 240 µL polyethylene glycol

(50% (w/v)), 36 µL lithium acetate (1 M stock), 25 µL single-stranded carrier DNA

(2 mg/mL stock) and 50 µL of DNA (approximately 200 ng). The suspension was vor-

texed (1 min) and subsequently incubated at 30◦C (30 min). After heat shock at 42◦C

(20 min), the transformation mix was removed (max. speed, 5s, table top centrifuge).

For plasmid transformations, the cells were resuspended directly in H2O and plated

onto selective plates. For transformation of DNA-fragments for in vivo homologous

recombination, the cells were resuspended in rich medium (YPD), incubated at 30◦C

for 2 h, and then after removing the YPD and resuspending in H2O plated on selective

plates.

Bacteria were grown in LB medium (Miller, 1992) for cloning purposes and in

Terrific Broth (TB) medium (Hobbs and Tartoff, 1987) for expression, unless otherwise

indicated. When needed, antibiotics were added with the following final concentrations:

ampicillin (100 µg/mL), kanamycin (40 µg/mL), chloramphenicol (34 µg/mL), unless

otherwise stated.

2.3 Reconstitution of Doa10-mediated ERAD of Ubc6

This section is part of the manuscript that is a part of this thesis (Chapter 3) and has

been written by Claudia Schmidt.

2.3.1 Strains used for protein expression

For protein expression in E. coli, BL21-CodonPlus (DE3)-RIPL competent cells (Ag-

ilent) were used. Where indicated, BL21 (DE3) competent cells (NEB) were used

instead. To express Doa10 in S. cerevisiae, a DOA10 deletion strain derived from

BY4741 was used.

2.3.2 Constructs

2.3.2.1 Expression of Doa10 in S. cerevisiae

DOA10 constructs were cloned into the 2 µ plasmid pRS426 containing a Gal1 promotor

(Mumberg et al., 1994), and appended with a C-terminal tobacco etch virus (TEV)
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protease cleavage site followed by a streptavidin-binding peptide (SBP) tag (Keefe

et al., 2001), in which the single lysine was mutated to arginine, and a short sequence

for Sortase-mediated labeling with fluorescent dyes (Popp et al., 2009). The full C-

terminal tag for Doa10 had the sequence GSGENLYFQSGGGMDERTTGWRGGHVVEGLAGELEQ

LRARLEHHPQGQREPLPETGG. As full-length DOA10 is toxic for E. coli (Mandart et al.,

1994), the DOA10 sequence was split in two parts and cloned into two separate plas-

mids, similarly to as described before (Swanson et al., 2001). Sequences coding for

Doa101-468-SBP and Doa10225-1319-SBP, were cloned into a pRS426-pGal1 plasmid us-

ing XhoI/SpeI restriction sites (plasmids #376 and #375, respectively). A plasmid

containing full-length (fl) Doa10 was subsequently generated in S. cerevisiae by ho-

mologous recombination. To do so, plasmid #375 was linearized (starting from Doa10

residue 225) and an N-terminal fragment was generated from plasmid #376 (Doa10

residues 1-257) by PCR. The N-terminal fragment contained 80 to 100 nt overlaps with

the linearized plasmid. Both PCR-products were co-transformed into S. cerevisiae.

Correct homologous recombination was confirmed by sequencing of the PCR-amplified

insert after preparation of total DNA of the generated strain (yAST112). The con-

struct for expression of Doa10434-1319 contained an N-terminal SBP-SUMO* tag (Liu

et al., 2008) and a C-terminal Sortase (LPETGG) tag.

2.3.2.2 Expression of proteins in E. coli

UBC6 from S. cerevisiae and its variants were cloned into the K27SUMO vector using

the SfoI restriction site (Stein et al., 2014). This vector encodes an N-terminal His14-

SUMO-tag. Ubc6 and its variants were appended with a C-terminal LPETGG tag

for Sortase-mediated labeling. To clone a construct for expression of Ubc6SybTM and

SybUbc6TM, the sequence for the cytosolic Ubc6 domain (aa 232-250) was fused to the

sequence for the Syb TM domain (aa 96-116). Vice versa, the cytosolic Syb domain (aa

1-95) was fused to the Ubc6 TM domain (aa 232-250). Constructs containing a Syb TM

domain contained a linker between the TM domain and the LPETGG tag for efficient

Sortase labeling with the sequence GSGSATGSGGS. To clone a construct for expres-

sion of Ub-Ubc6C87A and Ub-Ubc6C87A/SybTM, the sequence encoding ubiquitinV76 (aa

1-76) was inserted between the sequence encoding the His14-SUMO tag and Ubc6. For

efficient Ulp1-cleavage, a linker sequence (coding for GSG) was inserted between the

His14-SUMO tag and ubiquitin (Vasic et al., 2020).

To generate a construct for expression of SUMO-Ubc6, a C-terminal TEV-cleavage

site flanked by linker sequences was introduced between the Ubc6 TM domain and the

LPETGG tag resulting in GSGS-ENLYFQS-SGLPETGG. To generate a construct for
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expression of Ubc6-SBP, Ubc6 was engineered with a C-terminal TEV-cleavage site

separated from Ubc6 by a linker (GSGENLYFQSGGG) followed by an SBP-tag and a

tag (LPETGG) for Sortase-mediated labeling. The coding sequence for His14-SUMO-

Ubc6-SBP was inserted into a pET39b(+) vector (Novagen) right after the DsbA signal

sequence.

The expression construct for Cue1 has been described previously (Vasic et al., 2020).

The coding sequence for Get3 (and Get3D57N) was inserted into the K27SUMO vec-

tor using the SfoI restriction site. The expression construct contained an N-terminal

His14-SUMO tag. An expression construct encoding for Get3I193D was expressed from

a pET28 vector (kind gift from Blanche Schwappach-Pignataro). All constructs for ex-

pression of SNAREs from rattus norvegicus have been previously described (Hernandez

et al., 2012; Stein et al., 2007).

2.3.3 Expression and purification of proteins

2.3.3.1 In S. cerevisiae

Expression of Doa10 was essentially performed as described previously for Hrd1 (Stein

et al., 2014). Yeast cells were grown in minimal synthetic medium containing 2% (w/v)

Glucose and amino acid drop-out supplements at 30◦C. An overnight-culture (grown for

24h) was diluted 1:50 into fresh medium. After 24h of growth, expression was induced

by addition of yeast extract, peptone and galactose to final concentrations of 1%, 2%,

and 2% (w/v), respectively. After 17-19 h of induction, the cells were harvested at

3000 x g, washed once with ddH2O, resuspended in a minimal amount of H2O and

stored at -80◦C.

A membrane fraction was prepared as described previously (Stein et al., 2014), with

some modifications. Briefly, 150 g of cells were resuspended in 900 mL of cold H2O

and incubated with 2 mM DTT for 15 min on ice. All subsequent steps were done at

4◦C. The cells were then pelleted at 3000 x g and resuspended in lysis buffer (20 mM

HEPES/KOH pH 7.5, 5 mM potassium acetate, 600 mM mannitol, 0.5 mM EDTA).

PMSF (1 mM) and Pepstatin A (2 µM) were added freshly. The cell suspension was

then added to a bead beating chamber (total volume = 300 mL) filled up to 1/3 with

zirkonia beads. Cells were lysed in a Bead Beater (Biospec Products) with cycles of

20 s on and 2 min breaks in between for 50 min. Beads were filtered off, and the lysate

was centrifuged at 1,500 x g for 10 min. The supernatant was subsequently pelleted

at 40,000 x g for 45 min (Ti45 rotor). The pelleted crude membrane fraction was

resuspended in 200 mL lysis buffer by douncing and again pelleted at 180,000 x g for
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30 min (Ti45 rotor). The pellet was resuspended in 40 mL and snap-frozen in liquid

nitrogen for storage at -80◦C. The total protein concentration of the membrane fraction

was determined using the PierceTM 660 nm Protein Assay (Thermo Scientific).

To purify Doa10-SBP, the membrane fraction was solubilized with 1.3% (w/v)

GDN (Anatrace) at a protein concentration of 3-4 mg/mL in 20 mM Hepes/KOH

pH 7.4, 300 mM KCl, 0.5 mM TCEP, 5 mM magnesium acetate, supplemented with

1 mM PMSF and 1 Pierce Complete EDTA-free protease inhibitor cocktail (Roche)

per 100 mL solubilization volume. After 1 h solubilization, insoluble material was

pelleted at 40,000 rpm for 30 min (Ti45 rotor). The supernatant was added to 4 mL

Pierce High Capacity Streptavidin Agarose slurry (Thermo Scientific) and incubated

for 3 h. The beads were then filtered off and washed with 4 x 25 mL of wash buffer

(20 mM HEPES/KOH pH 7.4, 150 mM KCl, 5 mM magnesium acetate, 0.5 mM

TCEP, 150 µM GDN). Doa10-SBP was eluted with wash buffer supplemented with

2 mM biotin. Doa10-SBP was further purified by sucrose density gradient ultracen-

trifugation. Gradients were prepared with two solutions where the less dense solution

contained GDN (solution A: 20 mM Hepes/KOH pH 7.4, 150 mM KCl, 2 mM mag-

nesium acetate, 10% (w/v) sucrose, 0.5 mM TCEP, 100 µM GDN, solution B: 20 mM

Hepes/KOH pH 7.4, 150 mM KCl, 2 mM magnesium acetate, 25% (w/v) sucrose,

0.5 mM TCEP). Gradients were prepared using a gradient mixer (Gradient Master,

Biocomp Instruments) at RT and kept at 4◦C before. 500 µL were removed from the

top of gradient, and an equal volume of sample was loaded on top of the gradient.

After centrifugation at 40,000 rpm (19 h, slow break, SW41Ti rotor), the gradient

was harvested in 500 µL fractions. Doa10-containing fractions were concentrated with

Amicon Ultra Centrifugal Filters (Merck) using a 100 kDa cut-off. The same protocol

was used for purification of Doa101-468-SBP and SBP-SUMO*-Doa10434-1319.

2.3.3.2 In E. coli

For bacterial expression, an overnight culture was diluted 1:50 into Terrific Broth and

grown at 37◦C. At an OD600 of 0.5, the cells were shifted to 18◦C and expression induced

with 0.5 mM IPTG. After approximately 20 h of induction, cells were harvested at

4000 rpm, resuspended in buffer I30 (50 mM Tris/HCl pH 8.0 (at 4◦C), 500 mM NaCl,

30 mM Imidazole) and stored at -20◦C.

A bacterial membrane fraction was prepared as described previously (Vasic et al.,

2020).

Ubc6 and its variants were purified via an N-terminal His14-SUMO tag. Ubc6 was

purified as described previously (Vasic et al., 2020).
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To purify Ubc6-SBP, an additional purification step was included to ensure that only

full-length Ubc6-SBP was purified. After size-exclusion chromatography, the protein

was diluted to 0.5 mg/mL and bound to Pierce High Capacity Streptavidin Agarose

(Thermo Scientific). After washing the beads with buffer used during the size exclusion

chromatography, Ubc6-SBP was eluted with buffer supplemented with 2 mM biotin.

Eluted protein was then used for Sortase-mediated labeling.

To purify SUMO-Ubc6 (containing a C-terminal TEV cleavage site), protein was

eluted from the Ni-NTA resin with wash buffer containing 500 mM imidazole, and then

as described above further purified by size-exclusion chromatography (Superdex 200).

To purify Get3, bacterial lysate was cleared by ultracentrifugation (40,000 rpm,

45 min, 4◦C, Ti45 rotor) and the supernatant incubated with Ni-NTA slurry (6 ml

slurry for 6 L of culture) for 2 h. Beads were filtered off and washed with 4 x 50 mL

buffer I30 and 50 mL of buffer I10 (20 mM Tris/HCl pH 8.0 (at 4◦C), 200 mM NaCl,

10 mM Imidazole). Get3 was eluted from beads by cleavage with Ulp1as described

above. The elution was supplemented with 1 mM DTT and further purified by size-

exclusion chromatography using a Superdex 200 HiLoad 16/60 column (GE Healthcare)

equilibrated with 20 mM HEPES/KOH pH 7.4, 200 mM NaCl, 1 mM DTT.

Cue1 was purified as described previously (Vasic et al., 2020). Uba1, Ubc7, Cdc48

and Ufd1/Npl4 were purified as described (Stein et al., 2014).

To express the t-SNARE complex, plasmids encoding syntaxin-1a (aa 183-288), sy-

naptobrevin-2 (aa 49-96) (pETDuet-1 vector) and SNAP-25A (pET28a vector) were

co-transformed into BL21 (DE3) E. coli cells (NEB) and expressed as described pre-

viously (Stein et al., 2007). Briefly, at an OD600 of 0.5, the cells were shifted to 18◦C

and induced with 0.5 mM IPTG. After approximately 20 h of induction, the cells were

harvested at 4000 rpm, resuspended in Buffer I8 (50 mM Tris/HCl pH 8.0 at 4◦C,

500 mM NaCl, 8 mM Imidazole) and stored at -20◦C. After cell lysis using a microflu-

idizer (in the presence of 1 mM PMSF and Complete protease inhibitor), the lysate was

cleared by ultracentrifugation (40,000 rpm, 30 min, Ti45 rotor). The pellet was resus-

pended in Buffer I8 supplemented with 5% (w/v) sodium cholate, 2 M urea, 200 mM

sucrose and 1 mM PMSF. After solubilization for 30 min at RT, insoluble material

was pelleted by ultracentrifugation (40,000 rpm, 30 min, 4◦C, Ti45 rotor). Ni-NTA

slurry (6 mL for 6 L of culture) was added to the supernatant and incubated for 3 h

at 4◦C while rotating. Beads were filtered off and washed with 4 x 50 mL wash buffer

(20 mM Tris/HCl pH 8.0 (at 4◦C), 500 mM NaCl, 8 mM imidazole, 200 mM sucrose,

2% (w/v) octyl glucoside (OG, Glycon)). Protein was eluted with wash buffer supple-

mented with 400 mM Imidazole. 1 mM DTT and 0.05 mg/mL of thrombin (100x stock
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prepared in 50% (w/v) glycerol) were added to the elution fractions and incubated at

4◦C overnight. After thrombin-cleavage, the solution was diluted until the conductivity

reached 15 mS/cm with buffer A (20 mM Tris/HCl pH 7.4 (RT), 1 mM DTT, 200 mM

sucrose, 2% (w/v) OG). The protein was further purified by ion exchange chromatog-

raphy on a MonoQ column (GE healthcare) equilibrated with 20 mM Tris/HCl pH 7.4

(RT), 150 mM NaCl, 1 mM DTT, 200 mM sucrose, 2% (w/v) OG and eluted in a

gradient until 450 mM NaCl (elution at approximately 25 mS/cm).

To express Syb, a plasmid encoding His6-thrombin-Syb was transformed into BL21

(DE3) E. coli cells (NEB). Expression and preparation of a membrane fraction were

done as described above, in buffer I15 (50 mM Tris/HCl pH 8.0, 500 mM NaCl, 15 mM

imidazole). The membrane fraction was solubilized in buffer I15 supplemented with

2.5% (w/v) sodium cholate for 30 min. After clearing the lysate by ultracentriguation,

the supernatant was incubated with Ni-NTA slurry (6 mL for 6 L culture) for 3 h.

Beads were filtered off and washed with 2 x 50 mL wash buffer I15 supplemented

with 1.5% (w/v) sodium cholate and subsequently with 4 x 50 mL wash buffer I15

supplemented with 5 mM decylmaltoside (DM, Anatrace). Protein was eluted with

wash buffer supplemented with 400 mM imidazole and 5 mM DM. 0.05 mg/mL of

thrombin was added to the elution fractions. The solution was dialyzed overnight

against 10 mM MOPS, 50 mM NaCl, 1 mM DTT, 1 mM EDTA pH 7.0 (10 kDa

MWCO). The protein was further purified by ion exchange chromatography on a MonoS

column (GE healthcare) equilibrated with 10 mM MOPS, 50 mM NaCl, 1 mM EDTA

and 1 mM DTT pH 7.0 and eluted in a salt gradient to 500 mM NaCl.

2.3.4 Sortase-mediated labeling

Proteins were labeled at their C-terminal LPETGG tag with the previously described

technique sortase-mediated transpeptidation (Popp et al., 2009). A peptide with the

sequence GGGC was labeled at its cysteine residue with a maleimide dye. Peptide

dissolved in 100 mM Hepes/KOH pH 7.4 was added to dye (DyLight680 maleimide

or DyLight800 maleimide, Thermo Scientific) in 1.5-fold molar excess. After labeling

at RT for 2 h, the reaction was stopped with 10 mM DTT. To label peptide with

AlexaFluor 488 C5 Maleimide (Thermo Scientific), peptide and dye were both dissolved

in 100 mM Hepes/KOH pH 7.4 and then mixed in a 1:1 molar ratio.

A pentamutant P94R/D160N/D165A/K190E/K196T of SrtA (sortase) from S. au-

reus was purified from E. coli (Chen et al., 2011).

To label proteins, 3-fold molar excess of labeled peptide, 10 mM CaCl2 and SortA

were added to the protein. SortA was added to 1/7 of the total concentration of re-
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actants (peptide and protein). After labeling for 16-20 h at 4◦C, the reaction was

separated by size-exclusion chromatography. To label Doa10 purified in GDN, biotin

elution fractions were labeled for 2 h at 4◦C prior to density gradient ultracentrifuga-

tion.

2.3.5 Reconstitution into proteoliposomes

2.3.5.1 Preparation of protein-free liposomes

The following lipids were purchased from Avanti Polar Lipids: 16:0-18:1 PC (POPC, 1-

palmitoyl-2-oleoyl-glycero-3-phosphocholine), 18:1 (∆9-Cis) PE (DOPE, 1,2-dioleoyl-

sn-glycero-3-phosphoethanolamine), 18:1 PS (DOPS, 1,2,-dioleoyl-sn-glycero-3-phos-

pho-L-serine), 18:1 Biotinyl PE (Biotinyl-PE, 1,2-dioleoyl-sn-glycero-3-phosphoethano-

lamine-N-(biotinyl)), 18:1 Liss Rhod PE (Rhd-PE, 1,2-dioleoyl-sn-glycero-3-phospho-

ethanolamine-N-(lissamine rhodamine B sulfonyl)). Ergosterol (≥95%, HPLC) was

purchased from Sigma-Aldrich.

Large unilamellar liposomes were prepared by reverse-phase evaporation as de-

scribed (Hernandez et al., 2012). Briefly, lipids were dissolved in chloroform and mixed

at a molar ratio of 60:20:10:10 (POPC : DOPE : DOPS : Ergosterol). Chloroform was

subsequently removed using a rotary evaporator by lowering the pressure step-wise to

20 mbar. The lipid film was then dissolved in 1 mL diethyl ether (when preparing 1 mL

of liposomes with a final concentration of 20 mM lipid) and 300 µL of buffer L (20 mM

HEPES/KOH pH 7.4, 150 mM KCl, 5 mM magnesium acetate) was added. The sample

was sonicated for 1 min on ice (Branson Sonifier 450, 100% duty cycle, microtip limit

1). Afterwards the ether was removed at 500 mbar. After 10 min, 700 µL of buffer L

was added and the pressure was gradually decreased to 100 mbar until diethyl ether

was completely removed. The volume was adjusted to 1 mL with H2O. The resulting

lipid suspension was extruded through a polycarbonate filter (11x through a 0.4 µM

filter, 21x through a 0.1 µM filter) using the Mini extruder kit (Avanti Polar Lipids).

Protein-free liposomes were used for up to 2 weeks after preparation.

For experiments with a pulldown via co-reconstituted biotinylated lipids, lipids were

used in a molar ratio of 57.5 : 20 : 10 : 10 : 0.5 : 2 (POPC : DOPE : DOPS : Ergosterol

: Rhd-PE : Biotinyl-PE).

2.3.5.2 Reconstitution of proteins into liposomes

To reconstitute proteins into liposomes, protein-free liposomes were mixed with de-

tergent and proteins and subsequently incubated for 1 h at RT prior to detergent
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removal. The detergent concentration used for solubilization can be described by the

R-value (Rigaud and Lévy, 2003). The R-value is defined as the ratio of the total

detergent concentration (Dtotal) above the critical micellar concentration (DCMC) and

the total lipid concentration ([lipid]):

R =
Dtotal–DCMC

[lipid]

To co-reconstitute Ubc6 and t-SNARE, protein-free liposomes (4 mM final lipid con-

centration) were mixed with OG (R-value of 2), proteins and buffer D (buffer L

supplemented with 1 mM DTT). t-SNARE and Ubc6 were reconstituted at a mo-

lar lipid:protein ratio of 1000 and 2000, respectively. After incubation for 1 h at RT,

the detergent was removed by dialysis. The mix was dialysed against a 1000x volume of

buffer D at RT in 2 steps using dialysis cassettes (16 h with 2000 kDa cut-off, 2 h with

10,000 kDa cut-off). Biobeads (SM-2 resin, Bio-Rad) were added to the buffer to bind

OG (2 g/L). When Ubc6SybTM and Ubc6 WT were co-reconstituted with t-SNARE,

both Ubc6 variants were reconstituted at a molar lipid : protein ratio of 2000.

To reconstitute Doa10 (purified in GDN), Cue1 and Syb, protein-free liposomes

(4 mM final lipid concentration) were mixed with DM (R-value of 0.55), proteins and

buffer T (buffer L supplemented with 0.1 mM TCEP). Doa10, Cue1 and Syb were

reconstituted at a molar lipid : protein ratio of 5000, 20000 and 2000, respectively.

After incubation for 1 h at RT, the detergent was removed by incubation with resin

from Pierce detergent removal spin columns (Thermo Scientific) in 3 subsequent steps

(45 mg washed resin to 130 µL reconstitution mix in each step). Resin incubation was

performed while rotating the sample, at RT for 20 min each. The protocol was the

same when Cue1 was omitted. Doa10 truncations were reconstituted at the same lipid

: protein ratio, also when both Doa10 truncations were co-reconstituted for the rescue

experiment.

After reconstitution into separate liposomes, Ubc6 and Doa10 were subsequently

co-reconstituted by SNARE-mediated fusion. Both sets of liposomes were diluted 1:10

into buffer T and incubated for 1 h at 30◦C. To inhibit fusion, liposomes containing

t-SNARE were preincubated with 7-fold excess of a soluble Syb fragment (Syb1-95) for

5 min at RT prior to addition of liposomes containing Syb.

For the experiment in Figure 3.6A, Doa10 (purified in DMNG) was co-reconstituted

with either Ubc6SybTM, SybUbc6TM, or Ubc6 WT directly in a 1-step protocol. Protein-

free liposomes (10 mM final lipid concentration) were mixed with DMNG (R-value

of 1.5), proteins and buffer T. Ubc6 and Doa10 were both reconstituted at a molar
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lipid:protein ratio of 10,000. After incubation for 1 h at RT, the detergent was removed

by incubation with prewashed Pierce detergent removal spin columns in 3 subsequent

steps (1 spin column for 100 µL reconstitution mix in each step). Incubation was

performed at RT for 10, 20 and 30 min and the sample eluted by centrifugation at

3,500 rpm for 2 min in a table top centrifuge. To reconstitute Ubc6 or its variants

alone, protein-free liposomes (10 mM final lipid concentration) were mixed with OG

(R-value of 2.0), proteins and buffer T. Ubc6 was reconstituted at a molar lipid:protein

ratio of 10,000. After incubation for 1 h at RT, the detergent was removed by resin

from Pierce detergent removal spin columns in 3 subsequent steps (40, 60, 60 mg resin

to 160 µL reconstitution mix in step 1, 2 and 3, respectively). Resin incubation was

performed while rotating the sample, at RT for 20 min each and the sample eluted by

centrifugation at 3,500 rpm for 2 min in a table top centrifuge.

2.3.5.3 Flotation of liposomes

To test for reconstitution of proteins, liposomes were floated in a Nycodenz step gra-

dient. Nycodenz stocks were prepared in buffer L. 50 µL of liposomes were mixed with

50 µL of 80% (w/v) Nycodenz and overlaid with 40 µL of 30 and 15% (w/v) Nycodenz

and 40 µL of buffer L. The gradients were ultracentrifuged at 50,000 rpm for 1 h at

4◦C (S55-S rotor). The gradient was disassembled in 6 fractions, starting from the top

of the gradient. Fractions were analyzed by SDS-PAGE.

2.3.5.4 Protease protection

To check the orientation of Ubc6 reconstituted into liposomes, trypsin protease was

used. Liposomes were diluted (1:10 in buffer D) and incubated with 6.6 µg/mL trypsin

(Roche) at RT. The detergent control contained in addition 1% Triton-X100 (TX100,

Anatrace, Anapoe-X-100). The reaction was stopped with 4 mM PMSF and samples

were analyzed by SDS-PAGE.

The orientation of Doa10-SBP or Doa101-468-SBP in liposomes was determined by

assessing the accessibility of the C-terminal TEV-cleavage site to TEV-protease. Li-

posomes were diluted 1:10 into buffer D and incubated with 10 µM TEV-protease at

RT. The detergent control contained in addition 1% Triton-X100. The reaction was

stopped by addition of SDS-sample buffer and samples were analyzed by SDS-PAGE

and subsequent western-blotting against the SBP-tag. To determine the orientation of

SBP-SUMO*-Doa10434-1319, the accessibility of the N-terminal SBP-SUMO* to Ulp1*

protease was assessed (protocol as described above for TEV-protease).
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The reconstitution quality of Ubc6 was assessed with a Ubc6 construct containing

an N-terminal His14-SUMO tag and a C-terminal TEV-cleavage site followed by a

fluorescent dye (SUMO-Ubc6DL680). Liposomes containing SUMO-Ubc6DL680 and t-

SNARE were diluted into buffer T 1:20 (final concentration (f.c.) of 0.1 µM Ubc6).

Ulp1 and/or TEV-protease were added to a f.c. of 10 µM each.

2.3.5.5 Pulldowns

For pulldown experiments via the SBP-tag of Doa10, 20 µL of the fusion reaction

(supplemented with 0.25 mg/mL bovine serum albumin (BSA)) were incubated with

20 µL of Pierce Streptavidin Magnetic Beads (Thermo Scientific) prewashed with buffer

B (buffer T supplemented with 0.25 mg/mL BSA). After binding for 1 h (rotating, RT),

the supernatant of the binding reaction was taken off, the beads washed three times

with 100 µL of buffer B and bound proteins eluted with 20 µL of buffer B supplemented

with 2 mM biotin. Samples from input, supernatant and elution fractions were analyzed

by SDS-PAGE.

2.3.6 Ubiquitination assays

All ubiquitinations reactions were performed at 30◦C in a thermocycler. The fusion

reaction was diluted 1:2 (f.c. of 0.1 µM Ubc6, 0.02 µM Cue1 and 0.04 µM Doa10). The

following components were used at the indicated concentrations unless stated otherwise:

0.1 µM Uba1 (E1), 1 µM Ubc7, 120 µM ubiquitin (from S. cerevisiae, R&D Systems)

and 2.5 mM ATP. All reactions contained 0.1 mg/mL BSA. Ubiquitination reactions

were performed at 30◦C. The ubiquitin mutants K0 (Lifesensors), K48 and K48R (both

from Enzo Life Sciences) are derived from human ubiquitin. To test the effect of the

presence of the Cdc48/UN-complex on ubiquitination, 0.1 µM Cdc48 (hexamer) and/or

0.1 µM Ufd1/Npl4 were included in the reaction. Reactions were stopped by adding

reducing SDS-sample buffer and samples were analyzed by SDS-PAGE. For analysis,

the non-ubiquitinated band was quantified and normalized to the 0 min timepoint.

2.3.6.1 Analysis of ubiquitination reactions

To analyze the chain profile, the fluorescence intensity was quantified along a vertical

axis starting from the top of the gel using the line scan function in ImageJ (Figure 3.2B

and 3.3C). When different Ubc6-variants were compared (Ubc6 WT vs Ubc6SybTM),

the line scan values were normalized to the integral of the whole scan (Figure 3.6I),

to account for different Sortase labeling efficiencies. To quantify the ubiquitination
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kinetics for mono-, di-, tri- and tetraubiquitination, each band corresponding to one,

two, three and four ubiquitins was quantified for every time point and normalized to

the non-ubiquitinated band at timepoint 0 min (Figure A5A). To calculate the total

number of ubiquitins transferred, the values for one to four ubiquitins obtained above

were summed up for each timepoint (Figure 3.5F and 3.6F).

2.3.7 Measuring extraction by the Cdc48-complex

Liposomes prepared with protein-free liposomes containing 2 mol% biotinyl-PE and

0.5 mol% Rhd-PE. Liposomes were fused and subsequently ubiquitinated as described

above. To immobilize liposomes after ubiquitination, the ubiquitination reaction was

diluted 1:2 to a final lipid concentration of 0.4 mM total lipid (f.c. of 0.05 µM Ubc6)

and BSA was added to a f.c. of 0.25 mg/ml. The diluted mix was then added to

an equal volume of Pierce Streptavidin Magnetic Beads (Thermo Scientific, prewashed

with buffer B). After incubation for 1h at RT (rotating), the unbound fraction was

removed and the beads were subsequently washed 3x with buffer B. The beads were

then resuspended in the same volume of buffer B and 30 µL of the suspension aliquoted

in a PCR-strip. The buffer was removed and the beads resuspended in 1x extraction

mixes or 1x SDS sample buffer. 1x extraction mixes contained 0.1 µM Cdc48 (hexamer),

0.1 µM Ufd1/Npl4 and 0.25 mg/mL BSA. Beads were incubated for 30 min at 30◦C. The

supernatant was removed (containing extracted and soluble proteins). After washing

the beads 3x with buffer B, the bound proteins were eluted by adding 30 µL of 1x SDS

sample buffer.

Samples of the supernatant and the elution fractions were analyzed by SDS-PAGE.

To quantify the liposome immobilization efficiency, the Rhodamine fluorescence was

measured in a Tecan Genios Pro microplate reader using 550/10 nm and 590/20 nm

for excitation and emission, respectively. To quantify the protein immobilization ef-

ficiency, the DyLight680 (Ubc6/ Ub-Ubc6C87A) and Dylight800 (Doa10) fluorescence

was measured using the Odyssey scanner (384-well plate, transparent bottom, Corning

REF3655).

2.3.7.1 Analysis of extraction reactions

To quantify the extraction efficiency of Ub-Ubc6C87A relative to its ubiquitination sta-

tus (Figure A3G), Ubc6 bands corresponding to Ub-Ubc6C87A modified with 1 to 10

ubiquitins were quantified separately and normalized to the corresponding band of the

input sample (beads treated with sample buffer).
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To quantify the fraction of Ubc6 in the supernatant (Figure 3.3G and 3.3H), the

fluorescence intensity for Ubc6 modified with 0 - 5 ubiquitins and for Ubc6 modified

with more than 5 ubiquitins was quantified by drawing a single rectangular box around

the respective area using Image Studio and subsequently normalized to the Input (beads

treated with sample buffer). For Ub-Ubc6C87A, the unmodified band was counted as

monoubiquitinated.

2.3.8 Assays for release by Doa10

2.3.8.1 Get3

Liposomes were prepared with protein-free liposomes containing 2 mol% biotinyl-PE

and 0.5 mol% Rhd-PE and fused as described above. The fusion reaction was diluted 1:2

into buffer T (f.c. Ubc6 = 0.1 µM) and incubated with an excess of Get3 (f.c. 10 µM).

After incubation at RT for 16 h, the reaction was diluted to a f.c. of lipid to 0.4 mM (1:2

dilution) and 0.25 mg/mL BSA added. The diluted mix was then added to an equal

volume of Pierce Streptavidin Magnetic beads (Thermo Scientific, prewashed with

buffer B). After binding for 1 h, the supernatant was removed. Input and supernatant

samples were analyzed by SDS-PAGE, and the Rhodamine fluorescence measured as

described above.

For the turbidity assay, Ubc6 (in 0.03% DDM) was diluted 1:25 into buffer L (f.c. of

1.8 µM Ubc6) in the presence or absence of Get3 (f.c. 1.8 µM or 3.6 µM). The optical

density at 360 nm was measured using a UV-2401PC spectrophotometer (Shimadzu

Corporation).

2.3.8.2 Protease protection

For this experiment, both sets of fusion liposomes were diluted 1:5 for the fusion reac-

tion (instead of 1:10). The fusion reaction was diluted 1:2 into buffer T and incubated

with 2 µM Ulp1. For the subsequent TEV-cleavage, the Ulp1-cleaved sample was

diluted 1:2 again (f.c. of 0.1 µM Ubc6) and incubated with 10 µM TEV-protease.

During TEV-cleavage, 0.5 mM DTT was present. Detergent controls contained 1%

TX100. Reactions were stopped by adding SDS sample buffer.

2.3.8.3 Antibody

AlexaFluor 488 fluorescence was measured in a Tecan Genios Pro microplate reader

using 495/10 nm and 535/25 nm for excitation and emission, respectively. 30 µL of

the fusion reaction was measured in a 96-well plate (Corning, REF 3686) with a f.c.
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of Ubc6A488 of 0.2 µM. After the signal was stable, the measurement was stopped and

anti-Alexa Fluor 488 polyclonal antibody (Invitrogen, #A-11094) was added (diluted

1:15) and the measurement started again. After approx. 40 min, 1 µL TX100 (f.c. 1%)

was added to solubilize the liposomes. To analyze the fluorescence traces, the three

measurements (equilibration, antibody and detergent addition) were merged. The

background (stabilized A488 signal after detergent addition) was subtracted from all

measurements. The fluorescence traces were subsequently normalized to the average

signal of the last 10 timepoints before antibody addition. To quantify the fraction of

released Ubc6, the difference between the normalized values of the samples with and

without Doa10 30 min after antibody addition was calculated.

To test for the release of the Ubc6-swap mutants, liposomes containing Doa10

co-reconstituted with Ubc6, Ubc6SybTM or SybUbc6TM were first subjected to a pull-

down via the SBP-tag of Doa10. Liposomes were diluted 1:8 (f.c. Ubc6 0.125 µM,

0.25 mg/mL BSA) and 50 µL of diluted liposomes were added to 50 µL of Pierce

Streptavidin Magnetic Beads (Thermo Scientific) prewashed with buffer B. For the

controls, Ubc6-only liposomes were also diluted 1:8 (in the presence or absence of 1:8

diluted Doa10-liposomes) and incubated with beads. After binding for 1 h (rotating,

RT), the supernatant of the binding reaction was taken off, the beads washed three

times with 200 µL of buffer B and bound Doa10-liposomes eluted with 40 µL of buffer

B supplemented with 2 mM biotin. Samples from input, supernatant and elution

fractions were analyzed by SDS-PAGE. 30 µL of eluted fractions (Doa10-containing

liposomes) were then added into a 96-well plate. Liposomes lacking Doa10 (containing

Ubc6 A488, Ubc6SybTM-A488 or SybUbc6TM-A488) were diluted 1:15 in buffer T and the

antibody quenching assay was carried out as described above.

2.3.9 Ubc6-SBP

To reconstitute Ubc6-SBP into proteoliposomes, Ubc6-SBP was preincubated with

a 1.25-fold molar excess of tetrameric streptavidin (NEB) for 15 min at RT in the

presence of 0.03% DDM to allow for complex formation. The reconstitution conditions

were otherwise the same as for the co-reconstitution of Ubc6 and t-SNARE (2 µM

Ubc6-SBP and 2.5 µM Streptavidin).

To asses the orientation of Ubc6-SBP in liposomes (Figure A7B), a TEV-protection

assay was carried out as described above, except that liposomes were diluted 1:5.

To test if the biotinylated nanobody (anti-GFP, construct for expression kindly

provided by Dirk Görlich; purified and biotinylated essentially as described in (Pleiner

et al., 2018)) is completely biotinylated (Figure A7C), 20 µL of biotinylated nanobody
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(f.c. 10 µM, supplemented with 0.25 mg/mL BSA) were incubated with 20 µL magnetic

Streptavidin beads that were prewashed with buffer B or prewashed with buffer B

supplemented with 10 mM biotin. After binding for 45 min at RT, the supernatant

was taken off. Samples of input and both supernatants were analyzed by SDS-PAGE

and stain-free scanning using a GelDoc EZ Imager.

For the antibody quenching assay, the fusion reaction was first incubated with

1.5 µM biotin or biotinylated nanobody for 10 min at RT, before the A488-measure-

ments were started as described above. A 6-fold excess of of biotin over streptavidin

was used. Fluorescence traces were processed and analyzed as described above.

To check if biotinylated nanobody is capable of releasing Streptavidin from Ubc6-

SBP, a flotation assay was used. Liposomes containing Ubc6-SBP and t-SNARE were

incubated with Streptavidin for 5 min at RT (f.c. of 0.9 µM Streptavidin to 1.4 µM

Ubc6-SBP). A 10-fold excess of biotin or biotinylated nanobody was then added and

after incubation for another 5 min, a sucrose density gradient (40% (w/v), 30% (w/v),

15% (w/v) and buffer T layer) was assembled. Flotation was carried out as described

above. Samples were analyzed by SDS-PAGE and stain-free scanning using a GelDoc

EZ Imager. Streptavidin and Ubc6-SBP levels were quantified using ImageJ. Intensity

values for Streptavidin were normalized to Ubc6-SBP levels and subsequently to the

buffer control.

To measure extraction of Ubc6-SBP by the Cdc48-complex, fusion and ubiquitina-

tion reactions were carried out as described above, except that fusion liposomes were

diluted 1:5 instead of 1:10 for the fusion reaction (f.c. of 0.2 µM Ubc6 during ubiqui-

tination). After 30 min of ubiquitination, the reactions were aliquoted into a 96-well

plate, 2.5 mM ATP were added again and the measurement of the fluorescence of A488

was started (plate reader preheated to 30◦C). After 10min, anti-A488 antibody (1:15

diluted) and 3 µL of 10x Cdc48-complex were added. 10x Cdc48-complex mix con-

tained 10 µM Cdc48 (hexamer), 10 µM Ufd1/Npl4 as well as 1 mM ATP. To quantify

the fraction of extracted Ubc6-SBP, fluorescence traces were processed as described

above and the difference between the normalized values of samples with and without

Cdc48/UN 30 min after antibody addition was calculated.

To test, if Streptavidin stays in the liposome lumen during extraction (Figure 3.7G),

samples were floated after the extraction assay in a Nycodenz step gradient as described

above. The samples were prepared with the following modifications: To ensure suf-

ficient detection levels, the liposomes were diluted 1:3.3 for the fusion reaction. The

ubiquitination reaction contained the fusion reaction (diluted 1:2, f.c. Ubc6 = 0.3 µM,

f.c. Doa10 = 0.12 µM) and the ubiquitination machinery components (concentrations
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as described above). The extraction assay was done in the plate reader as described

above, in the presence of 0.3 µM Cdc48/UN complex (f.c. Ubc6 = 0.25 µM). After

30 min, 2 mM biotin was added to 50 µL sample, a Nycodenz step gradient was as-

sembled and the flotation carried out as described above. Samples were analyzed by

SDS-PAGE and stain-free scanning using a GelDoc EZ Imager. Streptavidin levels

were quantified using ImageJ. Intensity values were normalized to the sample without

Cdc48/UN.

2.3.10 Analysis

Samples were mixed with SDS sample buffer (stock used as 3x contained 12% (w/v)

SDS, 30% (w/v) glycerol, 0.05% Coomassie blue G-250, 150 mM Tris/HCl pH 7.0

and 6% (v/v) β-mercaptoethanol for reducing sample buffer (Schägger and von Jagow,

1987; Schägger, 2006). Samples were heated at 70◦C (Streptavidin-containing samples

were boiled, samples were heated at 50◦C when Doa10 was visualized) and analyzed

by SDS-PAGE using CRITERION TGX stain-free precast gels (Bio-Rad).

Fluorescent proteins were detected using an Odyssey scanner (Li-Cor) for Dy-

Light680 and DyLight800-labeled proteins, and an FLA-700 fluorescence scanner (Fu-

jifilm) for A488-labeled proteins. To detect streptavidin, samples were run on CRITE-

RION TGX stain-free precast gels (Bio-Rad) and scanned with a GelDoc EZ Imager

(Bio-Rad). Colloidal Coomassie staining was used (Dyballa and Metzger, 2009). SBP-

tagged proteins were analyzed by western blotting were indicated. After transfer on a

nitrocellulose membrane using the Trans-Blot Turbo Transfer System (Bio-Rad), the

membrane was blocked with 5% skim milk powder (dissolved in TBS-T) for 1 h at RT.

A 1:2,500 dilution of anti-SBP antibody (clone 20, mouse monoclonal, MAB10764,

Millipore), and a 1:15,000 dilution of secondary antibody (goat anti-mouse, IRDye 800

CW or IRDye 680RD) were used for detection. Gels were quantified using ImageStudio

Lite (Li-Cor). Fiji (ImageJ) was used for quantification of ubiquitin chain profiles (plot

profile function) as well as streptavidin (gel analyzer function) (Schindelin et al., 2012).

2.4 Optimization of SNARE-mediated fusion assay

2.4.1 Constructs

A construct for expression of ATP-synthase (TFoF1) from Bacillus sp. PS3 (pTR19-

ASDS) was a kind gift from Reinhard Jahn and has been described (Suzuki et al., 2002).

Other constructs used in this section are described in section 2.3.2.1 and 2.3.2.2.
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2.4.2 Expression and purification of TFoF1 ATP synthase

ATP-synthase (TFoF1) from Bacillus sp. PS3 was expressed and purified as described

previously (Suzuki et al., 2002; Schenck et al., 2009). Briefly, ATP-synthase was con-

stitutively expressed in E. coli DK8 cells. Cells cultured in TB-medium were harvested

when they reached an OD600 of 2. Cells were lysed in buffer containing 50 mM Tris/HCl

(pH 8.0 at 4◦C), 0.5 mM EDTA. After incubation with lysoyzme (60 mg for 150 mL

lysate) at 37◦C for 1h, the cells were lysed by sonication (4 x 30 s, microtip limit 2, 50%

duty cycle). Subsequently, DNase (1 µg/mL) 250 mM Na2SO4 and 0.7% (w/v) sodium

cholate were added and stirred for 20 min at RT. The lysate was cleared by centrifu-

gation (20,000 x g, 25 min, 4◦C). The pellet was resuspended in buffer containing 1%

(w/v) DDM, 40 mM Tris/HCl (pH 7.8 at 4◦C), 100 mM KCl, 20 mM Imidazole, 5 mM

MgCl2 and 1 Complete protease inhibitor tablet (EDTA-free). After solubilization for

1 h at 4◦C, unsolubilized material was pelleted by centrifugation (20,000 x g, 25 min,

4◦C). The supernatant was incubated with Ni-NTA beads (6 mL slurry). After incuba-

tion for 2.5 h (4◦C), the beads were filtered off and washed with 4 x 50 mL wash buffer

(40 mM Tris/HCl pH 7.8 (at 4◦C), 100 mM KCl, 20 mM imidazole, 5 mM MgCl2 and

0.1% (w/v) DDM). Elution was carried out using a buffer containing 40 mM Tris/HCl

(pH 7.8 at 4◦C), 50 mM KCl, 250 mM Imidazole, 5 mM MgCl2 and 0.05% (w/v)

DDM. The elution fractions were dialyzed against buffer containing 20 mM Hepes,

20 mM NaCl, 5 mM MgCl2 and 0.05% (w/v) DDM (10 kDa cut-off). The sample was

loaded onto a MonoQ column equilibrated with dialysis buffer and further purified by

size-exclusion chromatography using a Superdex200 10/300 column (GE Healthcare)

equilibrated with 20 mM HEPES/KOH (pH 7.4), 100 mM KCl, 2 mM MgCl2 and

0.05% (w/v) DDM. The TFoF1 complex eluted in one peak and was stored in the

fridge for a week, or frozen after supplementing the sample with 50% (w/v) glycerol.

2.4.3 Reconstitution of TFoF1 ATP synthase

ATP synthase was co-reconstituted with Syb into liposomes. The procedure was the

same as for Doa10, Syb liposomes (described in section 2.3.5.1 and 2.3.5.2). To test

the effect of concentration of reconstituted membrane proteins on liposome stability,

ATP-synthase was reconstituted with different lipid:protein ratios (2000, 4000, 8000).

As described for Doa10 Syb liposomes, the lipid:Syb ratio was 2000 (f.c. of lipid 4 mM).

ATP synthase, Syb liposomes or Doa10, Syb liposomes were subsequently fused with

Ubc6, dN liposomes (reconstituted as described in section 2.3.5.2) following the fusion

protocol described in section 2.3.5.2. Reconstitution quality was assessed by flotation
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in a Nycodenz step gradient (described in section 2.3.5.3).

2.4.4 Purification of Doa10 by size-exclusion chromatography

For Figure 4.4, two purification approaches for Doa10 (sucrose gradient centrifugation

and size exclusion chromatography) were compared. Doa10 was purified in GDN as de-

scribed in section 2.3.3.1. Instead of loading the biotin elution fractions onto a sucrose

gradient, the sample was loaded on a Superose6 10/300 column (GE Healthcare) equili-

brated with 20 mM Hepes/KOH (pH 7.4), 150 mM KCl, 0.5 mM TCEP and 0.15 mM

GDN. Peak fractions were pooled and concentrated using Amicon Ultra Centrifugal

Filters (Merck) with a 100 kDa cut-off.

2.5 Doa10 TD mutants

2.5.1 Constructs

To generate S. cerevisiae strains which express Doa10 TD mutants (E633D, E633Q,

G636R and P638A G642A), the pRS426-pGal1 plasmid harboring the sequence encod-

ing for

Doa10225-1319-SBP (#375) was modified using the Q5 site-directed mutagenesis kit

(NEB). The plasmids were subsequently linearized and transformed with a Doa10 N-

terminal fragment as described in section 2.3.2.1. Other constructs used in this section

are described in section 2.3.2.1 and 2.3.2.2.

2.5.2 Purification and reconstitution of Doa10 variants containing a mu-

tation in the TD domain

Doa10 variants containing a mutation in the TD domain were purified in GDN, as

described for wildtype Doa10 (section 2.3.3.1). For the ubiquitination assay (Fig-

ure 5.1), Doa10 variants were purified via size exclusion chromatography (described in

section 2.4.4). For the release assay (Figure 5.2), Doa10 variants purified via sucrose

gradient centrifugation were used.

Doa10 variants were co-reconstituted with Syb with and without Cue1 (for ubiquiti-

nation and release assay, respectively) and subsequently fused with liposomes contain-

ing Ubc6 and t-SNARE. The reconstitution protocol was the same as for WT Doa10

(described in section 2.3.5.2), except that the lipid:protein ratio for Cue1 was lower

(2000).

46



2.6. Site-specific photocrosslinking

2.5.3 Ubiquitination assay

Cue1, Syb liposomes or liposomes containing Syb, Cue1 co-reconstituted with either

Doa10 WT, Doa10E633D or Doa10E633Q were fused to liposomes containing Ubc6DL800

and t-SNARE (both liposome sets diluted 1:5 in buffer T). The fusion reaction was

diluted 1:2 (f.c. of 0.2 µM Ubc6, 80 nM Doa10, 0.2 µM Cue1) and mixed with ubiqui-

tination machinery (f.c. 0.1 µM Uba1, 0.5 µM Ubc7, 60 µM ubiquitin, 2.5 mM ATP).

Ubiquitination reactions were performed at 30◦C in a thermocycler. Reactions were

stopped by adding reducing sample buffer to an aliquot of the reaction. Analysis of

ubiquitination reactions was performed as described in section 2.3.6.

2.5.4 Release assay using an anti-A488 antibody

Syb-only liposomes or liposomes containing Syb co-reconstituted with either Doa10

WT, Doa10E633D or Doa10E633Q were fused to liposomes containing Ubc6A488 and t-

SNARE (both liposome sets diluted 1:10 in buffer T). The fluorescence quenching

assay based on quenching of the A488 epitope by an anti-A488 antibody was then

carried out as described in section 2.3.8.3.

2.6 Site-specific photocrosslinking

2.6.1 Constructs and strains

To generate a construct for expression of Ubc6 variants used for site-specific pho-

tocrosslinking, the sequence encoding for UBC6 from S. cerevisiae was inserted into

the pBAD/HisC vector (Invitrogen). An N-terminal His14-SUMO tag as well as a

C-terminal Sortase tag (LPETGG) were further introduced. Subsequently, different

residues of UBC6 were mutated to the amber STOP codon (TAG). All cloning steps

were carried out using the Gibson Assembly and Site-directed Mutagenesis kit (NEB).

The generated plasmids encoding for Ubc6 variants containing an amber codon at

specific sites were co-transformed with a plasmid encoding a tRNA synthetase/tRNA

pair for the incorporation of the photocrosslinker p-benzoyl-l-phenylalanine into pro-

teins in E coli at the position of the amber codon. This plasmid (pEVOL-pBpF) was a

gift from Peter Schultz (Addgene plasmid # 31190; http://n2t.net/addgene:31190;

RRID:Addgene 31190) (Chin et al., 2002). The E. coli strain C321.∆A.exp used for

expression. Its release factor 1 is deleted and thus this strain does not lead to termina-

tion of the translation at amber STOP codons. C321.∆A.exp was a gift from George

Church (Addgene plasmid # 49018) (Lajoie et al., 2013).
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Other constructs used in this section are described in section 2.3.2.1 and 2.3.2.2.

2.6.2 Expression of Ubc6BpA variants

2.6.2.1 Expression

An ON-culture was diluted 1:50 into LB-medium supplemented with Ampicillin

(100 µg/L) and chloramphenicol (37 µg/L) and grown at 37◦C. At an OD600 of 0.5,

expression was induced by addition of 0.2% (w/v) L-arabinose (Sigma-Aldrich). At

the same time, BpA (Iris Biotech) was added to the medium (f.c. 0.2 mM, 1000x stock

was freshly prepared in 0.5 M NaOH). Cells were induced at 18◦C, overnight. In the

morning, cells were harvested (4000 rpm, 15 min, 4◦C).

2.6.2.2 Test expression

A test expression was carried out to test if expression of Ubc6 occurs specifically when

the unnatural amino acid p-benzoyl-l-phenylalanine (BpA) is present (Figure S2). To

do so, expression was carried out in 7 mL of medium, as described above. For cell lysis

and protein extraction, the B-PER reagent (Thermo) was used. A working solution

was made by supplementing the B-PER stock with 1% (w/v) DDM, 1 mM PMSF

and 1 mM EDTA (pH 8.0). Each cell pellet was resuspended in 500 µL working

solution and incubated for 1 h (RT, rotating). Unsolubilized material was subsequently

pelleted by ultracentrifugation (S45A rotor, 15 min, 45,000 rpm, 4◦C). A sample from

the supernatant was subsequently incubated with Ulp1 (f.c. of 1 µM) for 30 min

(RT). Samples of solubilization reaction, supernatant after centrifugation and the Ulp1-

treated sample were analyzed by SDS-PAGE and Coomassie blue staining.

2.6.2.3 Purification of Ubc6BpA variants

Expression was carried out in 500 mL LB medium (description see above). To lyse

the cells, the pellet was resuspended in buffer N500 (50 mM Tris/HCl (pH 8.0 (4◦C)),

500 mM NaCl, 30 mM imidazole) supplemented with 20 mM magnesium acetate, 1 mM

PMSF, 1 mg/mL lysozyme and 0.1 mg/mL DNaseI (total volume of 30 mL). After incu-

bation for 30 min (4◦C), the suspension was sonicated (50% duty cycle, 4 x 30 strokes).

Cell debris and unbroken cells were removed by centrifugation (2000 x g, 20 min,

4◦C). The supernatant was subsequently ultracentrifuged (Ti70 rotor, 42000 rpm, 4◦C,

30 min) to pellet a membrane fraction. The pellet was solubilized in buffer N500

supplemented with 1% (w/v) DDM and 1 mM PMSF (total volume of 23 mL). After

solubilization for 1 h (4◦C), unsolubilized material was pelleted (Ti70 rotor, 41,000 rpm,
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4◦C, 30 min). The supernatant was incubated with Ni-NTA resin (1 mL of slurry, 3 h,

4◦C). Next, the beads were filtered off and washed with 3 x 25 mL buffer N500 supple-

mented with 0.03% (w/v) DDM and with 3 x 25 mL of buffer N250 (50 mM Tris/HCl,

250 mM NaCl, 30 mM Imidazole) supplemented with 0.03% DDM. Ubc6 was eluted

from beads by cleavage with the SUMO protease Ulp1. To do so, 1 µM Ulp1 was added

to beads resuspended in buffer N250 and incubated overnight at 4◦C. Afterwards the

flowthrough was collected and 2 mM DTT was added to the elution fractions. Ubc6BpA

variants were not further purified but directly used for reconstitution.

2.6.3 Reconstitution of Ubc6BpA variants and Doa10

Doa10 (purified in DMNG) was co-reconstituted with Ubc6BpA variants directly in a

1-step protocol. Protein-free liposomes (4 mM final lipid concentration) were mixed

with DMNG (R-value of 1.5), proteins and buffer T. Ubc6 variants and Doa10 were

both reconstituted at a molar lipid:protein ratio of 2000. After incubation for 1 h at

RT, the detergent was removed by incubation with prewashed Pierce detergent removal

spin columns in 2 subsequent steps (1 spin column for 180 µL reconstitution mix in

each step). Incubation was performed at RT for 15 min per step and the sample eluted

by centrifugation at 3,500 rpm for 2 min in a table top centrifuge.

2.6.4 Photocrosslinking

For photocrosslinking, Doa10 liposomes co-reconstituted with Ubc6BpA variants were

transferred to a 96-well microplate (PS, transparent,#655101, Greiner). Each sample

was split into two wells (à 70 µL). The microplate was placed on ice and then exposed

to UV (365 nm, 4 Joule, Bio-Link BLX 365 (peqlab)). The sample was subsequently

enriched for Doa10 for easier detection on SDS-PAGE by pulldown via the SBP-tag of

Doa10. To do so, 130 µL of the crosslinking reaction were supplemented with 10 mM

DMNG to solubilize the liposomes. This was necessary, as the binding capacity of

magnetic streptavidin beads is higher in detergent than when Doa10 is reconstituted

into liposomes. After solubilization for 10 min at RT, the sample was added to 130 µL

of beads (pre-washed with buffer containing 20 mM Hepes/KOH (pH 7.4), 150 mM

KCl, 5 mM magnesium acetate, 0.1 mM TCEP, 10 mM DMNG). The binding reaction

was incubated for 45 min (RT, rotating). Subsequently, the supernatant was removed,

and the beads resuspended in 30 µL of 2x sample buffer to elute bound proteins.

The elution fractions were subsequently analyzed by SDS-PAGE and Coomassie blue

staining.
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2.6.5 Mass spectrometry

Protocol for mass-spectrometric analysis was provided by Iwan Parfentev (Laboratory

of Prof. Urlaub, MPI for Biophysical Chemistry, Göttingen).

2.6.5.1 Sequential tryptic and chymotryptic in-gel digest

Shifted bands in the SDS-PAGE gel corresponding to cross-linked Doa10 and Ubc6 were

cut out and digested as described before (Shevchenko et al., 1996) with the following

modifications. After overnight tryptic digestion, 20 µl of digestion buffer (50 mM

ammonium bicarbonate, 5 mM CaCl2) was added and gel pieces were crushed with a

spatula to increase the surface to volume ratio. Tryptic peptides were released from the

gel pieces by 3 x 5 min sonication in a water bath. As a second digestion step, 0.5 µg

chymotrypsin was added per sample and digestion was continued for 4 h at room

temperature, followed by peptide extraction and drying in a Speedvac concentrator

(Eppendorf, Hamburg, Germany).

2.6.5.2 LC-MS analysis

LC-MS acquisition was performed on a Q Exactive HF-X hybrid quadrupole-Orbitrap

mass Spectrometer with a front-end Dionex UltiMate 3000 RSLCnano system (both

Thermo Fisher Scientific, Waltham, USA). Dried peptides were resuspended in 5%

ACN, 0.1% TFA (v/v) and analysed by LC-MS in technical triplicates. Chromato-

graphic separation was achieved on a C18 PepMap100 µ-Precolumn (0.3 x 5 mm,

5 µm, Thermo Fisher Scientific, Waltham, USA), and an in-house packed main column

(75 µm x 30 cm) at 300 nl/min flow rate. The chromatographic gradient was conducted

for 37 min from 10% to 36% buffer B (80% ACN, 0.08% formic acid, v/v) followed

by an increase to 60% buffer B for 6 min. The overall method duration was 58 min.

MS1 scans were acquired with 60,000 resolution, 1 x 106 automatic gain control (AGC)

target, and 50 ms maximum injection time from 350 to 2,000 m/z scan range. The

30 most abundant precursor ions were selected individually with a 1.4 m/z isolation

window and were fragmented with a normalized collision energy of 30. MS2 scans were

acquired with 30,000 resolution, 5 x 103 minimum and 2 x 105 target AGC, 200 ms

maximum injection time and a fixed first mass of 110 m/z. Precursor charges of 1 and

larger than 8 were excluded from isolation and fragmentation. No dynamic exclusion

was set.
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2.6.5.3 Database search

Acquisition files were converted to mgf format with Proteome Discoverer 2.1 and were

subjected for database searching with pLink1 (Yang et al., 2012) with the following

parameters: Carbamidomethylation on cysteine as fixed and oxidation on methionine

as variable modification, enzymatic C-terminal cleavage after FYWL (Chymotrypsin)

and KR (Trypsin), up to 11 missed cleavages, definition of BPA as amino acid ‘B’

(monoisotopic mass: 251.0946), cross-linker reactivity of B to every other amino acid

without mass addition, and no FDR cut-off. Protein sequences of Doa10 and Ubc6

were provided for database searching. Obtained spectral identifications were evaluated

manually.

2.7 Tandem fluorescent timer screen

2.7.1 Constructs and strains

To create an Sbh2 construct that is N-terminally tagged with an sfGFP-mCherry tag

for ectopic expression, the sequence encoding for SBH2 from S. cerevisiae was inserted

into the plasmid pMAM362 (pRS415-PGPD-sfGFP-mCherry, kind gift from M. Knop,

(Khmelinskii et al., 2016)) (plasmid # 511). The same strategy was used to create

an Sbh1 construct that is N-terminally tagged with an sfGFP-mCherry tag for ectopic

expression (plasmid #515).

To tag chromosomal SBH2, a plasmid containing the NatMX6 cassette upstream

of a GPD promotor (pGPD) and an sfGFP(superfolder GFP)-mCherry was gener-

ated. Therefore, the N-terminal tagging cassette containing plasmid pFA6a-NatMX6-

p3nmt1-3xFLAG (Source: D. Moazed, Harvard Medical School, Boston, USA) was

linearized (without p3nmt1-3xFLAG) and the sequence for pGPD-sfGFP-mCherry was

inserted by Gibson Assembly (# 590). From this plasmid, the whole tagging cas-

sette (NatMX6-p(GPD)-sfGFP-mCherry-HA) was amplified. Moreover, 500 bp long

PCR-products were generated of the upstream and downstream region of SBH2 (see

primer table). Subsequently, an SBH2 tagging cassette was generated from these PCR-

products using the Gibson Assembly kit. A PCR-amplified product from this Gibson

Assembly reaction was transformed into an SGA query strain (MATα his3∆1, leu2∆0,

LYS2+, met15∆0, ura3∆0, can1∆::STE2prspHIS5, lyp1∆::STE3 pr-, LEU2 (S288C

background), kind gift from Maya Schuldiner). Correct tagging was confirmed by

sequencing after PCR-amplification of the region of interest after genomic DNA prepa-

ration (MasterPure Yeast DNA Purification Kit, Epicentre).
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Two libraries were used for the screen. The first library contained 4,815 haploid

deletion mutants (Giaever et al., 2002). Moreover, the DAmP (decreased abundance

by mRNA perturbation) library (for essential genes) was used (Schuldiner et al., 2005).

The generated SGA query strain was mated with strains by SGA-based crossing that

was carried out as described previously (Tong and Boone, 2006, 2007). In short, li-

brary strains were mated with the generated query strain on rich medium plates. The

resulting diploid strains were selected for all applicable markers, then induced to sporu-

late on nitrogenstarvation plates. After sporulation, haploid strains were first selected

for auxotrophic, then for antibiotic markers to yield the final modified haploid strain.

As a counterselection against any remaining diploid cells, all plates after sporulation

contained the toxic amino acid analogs Canavanine and Thyalisine. The SGA-based

crossing was carried out by Ákos Farkas who also provided this protocol (Laboratory

of Prof. Schwappach-Pignataro, University Medical Center, Göttingen).

To delete chromosomal UBP3, the KanMX6 cassette was amplified from pFA6a-

KanMX6 (Source: D. Moazed, Harvard Medical School, Boston, USA). Moreover,

300 bp PCR-products were generated of the upstream and downstream region of UBP3.

Subsequently, a UBP3 tagging cassette was generated from these PCR-products using

the Gibson Assembly kit. A PCR-amplified product from this Gibson Assembly re-

action was transformed into BY4741. Correct tagging was confirmed by analysis of

PCR-products generated by using primers two once amplify the whole UBP3 region as

well as by using a primer which anneals to the KanMX6-cassette to amplify a product

that is only present when the tagging worked.

2.7.2 Microscopy

Stationary-phase cells were diluted into 384-well glass-bottom microtiter plates (Ma-

triplate, Brooks Life Science Systems) containing low fluorescence minimal media (Ref-

erence number: CYN6502; FORMEDIUM Ltd.) supplemented with methionine, his-

tidine, uracil and leucine, and allowed to grow for four hours at 30◦C. The plates were

automatically imaged at 30◦C on an Imaging Machine 03-dual (Acquifer) widefield

high-content screening microscope, equipped with a white LED array for bright field

imaging, an LED fluorescence excitation light source, an sCMOS camera (2048 x 2048

pixels) and a stationary plate holder in combination with movable optics. Images were

acquired with 470 nm (Ex 469/35, Em 525/39, dichroic 497) and 590 nm (Ex 590/20,

Em 628/32, dichroic 607) filter cubes or without filter cube for brightfield images using

3 z-slices (dz = 1 µm) and a 40x CFI Super Plan Fluor ELWD N.A. 0.60 (Nikon)

objective. The focal plane was automatically detected in the brightfield channel us-
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ing a yeast autofocus algorithm. Experiment was performed by Ákos Farkas (UM,

Göttingen) who provided this protocol.

2.7.3 Analysis

2.7.3.1 Image analysis

For image analysis, cells were automatically identified using a script written in KN-

IME (https://www.knime.com) and the fluorescence per cell quantified, similarly to a

method described previously (Jonikas et al., 2009). In short, using an ImageJ (Schnei-

der et al., 2012) macro in KNIME, the difference of two brightfield images (+/- 1 µM

from focal plane) was used to identify segments (cells). Background areas containing

no irregularities were identified based on areas of image with low variance. Previously

identified cells were removed if they overlapped with the calculated background area.

Cells were also filtered for circularity, variance in the brightfield signal within the cell,

the range of brightfield signal values within cells in in order to remove cells from analy-

sis that contained irregularities or were stacked on each other. Outliers in size, i.e. too

big or small cells were also excluded. Fluorescent channel background was estimated

based on the fluorescent signal observed in the background areas identified with the

brightfield images, then subtracted from the fluorescent channel image. Cells identi-

fied in the brightfield channels, as described above, were used to calculate the pixel

distribution for each cell in the fluorescent channel. Outliers with too little variance

in the fluorescent signal or too high signal intensity were removed in order to exclude

dead cells. Using the different statistical parameters obtained for the distribution of

pixel intensities within each cell, the average value for each statistic was calculated for

the whole image. This analysis was performed by Ákos Farkas (UM, Göttingen) who

provided this protocol.

2.7.3.2 Selection of hits for repeated screen

In a first screen, 5614 strains were initially analyzed. From those strains, 348 strains

were selected to repeat the screen. The following criteria were applied to select strains

for the repeated analysis. Strains which had either a GFP signal higher than 1750, an

mCherry signal higher than 75 or a ratio higher than 0.07 were selected (1245 strains).

Subsequently a GO-term analysis was performed using the PANTHER tool for gene

list analysis (Mi et al., 2018). This classification was used to remove genes which have

a function probably unrelated to ERAD (based on localization or function).
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2.7.3.3 Identification of hits

To compare the results of both screens and also identify strains in which Sbh2 is

stabilized, both the mCherry intensities as well as the GFP intensities of both repeated

were compared using scatter plots. Hits were identified as such if both the mCherry as

well as the GFP intensity were higher than the respective 3rd quartile value from the

first screen (GFP: 1653, mCherry: 63). Analysis was done using the software Origin,

(Version 2018b, OriginLab Corporation, Northampton, MA, USA).

2.7.4 Cycloheximide chase

Cycloheximide chase assays (Hampton, 1994) were carried out as described (Gardner

et al., 1998; Buchanan et al., 2016) with the following modifications. Briefly, cells were

diluted into drop-out medium to an OD600 of 0.2 and grown to an OD600 of 0.5 at

30◦C. Subsequently, the cells were pelleted (1500 x g, 5 min, RT) and resuspended

to an OD600 of 5. After growing for further 30 min, cycloheximide was added (f.c.

of 0.25 mg/mL) and incubated in a waterbath (30◦C, with occasional shaking of the

tubes). After indicated timepoints, 1 mL samples were taken, immediately placed on

ice and the cells pelleted (1 min, max speed, 4 ◦C, table top centrifuge). The cell pellet

was washed with 1 mL of ice cold water and subsequently flash frozen in liquid nitrogen

(storage at -80◦C).

For analysis of the cycloheximide chase, a total protein extract was prepared as

described (Printen and Sprague, 1994). Briefly, the cells were resuspended in 100 µL

of cracking buffer (8 M urea, 50 g/L SDS, 40 mM Tris/HCl pH 6.8, 0.1 mM EDTA,

0.4 mg/mL Bromophenol Blue) supplemented with 1% (v/v) β-Mercaptoethanol,

10 mM PMSF, 1.25 x of Complete protease inhibitor (Thermo) stock solution (pre-

pared as 25x stock, according to manufacturer’s instructions). Resuspended cells were

transferred to 2 mL screw-cap tubes (Sigma-Aldrich, REF 27000) filled with zirkonia

beads (Roth, 0.5 mm). After incubation for 10 min at 70◦C, the cells were broken

using the BeadRupter (Omni Beadruptor 24, Biolab Products) (1 round, 30 s, max-

imum output (S=8)). Afterwards, the samples were centrifuged (5 min, RT, max.

speed in table top centrifuge) and a sample of the supernatant (5 µL) was analyzed

by SDS-PAGE and subsequent immunoblotting. Immunoblotting was performed as

described in section 2.3.10. Antibodies were dissolved in TBS-T containing 5% (w/v)

skim milk powder. The following primary antibodies were used: anti-HA (mouse, poly-

clonal, kind gift from R. Jahn (23.06.00), dilution used: 1:5000); anti-tubulin (clone

3A2, mouse, monoclonal, Synaptic Systems, REF 302211, 1:2500 dilution used); anti-

54



2.8. Purification and reconstitution of Sbh2

Pgk1 (22C5D8, mouse, REF 459250, Invitrogen, dilution used: 1:2500). Secondary

antibodies were used as described in section 2.3.10.

2.7.5 Analysis of stability of tFT-Sbh2 and tFT-Sbh1 using a microplate

reader

To analyze the GFP and mCherry intensity of strains harboring a plasmid for ectopic

expression of tFT-Sbh2 and tFT-Sbh1 using a microplate reader (as in Figure 6.4),

500 µL of an ON-culture were harvested (table top centrifuge, max. speed, 1 min,

RT) and the pellet washed twice with H2O. Subsequently, 30 µL of each sample was

added to a 96-well plate (Corning, REF 3686) and the fluorescence was measured with

a Tecan Genios Pro microplate reader using 550/10 nm and 612/20 nm for excitation

and emission to measure the mCherry intensity, and 495/10 nm and 535/25 nm for

excitation and emission to measure the GFP intensity.

2.8 Purification and reconstitution of Sbh2

2.8.1 Constructs and strains

To generate a construct for expression of Sbh2, it was engineered with an N-terminal

His14-SUMO-tag. The coding sequence for this construct was inserted into the

pET39b(+) vector (Novagen) right after the DsbA signal sequence using Gibson As-

sembly (resulting in plasmid #695). For protein expression, E. coli BL21-CodonPlus

(DE3)-RIPL competent cells (Agilent) were used.

2.8.2 Expression and purification of Sbh2

Sbh2S4C was expressed in RIPL cells using an auto-induction protocol as described pre-

viously (Studier, 2005). Shortly, an ON-culture was diluted into complex auto-inducing

medium (ZYM-5052, metals included) supplemented with 100 µg/L kanamycin and

grown for 48 h at 25◦C (expression in 6 L medium resulted in approximately 130 g

of cells). Cells were harvested and a membrane fraction was prepared as described in

section 2.3.3.2. The purification was carried out at 4◦C. The membrane fraction was

solubilized in buffer Im20 (50 mM Tris/HCl (pH8.0 at 4◦C), 500 mM NaCl, 20 mM

Imidazole) supplemented with 1 mM PMSF, 200 mM Sucrose and 1% (w/v) Sucrose

(270 ml total volume). After incubation for 1 h, unsolubilized material was pelleted

by ultracentrifugation (Ti45 rotor, 30 min, 40,000 rpm). Ni-NTA resin (8 mL of slurry

for 6 L expression) was added to the supernatant and incubated for 3 h. Beads were
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subsequently filtered off and washed with 4 x 50 mL of buffer Im20 supplemented

with 200 mM Sucrose and 0.03% (w/v) DDM. To elute Sbh2S4C, 1 µM Ulp1 was

added to beads resuspended in wash buffer and incubated for 30 min. Afterwards the

flowthrough was collected and 10 mM DTT added. Sbh2S4C was further purified by

size-exclusion chromatography using a Superdex 200 10/300 column (GE Healthcare)

equilibrated with 20 mM HEPES/KOH pH 7.4, 250 mM NaCl, 0.03% (w/v) DDM,

200 mM Sucrose and 0.1 mM TCEP. Peak fractions were concentrated using Amicon

Ultra Centrifugal Filters (Merck) with a 10 kDa cut-off. Fractions were directly used

for fluorescent labeling.

2.8.3 Fluorescent labeling of Sbh2

To fluorescently label Sbh2S4C via maleimide chemistry, Sbh2S4C, 2.5 fold molar ex-

cess of DyLight800 Maleimide (Thermo Scientific) was added. The dye was removed

using Sephadex G-25 (Superfine, Sigma Aldrich) as medium, equilibrated with buffer

containing 20 mM HEPES/KOH pH 7.4, 250 mM NaCl, 0.03% (w/v) DDM, 200 mM

Sucrose and 0.1 mM TCEP.

2.8.4 Reconstitution of Sbh2

Sbh2S4C-DL800 was co-reconstituted with Doa10 (purified in DMNG) with and without

Cue1 directly in a 1-step protocol. Protein-free liposomes (9.5 mM final lipid concen-

tration) were mixed with DMNG (R-value of 1.5), proteins and buffer T. Sbh2S4C-DL800,

Doa10 and Cue1 were all reconstituted at a molar lipid:protein ratio of 10,000. After

incubation for 1 h at RT, the detergent was removed by incubation with prewashed

Pierce detergent removal spin columns in 2 subsequent steps (1 spin column for 180 µL

reconstitution mix in each step). Incubation was performed at RT for 15 min per step

and the sample eluted by centrifugation at 3,500 rpm for 2 min in a table top centrifuge.

2.8.5 Ubiquitination assay

Sbh2S4C-DL800, Doa10 liposomes containing or lacking Ubc6 were diluted 1:10 (f.c.

0.1 µM Sbh2, 0.1 µM Doa10, 0.1 µM Ubc6) and incubated with the rest of the ubiq-

uitination machinery (f.c. 0.1 µM Uba1, 1 µM Ubc7, 1 µM Cue1, 120 µM ubiquitin)

in the presence of 0.1 mg/mL BSA. Where indicated, a soluble Ubc6 fragment (aa

1-231) was added (f.c. 1.8 µM). The reaction was started by addition of 2.5 mM ATP.

Ubiquitination reactions were performed at 30◦C in a thermocycler. Reactions were

stopped by adding non-reducing sample buffer to an aliquot of the reaction. Analysis
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of ubiquitination reactions was performed as described in section 2.3.6.
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Abstract

In ER-associated protein degradation luminal and membrane proteins are poly-ubiq-

uitinated, extracted from the membrane by the Cdc48 ATPase, and degraded by the

proteasome. How hydrophobic trans-membrane (TM) segments move from the mem-

brane into the cytosol is unknown. Here, we show using purified proteins reconstituted

in phospholipid vesicles that the ubiquitin ligase Doa10 facilitates movement of a tail-

anchored membrane protein into the cytosol. The substrate’s TM segment interacts

with the membrane-embedded domain of Doa10 and then passively moves into the

aqueous phase. No other membrane component is required. Passive translocation of

the substrate is prevented when the luminal C-terminus interacts with a binding part-

ner. However, membrane extraction is restored when the substrate is polyubiquitinated

allowing the Cdc48 ATPase to pull on it. Our results indicate that Doa10 forms a con-

duit for the translocation of hydrophobic TM segments. Cdc48 cooperates with Doa10

by unfolding a luminal polypeptide segment concomitant with membrane extraction.

3.1 Introduction

The endoplasmic reticulum (ER) is a major site for protein and lipid synthesis in eu-

karyotic cells. Proteins destined for the endomembrane system and secretory pathway

are translocated into the ER lumen or integrated into the ER membrane where they un-

dergo protein folding. Two conserved membrane embedded ubiquitin ligase complexes

have evolved that cope with the problem of protein misfolding and regulate protein

abundance in the ER, the Hrd1 and Doa10 complexes. They recognize misfolded pro-

teins, catalyze their polyubiquitination and recruit the Cdc48 complex. The Cdc48

complex, composed of the AAA ATPase Cdc48 (called p97 or VCP in metazoans),

its cofactors Ufd1 and Npl4, and the recruitment factor Ubx2, mediates extraction of

ubiquitinated proteins from the ER membrane (Bodnar and Rapoport, 2017b; Neuber

et al., 2005; Schuberth and Buchberger, 2005; Ye et al., 2001), releasing them into

the cytoplasm where proteasomal degradation occurs. Collectively this pathway is

called ER associated protein degradation (ERAD) (Mehrtash and Hochstrasser, 2018;

Christianson and Ye, 2014; Ruggiano et al., 2014).

ERAD substrates have a vast variety of different topologies; they can be lumi-

nal soluble proteins, or membrane proteins with lesions in either a luminal domain,

the transmembrane (TM) domain, or a cytosolic domain. Substrates take different

routes depending on the localization of the misfolded domain relative to the ER mem-
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brane (Carvalho et al., 2006; Huyer et al., 2004; Taxis et al., 2003; Vashist and Ng,

2004). The Hrd1 complex mediates ubiquitination of substrates with misfolded luminal

and TM domains, and acts in concert with other proteins, like Hrd3, Usa1, and mem-

bers of the Derlin protein family. A growing body of evidence suggests that Hrd1 forms

a retrotranslocon required for the passage of substrates across the ER membrane, but

the Derlins Der1 and Dfm1 likely also play an important role in this process (Baldridge

and Rapoport, 2016; Carvalho et al., 2010; Mehnert et al., 2013; Neal et al., 2018).

Doa10, originally described in S. cerevisiae, appears to be ubiquitously conserved

in eukaryotes (Swanson et al., 2001). Homologs have been described in plants (called

SUD1 in Arabidopsis thaliana), animals (called TEB4 or MARCH6 in mammals),

and have been identified in other unicellular eukaryotes (Doblas et al., 2013; Swan-

son et al., 2001). In S. cerevisiae, Doa10 is a 150 kDa protein with 14 transmembrane

segments (Kreft et al., 2006). Apart from its N-terminal RING-CH domain bearing

the E3 ligase catalytic activity, Doa10 contains two highly conserved regions, the TD

(for TEB4-Doa10) domain comprising TM segments 5-7 (Swanson et al., 2001), and

a C-terminal cytoplasmic element (Zattas et al., 2016). Substrates of Doa10 are very

diverse. They include soluble proteins of the cyto- and nucleoplasm, but also ER mem-

brane proteins (Ravid et al., 2006). While for many of these substrates cytoplasmic

elements are recognized, as is the case for the Matalpha- and Ndc10-derived degrons

Deg1 and DegAB (Furth et al., 2011; Swanson et al., 2001), Doa10 also recognizes

TM degrons, e.g. the tail-anchored (TA) membrane protein Sbh2, an accessory com-

ponent of the Ssh1 translocon (Habeck et al., 2015). Like Hrd1, Doa10 also regulates

the abundance of enzymes involved in sterol metabolism. Squalene monooxygenase is

degraded in a Doa10 dependent manner in plants, fungi and animals in response to cel-

lular sterol load (Doblas et al., 2013; Foresti et al., 2013). Moreover, in S. cerevisiae,

Doa10 restricts the localization of the phosphatidylglycerol phospholipase Pgc1 and

probably other lipid droplet proteins by targeting ER localized Pgc1 for proteasomal

degradation (Ruggiano et al., 2016), indicating a broader role for Doa10 in maintaining

organelle identity.

Doa10 works in concert with two ubiquitin conjugating enzymes, the tail-anchored

membrane protein Ubc6 and the soluble cytoplasmic protein Ubc7 (Swanson et al.,

2001). Ubc7 is anchored to the ER membrane by Cue1 (Biederer et al., 1997). Ex-

periments with soluble cytoplasmic fragments of Ubc6 and Doa10 showed that these

two E2 enzymes have different roles in the build-up of poly-ubiquitin chains (Weber

et al., 2016). Ubc6 initiates ubiquitin chains by transferring the first ubiquitin moiety

onto Doa10, whereas Ubc7 extends ubiquitin chains with mainly K48 linkage. Pheno-
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types of ubc6 deletion are often more pronounced when substrates lack lysine residues

for ubiquitin attachment via isopeptide bonds. In this case, Ubc6 has been shown to

ubiquitinate the hydroxyl-group of serine and threonine residues (Boban et al., 2015;

Weber et al., 2016).

Importantly, Ubc6 is itself an unstable protein and degraded in a Doa10-dependent

manner (Swanson et al., 2001; Walter et al., 2001). Instability of Ubc6 is linked to

its catalytic activity. If the active-site Cys87 is mutated to Ser or to Ala, which

interferes with E1-dependent ubiquitin loading, Ubc6 is stabilized even if a second,

catalytically active form of Ubc6 is present. N-terminal fusion with ubiquitin bypasses

the requirement for catalytic activity, suggesting that Ubc6 with a ubiquitin attached to

a site other than the active site becomes a substrate to Doa10 (Weber et al., 2016). No

completely soluble, luminal substrates of Doa10 have been described, but degradation

of membrane bound Doa10 substrates requires retrotranslocation of protein parts into

the cytosol. While it is established that this reaction requires the Cdc48 complex (Ravid

et al., 2006), it is unknown if Doa10 acts as a retrotranslocase that facilitates substrate

extraction or whether it merely serves as a scaffold that recognizes substrates and brings

them in close proximity to the ubiquitination machinery. Furthermore, it is not known

if Doa10-mediated ERAD of membrane proteins requires additional factors apart from

Doa10 itself, the components of the ubiquitination machinery, and the Cdc48 complex.

For instance, it has been suggested that the rhomboid-like Derlin Dfm1 plays a role in

retrotranslocation of Doa10 substrates (Neal et al., 2018).

Here, we have investigated the mechanism of Doa10-mediated ERAD of Ubc6. We

establish a reconstituted system using purified components, and identify the minimal

machinery required for polyubiquitination and membrane extraction of Ubc6. Using

this system, we show that Doa10 acts as a retrotranslocase by facilitating release of

the TM anchor of Ubc6 from the membrane. The Cdc48 complex breaks non-covalent

luminal interactions and thus drives extraction while membrane integrity is preserved.

3.2 Results

3.2.1 Membrane-reconstitution of Doa10 and Ubc6

We first sought to establish a reconstituted system that faithfully recapitulates observa-

tions made on ERAD of Ubc6 in intact yeast cells. To this end, we purified S. cerevisiae

Ubc6 from E. coli (Figure A1A and A1B), and fluorescently labeled it at the carboxyl

terminus by sortase-mediated transpeptidation (Popp and Ploegh, 2011). Yeast Doa10

with a C-terminal streptavidin-binding peptide (SBP) was purified from S. cerevisiae
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by streptavidin affinity chromatography followed by sucrose gradient centrifugation or

gel filtration (Figure A1C and A1D). We reconstituted Doa10 and Ubc6 into separate

liposome sets. To enable subsequent mixing of the two membranes and delivery of Ubc6

to Doa10, both proteins were co-reconstituted with complementary SNARE proteins

engineered to efficiently catalyze membrane fusion in the absence of SNARE-regulatory

proteins (Figure 3.1A) (Hernandez et al., 2012; Pobbati, 2006). This approach has two

advantages over a direct co-reconstitution. First, it allows us to characterize Ubc6

liposome preparations and then fuse them with liposomes containing Doa10 or mu-

tants of it. Second, it avoids non-native protein-protein interactions that might occur

due to different conformational flexibilities in lipid-detergent micelles during direct

co-reconstitution. Flotation in Nycodenz step-gradients showed that proteins were effi-

ciently reconstituted (Figure A1E and A1F). Mixing of the two liposome sets resulted

in SNARE-dependent interaction of Doa10 and Ubc6 liposomes, as shown by precipi-

tation of Doa10-containing liposomes (Figure A1G). Protease-protection experiments

showed that Doa10 was reconstituted mostly in the correct orientation (Figure A1H),

and that Ubc6 was randomly oriented (Figure A1I-K).

3.2.2 Mono-Ubiquitination of Ubc6 by Doa10

We first investigated ubiquitination of Ubc6 in the absence of Ubc7/Cue1. In the

presence of the E1 Uba1, ubiquitin, and ATP, about 50% of Ubc6 is readily loaded

on its active site cysteine, as shown in non-reducing SDS-PAGE, corresponding to the

fraction of correctly oriented Ubc6 (Figure 3.1B). We also observed generation of Ubc6-

ubiquitin adducts that were insensitive to reducing agent, indicating E3-independent

autoubiquitination of Ubc6, as previously described for a soluble fragment of Ubc6 (We-

ber et al., 2016).
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Figure 3.1: Doa10 catalyzes intramolecular mono-ubiquitination of
Ubc6 at multiple sites. (A) Scheme for SNARE-mediated delivery of Ubc6
(green) to Doa10 (red). t-SNARE denotes a complex of Syntaxin 1A, SNAP25-A,
and a stabilizing fragment of Synaptobrevin 2 (Syb) (Pobbati, 2006). Addition of
a soluble fragment of Syb (Sybsol) inhibits SNARE interaction, while replacing Syb
with the mutant version Syb∆84 arrests fusion at a docked state (Hernandez et al.,
2012). SH in Ubc6 indicates the identity of the active site amino acid (Cys87)
which is replaced in some experiments by Ala. (B) Time course of E1-mediated
ubiquitin-loading of fluorescently labeled Ubc6DL680 analyzed by SDS-PAGE un-
der non-reducing (left) and reducing conditions (right) and fluorescence scanning.
Reactions lacking ATP are denoted as –ATP. (C) Time course of ubiquitination
of Ubc6 in the presence or absence of Doa10. Liposomes containing Doa10 and
Ubc6DL680 as depicted in (A) were mixed to allow for fusion. Where indicated,
fusion was inhibited using either a soluble Syb fragment (Sybsol) or a Syb mutant
(Syb∆84). Liposomes were then incubated with 100 nM E1, 120 µM ubiquitin,
and 2.5 mM ATP (Final concentrations (f.c.) of 40 nM Doa10 and 100 nM Ubc6).
For each reaction, a 60 min sample in the absence of ATP is shown. Samples were
analyzed by SDS-PAGE and fluorescence scanning. (D) Quantification (mean
and SD) of unmodified Ubc6 from three experiments as in (C).

We next generated liposomes containing Doa10 and Ubc6 using the fusion sys-

tem and subsequently added E1, ubiquitin, and ATP. In contrast to the slow E3-

independent autoubiquitination, ubiquitination in the presence of Doa10 occurred much

faster resulting in ubiquitination of 30 ± 5% of Ubc6 within 2 min that proceeded with
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slower kinetics afterwards (Figure 3.1C and 3.1D). For efficient and fast ubiquitination

of Ubc6 by Doa10, both proteins need to reside in the same membrane, as inhibition of

fusion with a soluble v-SNARE fragment (Sybsol) or replacing Syb with a mutant ver-

sion that only supports liposome docking (Syb∆84, (Hernandez et al., 2012)) resulted

in auto-ubiquitination as observed in the absence of Doa10.

Higher molecular weight species of Ubc6 largely correspond to multiple mono-

ubiquitinations, as we observed almost no difference in the ubiquitination pattern when

we performed the same reaction with a ubiquitin mutant in which all lysines are mu-

tated to arginine (UbK0) and that thus cannot form ubiquitin chains (Figure A1L).

Together, these results show that Ubc6, loaded at the active site with ubiquitin is a

substrate for Doa10-mediated ubiquitin transfer onto a different residue of Ubc6.

3.2.3 Ubc7-dependent polyubiquitination of Ubc6

Doa10-dependent degradation of Ubc6 requires the activity of another ubiquitin-conju-

gating enzyme, Ubc7, and its adapter Cue1 (Walter et al., 2001). We therefore investi-

gated how Ubc7/Cue1 affect ubiquitination of Ubc6. We purified full-length Cue1 from

E. coli and co-reconstituted it together with Doa10 (Figure A2A-C). When we fused

such liposomes with Ubc6-liposomes and then added E1, Ubc7, ubiquitin, and ATP, we

observed formation of high molecular weight ubiquitin adducts (Figure 3.2A-C), repre-

senting polyubiquitin chains with predominantly K48 linkage (Figure A2D). Ubc7 and

Cue1 act in concert, as in the absence of either protein, ubiquitination patterns were

indistinguishable from reactions without both proteins (Figure 3.2A-C). When fusion

was inhibited or Doa10 excluded entirely, no ubiquitination beyond E3-independent

autoubiquitination was observed.

In intact yeast cells, only catalytically active Ubc6 is a Doa10 substrate, but

amino-terminal fusion of ubiquitin to Ubc6 bypasses this requirement, suggesting that

monoubiquitinated Ubc6 is a substrate for Ubc7-dependent polyubiquitination (We-

ber et al., 2016). To test if our reconstituted system recapitulates this behavior, we

compared ubiquitination of WT Ubc6, the catalytically inactive Ubc6C87A, and the

N-terminal ubiquitin fusion to Ubc6C87A (Ub-Ubc6C87A) by Doa10 in the presence of

Ubc7/Cue1 (Figure A2E for reconstitution controls). We observed no ubiquitination

of Ubc6C87A, but robust polyubiquitination of Ub-Ubc6C87A (Figure 3.2D and 3.2E).
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Figure 3.2: Polyubiquitination of Ubc6 by Doa10, Cue1 and Ubc7.
(continued)
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Figure 3.2 (continued): (A) Time course of ubiquitination of Ubc6 in the
presence or absence of Doa10, Cue1 and Ubc7. Liposomes as indicated were
incubated with ubiquitination machinery (f.c. of 40 nM Doa10, 10 nM Cue1, 1 µM
Ubc7, 100 nM Ubc6, 120 µM ubiquitin, and 2.5 mM ATP). For each reaction, a
60 min sample in the absence of ATP is shown. Samples were analyzed by SDS-
PAGE and fluorescence scanning. (B) Analysis of ubiquitin-chain length on Ubc6
in the presence of Doa10 and Cue1, with (black) and without (red) Ubc7. Line-
scans were performed on fluorescence images of two representative gel samples
as in (A) at t = 30 min. The approximate position in the gel is indicated by
the molecular weight marker on top of the graph. # ub. denotes number of
ubiquitin moieties attached. (C) Quantification (mean and SD) of the fraction
un-modified Ubc6 from three experiments as in (A). Coloring as indicated in (A).
(D) Time-course of ubiquitination of Ub-Ubc6C87A compared to Ubc6 WT and
Ubc6C87A in the presence of Doa10, Cue1, and Ubc7. Concentrations as in (A)
were used. (E) Quantification (mean and SD) of unmodified Ubc6 variants from
three experiments as in (D). Coloring as indicated in (D).

Together, these results establish that polyubiquitination of Ubc6 occurs sequen-

tially, first requiring active site loading of Ubc6, followed by a Doa10-catalyzed Ubc6-

ubiquitination, followed by Ubc7/Cue1-dependent polyubiquitination. In line with the

notion that Ubc7 only acts after mono-ubiquitination of Ubc6, kinetics of total Ubc6

turnover were independent of the presence of Ubc7/Cue1 (Figure 3.2C). These results

agree with observations made in intact cells and indicate that our reconstituted system

faithfully recapitulates the in vivo ubiquitination pathway (Kreft and Hochstrasser,

2011; Walter et al., 2001; Weber et al., 2016).

3.2.4 Sequential autoubiquitination of Doa10

Autoubiquitination of E3 RING ligases is a commonly observed reaction in vitro, al-

though its physiological significance is often unclear. We also measured how the pres-

ence or absence of Ubc6 or Ubc7/Cue1 affects autoubiquitination of Doa10. To this

end, liposomes containing fluorescently labeled Doa10 (Doa10DL800) and Cue1 were

fused with liposomes with or without Ubc6, and subsequently incubated with E1, ubi-

quitin and ATP, in the absence or presence of Ubc7. High molecular weight ubiquitin

adducts of Doa10 were only observed in the presence of both Ubc6 and Ubc7, whereas

only smaller ubiquitin adducts were observed with Ubc6 as the only E2 (Figure A2F

and A2G). When we omitted Ubc6, we observed some Doa10 polyubiquitination, but

the reaction was strongly impaired. This result confirms that Ubc6 and Ubc7 act se-

quentially in the build-up of polyubiquitin chains on Doa10, as previously shown for

soluble protein fragments (Weber et al., 2016).
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3.2.5 Membrane extraction by the Cdc48 ATPase complex

Our results so far establish a minimal system for efficient polyubiquitination of Ubc6

by Doa10 that requires the E1 Uba1, ubiquitin, Ubc7, Cue1, and ATP. Next, we

investigated under which conditions Ubc6 is a substrate for Cdc48 complex-mediated

extraction from the membrane. We first tested the effect of the Cdc48 complex on

polyubiquitination of Ubc6. In the presence of Cdc48 complex, ubiquitin chains on

Ubc6 remain shorter while the kinetics of Ubc6 turnover are unaffected (Figure 3.3A-

C). Accordingly, no effect on Ubc6 ubiquitination in the absence of Ubc7 was seen

(Figure A3A and A3B). This effect was only observed when Cdc48 and Ufd1/Npl4

(UN) were present, but not when either UN or Cdc48 were omitted. Furthermore,

ubiquitin chains only remained short when Cdc48 was catalytically active, as seen

from a reaction in which a Walker B mutant in the D2 ring of Cdc48 (Cdc48E588A)

was used. We hypothesized that this effect was due to the extraction of Ubc6 from

the membrane once ubiquitin chains of sufficient length were formed, thereby removing

Ubc6 from the vicinity of Doa10 and interrupting further chain elongation.

To test this directly, we performed experiments in which we staged ubiquitination

and the Cdc48/UN-dependent reaction (Figure 3.3D). We first incubated liposomes

containing Doa10, Cue1 and Ubc6 with E1, Ubc7, ubiquitin, and ATP for 20 min and

then stopped the reaction by addition of EDTA. Liposomes were then immobilized to

magnetic beads via co-reconstituted biotinylated lipids (see Figures A3C-F for controls

on the efficiency of immobilization). After washing to remove soluble ubiquitination

machinery, we incubated the beads with either buffer or Cdc48/UN for 15 min and

analyzed bound and released material by SDS-PAGE (Figure 3.3E). Since under this

condition, ubiquitination of Ubc6 is relatively inefficient, we performed the same ex-

periment with Ub-Ubc6C87A (Figure 3.3F). Extraction efficiency was dependent on the

length of ubiquitin chains, with five ubiquitin moieties being minimally required (Fig-

ure A3G). In the presence of Cdc48/UN, 45 ± 17% of Ubc6 molecules with more than

five attached ubiquitin moieties were extracted, compared to 15 ± 4% in the absence of

the Cdc48 complex (Figure 3.3G). No extraction above this background was observed

when either Cdc48 or UN were omitted. Furthermore, ATP hydrolysis by the Cdc48

complex was necessary, as Cdc48E588A was inactive. Polyubiquitin chains were required

because we found no extraction above background when ubiquitination was performed

in the absence of Ubc7 (Figure 3.3 E and 3.3H). Similar observations were made for

Ub-Ubc6C87A (Figure 3.3F and 3.3G).

67



Chapter 3. Retrotranslocation of a tail-anchored membrane protein by the ubiquitin
ligase Doa10

E

A

35

40

55

130

100

180

0 10 30 60

Time

(min)

-A
T

P

0 10 30 60 0 10 30 60 0 10 30 60 0 10 30 60

- Cdc48 UN

Cdc48

+ UN

Cdc48
E588A

+ UN

B C

D F

G

Ubc6 WT, > 5 ub.
Ubc6 WT, 0 - 5 ub.

Ub-Ubc6
C87A

, > 5 ub.
Ub-Ubc6

C87A
, 1 - 5 ub.

-

C
d
c4

8
/U

N

C
d
c4

8

U
N

C
d
c4

8 E
5
8
8
A
 
/U

N

E
x
tr

a
c
te

d
 U

b
c
6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-
C

d
c4

8
/U

N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ubc6 WT, -Ubc7, > 5 ub.
Ubc6 WT, -Ubc7, 0 - 5 ub.

H

35

40

55

180

130

100

Sup. Elution

- C
d
c
4
8
/U

N

C
d
c
4
8

U
N

C
d
c
4
8

E
5
8
8
A

 /U
N

In
p
u
t

C
d
c
4
8
/U

N

C
d
c
4
8

U
N

C
d
c
4
8

E
5
8
8
A

 /U
N

-
Ub-Ubc6

C87A-DL68035

40

55

180

130

100

In
p
u
t

- C
d
c
4
8
/U

N

C
d
c
4
8

U
N

C
d
c
4
8

E
5
8
8
A

 /U
N

- C
d
c
4
8
/U

N

C
d
c
4
8

U
N

C
d
c
4
8

E
5
8
8
A

 /U
N

Sup. Elution

In
p
u
t

- C
d
c
4
8
/U

N

- C
d
c
4
8
/U

N

Sup. Elution

+ Ubc7 - Ubc7

0.0

0.2

0.4

0.6

0.8

1.0

0 10 603020 40 50

Time (min)

Ubiquitination

Immobilization

+ Cdc48/UN

E
x
tr

a
c
te

d
 U

b
c
6

18
0

13
0
10

0
55 40 35kDa

D
L
6
8
0
 f
lu

o
re

s
c
e
n
c
e
 (

a
.u

.)

0

100

800

900

High MW Low MW
Ubc6

DL680

Ubc6
DL680

Ubiquitin

F
ra

c
ti
o
n
 o

f 
u
n
m

o
d
if
ie

d
 U

b
c
6

R
IN

G

SH

M
a

g
n

e
ti
c

S
tr

e
p

ta
v
id

in

 B
e
a

d
s

Doa10

Ubc6

Cue1

Ubc7

Figure 3.3: The Cdc48 complex catalyzes membrane extraction of
polyubiquitinated Ubc6. (A) Time-course of Ubc6 polyubiquitination in the
presence of the indicated components. Ubc6 liposomes were fused with liposomes
containing Cue1 and Doa10, incubated with 100 nM E1, 1 µM Ubc7, 120 µM ubi-
quitin, 2.5 mM ATP, and 100 nM of the indicated Cdc48 complex components (f.c.
of 100 nM Ubc6, 10 nM Cue1, 40 nM Doa10). UN for Ufd1/Npl4 heterodimer. A
60 min sample in the absence of ATP is shown for the reaction in the absence of
Cdc48 or UN. Samples were analyzed by SDS-PAGE and fluorescence scanning.
(B) Quantification (mean and SD) of unmodified Ubc6 from three experiments
as in (A). Coloring as indicated in (A). (C) Analysis of ubiquitin-chain length
on Ubc6 at 30 min from an experiment as in (A). Coloring as indicated in (A).
(continued)
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Figure 3.3 (continued): (D) Explanatory scheme for experiments presented
in (E) and (F). After fusion and ubiquitination, liposomes were immobilized to
streptavidin magnetic beads via biotinylated lipids. One beads equivalent was
removed, and bound protein eluted with SDS sample buffer (Input). Beads were
then incubated with 100 nM of the components as indicated in (E) and (F).
After 30 min, the solution was removed (Sup.). Material that remained bound to
beads was eluted with SDS sample buffer (Elution). All samples were analyzed
by SDS-PAGE and fluorescence scanning. (E) Ubc6 liposomes (100 nM) were
fused and ubiquitinated as before. Samples were then treated as described in
(D). (F) As in (E) but with Ub-Ubc6C87A instead of Ubc6. (G) Quantification
(mean and SD) of three experiments as in (E) and (F). Ubiquitinated species in
gels as in (E) and (F) were categorized according to ubiquitin chain length (light
colors for 0-5 ubiquitin adducts, dark colors for longer chains), and the signal
in the supernatant normalized to that in the input. Red for Ubc6, blue for Ub-
Ubc6C87A. (H) Quantification (mean and SD) of three experiments as in (E),
when ubiquitination was performed in the absence of Ubc7.

We also analyzed if autoubiquitinated Doa10 is extracted by the Cdc48 complex

(Figure A3H-K). In reactions with WT Ubc6, in which Doa10 is efficiently autoubiqui-

tinated, we found a small fraction of total Doa10 in the unbound fraction (Figure A3J),

raising the possibility that at least some Ubc6 is co-extracted with Doa10. However,

when Ubc6 was replaced by Ub-Ubc6C87A, which prevents Doa10 autoubiquitination

(Figure A3H) and completely abolishes Doa10 extraction (Figure A3K), extraction

efficiency for Ub-Ubc6C87A was unchanged (Figure 3.3F and 3.3G), showing that co-

extraction only accounts for a minor fraction of extracted protein.

3.2.6 Doa10 facilitates membrane release of Ubc6

Our results so far establish a minimal system for polyubiquitination and membrane

extraction of Ubc6. However, it remains unclear if Doa10 acts as a retrotranslocase

that provides a specific conduit for the movement of a substrate out of the membrane

and, thus, reduces the energy required for Cdc48-mediated extraction. We hypothesized

that retrotranslocase activity would result in some spontaneous disengagement of Ubc6

from the membrane that would normally remain undetected because of reinsertion. We

reasoned that factors that stabilize released Ubc6, but do not provide a direct pulling

force like Cdc48, should prevent reinsertion and thus drive the equilibrium towards the

released state.

We used the chaperone Get3 to test if Ubc6 is spontaneously released from Doa10

containing liposomes. Get3 is involved in membrane targeting of tail-anchored mem-

brane proteins and wraps around the hydrophobic TM anchor (Mateja et al., 2015).
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In a turbidity assay, we showed that Get3 prevents aggregation of Ubc6 when diluted

into detergent-free buffer confirming that Get3 chaperones Ubc6 (Figure A4A). We

then incubated liposomes containing Doa10 and Ubc6 with Get3, immobilized lipo-

somes to beads (Figure A4B), and determined the amount of Ubc6 in the unbound

fraction. When Ubc6 liposomes were fused to Doa10 liposomes, 43 ± 5% of Ubc6 was

detected in the unbound fraction (Figure 3.4A, 3.4B and A4C), corresponding to an

almost quantitative release of correctly oriented Ubc6. When fusion was inhibited, or

when we used Syb liposomes lacking Doa10, only 7-9% were found in the supernatant,

probably corresponding to the fraction of improperly reconstituted protein (Figure A1J

and A1K). In the absence of Get3, or when we used a Get3 mutant defective in tail-

anchored membrane protein binding (Get3I193D, (Mateja et al., 2015)), we observed no

or drastically reduced release, respectively. We observed no difference between WT

Get3 and the ATPase-deficient mutant Get3D57N, as previously shown for the holdase

activity of Get3 (Voth et al., 2014). Thus, Ubc6 is released in a Doa10-dependent man-

ner. Doa10 mediates spontaneous release of its substrate Ubc6. A chaperone that traps

a non-membrane bound state is sufficient to drive spontaneous release. Importantly,

this activity of Doa10 does not require the substrate to be ubiquitinated.

To test for spontaneous release in the absence of a trap, we used SUMO-Ubc6DL680,

an amino-terminal fusion of SUMO to Ubc6, in which we additionally introduced a TEV

protease cleavage site between the luminal carboxyl terminus of Ubc6 and the fluores-

cent dye (Figure 3.4C). Addition of Ulp1 readily clips off the SUMO-tag resulting in

Ubc6DL680, and thus identifies correctly-oriented Ubc6. We fused SUMO-Ubc6DL680 li-

posomes with Doa10-liposomes and then added Ulp1 to cleave correctly oriented Ubc6.

We then added TEV protease and compared cleavage of correctly and wrongly oriented

Ubc6 over time. About 70% of Ubc6DL680 is cleaved within 30 min (Figure 3.4D and

3.4E). In contrast, in liposomes lacking Doa10, only 20% of Ubc6DL680 is accessible to

TEV protease, corresponding to the not properly reconstituted Ubc6 (Figure A1J and

A1K). Wrong-side out SUMO-Ubc6DL680, which exposes the TEV cleavage site on the

outside of liposomes, is completely accessible to TEV protease and cleaved with faster

kinetics, indicating that protease accessibility over time is not due to slow protease ac-

tion. This experiment confirms that the carboxyl terminus of Ubc6 is retrotranslocated

in a Doa10-dependent manner even in the absence of a trap.
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Figure 3.4: Release of Ubc6 from Doa10 containing liposomes. (A)
Release of Ubc6 in the presence of different Get3 variants. Ubc6DL680 liposomes
were incubated with liposomes with or without Doa10, in the absence (Fused)
or presence of Sybsol (Inhibited), immobilized to streptavidin magnetic beads via
biotinylated lipids, and incubated for 16 h with either buffer or 10 µM of either
WT Get3 (WT), an ATPase deficient mutant of Get3 (D57N) or a Get3 mutant
that cannot efficiently interact with Ubc6 (I193D) (f.c. of 100 nM Ubc6, 40
nM Doa10). Input and supernatant samples were analyzed by SDS-PAGE and
fluorescence scanning. (B) Quantification (mean and SD) of three experiments
as in (A). (C) Schematic depiction of the experiment shown in (D) and (E).
Ubc6 was fused at the N-terminus to a SUMO tag, and a TEV protease cleavage
site inserted between the C-terminus of Ubc6 and the fluorescent dye (DL680,
indicated as a star). Ulp1 protease cleaves off the SUMO moiety (black arrow
head), TEV protease the fluorescent dye (red arrow head). Liposomes were first
incubated with Ulp1 to identify correctly oriented Ubc6, followed by incubation
with TEV protease. (continued)
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Figure 3.4 (continued): (D) Accessibility of TEV cleavage site in Ubc6.
SUMO-Ubc6DL680 liposomes were fused with liposomes containing or lacking
Doa10, followed by incubation with either buffer or Ulp1 in the presence or absence
of solubilizing amounts of detergent (det) (lanes 1-3). Ulp1-treated liposomes were
then incubated with buffer (lanes 4 and 5), TEV protease (lanes 6-10) or TEV
protease and detergent (lane 11), and aliquots were taken at the indicated times.
Samples were analyzed by SDS-PAGE and fluorescence scanning. (E) Quantifica-
tion (mean and SD) of three experiments as in (D). Band intensities from samples
treated with TEV protease were normalized to the corresponding band intensities
of samples without TEV protease (–). (F) Schematic representation of antibody
quenching experiment. A fluorescence quenching anti-AlexaFluor488 antibody
quenches fluorescence of dye molecules attached to wrong-side out Ubc6A488 or
Ubc6A488 that has disengaged from the membrane (grey), whereas dye attached to
correctly oriented Ubc6A488 (green) is shielded from antibody. (G) Time-course
of fluorescence quenching experiments as depicted in (F). Liposomes containing
Ubc6A488 were incubated with liposomes without (dashed lines) or with (solid
lines) Doa10, co-reconstituted with either Syb (red) or the fusion-deficient Syb∆84
mutant (blue). Addition of the quenching antibody or of solubilizing amount of
detergent (Triton X-100) indicated by arrows. (H) Quantification (mean and SD)
of four experiments as in (G). Released fraction is defined as F–Doa10(30 min) –
F+Doa10(30 min). Additionally, quantification of experiments as in (G), but in the
presence of Sybsol is also shown.

We employed a third experimental system to show retrotranslocation, which is based

on quenching of an AlexaFluor488 fluorophore (A488) by an antibody. We hypothesized

that binding of the antibody to a carboxyl-terminal dye should prevent reinsertion and

thus act as a trap similar to Get3 (Figure 3.4F). When we mixed Ubc6A488- and Doa10-

liposomes, but inhibited fusion with either Sybsol or Syb∆84, and then added the anti-

A488 antibody, we observed a sudden decrease in fluorescence by 50%, corresponding

to the fraction of wrong-side out protein that exposes its C-terminus to the outside

of liposomes. Upon solubilization of liposomes with detergent, the antibody quenches

the fluorescence of all A488 epitopes (Figure 3.4G). When liposomes were allowed to

fuse, and we then added anti-A488 antibody, again, a sudden decrease in fluorescence

was seen, but this time followed by a slower decrease in fluorescence to about 10%

of the original fluorescence signal within 30 min. Thus, in the presence of Doa10, the

luminally-encapsulated part of Ubc6 becomes accessible to the antibody. The antibody

not only acts as a reporter system for release, but – similar to Get3 – drives release

to completion by stabilizing the released state and preventing re-insertion. Together,

Get3 capture assay, protease protection assay, and the antibody accessibility assay

show that Doa10 facilitates movement of the Ubc6 TM from the membrane to the

aqueous phase, and thus reveal its retrotranslocase activity.
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3.2.7 Structural elements in Doa10 required for retrotranslocation and

ubiquitination

We sought to define structural elements in Doa10 important for retrotranslocation and

ubiquitination of Ubc6. To this end, we generated two truncated versions of Doa10

either encompassing only the RING-CH domain and the first two TM segments, or

starting with the cytoplasmic loop region before TM3 (Doa101-468 and Doa10434-1319,

respectively). The sites of truncation were chosen based on the finding that in the yeast

Kluyveromyces lactis Doa10 is expressed as two separate polypeptides with similar

boundaries (Stuerner et al., 2012). We then generated liposomes containing either

full-length Doa10, Doa101-468, or Doa10434-1319 (see Figure A1F-H for characterization

of liposomes), fused these liposomes with Ubc6A488-containing liposomes, and tested

for antibody-accessibility of the fluorescent dye on Ubc6, as before. In this assay,

a Doa10 version containing TM segments 3-14 was as efficient as full-length Doa10,

whereas a construct containing only the first two segments of Doa10 resulted in only

minor quenching above background (Figure 3.5A and 3.5B). Similar observations were

made, when we tested for accessibility of TEV protease to a luminal cleavage site

(Figure 3.5C). From these experiments we conclude that TM segments 3-14 in Doa10

are sufficient to mediate retrotranslocation.

Next, we asked the question how Ubc6 ubiquitination is affected by the removal of

TM segments 3-14. To this end, we prepared liposomes containing either full-length

Doa10, only Doa101-468, or Doa101-468 and Doa10434-1319. When such liposomes were

fused with liposomes containing Ubc6, and incubated with E1, ubiquitin, and ATP,

we observed significantly less ubiquitination in the case of Doa101-468 (Figure 3.5D

and 3.5E). This effect was even more pronounced when the total amount of ubiquitin

transferred onto Ubc6 was quantified (Figure 3.5F and A5). Similarly, Ubc7/Cue1-

dependent polyubiquitination of Ub-Ubc6C87A was significantly reduced when Doa10

was replaced with Doa101-468 (Figure 3.5G and 3.5H). Less efficient ubiquitination by

Doa101-468 was not due to a defect in its E3 activity, because co-reconstitution of

Doa10434-1319 restored ubiquitination efficiency (Figure 3.5D-H). We conclude that the

Doa10 region that includes TMs 3-14 plays a role in ubiquitination of Ubc6. However,

whether this reflects a specific interaction with the TM of Ubc6 is unclear.
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Figure 3.5: Structural determinants of retrotranslocation in Doa10.
(A) Using the fusion system, Ubc6A488 was reconstituted with the indicated
Doa10 versions. Fluorescence traces upon addition of a fluorescence quenching
antibody are shown. Antibody or detergent were added at the indicated times.
(B) Quantification (mean and SD) of three experiments as in (A). Released frac-
tion is defined as F–Doa10(30 min) – F+Doa10(30 min). (continued)
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Figure 3.5 (continued): (C) Accessibility of TEV protease to an encapsulated
TEV cleavage site in the presence of different Doa10 variants as described in
Figure 3.4 C. SUMO-Ubc6DL680 liposomes were fused with liposomes containing
either Doa101-468 (blue) or Doa10434-1319 (red), and then treated with Ulp1 to
distinguish right-side out from wrong-side out reconstituted Ubc6 (dark and light
colors, respectively). TEV protease was added and samples at different time points
analyzed by SDS-PAGE and fluorescence scanning. Band intensities from samples
treated with TEV protease were normalized to the corresponding band intensities
of samples without TEV protease. (D) Time-course of Ubc6 ubiquitination with
different Doa10 truncations in the absence of Ubc7. Liposomes of the indicated
compositions were incubated with 100 nM E1, 120 µM ubiquitin, and 2.5 mM
ATP (f.c. of 100 nM Ubc6, 10 nM Cue1 and 40 nM of Doa10-variants). A 60 min
sample in the absence of ATP is shown for each reaction. Samples were analyzed
by SDS-PAGE and fluorescence scanning. (E) Quantification (mean and SD) of
unmodified Ubc6 from three experiments as in (D). (F) Quantification (mean and
SD) of total ubiquitin-transfer relative to Ubc6 from three experiments as in (D).
Intensities of Ubc6 with one to four ubiquitin moieties attached (see Figure A5A)
were summed up for each time point and normalized to total Ubc6 in the reaction.
(G) Time-course of Ub-Ubc6C87A ubiquitination with different Doa10 truncations
in the presence of Ubc7. Liposomes of the indicated compositions were fused to
Ub-Ubc6C87A liposomes. Experiment as in (D), but with 1 µM Ubc7. A 60 min
sample in the absence of ATP is shown for each reaction. Samples were analyzed
as in (D). (H) Quantification (mean and SD) of unmodified Ub-Ubc6C87A from
three experiments as in (G).

3.2.8 Structural determinants in Ubc6

To gain further insight into the role of the Ubc6 TM for retrotranslocation and ubiq-

uitination, we compared Ubc6 with mutants in which either the TM anchor or the

cytoplasmic parts were replaced with the corresponding segments of synaptobrevin

(Ubc6SybTM and SybUbc6TM, respectively). As the SybUbc6TM construct was incompat-

ible with the SNARE-mediated fusion assay, we directly co-reconstituted Doa10 with

Ubc6 or its variants (Figure A6A). To remove liposomes that only contained Ubc6 but

not Doa10, we affinity-purified Doa10 containing liposomes via the C-terminal SBP-tag

(Figure A6B). We then used these liposomes to test for accessibility of A488 attached

to the C-terminus of Ubc6SybTM or SybUbc6TM. As shown in Figure 3.6A and 3.6B,

the fluorescent dye was only accessible to the antibody in a Doa10-dependent manner

when attached to the Ubc6 TM, whereas the dye attached to the Syb TM remained

inaccessible.

We also compared retrotranslocation of Ubc6 and Ubc6SybTM in the fusion assay.

However, this time we co-reconstituted both Ubc6 and Ubc6SybTM with t-SNARE into

the same liposomes, but once labeled Ubc6 (Ubc6A488, Ubc6SybTM) and in a separate
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set of liposomes Ubc6SybTM (Ubc6, Ubc6SybTM-A488) (Figure A6C). We then fused with

liposomes either with or without Doa10. Only the dye attached to the Ubc6 TM was

accessible to antibody in a Doa10-dependent manner (Figure 3.6C-D). Importantly,

this label-swap excludes that accessibility is due to liposome leakage over time.

Together, these experiments show that the identity of the TM segment is important

for retrotranslocation, which might be due to a specific recognition of the TM anchor

of Ubc6 by Doa10. Alternatively, failure of spontaneous, Doa10-dependent membrane

disengagement of Ubc6SybTM might be explained by the higher hydrophobicity of the

Syb TM compared to the Ubc6 TM.

To further understand the role of the TM anchor in Ubc6, we tested its role in

Doa10-mediated ubiquitination. Ubc6SybTM behaved identical to WT Ubc6 in E3-

independent autoubiquitination, showing that its E2 activity was not impaired (Fig-

ure A6D,E,G). In the presence of Doa10, but without Ubc7 or Cue1, we observed minor

changes in the turnover of Ubc6 at early time points (Figure 3.6F and A6F), but un-

covered a more drastic impediment when we compared the total amount of ubiquitin

transferred onto Ubc6 or Ubc6SybTM (Figure 3.6F). To test if Ubc7/Cue1-mediated

polyubiquitination was affected by the identity of the TM anchor, we again employed

N-terminal ubiquitin fusions to either Ubc6C87A or Ubc6C87A/SybTM (Ub-Ubc6C87A or

Ub-Ubc6C87A/SybTM, respectively, Figure A6G) that bypass initial ubiquitination of

Ubc6. We found no significant difference in the kinetics of initial ubiquitin transfer to

both proteins (Figure 3.6G and 3.6H), but ubiquitin chains remained shorter when the

Ubc6 TM was replaced (Figure 3.6G and 3.6I). Thus, the Ubc6 TM anchor contributes

to the efficient build-up of polyubiquitin chains, indicating a more efficient recruitment

to Doa10.
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Figure 3.6: Structural determinants in Ubc6. (continued)
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Figure 3.6 (continued): (A) Fluorescence traces of Ubc6A488 (orange),
Ubc6SybTM-A488 (blue), and SybUbc6TM-A488 (violet) reconstituted with or with-
out Doa10 (solid and dashed lines, respectively) upon addition of a fluorescence
quenching antibody. Antibody and detergent were added at the indicated times.
(B) Quantification (mean and SD) of three experiments as in (A). Released frac-
tion is defined as F–Doa10(30 min) – F+Doa10(30 min). (C) Antibody quenching
experiment as in (A) with liposomes containing Ubc6 and Ubc6SybTM, and with
or without Doa10 (solid and dashed lines, respectively), generated using the fu-
sion system. In separate liposome populations, A488 was either attached to Ubc6
(Ubc6A488) or Ubc6SybTM (Ubc6SybTM-A488). Arrows indicate the time when an-
tibody or solubilizing detergent were added. (D) Quantification (mean and SD)
of three experiments as in (C). Released fraction is defined as F–Doa10(30 min)
– F+Doa10(30 min). (E) Time course of Ubc6 WT or Ubc6SybTM ubiquitination
in the absence of Ubc7. Doa10 liposomes were fused with liposomes containing
the indicated Ubc6 version, and then incubated with E1, ubiquitin and ATP,
as before. A 60 min sample in the absence of ATP is shown for each reaction.
Samples were analyzed by SDS-PAGE and fluorescence scanning. (F) Quantifica-
tion (mean and SD) of total ubiquitin-transfer to Ubc6 or Ubc6SybTM from three
experiments as in (E). Intensities of Ubc6 variants with one to four ubiquitin
moieties attached were summed up for each time point and normalized to total
Ubc6 in the reaction. (G) Time-course of Ub-Ubc6C87A and Ub-Ubc6C87A/SybTM

ubiquitination in the presence of Ubc7/Cue1. Indicated liposomes generated with
the fusion system were incubated with 100 nM E1, 1 µM Ubc7, 120 µM ubiquitin,
and 2.5 mM ATP (f.c. of 100 nM Ubc6 variants, 10 nM Cue1, 40 nM Doa10),
and analyzed as in (E). (H) Quantification (mean and SD) of unmodified Ub-
Ubc6C87A or Ub-Ubc6C87A/SybTM from three experiments as in (G). (I) Analysis
of ubiquitin-chain length on Ub-Ubc6C87A (black) or Ub-Ubc6C87A/SybTM (red) at
30 min. Line-scans were performed on fluorescence images of two representative
gel samples as in (G). The approximate position in the gel is indicated by the
molecular weight marker on top of the graph. # Ub. denotes the number of
ubiquitin moieties attached.

3.2.9 A folded luminal domain prevents spontaneous release

Ubc6 is a relatively simple substrate, in the sense that it contains a C-terminal TM

segment but no luminal domain. To gain further insight into the retrotranslocase ac-

tivity of Doa10, we next asked the question how the presence of an additional luminal

polypeptide segment or an interaction with another luminal protein affect retrotranslo-

cation.

To directly test how a folded luminal domain affects retrotranslocation, we ap-

pended an SBP-tag to the C-terminus of Ubc6, and formed a complex with strepta-

vidin. As before, the protein was labeled with A488 (Ubc6-SBPA488, Figure 3.7A). This

design has the advantage that the high affinity SBP-streptavidin interaction (Kd = 2.5

nM, (Keefe et al., 2001)) is broken in the presence of biotin, allowing us to use the same
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liposomes to distinguish between the effect of the SBP-tag and binding of streptavidin

to it. As shown in Figure A7A and A7B, liposome incorporation and orientation of

Ubc6-SBPA488 were similar to Ubc6A488, with about 50% correctly oriented. When we

fused these liposomes with Doa10-containing liposomes and added anti-A488 antibody,

we observed no spontaneous release (Figure 3.7B and 3.7C). In contrast, when we added

biotin shortly before addition of the antibody, we observed Doa10-dependent quench-

ing over time as before, indicating that biotin led to the dissociation of streptavidin

from SBP and that Ubc6-SBPA488 is spontaneously released despite the presence of

the SBP-tag. This was only the case when free, membrane permeable biotin was used,

but not when biotin was attached to a protein that cannot pass the membrane. Im-

portantly, addition of biotinylated protein led to the dissociation of streptavidin from

wrong-side out Ubc6-SBPA488 showing that the biotinylated protein indeed dissociates

the SBP-tag from streptavidin (Figure A7C-E). Together, these experiments show that

interaction with a second protein on the luminal side of the membrane, mimicking the

presence of a folded domain, acts as an anchor and prevents spontaneous release of

Ubc6.

3.2.10 Cdc48 action breaks luminal interactions

Finally, we tested if this anchoring activity of SBP-streptavidin can be overcome by the

Cdc48 complex. Liposomes containing Ubc6-SBPA488-streptavidin, Doa10, and Cue1,

were incubated with ubiquitination mix with or without Ubc7, followed by the addi-

tion of Cdc48 complex and anti-A488 antibody (Figure 3.7D for experimental outline).

Only in the presence of Ubc7 and Cdc48 complex, A488-epitopes were accessible to

the antibody (Figure 3.7E and 3.7F and A7F). In the absence of ubiquitin, when Ubc7

was omitted, or when we used the catalytically inactive Cdc48E588A, no fluorescence

quenching above background was observed. Importantly, streptavidin remained encap-

sulated in liposomes in reactions where Ubc6-SBPA488 was extracted (Figure 3.7G and

3.7H). Together these results show that while the interaction with streptavidin inhibits

spontaneous Doa10-dependent release, Cdc48/UN acting on the cytoplasmic side of

the membrane on polyubiquitin chains breaks non-covalent luminal interactions and

thus drives extraction while preserving membrane integrity.
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Figure 3.7: Influence of a luminal folded domain bound to Ubc6 (con-
tinued)
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Figure 3.7 (continued): (A) Scheme for experiment in (B) and (C). Ubc6 was
appended at the C-terminus with streptavidin-binding peptide (SBP) tag and
a complex with streptavidin was formed. Membrane permeable biotin releases
streptavidin from SBP, whereas a biotinylated protein cannot access the liposome
lumen. (B) Liposomes as in (A), with or without Doa10 (solid and dashed lines,
respectively) were incubated with either buffer (black), biotin (red) or a biotiny-
lated protein (blue). Antibody or detergent (det) were added at the indicated
times. (C) Quantification (mean and SD) of three experiments as in (B). Re-
leased fraction is defined as F–Doa10(30 min) – F+Doa10(30 min). (D) Outline
for experiments shown in (E) and (F). (E) Liposomes as depicted in (A) were
incubated with complete ubiquitination mix (blue), or a mix lacking either Ubc7
(red) or ubiquitin (grey). A488 fluorescence was recorded and quenching anti-
body was added together with or without Cdc48 complex (left and right panels,
respectively). Where indicated by dashed blue lines, Cdc48 was replaced with
Cdc48E588A. UN for Ufd1/Npl4 heterodimer. (F) Quantification (mean and SD)
of fluorescence quenching from three experiments as in (E). Released fraction is
defined as F–Cdc48(30 min) – F+Cdc48(30 min). (G) Liposomes as depicted in (A)
were incubated with ubiquitination mix, followed by incubation with or without
Cdc48/UN. After addition of biotin, liposomes were then floated in a Nycodenz
gradient. Co-floating streptavidin was detected in SDS-PAGE using stain-free
technology. Two replicates are shown for each condition. (H) Quantification
(mean and SD) of the relative amount of streptavidin co-floating from three ex-
periments as in (G). Each data point represents the mean of two replicates as
shown in (G).

3.3 Discussion

The ubiquitin ligase Doa10 is required for ERAD of membrane proteins with different

topologies, ranging from tail-anchored proteins such as Sbh2, to misfolded mutants

of multipass transmembrane proteins like Ste6 and Pma1 (Huyer et al., 2004; Loayza

et al., 1998; Wang and Chang, 2003). In addition, the tail-anchored E2 enzyme Ubc6

is a substrate of Doa10 (Swanson et al., 2001). It has been postulated that, in addition

to its role in the build-up of polyubiquitin chains, Doa10 is a retrotranslocase that

facilitates the transport of luminal and transmembrane polypeptide segments during

extraction by the AAA ATPase Cdc48 (Swanson et al., 2001).

Here, we provide direct evidence that Doa10 has a retrotranslocase activity. Using

proteoliposomes with reconstituted purified proteins, we identify the minimal machin-

ery that recapitulates the ubiquitination pathway leading to polyubiquitination of Ubc6

by Doa10 and extraction of polyubiquitinated Ubc6 from the membrane. The reaction

starts with ubiquitin loading of Ubc6 at its active site cysteine by the E1 Uba1. Doa10

catalyzes transfer of this activated ubiquitin to another residue of Ubc6 (Figure 3.1).
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This transfer occurs spontaneously, but is greatly accelerated by the E3 activity of

Doa10. E3-independent autoubiquitination has previously been described for other E2

enzymes in vitro (David et al., 2010), but the functional relevance has only been inves-

tigated for a few cases. Ubc7 is normally anchored to the ER membrane via Cue1. In

the absence of Cue1, Ubc7 is degraded by the proteasome after assembly of a polyubiq-

uitin chain on its active site cysteine (Ravid and Hochstrasser, 2007). The E2 UbcH10

mediates APC-dependent ubiquitination of cyclin A during G1 phase of the cell cy-

cle. Cyclin A levels are regulated by proteasomal degradation of UbcH10. UbcH10

ubiquitination depends on its catalytic site cysteine and APC/C (Rape and Kirschner,

2004). It is conceivable that degradation of Ubc6 is a mechanism to control overall

activity of Doa10. In this view, Ubc6 degradation would be more pronounced when

other substrates are less abundant, leading in turn to lower Ubc6 levels and decreased

likelihood of off-target ubiquitination. Ubc6 instability might also be a consequence

of its apparently highly active ubiquitin-loaded state that is capable of ubiquitinating

Ser and Thr, residues that are usually poorer ubiquitination substrates (Weber et al.,

2016).

Mono-ubiquitinated Ubc6 is a substrate for Ubc7/Cue1-mediated polyubiquitina-

tion with K48 ubiquitin linkages (Figure 3.2). A ubiquitin-fused Ubc6 variant bypasses

the requirement for catalytic activity of Ubc6, as shown both in vivo and in our re-

constituted system (Weber et al., 2016). The Cdc48 complex, composed of the AAA

ATPase Cdc48 and its co-factors Ufd1 and Npl4, is required and sufficient to extract

polyubiquitinated but not mono- or multiubiquitinated Ubc6 from the membrane. ATP

hydrolysis by Cdc48 provides the driving force for extraction (Figure 3.4). Attachment

of five ubiquitin moieties appears to be minimally required for efficient Cdc48 action, in

agreement with recent mechanistic studies on Cdc48 mediated unfolding (Bodnar and

Rapoport, 2017b). In our system, Ubx2 was not required for Cdc48 mediated mem-

brane extraction of Ubc6, although Ubx2 has been shown to interact with Doa10 and

deletion of ubx2 stabilizes Ubc6 (Neuber et al., 2005). We speculate that Ubx2 increases

the efficiency of Cdc48 recruitment to sites of retrotranslocation, an activity probably

not required in a system lacking any component that would compete for Cdc48. Al-

ternatively, Ubx2 might only be required in the context of several other Cdc48 binding

co-factors that have been shown to interact hierarchically with Cdc48 (Haenzelmann

et al., 2011), e.g. to prevent deubiquitination by Otu1 at the site of retrotransloca-

tion (Stein et al., 2014).

Protein translocation requires a driving force. In ERAD, ubiquitination coupled to

the unfoldase activity in the Cdc48 ATPase provides this driving force. In addition,
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protein translocases often provide a conduit for facilitated movement of a polypep-

tide chain across membrane. We show that Doa10 facilitates movement of the TM of

Ubc6, in the absence of ubiquitination and Cdc48 action, which results in exposure of a

luminal fluorescent dye, a TEV-protease cleavage site or capture of the TM by a chap-

erone (Figure 3.4). In these assays, binding of an antibody or capture by Get3 prevent

back-sliding or re-insertion and thereby drive retrotranslocation. A similar replace-

ment of the driving force for translocation has been used to investigate translocation

by the Sec61 complex, where binding of antibodies can replace BiP to drive import of

prepro-alpha-factor into proteoliposomes (Matlack et al., 1999). Facilitated movement

is blocked when the luminal carboxy terminus of Ubc6 is engaged in a protein-protein

interaction (Figure 3.7), but this block is overcome by Cdc48 action on ubiquitinated

Ubc6, suggesting that unfolding occurs concomitant with retrotranslocation and does

not have to occur prior to it.

Using Doa10 truncations and Ubc6/Syb swap mutants, we have analyzed structural

determinants of ubiquitination and retrotranslocation. We show that the TM of Ubc6

is sufficient for its retrotranslocation by Doa10 (Figure 3.6), and that replacing the

Ubc6 TM with the one from Syb abolishes spontaneous retrotranslocation and impairs

ubiquitination of Ubc6. While the total lack of spontaneous retrotranslocation might

be explained by higher hydrophobicity of the Syb TM, impairment of ubiquitination

by both, Doa10 truncations and Ubc6 TM replacement argue for an interaction of the

TM domains. This agrees with a study by Sommer and colleagues, who showed that

attaching the TM of Ubc6 to Ubc4, renders this fusion construct unstable, although a

direct involvement of Doa10 was not investigated (Walter et al., 2001).

How exactly Doa10 facilitates release of Ubc6 from the membrane is unclear. While

our data show that this activity resides within the TM domain of Doa10 comprised of

TM segments 3-14 (Figure 3.5), structural information on Doa10 is necessary to fur-

ther elucidate the mechanism of Doa10’s retrotranslocase activity. During extraction

of a protein from the membrane, an energetic barrier has to be overcome depending

on the hydrophobicity of the TM domain of substrates (Guerriero et al., 2017). Doa10

facilitates the retrotranslocation of Ubc6 and we hypothesize that it has such a role

also for other substrates. Hampton and colleagues recently showed that deletion of the

Derlin Dfm1, a homolog of the mammalian Derlin-1, impairs degradation of the Doa10

substrate Ste6* (Neal et al., 2018). Thus, additional factors might be required for

retrotranslocation of more complex substrates such as multispanning membrane pro-

teins. Our newly-established reconstituted system provides a useful tool for studying

the functions of such factors on a mechanistic level.
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Figure A1: Related to Figure 3.1. (continued)
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Figure A1 (continued): (A) Coomassie Blue stained SDS-PAGE showing pu-
rification of Ubc6 from E. coli. Ubc6 was expressed as a His14-SUMO fusion
protein with a C-terminal LPETGG tag for sortase A mediated transpeptidation
with a fluorescently labeled GlyGlyGlyCys peptide. First, a membrane fraction
was prepared and solubilized with the detergent dodecylmaltoside (Total). After
ultracentrifugation, Ubc6 was purified by immobilized nickel ion chromatography
(Input, Unbound). Ubc6 was eluted by incubation of Ni-NTA beads with Ulp1
(Elution). The protein was further purified by size-exclusion chromatography (B).
(B) Chromatogram of size exclusion chromatography for Ubc6 purification shown
in (A) on a Superdex 200 column. (C) Coomassie Blue stained SDS-PAGE show-
ing purification of SBP-tagged Doa10 from S. cerevisiae by streptavidin-affinity
chromatography and size exclusion chromatography (Superose 6 column). (D)
Chromatogram of size-exclusion chromatography for Doa10 purification shown in
(C). Shaded area indicates fractions that were pooled. (E) Liposomes with co-
reconstituted t-SNARE and Ubc6DL680 (left), and liposomes with co-reconstituted
Doa10 and synaptobrevin (Syb, right) were subjected to a Nycodenz step gradient.
After ultracentrifugation, the gradient was fractionated and fractions analyzed by
SDS-PAGE and Coomassie Blue staining (top) and fluorescence scanning (bot-
tom). (F) Liposomes containing Syb and truncated versions of Doa10 used in
Figure 3.5 were analyzed as in (E). (G) Analysis of SNARE-dependent interac-
tion of liposomes. Liposomes containing Syb and different SBP-tagged Doa10
versions were mixed with Ubc6/t-SNARE liposomes in the absence (Fused) or
presence (Inhibited) of Sybsol. Liposomes were then precipitated using strep-
tavidin magnetic beads, washed, and eluted with biotin. Input, unbound, and
elution fractions were analyzed by SDS-PAGE followed by Western blotting using
an anti-SBP antibody to detect Doa10 variants (top), or fluorescence scanning
to detect Ubc6DL680 (bottom). Numbers below unbound fractions indicate the
depletion of Ubc6DL680 relative to input fractions. (H) Liposomes containing dif-
ferent Doa10 versions were subjected to either TEV protease (Doa10-TEV-SBP
and Doa101-468-TEV-SBP) or Ulp1star (SBP-SUMOstar-Doa10434-1319) for the in-
dicated times in the absence or presence of Triton-X100 (det), and analyzed by
SDS-PAGE and Western blotting using an anti-SBP antibody. Percentages at the
bottom indicate the fraction of protein remaining undigested in the absence of
detergent and thus indicate the fraction with wrong-side out orientation.
(I) Liposomes containing Ubc6DL680 and t-SNARE were subjected to tryptic di-
gest for the indicated times in the absence or presence of Triton-X100 (det). Sam-
ples were analyzed by SDS-PAGE and fluorescence scanning. (J) To evaluate the
reconstitution of Ubc6, we engineered a TEV cleavage site between the TM an-
chor of Ubc6 and its carboxy-terminal fluorescence label (DyLight680, DL680).
In correctly oriented Ubc6, this cleavage site resides in the liposome lumen. To
distinguish correctly from wrong-side out reconstituted Ubc6, we also fused a
SUMO moiety to the amino terminus of Ubc6 (SUMO-Ubc6DL680). Scheme show-
ing possible orientations of SUMO-Ubc6DL680 is shown in Figure 3.4C. Liposomes
containing SUMO-Ubc6DL680 were incubated with either TEV protease, Ulp1 or
both proteases for the indicated times. Samples were analyzed by SDS-PAGE and
fluorescence scanning. (K) Quantification (mean and SD) of (J). Three experi-
ments as in (J) were quantified. 53 ± 2% of SUMO-Ubc6DL680 was accessible to
Ulp1 generating Ubc6DL680. (continued)
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Figure A1 (continued): TEV protease cleaved 54 ± 8 %, showing that about
10% of Ubc6 was accessible to both proteases indicating that this fraction was not
properly reconstituted but probably sticking to the liposome surface. (L) Time
course of reactions as in Figure 3.1C, but with either wild-type ubiquitin or a
ubiquitin mutant with all Lys mutated to Arg (UbiquitinK0).
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Figure A2 (continued): (A-C) Purification of Cue1 from E. coli. (A)
Coomassie Blue stained SDS-PAGE showing purification of Cue1. Cue1 was ex-
pressed with a signal peptide from DsbA followed by a SUMO tag, Cue1, and
a C-terminal SBP-tag. A decylmaltoside-solubilized membrane fraction (Total,
Input) was supplemented with Ulp1 and Cue1-SBP purified by streptavidin affin-
ity chromatography (Unbound, Elution). Following removal of the SBP-tag with
TEV protease (+ TEV). (B) Chromatogram of size-exclusion chromatography
on Superdex S200 column for Cue1 purification. As Cue1 only weakly absorbs
at 280 nm (black), the absorbance at 230 nm (red) is additionally shown. Peak
fractions analyzed by SDS-PAGE are indicated by a black bar at the top of the
chromatogram. (C) Coomassie Blue stained SDS-PAGE showing peak fractions
of size exclusion chromatography shown in (B). (D) Time course of ubiquitination
of Ubc6DL680 analyzed by SDS-PAGE and fluorescence scanning. Doa10/Cue1 li-
posomes were fused with Ubc6DL680 liposomes and incubated with 100 nM E1,
120 µM ubiquitin, and 2.5 mM ATP in the presence or absence of 1 µM Ubc7 (f.c.
of 100 nM Ubc6, 40 nM Doa10, 10 nM Cue1). Where indicated, ubiquitin was
replaced with either K48R ubiquitin or a ubiquitin mutant in which all lysines but
K48 were mutated to arginine (K48 only). For each condition a 60 min sample
of a reaction lacking ATP was analyzed. (E) Liposomes with co-reconstituted t-
SNARE and Ub-Ubc6C87A-DL680 were subjected to a Nycodenz step gradient. Af-
ter ultracentrifugation, the gradient was fractionated and analyzed by SDS-PAGE
and Coomassie Blue staining (top) and fluorescence scanning (bottom). (F) Time
course of Doa10 autoubiquitination in the presence of Ubc6 and Ubc7/Cue1. Li-
posomes containing Cue1 and a C-terminally sortase-labeled Doa10 (Doa10DL800)
were fused with liposomes lacking or containing Ubc6, and incubated with 100 nM
E1, 120 µM ubiquitin, 2.5 mM ATP, and with our without 1 µM Ubc7 (f.c. of
100 nM Ubc6, 40 nM Doa10, 10 nM Cue1). Samples were analyzed by SDS-PAGE
and fluorescence scanning. For each condition a 60 min sample of a reaction
lacking ATP was analyzed. (G) Quantification (mean and SD) of unmodified
Doa10DL800 from three experiments as in (F).
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Figure A3: Related to Figure 3.3. (continued)
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Chapter 3. Retrotranslocation of a tail-anchored membrane protein by the ubiquitin
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Figure A3 (continued): (A) Time course of Ubc6 ubiquitination by Doa10
in the absence of Ubc7, with or without Cdc48 complex. Doa10/Cue1 liposomes
were fused with Ubc6 liposomes, and incubated with 100 nM E1, 120 µM ubi-
quitin, and 2.5 mM ATP (f.c. of 100 nM Ubc6, 40 nM Doa10, 10 nM Cue1).
Samples were analyzed by SDS-PAGE and fluorescence scanning. For each con-
dition a 60 min sample of a reaction lacking ATP was analyzed. (B) Quantifica-
tion (mean and SD) of unmodified Ubc6DL680 from three experiments as in (A).
Coloring as indicated in (A). (C) Samples from ubiquitination and immobiliza-
tion under conditions described in Figure 3.3D. Doa10/Cue1 liposomes were fused
with Ubc6 liposomes, and incubated with E1, ubiquitin, and ATP with or without
Ubc7. After 20 min the reaction was stopped by adding EDTA. Liposomes were
then immobilized to streptavidin magnetic beads and Input (I) and unbound (U)
fractions analyzed SDS-PAGE and fluorescence scanning. (D) As in (C) but with
Ub-Ubc6C87A instead of WT Ubc6. (E) Quantification (mean and SD) of pro-
tein immobilization efficiency from three experiments as in (C) and (D). In these
experiments, Doa10 was fluorescently labelled with DyLight800. (F) Quantifica-
tion (mean and SD) of the efficiency of liposome immobilization in experiments
described in Figure 3.3 and A3. Liposomes contained 0.5 mol% Rhodamine-PE.
Rhodamine-PE content of immobilizations shown in (C) and (D) was quantified
(Input and Unbound). In addition, Rhodamine content in supernatants from ex-
traction reactions shown in Figure 3.3 E,F was determined. (G) Comparison of
extraction efficiency of Ub-Ubc6C87A modified with ubiquitin chains of different
length as shown in Figure 3.3F. (H) Ubiquitination of Doa10DL800 with or with-
out Ubc7 under conditions described in Figure 3.3 D. Doa10/Cue1 liposomes were
fused with Ubc6 or Ub-Ubc6C87A liposomes, and incubated with E1, ubiquitin,
and ATP with or without Ubc7. After 20 min the reaction was stopped by adding
EDTA. (I) Liposomes from reactions as in (H) were immobilized to streptavidin
magnetic beads and input (I) and unbound (U) fractions analyzed SDS-PAGE and
fluorescence scanning. (J) Cdc48-dependent extraction of Doa10. Immobilized
liposomes from reactions as in (H) and (I) were treated with the indicated com-
ponents. Input, unbound (Sup.) and SDS sample buffer elutions were analyzed
by SDS-PAGE and fluorescence scanning. (K) As in (J), but with Ub-Ubc6C87A

instead of WT Ubc6.
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Figure A4: Related to Figure 3.4. (A) Ubc6 in 0.03% (w/v) dodecyl mal-
toside was diluted 25-fold (f.c. 1.8 µM) into either detergent-free buffer (black),
or buffer containing 1.8 or 3.6 µM Get3 (red and blue, respectively). Optical
density was measured at 360 nm. (B) Immobilization efficiency of liposomes
used in Figure 3.4 A,B was quantified (mean and SD) via co-reconstituted fluo-
rescent Rhodamine-PE. (C) Release of Ubc6DL680 in the presence of Get3, as in
Figure 3.4 A,B, but for shorter incubation times.
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Chapter 3. Retrotranslocation of a tail-anchored membrane protein by the ubiquitin
ligase Doa10

Figure A5: Related to Figure 3.5. Quantification (mean and SD) of mono-
(blue), di- (green), and tetra (brown)-ubiquitinated Ubc6 in the presence of differ-
ent Doa10 variants (quantified from three experiments as in Figure 3.5 D). These
data points were used to generate graphs in Figure 3.5 F.
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Figure A6: Related to Figure 3.6. (A) Doa10 liposomes co-reconstituted
with either Ubc6SybTM-A488 or SybUbc6TM-A488 were subjected to a Nycodenz step
gradient. After ultracentrifugation, the gradient was fractionated and analyzed
by SDS-PAGE and Coomassie Blue staining (top) and fluorescence scanning (bot-
tom). The asterisk indicates a dimer of Ubc6SybTM-A488 that occurred in some
sortase mediated labeling reactions of this construct. (continued)
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Figure A6 (continued): (B) Affinity-purification of Doa10-SBP liposomes. Li-
posomes containing Doa10 and the indicated Ubc6/Syb chimera were immobilized
to streptavidin magnetic beads and eluted with biotin. Input (I), unbound (U) and
elution (E) fractions were analyzed by SDS-PAGE and by either Western Blot us-
ing an anti-SBP antibody (Doa10-SBP), or fluorescence scanning (Ubc6 chimera).
As an indication of the specificity of the pull-down, we also tested for binding of
liposomes lacking Doa10, and for co-purification of Ubc6 liposomes, when Doa10-
SBP and Ubc6 were reconstituted in separate liposome sets. Numbers at the
bottom indicate the percentage of Ubc6 in the unbound fraction. (C) Lipo-
somes containing t-SNARE, Ubc6SybTM and Ubc6, either labeled on Ubc6SybTM

or Ubc6 were subjected to a Nycodenz step gradient. After ultracentrifugation,
the gradient was fractionated and analyzed by SDS-PAGE and Coomassie Blue
staining (top) and fluorescence scanning (bottom). The asterisk indicates a dimer
of Ubc6SybTM-A488 that occurred in some sortase mediated labeling reactions of
this construct. (D) Time course of E3-independent autoubiquitination of Ubc6
and Ubc6SybTM. Liposomes containing the indicated Ubc6 variants (100 nM)
were incubated with 100 nM E1, 120 µM ubiquitin, and 2.5 mM ATP. For each
condition a 60 min sample of a reaction lacking ATP was analyzed. Samples were
analyzed by SDS-PAGE and fluorescence scanning. (E) Quantification (mean
and SD) of unmodified Ubc6 or Ubc6SybTM from three experiments as in (D).
(F) Quantification (mean and SD) of unmodified Ubc6 or Ubc6SybTM from three
experiments as in Figure 3.6 E. (G) Liposomes with t-SNARE co-reconstituted
with either Ubc6SybTM or Ub-Ubc6C87A/SybTM were subjected to a Nycodenz step
gradient. After ultracentrifugation, the gradient was fractionated and analyzed
by SDS-PAGE and Coomassie Blue staining (top) and fluorescence scanning (bot-
tom).
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Figure A7: Related to Figure 3.7. (A) Liposomes containing t-SNARE
and Ubc6-SBPA488 in complex with streptavidin were subjected to a Nycodenz
step gradient. After ultracentrifugation, the gradient was fractionated and an-
alyzed by SDS-PAGE and Coomassie Blue staining (top), fluorescence scanning
(middle), and using stain-free dye technology (bottom) to distinguish between
streptavidin and Syntaxin, which is not visible with this technique. (B) The ori-
entation of Ubc6-SBPA488 in liposomes was assessed by testing for accessibility
of TEV-protease to the TEV-cleavage site between the Ubc6 TM anchor and the
SBP-tag. Liposomes were incubated with buffer or TEV protease with or without
TX-100 (det) for the indicated times. Samples were analyzed by SDS-PAGE and
fluorescence scanning. Numbers at the bottom indicate the fraction of protein
wrong-side out oriented. (continued)
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Chapter 3. Retrotranslocation of a tail-anchored membrane protein by the ubiquitin
ligase Doa10

Figure A7 (continued): (C) Streptavidin affinity pulldown of biotinylated pro-
tein in the presence and absence of biotin showing complete biotinylation of the
protein. Samples of Input (In) and unbound (Ub) fractions were analyzed by SDS-
PAGE and scanning of the gel using stain-free dye technology. (D) Liposomes
containing Ubc6-SBPA488 were incubated with streptavidin and buffer / biotin
/ biotinylated protein, and subjected to a Nycodenz step gradient. After ultra-
centrifugation, the top fraction was analyzed by SDS-PAGE and the gel scanned
using stain-free dye technology to visualize streptavidin. Ubc6 gives a strong sig-
nal here, because of the fluorescent dye that is also detected with the scanner
used. (E) Quantification of co-floating streptavidin from two experiments as in
(D). Streptavidin signal was first normalized to Ubc6-SBP signal and then nor-
malized to the signal in buffer only control. (F) Ubiquitination of Ubc6-SBPA488.
Samples from ubiquitination reaction from experiments as in Figure 3.7 E were
analyzed by SDS-PAGE and fluorescence scanning.
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4. Optimization of SNARE-mediated fusion assay

This thesis provides an approach to co-reconstitute membrane proteins by SNARE-

mediated fusion which is introduced in Chapter 3. Ubc6 was hereby co-reconstituted

with Doa10 and Cue1. Establishing this method required the optimization of multiple

parameters which was focused on two major requirements for the fusion system. First,

the generated fused liposomes should contain a stable lipid bilayer. The lipid bilayer

separates two different environments, the liposome lumen representing the ER-lumen

and the outside aqueous phase representing the cytosol. To maintain those different

environments, it is important that the lipid bilayer does not allow passage or leakage

of molecules such as proteins, and thus is stable. This aspect is also of importance

for the fluorescence-quenching assay presented in Chapter 3. An antibody against the

AlexaFluor488 label was hereby used to quench the fluorescence of carboxy-terminally

labeled Ubc6A488. Upon spontaneous retrotranslocation of Ubc6, the antibody gets

access to the dye and quenches its fluorescence. This assay was used to identify the

retrotranslocase activity of Doa10. As the experimental setup relies on the antibody

only being present on the outside, and not having access to the liposome lumen, it is

important that the lipid bilayer does not allow passage of the antibody into the liposome

lumen and thus is stable. Using this fluorescence-quenching assay as a readout, I have

tested if liposomes are stable after fusion. This readout is a useful tool to address this

question, as in the absence of Doa10, the antibody should have access only to wrongly

oriented Ubc6A488.

As a second requirement for the reconstituted fusion system, the fluorescent label

attached to the carboxy-terminus of Ubc6 should not interfere with the behaviour of

Ubc6. With this in mind, I have compared different fluorescent dyes for carboxy-

terminal labeling of Ubc6 with a Ubc6-variant that is labeled at its cytosolic side and

thus does not contain any C-terminal label. I then tested if Doa10 retrotranslocates

these Ubc6 variants. In Chapter 3, three assays are shown to measure spontaneous

retrotranslocation by Doa10. Both the fluorescence-quenching assay as well as the

protease protection assay are not useful to study retrotranslocation of differently labeled

Ubc6-variants as they rely on the presence of a carboxy-terminal label at Ubc6. In

contrast, the chaperone-binding assay, which is based on Get3 binding to released

Ubc6, is a suitable method and was therefore used to examine the effect of different

97



Chapter 4. Optimization of SNARE-mediated fusion assay

fluorescent labels on release of Ubc6.

In the following sections, the results of these two optimization strategies are pre-

sented.

4.1 Stability of liposomes after SNARE-mediated fusion

Using the fluorescence quenching as a readout, I have identified and optimized two main

parameters for liposome stability. First, the concentration of reconstituted membrane

proteins plays a role and I thus optimized the lipid to protein ratio for reconstitution

of SNAREs. Moreover, I have tested the effect of reconstituting multipass transmem-

brane proteins, to be able to reconstitute Doa10 without affecting liposome stability. I

have moreover compared different purification strategies for Doa10 and tested for the

compatibility with the SNARE-mediated fusion system.

4.1.1 Optimization of lipid to protein ratio

To assess the effect of protein concentration in liposomes, I prepared Ubc6A488, t-

SNARE liposomes and Syb liposomes lacking Doa10 and incubated them to allow for

SNARE-mediated fusion. I then measured the A488 fluorescence upon addition of

anti-A488 antibody (anti-A488). If liposomes are stable, the antibody should only

bind to wrongly oriented Ubc6A488 and therefore quench about 50% of the total fluo-

rescence. However, when a lipid:t-SNARE ratio of 400 is used (dashed black lines), the

fluorescence decreases quickly to 45% but subsequently decreases further (Figure 4.1A

and 4.1B). This further slow decrease could be due to antibody slowly accessing the

liposome lumen and thus indicates liposome instability. Slight instability can be also

observed when fusion is inhibited (Figure 4.1C and 4.1D). In contrast, at lower SNARE

concentrations, the signal stays stable over 30 min. At a lipid:t-SNARE ratio of 1000

or 2000 (dashed blue and red lines), the signal stays stable at both tested lipid:Syb

ratios (1000 and 2000) (Figure 4.1).

To test if these SNARE concentrations still ensure high co-reconstitution efficiency

after fusion, I fused Ubc6A488, t-SNARE liposomes with Doa10, Syb liposomes and

again measured the A488 fluorescence upon anti-A488 addition. As Doa10-mediated re-

lease is a readout for co-reconstitution of Ubc6 with Doa10, I tested for Doa10-mediated

release at different SNARE-concentrations. Whereas a lipid:t-SNARE concentration

of 2000 compromises the release efficiency (red solid lines), a lipid:t-SNARE concen-

tration of 1000 leads to complete release efficiency at both tested Syb concentrations

(blue solid lines), indicating co-reconstitution (Figure 4.1). SNARE concentrations
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that led to complete release efficiency in the presence of Doa10 and no instability in

the absence of Doa10 were chosen for all experiments (lipid:tSNARE 1000, lipid:Syb

2000). Importantly, the accessibility of anti-A488 to Ubc6A488 in the presence of Doa10

is not due to leakage but due the exposure of the carboxy-terminus of Ubc6 to the out-

side, as the signal stays stable when a control protein is co-reconstituted with Doa10

(Ubc6SybTM-A488, see Chapter 3, Figure 3.6C and 3.6D).
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Figure 4.1: Titration of SNARE-concentration for SNARE-mediated
fusion assay. Liposomes containing Ubc6A488 and t-SNARE were incubated with
Syb liposomes containing (solid) or lacking (dashed lines) Doa10 (lipid:Doa10 ra-
tio of 2000) to allow for SNARE-mediated fusion. The A488 fluorescence upon
incubation with anti-A488 antibody (+ab) was measured. Different lipid:protein
ratios for reconstitution of SNAREs were tested. Graphs show results for recon-
stitution of Syb using a lipid:protein ratio of 2000 (A, C) and 1000 (B, D).
Lipid:t-SNARE ratios of 400 (black), 1000 (blue) and 2000 (red) were tested.
Where indicated, fusion was inhibited with a soluble Syb fragment (C, D). Sam-
ples without Doa10 are indicated with a dashed line. Where indicated, detergent
was added (+det) to solubilize the liposomes.

These results show that the concentration of reconstituted proteins influences the

stability of liposomes. Doa10 contains a large TM domain containing 14 TM segments.

The presence of Doa10 could therefore also affect the stability of liposomes due to its

transmembrane domain. I tested next the effect of the presence of multiple transmem-
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4.1. Stability of liposomes after SNARE-mediated fusion

brane segments on liposome stability using the fluorescence-quenching assay again.

To be able to distinguish between liposome instability and release of Ubc6, a multi-

pass protein was used as a control protein which does not interact with Ubc6. TFoF1

ATP synthase is a multi-subunit complex that consists of a soluble F1 region (subunits

α3β3γδε) and a membrane anchored Fo region (subunits ab2c10). The c-subunits form

a ring consisting of 20 TM segments (Guo et al., 2019). I therefore chose the ATP

synthase as a suitable multipass TM control protein to test the effect of the presence

of multiple transmembrane segments on liposome stability.

I purified FoF1 ATP synthase from thermophilic Bacillus sp. PS3 (TFoF1) as

described previously (Suzuki et al., 2002; Schenck et al., 2009), (Figure S1). ATP

synthase was subsequently co-reconstituted with Syb into liposomes. ATP synthase and

Syb co-floated in a Nycodenz step gradient indicating that they were both reconstituted

into liposomes (see Figure 4.2).
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Figure 4.2: Co-reconstitution of TFoF1 ATP synthase with Syb into
liposomes. Liposomes containing TFoF1 ATP synthase and Syb were floated in
a Nycodenz step gradient and the flotation fractions analyzed by SDS-PAGE and
Coomassie blue staining. Low (left) and high (right) exposure of the Coomassie
staining are shown.

As observed for SNAREs, high concentrations of ATP synthase led to instability

after fusion as measured again by fluorescence quenching upon anti-A488 addition (Fig-

ure 4.3). However, when ATP synthase is reconstituted at a lipid:protein ratio of 8000,

the A488 signal stays stable over time after an initial fast quenching of immediately

accessible Ubc6A488 indicating stable liposomes. When Doa10 is reconstituted with

the same lipid:protein ratio (8000), Ubc6A488 is fully accessible over time to anti-A488.

Assuming that the distribution of Doa10 and ATP synthase in liposomes is compara-
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Chapter 4. Optimization of SNARE-mediated fusion assay

ble at the same lipid:protein ratio, this shows that liposome instability can be avoided

without compromising co-reconstitution efficiency. Concluding, a lipid:protein ratio of

8000 is therefore optimal for reconstitution of multipass TM proteins like Doa10.
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Figure 4.3: Titration of ATP synthase and Doa10 for SNARE-mediated
fusion assay. Different lipid:protein ratios (8000, 4000 and 2000) were used for
reconstitution of Doa10 or ATP synthase into liposomes to test the influence of
protein concentration on liposome stability. ATP synthase (A) or Doa10 (B)
were co-reconstituted with Syb and those liposomes fused with liposomes con-
taining Ubc6A488 and t-SNARE. The A488 fluorescence upon incubation with
anti-A488 antibody (+ab) was measured as a readout for liposome stability and
co-reconstitution efficiency. Where indicated, detergent (+det) was added to sol-
ubilize the liposomes.)

4.1.2 Optimization of purification method for Doa10

I also tested which purification method is most suitable for Doa10 for further recon-

stitution for the SNARE-mediated fusion assay. I tested two methods to further pu-

rify Doa10 after streptavidin affinity chromatography. I compared size-exclusion chro-

matography (SEC) and sucrose density gradient ultracentrifugation. Whereas the de-

tergent concentration is constant during SEC, density gradients can be prepared with

a detergent gradient (with the highest detergent concentration at the top). This has

the advantage that excess detergent can be removed during the centrifugation. Doa10

was purified using the detergent GDN and further purified via SEC (150 µM GDN)

or sucrose density gradient (gradient of 0 to 100 µM GDN). The fusion characteristics
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4.1. Stability of liposomes after SNARE-mediated fusion

were again assessed by fluorescence quenching upon anti-A488 addition.

When gradient-purified Doa10 was reconstituted, the fluorescence signal decreased

slowly over time after the initial fast quenching of wrongly oriented Ubc6 (Figure 4.4).

However, when liposomes containing SEC-purified Doa10 were fused with Ubc6A488

liposomes, the extent of initial fluorescence quenching was larger indicating instability

of liposomes. This occurred only at a low lipid:Doa10 ratio (2000). At a higher ratio

(5000), no difference to gradient-purified Doa10 was observed. To avoid detergent

mediated effects, gradient-purified Doa10 was used for functional assays.
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Figure 4.4: Testing SEC and sucrose density gradient centrifugation as
purification method for Doa10. Liposomes containing Doa10 purified by SEC
(150 µM GDN) or density gradient centrifugation (0 to 100 µM GDN gradient)
and Syb were fused with liposomes containing Ubc6A488 and t-SNARE and the
A488 fluorescence upon incubation with anti-A488 antibody (+ab) was measured.
Where indicated, detergent (+det) was added to solubilize the liposomes. Two
different lipid:Doa10 ratios (5000 and 2000) were tested. Fusion was inhibited
where indicated with a soluble Syb fragment.

Concluding, these results show that reconstituted membrane proteins affect lipo-

some stability. This effect can be avoided by using high lipid:protein ratios for recon-

stitution.
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Chapter 4. Optimization of SNARE-mediated fusion assay

4.2 Identification of a suitable fluorescent label for Ubc6

Next, I tested if carboxy-terminal fluorescent labels attached to Ubc6 affect its be-

haviour. To do so, Ubc6 was carboxy-terminally labeled by sortase-mediated transpep-

tidation (Popp et al., 2009). Different Ubc6 variants were thereby generated that were

labeled with the fluorescent dyes Dylight680 (DL680), DyLight800 (DL800) or Alex-

aFluor488 (A488). The behaviour of these Ubc6 variants was compared to a Ubc6

construct that does not contain any carboxy-terminal label. It instead is labeled

at the cytosolic side at its active-site cysteine with A488 via maleimide chemistry

(Ubc6C87-A488). I then tested if Doa10 releases these Ubc6 variants.

I co-reconstituted these Ubc6 variants with t-SNARE and fused them to Doa10, Syb

liposomes. I then tested for Doa10-mediated release of Ubc6 by incubation with the

chaperone Get3, as in Figure 3.4A and 3.4B. After incubation with Get3, liposomes

were immobilized via co-reconstituted biotinylated lipids and samples of input and

supernatant analyzed by SDS-PAGE. About 45% of Ubc6C87-A488 were detected in the

supernatant (Figure 4.5C). A similar fraction of Ubc6DL680 and slightly more Ubc6A488

were released (Figure 4.5B and 4.5D). In contrast, less Ubc6DL800 (about 30%) was

detected in the supernatant (Figure 4.5A). Concluding, a C-terminal fluorescent label

on Ubc6 can interfere with the release assay, either by interfering with Doa10-mediated

release or with binding of Get3 to the TM anchor of Ubc6. Different fluorescent labels

have thereby different effects. Whereas C-terminal labeling of Ubc6 with DL680 does

not influence the assay, as its behaviour is comparable to Ubc6 labeled at the cytosolic

side, labeling of Ubc6 with A488 increases and labeling with DL800 decreases the

amount of Ubc6 detected in the supernatant.

Interestingly, the release efficiency correlates with the molecular weight of the C-

terminal label. A488 is the smallest label I tested (721 g/mol), whereas DyLight800

is larger (1075 g/mol) (see Table 4.1). This, probably combined with differences in

hydrophobicity, may lead to the observed differences in release efficiency. For experi-

ments, I have used Ubc6 labeled with A488 or DL680, unless otherwise indicated.

Table 4.1: Molecular weight of A488, DL680 and DL800 maleimide.
Values for molecular weight obtained from Thermo Fisher Scientific.

Dye Molecular weight (g/mol)

AlexaFluor488 C5 maleimide 721

DyLight680 maleimide 972

DyLight800 maleimide 1075
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Figure 4.5: Influence of the C-terminal fluorescent label of Ubc6 on sub-
strate behaviour. Different Ubc6 variants (Ubc6DL680, Ubc6DL800, Ubc6A488,
Ubc6C87-A488) were co-reconstituted with t-SNARE and the liposomes fused with
liposomes containing Doa10 and Syb. Liposomes were subsequently incubated
with Get3 (f.c. 10 µM Get3, 40 nM Doa10, 100 nM Ubc6). Liposomes were im-
mobilized via co-reconstituted biotinylated lipids. Samples of the supernatant and
input were analyzed by SDS-PAGE and fluorescence scanning, for (A) Ubc6DL680,
(B) Ubc6DL800, (C) Ubc6C87-A488, (D) Ubc6A488. (E) Quantification of (A-D).
Fraction of Ubc6 in supernatant relative to input was quantified.

105



5. Identification of structural elements important

for Doa10 function

Doa10 has a TM region comprising 14 TM segments which contains the conserved

TD-domain (TM segments 5-7). Studies indicate that this TM region is functionally

important. First, mutation of conserved residues in TM segment 5 affects degradation

of ERAD substrates (Kreft and Hochstrasser, 2011). Moreover, it has been shown

that Doa10 recognizes an intramembrane degron in the substrate Sbh2 (Habeck et al.,

2015). The Doa10 TM region might be important for recognition of such a membrane-

localized degradation signal. Moreover, it has been hypothesized that the TM domain

of Doa10 might have a role in substrate retrotranslocation.

Our established reconstituted system provides some insight into the role of the TM

region of Doa10. It recapitulates recognition, ubiquitination and retrotranslocation of

Ubc6. In this system, a Doa10 truncation containing only the RING domain and the

TM segments 1 and 2 (Doa101-468) is less efficient in Ubc6 ubiquitination compared to

full-length Doa10 and is not able to act as a retrotranslocase for Ubc6 (see Figure 3.5).

These results indicate that the TM region of Doa10 is important for ubiquitination as

well as retrotranslocation of Ubc6. The TD-domain might thereby play a role.

Kreft and Hochstrasser identified Doa10 variants that contain a mutation in the

TD-domain and affect degradation of Ubc6 (Kreft and Hochstrasser, 2011). I therefore

wanted to test how these Doa10 mutants behave in our reconstituted system. I also

sought to identify interaction sites between Ubc6 and Doa10 and therefore optimized

a protocol for site-specific photocrosslinking of Ubc6 with Doa10.

5.1 Characterization of Doa10 variants containing mutations

in the TD domain

Different Doa10 TD mutants have been described that impair degradation kinetics of

Ubc6. Doa10 contains a conserved glutamate residue at position 633. Interestingly,

mutating this glutamate to glutamine (E633Q) results in enhanced degradation of

Ubc6. In contrast, the degradation of Ubc6 is slowed down when the charge is preserved

(E633D). Moreover, these mutations of E633 specifically affect degradation of Ubc6,

but not of the soluble substrate Deg1-Ura3 or the membrane-bound Deg1-Vma12-
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5.1. Characterization of Doa10 variants containing mutations in the TD domain

Ura3 (Kreft and Hochstrasser, 2011).

Impaired degradation kinetics of Ubc6 upon mutation of Doa10 can be the result of

a change in Doa10-mediated ubiquitination of Ubc6 in multiple ways. First, interaction

of Ubc6 with the ubiquitin ligase can be affected and thus affect substrate recognition

as well as ubiquitination. Moreover, during ubiquitination of Ubc6, Doa10 does not

only have to bind to substrate, but also coordinate the E2 enzyme Ubc7 with its

cofactor Cue1. Altered coordination of the E2 enzyme by the ubiquitin ligase might

affect substrate ubiquitination and thus degradation kinetics. In addition, mutation

of Doa10 might affect its interaction with other substrates and thus indirectly affect

degradation of Ubc6. I directly tested the behaviour of these Doa10 mutants in our

established reconstituted system. I first analyzed their behaviour in ubiquitination of

Ubc6.

Interestingly, Ubc6 is ubiquitinated by these Doa10 mutants with similar kinetics

compared to wildtype Doa10 (Figure 5.1A, B). The ubiquitin chain lengths created

only show minor differences. In the presence of Doa10E633D or Doa10E633Q slightly

more monoubiquitinated and concomitantly less polyubiquitinated Ubc6 is generated,

compared to Doa10 WT (Figure 5.1C). These small differences might not necessarily

be due to the mutation itself, but due to other factors such as small differences in

protein concentration, purity or in general variability between different preparations of

Doa10. Concluding, I do not observe major differences in Ubc6 ubiquitination in the

presence of the Doa10E633 mutants.
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Figure 5.1: Ubiquitination of Ubc6 in the presence of Doa10E633D and
Doa10E633Q. Liposomes containing Ubc6DL800 and t-SNARE were fused with
liposomes containing Doa10, Cue1 and Syb (lipid:protein ratios of 5000, 2000 and
2000, respectively) and subsequently incubated with ubiquitination machinery
(f.c. 0.1 µM Uba1, 0.5 µM Ubc7, 60 µM ubiquitin, 0.2 µM Ubc6, 80 nM Doa10,
0.2 µM Cue1). (A) Analysis of samples by SDS-PAGE and fluorescence scanning.
(B) Quantification of Ubc6 turnover. (C) Analysis of ubiquitin chain length
(60 min timepoint).

Different degradation kinetics in vivo could not only be a result of affected ubiq-

uitination, but also different extraction efficiencies. As I observed that Doa10 is a

retrotranslocase for Ubc6 (Chapter 3), I wanted to therefore test next if the de-

scribed Doa10 mutants are capable of retrotranslocating Ubc6 in our reconstituted

system. Besides Doa10E633D and Doa10E633Q, I also tested two other Doa10 mu-

tants which affect degradation of Ubc6, but also the Doa10 substrate Deg1-Ura3

(Doa10P638A G642A and Doa10G636R, (Kreft and Hochstrasser, 2011)). Liposomes con-
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5.2. Identification of interaction sites of Ubc6 with Doa10 by photocrosslinking

taining these Doa10 mutants or Doa10 WT and Syb were fused with liposomes contain-

ing Ubc6A488 and t-SNARE. Doa10-mediated release was again measured by monitor-

ing the A488-fluorescence upon anti-A488 addition. All tested Doa10 mutants released

Ubc6 with similar kinetics compared to wildtype Doa10 (Figure 5.2).
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Figure 5.2: Release of Ubc6 by Doa10 TD mutants. Liposomes contain-
ing Ubc6A488 and t-SNARE were fused with liposomes containing Doa10 (WT,
E633D, E633Q, P638A G642A, or G636R) and Syb, and the A488 fluorescence
was subsequently measured upon anti-A488 addition (+ab). Where indicated,
detergent (+det) was added to solubilize liposomes.

Concluding, I do not observe major differences in ubiquitination or retrotransloca-

tion of Ubc6 in the presence of described Doa10 mutants harboring a mutation in the

TD-domain.

5.2 Identification of interaction sites of Ubc6 with Doa10 by

photocrosslinking

Although mutational analyses of the TD-domain of Doa10 in vivo identified potential

interaction sites of Doa10 with Ubc6 (Kreft and Hochstrasser, 2011), the interaction

site of Ubc6 and Doa10 is not defined. Moreover, it is unclear if Ubc6 interacts with

Doa10 differently in its two states, as E2 enzyme and substrate. Kreft and Hochstrasser

(2011) raised the possibility that those interaction sites are distinct. To be able to
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Chapter 5. Identification of structural elements important for Doa10 function

answer these questions I wanted to identify interaction sites between the TM anchor

of Ubc6 and Doa10 by site-specific photocrosslinking.

To establish a system that leads to crosslinking of the TM segments of Ubc6 and

Doa10, a photocrosslinker was introduced at different positions of the Ubc6 TM anchor

by genetic code expansion. I used a crosslinker containing a benzophenone as it is a

quite reactive and chemically stable crosslinker that when excited with a wavelength

of 360 nm reacts with C - H bonds and thus is protein sequence unspecific (Galardy

et al., 1973; Chin et al., 2002).

To incorporate the unnatural amino acid p-Benzoylphenylalanine (BpA) into Ubc6,

the amber STOP codon was introduced at different positions of the Ubc6 TM anchor

(Figure 5.3A). By co-expression of an orthogonal aminoacyl tRNA synthetase/tRNA

pair (Chin et al., 2002) and supplying BpA in the expression medium, BpA was

incorporated at sites of Ubc6 containing the amber STOP codon. I first tested the

expression of Ubc6 in the presence and absence of BpA and observed that expression

of Ubc6 was specific for the presence of BpA (Figure S2A). I confirmed that the band

at 50kDa corresponds to His14-SUMO-Ubc6 by adding the SUMO-protease Ulp1 to the

lysate to cleave the His14-SUMO tag. I then purified the Ubc6BpA variants by Ni-NTA

affinity chromatography (Figure S2B) and directly used the Ulp1-eluted fractions for

reconstitution and subsequent crosslinking.

Ubc6BpA variants were directly co-reconstituted with Doa10 purified in DMNG.

When Ubc6 (WT), Doa10 liposomes are prepared using this direct co-reconstitution

protocol, Ubc6 and Doa10 co-float in a Nycodenz step gradient and Ubc6 is efficiently

ubiquitinated (Figure S3A and S3B). Liposomes containing different Ubc6BPA variants

and Doa10 were exposed to UV-light (365 nm) and the sample was subsequently en-

riched for Doa10-containing liposomes by pulldown via the SBP-tag of Doa10 using

magnetic streptavidin beads. After elution with sample buffer, samples were analyzed

by SDS-PAGE. In the presence of Ubc6BpA variants, two crosslinked bands are visible

(Figure 5.3B). Those crosslinks are specific to the presence of Ubc6 and UV-light (data

not shown). When wildtype Ubc6 (no BpA incorporated) was co-reconstituted with

Doa10 and exposed to UV-light, one crosslinked band appeared as well which had the

same migration pattern as the lower crosslinked band of samples containing Ubc6BpA.

Thus most likely, only the upper crosslinked band is BpA specific.

The upper, BpA-specific band was analyzed by mass spectrometry in collaboration

with Iwan Parfentev (Laboratory of Prof. Henning Urlaub, Bioanalytical Mass Spec-

trometry Group, MPI for Biophysical Chemistry, Göttingen). However, we were not

able to identify the crosslinked sites in Doa10 by mass spectrometry. Although the
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5.2. Identification of interaction sites of Ubc6 with Doa10 by photocrosslinking

protein sequence of Doa10 and Ubc6 was well covered (for Doa10 above 89% and for

Ubc6 above 86%, see table S1), no spectra with high scores were identified. Concluding,

whereas the established protocol for photocrosslinking results in detectable crosslinks

of Ubc6 with Doa10, we were not able to use this technique for detection of interaction

sites by mass spectrometry.
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Figure 5.3: Crosslinking of Ubc6BpA variants with Doa10. (A) Peptide
wheel presentation of Ubc6 TM (residues 233-250, created with Emboss pepwheel
tool). (B) SDS-PAGE analysis of photocrosslinked samples (Coomassie staining).
Liposomes containing Ubc6BpA variants and Doa10 were exposed to UV-light
(365nm, 4 Joule) and subsequently the sample was enriched for Doa10-containing
liposomes by pulldown via the SBP-tag of Doa10. Each sample was loaded in
duplicates. The upper crosslinked bands were analyzed by mass spectrometry by
Iwan Parfentev (MPI for Biophysical Chemistry, Göttingen).
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I next used this photocrosslinking approach as a readout for the interaction of

the TM anchor of Ubc6 with Doa10. Using multiple assays, I have established that

Doa10 acts as a retrotranslocase for Ubc6 (Chapter 3). One experiment that led to

this conclusion is based on a fluorescence-quenching assay using the antibody anti-

A488 that binds to the carboxy-terminal A488 label of Ubc6A488. In the presence of

Doa10, the antibody accesses the luminal label of Ubc6 over time indicating that Doa10

retrotranslocates Ubc6 (Figure 3.4A-C). I next tested if the presence of the antibody

influences the photocrosslinking of Ubc6 with Doa10. This experiment can give insight

into the interaction states of Ubc6 and Doa10 in the photocrosslinking approach, as

well as after retrotranslocation of the luminal dye attached to Ubc6.

To test this, I sortase-labeled Ubc6M249BpA with A488 at its carboxy-terminal

LPETGG tag and co-reconstituted it with Doa10. Liposomes were subsequently treated

with TEV-protease to remove the SBP-LPETGG tag from Doa10 which was also la-

beled as the sortase-labeled Ubc6 was directly used and thus sortase was present during

reconstitution (Figure 5.4A). The liposomes were separated from sortase and labeled

peptide by flotation in a Nycodenz step gradient. Floated liposomes were preincu-

bated with or without antibody (15 min, RT) and subsequently exposed to UV-light

(Figure 5.4B). Samples were analyzed by SDS-PAGE and A488 fluorescence scanning.

Again, two crosslinked bands appear after UV-exposure. The band which was shown to

be BpA-specific before, disappears when liposomes were preincubated with anti-A488.

This indicates that Doa10-mediated retrotranslocation changes the interaction between

Ubc6 and Doa10. More specifically, in the presence of Doa10, the anti-A488 antibody

shifts the equilibrium towards retrotranslocated Ubc6 which is reflected in a different

interaction of Ubc6 with Doa10 as confirmed by photocrosslinking. Moreover, this ex-

periment shows that the photocrosslinking approach (in the absence of the antibody)

reports on a state before retrotranslocation by Doa10.
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Figure 5.4: Photocrosslinking of liposomes containing
Ubc6M249BpA-A488 and Doa10 after incubation with anti-A488
antibody. (A) Ubc6M249BpA was labeled with A488 using Sortase-mediated
labeling and the reaction directly used for reconstitution with Doa10 into
liposomes. Liposomes were treated subsequently with TEV-protease to cleave
the labeled, C-terminal SBP-LPETGG tag from Doa10. Samples before and
after TEV-cleavage were analyzed by SDS-PAGE and fluorescence scanning.
(B) Liposomes were incubated with or without anti-A488 antibody for 15 min
at RT and then exposed to UV-light (365nm, 4 Joule). As a control for
UV-specific bands, a sample was taken before exposure to UV-light (-). Samples
were analyzed by SDS-PAGE and fluorescence scanning. Red box indicates
BpA-specific, crosslinked band. The same SDS-PAGE gel is shown with two
different exposures (exp.).

Summarizing, using Doa10 truncations I show that the TM region of Doa10 is

required for ubiquitination as well as spontaneous retrotranslocation by Doa10. More-

over, I have analyzed described Doa10 mutants in Ubc6 ubiquitination and their retro-

translocase activity. However, I have not observed major differences compared to

wildtype Doa10 which could be due to technical reasons as well as due to the Doa10

mutants affecting a different process than the ones examined. Moreover, we have op-

timized a photocrosslinking approach to identify interaction sites between Ubc6 and

Doa10. However, due to the requirement of mass-spectrometric analysis of transmem-

brane proteins this approach is challenging and did not lead to identification of the

interaction sites. Thus, alternative approaches that do not rely on mass-spectrometric

analysis might be useful in the future. The results of this chapter will be discusssed in

detail in Chapter 7.
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6. Analysis of Doa10-mediated ERAD of Sbh2

Doa10 recognizes a wide array of potential substrates. Substrates can be soluble pro-

teins in the cytosol or nucleus, as well as membrane proteins. To further characterize

Doa10-mediated ERAD and in order to generalize conclusions I obtained by study-

ing Ubc6, I characterized another Doa10 substrate. One well studied Doa10 substrate

that is also a tail-anchored membrane protein like Ubc6 is Sbh2. Sbh2 is part of the

Ssh1 translocon in S. cerevisiae. S. cerevisiae has two translocons for co-translational

translocation, the Sec61 and Ssh1 translocon (Finke et al., 1996). Both translocons

are trimeric and contain homologous subunits. The Ssh1 complex consists of Ssh1,

Sss1 and Sbh2. Ssh1 and Sbh2 are homologous to the Sec61 translocon components

Sec61 and Sbh1, respectively. It has been shown that upon SSH1 deletion or ectopic

expression of SBH2, Sbh2 becomes instable and is degraded by Doa10 (Finke et al.,

1996; Habeck et al., 2015). This led to the conclusion that Sbh2 is subjected to ERAD

when it is not assembled into the Ssh1 complex.

It has been shown that the TM anchor of Sbh2 (aa 57-88) is sufficient for Doa10-

mediated degradation. This indicated that the Doa10 machinery does not only recog-

nize cytosolic elements of substrates, but can also recognize degrons that are located

within a TM segment.

While screens for soluble Doa10 substrates have been carried out (Kopski and Huf-

faker, 1997; Swanson et al., 2001; Ravid et al., 2006), no screen has been published

yet for a membrane-bound substrate of Doa10. The requirements for degradation

of a soluble and a membrane protein might be quite different, e.g. for a membrane

protein containing an intramembrane degron additional factors might be required for

recognition or retrotranslocation. We therefore screened for components necessary for

Doa10-mediated degradation of Sbh2, before characterizing it in a reconstituted sys-

tem.

6.1 Identification of components necessary for degradation of

Sbh2

Degradation of Sbh2 depends on Doa10, Ubc7, Ubc6, Cdc48 as well as the protea-

some (Habeck et al., 2015). In collaboration with Ákos Farkas (Laboratory of Prof.
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Blanche Schwappach-Pignataro, University Medical Center, Göttingen), we designed

a tandem fluorescent timer (tFT) screen for components necessary for degradation of

Sbh2. This screening method has been established by the Knop lab. A protein of

interest is tagged with two fluorescent proteins which have different maturation ki-

netics (Khmelinskii et al., 2012). Whereas the fast maturing fluorescent protein is

detectable shortly after its synthesis and thus gives a readout for the relative abun-

dance of the tagged protein, the slowly maturing fluorescent protein gives a readout

for its half-life. The intensity ratio of the slowly and the fast maturing fluorescent

protein can therefore be used as a readout for the stability of the protein. As the TM

segment as well as the carboxy-terminal residues, but not the cytosolic part of Sbh2

are important for its Doa10-dependent degradation (Habeck et al., 2015), I fused the

tFT tag to the amino-terminus of Sbh2 (tFT-Sbh2) to avoid interference of the tag

with the degron. For amino-terminal tagging, a tag consisting of the fast maturing

superfolder GFP (GFP) and the slowly maturing mCherry protein has been shown to

provide information on protein stability (Khmelinskii et al., 2016).

Thus, chromosomal SBH2 was amino-terminally tagged with a tFT tag in a syn-

thetic gene array (SGA) compatible query strain. Sbh2 is only unstable when it is

present in excess over its interaction partner Ssh1. Thus, we overexpressed Sbh2 for

the screen. To do so, Sbh2 was overexpressed by placing the strong constitutive GPD

promotor upstream of SBH2 to drive its expression.

This strain was then crossed with strains from the haploid deletion library (for

non-essential genes) (Giaever et al., 2002) and DAmP (decreased abundance by mRNA

perturbation) library (for essential genes) (Schuldiner et al., 2005). Strains were an-

alyzed with a high through-put microsocopy setup. tFT-Sbh2 localizes to the ER

(Figure 6.1A). Using an automated analysis, cells were identified and the GFP as well

as mCherry intensity for each cell was quantified. The values for the GFP and mCherry

intensity were used to calculate the GFP/mCherry intensity ratio for each cell. The

cell number per well varied between the different strains (57 - 2474 cells/well, Figure

S4A).

We first characterized the distribution of the GFP and mCherry intensities as well

as the intensity ratios to determine if the microscopic analysis provides a useful readout

on stability of Sbh2 (Figure 6.1B-D). The histograms of the mCherry intensity as well

as the intensity ratio show an assymetric distribution with a shift towards higher values

indicating stabilized Sbh2. Whereas the GFP signal was well detectable, the signal to

noise ratio for the mCherry signal was quite low. Figure 6.1E shows the images for

the GFP and mCherry signal for strains which show either a very high (∆doa10) or
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Chapter 6. Analysis of Doa10-mediated ERAD of Sbh2

a very low (∆ubp8) mCherry intensity, to illustrate the low signal to noise ratio for

the mCherry intensity. However, the quantification shows that the mCherry signal is

sufficient for detection as it is clearly increased in ∆cue1, ∆ubc7 and ∆doa10 (Figure

6.1C). Thus, the results from this screen indicate that information on protein stability

can be gained despite the low signal to noise ratio for mCherry. Deletion strains for

known ERAD components (Cue1, Ubc6, Doa10, Cdc48) displayed a high GFP as well

mCherry intensity indicating that Sbh2 was stabilized in those strains. Moreover,

deletion of SSH1 led to a decreased GFP- and mCherry-intensity. This is expected, as

in the absence of Ssh1 the whole Sbh2 pool has an exposed degron and thus can be

degraded.

We concluded that the screening method gives information on Sbh2 stability and

thus decided to repeat the screen with a selected subset of strains to be able to identify

hits. From the initially analyzed 5614 strains, 348 strains were selected. Strains which

had either a GFP signal higher than 1750, an mCherry signal higher than 75 or a ratio

higher than 0.07 were selected. Subsequently a GO-term analysis was used to remove

unrelated genes (e.g. mitochondrial or nuclear localization).
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Figure 6.1: Characterization of tFT screen analysis. (A) Localization
of tFT-Sbh2 in ∆doa10. GFP fluorescence for an image acquired for the screen
is shown (only part of full image is shown). (B-D) Histograms of GFP (B),
mCherry (C) intensity and mCherry/GFP intensity ratio (D). The values for
∆ssh1, cdc48-DAmP, ∆ubc7, ∆cue1 and ∆doa10 are indicated. The blue line
shows the cut-off for selecting hits for the second screen. (E) Images of ∆doa10
and ∆ubp8 strains. Images for GFP and mCherry fluorescence are shown and the
quantified mean values are shown in orange. Only parts of full image are shown.
Microscopy and image analysis was performed by Ákos Farkas (UM, Göttingen).
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We next analyzed the results of both screens for the 348 selected strains. In both

experiments, an average of approximately 960 cells was quantified for each strain (Fig-

ure S4B and S4C). The values for the GFP and mCherry intensity correlate between

the two experiments (Figure 6.2). In contrast, the values for the mCherry/GFP inten-

sity ratio vary between the two experiments. Moreover, we also observed that whereas

GFP and mCherry intensity values correlate, they do not correlate for the intensity

ratio (data not shown). One explanation for this could be the high signal to noise ratio

for the mCherry values. As the intensity ratio is calculated for every cell, this might

lead to a high variability. However, as we quantify the GFP and mCherry intensity for

every single cell, we do not rely on the ratio for our analysis.
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Figure 6.2: Comparison of results for the 348 selected strains of both
screens. Scatter plots of values for GFP, mCherry intensity and mCherry/GFP
intensity ratio. Results from first repeat (x-axis) are plotted against results from
second repeat (y-axis). Each data point represents one analyzed strain. Blue line
indicates the 45◦C line (y = x).

We therefore selected strains as hits which showed a high GFP (high abundance)

as well as a high mCherry (high stability) intensity. Deletion of DOA10, UBC7 as

well as CUE1 leads to an increased GFP and mCherry intensity, as expected (Figure

6.3). Our results show that no other deletion affects Sbh2 degradation in a comparably

strong manner. A UBC6 deletion was not present in the library and therefore did not

show up in the screen. We have identified a few other genes whose deletion affected

Sbh2 stability mildly. Deletion of UBP3 which encodes a ubiquitin-specific protease

led to stabilization of Sbh2. Moreover, deletion of YGL214W-A, an uncharacterized

gene, also stabilized Sbh2. Deletion of those genes did not seem to affect localization

of Sbh2 (Figure S5).
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Figure 6.3: Identified hits in the tFT screen. Scatter plots of values for
GFP and mCherry intensity of the 348 analyzed strains are shown as in Figure
6.2. Red dots indicate potential hits which were identified as such if both the
mCherry as well as the GFP intensity values in both screens were higher than
the 3rd quartile value from the first screen (GFP: 1653, mCherry: 63). Known
ERAD components are labeled in blue, further hits which might be biologically
interesting in yellow. The DAmP strain for CDC48 was only included in the first
screen (Figure 6.1) and therefore was not identified in this analysis. The screen
was carried out by Ákos Farkas (UM, Göttingen).

UBP3 was an interesting hit in our screen, as deletion of this ubiquitin-specific

protease stabilized Sbh2. We hypothesized that it could be involved in substrate deu-

biquitination necessary for delivery to the proteasome or potentially deubiquitination

of Doa10.

Ubp3 is a ubiquitin-specific protease that has been implicated in many cellular

processes like ribophagy (Baker et al., 1992; Ossareh-Nazari et al., 2010a) and ER-

Golgi transport. When UBP3 is deleted, ER to Golgi transport is compromised and

ER membranes accumulate. It has been shown that Ubp3 deubiquitinates the COPII

subunit Sec23 as well as the COPI subunit Sec27 (Cohen et al., 2003b,a). Moreover,

Cdc48 and Npl4 are required for degradation of Sec23 (Ossareh-Nazari et al., 2010b).

Deletion of UBP3 suppresses the temperature-sensitive lethality of npl4-1 (Auld et al.,

2006).

To verify our screen results, I freshly made a UBP3 deletion strain and measured

the mCherry and GFP intensity of ectopically expressed tFT-Sbh2. Measurements

were done using a fluorescence plate reader. To ensure that the deletion of UBP3 does
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Chapter 6. Analysis of Doa10-mediated ERAD of Sbh2

not affect overall protein stability, we also measured the fluorescence of an ectopically

expressed control protein, Sbh1 which is stable in wildtype cells (Habeck et al., 2015).

For Sbh1, the mCherry/GFP intensity ratio in ∆doa10 or ∆ubp3 is comparable to

wildtype indicating that the stability of Sbh1 is not affected by deleting one of these

genes (Figure 6.4A). In contrast, Sbh2 is stabilized when DOA10 or UBP3 are deleted.

However, the effect of deleting UBP3 is less strong compared to deleting DOA10 (Figure

6.4A).
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Figure 6.4: Effect of UBP3 deletion on Sbh2 stability. (A) mCherry/GFP
intensity ratio of wildtype (WT), ∆doa10 and ∆ubp3 (2 clones tested) strains
which ectopically expressed tFT-Sbh2 or tFT-Sbh1 from a GPD-promotor. Mea-
surements were performed with a fluorescence plate reader. (B) Degradation of
ectopically expressed HA-Sbh2 (from GPD-promotor) in wildtype (WT), ∆doa10
and ∆ubp3 cells. After cycloheximide addition, samples were taken at the in-
dicated timepoints. After cell lysis, samples were analyzed by SDS-PAGE and
subsequent anti-HA immunoblotting. (C) Quantification of HA-Sbh2 turnover
(analyzed from immunoblot in B).

I also measured the degradation kinetics of ectopically expressed, hemagglutinin

(HA)-tagged Sbh2 by cycloheximide (CHX) chase. When UBP3 was deleted, cells

grew very slowly (data not shown). I observed no difference in the turnover of Sbh2 in

a CHX-chase (Figure 6.4B and 6.4C). However, degradation of Sbh2 was quite fast and
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6.2. Reconstitution of Doa10-mediated ERAD of Sbh2

thus the timepoints chosen for the CHX-chase did not resolve the degradation kinetics

properly. Concluding, further experiments are necessary to test if Ubp3 has a function

in ERAD.

In summary, this screen for components required for degradation of Sbh2 has iden-

tified ERAD-components which have been previously shown to be required for degra-

dation of Sbh2 (Habeck et al., 2015). We did not identify any other gene whose deletion

had a similarly strong phenotype as deletion of those known ERAD components. This

suggested that the machinery for ERAD of Sbh2 might be identified. With this in

mind, I set out to reconstitute Sbh2 to directly determine the minimal machinery for

Doa10-mediated ERAD of Sbh2.

6.2 Reconstitution of Doa10-mediated ERAD of Sbh2

A reconstituted system for Doa10-mediated ERAD of Sbh2 potentially can address

many questions. Besides characterization of the minimal machinery for this process,

it also allows for investigation of many mechanistic questions regarding ubiquitination

and retrotranslocation. Moreover, it can provide a useful tool to be able to compare

the behaviour of Ubc6 and Sbh2.

Thus, I next established a reconstituted system for Doa10-mediated ERAD of Sbh2.

To do so, I first tested which fluorescent labeling method does not interfere with the

substrate behaviour of Sbh2. I engineered Sbh2 variants that contained tags for either

sortase-mediated or maleimide-based fluorescent labeling and tested their degradation

kinetics by CHX-chase.

6.2.1 Identification of a suitable Sbh2 construct for reconstitution studies

I first tested if Sbh2 is suitable for carboxy-terminal Sortase labeling. It has been shown

that changing the carboxy-terminal, luminal residues of Sbh2 to the corresponding

ones of Sbh1 leads to stabilization of the substrate (Habeck et al., 2015). As it is

unclear if this effect is due to a gained interaction with Sec61 or due to masking of

the degron, I tested if adding a carboxy-terminal tag to Sbh2 affects its substrate

behaviour. Sbh2 was again overexpressed from the GPD promotor. The degradation

of HA-Sbh2 containing an 11 aa carboxy-terminal linker followed by an LPETGG tag

(HA-Sbh2linker) and HA-Sbh2 WT was assessed by CHX-chase. In contrast to HA-

Sbh2 WT, HA-Sbh2linker is stable (Figure 6.5A and 6.5B). Thus, attaching a carboxy-

terminal sortase tag to Sbh2 changes its behaviour in Doa10-mediated ERAD and thus

a sortase-labeling approach cannot be used for labeling Sbh2.
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Figure 6.5: Degradation of Sbh2 variants in wildtype and ∆doa10 cells.
(A) HA-tagged Sbh2 as well as HA-tagged Sbh2 variants containing a C-terminal
linker (HA-Sbh2linker) was expressed ectopically from a GPD-promotor. Degra-
dation kinetics were analyzed by CHX-chase, as described in Figure 6.4. Sam-
ples were analyzed by SDS-PAGE and subsequent immunoblotting with anti-HA
(Sbh2) and anti-Pgk1 (loading control). (B) Quantification of turnover of HA-
Sbh2 variants.

I also tested if a carboxy-terminal cysteine (Sbh289C) can be attached to Sbh2 for

labeling using maleimide chemistry. Whereas the degradation kinetics of Sbh2 WT and

Sbh289C are comparable, the effect of deleting DOA10 or UBC6 differ slightly between

Sbh2 wildtype and Sbh289C (Figure 6.6), as the degradation of Sbh289C is less dependent

on Doa10 and Ubc6 compared to Sbh2 WT. Of note, I cannot distinguish with this

assay if degradation kinetics are different due to compromised insertion efficiency of

Sbh2 into the ER, different interaction of Sbh2 with the Ssh1 translocon or due to

different degron recognition of Sbh2 by Doa10. However, to avoid any interference

with the intramembrane degron, I decided to use an Sbh2 variant without a carboxy-

terminal labeling site. As the cytosolic domain of Sbh2 can be exchanged without

compromising substrate recognition (Habeck et al., 2015) and wildtype Sbh2 does not

contain any cysteine, I introduced a cysteine in the amino-terminal domain of Sbh2

(Sbh2S4C) for fluorescent labeling.
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Figure 6.6: Degradation of Sbh289C in wildtype, ∆doa10 and ∆ubc6
cells. (A) HA-Sbh2 as well as HA-Sbh289C were expressed ectopically from a
GPD-promotor. Degradation kinetics were analyzed by CHX-chase. Samples
were analyzed as described in Figure 6.5. (B) Quantification of turnover of HA-
Sbh2 variants.

6.2.2 Purification and reconstitution of Sbh2

Sbh2 from S. cerevisiae was expressed in E. coli. Sbh2S4C was purified in DDM by Ni-

NTA affinity chromatography via an amino-terminal His14-SUMO tag, subsequently

eluted with SUMO-protease Ulp1 and further purified by size exclusion chromatogra-

phy. Sbh2 was then labeled with DL800 at its cysteine via maleimide chemistry (Figure

6.7A). Although the purification protocol has to be further optimized due to co-purified

contaminants, I next tested if Sbh2 can be reconstituted with Doa10 and Ubc6. I di-

rectly co-reconstituted Sbh2 with Doa10 (purified in DMNG) with or without Ubc6

into liposomes. All three proteins co-floated in a Nycodenz step gradient indicating

that they were reconstituted (Figure 6.7B).
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Figure 6.7: Fluorescent labeling and reconstitution of Sbh2. (A) Peak
fractions of maleimide labeling reaction of Sbh2S4C. Samples of fractions were
analyzed by SDS-PAGE and Coomassie staining (left) or fluorescence scanning
(right). (B) Liposomes containing Doa10, Ubc6DL680, Sbh2DL800 or liposomes
containing Doa10DL680 and Sbh2DL800 were floated in a Nycodenz step gradient.
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6.2.3 Characteristics of Doa10-mediated ubiquitination of Sbh2

I next tested if Doa10 recognizes Sbh2 as a substrate and mediates ubiquitination in the

established reconstituted system. I incubated liposomes containing Doa10, Sbh2 and

Ubc6 with ubiquitination machinery (Uba1, a soluble Cue1 fragment (Cue1sol), Ubc7,

ubiquitin and ATP). To test for the requirement of Ubc6, a second set of liposomes

only contained Doa10 and Sbh2. When Sbh2 is co-reconstituted with Ubc6 and Doa10,

50% of Sbh2 are polyubiquitinated (Figure 6.8). The reaction is mostly complete after

16 min (Figure 6.8B). Importantly, the decrease of the non-modified band for Sbh2

is dependent on ATP indicating that the decrease of the unmodified band is due to

ubiquitination (Figure 6.8C). Interestingly, in the absence of Ubc6, no ubiquitination

of Sbh2 occurs. This effect also cannot be rescued by adding a soluble fragment of

Ubc6 (Ubc6sol). This indicates that Ubc6 is required for priming Sbh2 with ubiquitin,

before Ubc7/Cue1-mediated polyubiquitination can occur. In line with this, deletion of
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UBC6 in vivo compromises degradation of Sbh2 (Habeck et al. (2015), also see Figure

6.6). Moreover, the TM anchor of Ubc6 seems to be required for its function as an E2

enzyme.
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Figure 6.8: Ubiquitination of Sbh2 in a reconstituted system. Liposomes
containing Doa10, Ubc6DL680 and Sbh2S4C-DL800 or Doa10DL680 and Sbh2S4C-DL800

were incubated with Uba1, Ubc7, a soluble Cue1 fragment (Cue1sol), ubiquitin
and ATP (f.c. of 0.1 µM Uba1, 1 µM Ubc7, 1 µM Cue1sol, 120 µM ubiquitin, 2.5
mM ATP, 0.1 µM Ubc6, 0.1 µM Doa10, 0.1 µM Sbh2). Where indicated, a soluble
Ubc6 fragment (aa 1-231, Ubc6sol, f.c. 1.8 µM) was present. The reaction was
stopped after 0, 16, 33 and 60 min with non-reducing sample buffer. (A) Analysis
of samples by SDS-PAGE and fluorescence scanning (top: DL800, bottom: DL680
fluorescence). (B, C) Quantification of (A). (B) Quantification of turnover of
Sbh2. Values were normalized to 0 min timepoint. (C) Quantification of turnover
of Sbh2 in reactions lacking ATP. Intensity values for 60 min timepoint were
normalized to the respective 0 min timepoint.

Summarizing, we have established a reconstituted system recapitulating ubiquiti-

nation of Sbh2. In the presence of Ubc6, Ubc7 and Cue1, Doa10-mediated polyubiq-

uitination occurs. Our results moreover indicate that Doa10 directly recognizes Sbh2.

Thus, a minimal machinery for Doa10-mediated ubiquitination of Sbh2 is identified.

125



7. Discussion

This thesis provides insight into different steps of Doa10-mediated ER-associated pro-

tein degradation (ERAD). By establishing a system to co-reconstitute membrane pro-

teins by SNARE-mediated membrane fusion of liposomes, I have recapitulated ubiqui-

tination of Ubc6 as well as extraction of Ubc6 from the membrane. Moreover, I have

gained mechanistic insights into the extraction process by showing that Doa10 acts as a

retrotranslocase. In an effort to gain further insight into structural elements in Doa10

involved in recognition and processing of Ubc6, I have tested previously described

Doa10 mutants and optimized a system for site-specific crosslinking of the transmem-

brane segment of Ubc6 with Doa10 (in collaboration with Iwan Parfentev, laboratory

of Prof. Urlaub, MPI for Biophysical Chemistry, Göttingen). In order to expand our

mechanistic understanding to other Doa10 substrates and to be able to draw more

general conclusions, I also characterized another Doa10 substrate, the tail-anchored

membrane protein Sbh2. To do so, I have first investigated the machinery for Sbh2

degradation in vivo by performing a screen (in collaboration with Ákos Farkas, Labora-

tory of Prof. Blanche Schwappach-Pignataro, University Medical Center, Göttingen)

and also characterized this machinery by recapitulating ubiquitination of Sbh2 in a

reconstituted system. In the following section, the results from these different projects

are further discussed.

7.1 Co-reconstitution of membrane proteins by SNARE-me-

diated membrane fusion

Reconstitution of membrane-associated processes often requires the reconstitution of

multiple membrane proteins. We have established a system that allows reconstitution

of membrane proteins by SNARE-mediated fusion of proteoliposomes. This system

has multiple advantages compared to other reconstitution protocols. It enables high

co-reconstitution efficiencies and thus makes biochemical studies possible. At the same

time, it eliminates artefacts that could arise due to the interaction of membrane proteins

in detergent when membrane proteins are directly reconstituted into the same set

of liposomes. Moreover, it allows for a higher flexibility when two proteins are co-

reconstituted whose optimal reconstitution conditions differ such as the detergent used
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7.1. Co-reconstitution of membrane proteins by SNARE-mediated membrane fusion

for solubilization of the liposomes. However, this is also a limiting factor as SNARE

proteins might not be compatible with every detergent and thus reconstitution protocol.

Following, I will discuss the characteristics of the established system and compare it

to other fusion approaches that have been previously developed.

7.1.1 SNARE-mediated fusion enables high co-reconstitution efficiencies

High co-reconstitution efficiencies are an important requirement for a fusion-based co-

reconstitution approach. The established SNARE-mediated fusion assay allows for

high co-reconstitution efficiencies, as Ubc6 is nearly quantitatively co-reconstituted

with Doa10. After fusion, pulldown of Doa10 leads to nearly complete pulldown of

Ubc6 (Figure A1G). Moreover, efficient polyubiquitination and Doa10-mediated retro-

translocation occur when wildtype Syb and but not when a Syb mutant (Syb∆84) is

reconstituted that allows for docking of liposomes but not full fusion (Figure 3.1, 3.2

and 3.4). These two experiments indicate that the established fusion system enables

high co-reconstitution efficiencies and leads to lipid-mixing of the liposome membranes.

Nordlund et al. (2014) have previously used SNARE-mediated fusion to co-recon-

stitute membrane proteins of the respiratory chain with the ATP synthase (Nordlund

et al., 2014). They estimate the co-reconstitution efficiency after fusion by measuring

spectrophotometrically the reduction state of encapsulated cytochrome C that only

upon fusion is delivered to cytochrome C oxidase. With this method, they estimate a

fusion efficiency of 70%. Interestingly, they use the SNAREs SNAP-25A and syntaxin-

1A which are prone to form a so called 2:1 complex consisting of two syntaxin-1A

molecules and one SNAP-25A molecule that is inactive in fusion due to occupying the

binding site for synaptobrevin (Syb) (Fasshauer et al., 1997; Margittai et al., 2001;

Xiao et al., 2001). Here, we present a strategy which uses the fusogenic ∆N-complex

that consists of SNAP-25A, syntaxin-1A and a soluble Syb fragment (aa 42-96) that

inhibits formation of the 2:1 complex and is displaced by full-length Syb during the

fusion process (Pobbati, 2006; Hernandez et al., 2012). Our results show that using

this ∆N-complex leads to high co-reconstitution of Ubc6 and Doa10 and is thus useful

to co-reconstitute membrane proteins.

7.1.2 SNARE-mediated fusion allows the use of a lipid composition mim-

icking the ER membrane

Lipid bilayers in a reconstituted system should ideally mimic the lipid composition of

the corresponding membrane in vivo. This is a challenge as fusion protocols usually

require a certain lipid composition. SNARE-mediated fusion relies on the presence
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of cholesterol (Tong et al., 2009) and 10 mol% cholesterol have been used previously

for reconstitution of the ∆N-complex (Pobbati, 2006; Hernandez et al., 2012). In our

system, the liposomes used contained 10 mol% ergosterol instead of cholesterol, to

mimic the ER membrane of S. cerevisiae.

An alternative approach has been reported that is based on fusion of liposomes

that contain co-reconstituted charged lipids (Biner et al., 2016; Ishmukhametov et al.,

2016; Galkin et al., 2018). This approach requires a high concentration of charged

lipids. Biner et al. report that up to 30 mol% of charged lipids are required for

efficient fusion (Biner et al., 2016). Moreover, whereas negatively charged lipids such

as phosphatidylserine and phosphatidylinositol occur also in the cell, cationic lipids

are not found in the cell (van Meer et al., 2008). This has been a challenge for the

reconstitution of ATP synthase as its activity is influenced by the presence of cationic

lipids (Ishmukhametov et al., 2016; Galkin et al., 2018).

The presented system for fusion mediated by SNAREs allows the use of a lipid

composition roughly mimicking the ER membrane (Tuller et al., 1999; Zinser et al.,

1991; van Meer et al., 2008), with the exception that phosphatidylinositol was replaced

by phosphatidylcholine. I have not further investigated the effect of the lipid composi-

tion on the fusion assay and thus further experiments are required to determine which

lipid compositions are compatible with this approach. With this in mind, the lipid

composition can be also limiting factor in this system. However, in comparison to a

charge-mediated fusion assay it allows the use of naturally occuring lipids.

7.1.3 Liposome instability is a result of low lipid to protein ratios

Proteoliposomes represent a suitable system to recapitulate processes at cellular mem-

branes as their lipid bilayer separates two aqueous compartments. For reconstitution

of ERAD, the bilayer represents the ER membrane and thus separates the ER lu-

men and the cytosol. In such a reconstituted system, leakage or instability of the

proteoliposomes is unwanted as these compartments have different environments with

different protein compositions and a reconstituted system ideally distinguishes these

two compartments.

I observed that proteoliposomes are to some extent unstable after fusion (Figure 4.1,

4.3). This instability can be avoided by lowering the amount of membrane proteins

reconstituted per liposome without compromising the co-reconstitution efficiency. This

effect has been observed before for SNARE-mediated fusion. van den Bogaart et al.

(2010) show that proteoliposomes leak after fusion, when the ∆N-complex is recon-

stituted at a lipid:protein ratio of 1000. Liposomes were stable when a higher ratio
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(16,000) was used. These results show that the concentration of reconstituted proteins

has to be carefully optimized to ensure a functioning and stable system.

The tendency of proteoliposomes to be prone to instability and leakage shows a gen-

eral disadvantage of reconstitution approaches containing lipid bilayers. Due to the en-

hanced instability of liposomes when high concentrations of proteins are reconstituted,

it is difficult to mimic the protein-rich environment of biological membranes (Quinn

et al., 1984; Takamori et al., 2006). One way to overcome this limitation in the fu-

ture is to combine minimal reconstitution approaches such as proteoliposomes with

more complex reconstitution approaches such as vesicles derived from organelles. In a

study by Preobraschenski et al. (2014), the neurotransmitter transporter vGLUT has

been studied using a combinatorial approach by fusing proteoliposomes with synaptic

vesicles. A similar fusion approach using ER-derived vesicles called microsomes and

proteoliposomes might be a powerful tool to overcome limitations of proteoliposomes

such as lipid bilayer instability in the future.

7.2 A minimal system for Ubc6 polyubiquitination

Doa10 functions with the E2 enzymes Ubc6 and Ubc7. Ubc6 itself is unstable and

targeted for Doa10-mediated ERAD in a manner dependent on its catalytic activ-

ity (Walter et al., 2001; Swanson et al., 2001). I characterized ubiquitination of Ubc6

for two main reasons. First, its behaviour as an E2 enzyme whose autoubiquitination

leads to proteasomal degradation is quite interesting and its mechanism as well as its

functional implications are not well understood. Moreover, studying Ubc6 reduces the

complexity of the reconstituted system, due to its dual function as an E2 enzyme and

substrate.

Using the SNARE-mediated fusion assay, I have co-reconstituted Ubc6, Doa10 and

Cue1. Ubc6 and Doa10 were thereby in separate liposome sets to ensure they only

interact upon fusion and thus in a lipid bilayer context.

7.2.1 Mono-ubiquitination of Ubc6 depends on its autoubiquitination ac-

tivity and is required for subsequent Ubc7/Cue1-mediated polyubiq-

uitination

In the presence of loaded E1 enzyme, Ubc6 ubiquitinates itself on non-cysteine residues.

This ubiquitin transfer activity of Ubc6 is stimulated in the presence of Doa10 (Fig-

ure 3.1).

Autoubiquitination of E2 enzymes is a common behaviour in vitro (David et al.,
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2010). Loaded E2 enzymes are prone to react and in many cases, the RING ubiquitin

ligase not only serves as a scaffold to bring together substrate and ubiquitin-loaded

E2 enzyme, but stimulates the E2 ubiquitin transfer activity (Yin et al., 2009; Wen-

zel et al., 2011). Ubc6 thereby transfers multiple mono-ubiquitin moieties onto itself

and does not form ubiquitin chains (Figure A1L). This ubiquitin transfer probably

occurs intramolecularly, as inactive Ubc6 is stable, even when wildtype Ubc6 is also

expressed (Walter et al., 2001).

Mono-ubiquitinated Ubc6 is a substrate for subsequent polyubiquitination by Ubc7,

Cue1 and Doa10. In the absence of either of those components, Ubc6 remains mono-

ubiquitinated (Figure 3.2). Ubc7 forms K48-linked ubiquitin chains on Ubc6 (Fig-

ure A2D), in agreement with other studies showing that Ubc7 specifically forms K48-

linked ubiquitin chains (Bazirgan and Hampton, 2008; Bagola et al., 2013). The re-

quirement of mono-ubiquitination can be bypassed by fusing ubiquitin to the amino-

terminus of Ubc6 (Figure 3.2). These results are in line with observations in intact

cells which show that inactive Ubc6 is degraded when ubiquitin is fused to the amino-

terminus of Ubc6 (Weber et al., 2016).

Multiple lines of evidence suggest that the attachment site of ubiquitin during

monoubiquitination is not crucial for subsequent polyubiquitination. First, amino-

terminal fusion of ubiquitin is sufficient for polyubiquitination. Second, Weber et al.

(2016) have identified Serine 196 of Ubc6 as the main ubiquitination site of a soluble

Ubc6 fragment in vitro. However, they also show that Ubc6S196A is still degraded in

vivo, suggesting that other sites can also be ubiquitinated by Ubc6.

7.2.2 Proteasomal degradation of Ubc6 might have a regulatory role

The physiological relevance of proteasomal degradation of Ubc6 is still unclear. Degra-

dation of this highly reactive E2 enzyme could serve a regulatory function. Examples

of other E2 enzymes show that autoubiquitination can have a regulatory role for E2

function (reviewed by Stewart et al. (2016)). One such example is Ubc7. When it

is not associated with its cofactor Cue1, it assembles a polyubiquitin chain on its ac-

tive site cysteine which leads to its proteasomal degradation (Ravid and Hochstrasser,

2007). Besides regulation through degradation, it has been also shown that mono-

ubiquitination of E2 enzymes inhibits their ubiquitin transfer activity (Machida et al.,

2006; Banka et al., 2015).

Proteasomal degradation of Ubc6 could regulate the activity of the Doa10 complex.

In such a model, Ubc6 transfers ubiquitin onto itself when no substrate is bound to

the Doa10 complex, leading to Ubc6 polyubiquitination and degradation and thus
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rendering the Doa10 complex less active in substrate ubiquitination. It remains to be

tested if such a model holds true. It would be interesting to test if the presence of

substrates influences the ubiquitination of Ubc6. Such an experiment could help to

understand if other substrates are compared to Ubc6 preferentially ubiquitinated by

Doa10.

Concluding, the reconstituted system recapitulates Doa10-mediated polyubiquiti-

nation of Ubc6. It identifies the minimal machinery for this process and shows the

sequence of steps during polyubiquitination on a mechanistic level. As it recapitulates

many observations in intact cells (Walter et al., 2001; Swanson et al., 2001; Weber

et al., 2016), it can be concluded that the established reconstituted system is a useful

tool to study ERAD of Ubc6.

7.3 Mechanistic insights into retrotranslocation of membrane

proteins

In ERAD, polyubiquitinated substrates are retrotranslocated back into the cytosol

where they are degraded by the proteasome. Our reconstituted system recapitulates

this step and provides mechanistic insights into retrotranslocation.

7.3.1 Cdc48/UN extracts polyubiquitinated Ubc6

The Cdc48/UN (Ufd1 Npl4) complex extracts polyubiquitinated Ubc6 from the lipo-

some membrane using ATP (Figure 3.3). The minimum ubiquitin chain length on Ubc6

thereby appears to be 5 ubiquitin moieties. This is in agreement with previous studies

that have shown that the UN complex binds to ubiquitin chains containing at least

5 ubiquitins in vitro (Bodnar and Rapoport, 2017b). The UN complex is required

to recruit Cdc48 to polyubiquitinated substrate (Bodnar and Rapoport, 2017b). In

line with this, we observe shorter ubiquitin chains on Ubc6 indicating extraction, only

when both Cdc48 and UN are present (Figure 3.3). Thus, the established reconstituted

system is sufficient to catalyze not only ubiquitination, but also retrotranslocation of

Ubc6.

7.3.2 Translocation systems contain a driving force and often a protein

conduit

Translocation systems are localized throughout the cell to ensure protein translocation

across and insertion into membranes of organelles such as the ER, mitochondria and
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peroxisomes (Agarraberes and Dice, 2001). They share certain characteristics which

will be explained further in the following section.

Translocation of proteins requires a driving force. The Sec61/SecY channel provides

examples for different driving forces during translocation (reviewed by Rapoport et al.

(2017)). During forward co-translational translocation of proteins into the ER, the

ribosome “pushes” the polypeptide chain by preventing backsliding. In case of bacterial

posttranslational translocation across the plasma membrane, the ATPase SecA pushes

substrates. The mechanism is different for posttranslational translocation into the

ER where BiP acts as a molecular ratchet during translocation. The presence of an

ER-localized sink for the translocating substrate is in this case sufficient for providing

directionality for this process (Matlack et al., 1999). Translocation systems not only

require a driving force but usually also a protein conduit. The Sec61/SecY channel

functions in translocation of soluble proteins as well as insertion of proteins containing

transmembrane segments into the ER membrane (Rapoport et al., 2017). Whereas it

is established that a protein conduit is usually required for the insertion of membrane-

spanning proteins into a lipid bilayer, it is unclear if it is required for their dislocation

as well (also see section 7.3.6).

In ERAD, the pulling force is executed by the Cdc48 ATPase. As Doa10 contains

a large TM domain it has been hypothesized that it forms a protein conduit for retro-

translocating substrates (Swanson et al., 2001). This thesis provides evidence for this

hypothesis.

7.3.3 Doa10 facilitates retrotranslocation of Ubc6

Our results show that Doa10 is a retrotranslocase. Using different assays we show that

in the presence of Doa10, a luminal encapsulated dye or protease cleavage site of Ubc6

becomes accessible to the outside over time. Moreover, in the presence of a chaperone,

Ubc6 is fully released from the membrane in a Doa10-dependent manner (Figure 3.4).

The Ubc6 TM anchor is sufficient for this release indicating that an intramembrane

interaction between Ubc6 and Doa10 is required for this process (Figure 3.6A-D). In line

with this, a Doa10 fragment containing TM segments 3-14 and thus lacking the RING

domain is capable of retrotranslocating Ubc6 indicating that an interaction between the

RING domain and UBC domain is not required for Doa10-mediated retrotranslocation

(Figure 3.5A-C).

Interestingly, the identity of the TM segment is important for retrotranslocation

as a construct containing the TM anchor of Syb is not released by Doa10. This can

have different reasons: higher hydrophobicity of the Syb TM anchor could inhibit the
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spontaneous retrotranslocation by Doa10. Indeed, when comparing the hydropathy

profile of Syb and Ubc6, the TM anchor of Ubc6 is less hydrophobic than the one of

Syb (Figure 7.1). Alternatively, the Syb TM anchor is not recognized by Doa10 and

thus not retrotranslocated.
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Figure 7.1: Hydropathy profile of Ubc6 and Syb. Hydropathy of the last
50 residues of Ubc6 and Syb (containing the TM anchor) was analyzed according
to Kyte and Doolittle (1982) using the ExPasy ProtScale tool (Gasteiger et al.,
2005). The position of the TM anchor of Ubc6 and Syb is indicated by a grey box.
Hydropathy index as defined by Kyte and Doolittle (1982). The sum of hydropa-
thy values of 9 surrounding residues was calculated for each position (window size
= 9).

Ubiquitination experiments indicate that Doa10 indeed recognizes the Ubc6 TM

anchor. In contrast to Ubc6 WT, polyubiquitination of a swap mutant containing

the Ubc6 cytosolic domain fused to the Syb TM anchor is compromised (Figure 3.6D-

I). Whereas the kinetics of a single ubiquitin transfer are similar for WT Ubc6 and

Ubc6SybTM, the kinetics are different when looking at the successive transfer of multi-

ple ubiquitins and the ubiquitin chain length. Thus, the identity of the TM segment is

important for polyubiquitination. The ubiquitination experiments thus indicate that

Doa10 interacts with the Ubc6 TM anchor, whereas the interaction of Doa10 with the

Syb TM anchor is compromised. Interestingly, a Doa10 fragment containing TM seg-

ments 3-14 is not only important for retrotranslocation of Ubc6, but is also required

for efficient ubiquitination of Ubc6 (Figure 3.5D-H). Concluding, an intramembrane

interaction of Doa10 with Ubc6 is required for efficient ubiquitination. This interac-

133



Chapter 7. Discussion

tion leads to Doa10-mediated retrotranslocation of the TM anchor of Ubc6. Lacking

interaction of Doa10 with the Syb TM anchor compromises ubiquitination as well as

Doa10-mediated retrotranslocation. In line with this, experiments in intact cells also

indicate that the Ubc6 TM anchor is important for ERAD of Ubc6. The normally

stable, soluble E2 enzyme Ubc4 becomes unstable when attached to the TM anchor of

Ubc6 (Walter et al., 2001).

7.3.4 Luminal unfolding occurs concomitant with protein extraction

Doa10 substrates do not necessarily only contain cytosolic and TM domains, but can

also contain luminal domains. I thus tested how a folded luminal domain affects retro-

translocation. To mimick a folded luminal domain, I used a luminal SBP-tag that

forms a complex with streptavidin. Doa10-mediated retrotranslocation of Ubc6 is in-

hibited by a folded luminal domain on Ubc6 (Figure 3.7A-C). Retrotranslocation of

this substrate requires ubiquitination and the Cdc48/UN complex (Figure 3.7D-F).

During this process, streptavidin stays inside the liposome lumen, whereas the luminal

SBP-tag is retrotranslocated to the outside (Figure 3.7G,H). Release of streptavidin

from the SBP-tag can be viewed as an unfolding process. This indicates that unfolding

of a luminal domain occurs together with substrate extraction. Unfolding at the lumi-

nal side is achieved by Cdc48 action on the cytosolic side. Doa10 likely contributes to

this process occurring across the membrane by acting as a retrotranslocase.

7.3.5 Role of the retrotranslocase activity of Doa10

Our results establish that Doa10 facilitates retrotranslocation of Ubc6 in a reconsti-

tuted system. We hypothesize that Doa10 forms a protein conduit for retrotransloca-

tion of other substrates as well. Doa10 is involved in degradation of membrane proteins

containing multiple transmembrane segments as well as luminal domains. Examples for

such substrates are the multipass transmembrane proteins Ste6* and Pma1 (D378S).

Also, an artificial substrate has been described whose luminal domain consists of the

60 kDa protein hemagglutinin neuraminidase and whose degradation partially depends

on Doa10 (Vashist and Ng, 2004). The retrotranslocase function of Doa10 might be

even more relevant for extraction of such substrates.

It is still unclear how Doa10 forms such a protein conduit. Structural studies are

required to get further mechanistic insight. Moreover, we still lack direct evidence

that Doa10 and the Cdc48-complex cooperate in extraction. Further experiments are

necessary to understand the role of the Doa10 protein conduit during Cdc48-mediated

extraction. Besides facilitating retrotranslocation, Doa10 might also be important
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for maintaining the integrity of the ER membrane and for avoiding leakage of small

molecules during the extraction process.

7.3.6 The role of protein conduits for dislocation and insertion of mem-

brane proteins into the lipid bilayer

Dislocation of membrane proteins and the role of protein conduits in this process is

investigated not only at the ER membrane. Examples of other dislocation systems can

be useful in understanding retrotranslocation in ERAD and thus are introduced and

discussed in the following section.

During dislocation of membrane proteins, AAA ATPases do not always cooperate

with the ubiquitination machinery, but also can function independent of it. Those

AAA ATPases are not soluble like Cdc48, but are anchored to the membrane via

one or more TM segments of each of their subunits. Such a dislocation system is

often associated with not only an unfolding but also a proteolytic activity of the AAA

ATPase (reviewed by Glynn (2017)). Examples are FtsH at the plasma membrane, and

its homologs i-AAA as well as m-AAA at the inner mitochondrial membrane (MIM).

They all possess proteolytic activity and are involved in the dislocation of membrane

proteins into the cytosol (FtsH), intermembrane space (i-AAA) or mitochondrial matrix

(m-AAA) (Glynn, 2017).

It has been hypothesized that the TM domain of those AAA ATPases is important

for dislocation of membrane proteins. Some studies using mutational analysis of the

TM segments indicate a role of the TM domain besides anchoring the AAA ATPase to

the membrane (Korbel et al., 2004; Lee et al., 2017). Another example of a membrane-

embedded AAA ATPase is Msp1. Msp1 is non-proteolytic and is localized at the

outer mitochondrial membrane (Nakai et al., 1993). It is involved in proteasomal

degradation of tail-anchored proteins (Chen et al., 2014; Okreglak and Walter, 2014)

and it has been shown that it is sufficient for dislocation of a tail-anchored protein from

the membrane in a reconstituted system using purified components reconstituted into

liposomes (Wohlever et al., 2017). Swapping the Msp1 TM domain to the TM domain of

Tom70 did neither lead to a phenotypic difference in vivo nor affect dislocation in vitro

suggesting that the TM domain of Msp1 was not required for substrate degradation.

However, the effect of the TM domain on the kinetics of the dislocation reaction has

not been shown yet. Concluding, it has been hypothesized that the TM domain of

at least some AAA ATPases is involved in dislocation of membrane proteins, which is

supported by some experiments. This suggests that the presence of a protein conduit

might be a universal mechanism for the dislocation of membrane proteins.
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Whereas for dislocation of membrane proteins, the presence and role of protein

conduits is still unclear, the requirement of protein conduits for the opposite reaction

is better understood. The mechanism of insertion for tail-anchored proteins by the

GET-pathway provides here a good example, as it is only responsible for insertion of

TM segments but is not required to form a protein conduit for luminal segments. The

Get1/Get2 heterodimeric complex functions as an insertase that is sufficient to release

the tail-anchored protein from Get3 and insert it into the lipid bilayer (Mariappan et al.,

2011). It has been shown that the TM domain of Get1/Get2 is not only required to

anchor the complex to the membrane, but also provides a binding site for the tail-

anchored protein and is required for insertion (Wang et al., 2014). This indicates that

a protein conduit is required for the delivery of TM segments from the aqueous phase

into the lipid environment. Speculatively, this suggests that a protein conduit is also

involved in the opposite reaction, such as retrotranslocation of ERAD substrates.

7.3.7 Role of Ubx2 and Dfm1

Doa10-mediated retrotranslocation of Ubc6 does not require any other membrane com-

ponent in a reconstituted system (Figure 3.4). Moreover, the established reconstituted

system is sufficient for mediating retrotranslocation of polyubiquitinated Ubc6 (Fig-

ure 3.3). Experiments in intact cells indicate that two other components are involved

in retrotranslocation, at least for some Doa10 substrates. The membrane protein Ubx2

has been shown to recruit the Cdc48-complex to the Doa10 complex. This recruitment

function might be more important in a cellular context than in a reconstituted system.

Cdc48 (in complex with different co-factors) carries out many different functions in the

cell (Ye et al., 2017). Thus, Ubx2 might be required to ensure that a pool of Cdc48

is localized at the ER. In addition, in our reconstituted system, only 40% of polyu-

biquitinated Ubc6 is retrotranslocated. Ubx2 might increase this release efficiency by

increasing the local concentration of Cdc48 at the membrane.

The function of the multipass membrane protein Dfm1 is less clear. It has been

recently shown that it is required for retrotranslocation of Ste6* (Neal et al., 2018).

It probably forms oligomers (Goder et al., 2008), suggesting that it might be involved

in the formation of a protein conduit for retrotranslocation of membrane proteins.

However, it remains to be tested if it is also involved in retrotranslocation of Doa10

substrates other than Ste6*. Several observations indicate that Dfm1 has multiple roles

at the ER membrane.

Dfm1 interacts with components of the Doa10 and Hrd1 complex, which were iden-

tified by co-immunoprecipitation of Dfm1 and subsequent mass-spectrometric analy-
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sis (Goder et al., 2008). This study also identified multiple UBX-domain containing

proteins. Besides Ubx2, Dfm1 also interacts with Ubx1 and Ubx7. All of these UBX-

domain containing proteins interact with Cdc48 (Schuberth et al., 2004). Moreover,

binding of Ubx1 and Ubx2 to Cdc48 is mutually exclusive indicating that complexes

contain either Ubx1 or Ubx2 (Wilson et al., 2006). Interestingly, both Ubx2 and Dfm1

recruit Cdc48 to the ER membrane. However, only Ubx2 is required for the interaction

of Cdc48 with Doa10, suggesting that Dfm1 recruits Cdc48 to the ER membrane when

it is not part of the Doa10 complex (Stolz et al., 2010; Schuberth and Buchberger, 2005;

Neal et al., 2018). This suggests that Dfm1 might exist in different complexes at the

ER. Whereas a complex of Dfm1, Ubx2 and Doa10 (and other ERAD components) is

responsible for ERAD of at least some Doa10 substrates, complexes containing Dfm1

and Ubx1 also exist. Interestingly, Ubx1-dependent proteasomal degradation of a sub-

strate has been observed. Asi1 is unstable and its degradation depends on Ubc6, Ubc7,

Cue1, Ubx1 and Cdc48 (Pantazopoulou et al., 2016). However, its degradation is in-

dependent of the known ER or INM ligases. This indicates that multiple complexes

are present at the ER and INM membrane that are involved in proteasomal degrada-

tion and that differ not only in their associated ubiquitin ligases but also in accessory

components such as Dfm1 and UBX-domain containing proteins.

Using retrotranslocation assays from microsomes it has been shown that increasing

the hydrophobicity of TM segments decreases the retrotranslocation efficiency of Doa10

substrates (Guerriero et al., 2017). Thus, retrotranslocation of a multipass TM protein

might have different requirements compared to a singlepass TM protein. Speculatively,

Dfm1 might cooperate with Doa10 in retrotranslocation of multispanning membrane

proteins such as Ste6*. The established reconstituted system can provide a useful tool

to study the function of these additional components.

7.4 Towards structural insights of Doa10

Multiple conserved regions have been identified in Doa10 such as the TD-domain and

the C-terminal element (Swanson et al., 2001; Zattas et al., 2016). Using Doa10 trun-

cations, I have shown that the Doa10 region containing the TM segments 3-14 which

contains both the TD-domain as well as the CTE is required for efficient ubiquitination

and Doa10-mediated retrotranslocation of Ubc6 (Figure 3.5).
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7.4.1 Function of the TD-domain

Mutational analysis of TM5 of Doa10 has identified conserved residues in the TD-

domain whose mutation leads to stabilization of Doa10 substrates. Mutation of a

motif containing a conserved proline and glycine residue (Doa10P638A G642A) leads to

stabilization of a membrane protein (Ubc6) and a soluble substrate (Deg1-Ura3) (Kreft

and Hochstrasser, 2011). As the TD-domain comprises mainly membrane-spanning

segments, this region might be important for recognition of intramembrane degrons.

Kreft and Hochstrasser (2011) have shown that mutation of the residue E633 in the TD-

domain affects degradation of Ubc6, but not Vma12-DegAB which contains a cytosolic

degron. In our reconstituted system, I have observed no strong differences in Ubc6

polyubiquitination (Figure 5.1).

The discrepancy I observe between my experiments in a reconstituted system com-

pared to studies in intact cells can have multiple reasons. First, I might have performed

this experiment under conditions where not Doa10 but another ubiquitination compo-

nent like Ubc7/Cue1 is limiting which would hide the differences between the Doa10

mutants. Moreover, the difference in vitro might be smaller than the observed dif-

ference in vivo due to the absence of competing factors such as deubiquitinases. It

has been shown in a reconstituted system that deubiquitination and ubiquitination

are competing processes that enhance the discrimination between substrates and non-

substrates (Zhang et al., 2013).

Third, mutation of conserved residues in the TD-domain affects Doa10 protein levels

in vivo (Kreft and Hochstrasser, 2011). Interestingly, Doa10 levels thereby correlate

with Ubc6 degradation rates. Compared to WT Doa10, Doa10E633Q protein levels are

higher and Ubc6 is degraded faster. In contrast, Doa10E633D protein levels are lower

and Ubc6 degradation is slowed down. Although this study shows that degradation of

a Deg1-containing protein is not compromised to ensure that different Doa10 levels are

not the reason for the observed effects, these differences in Doa10 protein levels might

have affected degradation of Ubc6.

In addition, mutation of these Doa10 residues might not affect substrate ubiquitina-

tion, but rather another step of ERAD. We therefore tested Doa10 mutants described

by Kreft and Hochstrasser (2011) for retrotranslocation activity using a fluorescence-

quenching assay. However, I observed similar retrotranslocation kinetics (Figure 5.2).

The methods I have used up to now for measuring Doa10-mediated retrotranslocation

are most likely not suitable to measure the kinetics of retrotranslocation and thus mon-

itor differences in retrotranslocation activity. The described assays rely on binding of

an antibody, protease cleavage or chaperone binding. Thus, the observed kinetics of
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Ubc6 retrotranslocation depend on the activity of the antibody, protease and chap-

erone. Concluding, different tools and a more detailed analysis will be necessary to

better characterize the behaviour of these Doa10 mutants.

Mutational analysis of the TD-domain of Doa10 has led to a model for the inter-

action of Doa10 and Ubc6. Kreft and Hochstrasser (2011) showed that when E633 of

Doa10 is mutated to glutamine, Ubc6 is degraded faster than in wildtype cells. In-

terestingly, an inactive Ubc6 version that is stable in wildtype cells, is degraded in

cells expressing Doa10E633Q. This degradation is dependent on the presence of Ubc6

WT in the background. The authors hypothesized that Doa10 contains two bind-

ing sites for Ubc6, depending on if it acts as E2 enzyme or substrate. Ubc6 transfer

from the E2 binding site to the substrate binding site would usually require its in-

tramolecular autoubiquitination. However, in Doa10 E633Q, non-ubiquitinated, cat-

alytically inactive Ubc6 might enter the substrate binding site and a second molecule

of WT Ubc6 bound to the E2 binding site might ubiquitinate inactive Ubc6 lead-

ing to its Ubc7/Cue1 dependent polyubiquitination. Our results suggest that such

a ubiquitination-dependent transfer to a substrate-binding site probably does not oc-

cur. This is based on the observation that Doa10 retrotranslocates non-ubiquitinated

Ubc6 suggesting that mono-ubiquitination is not required for substrate recognition by

Doa10. To further understand the behaviour of Doa10 variants containing a mutation

of E633, it would be useful to test if E633 in Doa10 is also important for the degrada-

tion of substrates containing an intramembrane degron, or if it is specifically required

for Ubc6.

7.4.2 Identification of interaction sites of the TM anchor of Ubc6 with

Doa10 by site-specific crosslinking

The structural information on the TM region of Doa10 is mostly limited to mutational

analysis of the TD-domain (Kreft and Hochstrasser, 2011; Weber et al., 2016). I there-

fore wanted to identify regions in Doa10 by characterizing the interaction site between

Ubc6 and Doa10. Site-specific photocrosslinking is thereby a useful approach. It allows

crosslinking of preferentially membrane segments by incorporating the crosslinker in

a TM domain. We thus incorporated the photoactivable unnatural amino acid BpA

at different positions of the Ubc6 TM anchor. Although we were able to generate

crosslinks of Ubc6BpA with Doa10, we did not identify any crosslinked peptides by

mass spectrometry (Figure 5.3). This could be due to technical problems associated

with the mass-spectrometric analysis of hydrophobic transmembrane segments which

is challenging (Calabrese and Radford, 2018). Moreover, a Ubc6BpA variant might
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crosslink to different residues of Doa10 and thus lead to heterogeneity of the sample.

Thus, alternative approaches that do not rely on mass-spectrometry might be useful

to identify interaction sites. A Doa10 mutant containing no cysteines (except the RING

domain cysteines) would be a useful tool, in case its function is not compromised. Such

a Doa10 variant would allow the use of membrane permeable crosslinkers that can be

conjugated to cysteines introduced at specific sites of Doa10 via maleimide chemistry.

Such an approach has been used to identify interaction sites of the TM domain of

Get1/Get2 with the TM anchor of a tail-anchored protein (Wang et al., 2014).

A potentially interesting and not-well studied domain of Doa10 is a putative WW-

domain (aa 781-805) (Swanson et al., 2001). WW-domains are 30 aa long domains

that often interact with proline-rich ligands and are defined by conserved tryptophane

and proline residues (Sudol et al., 1995). 13 WW domains have been identified in

S. cerevisiae, such as in the ubiquitin ligases Rsp5 and Doa10 (Hesselberth et al.,

2006). Rsp5 has been shown to interact via its WW-domain with a proline-rich motif

of an Rsp5 substrate (Shcherbik et al., 2004). Interestingly, Ubc6 and also Doa10

contain a putative WW-domain interaction motif (Swanson et al., 2001; Hesselberth

et al., 2006). Indeed, besides interaction with substrates, it has been hypothesized

that the WW-domains of Rsp5 and Doa10 also mediate self-interaction, due to the

presence of conserved WW-domain binding sites (Hesselberth et al., 2006). However,

in contrast to the WW-domain binding site in Doa10, the Doa10 WW-domain itself

is not conserved (Hesselberth et al., 2006) and thus might not have a general role for

Doa10.

In summary, the identification of structural elements in Doa10 is a challenge espe-

cially due to its large TM domain. In vitro approaches are required to complement

the results from in vivo mutational analyses. Cross-linking approaches that do not

necessarily rely on mass-spectrometric analysis as well as structural studies could give

further insight in the future.

7.5 The machinery for ERAD of Sbh2

The list of identified Doa10 substrates that are membrane proteins has been grow-

ing in the last years. Such membrane-spanning Doa10 substrates have expanded our

knowledge of the function of Doa10-mediated ERAD. A defect in biosynthesis per se

is hereby not the only signal for degradation. Instead, Doa10-mediated ERAD also

occurs in a regulated manner as for squalene monooxygenase which is regulated by

intermediates of the sterol synthesis pathway (Foresti et al., 2013). The tail-anchored
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protein Sbh2 is degraded upon deletion of its interaction partner, the translocon sub-

unit Ssh1 (Habeck et al., 2015). For Sbh2 it has been shown that its TM anchor is

required for its degradation. The components required for recognition, ubiquitination

as well as retrotranslocation of a substrate containing such an intramembrane degron

could differ from substrates containing a soluble degron such as Deg1. As screens have

been only carried out for such soluble substrates, we performed a screen for components

required for degradation of a protein containing a TM domain. We chose the substrate

Sbh2 for our screen as it is a well-established substrate of Doa10.

7.5.1 Tandem fluorescent timer screens are a useful screening tool

Different screening approaches exist to identify components required for degradation

of a protein of interest. These approaches are often based on fusing a reporter pro-

tein to a protein of interest. Many reporter proteins are enzymes whose activity is

used to measure the stability of the fusion protein. One example for a reporter pro-

tein is Ura3, an enzyme involved in uracil biosynthesis. Stabilized substrate allows

growth of an auxotrophic strain on medium lacking uracil. Another example is beta-

galactosidase that cleaves the added chromogenic compound X-Gal. Both of these ap-

proaches have been used to characterize the degradation machinery of Deg1-containing

fusion proteins (Johnson et al., 1998; Swanson et al., 2001). Recently, a quite sensitive

screening method has been developed by the Knop lab termed tandem fluorescent timer

screen (Khmelinskii et al., 2012). In this method, two fluorescent proteins with different

maturation kinetics are fused to the substrate and thus a readout for protein abundance

as well as stability can be provided. Moreover, the fluorescent labeling allows for mea-

suring of not only whole colonies but also single cells. A microscopy-based approach is

hereby useful, as the cellular localization of the protein in every sample can be analyzed

as well. Moreover, by using the intensity of the fast maturing fluorescent protein, the

intensity of the slowly maturing fluorescent protein can be normalized. This eliminates

effects on protein abundance during protein synthesis and allows to specifically charac-

terize protein degradation kinetics. Tandem fluorescent timer screens have been used

to identify components of the N-end rule pathway as well as components required for

degradation of a mislocalized tail-anchored protein (Khmelinskii et al., 2012; Dederer

et al., 2019).

7.5.2 Screening for components required for degradation of Sbh2

Using this screen, we have identified known components of the ERAD machinery (Fig-

ure 6.3). We did not identify any other gene deletion as a similarly strong hit, suggesting
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that all components required for ERAD of Sbh2 might be identified. This is in agree-

ment with a previous study by Carvalho et al. (2006) that has identified components

of the Doa10 complex by pulldown of Doa10 and subsequent mass-spectrometric anal-

ysis. The results from the screen suggest that all components required for ERAD of a

protein containing an intramembrane degron are identified. Moreover, by establishing

a reconstituted system, I characterized a minimal machinery for ubiquitination of Sbh2

(see section 7.5.4).

7.5.3 Potential role of the deubiquitinase Ubp3

Interestingly, the deubiquitinase Ubp3 appeared as a potential hit in our screen. I

verified these results by creating a UBP3 deletion. I was able to confirm the results from

the screen using a tFT-construct of Sbh2. However, when I measured the degradation

kinetics of Sbh2 using a CHX-chase, I did not observe any strong impairment of Sbh2

turnover (Figure 6.4). This could be a result of tagging, as the tFT-construct contains

a GFP-mCherry tag, whereas the CHX-chase construct contains only an HA-tag. The

GFP-mCherry tag could create an artefact in ∆ubp3 cells. However, an alternative

explanation is that the CHX-chase is not suitable to report on Sbh2 turnover, as the

UBP3 deletion strain grew very slowly and this might have affected the experiment.

Whereas strains from an overnight culture were used for measuring the tFT-construct,

exponentially growing cells were used in the CHX-chase. Moreover, due to the fast

degradation kinetics of Sbh2, the timepoints chosen were not useful to characterize

degradation kinetics. Thus, further experiments are required to determine if Ubp3 is

involved in ERAD.

What would be a potential role of Ubp3 in ERAD? Deletion of UBP3 stabilizes

Sbh2 indicating that Ubp3 promotes ERAD and does not compete with it. It would

therefore not be involved in processes such as substrate deubiquitination. This deu-

biquitinase could either act on Sbh2 downstream of Cdc48 by for example promoting

release of substrate from Cdc48. It has been shown that deubiquitination occurs af-

ter Cdc48 action and is required for substrate release from Cdc48 (Stein et al., 2014;

Bodnar and Rapoport, 2017b). Whereas the deubiquitinase Otu1 can carry out this

function in a reconstituted system, its deletion does not impact ERAD in S. cerevisiae,

suggesting the presence of multiple deubiquitinases (Stein et al., 2014). Interestingly,

Ubp3 interacts with Cdc48 (Ossareh-Nazari et al., 2010a) and deletion of UBP3 sup-

presses the temperature-sensitive lethality of the npl4-1 mutant allele (Auld et al.,

2006), suggesting that Ubp3 is involved in Cdc48-associated processes.

Alternatively, Ubp3 acts on Doa10 itself. An interesting hypothesis hereby is that
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Ubp3 deubiquitinates autoubiquitinated Doa10 and thus ensures that Doa10 is not

subjected to proteasomal degradation. Autoubiquitination of E3-ligases is often used

as a readout for E2 activity in vitro. However the relevance of E3 autoubiquitination

in vivo is for most E3 ligases not clear. Some examples exist where autoubiquitination

leads to either proteasomal degradation or catalytic activation of E3 ligases (reviewed

by Deshaies and Joazeiro (2009)). Recent studies indicate that autoubiquitination of

Hrd1 has a role in ERAD. Although Hrd1 is stable in wildtype cells, some level of

autoubiquitination of Hrd1 can be detected in intact cells (Baldridge and Rapoport,

2016). Upon mutation of certain lysine residues in Hrd1, substrate degradation is com-

promised, indicating that autoubiquitination is important for Hrd1 function (Baldridge

and Rapoport, 2016).

In contrast to Hrd1, it is unclear if autoubiquitination plays a role for Doa10 func-

tion. In S. cerevisiae, Doa10 is stable as analyzed by pulse-chase experiments (Zattas

et al., 2016). However in the mammalian system, the Doa10 homolog MARCH6 is

unstable and its degradation depends on its own activitiy indicating that autoubiquiti-

nation of MARCH6 leads to its degradation (Hassink et al., 2005; Zattas et al., 2016).

Our reconstituted system shows that Doa10 is autoubiquitinated in the presence of

Ubc6 and Ubc7/Cue1 (Figure A2F and A2G). When Doa10 is autoubiquitinated, it

gets extracted by the Cdc48-complex to some extent (Figure A3J). Interestingly, the

autoubiquitination activity of Doa10 seems to be not required for polyubiquitination

or extraction of Ubc6, as Ub-Ubc6C87A is ubiquitinated and extracted, in the absence

of Doa10 autoubiquitination due to the absence of Ubc6 activity (Figure 3.3F and

3.3G). Moreover, Doa10-mediated retrotranslocation of Ubc6 occurs in the absence

of ubiquitinaton machinery and thus also does not require Doa10 autoubiquitination.

Concluding, autoubiquitination of Doa10 might be a side-product of its activity. To

avoid proteasomal degradation in vivo, deubiquitination of Doa10, and thus Ubp3

might play a role.

As we did not identify any new component strongly required for degradation of

Sbh2, I set out to determine the minimal machinery for ERAD of Sbh2. Therefore, I

established a reconstituted system using purified components reconstituted into lipo-

somes.

7.5.4 Minimal machinery for ubiquitination of Sbh2

In a reconstituted system, Uba1, Ubc6, Ubc7/Cue1 and Doa10 are sufficient to cat-

alyze polyubiquitination of Sbh2 (Figure 6.8). My results further indicate that both

Ubc6 and Ubc7 are involved in ubiquitination of Sbh2, as efficient polyubiquitination
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only occurs in the presence of both E2 enzymes. However, these ubiquitination ex-

periments were done with a soluble fragment of Cue1 which reduces the efficiency of

polyubiquitination (data not shown), and thus the difference might be less strong when

full-length Cue1 is used. Nevertheless, both Ubc6 and Ubc7 seem to have a role in

ubiquitination of Sbh2 in vitro, in agreement with stabilization of Sbh2 when UBC6

or UBC7 is deleted in vivo (Habeck et al., 2015).

7.5.5 Ubc6 and Ubc7 have different functions in Doa10-mediated ERAD

Multiple lines of evidence indicate that Ubc6 and Ubc7 have different functions in

Doa10-mediated ubiquitination. Weber et al. reconstituted autoubiquitination of the

Doa10 RING domain by Uba1, Ubc7 and soluble fragments of Ubc6 and Cue1 (Weber

et al., 2016). The authors show that Ubc6 initiates a ubiquitin chain by attaching a

single ubiquitin and Ubc7 is involved in forming a polyubiquitin chain. Also in our

system, I observe that Ubc6 catalyzes monoubiquitination of itself, Doa10 and proba-

bly Sbh2 (Figures 3.1, A2F, A2G and 6.8). This monoubiquitination can happen on

multiple residues, as I observe no difference of the ubiquitination pattern of Ubc6 when

a ubiquitin variant is used in which all lysines are mutated to arginines (Figure A1L).

Only in the presence of Ubc7/Cue1, polyubiquitin chains are formed on Ubc6, Doa10

and probably Sbh2. This task division of E2 enzymes is a common feature and probably

serves efficient ubiquitination (Deshaies and Joazeiro, 2009). Sequential ubiquitination

has also been observed for the E2 enzymes Ubc1 and Ubc4 that function with APC/C.

Whereas Ubc4 initiates a ubiquitin chain, Ubc1 elongates this chain (Rodrigo-Brenni

and Morgan, 2007). The human E2 enzyme Ubc13 (heterodimer with Msm2) only

catalyzes polyubiquitination of its E3 ligase Brca1, when the mono-ubiquitinating E2

Ube2w is present (Christensen et al., 2007). Thus, E2 enzymes can be specific for chain

initiation and elongation. Such a task divison also occurs for the Ubc6/Ubc7 pair.

7.6 Outlook

This thesis provides mechanistic insights into Doa10-mediated ERAD by recapitulat-

ing the ubiquitination and extraction steps using a reconstituted system. Using this

system, many questions in Doa10-mediated ERAD can be addressed in the future.

We still lack mechanistic information on the function of components such as Ubx2

and Dfm1. Moreover, it will be interesting to expand the substrate repertoire for re-

constitution studies to get better insight into processes such as substrate recognition,

ubiquitination as well as retrotranslocation. Recent evidence suggests that Doa10 has
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a conserved role in contributing to lipid homeostasis in the cell. Further understand-

ing of Doa10-mediated ERAD of enzymes such as Erg1 and Pgc1 would contribute to

deciphering the physiological role of Doa10.

The established reconstituted system is not only a useful tool to further characterize

ERAD, but also other processes such as membrane-bound ubiquitination processes

(e.g. EGAD at the Golgi), protein translocation across membranes (e.g. peroxisomal

import) or dislocation of membrane proteins (e.g. membrane-bound mitochondrial

AAA-ATPases).

Our results identify a dislocation activity of a transmembrane protein. This opens

the door to many questions. First, it is unclear how Doa10 retrotranslocates Ubc6

and if this retrotranslocation function is relevant for other Doa10 substrates. Struc-

tural studies are required to understand this retrotranslocase activity mechanistically.

Moreover, further insight into the cooperation of Cdc48 and Doa10 will be useful to

understand the universally occuring process of dislocation of membrane proteins.
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Figure S1: Purification of ATP synthase. ATP synthase was expressed and
purified as described previously (Schenck et al., 2009). Samples from the purifica-
tion procedure were analyzed by SDS-PAGE and Coomassie staining. (A) Sam-
ples from solubilization and Ni-NTA affinity chromatography. After lysis, sodium
cholate was added (T1). After centrifugation, the supernatant (S1) was discarded
and the pellet solubilized with DDM (T2). Unsolubilized material was pelleted
by ultracentrifugation and the supernatant (S2) was used for affinity purification.
FT indicates unbound material. Imidazole elution fractions are indicated. (B)
Samples from MonoQ chromatography. (C) Samples from Superdex200 10/300
chromatography.
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Figure S2: Purification of Ubc6BpA variants. (A) Test expression of Ubc6
variants containing an amber STOP codon at the indicated position. Expression
in the presence (+) or absence (-) of BpA in the medium. Cells were lysed and
membranes subsequently solubilized. (continued)
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Figure S2 (continued): Where indicated, the solubilized fraction was further
treated with the SUMO protease Ulp1 to cleave His14-SUMO-Ubc6. Samples were
analyzed by SDS-PAGE and Coomassie staining. (B) Purification of Ubc6BpA

variants. Samples of the solubilization reaction (T), the supernatant after ultra-
centrifugation (I), the flowthrough from Ni-NTA affinity chromatography (F) as
well as the Ulp1-elution fractions were analyzed by SDS-PAGE and Coomassie
staining.
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Figure S3: Direct co-reconstitution of Ubc6 and Doa10. Using a direct co-
reconstitution protocol, Doa10 purified in DMNG and Ubc6 were co-reconstituted.
(A) Flotation of Doa10, Ubc6 liposomes in a Nycodenz step gradient. Samples
from flotation fractions were analyzed by SDS-PAGE and fluorescence scanning.
(B) Ubiquitination of Ubc6. Doa10, Ubc6 liposomes were prepared and incubated
with ubiquitination machinery. Where indicated, one component was missing. A
soluble Cue1 fragment was used (Cue1 aa 24-203). Final concentrations: 0.1 µM
Uba1, 1 µM Ubc7, 1 µM Cue1, 120 µM ubiquitin, 2.5 mM ATP, 0.1 µM Ubc6,
0.1 µM Doa10.
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Figure S5: Localization of tFT-Sbh2 in ∆ssm4, ∆ubp3 and ∆ygl214w
cells. GFP-fluorescence for a section of the whole image, for (A) ∆ssm4, (B)
∆ubp3, (C) ∆ygl214w strains.
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Table S1: Sequence coverage of Doa10 and Ubc6 after sequential di-
gest with trypsin and chymotrypsin. Compared to digestion with only chy-
motrypsin (max. coverage for Doa10 83.1, for Ubc6 77.3), the sequential digestion
resulted in higher sequence coverage. Mass spectrometric analysis performed by
Iwan Parfentev (MPI for Biophysical Chemistry, Göttingen).

Liposomes Doa10 coverage (%) Ubc6 coverage (%)

Doa10, Ubc6Y235-BpA 91.8 87.1

Doa10, Ubc6I236-BpA 90.6 97.7

Doa10, Ubc6A239-BpA 92.3 88.7

Doa10, Ubc6I240-BpA 91.0 86.3

Doa10, Ubc6F241-BpA 91.6 94.9

Doa10, Ubc6L244-BpA 93.1 86.3

Doa10, Ubc6V245-BpA 91.6 87.9

Doa10, Ubc6M249-BpA 89.3 97.3
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Table S2: Plasmids used in this thesis.

Plasmid Number Source

Doa101-468-SBP in pRS426-pGal1 376 Stein lab

Doa10225-1319-SBP in pRS426-pGal1 375 Stein lab

pRS426-pGal1-SBP-SUMO* 535 this thesis

SBP-SUMO*-Doa10434-1319 in pRS426-pGal1 557 this thesis

Ubc6 in K27SUMO 343 this thesis

Ubc6C87A in K27SUMO 682 this thesis

Ub-Ubc6C87A in K27SUMO 702 this thesis

SybUbc6TM in K27SUMO 509 this thesis

Ubc6SybTM in K27SUMO 536 this thesis

Ub-Ubc6C87A/SybTM in K27SUMO 815 this thesis

Ubc6 (incl. TEV cleavage site) in K27SUMO 508 this thesis

Ubc6-SBP in pET39b(+) 633 this thesis

Cue1 in pET39b(+) 672 this thesis

Get3 in K27SUMO 504 this thesis

Get3 D57N 522 this thesis

Get3 I193D - B. Schwappach
Mateja et al. (2009)

Syntaxin 1A 183-288, Syb2 49-96 in
pETDuet-1

- Stein et al. (2007)

SNAP25Anocys in pET28a - Fasshauer et al.
(1999)

Synaptobrevin 2 in pET28a - Stein et al. (2007)

Doa10225-1319,E633D-SBP in pRS426-pGal1 414 this thesis

Doa10225-1319,E633Q-SBP in pRS426-pGal1 415 this thesis

Doa10225-131,G636R-SBP in pRS426-pGal1 589 this thesis

Doa10225-1319,P638A G642A-SBP in pRS426-pGal1 579 this thesis

His14-SUMO-Ubc6 in pBAD/HisC 540 this thesis

His14-SUMO-Ubc6Y235 TAG 552 this thesis

His14-SUMO-Ubc6I236 TAG 553 this thesis

His14-SUMO-Ubc6A239 TAG 554 this thesis

His14-SUMO-Ubc6I240 TAG 555 this thesis

His14-SUMO-Ubc6F241 TAG 556 this thesis

His14-SUMO-Ubc6L244 TAG 561 this thesis

His14-SUMO-Ubc6V245 TAG 562 this thesis

His14-SUMO-Ubc6M249 TAG 563 this thesis
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Table S2 (continued): Plasmids used in this thesis.

Plasmid Number Source

pGPD-sfGFP-mCherry-HA, pRS415
(pMAM362)

- Khmelinskii et al.
(2016)

pGPD-sfGFP-mCherry-HA-Sbh2 in pRS415 511 this thesis

pGPD-sfGFP-mCherry-HA-Sbh1 in pRS415 515 this thesis

NatMX6-p3nmt1-3xFLAG in pFA6a - D. Moazed

NatMX6-pGPD-sfGFP-mCherry-HA in pFa6a 590 this thesis

HA-Sbh2 in pRS415-pGPD 538 this thesis

HA-Sbh289C in pRS415-pGPD 699 this thesis

HA-Sbh2linker-LPETGG in pRS415-pGPD 565 this thesis

His14-SUMO-Sbh2S4C in pET39b(+) 695 this thesis

Table S3: S. cerevisiae strains used in this thesis.

Strain Background Strain number

BY4741 MATa his3∆1 leu2∆0
met15∆0 ura3∆0

∆doa10 BY4741 yAST099

Doa10-SBP (pRS426-pGal1) ∆doa10 yAST112

Doa101-468-SBP (pRS426-pGal1) ∆doa10 yAST211

SBP-SUMO*-Doa10434-1319

(pRS426-pGal1)
∆doa10 yAST217

Doa10E633D-SBP (pRS426-pGal1) ∆doa10 yAST127

Doa10E633Q-SBP (pRS426-pGal1) ∆doa10 yAST128

Doa10G636R-SBP (pRS426-pGal1) ∆doa10 yAST232

Doa10P638A G642A-SBP
(pRS426-pGal1)

∆doa10 yAST231

SGA-compatible query strain MATα his3∆1, leu2∆0,
LYS2+, met15∆0,
ura3∆0,
can1∆::STE2prspHIS5,
lyp1∆::STE3pr- LEU2
(S288C background)

kind gift from
M. Schuldiner

pGPD-sfGFP-mCherry-Sbh2 MATα his3∆1, leu2∆0,
LYS2+, met15∆0,
ura3∆0,
can1∆::STE2prspHIS5,
lyp1∆::STE3pr- LEU2
(S288C background)

yAST229
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Table S4: Oligonucleotides used for DOA10 cloning. Gibson assembly
kit was used for cloning, where indicated site-directed mutagenesis kit (SM) was
used.

PCR-product Sequence Number

fragments for
transformation

open #375 5’AGAGAGGATGTTTTCAGTAAAATGG3’ 726
5’CATGGTATTGGATCCACTAG3’ 688

Doa10 Nterm
fragment

5’TGTAATAAAAGTATCAACAAAAAATTGTTAATATAC3’ 727

(template #376) 5’CCATCATGGGGAATCTTTC3’ 728

#535 5’ACCGGATCGGACTCAGAAG3’ 1154
5’TGAGCTCTCGCTTCCGGA3’ 1155

#557

insert 5’acagagaacagattggtggcGATCAAGACGAACAAGAC3’ 1156

(vector: 535,
XhoI, SfoI)

5’acataactaattacatgaccttagcctcctgtttctggtagACT

TTCATCTGGTAAATTTTCTAAAG3’
1157

#414

SM, template:
375

5’TTTTCATCGAtTTGGCTGGATTC3’ 807

5’ATAAAGTGAACACCTTGAAAG3’ 808

#415

SM, template:
375

5’ATTTTTCATCcAATTGGCTGGATTC3’ 809

5’AAAGTGAACACCTTGAAAGTG3’ 810

#589

SM, template:
375

5’CGAATTGGCTAGATTCCCCATTC3’ 1276

5’ATGAAAAATAAAGTGAACACCTTG3’ 1277

#579

SM, template:
375

5’AGCTGCTGTAATGCTAGATTTCTCATTATTTTG3’ 1274

5’AGAATAGCGAATCCAGCCAATTCGATG3’ 1275
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Table S5: Oligonucleotides used for UBC6 cloning. Gibson assembly kit
was used for cloning, where indicated site-directed mutagenesis kit (SM) was used.

PCR-product Sequence Number

#343

insert 5’agaacagattggtggcATGGCTACAAAGCAGGCTCA3’ 737

(vector:
K27SUMO, SfoI)

5’agtaccggtaccggcttagcctcctgtttctggtagTTTCATAA

AAAGGCCAACCAAAAAC3’
780

#682
5’AGCCCAACACACGATTAGCGCTTTCTATGAGTGATTACCACCCT
3’

1758

SM, template:343 5’TAATCACTCATAGAAAGCGCTAATCGTGTGTTGGGCTTGA3’ 1759

#702

insert 5’gagaacagattggtggcatgCAGATTTTCGTCAAGACTTTG3’ 1763
5’ttgtgagcctgctttgtagccacACCTCTTAGCCTTAGCAC3’ 1764

open 682 5’CATGCCACCAATCTGTTCTCTGTGAGCC3’ 1762
5’gtgGCTACAAAGCAGGCTCAC3’ 1765

#509

insert 5’acagagaacagattggtggcATGTCGGCTACCGCTGCCACC3’ 1079
5’ataccaatataaaccattgaGGCCCCTGCCTGGAGGGC3’ 1080

open 343 5’TCAATGGTTTATATTGGTATCG3’ 1081
5’GCCACCAATCTGTTCTCTG3’ 1082

#536
5’tggttcaggaggcagtCTACCAGAAACAGGAGGC3’ 1152

SM 5’gttgcagatccagagccAGTGCTGAAGTAAACGATG3’ 1153

#815

insert 5’tactaagtttcatgaccagtgatgaagccacgacaggatc3’ 2098
5’ttactagtaccggtaccggcttagcctcctgtttctgg3’ 2099

open 702 5’gccggtaccggtactagtaa3’ 2100
5’actggtcatgaaacttagta3’ 2101

#508

insert 5’GTACTTCCAATCGAGTGGCCTACCAGAAACAGGAGGC3’ 1093

SM, template 343 5’AAGTTTTCAGAGCCACTACCTTTCATAAAAAGGCCAACC3’ 1094

#633

insert 5’tagcgtttagcgcatcggcgATGAGCAAGCATCACCATC3’ 1616
5’gcctaggtattaatcaattaTTAGCCTCCTGTTTCTGG3’ 1612

open vector
(pET39b(+))

5’CGCCGATGCGCTAAACGC3’ 1615

5’TAATTGATTAATACCTAGGCTG3’ 1617

155



Chapter 8. Supplement

Table S6: Oligonucleotides used for generating Ubc6BpA variants. Gib-
son assembly kit was used for cloning, where indicated site-directed mutagenesis
kit (SM) was used.

PCR-product Sequence Number

540

insert 5’acagagaacagattggtggcATGGCTACAAAGCAGGCTC3’ 1207
5’tagcctcctgtttctggtagTTTCATAAAAAGGCCAACCAAAAA

C3’
1208

open pBAD-
His14-SUMO

5’GCCACCAATCTGTTCTCTG3’ 1082

5’CTACCAGAAACAGGAGGC3’ 1085

552

SM, template 540 5’TTCAATGGTTTAGATTGGTATCG3’ 1175
5’GAACTATCATTAGGTTCTTTG3’ 1176

553

SM, template 540 5’AATGGTTTATTAGGGTATCGCTATTTTTTTG3’ 1177
5’GAAGAACTATCATTAGGTTC3’ 1178

554

SM, template 540 5’TATTGGTATCTAGATTTTTTTGTTTTTGGTTGG3’ 1179
5’TAAACCATTGAAGAACTATCATTAG3’ 1180

555

SM, template 540 5’TGGTATCGCTTAGTTTTTGTTTTTGGTTG3’ 1181
5’ATATAAACCATTGAAGAACTATC3’ 1182

556

SM, template 540 5’TATCGCTATTTAGTTGTTTTTGGTTGG3’ 1183
5’CCAATATAAACCATTGAAGAAC3’ 1184

561

SM, template 540 5’TTTTTTGTTTTAGGTTGGCCTTTTTATG3’ 1185
5’ATAGCGATACCAATATAAACC3’ 1186

562

SM, template 540 5’TTTGTTTTTGTAGGGCCTTTTTATGAAACTAC3’ 1187
5’AAAATAGCGATACCAATATAAAC3’ 1188

563

SM, template 540 5’TGGCCTTTTTTAGAAACTACCAG3’ 1189
5’ACCAAAAACAAAAAAATAGCG3’ 1190
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Table S7: Oligonucleotides used for cloning CUE1 and GET3. Gibson
assembly kit was used for cloning, where indicated site-directed mutagenesis kit
(SM) was used.

PCR-product Sequence Number

#672

insert 5’acagagaacagattggtggctccggttcaATGGAGGATTCGAGAT

TG3’
1717

5’tacaagttttcacccgaaccAGTCAGCAAACTTTGCAAATC3’ 1718

open 633 5’tgaaccggaGCCACCAATCTGTTCTCTG3’ 1716
5’GGTTCGGGTGAAAACTTGTACTTCC3’ 1719

#504

insert 5’acagagaacagattggtggcATGGATTTAACCGTGGAAC3’ 1065

(vector:
K27SUMO, SfoI)

5’ttactagtaccggtaccggcCTATTCCTTATCTTCTAACTCATAA

ATG3’
1066

#522

SM, template
504

5’GATCTCTACTAATCCTGCCCATAAC3’ 1096

5’AGTAGGAACTGTTTGTTTGG3’ 1097

157



Chapter 8. Supplement

Table S8: Oligonucleotides used for SBH2 cloning. (continued) Gibson
assembly kit was used for cloning, where indicated site-directed mutagenesis kit
(SM) was used.

PCR-product Sequence Number

#590

pGPD-GFP-
mCherry-HA

5’taaacagatctcgccataaaAGTTTATCATTATCAATACTGCCATTTC
3’

1306

5’atttagaagtggcgcgccctCGCATAATCCGGCACATC3’ 1288

open NatMX6-
p3nmt1-
3xFLAG

5’AGGGCGCGCCACTTCTAA3’ 1289

5’TTTATGGCGAGATCTGTTTAG3’ 1305

pGPD-
NatMX6-tFT-
Sbh2

NatMX6-
pGPD-sfGFP-
mCherry-HA

5’tatcataagaGAATTCGAGCTCGTTTAAACTG3’ 1356

5’ctgaagctgcCGCATAATCCGGCACATC3’ 1357

SBH2 5’region 5’CCTAAAGTTTTTCCACCC3’ 1354
5’gctcgaattcTCTTATGATACTGTTGATCG3’ 1355

SBH2 3’ region 5’ggattatgcgGCAGCTTCAGTTCCACCAG3’ 1358
5’AAACAAGGCAGGCTGGTC3’ 1359

#511

insert 5’taattacatgactcgagttaTATAATGTGTGTAAATTTCGTCAATAGA

TG3’
1073

5’atgagttgtataaactcgactatccgtatgatgtgccggattatgcgA

TGGCAGCTTCAGTTCCAC3’
1074

open pMAM362 5’cgcataatccggcacatcatacggataGTCGAGTTTATACAACTCATC

CATC3’
1067

5’TAACTCGAGTCATGTAATTAG3’ 1068

#515

insert 5’atgagttgtataaactcgactatccgtatgatgtgccggattatgcgA

TGTCAAGCCCAACTCCTC3’
1070

5’taattacatgactcgagttaAAATAACTTACCGGCAACTTTAG3’ 1069

open pMAM362 as for generating #511

#538
5’TATCCGTATGATGTGCCGG3’ 1164

SM, template
511

5’CATAGCACCGTCGACGGT3’ 1165
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Table S8 (continued): Oligonucleotides used for SBH2 cloning.

PCR-product Sequence Number

#699

Sbh289C
5’aatttacacacattatatgtTAACTCGAGTCATGTAATTAG3’ 1787

SM, template
538

5’TTACATGACTCGAGTTAacaTATAATGTGTGTAAATTTCGTCAATAG3’ 1788

#565

Sbh2linker-LPETGG
5’AGGCAGTCTACCAGAAACAGGAGGCTAACTCGAGTCATGTAATTAG3’ 1166

SM, template
538

5’CCTGAACCAGTTGCAGATCCAGAGCCTATAATGTGTGTAAATTTCGTC
3’

1167

#695

insert 5’acagagaacagattggtggcATGGCAGCTTGTGTTCCAC3’ 1784
5’gcctaggtattaatcaattaTTATATAATGTGTGTAAATTTCGTCAAT

AGATGC3’
1785

open 633 5’TAATTGATTAATACCTAGGCTGCTAAAC3’ 1613
5’GCCACCAATCTGTTCTCTGTG3’ 878

Table S9: Oligonucleotides used for deleting chromosomal UBP3. Gib-
son assembly kit was used for cloning, where indicated site-directed mutagenesis
kit (SM) was used.

PCR-product Sequence Number

UBP3 deletion

KanMX6 cassette 5’cattaaaaaaaCGGATCCCCGGGTTAATTAAG3’ 1706
5’accccccgtcGAATTCGAGCTCGTTTAAACTG3’ 1707

UBP3 5’region 5’CGACAGGGGCATTGAGCTG3’ 1704
5’cggggatccgTTTTTTTAATGATGATGGAAAGGAAAGCGG3’ 1705

UBP3 3’region 5’gctcgaattcGACGGGGGGTGGTATTATAG3’ 1708
5’CATAATATTTTGAAATTCACATTCCTTCTAC3’ 1709

whole tagging
cassette

5’CGACAGGGGCATTGAGCTG3’ 1704

5’CATAATATTTTGAAATTCACATTCCTTCTAC3’ 1709

control PCR for
deletion

5’CTCACCGGATTCAGTCGTC3’ 602

5’CATAATATTTTGAAATTCACATTCCTTCTAC3’ 1709
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Söllner, T. H., and Rothman, J. E. (1998). SNAREpins: Minimal machinery for

membrane fusion. Cell, 92(6):759–772.

183



REFERENCES

Wenzel, D. M., Lissounov, A., Brzovic, P. S., and Klevit, R. E. (2011). UBCH7 Re-

activity Profile Reveals Parkin and HHARI to Be RING/HECT Hybrids. Nature,

474(7349):105–108.

Wilson, J. D., Liu, Y., Bentivoglio, C. M., and Barlowe, C. (2006). Sel1p/Ubx2p

Participates in a Distinct Cdc48p-dependent Endoplasmic Reticulum-associated

Degradation Pathway. Traffic, 7(9):1213–1223.

Wohlever, M. L., Mateja, A., McGilvray, P. T., Day, K. J., and Keenan, R. J. (2017).

Msp1 Is a Membrane Protein Dislocase for Tail-anchored Proteins. Molecular Cell,

67(2):194–202.e6.

Xiao, W., Poirier, M. A., Bennett, M. K., and Shin, Y.-K. (2001). The Neuronal

t-SNARE Complex Is a Parallel Four-helix Bundle. Nature Structural Biology,

8(4):308–311.

Xu, P., Duong, D. M., Seyfried, N. T., Cheng, D., Xie, Y., Robert, J., Rush, J.,

Hochstrasser, M., Finley, D., and Peng, J. (2009). Quantitative Proteomics Reveals

the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation.

Cell, 137(1):133–145.

Yang, B., Wu, Y.-J., Zhu, M., Fan, S.-B., Lin, J., Zhang, K., Li, S., Chi, H., Li, Y.-X.,

Chen, H.-F., Luo, S.-K., Ding, Y.-H., Wang, L.-H., Hao, Z., Xiu, L.-Y., Chen, S.,

Ye, K., He, S.-M., and Dong, M.-Q. (2012). Identification of Cross-linked Peptides

from Complex Samples. Nature Methods, 9(9):904–906.

Ye, Y., Meyer, H. H., and Rapoport, T. A. (2001). The AAA ATPase Cdc48/p97 and Its

Partners Transport Proteins from the ER into the Cytosol. Nature, 414(6864):652–

656.

Ye, Y., Tang, W. K., Zhang, T., and Xia, D. (2017). A Mighty “Protein Extractor” of

the Cell: Structure and Function of the p97/Cdc48 ATPase. Frontiers in Molecular

Biosciences, 4:39.

Yin, Q., Lin, S.-C., Lamothe, B., Lu, M., Lo, Y.-C., Hura, G., Zheng, L., Rich, R. L.,

Campos, A. D., Myszka, D. G., Lenardo, M. J., Darnay, B. G., and Wu, H.

(2009). E2 Interaction and Dimerization in the Crystal Structure of TRAF6.

Nature Structural & Molecular Biology, 16(6):658–666.

Zargari, A., Boban, M., Heessen, S., Andréasson, C., Thyberg, J., and Ljungdahl,
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Doa10 is a membrane protein
retrotranslocase in ER-associated protein
degradation
Claudia C Schmidt, Vedran Vasic, Alexander Stein*

Research Group Membrane Protein Biochemistry, Max Planck Institute for
Biophysical Chemistry, Göttingen, Germany

Abstract In endoplasmic reticulum-associated protein degradation (ERAD), membrane proteins

are ubiquitinated, extracted from the membrane, and degraded by the proteasome. The cytosolic

ATPase Cdc48 drives extraction by pulling on polyubiquitinated substrates. How hydrophobic

transmembrane (TM) segments are moved from the phospholipid bilayer into cytosol, often

together with hydrophilic and folded ER luminal protein parts, is not known. Using a reconstituted

system with purified proteins from Saccharomyces cerevisiae, we show that the ubiquitin ligase

Doa10 (Teb-4/MARCH6 in animals) is a retrotranslocase that facilitates membrane protein

extraction. A substrate’s TM segment interacts with the membrane-embedded domain of Doa10

and then passively moves into the aqueous phase. Luminal substrate segments cross the

membrane in an unfolded state. Their unfolding occurs on the luminal side of the membrane by

cytoplasmic Cdc48 action. Our results reveal how a membrane-bound retrotranslocase cooperates

with the Cdc48 ATPase in membrane protein extraction.

Introduction
The endoplasmic reticulum (ER) is a major site for protein folding and maturation in the endomem-

brane system of the eukaryotic cell. A conserved quality control pathway called ER-associated pro-

tein degradation (ERAD) removes misfolded, unassembled and mistargeted proteins from the ER

into the cytosol where they are degraded by the proteasome (Christianson and Ye, 2014;

Mehrtash and Hochstrasser, 2019; Ruggiano et al., 2014). ERAD thus contributes to protein

homeostasis. Its malfunction results in ER stress (Hwang and Qi, 2018), and it has been linked to

several human diseases (Guerriero and Brodsky, 2012; Qi et al., 2017). ERAD is part of the ubiqui-

tin proteasome system. Studies in the yeast Saccharomyces cerevisiae identified two universally con-

served membrane-embedded ubiquitin ligases that ubiquitinate ERAD substrates, Hrd1 (SYVN1 in

human) (Bordallo et al., 1998; Hampton et al., 1996; Kikkert et al., 2004; Nadav et al., 2003) and

Doa10 (TEB-4/MARCH6 in animals, SUD-1 in Arabidopsis thaliana) (Doblas et al., 2013;

Hassink et al., 2005; Swanson et al., 2001). In higher eukaryotes, a larger variety of ubiquitin

ligases plays a role in ERAD (Olzmann et al., 2013).

Substrates of ERAD can be soluble luminal proteins, or membrane proteins that either need to be

moved across or extracted from the ER membrane. This process, termed retrotranslocation or dislo-

cation, requires the AAA protein Cdc48 (VCP or p97 in animals) (Bays et al., 2001; Garza et al.,

2009; Jarosch et al., 2002; Nakatsukasa et al., 2008; Rabinovich et al., 2002; Ye et al., 2001).

Cdc48 is recruited to substrates by its cofactors Ufd1 and Npl4 which interact with polyubiquitin

chains with lysine 48 linkage (Meyer et al., 2002; Ye et al., 2003). The Cdc48 complex is thought to

generate a pulling force that drives extraction of polyubiquitinated proteins from the membrane.

This notion is based on biochemical experiments with soluble proteins (Bodnar and Rapoport,

2017; Olszewski et al., 2019) and recent cryo-EM structures (Bodnar et al., 2018; Cooney et al.,
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2019; Twomey et al., 2019), which showed that processive threading of a substrate through the

central pore of the Cdc48 hexamer under ATP consumption leads to unfolding.

Apart from the Cdc48 ATPase, membrane proteins of the ERAD machinery are thought to con-

tribute to retrotranslocation. For soluble substrates, Hrd1 forms part of a retrotranslocon pore from

the ER lumen to the cytosol (Baldridge and Rapoport, 2016; Carvalho et al., 2010; Stein et al.,

2014; Vasic et al., 2020), but other components such as the Derlin Der1 are also involved, as shown

by biochemical data and a recent cryo-EM structure of the Hrd1 complex (Mehnert et al., 2014;

Wu et al., 2020). Less is known about retrotranslocation of membrane proteins. The machinery that

mediates this process needs to be quite versatile, because substrates can exhibit different topolo-

gies. They may contain one or multiple transmembrane (TM) segments, stretches of hydrophilic

amino acids in luminal loops and tightly folded domains. How these structurally and physicochemi-

cally diverse elements move across a phospholipid bilayer during the extraction process is not

known. Multipass transmembrane proteins such as members of the Derlin family (Der1 and Dfm1 in

yeast; Derlin-1,–2 in animals), Hrd1 and Doa10 have been suggested to act as retrotranslocases for

membrane proteins (Carvalho et al., 2010; Hampton and Sommer, 2012; Lilley and Ploegh, 2004;

Neal et al., 2018; Swanson et al., 2001; Ye et al., 2004).

Another unresolved but linked question regards the folding state of luminal domains during the

retrotranslocation process. It is unclear whether luminal domains are moved across the membrane in

a folded state, if unfolding occurs prior to retrotranslocation, potentially by a separate ER luminal

machinery, or if unfolding is directly coupled to retrotranslocation (Brodsky, 2012; Shi et al., 2019).

To address these questions, we investigated ERAD mediated by the ubiquitin ligase Doa10 from

S. cerevisiae. Doa10 is a 150 kDa protein with 14 TM segments (Kreft et al., 2006). Its substrates

include single- and multi-spanning membrane proteins of the ER and inner nuclear membrane, but

also soluble proteins of the cyto- and nucleoplasm (Ravid et al., 2006). No completely soluble, lumi-

nal substrates of Doa10 have been described. The degrons of Doa10 substrates can be cytoplasmic

(Furth et al., 2011; Swanson et al., 2001), or within the TM region (Habeck et al., 2015).

eLife digest The inside of a cell contains many different compartments called organelles, which

are separated by membranes. Each organelle is composed of a unique set of proteins and performs

specific roles in the cell. The endoplasmic reticulum, or ER for short, is an organelle where many

proteins are produced. Most of these proteins are then released from the cell or sorted to other

organelles. The ER has a strict quality control system that ensures any faulty proteins are quickly

marked for the cell to destroy. However, the destruction process itself does not happen in the ER,

so faulty proteins first need to leave this organelle. This is achieved by a group of proteins known as

endoplasmic reticulum-associated protein degradation machinery (or ERAD for short).

To extract a faulty protein from the ER, proteins of the ER and outside the ER cooperate. First, an

ERAD protein called Doa10 attaches a small protein tag called ubiquitin to the faulty proteins to

mark them for destruction. Then, outside of the ER, a protein called Cdc48 ‘grabs’ the ubiquitin tag

and pulls. But that is only part of the story. Many of the proteins made by the ER have tethers that

anchor them firmly to the membrane, making them much harder to remove.

To get a better idea of how the extraction works, Schmidt et al. rebuilt the ERAD machinery in a

test tube. This involved purifying proteins from yeast and inserting them into artificial membranes,

allowing closer study of each part of the process. This revealed that attaching ubiquitin tags to faulty

proteins is only one part of Doa10’s role; it also participates in the extraction itself. Part of Doa10

resides within the membrane, and this ‘membrane-spanning domain’ can interact with faulty

proteins, loosening their membrane anchors. At the same time, Cdc48 pulls from the outside. This

pulling force causes the faulty proteins to unfold, allowing them to pass through the membrane.

Given these findings, the next step is to find out exactly how Doa10 works by looking at its three-

dimensional structure. This could have implications not only for the study of ERAD, but of similar

quality control processes in other organelles too. A build-up of faulty proteins can cause diseases

like neurodegeneration, so understanding how cells remove faulty proteins could help future

medical research.
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Furthermore, Doa10 regulates sterol metabolism in plants, fungi and animals by degrading squalene

monooxygenase (Doblas et al., 2013; Foresti et al., 2013). Through degradation of mislocalized

membrane proteins, Doa10 has a role in maintaining organelle identity (Dederer et al., 2019;

Matsumoto et al., 2019; Ruggiano et al., 2016).

Doa10 works in concert with two ubiquitin conjugating enzymes (E2), the tail-anchored mem-

brane protein Ubc6 and the soluble cytoplasmic protein Ubc7 (Swanson et al., 2001). Ubc7 is

anchored to the ER membrane by Cue1 (Biederer et al., 1997). Experiments with soluble cyto-

plasmic protein fragments showed that Ubc6 and Ubc7 have different roles in the build-up of polyu-

biquitin chains. Ubc6 initiates ubiquitin chains by transferring the first ubiquitin moiety, whereas

Ubc7 extends ubiquitin chains with mainly lysine 48 linkage (Weber et al., 2016). Importantly, Ubc6

is itself an unstable protein and degraded in a Doa10-dependent manner (Swanson et al., 2001;

Walter et al., 2001). Similarly, Ubc6 homologues in plants and mammals have been shown to be

unstable and are degraded by the proteasome (Lam et al., 2014). Interestingly, in case of the Arabi-

dopsis thaliana Ubc6 homologue Ubc32, and the mammalian Ube2J1, Hrd1 was identified as the

ubiquitin ligase involved (Burr et al., 2011; Chen et al., 2016).

Here, we developed a reconstituted system with purified proteins to investigate the role of

Doa10 in membrane protein retrotranslocation. This system allowed us to mechanistically investigate

membrane protein extraction, without relying on indirect read-outs of downstream reactions such as

proteasomal degradation. We show that Doa10 is a membrane protein retrotranslocase. Further-

more, we show how Doa10 cooperates with the Cdc48 ATPase in the extraction of proteins with

folded luminal domains.

Results
We reconstituted purified and fluorescently labeled Doa10 and its substrate Ubc6 into separate lipo-

some populations, together with complementary SNARE proteins (Figure 1A and Figure 1—figure

supplement 1, A to F). The tail-anchored (TA) membrane protein Ubc6 was chosen as a model sub-

strate, to limit the number of membrane proteins in our system and thus its complexity. To achieve

efficient liposome fusion, we employed previously well-characterized engineered versions of rat

SNAREs involved in synaptic vesicle exocytosis (Cypionka et al., 2009; Hernandez et al., 2012).

Indeed, mixing of the two liposome sets led to SNARE-mediated co-reconstitution of Ubc6 and

Doa10 (Figure 1—figure supplement 1G). This approach ensures that Doa10 and Ubc6 only interact

in the phospholipid bilayer, avoiding non-native interactions that can occur when membrane proteins

are mixed in the presence of detergents for co-reconstitution. Protease protection experiments

showed that Doa10 was reconstituted mostly in the correct orientation (Figure 1—figure supple-

ment 1H). For Ubc6, 45% was correctly oriented, another 45% wrong-side out oriented, and a minor

fraction not properly membrane inserted (Figure 1—figure supplement 1, I to K).

We postulated that retrotranslocase activity of Doa10 facilitates release of a substrate into the

aqueous solution, but that such an event should be energetically disfavored unless the membrane-

released state was stabilized by chaperones and re-insertion prevented (Figure 1B). To test this

hypothesis, we incubated Ubc6 liposomes with Get3, a chaperone for TA proteins (Mateja et al.,

2009) that also interacts with Ubc6 (Figure 1—figure supplement 2A). Liposomes were then immo-

bilized to separate soluble and membrane-bound proteins (Figure 1—figure supplement 2B). In the

presence of Get3, 43 ± 4% Ubc6 was released from liposomes with co-reconstituted Doa10

(Figure 1C,D and Figure 1—figure supplement 2C). When co-reconstitution of Doa10 with Ubc6

was prevented by inhibiting SNARE-mediated fusion or when Ubc6 liposomes were fused with lipo-

somes lacking Doa10, only 7–9% of Ubc6 were found in the soluble fraction, representing the frac-

tion of Ubc6 sticking to the outside of the liposome surface. In the absence of Get3, or when we

used a Get3 mutant defective in TA protein binding (Get3 I193D) (Mateja et al., 2009), we observed

no, or drastically reduced release, respectively. Nucleotide hydrolysis was not required for Ubc6

release and an ATPase deficient mutant (Get3 D57N) behaved indistinguishably from wild-type (WT)

Get3. This suggests that Doa10 allows for passive movement of its substrate Ubc6 out of the

membrane.

Release of Ubc6 from the liposome membrane involves movement of the TM anchor and the

luminally encapsulated C-terminus across the lipid bilayer. To directly measure exposure of the

C-terminus upon retrotranslocation we used a Ubc6 variant labeled with an AlexaFluor488 (A488)
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Figure 1. Retrotranslocation of Ubc6 by Doa10. (A) SNARE-mediated co-reconstitution of Ubc6 and Doa10. Engineered versions of SNAREs involved in

synaptic exocytosis were used, that is a Syntaxin 1A fragment, SNAP-25A, and Synaptobrevin 2 (Pobbati et al., 2006). Sybsol, a cytoplasmic fragment of

Synaptobrevin (Syb). SybD84, Syb mutant that results in a docked state (Hernandez et al., 2012). See Figure 1—figure supplement 1, E to K for

characterization of liposomes. (B) Working hypothesis for retrotranslocation by Doa10. (C) Membrane release of Ubc6 in the presence of Get3.

Figure 1 continued on next page
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dye at the C-terminus. An anti-A488 antibody quenches A488 fluorescence and reports on accessi-

bility of the C-terminus (Figure 1E). In the absence of Doa10, we observed a sudden decrease in

fluorescence by 50% upon antibody addition, corresponding to the fraction of wrong-side out pro-

tein that exposes its C-terminus on the outside of liposomes. Upon solubilization of liposomes, the

antibody quenches the fluorescence of all A488 epitopes. However, in the presence of Doa10, the

sudden decrease in fluorescence was followed by a slower decrease to about 10% of the original

fluorescence signal within 30 min. Thus, in the presence of Doa10, the luminally-encapsulated part of

Ubc6 becomes accessible to the antibody over time. Ubc6 and Doa10 need to reside in the same

membrane as we observed only minor quenching above background when we used a mutant SNARE

that only supports liposome docking (Figure 1E,F).

As an alternative read-out for retrotranslocation, we used a protease protection assay. To identify

correctly oriented Ubc6 we used an N-terminal SUMO fusion (SUMO-Ubc6) and Ulp1 protease. To

monitor retrotranslocation, we introduced a TEV protease cleavage site between the C-terminus of

Ubc6 and the fluorescent dye. This cleavage site resides in the liposome lumen and would only

become accessible upon retrotranslocation (Figure 1G). Ulp1 incubation resulted in a shift of cor-

rectly oriented protein in SDS-PAGE. We then added TEV protease and followed cleavage over time

(Figure 1G,H). Wrong-side out SUMO-Ubc6 was completely accessible to TEV protease and was

cleaved independently of the presence of Doa10 within 5 min. Strikingly, only in the presence of

Doa10, Ulp1-cleaved, and thus right-side out Ubc6 was also accessible to TEV cleavage over longer

incubation times, indicating retrotranslocation. In liposomes lacking Doa10, only a small fraction of

Ulp1-cleaved Ubc6 was accessible to TEV protease, corresponding to the not properly reconstituted

Ubc6. Together, Get3 capture, antibody accessibility, and protease protection assays show that

Doa10 facilitates movement of the Ubc6 TM across the membrane into the aqueous phase. Compar-

ison of the fraction of correctly oriented protein and the released fraction shows that retrotransloca-

tion is very efficient in all three assays. Thus, Doa10 is a retrotranslocase.

Importantly, we also tested if another unrelated multipass membrane protein leads to Ubc6 retro-

translocation by destabilizing the lipid bilayer. To this end, we purified the TFoF1 ATP synthase from

Bacillus PS3, which contains 20 TM segments (Guo et al., 2019). Using the same reconstitution

Figure 1 continued

Fluorescently labeled Ubc6 was co-reconstituted with Doa10 by SNARE-mediated fusion (+ Doa10), as shown in (A). Where indicated, Ubc6 liposomes

were fused to liposomes lacking Doa10 (– Doa10), or fusion was inhibited with Sybsol (Inhibited). After incubation with the indicated Get3 variants or

buffer, liposomes were immobilized (Figure 1—figure supplement 2B). Input and supernatant samples were analyzed by SDS-PAGE and fluorescence

scanning. Final concentrations (f.c.): 0.1 mM Ubc6, 40 nM Doa10, 10 mM Get3. (D) Quantification (mean ± SD) of three independent experiments as in

(C). (E) Retrotranslocation of Ubc6, measured as quenching of a C-terminal AlexaFluor488 (A488) label by an antibody. Liposomes were generated as

shown in (A). Where indicated, liposomes lacked Doa10 (– Doa10), or co-reconstitution was inhibited by using SybD84 (docked). Arrows indicate

addition of the quenching antibody or of solubilizing amounts of detergent (Triton X-100). F.c.: 0.2 mM Ubc6, 80 nM Doa10. (F) Quantification

(mean ± SD) of four experiments as in (E). The fraction of accessible dye after 30 min was compared between conditions with and without Doa10. F,

normalized fluorescence. (G) Retrotranslocation of Ubc6, measured by a protease protection assay. Ubc6 with an N-terminal SUMO tag (SUMO-Ubc6)

and a TEV protease cleavage site between the C-terminus and the fluorescent dye was used. Arrow heads indicate cleavage sites for Ulp1 and TEV

protease. SUMO-Ubc6 liposomes with or without Doa10 were incubated with Ulp1. Ulp1-treated liposomes were then incubated with buffer or TEV

protease. Indicated reactions contained detergent to solubilize liposomes (det). Aliquots were taken at the indicated times and analyzed by SDS-PAGE

and fluorescence scanning. F.c. during incubation with TEV protease: 0.1 mM Ubc6, 40 nM Doa10, 10 mM TEV protease. (H) Quantification (mean ± SD)

of the fraction of Ubc6 and SUMO-Ubc6 inaccessible to TEV protease, from three experiments as in (G). Band intensities from samples treated with TEV

protease were normalized to the corresponding band intensities of samples without TEV protease.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. This file contains the quantification of fluorescently labeled Ubc6 (Figure 1D) as well as of Rhodamine-labeled lipids (Figure 1—figure

supplement 2B).

Source data 2. This file contains the quantification of the quenched fraction of Ubc6 in samples containing Doa10 compared to samples lacking Doa10,

as shown in Figure 1F.

Source data 3. This file contains the quantification of the TEV-protected fraction of SUMO-Ubc6 and Ubc6 shown in Figure 1H.

Figure supplement 1. Quality control of liposomes.

Figure supplement 1—source data 1. This file contains the quantification of the TEV- and Ulp1 cleaved fraction of SUMO-Ubc6, as well as of Ulp1-

cleaved Ubc6 that is accessible to TEV protease, as shown in Figure 1—figure supplement 1K.

Figure supplement 2. Retrotranslocation in the presence of Get3.

Figure supplement 3. Co-reconstitution with ATP synthase.
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Figure 2. Ubiquitination of Ubc6. (A) Time course of ubiquitination of Ubc6. Final concentrations in the complete reaction: 40 nM Doa10, 10 nM Cue1,
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fluorescence scanning. (B) Analysis of ubiquitin-chain length on Ubc6 from an experiment as in (A). Line-scans were performed on fluorescence images

Figure 2 continued on next page
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protocol as for Doa10, we co-reconstituted ATP synthase with Ubc6 (Figure 1—figure supplement

3A,B) and then tested for retrotranslocation of Ubc6 using the antibody accessibility assay. Under

these conditions, only a minor fraction of Ubc6 becomes accessible to the antibody (Figure 1—fig-

ure supplement 3C,D). We conclude that retrotranslocation of Ubc6 is not due to some non-specific

perturbation of the membrane caused by any multipass TM protein.

The observation that traps such as Get3 or the antibody are sufficient to drive retrotranslocation

to completion suggests that Doa10 allows membrane-inserted and retrotranslocated soluble states

of Ubc6 to exist in an equilibrium (Figure 1B). In the absence of Get3 or the anti-A488 antibody, the

membrane-embedded state of the substrate is energetically favored. Get3 or the anti-A488 antibody

shift the equilibrium towards the soluble state by binding to retrotranslocated Ubc6. Thus, traps

bind retrotranslocated Ubc6 and prevent reinsertion. In the cell, retrotranslocation requires Cdc48

activity (Garza et al., 2009; Nakatsukasa et al., 2008; Ye et al., 2001), suggesting that the pulling

force generated by Cdc48 provides the directionality.

To test this directly, we next investigated membrane extraction of Ubc6 by Cdc48. As Cdc48 acts

on polyubiquitin chains, we first reconstituted Ubc6 polyubiquitination. Degradation of Ubc6

requires its own E2 activity, the E2 Ubc7 and its adapter, the membrane-anchored Cue1

(Biederer et al., 1997; Swanson et al., 2001; Walter et al., 2001). Using the fusion system, we co-

reconstituted Doa10 and Cue1 with Ubc6. When we added ubiquitin activating enzyme (E1), ubiqui-

tin, ATP, and Ubc7, we observed robust polyubiquitination of Ubc6 (complete reaction, Figure 2A).

In the absence of Ubc7 or Cue1, polyubiquitination was abolished, and we observed ubiquitin

adducts of lower molecular weight (Figure 2A,B). These represent multiple monoubiquitinations, as

the ubiquitination pattern was very similar when we used a ubiquitin mutant in which all lysines are

mutated to arginine (Ubiquitin K0) and that thus cannot form ubiquitin chains (Figure 2—figure sup-

plement 1A). Monoubiquitination also occurred in the absence of Doa10 (Figure 2—figure supple-

ment 1B), but was enhanced in its presence (Figure 2—figure supplement 1C,D). Kinetics of

transfer of the first ubiquitin onto Ubc6 were independent of the presence of Ubc7/Cue1

(Figure 2C), suggesting that monoubiquitination is a prerequisite for Ubc7-dependent polyubiquiti-

nation. This is indeed the case, as a catalytically inactive Ubc6 mutant (Ubc6C87A) was not ubiquiti-

nated, but an N-terminal fusion of ubiquitin with inactive Ubc6 (Ub-Ubc6C87A) was a substrate for

Ubc7-dependent polyubiquitination (Figure 2D,E and Figure 2—figure supplement 1E). Together,

these results establish that after active site loading of Ubc6 with ubiquitin, Doa10 catalyzes Ubc6-

monoubiquitination, followed by Ubc7/Cue1-dependent polyubiquitination (Figure 2F). These

results agree with observations made in intact cells and with recombinant soluble fragments of

Doa10 and Ubc6 (Walter et al., 2001; Weber et al., 2016). Furthermore, they indicate that our

reconstituted system faithfully recapitulates the in vivo ubiquitination pathway for Ubc6.

Next, we tested for membrane extraction of polyubiquitinated Ubc6 by the Cdc48 ATPase. To

this end, we immobilized Doa10/Ubc6 liposomes after the ubiquitination reaction, then incubated

with Cdc48 and its co-factors Ufd1 and Npl4 (UN), and analyzed soluble and membrane-bound frac-

tions (Figure 3A and Figure 3—figure supplement 1,A to D). We observed Cdc48- and ubiquitina-

tion-dependent extraction of Ubc6 (Figure 3A,B and Figure 3—figure supplement 1E,F).

Figure 2 continued

for the complete reaction and in the absence of Ubc7 at t = 30 min. Approximate molecular weights are indicated on top. # ub. denotes number of

ubiquitin moieties attached. (C) Quantification (mean ± SD) of the fraction of unmodified Ubc6 from three experiments as in (A). (D) Time course of

ubiquitination of Ub-Ubc6C87A compared to Ubc6 WT and Ubc6C87A in the presence of Doa10, Cue1, and Ubc7. Concentrations and analysis as in (A).

(E) Quantification (mean ± SD) of the fraction of unmodified Ubc6 variants from three experiments as in (D). (F) Model for ubiquitination of Ubc6. Ubc6

autoubiquitination activity results in transfer of ubiquitin from its active site cysteine to a non-cysteine residue (Weber et al., 2016). In the presence of

Doa10, this activity is enhanced and Ubc6 is multi-monoubiquitinated. Ubc7/Cue1 are then required to form polyubiquitin chains on monoubiquitinated

Ubc6.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. This file contains the quantification of the fraction of unmodified Ubc6 from three experiments as in Figure 2A, as shown in in Figure 2C.

Source data 2. This file contains the quantification of the fraction of unmodified Ubc6 from three experiments as in Figure 2D, as shown in Figure 2E.

Source data 3. This file contains the quantification of the fraction of unmodified Ubc6 from three experiments as in Figure 2—figure supplement 1C,

as shown in Figure 2—figure supplement 1D.

Figure supplement 1. E3—independent and -dependent ubiquitination of Ubc6.
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Extraction efficiency was dependent on the length of ubiquitin chains, with five ubiquitin moieties

being minimally required (Figure 3—figure supplement 1G). In the presence of Cdc48/UN, 45 ±

17% of Ubc6 molecules with more than five attached ubiquitin moieties were extracted, compared

to 15 ± 4% in the absence of the Cdc48 complex (Figure 3A,C). No extraction above this back-

ground was observed when either Cdc48 or Ufd1/Npl4 were omitted. Furthermore, ATP hydrolysis

by the Cdc48 complex was necessary, as Cdc48E588A was inactive. Polyubiquitin chains were

required because we found no extraction above background when ubiquitination was performed in

the absence of Ubc7 or less than five ubiquitins were attached (Figure 3A,C,D). Similar observations
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Figure 3. Cdc48-mediated Membrane Extraction of Ubc6. (A) Extraction of Ubc6 by Cdc48 and Ufd1/Npl4 (UN). After ubiquitination, liposomes were

immobilized (Figure 3—figure supplement 1,A to D). One bead equivalent was removed, and bound protein was eluted with SDS sample buffer

(Input). Beads were then incubated with the indicated components. Soluble (S) and membrane-bound (M) material were analyzed by SDS-PAGE and

fluorescence scanning. Colored bars indicate categorization of ubiquitin chain length as used for quantification in (C) and (D). For better visibility,

bottom and top gel parts are scaled differently. See Figure 3—figure supplement 1E for uncut image. Final concentrations: 50 nM Ubc6, 20 nM

Doa10, 0.1 mM Cdc48 hexamer, 0.1 mM Ufd1 and Npl4. (B) As in (A), but with Ub-Ubc6C87A instead of Ubc6. See Figure 3—figure supplement 1F for

uncut image. (C) Quantification (mean ± SD) of three experiments as in (A) and (B). Ubiquitinated species were categorized according to ubiquitin chain

length, as indicated in (A) and (B). The signal in the soluble fraction was normalized to that in the input. (D) Quantification (mean ± SD) of three

experiments as in (A), when ubiquitination was performed in the absence of Ubc7.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. This file contains the quantification of the fraction of extracted Ubc6 from three experiments as in Figure 3A,B, as shown Figure 3C,D.

Figure supplement 1. Cdc48-mediated extraction.
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Figure 4. Structural Determinants for Retrotranslocation. (A) Retrotranslocation of Ubc6 by Doa10 variants, as measured by accessibility of a

fluorescence quenching antibody to a C-terminal A488 dye on Ubc6, as described in Figure 1E. Ubc6 liposomes containing the indicated Doa10

variants were used. Doa10-N, residues 1–468; Doa10-C, residues 434–1319. Arrows indicate addition of antibody or detergent. Final concentrations (f.

c.): 0.2 mM Ubc6, 80 nM Doa10 variants. (B) Quantification (mean ± SD) of three experiments as in (A). The fraction of accessible dye after 30 min was

compared between conditions with the indicated Doa10 variant and without Doa10. F, normalized fluorescence. (C) Retrotranslocation of Ubc6 by

Doa10 variants, as measured by accessibility of TEV protease to the C-terminus of Ubc6, as described in Figure 1G. SUMO-Ubc6 liposomes with either

Doa10-N or Doa10-C were treated with Ulp1 to identify right-side out oriented Ubc6. TEV protease was added and samples at different time

points were analyzed by SDS-PAGE and fluorescence scanning. Quantification as in Figure 1H, but only for Ulp1-cleaved Ubc6. F.c. during incubation

with TEV protease: 0.1 mM Ubc6, 40 nM Doa10 variants, 10 mM TEV protease. (D) Retrotranslocation of Ubc6 variants measured as in (A). A488-labeled

Ubc6, Ubc6SybTM, or SybUbc6TM were directly co-reconstituted with Doa10 because SybUbc6TM was incompatible with SNARE-mediated co-reconstitution.

Liposomes containing Doa10 were affinity-purified for this experiment (Figure 4—figure supplement 1A,B). (E) Quantification (mean ± SD) of three

experiments as in (D). The fraction of accessible dye after 30 min was compared between conditions with and without Doa10.

Figure 4 continued on next page
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were made when we used Ub-Ubc6C87A instead of WT Ubc6 to increase the efficiency of polyubiqui-

tination (Figure 3B,C). Together, these observations show that the Cdc48 complex provides the

driving force for the extraction of a polyubiquitinated membrane protein. We currently do not

understand what limits the efficiency of Cdc48 mediated extraction in our assay. It is possible that a

stabilizing chaperone or an accessory factor such as the Cdc48 co-factor Ubx2 would contribute to

complete extraction (Neuber et al., 2005; Schuberth and Buchberger, 2005).

To define structural elements in Doa10 important for its retrotranslocase activity, we generated

two truncated versions of Doa10 that encompassed either only the N-terminal RING domain and the

first two TM segments (Doa10-N), or the C-terminal part containing TM segments 3–14 (Doa10-C)

(Figure 1—figure supplement 1,F to H). The sites of truncation were chosen based on the finding

that in the yeast Kluyveromyces lactis, Doa10 is expressed as two separate polypeptides with similar

boundaries (Stuerner et al., 2012). We then tested if those Doa10 variants retrotranslocate Ubc6

using the antibody accessibility assay. Doa10-C behaved similarly to full-length Doa10, whereas

Doa10-N resulted in only minor quenching above background (Figure 4A,B). Corresponding obser-

vations were made when we tested for retrotranslocation using the protease protection assay

(Figure 4C). These results show that TM segments 3–14 in Doa10 are sufficient to mediate retro-

translocation of Ubc6.

To test for structural elements in Ubc6 relevant for retrotranslocation, we generated mutants in

which either its TM anchor or its cytoplasmic part were replaced with the corresponding segments

of the TA protein synaptobrevin (Ubc6SybTM and SybUbc6TM, respectively). We then tested for retro-

translocation of these mutants using the antibody accessibility assay (Figure 4—figure supplement

1A,B). We only observed retrotranslocation of the Ubc6 TM, but not of the Syb TM (Figure 4D,E). A

similar experimental setup also allowed us to exclude leakage or liposome rupture as the cause for

antibody accessibility (Figure 4—figure supplement 1,C to E). Thus, the identity of the substrate’s

TM segment is important for retrotranslocation.

Next, we tested how these mutations in the TM domains of Doa10 and Ubc6 affect ubiquitination

of Ubc6. To specifically test for effects on polyubiquitination, we again used Ub-Ubc6C87A, for which

the initial ubiquitination steps (ubiquitin loading and monoubiquitination) are bypassed. Replace-

ment of the Ubc6 TM with the TM of Syb mildly affected polyubiquitination as seen by the emer-

gence of shorter ubiquitin chains in the case of the Syb TM (Figure 5A,B; Figure 5—figure

supplement 1A,B). To test for effects of TM replacement on monoubiquitination of Ubc6, we com-

pared Ubc6 and Ubc6SybTM. Doa10-dependent monoubiquitination of Ubc6SybTM was impaired

(Figure 5C,D; Figure 5—figure supplement 1C,D), while E3-independent autoubiquitination of this

mutant was unaffected (Figure 5—figure supplement 1E,F). Thus, the Ubc6 TM anchor contributes

to the efficient Doa10-dependent ubiquitination of Ubc6, indicating a more efficient recruitment to

Doa10.

Moreover, efficient ubiquitination of Ubc6 requires the TM domain of Doa10. Ubc6 polyubiquiti-

nation by Doa10-N was less efficient compared to full-length Doa10 (Figure 5E,F). This was not due

to impaired E3 activity, because co-reconstitution of Doa10-N and Doa10-C together restored ubiq-

uitination to WT levels. Monoubiquitination in the absence of Ubc7 was similarly affected (Figure 5—

figure supplement 2,A to C). We conclude that the Doa10 region that includes TMs 3–14 plays a

role in ubiquitination of Ubc6. Both ubiquitination and retrotranslocation of Ubc6 are sensitive to

changes in the membrane-embedded regions of Ubc6 and Doa10, indicating a specific interaction

of Doa10 with the TM domain of Ubc6. Previous observations suggested that the identity of the TM

Figure 4 continued

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. This file contains the quantification of the quenched fraction of Ubc6 in samples containing Doa10 or its variants compared to samples

lacking Doa10 from three experiments as in Figure 4A, as shown in Figure 4B.

Source data 2. This file contains the quantification of the TEV-protected fraction of Ubc6 from three experiments, as shown in Figure 4C.

Source data 3. This file contains the quantification of the quenched fraction of Ubc6 or its variants in samples containing Doa10 compared to samples

lacking Doa10 from three experiments as in Figure 4D, as shown in Figure 4E.

Figure supplement 1. Antibody accessibility assay for Ubc6/Syb chimera.

Figure supplement 1—source data 1. This file contains numerical values for data shown in Figure 4—figure supplement 1E.
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Figure 5. Structural Determinants for Ubiquitination. (A) Time course of ubiquitination of Ub-Ubc6C87A or Ub-Ubc6C87A/SybTM by Doa10 in the presence

of Cue1/Ubc7. For each reaction, a 60 min sample in the absence of ATP is shown. Samples were analyzed by SDS-PAGE and fluorescence scanning.

Final concentrations: 40 nM Doa10, 10 nM Cue1, 1 mM Ubc7, 100 nM Ubc6 variants, 100 nM E1, 120 mM ubiquitin, and 2.5 mM ATP. See Figure 5—

figure supplement 1A for quantification of unmodified Ubc6 variants. (B) Comparison of ubiquitin-chain length on Ub-Ubc6C87A or Ub-Ubc6C87A/SybTM.

Line-scans were performed on fluorescence images of two representative gel samples (30 min timepoint) as in (A). Approximate molecular weights are

Figure 5 continued on next page
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segment played a role in substrate degradation (Habeck et al., 2015; Ruggiano et al., 2016;

Walter et al., 2001). Our results show that the TM domain of Doa10 recognizes substrates and

thereby contributes to the specificity of substrate selection. The observation that the mutant version

of Ubc6 (Ubc6SybTM) is still ubiquitinated to some extent suggests that other factors might contribute

to substrate discrimination. Deubiquitinating enzymes have previously been shown to sharpen sub-

strate selectivity in ERAD and might also play such a role in the context of Doa10-mediated ERAD

(Zhang et al., 2013).

Substrates of Doa10 exhibit a wide range of topologies. They may contain multiple TM segments,

such as the misfolded variants of the multi-spanning membrane proteins Pma1 and Ste6, called

Pma* and Ste6*, respectively (Huyer et al., 2004; Wang and Chang, 2003), or luminal folded

domains (Vashist and Ng, 2004). We next asked the question how the presence of an additional

luminal polypeptide segment or an interaction with another luminal protein affects retrotransloca-

tion. We appended a streptavidin binding peptide (SBP) to the C-terminus of Ubc6 (Ubc6-SBP), and

formed a complex with streptavidin (Figure 6—figure supplement 1A,B). When we co-reconstituted

this complex with Doa10, we observed no quenching over time upon antibody addition (Figure 6A,

B). When we added biotin, which breaks the high affinity SBP-streptavidin interaction (Keefe et al.,

2001), we observed Doa10-dependent quenching over time. This was only the case when biotin was

used, but much reduced when we used a biotinylated protein, which is still capable of dissociating

streptavidin from Ubc6-SBP on the outside of liposomes (Figure 6—figure supplement 1, C to E),

but cannot pass the membrane. Together, this shows that a protein-protein interaction on the lumi-

nal side of the membrane, mimicking the presence of a folded domain, acts as an anchor and pre-

vents retrotranslocation of Ubc6.

Finally, we tested if this anchoring can be overcome by the Cdc48 complex. Liposomes containing

Doa10 and Ubc6-SBP in complex with streptavidin were incubated with ubiquitination mix followed

by the addition of Cdc48 complex and anti-A488 antibody. Retrotranslocation occurred depending

on polyubiquitination and Cdc48 activity (Figure 6C,D and Figure 6—figure supplement 1F). In the

absence of ubiquitin, when Ubc7 was omitted, or when we used the catalytically inactive Cdc48E588A,

no fluorescence quenching above background was observed. Importantly, streptavidin remained

encapsulated in liposomes in reactions where Ubc6-SBP was extracted (Figure 6E,F). Thus, Cdc48

action on the cytosolic side of the membrane leads to dissociation of streptavidin from the SBP-tag

in the liposome lumen. As this reaction entails the breaking of bonds that are comparable to the

intramolecular interactions that keep a protein folded, we interpret the dissociation of the SBP tag

from streptavidin as unfolding. Our results thus show that Doa10 retrotranslocates a luminal protein

segment in an unfolded state. Cdc48, acting on cytoplasmic polyubiquitin chains, generates a

Figure 5 continued

indicated on top. # Ub., number of ubiquitin moieties attached. (C) Time-course of Ubc6 WT or Ubc6SybTM ubiquitination in the absence of Ubc7/Cue1.

Analysis and concentrations as in (A). See Figure 5—figure supplement 1C for quantification of unmodified Ubc6 variants. (D) Quantification

(mean ± SD) of total ubiquitin-transfer to Ubc6 or Ubc6SybTM from three experiments as in (C). Intensities of Ubc6 variants with one to four ubiquitin

moieties attached were determined as described in Figure 5—figure supplement 1D, summed up for each time point and normalized to total Ubc6 in

the reaction. (E) Time course of ubiquitination of Ub-Ubc6C87A by Doa10 variants in the presence of Cue1/Ubc7. Liposomes contained Ub-Ubc6C87A and

either full-length Doa10, only Doa10-N, or both Doa10-N and -C. Analysis and concentrations as in (A). (F) Quantification (mean ± SD) of unmodified

Ub-Ubc6C87A from three experiments as in (E).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. This file contains the quantification of the number of ubiquitins (n) transferred per Ubc6 or Ubc6SybTM (Figure 5—figure supplement

1D) as well as the quantification of the number of total ubiquitin transferred from three experiments as in Figure 5C, as shown in Figure 5D.

Source data 2. This file contains the quantification of the fraction of unmodified Ubc6 from three experiments as in Figure 5E, as shown in Figure 5F.

Figure supplement 1. Ubiquitination of Ubc6/Syb chimera.

Figure supplement 1—source data 1. This file contains the quantification of the fraction of unmodified Ubc6 as shown in Figure 5—figure supple-

ment 1A, C and F.

Figure supplement 2. Ubc6 ubiquitination by Doa10 variants.

Figure supplement 2—source data 1. This file contains the quantification of the fraction of unmodified Ubc6 as shown in Figure 5—figure supple-

ment 2B.

Figure supplement 2—source data 2. This file contains the quantification of the number of total ubiquitin transferred in presence of different Doa10

variants from three experiments, as shown in Figure 5—figure supplement 2C.

Schmidt et al. eLife 2020;9:e56945. DOI: https://doi.org/10.7554/eLife.56945 12 of 31

Research article Biochemistry and Chemical Biology Cell Biology

Published work

200



15

A

0

0.5

1.0

0 10 20 30 40

Time (min)

0.0

0.2

0.4

0.6

0.8

– 
C
dc

48
/U

N

+ 
C
dc

48
/U

N

F
ra

c
ti
o

n
 o

f 
S

tr
e

p
ta

v
id

in

 i
n

 t
o

p
 f
ra

c
ti
o

n

1.0
– 

C
dc

48
/U

N

+ 
C
dc

48
/U

N

Streptavidin

B

C D

E F

Biot. protein

Buffer

Doa10
Ubc6-SBP

Strepta-

vidin

RING

+ Biotin

+ Detergent

+ Antibody

0 10 20 30 40

Time (min)

0.0

0.5

1.0

N
o

rm
. 
A

4
8

8
-f

lu
o

re
s
c
e

n
c
e

+ Antibody

± Cdc48/UN

+ Detergent

– Cdc48/UN

+ Cdc48/UN

Biotin

RING

+ Ubc7

– Ubc7

– Doa10

+ Doa10

N
o

rm
. 
A

4
8

8
-f

lu
o

re
s
c
e

n
c
e

RING

Cue1

Ubc7

Strepta-

vidin

Doa10

Ubc6-SBP

Ubiquitin
F

 (
- 

D
o

a
1

0
) 

- 
F

 (
+

 D
o

a
1

0
) 

a
t 
3

0
 m

in

0

0.1

0.2

0.3

0.4

B
io
tin

B
io
t. 

pr
ot

ei
n

B
uf

fe
r

– 
U
bi
qu

iti
n

– 
U
bc

7

+ 
U
bc

7

WT E588A

Cdc48/UN

WT WT

0

0.1

0.2

0.3

0.4

F
 (
- 

C
d

c
4

8
/U

N
) 

- 
F

 (
+

 C
d

c
4

8
/U

N
) 

a
t 
3

0
 m

in

Figure 6. Effect of a Luminal Domain on Retrotranslocation. (A) Retrotranslocation of Ubc6 with a C-terminal streptavidin binding peptide (SBP),

reconstituted in complex with streptavidin, was measured by accessibility of a fluorescence quenching antibody to a C-terminal A488 dye on Ubc6, as

described Figure 1E. Liposomes were incubated with buffer, biotin or a biotinylated protein prior to addition of the antibody. Final concentrations: 0.2

mM Ubc6, 80 nM Doa10, 0.25 mM streptavidin, 1.5 mM biotin or biotinylated protein. (B) Quantification (mean ± SD) of three experiments as in (A). The

fraction of accessible dye after 30 min was compared between conditions with and without Doa10. F, normalized fluorescence. (C) Effect of Cdc48 and

Ufd1/Npl4 (UN) on retrotranslocation of Ubc6-SBP in complex with streptavidin, measured using the antibody accessibility assay as in (A). Prior to the

fluorescence measurement, liposomes were incubated with ubiquitination mix with or without Ubc7. Arrows indicate when antibody, with or without

Cdc48/UN, or detergent were added. Final concentrations: 0.17 mM Ubc6-SBP, 68 nM Doa10, 0.17 mM hexameric Cdc48, Ufd1, and Npl4. See

Figure 6—figure supplement 1F for gel samples of ubiquitination reaction. (D) Quantification (mean ± SD) of three experiments as in (C). The fraction

of accessible dye after 30 min was compared between conditions with and without Cdc48/UN. In addition, experiments lacking ubiquitin or with the

Cdc48 mutant E588A were quantified. (E) Determination of liposome-encapsulated streptavidin after extraction. Samples from experiments as in (D)

Figure 6 continued on next page
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mechanical force that results in luminal unfolding und drives retrotranslocation. The integrity of the

membrane is maintained in this process.

Discussion
During extraction of a protein from the membrane, an energetic barrier must be overcome that

depends on the hydrophobicity of its TM domain (Botelho et al., 2013; Guerriero et al., 2017).

Our results provide evidence that Doa10 contributes to overcoming the energetic barrier for mem-

brane protein extraction. This is demonstrated by passive movement of a tail-anchored membrane

protein into the aqueous phase in the presence of Doa10. In the absence of a folded luminal

domain, factors such as Get3 or an antibody that trap the retrotranslocated state are sufficient to

drive the reaction, bypassing the requirement for ubiquitination and Cdc48.

ERAD also entails retrotranslocation of less hydrophobic sequences, such as those in luminal

loops or domains, across the hydrophobic core of the membrane. We show that, once dissociated

from streptavidin, a 57 amino acid long luminal protein segment that includes the SBP-tag is retro-

translocated by Doa10 without markedly affecting retrotranslocation kinetics. Thus, Doa10 can also

accommodate these less hydrophobic sequences in the retrotranslocation process.

A major unresolved question concerns the fate of luminal domains during retrotranslocation.

Some studies suggested that luminal domains cross the ER membrane in a folded state, based either

on the observation that substrates containing tightly folded domains were retrotranslocated in the

first place or that they were detected in a folded state after retrotranslocation into the cytosol

(Fiebiger et al., 2002; Petris et al., 2014; Shi et al., 2019; Tirosh et al., 2003). Others suggested

that retrotranslocation requires unfolding of luminal protein segments, including reduction of disul-

fide bonds, prior to retrotranslocation (reviewed in Ellgaard et al., 2018). Some of these differences

might be explained by the fact that different ubiquitin ligase complexes were involved that might

have different requirements for retrotranslocation. Our data show that Doa10 does not accommo-

date a folded domain during retrotranslocation. Instead, unfolding of polypeptide segments on the

luminal side of the membrane is a direct consequence of Cdc48 acting on cytoplasmically attached

polyubiquitin chains.

It is unclear if chaperone-driven retrotranslocation of Ubc6 in the absence of ubiquitination or

Cdc48 action also occurs in the cell. Genetic and biochemical experiments in yeast showed that deg-

radation of TM domain containing Doa10 substrates, including Ubc6, strictly depends on Cdc48,

Ufd1 and Npl4 (Foresti et al., 2013; Habeck et al., 2015; Huyer et al., 2004; Neuber et al., 2005;

Ravid et al., 2006; Ruggiano et al., 2016; Wang and Chang, 2003). In the case of the strongly

hydrophobic, multi-spanning Doa10 substrate Ste6*, fractionation experiments also showed that the

Cdc48 complex is required for the retrotranslocation step (Nakatsukasa et al., 2008;

Nakatsukasa and Kamura, 2016; Neal et al., 2018). However, these experiments do not exclude

the possibility that a relatively mildly hydrophobic protein such as Ubc6 retrotranslocates into the

cytosol in a Doa10-dependent, but ubiquitination- and Cdc48-independent manner. Speculatively,

such a chaperone-stabilized cytoplasmic pool would not be a substrate for proteasomal degradation

but rather for chaperone-assisted reinsertion into the ER membrane, and might therefore be difficult

to detect. Furthermore, as chaperones would only be able to capture a substrate that has emerged

Figure 6 continued

were taken at t = 30 min. Biotin was added, and liposomes floated in a Nycodenz gradient. Co-floating streptavidin was detected in SDS-PAGE using

stain-free technology. Two replicates are shown for each condition. (F) Quantification (mean ± SD) of the relative amount of streptavidin co-floating

from three experiments as in (E). Each data point represents the mean of two replicates as shown in (E).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. This file contains the quantification of the quenched fraction of Ubc6 in samples containing Doa10 compared to samples lacking Doa10

from three experiments as in Figure 6A, as shown in Figure 6B.

Source data 2. This file contains the quantification of the quenched fraction of Ubc6 in samples containing Cdc48/UN compared to samples lacking

Cdc48/UN from three experiments as in Figure 6C, as shown in Figure 6D.

Source data 3. This file contains the quantification of streptavidin in the top flotation fraction from three experiments as in Figure 6E, as shown in

Figure 6F.

Figure supplement 1. Liposomes with Ubc6-SBP and streptavidin.
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from the membrane, we expect such chaperone-driven retrotranslocation to be sensitive to the over-

all hydrophobicity of the TM segment. Interestingly, several studies showed that chaperones play an

important role in ERAD of membrane proteins at different stages of the ERAD process. In yeast,

Hsp70 and Hsp40 chaperones promote ubiquitination of Ste6* and a misfolded variant of Pma1

(Han et al., 2007; Nakatsukasa et al., 2008). In mammals, the Bag6-Ubl4a-Trc35 chaperone com-

plex facilitates ERAD of membrane proteins by stabilizing a soluble cytoplasmic state (Claessen and

Ploegh, 2011; Claessen et al., 2014; Ernst et al., 2011; Wang et al., 2011; Xu et al., 2012). If

such chaperones also act as a sink in a putative Cdc48-independent retrotranslocation process,

remains to be determined.

Using a reconstituted system, we disentangled different ERAD subreactions, that is substrate

recruitment, ubiquitination, retrotranslocation, and membrane extraction. This allowed us to identify

two activities of Doa10: retrotranslocase and ubiquitin ligase. The interplay of Doa10 and the Cdc48

complex during the extraction process remains to be further explored. Studies showed that Cdc48 is

recruited to the Doa10-complex via Ubx2 (Neuber et al., 2005; Schuberth and Buchberger, 2005).

This recruitment is dependent on the ubiquitination activity of Doa10, suggesting that Cdc48-recruit-

ment requires either autoubiquitination of Doa10 or substrate ubiquitination. Moreover, the Derlin

Dfm1, which also interacts with Cdc48 through its carboxy-terminal SHP-box, has been shown to be

required for degradation of Ste6* (Neal et al., 2018). Our experimental system is expandable and

can be used to explore how Dfm1, Ubx2 or other factors affect retrotranslocation by Doa10 and

Cdc48.

How exactly Doa10 facilitates release of proteins from the membrane is unclear. Structural infor-

mation on Doa10 is necessary to further elucidate its mechanism of action. We speculate that TM

segments access a binding site in Doa10 through a lateral gate. This might promote delipidation of

TM segments and breaking of helix-helix interactions in multi-spanning membrane proteins. Quality

control pathways for membrane proteins that require their extraction from the membrane exist not

only in the ER, but also in other organelles. In the Golgi, mitochondria and chloroplasts, membrane

proteins are removed from the organelle for proteasomal degradation in the cytosol. These pro-

cesses are dependent on ubiquitination and Cdc48 (Heo et al., 2010; Ling et al., 2019;

Schmidt et al., 2019; Tanaka et al., 2010). Moreover, extraction of membrane proteins also occurs

by membrane-bound AAA ATPases that often have not only unfolding, but also proteolytic activity.

In mitochondria, Msp1 and the FtsH-related AAA metalloproteases m-AAA and i-AAA are examples

for membrane-bound AAA ATPases (Glynn, 2017). For m-AAA mediated extraction into the mito-

chondrial matrix, a contribution of the TM domain was shown, suggesting a retrotranslocase activity

(Korbel et al., 2004; Lee et al., 2017). We propose that membrane-bound retrotranslocases gener-

ally contribute to AAA protein-driven extraction of membrane proteins.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Gene (S. cerevisiae) DOA10 YIL030C Amplified from BY4741

Gene (S. cerevisiae) UBC6 YER100W Amplified from BY4741

Gene (S. cerevisiae) UBA1 YKL210W Amplified from BY4741

Gene (S. cerevisiae) UBC7 YMR022W Amplified from BY4741

Gene (S. cerevisiae) CUE1 YMR264W Amplified from BY4741

Gene (S. cerevisiae) CDC48 YDL126C Amplified from BY4741

Gene (S. cerevisiae) UFD1 YGR048W Amplified from BY4741

Gene (S. cerevisiae) NPL4 YBR170C Amplified from BY4741

Gene (S. cerevisiae) GET3 YDL100C Amplified from BY4741

Gene
(Rattus norvegicus)

Synaptobrevin 2 NP_036795

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(S. cerevisiae)

BY4741 GE Dharmacon MATa his3D1 leu2D0
met15D0 ura3D0

Strain, strain
background
(S. cerevisiae)

Ddoa10 GE Dharmacon MATa his3D1 leu2D0
met15D0 ura3D0
doa10::kanR

Strain, strain
background (E. coli)

BL21 (DE3) New England Biolabs C2527I Competent Cells

Strain, strain
background (E. coli)

BL21-CodonPlus
(DE3)-RIPL

Agilent # 230280 Competent Cells

Antibody Anti-SBP (clone 20),
mouse monoclonal

Merck Cat#: MAB10764 (1:2500) diluted
in 5% milk TBS-T

Antibody Anti-His6
(Clone13/45/31-2),
mouse monoclonal

Dianova Cat#: DIA-900 (1:500) diluted
in 2% BSA PBS-T

Antibody Goat polyclonal
anti-mouse IgG secondary
antibody (IRDye 800 CW)

Li-Cor Biosciences Cat#: 926–32210
RRID:AB_2687825

(1:15000)

Antibody Goat polyclonal
anti-mouse
IgG secondary antibody
(IRDye 680 RD)

Li-Cor Biosciences Cat# 926–68070,
RRID:AB_10956588

(1:15000)

Antibody Rabbit polyclonal anti-
Alexa Fluor 488

Thermo Fisher
Scientific

Cat# A-11094f,
RRID:AB_221544

(1:15) diluted

Peptide,
recombinant protein

Streptavidin New England Biolabs N7021S

Peptide,
recombinant protein

Gly-Gly-Gly-
Cys peptide

Thermo Fisher Scientific for Sortase-
mediated labeling

Commercial
assay or kit

Gibson Assembly
Master Mix

New England Biolabs E2611S

Commercial
assay or kit

Q5 Site-Directed
Mutagenesis Kit

New England Biolabs E0554S

Commercial
assay or kit

MasterPure Yeast
DNA Purification Kit

Epicentre (Lucigen) MPY80200

Chemical
compound, drug

Decyl Maltose Neopentyl
Glycol (DMNG)

Anatrace NG322

Chemical
compound, drug

GDN Anatrace GDN101

Chemical
compound, drug

n-Octyl b-D-
glucopyranoside (OG)

Glycon Biochemicals D97001

Chemical
compound, drug

n-Decyl b-D-
Maltopyranoside (DM)

Glycon Biochemicals D99003

Chemical
compound, drug

Dodecyl-b-D-
maltoside (DDM)

Carl Roth CN26.5

Chemical
compound, drug

Anapoe-X-100
(Triton X-100)

Anatrace APX100

Chemical
compound, drug

Sodium cholate
hydrate

Sigma C1254

Chemical
compound, drug

1-palmitoyl-2-oleoyl-
glycero3-phospho-
choline (POPC)

Avanti Polar Lipids 850457P

Chemical
compound, drug

1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine
(DOPE)

Avanti Polar Lipids 850725P

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound, drug

1,2,-dioleoyl-sn-glycero-
3-phospho-L-serine (DOPS)

Avanti Polar Lipids 840035P

Chemical
compound, drug

1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-
N-(biotinyl)

Avanti Polar Lipids 870282P

Chemical
compound, drug

1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-
N-(lissamine rhodamine
B sulfonyl) (Rhd-PE)

Avanti Polar Lipids 810150P

Chemical
compound, drug

Ergosterol
(>95%, HPLC)

Sigma-Aldrich 45480

Chemical
compound, drug

ATP PanReac AppliChem A1348

Chemical
compound, drug

AlexaFluor488
maleimide

Thermo Fisher
Scientific

A10254

Chemical
compound, drug

DyLight 680
maleimide

Thermo Fisher
Scientific

46618

Chemical
compound, drug

Pierce Detergent
removal spin columns

Thermo Fisher
Scientific

87777

Chemical
compound, drug

Ubiquitin (WT),
yeast

Boston Biochem U-100Sc

Chemical
compound, drug

Ubiquitin (K0) LifeSensors SI209

Chemical
compound, drug

YEP broth Formedium CCM0410

Chemical
compound, drug

Yeast Nitrogen
Base (YNB)

US Biological
Life Sciences

C19032801

Chemical
compound, drug

CSM,-Ura Formedium DCS0161

Chemical
compound, drug

D-(+)-Galactose PanReac AppliChem A1131

Other HisPur NiNTA resin Thermo Fisher
Scientific

88223

Other Pierce High Capacity
Streptavidin Agarose

Thermo Fisher
Scientific

20361

Other Pierce Streptavidin
Magnetic Beads

Thermo Fisher
Scientific

88817

Other Novex DYNAL
Dynabeads
His-tag Isolation
and Pulldown

Thermo Fisher
Scientific

10103D

Strains used for protein expression
For protein expression in E. coli, BL21-CodonPlus (DE3)-RIPL competent cells (Agilent) were used.

Where indicated, BL21 (DE3) competent cells (NEB) were used instead. To express Doa10 in S. cere-

visiae, we used a doa10 deletion strain derived from BY4741.

Constructs
All sequences were from S. cerevisiae, except for SNARE proteins which were from rattus

norvegicus.

Doa10
As full-length DOA10 is toxic for E. coli (Mandart et al., 1994), the DOA10 sequence was split in

two parts and cloned into two separate plasmids, similarly to as described before (Swanson et al.,
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2001). Sequences coding for Doa10 (amino acids (aa) 1–468, Doa10-N) and Doa10 (aa 225–1319),

were both cloned into a pRS426-pGal1 plasmid (Mumberg et al., 1994) using XhoI/SpeI restriction

sites (plasmids #376 and #375, respectively). At the carboxy terminus, both constructs were

appended with a tobacco etch virus (TEV) protease cleavage site followed by a streptavidin-binding

peptide (SBP) tag (Keefe et al., 2001), in which the single lysine was mutated to arginine, and a

short sequence for sortase-mediated labeling with fluorescent dyes (Popp et al., 2009). The full

C-terminal tag for Doa10 had the sequence GSGENLYFQSGGGMDERTTGWRGGHVVEGLAGELE

QLRARLEHHPQGQREPLPETGG. A plasmid containing full-length Doa10 was subsequently gener-

ated in S. cerevisiae (DOA10 deletion strain) by homologous recombination. To do so, plasmid #375

was linearized (starting from Doa10 residue 225) and an N-terminal fragment was generated from

plasmid #376 (Doa10 residues 1–257) by PCR. The N-terminal fragment contained 80 to 100 nt over-

laps with the linearized plasmid. Both PCR-products were co-transformed into S. cerevisiae. Correct

homologous recombination was confirmed by sequencing of the PCR-amplified insert after prepara-

tion of total DNA of the generated strain (yAST112). The construct for expression of Doa10-C (aa

434–1319) contained an N-terminal SBP-SUMO* tag (Liu et al., 2008) and a C-terminal sortase

(LPETGG) tag.

Ubc6
UBC6 from S. cerevisiae and its variants were cloned into the K27SUMO vector using the SfoI restric-

tion site (Stein et al., 2014). This vector encodes an N-terminal His14-SUMO-tag. Ubc6 and its var-

iants were appended with a C-terminal LPETGG tag for sortase-mediated labeling. Expression

constructs for Ubc6 and its variants were generated by Gibson assembly (NEB) and site-directed

mutagenesis (NEB):

Ubc6SybTM contained the cytosolic Ubc6 domain (aa 1–231) fused to the sequence of the trans-

membrane (TM) domain of rat synaptobrevin 2 (Syb, aa 96–116). Vice versa, SybUbc6TM contained

the cytosolic part of Syb (aa 1–95) fused to the Ubc6 TM domain (aa 232–250). Constructs containing

a Syb TM domain contained a linker between the TM domain and the LPETGG tag for sortase label-

ing with the sequence GSGSATGSGGS.

To generate catalytically inactive Ubc6, the active-site Cys (C87) was mutated to Ala (Ubc6C87A).

Ub-Ubc6C87A and Ub-Ubc6C87A/SybTM contained ubiquitinV76 (aa 1–76) which was inserted

between the sequence encoding the His14-SUMO tag and the respective Ubc6 variant. For efficient

Ulp1-cleavage, a linker sequence (coding for GSG) was inserted between the His14-SUMO tag and

ubiquitin.

SUMO-Ubc6 contained a C-terminal TEV-cleavage site flanked by linker sequences which was

introduced between the Ubc6 TM domain and the LPETGG tag resulting in GSGS-ENLYFQS-

SGLPETGG.

Ubc6-SBP contained a C-terminal TEV-cleavage site separated from Ubc6 by a linker (GSGEN-

LYFQSGGG) followed by an SBP-tag and residues LPETGG for sortase-mediated labeling. The cod-

ing sequence for His14-SUMO-Ubc6-SBP was inserted into a pET39b(+) vector (Novagen) right after

the DsbA signal sequence.

Cue1
Cue1 was engineered with an N-terminal His14-SUMO-tag and a C-terminal TEV-cleavage site fol-

lowed by an SBP-tag separated from Cue1 by a linker (resulting in the same C-terminal tag as the

one for Ubc6-SBP). A short linker (coding for SGS) was introduced between the His14-SUMO tag and

Cue1. The coding sequence for this construct was inserted into the pET39b(+) vector (Novagen)

right after the DsbA signal sequence. After TEV-cleavage during purification, the sequence for the

C-terminal end of Cue1 is GSGENLYFQ.

Get3
The coding sequence for Get3 (and Get3D57N) was inserted into the K27SUMO vector using the SfoI

restriction site. The expression construct contained an N-terminal His14-SUMO tag.

Get3I193D was expressed from a pET28 vector (kind gift from Blanche Schwappach).
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SNAREs
All constructs for expression of SNAREs have been previously described (Hernandez et al., 2012;

Stein et al., 2007).

Construct Plasmid Number

Doa10 (aa 1–468, Doa10-N) in pRS426-pGal1 376

Doa10 (aa 225–1319) in pRS426-pGal1 375

Doa10 (aa 434–1319, Doa10-C) in pRS426-pGal1 557

Ubc6 in K27SUMO 343

Ubc6C87A in K27SUMO 682

Ub-Ubc6C87A in K27SUMO 702

SybUbc6TM in K27SUMO 509

Ubc6SybTM in K27SUMO 536

Ub-Ubc6C87A/SybTM in K27SUMO 815

Ubc6 (incl. C-terminal TEV cleavage site) in K27SUMO 508

Ubc6-SBP in pET39b(+) 633

Cue1 in pET39b(+) 672

Get3 in K27SUMO 504

Get3 D57N in K27SUMO 522

Get3 I193D Mateja et al., 2009

Syntaxin 1A 183–288, Syb2 49–96 in pETDuet-1 Stein et al., 2007

SNAP25Anocys in pET28a Fasshauer et al., 1999

Synaptobrevin 2 in pET28a Stein et al., 2007

Expression and purification of proteins
For expression of Doa10, yeast cells were grown in synthetic complete medium containing 2% (w/v)

Glucose and amino acid drop-out supplements at 30˚C (Formedium). An overnight culture (grown

for 24 hr) was diluted 1:50 into fresh medium. After 24 hr of growth, expression was induced by

addition of yeast extract, peptone and galactose to final concentrations of 1%, 2%, and 2% (w/v),

respectively. After 17–19 hr, the cells were harvested at 3000 x g, washed once with ddH2O, resus-

pended in a minimal amount of H2O and stored at �80˚C.

To prepare cell lysates, 150 g of cells were resuspended in 900 mL of cold H2O and incubated

with 2 mM DTT for 15 min on ice. All subsequent steps were done at 4˚C. The cells were pelleted at

3000 x g and resuspended in lysis buffer (20 mM HEPES/KOH pH 7.5, 5 mM potassium acetate, 600

mM mannitol, 0.5 mM EDTA). PMSF (1 mM) and Pepstatin A (2 mM) were added freshly. The cell sus-

pension was then added to a bead beating chamber (total volume 300 mL) filled up to 1/3 with zir-

konia beads. Cells were lysed in a Bead Beater (Biospec Products) with cycles of 20 s on and 2 min

breaks in between for 50 min. Beads were filtered off, and the lysate was centrifuged at 1500 x g for

10 min. The supernatant was subsequently centrifuged at 40,000 x g for 45 min in a Ti45 rotor. The

pelleted crude membrane fraction was resuspended in 200 mL lysis buffer by douncing and again

pelleted at 180,000 x g for 30 min. The pellet was resuspended in 40 mL buffer, frozen in liquid

nitrogen, and stored at �80˚C. The total protein concentration of the membrane fraction was deter-

mined using the Pierce660 nm Protein Assay (Thermo Scientific).

To purify SBP-tagged Doa10, the membrane fraction was solubilized with 1.3% (w/v) GDN (Ana-

trace) at a protein concentration of 3–4 mg/mL in 20 mM HEPES/KOH pH7.4, 300 mM potassium

chloride, 0.5 mM TCEP, 5 mM magnesium acetate, supplemented with 1 mM PMSF and 1 Pierce

cOmplete EDTA-free protease inhibitor cocktail (Roche) per 100 mL solubilization volume. After 1 hr

solubilization, insoluble material was pelleted at 40,000 rpm for 30 min in a Ti45 rotor. The superna-

tant was added to 4 mL Pierce High Capacity Streptavidin Agarose slurry (Thermo Fisher Scientific)

and incubated for 3 hr. The beads were filtered off and washed with 4 � 25 mL of wash buffer (20
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mM HEPES/KOH pH 7.4, 150 mM potassium chloride, 5 mM magnesium acetate, 0.5 mM TCEP, 150

mM GDN). Doa10 was eluted with wash buffer supplemented with 2 mM biotin. Doa10 was further

purified by sucrose density gradient ultracentrifugation. Gradients were prepared with two solutions

where the less dense solution contained GDN (solution A: 20 mM HEPES/KOH pH 7.4, 150 mM

potassium chloride, 2 mM magnesium acetate, 10% (w/v) sucrose, 0.5 mM TCEP, 100 mM GDN, solu-

tion B: 20 mM HEPES/KOH pH7.4, 150 mM potassium chloride, 2 mM magnesium acetate, 25% (w/

v) sucrose, 0.5 mM TCEP). Gradients were prepared using a gradient mixer (Gradient Master, Bio-

comp Instruments) at RT and kept at 4˚C. 500 mL sample was loaded on top of the gradient. After

centrifugation at 40,000 rpm for 19 hr in a SW41Ti rotor, the gradient was harvested in 500 mL frac-

tions. Doa10-containing fractions were concentrated with Amicon Ultra Centrifugal Filters (Merck)

using a 100 kDa cut-off. The same protocol was used for purification of SBP-tagged Doa10-N and

Doa10-C.

For bacterial expression, an overnight culture was diluted 1:50 into Terrific Broth and grown at

37˚C. At an OD600 of 0.5, the cells were shifted to 18˚C and expression was induced with 0.5 mM

IPTG. After approximately 20 hr of induction, cells were harvested at 4000 rpm, resuspended in

buffer Im30 (50 mM Tris/HCl pH8.0 (at 4˚C), 500 mM NaCl, 30 mM Imidazole) and stored at �20˚C.

Cells were lysed using a microfluidizer (17,000 psi, two passages). Immediately afterwards, 1 mM

PMSF was added. Cell debris and unbroken cells were pelleted (1500 x g, 10 min). A membrane

fraction was prepared by ultracentrifugation of the supernatant (40,000 rpm, 45 min, Ti45 rotor). The

pellet was resuspended in buffer Im30 by douncing, frozen in liquid nitrogen, and stored at �80˚C.

Ubc6 and its variants were purified as described (Vasic et al., 2020).

To purify Ubc6-SBP, an additional purification step was included to ensure that only full-length

Ubc6-SBP was purified. After size-exclusion chromatography, the protein was diluted to 0.5 mg/mL

and bound to Pierce High Capacity Streptavidin Agarose (Thermo Scientific). After washing the

beads with buffer containing 20 mM HEPES/KOH pH 7.4, 250 mM sodium chloride, 0.2 mM TCEP,

0.03% (w/v) n-dodecyl-b-D-maltopyranoside (DDM, Carl Roth), Ubc6-SBP was eluted with buffer sup-

plemented with 2 mM biotin.

To purify SUMO-Ubc6 (containing a C-terminal TEV cleavage site), protein was eluted from the

Ni-NTA resin with buffer containing 50 mM Tris/HCl pH 8.0 (at 4˚C), 500 mM sodium chloride, 0.03%

(w/v) DDM and 500 mM imidazole, and then further purified by size-exclusion chromatography

(Superdex 200), as for Ubc6.

To purify Get3, bacterial lysate was cleared by ultracentrifugation (40,000 rpm, 45 min, 4˚C, Ti45

rotor) and the supernatant incubated with Ni-NTA slurry (6 ml slurry for 6 L of culture) for 2 hr. Beads

were filtered off and washed with 4 � 50 mL buffer Im30 and 50 mL of buffer Im10 (20 mM Tris/HCl

pH8.0 (at 4˚C), 200 mM NaCl, 10 mM Imidazole). Get3 was eluted from beads by cleavage with Ulp1

as described above. The elution fractions were supplemented with 1 mM DTT and further purified

by size-exclusion chromatography using a Superdex 200 HiLoad16/60 column (GE Healthcare) equili-

brated with 20 mM HEPES/KOH pH 7.4, 200 mM NaCl, 1 mM DTT.

Uba1, Ubc7, Cdc48 and Ufd1/Npl4 were purified as described (Stein et al., 2014). Cue1 was

purified as described (Vasic et al., 2020).

To express the t-SNARE complex, plasmids encoding syntaxin-1a (aa 183–288), synaptobrevin-2

(aa 49–96) (pETDuet-1 vector) and SNAP-25A (pET28a vector) were co-transformed into BL21 (DE3)

E. coli cells (NEB) and expressed as described previously (Stein et al., 2007). Briefly, at an OD600 of

0.5, the cells were shifted to 18˚C and induced with 0.5 mM IPTG. After approximately 20 hr of

induction, the cells were harvested at 4000 rpm, resuspended in buffer Im8 (50 mM Tris/HCl pH8.0

at 4˚C, 500 mM NaCl, 8 mM Imidazole) and stored at �20˚C. After cell lysis using a microfluidizer in

the presence of 1 mM PMSF and Complete protease inhibitor, the lysate was cleared by ultracentri-

fugation (40,000 rpm, 30 min, Ti45 rotor). The pellet was solubilized in buffer Im8 supplemented

with 5% (w/v) sodium cholate (Sigma), 2 M urea, 200 mM sucrose and 1 mM PMSF (30 min, RT).

Insoluble material was pelleted by ultracentrifugation (40,000 rpm, 30 min, 4˚C, Ti45 rotor). HisPur

Ni-NTA resin (6 mL for 6 L of culture) was added to the supernatant and incubated for 3 hr at 4˚C

while rotating. Beads were filtered off and washed with 4 � 50 mL wash buffer (20 mM Tris/HCl pH

8.0 (at 4˚C), 500 mM NaCl, 8 mM imidazole, 200 mM sucrose, 2% (w/v) octyl glucoside (OG, Glycon

Biochemicals)). Protein was eluted with wash buffer supplemented with 400 mM Imidazole. 1 mM

DTT and 0.05 mg/mL of thrombin (100x stock prepared in 50% (w/v) glycerol) were added to the

elution fractions and incubated at 4˚C overnight. The solution was then diluted to a conductivity of
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15 mS/cm with buffer A (20 mM Tris/HCl pH7.4 (RT), 1 mM DTT, 200 mM sucrose, 2% (w/v) OG).

The protein was further purified by ion exchange chromatography on a MonoQ column (GE health-

care) equilibrated with 20 mM Tris/HCl pH7.4 (RT), 150 mM NaCl, 1 mM DTT, 200 mM sucrose, 2%

(w/v) OG and eluted in a gradient until 450 mM NaCl (elution at ~25 mS/cm).

ATP synthase (from Bacillus PS3) was expressed and purified as described previously

(Schenck et al., 2009; Suzuki et al., 2002). Shortly, ATP synthase was purified in the detergent

DDM via a His10-tag attached to the b subunit. After Ni-NTA affinity chromatography, the dialysis

step was omitted and the sample was directly further purified via ion exchange chromatography

(MonoQ). Detergent was exchanged to GDN subsequently by size exclusion chromatography

(Superose 6 16/60, equilibrated with 10 mM HEPES, 100 mM KCl, 5 mM MgCl2 and 50 mM GDN, pH

7.4). The protein was stored at 4˚C for up to two weeks.

To express Syb, a plasmid encoding His6-thrombin-Syb was transformed into BL21 (DE3) E. coli

cells (NEB). Expression and preparation of a membrane fraction were done as described above, in

buffer Im15 (50 mM Tris/HCl pH 8.0, 500 mM NaCl, 15 mM imidazole). The membrane fraction was

solubilized in buffer Im15 supplemented with 2.5% (w/v) sodium cholate for 30 min. After ultracentri-

fugation, solubilized material was incubated with Ni-NTA slurry (6 mL for 6 L culture) for 3 hr. Beads

were filtered off and washed with 2 � 50 mL wash buffer Im15 supplemented with 1.5% (w/v) sodium

cholate and subsequently with 4 � 50 mL wash buffer Im15 supplemented with 5 mM decylmalto-

side (DM, Glycon Biochemicals). Protein was eluted with buffer Im15 containing 400 mM imidazole

and 5 mM DM. The solution was dialyzed overnight against 10 mM MOPS, 50 mM NaCl, 1 mM DTT,

1 mM EDTA pH 7.0 (10 kDa MWCO), in the presence of 0.05 mg/mL thrombin. The protein was fur-

ther purified by ion exchange chromatography on a MonoS column (GE healthcare) equilibrated

with 10 mM MOPS, 50 mM NaCl, 1 mM EDTA and 1 mM DTT pH 7.0 and eluted in a salt gradient

to 500 mM NaCl.

Sortase-mediated labeling
Proteins were labeled at their C-terminal LPETGG tag with the previously described technique sor-

tase-mediated transpeptidation (Popp et al., 2009). A peptide with the sequence GGGC was

labeled at its cysteine residue with a maleimide dye. Peptide dissolved in 100 mM HEPES/KOH pH

7.4 was added to dye (DyLight680 maleimide or DyLight800 maleimide, Thermo Scientific) in 1.5-

fold molar excess. After labeling at RT for 2 hr, the reaction was stopped with 10 mM DTT. To label

peptide with AlexaFluor 488 C5 Maleimide (Thermo Scientific), peptide and dye were both dissolved

in 100 mM HEPES/KOH pH7.4 and then mixed in a 1:1 molar ratio. A pentamutant P94R/D160N/

D165A/K190E/K196T of SrtA from S. aureus was purified from E. coli (Chen et al., 2011).To label

proteins, 3-fold molar excess of labeled peptide, 10 mM CaCl2 and SortA were added to the pro-

tein. SortA was added to 1/7 of the total concentration of reactants (peptide and protein). After

labeling for 16–20 hr at 4˚C, the reaction was separated by size-exclusion chromatography.

Reconstitution into proteoliposomes
Preparation of protein-free liposomes
The following lipids were purchased from Avanti Polar Lipids: 16:0-18:1 PC (POPC, 1-palmitoyl-2-

oleoyl-glycero3-phosphocholine), 18:1 (D9-Cis) PE (DOPE, 1,2-dioleoyl-sn-glycero-3-phosphoethanol-

amine), 18:1 PS (DOPS, 1,2,-dioleoyl-sn-glycero-3-phospho-L-serine), 18:1 Biotinyl PE (Biotinyl-PE,

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl)), 18:1 Liss Rhod PE (Rhd-PE, 1,2-dio-

leoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)). Ergosterol (�95%,

HPLC) was purchased from Sigma-Aldrich.

Large unilamellar liposomes were prepared by reverse-phase evaporation as described

(Hernandez et al., 2012). Briefly, lipids were dissolved in chloroform and mixed at a molar ratio of

60:20:10:10 (POPC: DOPE: DOPS: Ergosterol). Chloroform was subsequently removed using a rotary

evaporator by lowering the pressure step-wise to 20mbar. The lipid film was then dissolved in 1 mL

diethyl ether (when preparing 1 mL of liposomes with a final concentration of 20 mM lipid) and 300

mL of buffer L (20 mM HEPES/KOH pH7.4, 150 mM potassium chloride, 5 mM magnesium acetate)

was added. The sample was sonicated for 1 min on ice (Branson Sonifier 450, 100% duty cycle,

microtip limit 1). Afterwards the ether was removed at 500 mbar. After 10 min, 700 mL of buffer L

was added and the pressure was gradually decreased to 100 mbar until diethyl ether was completely
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removed. The volume was adjusted to 1 mL with ddH2O. The resulting lipid suspension was

extruded through a polycarbonate filter (11 x through a 0.4 mM filter, 21x through a 0.1 mM filter)

using the Mini extruder kit (Avanti Polar Lipids). Protein-free liposomes were used for up to 2 weeks

after preparation. For pulldown experiments via co-reconstituted biotinylated lipids, lipids were

used in a molar ratio of 57.5:20:10:10:0.5:2 (POPC: DOPE: DOPS: Ergosterol: Rhd-PE: Biotinyl-PE).

Reconstitution of proteins into liposomes
To reconstitute proteins into liposomes, protein-free liposomes were mixed with detergent and pro-

teins and subsequently incubated for 1 hr at RT prior to detergent removal. The detergent concen-

tration used for solubilization can be described by the R-value (Rigaud and Lévy, 2003). The R-value

is defined as the ratio of the total detergent concentration above the critical micellar concentration

and the total lipid concentration (R = [Dtotal – DCMC]/[lipid]).

To co-reconstitute Ubc6 and t-SNARE, protein-free liposomes (4 mM final lipid concentration)

were mixed with OG (R-value of 2), proteins and buffer D (buffer L supplemented with 1 mM DTT).

t-SNARE and Ubc6 were reconstituted at a molar lipid: protein ratio of 1000 and 2000, respectively.

After incubation for 1 hr at RT, the detergent was removed by dialysis against a 1000 x volume of

buffer D at RT in two steps using dialysis cassettes (16 hr with 2000 kDa cut-off, 2 hr with 10,000 kDa

cut-off; Slide-a-Lyzer from Thermo Scientific). Biobeads (SM-2 resin, Bio-Rad) were added to the

buffer to bind OG (2 g/L). When liposomes contained Ubc6SybTM, Ubc6 and t-SNARE, both Ubc6

variants were reconstituted at a molar lipid: protein ratio of 2000.

To reconstitute Doa10 and Syb, protein-free liposomes (4 mM final lipid concentration) were

mixed with DM (R-value of 0.55), proteins and buffer T (buffer L supplemented with 0.1 mM TCEP).

Doa10 and Syb were reconstituted at a molar lipid: protein ratio of 5000 and 2000, respectively. For

ATP synthase, also a molar lipid: protein ratio of 5000 was used. For ubiquitination experiments,

Cue1 was co-reconstituted with Doa10 and Syb at a molar lipid: protein ratio of 20,000. After incu-

bation for 1 hr at RT, the detergent was removed by incubation with resin from Pierce detergent

removal spin columns (Thermo Scientific) in three subsequent steps (45 mg washed resin to 130 mL

reconstitution mix in each step). Resin incubation was performed while rotating the sample, at RT for

20 min each. Doa10 truncations were reconstituted at the same lipid: protein ratio, also when both

Doa10 truncations were co-reconstituted for the rescue experiment in Figure 5E,F and Figure 5—

figure supplement 2.

After reconstitution into separate liposomes, Ubc6 and Doa10 were subsequently co-reconsti-

tuted by SNARE-mediated fusion. Both liposomes sets were therefore mixed by diluting them 1:10

into buffer T (unless otherwise indicated) and incubated for 1 hr at 30˚C. To inhibit fusion, t-SNARE

liposomes were preincubated with 7-fold excess of a soluble Syb fragment (aa 1–95, Sybsol) for 5

min at RT prior to addition of Syb liposomes.

For the experiment in Figure 4, D and E, Doa10 was co-reconstituted with either Ubc6SybTM, Syb-

Ubc6TM, or Ubc6 directly in a 1-step protocol. For this protocol, Doa10 purified in DMNG (f.c. 0.5

mM) was used. Protein-free liposomes (10 mM final lipid concentration) were mixed with DMNG (R-

value of 1.5), proteins and buffer T. Ubc6 and Doa10 were both reconstituted at a molar lipid: pro-

tein ratio of 10,000. After incubation for 1 hr at RT, the detergent was removed by incubation with

Pierce detergent removal spin columns that were pre-washed with buffer T in three subsequent

steps (one spin column for 100 mL reconstitution mix in each step). Incubation was performed at RT

for 10, 20 and 30 min and the sample eluted by centrifugation at 3,500 rpm for 2 min in a table top

centrifuge. To reconstitute Ubc6 or its variants alone (without Doa10), protein-free liposomes (10

mM final lipid concentration) were mixed with OG (R-value of 2.0), proteins and buffer T. Ubc6 was

reconstituted at a molar lipid: protein ratio of 10,000. After incubation for 1 hr at RT, the detergent

was removed by adding resin from Pierce detergent removal spin columns in three subsequent steps

(40, 60, 60 mg resin to 160 mL reconstitution mix in step 1, 2 and 3, respectively). Resin incubation

was performed while rotating the sample, at RT for 20 min each and the sample eluted by centrifu-

gation at 3,500 rpm for 2 min in a table top centrifuge.

Flotation of liposomes
To test for reconstitution of proteins, liposomes were floated in a Nycodenz step gradient. Nyco-

denz stocks were prepared in buffer L. 50 mL of liposomes were mixed with 50 mL of 80% (w/v)
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Nycodenz and overlaid with 40 mL of 30% and 15% (w/v) Nycodenz and 40 mL of buffer L. The gra-

dients were ultracentrifuged at 50,000 rpm for 1 hr at 4˚C (S55-S rotor). The gradient was disas-

sembled in six fractions, starting from the top of the gradient. Fractions were analyzed by SDS-

PAGE.

Protease protection
To check the orientation of Ubc6 reconstituted into liposomes, trypsin protease was used. Lipo-

somes were diluted (1:10 in buffer D) and incubated with 6.6 mg/mL trypsin (Roche) at RT. The deter-

gent control contained in addition 1% Triton-X100 (TX100, Anatrace, Anapoe-X-100). The reaction

was stopped with 4 mM PMSF and samples were analyzed by SDS-PAGE.

The orientation of Doa10TEV-SBP or Doa10-NTEV-SBP in liposomes was determined by assessing the

accessibility of the C-terminal TEV-cleavage site to TEV-protease. Liposomes were diluted 1:10 into

buffer D and incubated with 10 mM TEV-protease at RT. The detergent control contained in addition

1% Triton-X100. The reaction was stopped by addition of SDS-sample buffer and samples were ana-

lyzed by SDS-PAGE and subsequent Western blotting against the SBP-tag. To determine the orien-

tation of SBP-SUMO*-Doa10-C, the accessibility of the N-terminal SBP-SUMO* to Ulp1* protease was

assessed (protocol as described above for TEV-protease).

The reconstitution quality of Ubc6 was assessed with a Ubc6 construct containing an N-terminal

SUMO tag and a C-terminal TEV-cleavage site followed by a fluorescent dye (SUMO-Ubc6). Lipo-

somes containing SUMO-Ubc6 and t-SNARE were diluted into buffer T 1:20 (f.c. 0.1 mM Ubc6). Ulp1

and/or TEV-protease were added to a f.c. of 10 mM each.

Pulldowns
For pulldown experiments via the SBP-tag of Doa10, 20 mL of the fusion reaction (supplemented

with 0.25 mg/mL bovine serum albumin (BSA)) were incubated with 20 mL of Pierce Streptavidin

Magnetic Beads (Thermo Scientific) prewashed with buffer B (buffer T supplemented with 0.25 mg/

mL BSA). After binding for 1 hr (rotating, RT), the supernatant of the binding reaction was taken off,

the beads washed three times with 100 mL of buffer B and bound proteins eluted with 20 mL of

buffer B supplemented with 2 mM biotin. Samples from input, supernatant and elution fractions

were analyzed by SDS-PAGE.

For pulldowns via the His-tag of ATP synthase, the fusion reaction was supplemented with 200

mM imidazole and 0.4 mg/mL BSA, and incubated with 20 mL magnetic Dynabeads (His-tag Isolation

and Pulldown, ThermoFisher Scientific) (f.c. of 0.2 mM Ubc6, 80 nM ATP synthase). After binding for

30 min (rotating, RT), the supernatant was removed. Samples of input and supernatant were ana-

lyzed by SDS-PAGE and immunoblotting for His-tagged b-subunit of ATP Synthase.

Assays for release by Doa10
Get3 capture assay
Liposomes were prepared with protein-free liposomes containing 2 mol% biotinyl-PE and 0.5 mol%

Rhd-PE and fused as described above. The fusion reaction was diluted 1:2 into buffer T (f.c.

Ubc6 = 0.1 mM) and incubated with an excess of Get3 (f.c. 10 mM). After incubation at RT for 16 hr,

the reaction was diluted to a f.c. of lipid of 0.2 mM (1:2 dilution) and 0.25 mg/mL BSA was added.

The diluted mix was then added to an equal volume of Pierce Streptavidin Magnetic beads (Thermo

Scientific, prewashed with buffer B). After binding for 1 hr, the supernatant was removed. Input and

supernatant samples were analyzed by SDS-PAGE, and the Rhodamine fluorescence measured as

described below.

For the turbidity assay, Ubc6 (in 0.03% (w/v) DDM) was diluted 1:25 into buffer L (f.c. of 1.8 mM

Ubc6) in the presence or absence of Get3 (f.c. 1.8 mM or 3.6 mM). The optical density at 360 nm was

measured using a UV-2401PC spectrophotometer (Shimadzu Corporation).

Protease protection assay
For this experiment, both sets of liposomes (SUMO-Ubc6, t-SNARE and Syb liposomes containing

no, full-length or truncated Doa10 versions) were diluted 1:5 for the fusion reaction. First, Ulp1 cleav-

age was performed (f.c. 2 mM Ulp1, 0.2 mM Ubc6, 0.08 mM Doa10). For the subsequent TEV-cleav-

age, the Ulp1-cleaved sample was diluted 1:2 and incubated with 10 mM TEV-protease. During TEV-
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cleavage, 0.5 mM DTT was present. Detergent controls contained 1% TX100. Reactions were

stopped by adding SDS sample buffer.

Antibody accessibility assay
AlexaFluor 488 fluorescence was measured in a Tecan Genios Pro microplate reader using 495/10

nm and 535/25 nm for excitation and emission, respectively. The fluorescence of 30 mL of the fusion

reaction was measured in a 96-well plate (Corning, REF 3686) with a f.c. of Ubc6 (labeled with A488)

of 0.2 mM. After the signal was stable, the measurement was stopped, anti-Alexa Fluor 488 poly-

clonal antibody (Invitrogen, #A-11094) was added (diluted 1:15) and the measurement started again.

After approx. 40 min, 1 mL TX100 (f.c. 1%) was added to solubilize the liposomes. To analyze the

fluorescence traces, the three measurements (equilibration, antibody and detergent addition) were

merged. The background (stabilized A488 signal after detergent addition) was subtracted from all

measurements. The fluorescence traces were subsequently normalized to the average signal of the

last 10 timepoints before antibody addition. To quantify the fraction of released Ubc6, the difference

between the normalized values of the samples with and without Doa10 30 min after antibody addi-

tion was calculated.

To test for the release of the Ubc6/Syb chimera, liposomes containing Doa10 directly co-reconsti-

tuted with A488-labeled Ubc6, Ubc6SybTM or SybUbc6TM were first subjected to a pulldown via the

SBP-tag of Doa10. Liposomes were diluted 1:8 (f.c. Ubc6 0.125 mM, 0.25 mg/mL BSA) and 50 mL of

diluted liposomes were added to 50 mL of Pierce Streptavidin Magnetic Beads (Thermo Scientific)

prewashed with buffer B. For the controls, Ubc6-only liposomes were also diluted 1:8 (in the pres-

ence or absence of 1:8 diluted Doa10-liposomes) and incubated with beads. After binding for 1 hr

(rotating, RT), the supernatant of the binding reaction was taken off, the beads washed three times

with 200 mL of buffer B and bound Doa10-liposomes eluted with 40 mL of buffer B supplemented

with 2 mM biotin. Samples from input, supernatant and elution fractions were analyzed by SDS-

PAGE. 30 mL of eluted fractions (Doa10-containing liposomes) were then added into a 96-well plate.

Liposomes lacking Doa10 (containing Ubc6, Ubc6SybTM or SybUbc6TM) were diluted 1:15 in buffer T.

The antibody quenching assay was then carried out as described above.

Ubiquitination assays
All ubiquitination reactions were performed at 30˚C in a thermocycler. The fusion reaction was

diluted 1:2 (f.c. of 0.1 mM Ubc6, 0.01 mM Cue1 and 0.04 mM Doa10). The following components

were used at the indicated concentrations unless stated otherwise: 0.1 mM Uba1 (E1), 1 mM Ubc7,

120 mM ubiquitin (from S. cerevisiae, R and D Systems) and 2.5 mM ATP. All reactions contained 0.1

mg/mL BSA. The ubiquitin mutant K0 (Lifesensors) is derived from human ubiquitin. Reactions were

stopped by adding reducing SDS-sample buffer and samples were analyzed by SDS-PAGE.

Analysis of ubiquitination reactions
To analyze the fraction of non-modified protein, the non-ubiquitinated band was quantified and nor-

malized to the 0 min timepoint. To analyze the ubiquitin chain profile, the fluorescence intensity was

quantified along a vertical axis starting from the top of the gel using the line scan function in ImageJ

(Figure 2B and Figure 5B). When different Ubc6-variants were compared (Ubc6 vs Ubc6SybTM), the

line scan values were normalized to the integral of the whole scan (Figure 5B), to account for differ-

ent sortase labeling efficiencies. To quantify the kinetics for generation of mono-, di-, tri- and tetrau-

biquitinated species, each band corresponding to one, two, three and four ubiquitins was quantified

for every time point and normalized to the non-ubiquitinated band at the 0 min timepoint (Fig-

ure 5—figure supplement 1D). To calculate the total number of ubiquitins transferred relative to

total Ubc6, the values for species modified with 1 to 4 ubiquitins obtained as above were summed

up for each timepoint (Figure 5D and Figure 5—figure supplement 2C).

Measuring extraction by the Cdc48-complex
Proteoliposomes were prepared with protein-free liposomes containing 2 mol% biotinyl-PE and 0.5

mol% Rhd-PE. Fusion and ubiquitination was carried out as described above. To immobilize lipo-

somes after ubiquitination, the ubiquitination reaction was diluted 1:2 to a final lipid concentration

of 0.2 mM total lipid (f.c. of 0.05 mM Ubc6) and BSA was added to a f.c. of 0.25 mg/ml. The diluted
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mix was then added to an equal volume of Pierce Streptavidin Magnetic Beads (Thermo Scientific,

prewashed with buffer B). After incubation for 1 hr at RT (rotating), the unbound fraction was

removed and the beads were subsequently washed 3 x with buffer B. The beads were then resus-

pended in the same volume of buffer B and 30 mL of the suspension aliquoted in a PCR-strip. The

buffer was removed and the beads resuspended in 1 x extraction mixes or 1 x SDS sample buffer. 1

x extraction mixes contained 0.25 mg/mL BSA and where indicated 0.1 mM Cdc48 (hexamer) and 0.1

mM Ufd1/Npl4. Beads were incubated for 30 min at 30˚C. The supernatant was removed (containing

extracted and soluble proteins). After washing the beads 3 x with buffer B, the bound proteins were

eluted by adding 30 mL of 1x SDS sample buffer. Samples of the supernatant and the elution frac-

tions were analyzed by SDS-PAGE. To quantify the liposome immobilization efficiency, the Rhoda-

mine fluorescence was measured in a Tecan Genios Pro microplate reader using 550/10 nm and

590/20 nm for excitation and emission, respectively. To quantify the protein immobilization effi-

ciency, the DyLight680 (Ubc6/Ub-Ubc6C87A) fluorescence was measured using the Odyssey scanner

(384-well plate, transparent bottom).

Analysis of extraction reactions
To quantify the extraction efficiency of Ub-Ubc6C87A relative to its ubiquitination status (Figure 3—

figure supplement 1G), bands corresponding to Ub-Ubc6C87A modified with 1 to 10 ubiquitins were

quantified separately and normalized to the corresponding band of the input sample (beads treated

with sample buffer).

To quantify the fraction of Ubc6 in the supernatant (Figure 3C,D), the fluorescence intensity for

Ubc6 modified with 0–5 ubiquitins and for Ubc6 modified with more than five ubiquitins was quanti-

fied by drawing a single rectangular box around the respective area using Image Studio and subse-

quently normalized to the Input (beads treated with 1 x SDS sample buffer). For Ub-Ubc6C87A, the

unmodified band was counted as monoubiquitinated.

Experiments with Ubc6-SBP
To reconstitute Ubc6-SBP into proteoliposomes, Ubc6-SBP was preincubated with a 1.25-fold molar

excess of tetrameric streptavidin (NEB) for 15 min at RT in the presence of 0.03% DDM to allow for

complex formation. The reconstitution conditions were otherwise the same as for the co-reconstitu-

tion of Ubc6 and t-SNARE (with 2 mM Ubc6-SBP and 2.5 mM Streptavidin).

To assess the orientation of Ubc6-SBP in liposomes (Figure 6—figure supplement 1B), a TEV

protease protection assay was carried out as described above, except that liposomes were diluted

1:5.

A biotinylated nanobody was used for the biotinylated protein control. To test if the biotinylated

nanobody (anti-GFP, construct for expression kindly provided by Dirk Görlich; purified and biotiny-

lated essentially as described in Pleiner et al., 2018 is completely biotinylated (Figure 6—figure

supplement 1C), biotinylated nanobody was supplemented with 0.25 mg/mL BSA and incubated

with magnetic streptavidin beads that were prewashed with buffer B or prewashed with buffer B

supplemented with 10 mM biotin. After binding for 45 min at RT, samples of input and supernatant

fractions were analyzed by SDS-PAGE and stain-free scanning using a GelDoc EZ Imager.

For the antibody accessibility assay, the fusion reaction was first incubated with 1.5 mM biotin or

biotinylated protein for 10 min at RT, before the fluorescence measurements were started as

described above. A 6-fold molar excess of biotin/biotinylated protein over streptavidin was used.

Fluorescence traces were processed and analyzed as described above.

To check if biotinylated protein is capable of releasing Streptavidin from Ubc6-SBP, a flotation

assay was used. Liposomes containing Ubc6-SBP and t-SNARE were incubated with Streptavidin for

5 min at RT (f.c. 0.9 mM Streptavidin, 1.4 mM Ubc6-SBP). A 10-fold excess of biotin or biotinylated

nanobody was then added and after incubation for another 5 min, a sucrose density gradient (40%

(w/v), 30% (w/v), 15% (w/v) and buffer T layer) was assembled. Flotation was carried out as described

above. Samples were analyzed by SDS-PAGE and stain-free scanning using a GelDoc EZ Imager.

Streptavidin and Ubc6-SBP levels were quantified using ImageJ. Intensity values for Streptavidin

were normalized to Ubc6-SBP levels and subsequently to the buffer control.

To measure extraction of Ubc6-SBP by the Cdc48-complex using the antibody accessibility assay,

fusion and ubiquitination reactions were carried out as described above, except that liposomes were
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diluted 1:5 instead of 1:10 for the fusion reaction. After 30 min of ubiquitination (total volume of 30

ml with f.c. 0.2 mM Ubc6-SBP, 0.08 mM Doa10, 0.02 mM Cue1, 0.1 mM Uba1, 1 mM Ubc7, 120 mM

ubiquitin and 2.5 mM ATP), additional 2.5 mM ATP were added and the fluorescence measurement

was started (plate reader preheated to 30˚C). After 10 min, anti-A488 antibody (1:15 diluted) and 3

mL of 10 x Cdc48/UN mix were added. 10 x Cdc48/UN mix contained 2 mM Cdc48 (hexamer), 2 mM

Ufd1/Npl4 as well as 1 mM ATP. To quantify the fraction of extracted Ubc6-SBP, fluorescence traces

were processed as described above and the difference between the normalized values of samples

with and without Cdc48/UN 30 min after antibody addition was calculated.

To test, if streptavidin stays in the liposome lumen during extraction (Figure 6E,F), samples were

floated after the extraction assay in a Nycodenz step gradient as described above. The samples

were prepared with the following modifications: To ensure sufficient detection levels, the liposomes

were diluted 1:4 for the fusion reaction. The ubiquitination reaction (f.c. 0.3 mM Ubc6, 0.12 mM

Doa10, 0.03 mM Cue1, 0.1 mM Uba1, 1 mM Ubc7, 120 mM ubiquitin and 2.5 mM ATP) was carried

out as described above. After 30 min of ubiquitination, the extraction assay was performed in the

plate reader as described above, in the presence of 0.3 mM Cdc48/UN complex (f.c. Ubc6 = 0.25

mM). After 30 min, 2 mM biotin was added to 50 mL sample, a Nycodenz step gradient was assem-

bled and the flotation carried out as described above. Samples were analyzed by SDS-PAGE and

stain-free scanning using a GelDoc EZ Imager. Streptavidin levels were quantified using ImageJ.

Intensity values were normalized to the sample without Cdc48/UN.

Analysis
Samples were mixed with SDS sample buffer (stock used as 3 x contained 12% (w/v) SDS, 30% (w/v)

glycerol, 0.05% Coomassie blue G-250, 150 mM Tris/HCl pH 7.0% and 6% (v/v) ß-mercaptoethanol

for reducing sample buffer (Schägger, 2006). Samples were heated at 70˚C (Streptavidin-containing

samples were boiled) and analyzed by SDS-PAGE using CRITERION TGX stain-free precast gels (Bio-

Rad).

Fluorescent proteins were detected using an Odyssey scanner (Li-Cor) for DyLight680 and

DyLight800-labeled proteins, and an FLA-700 fluorescence scanner (Fujifilm) for AlexaFluor488-

labeled proteins. To detect streptavidin, samples were run on CRITERION TGX stain-free precast

gels (Bio-Rad) and scanned with a GelDoc EZ Imager (Bio-Rad). Colloidal Coomassie staining was

used (Dyballa and Metzger, 2009). SBP-tagged proteins were analyzed by western blotting where

indicated. After transfer on a nitrocellulose membrane using the Trans-Blot Turbo Transfer System

(Bio-Rad), the membrane was blocked with 5% skim milk powder (dissolved in TBS-T) for 1 hr at RT.

A 1:2500 dilution of anti-SBP antibody (clone 20, mouse monoclonal, MAB10764, Millipore), and a

1:15,000 dilution of secondary antibody (goat anti-mouse, IRDye 800 CW or IRDye 680RD) were

used for detection. For the analysis of His-tagged ATP synthase, the nitrocellulose membrane was

blocked with 2% (w/v) BSA (dissolved in PBS containing 0.1% (v/v) Tween and 0.1% (v/v) Triton-X-

100). A 1:500 dilution of anti-His6 tag antibody (Dia-900, Clone13/45/31-2, mouse monoclonal, Dia-

nova), and a 1:15,000 dilution of secondary antibody (goat anti-mouse, IRDye 800 CW) were used

for detection. Antibodies were diluted in the respective blocking buffer. Gels were quantified using

ImageStudio Lite (Li-Cor). Fiji (ImageJ) was used for quantification of ubiquitin chain profiles (plot

profile function) as well as streptavidin (gel analyzer function) (Schindelin et al., 2012).
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Figure 1. Retrotranslocation of Ubc6 by Doa10. (A) SNARE-mediated co-reconstitution of Ubc6 and Doa10. Engineered versions of SNAREs involved in

synaptic exocytosis were used, that is a Syntaxin 1A fragment, SNAP-25A, and Synaptobrevin 2 (Pobbati et al., 2006). Sybsol, a cytoplasmic fragment of

Figure 1 continued on next page
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Figure 1 continued

Synaptobrevin (Syb). SybD84, Syb mutant that results in a docked state (Hernandez et al., 2012). See Figure 1—figure supplement 1, E to K for

characterization of liposomes. (B) Working hypothesis for retrotranslocation by Doa10. (C) Membrane release of Ubc6 in the presence of Get3.

Fluorescently labeled Ubc6 was co-reconstituted with Doa10 by SNARE-mediated fusion (+ Doa10), as shown in (A). Where indicated, Ubc6 liposomes

were fused to liposomes lacking Doa10 (– Doa10), or fusion was inhibited with Sybsol (Inhibited). After incubation with the indicated Get3 variants or

buffer, liposomes were immobilized (Figure 1—figure supplement 2B). Input and supernatant samples were analyzed by SDS-PAGE and fluorescence

scanning. Final concentrations (f.c.): 0.1 mM Ubc6, 40 nM Doa10, 10 mM Get3. (D) Quantification (mean ± SD) of three independent experiments as in

(C). (E) Retrotranslocation of Ubc6, measured as quenching of a C-terminal AlexaFluor488 (A488) label by an antibody. Liposomes were generated as

shown in (A). Where indicated, liposomes lacked Doa10 (– Doa10), or co-reconstitution was inhibited by using SybD84 (docked). Arrows indicate

addition of the quenching antibody or of solubilizing amounts of detergent (Triton X-100). F.c.: 0.2 mM Ubc6, 80 nM Doa10. (F) Quantification

(mean ± SD) of four experiments as in (E). The fraction of accessible dye after 30 min was compared between conditions with and without Doa10. F,

normalized fluorescence. (G) Retrotranslocation of Ubc6, measured by a protease protection assay. Ubc6 with an N-terminal SUMO tag (SUMO-Ubc6)

and a TEV protease cleavage site between the C-terminus and the fluorescent dye was used. Arrow heads indicate cleavage sites for Ulp1 and TEV

protease. SUMO-Ubc6 liposomes with or without Doa10 were incubated with Ulp1. Ulp1-treated liposomes were then incubated with buffer or TEV

protease. Indicated reactions contained detergent to solubilize liposomes (det). Aliquots were taken at the indicated times and analyzed by SDS-PAGE

and fluorescence scanning. F.c. during incubation with TEV protease: 0.1 mM Ubc6, 40 nM Doa10, 10 mM TEV protease. (H) Quantification (mean ± SD)

of the fraction of Ubc6 and SUMO-Ubc6 inaccessible to TEV protease, from three experiments as in (G). Band intensities from samples treated with TEV

protease were normalized to the corresponding band intensities of samples without TEV protease.
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Figure 1—figure supplement 1. Quality control of liposomes. (A) Coomassie Blue stained SDS-PAGE showing purification of Ubc6 from an E. coli

membrane fraction by immobilized nickel ion chromatography and gel filtration. The protein was expressed with an N-terminal H14-SUMO tag that was

Figure 1—figure supplement 1 continued on next page

Schmidt et al. eLife 2020;9:e56945. DOI: https://doi.org/10.7554/eLife.56945 4 of 24

Research article Biochemistry and Chemical Biology Cell Biology

Published work

223



Figure 1—figure supplement 1 continued

cleaved with Ulp1 on beads. Samples of the membrane fraction before and after solubilization are denoted as Total and Input, respectively. (B)

Chromatogram for gel filtration of Ubc6 on a Superdex 200 column. Peak fractions were analyzed by SDS PAGE, as shown in (A). (C) Coomassie Blue

stained SDS-PAGE showing purification of SBP-tagged Doa10 from S. cerevisiae by streptavidin-affinity chromatography and gel filtration (Superose six

column). SBP, streptavidin binding peptide. (D) Chromatogram for gel filtration of Doa10 purification shown in (C). Shaded area indicates fractions that

were pooled. (E) Liposomes with co-reconstituted t-SNARE and Ubc6, fluorescently labeled with DyLight680 (DL680, left), and liposomes with co-

reconstituted Doa10 and synaptobrevin (Syb, right) were subjected to a Nycodenz step gradient. After ultracentrifugation, the gradient was fractionated

and analyzed by SDS-PAGE and Coomassie Blue staining (top) and fluorescence scanning (bottom). (F) Liposomes containing Syb and truncated

versions of Doa10 used in Figure 4, Figure 5 and Figure 5—figure supplement 2 were analyzed as in (E). (G) Analysis of SNARE-dependent

interaction of liposomes. Liposomes containing Syb and different SBP-tagged Doa10 versions were mixed with Ubc6 (fluorescently labeled)/t-SNARE

liposomes in the absence (Fused) or presence (Inhibited) of Sybsol. Liposomes were then immobilized using streptavidin magnetic beads, washed, and

eluted with biotin. Input, unbound, and elution fractions were analyzed by SDS-PAGE followed by Western blotting using an anti-SBP antibody to

detect Doa10 variants (top), or fluorescence scanning to detect Ubc6 (bottom). Numbers below unbound fractions indicate the depletion of Ubc6

relative to input fractions. Doa10-N, and -C, refer to variants of Doa10 used in Figure 4, Figure 5 and Figure 5—figure supplement 2. Doa10-FL, full

length Doa10. (H) Liposomes containing different Doa10 versions were subjected to either TEV protease (Doa10TEV-SBP and Doa10-NTEV-SBP) or a mutant

version of Ulp1 (SBP-SUMO*Doa10-C Liu et al., 2008) for the indicated times in the absence or presence of Triton-X100 (det), and analyzed by SDS-PAGE

and Western blotting using an anti-SBP antibody. Protease cleavage sites are only accessible in correctly oriented Doa10. (I) Liposomes containing

fluorescently labeled Ubc6 and t-SNARE were subjected to a tryptic digest for the indicated times in the absence or presence of Triton-X100 (det).

Samples were analyzed by SDS-PAGE and fluorescence scanning. The percentage of protected protein is indicated at the bottom. (J) Evaluation of

Ubc6 reconstitution by protease protection. Liposomes containing Ubc6 with an N-terminal SUMO-moiety, and a TEV cleavage site between the TM

anchor and the fluorescent dye (SUMO-Ubc6), were incubated with either TEV protease, Ulp1, or both proteases for the indicated times. Samples were

analyzed by SDS-PAGE and fluorescence scanning. Ulp1 cleavage results in a size-shift in SDS-PAGE, TEV cleavage removes the dye, indicating

correctly and wrongly oriented protein, respectively. Accessibility to both proteases indicates improper reconstitution. (K) Quantification (mean ± SD) of

the fraction of non-cleaved Ubc6 from three experiments as in (J). 46.8 ± 3.1% of SUMO-Ubc6 was protected from TEV protease and is thus right-side

out oriented. 45.5 ± 1.6% of SUMO-Ubc6 was protected from Ulp1 protease and is thus wrong-side out oriented. This indicates that a fraction of

SUMO-Ubc6 (7.7 ± 3.5%) was not protected from either protease. In line with this, 26.9 ± 2.5% Ulp1-cleaved Ubc6 was also cleaved by TEV protease,

corresponding to 14.7 ± 1.4% of total Ubc6. Thus, we estimate that about 10% of Ubc6 is not properly reconstituted.
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Figure 1—figure supplement 2. Retrotranslocation in the presence of Get3. (A) Aggregation of Ubc6 in detergent-free buffer. Ubc6 in 0.03% (w/v)

dodecyl maltoside was diluted 25-fold (f.c. 1.8 mM) into buffer containing no, 1.8 mM or 3.6 mM Get3. Optical density was measured at 360 nm. (B)

Immobilization efficiency of liposomes used in Figure 1C,D was quantified (mean ± SD) via co-reconstituted fluorescent Rhodamine-phosphatidyl

ethanolamine (PE). n = 3 independent experiments. (C) Release of Ubc6 in the presence of Get3, as in Figure 1C,D, but for shorter incubation times.
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Figure 1—figure supplement 3. Co-reconstitution with ATP synthase. (A) Liposomes with co-reconstituted ATP synthase and synaptobrevin (Syb) were

subjected to a Nycodenz step gradient. After ultracentrifugation, the gradient was fractionated and analyzed by SDS-PAGE and Coomassie Blue

staining. Bacillus PS3 ATP synthase is a multiprotein complex with a subunit composition of a3b3gde ab2c20 (Guo et al., 2019). (B) Analysis of co-

reconstitution efficiency of ATP synthase and Ubc6 upon SNARE-mediated fusion. Liposomes containing Syb and ATP synthase (tagged with His10-tag

at b-subunit) were mixed with Ubc6 (fluorescently labeled)/t-SNARE liposomes in the absence (Fused) or presence (Inhibited) of Sybsol. Liposomes were

then immobilized via the His-tag of ATP synthase with magnetic beads. Input (I) and unbound (U) fractions were analyzed by SDS-PAGE followed by

Western blotting using an anti-His antibody to detect ATP synthase (top), or fluorescence scanning to detect Ubc6 (bottom). Numbers below unbound

fractions indicate the depletion of Ubc6 relative to input fractions. (C) Retrotranslocation of Ubc6 in the presence of Doa10 or ATP synthase, measured

as quenching of a C-terminal AlexaFluor488 (A488) label by an antibody. Where indicated, liposomes lacked Doa10 or ATP synthase (no multipass TM

protein). Arrows indicate addition of the quenching antibody or of solubilizing amounts of detergent (Triton X-100). F.c.: 0.2 mM Ubc6, 80 nM Doa10/80

nM ATP synthase. (D) Quantification (mean ± SD) of four experiments as in (C). The fraction of accessible dye after 30 min was compared between

conditions with and without a multipass TM protein. F, normalized fluorescence.
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Figure 2 continued on next page

Schmidt et al. eLife 2020;9:e56945. DOI: https://doi.org/10.7554/eLife.56945 8 of 24

Research article Biochemistry and Chemical Biology Cell Biology

Published work

227



Figure 2 continued

was inhibited by using SybD84 (Docked). For each reaction, a 60 min sample in the absence of ATP is shown. Samples were analyzed by SDS-PAGE and

fluorescence scanning. (B) Analysis of ubiquitin-chain length on Ubc6 from an experiment as in (A). Line-scans were performed on fluorescence images

for the complete reaction and in the absence of Ubc7 at t = 30 min. Approximate molecular weights are indicated on top. # ub. denotes number of

ubiquitin moieties attached. (C) Quantification (mean ± SD) of the fraction of unmodified Ubc6 from three experiments as in (A). (D) Time course of

ubiquitination of Ub-Ubc6C87A compared to Ubc6 WT and Ubc6C87A in the presence of Doa10, Cue1, and Ubc7. Concentrations and analysis as in (A).

(E) Quantification (mean ± SD) of the fraction of unmodified Ubc6 variants from three experiments as in (D). (F) Model for ubiquitination of Ubc6. Ubc6

autoubiquitination activity results in transfer of ubiquitin from its active site cysteine to a non-cysteine residue (Weber et al., 2016). In the presence of

Doa10, this activity is enhanced and Ubc6 is multi-monoubiquitinated. Ubc7/Cue1 are then required to form polyubiquitin chains on monoubiquitinated

Ubc6.
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Figure 2—figure supplement 1. E3—independent and -dependent ubiquitination of Ubc6. (A) Time course of ubiquitination of Ubc6 in the absence of

Ubc7/Cue1 using either WT ubiquitin or a ubiquitin mutant with all Lys mutated to Arg (K0). 40 nM Doa10 and 0.1 mM Ubc6 in liposomes were

incubated with 0.1 mM E1, 120 mM ubiquitin, and 2.5 mM ATP. A 60 min sample in the absence of ATP is shown for each reaction. Samples were

analyzed by SDS-PAGE and fluorescence scanning. (B) Doa10-independent autoubiquitination of Ubc6. Liposomes containing fluorescently labeled

Ubc6 were incubated with E1, ubiquitin, and ATP. Samples at indicated time points were analyzed by SDS-PAGE under non-reducing (left) and

reducing conditions (right) and fluorescence scanning. Reactions lacking ATP are denoted as –ATP. Final concentrations: 0.1 mM Ubc6, 0.1 mM Uba1,

120 mM ubiquitin, 2.5 mM ATP. SB, SDS sample buffer. (C) Time course of ubiquitination of Ubc6 in the absence of Ubc7/Cue1. Ubc6 liposomes

containing or lacking Doa10 were used. Where indicated, co-reconstitution was inhibited using either a soluble Syb fragment (Sybsol) or a Syb mutant

(SybD84). Concentrations and analysis as in (A). (D) Quantification (mean ± SD) of the fraction of unmodified Ubc6 from three experiments as in (C). (E)

Ub-Ubc6C87A/t-SNARE liposomes were subjected to a Nycodenz step gradient. After ultracentrifugation, the gradient was fractionated and analyzed by

SDS-PAGE and Coomassie Blue staining (top) and fluorescence scanning (DL680, bottom).
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Figure 3. Cdc48-mediated Membrane Extraction of Ubc6. (A) Extraction of Ubc6 by Cdc48 and Ufd1/Npl4 (UN). After ubiquitination, liposomes were

immobilized (Figure 3—figure supplement 1,A to D). One bead equivalent was removed, and bound protein was eluted with SDS sample buffer

(Input). Beads were then incubated with the indicated components. Soluble (S) and membrane-bound (M) material were analyzed by SDS-PAGE and

fluorescence scanning. Colored bars indicate categorization of ubiquitin chain length as used for quantification in (C) and (D). For better visibility,

bottom and top gel parts are scaled differently. See Figure 3—figure supplement 1E for uncut image. Final concentrations: 50 nM Ubc6, 20 nM

Doa10, 0.1 mM Cdc48 hexamer, 0.1 mM Ufd1 and Npl4. (B) As in (A), but with Ub-Ubc6C87A instead of Ubc6. See Figure 3—figure supplement 1F for

uncut image. (C) Quantification (mean ± SD) of three experiments as in (A) and (B). Ubiquitinated species were categorized according to ubiquitin chain

length, as indicated in (A) and (B). The signal in the soluble fraction was normalized to that in the input. (D) Quantification (mean ± SD) of three

experiments as in (A), when ubiquitination was performed in the absence of Ubc7.
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Figure 3—figure supplement 1. Cdc48-mediated extraction. (A) Samples from ubiquitination and immobilization under conditions described in

Figure 3A. Liposomes containing Ubc6, Doa10 and Cue1 were incubated with E1, ubiquitin, and ATP, with or without Ubc7. After 20 min, the

Figure 3—figure supplement 1 continued on next page
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Figure 3—figure supplement 1 continued

ubiquitination reaction was stopped by adding EDTA. Liposomes were then immobilized to streptavidin magnetic beads. Input (I) and unbound (U)

fractions were analyzed by SDS-PAGE and fluorescence scanning. (B) Samples from ubiquitination and immobilization under conditions described in

Figure 3B. As in (A), but with Ub-Ubc6C87A instead of Ubc6 and ubiquitination in presence of Ubc7. (C) Quantification (mean ± SD) of protein

immobilization efficiency from three experiments as in (A) and (B). (D) Quantification (mean ± SD) of the efficiency of liposome immobilization in

experiments described in Figure 3A,B, measuring the fluorescence of Rhodamine-PE that was co-reconstituted into liposomes. Rhodamine content of

Input and Unbound fraction from immobilization reaction (as in (A) and (B)) as well as of the soluble fraction after extraction (as in Figure 3A,B) was

determined. n = 3 independent experiments. (E) Uncut image with uniform scaling of Figure 3A. (F) Uncut image with uniform scaling of Figure 3B. (G)

Comparison of extraction efficiency of Ub-Ubc6C87A modified with ubiquitin chains of different length as shown in Figure 3B.
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Figure 4. Structural Determinants for Retrotranslocation. (A) Retrotranslocation of Ubc6 by Doa10 variants, as measured by accessibility of a

fluorescence quenching antibody to a C-terminal A488 dye on Ubc6, as described in Figure 1E. Ubc6 liposomes containing the indicated Doa10

variants were used. Doa10-N, residues 1–468; Doa10-C, residues 434–1319. Arrows indicate addition of antibody or detergent. Final concentrations (f.

c.): 0.2 mM Ubc6, 80 nM Doa10 variants. (B) Quantification (mean ± SD) of three experiments as in (A). The fraction of accessible dye after 30 min was

compared between conditions with the indicated Doa10 variant and without Doa10. F, normalized fluorescence. (C) Retrotranslocation of Ubc6 by

Doa10 variants, as measured by accessibility of TEV protease to the C-terminus of Ubc6, as described in Figure 1G. SUMO-Ubc6 liposomes with either

Doa10-N or Doa10-C were treated with Ulp1 to identify right-side out oriented Ubc6. TEV protease was added and samples at different time

points were analyzed by SDS-PAGE and fluorescence scanning. Quantification as in Figure 1H, but only for Ulp1-cleaved Ubc6. F.c. during incubation

with TEV protease: 0.1 mM Ubc6, 40 nM Doa10 variants, 10 mM TEV protease. (D) Retrotranslocation of Ubc6 variants measured as in (A). A488-labeled

Ubc6, Ubc6SybTM, or SybUbc6TM were directly co-reconstituted with Doa10 because SybUbc6TM was incompatible with SNARE-mediated co-reconstitution.

Liposomes containing Doa10 were affinity-purified for this experiment (Figure 4—figure supplement 1A,B). (E) Quantification (mean ± SD) of three

experiments as in (D). The fraction of accessible dye after 30 min was compared between conditions with and without Doa10.
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Figure 4—figure supplement 1. Antibody accessibility assay for Ubc6/Syb chimera. (A) Doa10 liposomes directly co-reconstituted with fluorescently

labeled Ubc6SybTM or SybUbc6TM were subjected to a Nycodenz step gradient. After ultracentrifugation, the gradient was fractionated and analyzed by

SDS-PAGE and Coomassie Blue staining (top) and fluorescence scanning (bottom). The asterisk indicates a dimer of Ubc6SybTM that occurred in some

sortase mediated labeling reactions of this construct. (B) Affinity-purification of Doa10-SBP liposomes for experiment in Figure 4D using streptavidin

beads. Inputs (I), unbounds (U) and biotin-elutions (E) were analyzed by SDS-PAGE and by either Western Blot using an anti-SBP antibody (Doa10-SBP),

or fluorescence scanning (Ubc6/Syb chimera). As an indication of the specificity of the pull-down, we also tested for binding of liposomes lacking

Doa10, and for co-purification of Ubc6 liposomes, when Doa10-SBP and Ubc6 were reconstituted in separate liposome sets. Numbers at the bottom

indicate the percentage of Ubc6 in the unbound fraction. Note that different intensities are due to different labeling efficiencies. (C) Liposomes

containing t-SNARE, Ubc6SybTM and Ubc6, either fluorescently labeled on Ubc6SybTM or Ubc6, were subjected to a Nycodenz step gradient. After

ultracentrifugation, the gradient was fractionated and analyzed by SDS-PAGE and Coomassie Blue staining (top) and fluorescence scanning (bottom).

The asterisk indicates a dimer of Ubc6SybTM that occurred in some sortase mediated labeling reactions of this construct. (D) Antibody accessibility assay

with liposomes containing both, Ubc6 and Ubc6SybTM, and with or without Doa10. In separate liposomes populations, A488 was either attached to Ubc6

Figure 4—figure supplement 1 continued on next page
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Figure 4—figure supplement 1 continued

or Ubc6SybTM. Arrows indicate addition of antibody or solubilizing detergent. Final concentrations: 0.2 mM for Ubc6 and Ubc6SybTM, 80 nM Doa10. (E)

Quantification (mean ± SD) of three experiments as in (D). The fraction of accessible dye after 30 min was compared between conditions with and

without Doa10. F, normalized fluorescence.
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Figure 5. Structural Determinants for Ubiquitination. (A) Time course of ubiquitination of Ub-Ubc6C87A or Ub-Ubc6C87A/SybTM by Doa10 in the presence

of Cue1/Ubc7. For each reaction, a 60 min sample in the absence of ATP is shown. Samples were analyzed by SDS-PAGE and fluorescence scanning.

Final concentrations: 40 nM Doa10, 10 nM Cue1, 1 mM Ubc7, 100 nM Ubc6 variants, 100 nM E1, 120 mM ubiquitin, and 2.5 mM ATP. See Figure 5—

figure supplement 1A for quantification of unmodified Ubc6 variants. (B) Comparison of ubiquitin-chain length on Ub-Ubc6C87A or Ub-Ubc6C87A/SybTM.

Figure 5 continued on next page
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Figure 5 continued

Line-scans were performed on fluorescence images of two representative gel samples (30 min timepoint) as in (A). Approximate molecular weights are

indicated on top. # Ub., number of ubiquitin moieties attached. (C) Time-course of Ubc6 WT or Ubc6SybTM ubiquitination in the absence of Ubc7/Cue1.

Analysis and concentrations as in (A). See Figure 5—figure supplement 1C for quantification of unmodified Ubc6 variants. (D) Quantification

(mean ± SD) of total ubiquitin-transfer to Ubc6 or Ubc6SybTM from three experiments as in (C). Intensities of Ubc6 variants with one to four ubiquitin

moieties attached were determined as described in Figure 5—figure supplement 1D, summed up for each time point and normalized to total Ubc6 in

the reaction. (E) Time course of ubiquitination of Ub-Ubc6C87A by Doa10 variants in the presence of Cue1/Ubc7. Liposomes contained Ub-Ubc6C87A and

either full-length Doa10, only Doa10-N, or both Doa10-N and -C. Analysis and concentrations as in (A). (F) Quantification (mean ± SD) of unmodified

Ub-Ubc6C87A from three experiments as in (E).
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Figure 5—figure supplement 1. Ubiquitination of Ubc6/Syb chimera. (A) Quantification (mean ± SD) of the fraction of unmodified Ub-Ubc6C87A or Ub-

Ubc6C87A/SybTM from three experiments as in Figure 5A. (B) Liposomes with t-SNARE co-reconstituted with either Ubc6SybTM or Ub-Ubc6C87A/SybTM
(fluorescently labeled) were subjected to a Nycodenz step gradient. After ultracentrifugation, the gradient was fractionated and analyzed by SDS-PAGE

Figure 5—figure supplement 1 continued on next page
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Figure 5—figure supplement 1 continued

and Coomassie Blue staining (top) and fluorescence scanning (bottom). (C) Quantification (mean ± SD) of the fraction of unmodified Ubc6 or Ubc6SybTM
from three experiments as in Figure 5C. (D) Quantification (mean ± SD) of mono-, di-, and tetra-ubiquitinated Ubc6 species relative to total Ubc6 from

three experiments as in Figure 5C. (E) Time course of E3-independent autoubiquitination of Ubc6 and Ubc6SybTM. Liposomes containing the indicated

Ubc6 variants (100 nM) were incubated with 100 nM E1, 120 mM ubiquitin, and 2.5 mM ATP. A 60 min sample in the absence of ATP is shown for each

reaction. Samples were analyzed by SDS-PAGE and fluorescence scanning. (F) Quantification (mean ± SD) of the fraction of unmodified Ubc6 or

Ubc6SybTM from three experiments as in (E).
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Figure 5—figure supplement 2. Ubc6 ubiquitination by Doa10 variants. (A) Time course of Ubc6 ubiquitination in the presence of different Doa10

variants in the absence of Ubc7/Cue1. Indicated liposomes were incubated with 100 nM E1, 120 mM ubiquitin, and 2.5 mM ATP (f.c. 100 nM Ubc6, 10

nM Cue1, and 40 nM for Doa10-variants). A 60 min sample in the absence of ATP is shown for each reaction. Samples were analyzed by SDS-PAGE and

fluorescence scanning. (B) Quantification (mean ± SD) of the fraction of unmodified Ubc6 from three experiments as in (A). (C) Quantification

(mean ± SD) of total ubiquitin-transfer relative to Ubc6 from three experiments as in (A). Intensities of Ubc6 with one to four ubiquitin moieties attached

were summed up for each time point and normalized to total Ubc6 in the reaction, as described in Figure 5D and Figure 5—figure supplement

1D.
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Figure 6. Effect of a Luminal Domain on Retrotranslocation. (A) Retrotranslocation of Ubc6 with a C-terminal streptavidin binding peptide (SBP),

reconstituted in complex with streptavidin, was measured by accessibility of a fluorescence quenching antibody to a C-terminal A488 dye on Ubc6, as

described Figure 1E. Liposomes were incubated with buffer, biotin or a biotinylated protein prior to addition of the antibody. Final concentrations: 0.2

Figure 6 continued on next page
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Figure 6 continued

mM Ubc6, 80 nM Doa10, 0.25 mM streptavidin, 1.5 mM biotin or biotinylated protein. (B) Quantification (mean ± SD) of three experiments as in (A). The

fraction of accessible dye after 30 min was compared between conditions with and without Doa10. F, normalized fluorescence. (C) Effect of Cdc48 and

Ufd1/Npl4 (UN) on retrotranslocation of Ubc6-SBP in complex with streptavidin, measured using the antibody accessibility assay as in (A). Prior to the

fluorescence measurement, liposomes were incubated with ubiquitination mix with or without Ubc7. Arrows indicate when antibody, with or without

Cdc48/UN, or detergent were added. Final concentrations: 0.17 mM Ubc6-SBP, 68 nM Doa10, 0.17 mM hexameric Cdc48, Ufd1, and Npl4. See

Figure 6—figure supplement 1F for gel samples of ubiquitination reaction. (D) Quantification (mean ± SD) of three experiments as in (C). The fraction

of accessible dye after 30 min was compared between conditions with and without Cdc48/UN. In addition, experiments lacking ubiquitin or with the

Cdc48 mutant E588A were quantified. (E) Determination of liposome-encapsulated streptavidin after extraction. Samples from experiments as in (D)

were taken at t = 30 min. Biotin was added, and liposomes floated in a Nycodenz gradient. Co-floating streptavidin was detected in SDS-PAGE using

stain-free technology. Two replicates are shown for each condition. (F) Quantification (mean ± SD) of the relative amount of streptavidin co-floating

from three experiments as in (E). Each data point represents the mean of two replicates as shown in (E).
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Figure 6—figure supplement 1. Liposomes with Ubc6-SBP and streptavidin. (A) Liposomes containing t-SNARE and fluorescently labeled Ubc6-SBP in

complex with streptavidin were subjected to a Nycodenz step gradient. After ultracentrifugation, the gradient was fractionated and analyzed by SDS-

PAGE and Coomassie Blue staining (top), fluorescence scanning (middle), and using stain-free dye technology (bottom) to distinguish between

streptavidin and Syntaxin, which is not visible with this technique as it lacks tryptophan residues. (B) The orientation of Ubc6-SBP in liposomes was

assessed by testing for accessibility of TEV-protease to the TEV-cleavage site between the Ubc6 TM anchor and the SBP-tag. Liposomes were

incubated with buffer or TEV protease with or without TX-100 (det) for the indicated times. Samples were analyzed by SDS-PAGE and fluorescence

scanning. Numbers at the bottom indicate the fraction of protein right-side out oriented. (C) Streptavidin affinity pulldown of biotinylated protein in the

presence and absence of biotin showing complete biotinylation of the protein. Samples of Input (In) and unbound (Ub) fractions were analyzed by SDS-

PAGE and scanning of the gel using stain-free dye technology. (D) Streptavidin was added to liposomes containing fluorescently labeled Ubc6-SBP.

After addition of buffer, biotin, or biotinylated protein, liposomes were floated in a sucrose step gradient. The top fraction of the gradient was analyzed

by SDS-PAGE and the gel scanned using stain-free dye technology to visualize streptavidin. Ubc6 gives a strong signal here, because the fluorescent

dye is also detected with the scanner used. (E) Quantification of co-floating streptavidin from two experiments as in (D). Streptavidin signal was first

normalized to Ubc6-SBP signal and then normalized to the signal in buffer only control. (F) Ubiquitination of fluorescently labeled Ubc6-SBP. Samples of

the ubiquitination reaction from experiments as in Figure 6C were analyzed by SDS-PAGE and fluorescence scanning.
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