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Summary 

Communities in arid environments are especially vulnerable to global change because they experience 

highly unpredictable environmental conditions. The fate of communities in an uncertain future may be 

elucidated by understanding the drivers of these communities. The interplay between community driv-

ers may be unravelled by using approaches based on functional traits because traits describe plant 

strategies and the responses of communities to environmental changes. Furthermore, inter- and intra-

specific trait variability provides the necessary cues to identify survival strategies of desert plants un-

der fluctuating environmental conditions. However, studying desert plant communities is challenging 

due to the spatial and temporal heterogeneity of arid environments. Modelling approaches support and 

complement empirical trait-based approaches in exploring desert plant communities and their drivers 

and dynamics in changing arid environments. 

The overarching aim of this thesis was to explore intra- and inter-specific variability of func-

tional traits in arid environments and to investigate how this variability affects the ability of plants to 

tolerate aridity stress and succeed in competition with their neighbours. To address this aim, I devel-

oped, implemented and analysed a spatially explicit individual- and trait-based simulation model, con-

ducted a simulation experiment, analysed data from model simulations and empirical experiments and 

synthesized the literature on trait-based models and metamodelling approaches. My research was fo-

cused on annual plant communities dominated by the True Rose of Jericho (Anastatica hierochuntica 

L.) in the Negev desert in Israel. 

According to the review in chapter 1, trait-based models are a suitable method to predict 

changes in community patterns under global change and to understand the underlying mechanisms of 

community assembly and dynamics. Combining modelling and trait-based approaches overcomes 

technical challenges, scaling problems, and data scarcity. Specifically, a combination of trait-based 

approaches and individual-based modelling was recommended to simplify the parameterization of 

models and to capture plant-plant interactions at the individual level, and to explain community 

dynamics. 
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In chapter 2, in line with the major claim of chapter 1, the spatially explicit trait- and 

individual-based ATID-model was developed, implemented and analysed to explore how community 

dynamics arise from plant traits and the interactions among plants and with their environment. The 

sensitivity analysis of the model highlighted plant functional traits as key drivers of community 

dynamics and indicated that environmental factors were less important in the model. The outlined 

traits included both those traits that are involved in plant-plant interactions, such as relative growth 

rate and maximum biomass, and those that promote tolerance to abiotic stress, such as dormancy and 

germination probability. Among the environmental factors, the most influential factors were soil water 

availability and precipitation. The special role of functional traits in the community dynamics of desert 

annual plants indicates the importance of trait-based strategies as an adaptation to the stressful arid 

environment. 

Chapter 3 addresses the results from a simulation experiment that was conducted in the ATID-

model. This experiment explored the influence of functional traits involved in two survival strategies 

defined in the study as ‘protective-competition’ and ‘escape-colonization’ strategies on community 

dynamics. These strategies differed not only in seed size and the number of seeds, but also in the plant 

functional traits related to competition and survival, which were highlighted in the sensitivity analysis 

of the model from chapter 2. Merging the colonization-competition trade-off with escape in time and 

space into one strategy set provided a more realistic representation of species because the merged 

strategies related to the entire plant life cycle.  

To gain more understanding on empirical trait distributions, in chapter 4 data on intraspecific 

trait variability and trait spaces of the desert annual plant A. hierochutica from a nethouse experiment 

were analysed. High salinity had significant effects on the average values of plant functional traits. 

Additionally, salinity stress affected the intraspecific trait spaces differentially with respect to the envi-

ronmental conditions of the site of origin. Trait spaces of the populations originating from the same 

site but exposed to different salt stress levels became more dissimilar with increasing environmental 

aridity. Thus, intraspecific trait variability and salinity effects turned out to be essential in revealing 

population- and community-level processes in deserts and should be considered in future versions of 

the ATID-model. 
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In support of the future development of the ATID-model developed in chapter 2, common 

metamodel types and the purposes of their usage for individual-based models were reviewed and eval-

uated in chapter 5. The review considered 40 metamodels applied for sensitivity analysis, calibration, 

prediction and scaling-up of individual-based models and can be used as a guide for the implementa-

tion and validation of metamodels.  

Overall, this thesis, and particularly the ATID-model analyses, highlights how trait-based 

modelling approaches can contribute to understanding the interplay between key drivers of desert 

plant communities in arid environments. The accompanying analysis of the nethouse experiment and 

critical literature reviews outline future extensions of the model and the ways to overcome the tech-

nical challenges and data scarcity identified in this thesis. Moreover, this thesis advocates for more 

intensive studies of the strategies of desert annual plants to survive in temporally and spatially hetero-

geneous environments with a focus on plant functional traits. Thus, the modelling framework present-

ed in this thesis provides the basis for future research on the fate of communities in arid environments 

under global change. 
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Zusammenfassung  

Modellierung der Variabilität von Pflanzen-Traits auf Populations- und Lebensgemeinschafts-

ebene in ariden Gebieten mit Umweltveränderungen 

Lebensgemeinschaften in ariden Gebieten sind angesichts globaler Umweltveränderungen besonders 

anfällig, da sie höchst unvorhersagbaren Umweltbedingungen ausgesetzt sind. Das Schicksal von Ge-

meinschaften in einer ungewissen Zukunft kann durch das Verständnis der Triebkräfte dieser Gemein-

schaften aufgeklärt werden. Das Zusammenspiel der Triebkräfte der Gemeinschaften kann mit Hilfe 

von Ansätzen entschlüsselt werden, die auf funktionalen Merkmalen (Traits) basieren, weil sie Pflan-

zenstrategien und die Reaktionen der Gemeinschaften auf Umweltveränderungen beschreiben können. 

Darüber hinaus liefert die inter- und intraspezifische Variabilität der Traits die notwendigen Anhalts-

punkte für die Identifizierung von Überlebensstrategien von Wüstenpflanzen unter wechselhaften 

Umweltbedingungen. Die Erforschung von Wüstenpflanzengemeinschaften könnte jedoch aufgrund 

der räumlichen und zeitlichen Heterogenität der ariden Umweltbedingungen eine Herausforderung 

darstellen. Modellierungsansätze unterstützen und ergänzen empirische, trait-basierte Ansätze bei der 

Erforschung von Wüstenpflanzengemeinschaften und ihrer Triebkräfte und Dynamik in sich verän-

dernden ariden Gebieten. 

Das Gesamtziel dieser Arbeit war es, die intra- und interspezifische Variabilität der funktiona-

len Traits in ariden Umgebungen zu erforschen und zu untersuchen, wie sich diese Variabilität auf die 

Fähigkeit von Pflanzen auswirkt, Trockenstress zu tolerieren und in der Konkurrenz mit ihren Nach-

barn erfolgreich zu sein. Um dieses Ziel zu erreichen, habe ich ein räumlich-explizites individuen- und 

trait-basiertes Simulationsmodell entwickelt, implementiert und analysiert, ein Simulationsexperiment 

durchgeführt, Daten aus empirischen Experimenten analysiert und einen Überblick der Literatur zu 

trait-basierten Modellen und Metamodellierungsansätzen zusammengestellt. Meine Forschung basiert 

auf Daten zu annuellen Pflanzengemeinschaften in der Wüste Negev in Israel, die von der Echte Rose 

von Jericho (Anastatica hierochuntica) dominiert werden. 
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Die Literaturzusammenschau in Kapitel 1 offenbart, dass trait-basierte Modelle eine geeignete 

Methode sind, um Veränderungen in den Mustern von Gemeinschaften unter globalen Veränderungen 

vorherzusagen und die zugrunde liegenden Mechanismen der Zusammensetzung und Dynamik von 

Lebensgemeinschaften zu verstehen. Durch die Kombination von Modellierung und trait-basierten 

Ansätzen lassen sich technische Herausforderungen, Skalierungsprobleme und Datenknappheit über-

winden. Insbesondere wurde eine Kombination aus trait-basierten Ansätzen und individuenbasierter 

Modellierung empfohlen, um die Parametrisierung der Modelle zu vereinfachen, Interaktionen zwi-

schen Pflanzen auf individueller Ebene zu erfassen und die Gemeinschaftsdynamik zu erklären. 

Eine Forderung aus Kapitel 1 umsetzend wurde in Kapitel 2 das räumlich-explizite, trait- und 

individuenbasierte ATID-Modell entwickelt, implementiert und analysiert, um zu untersuchen, wie 

Gemeinschaftsdynamiken aus Pflanzentraits und Interaktionen von Pflanzen untereinander und mit 

ihrer Umwelt entstehen. Die Sensitivitätsanalyse des Modells hob die funktionalen Traits von Pflanzen 

als Schlüsselfaktoren der Gemeinschaftsdynamik hervor, wobei den Umweltfaktoren im Modell eine 

relativ geringere Bedeutung zugewiesen wurde. Die sensitivitätverursachenden Traits umfassten so-

wohl solche Traits, die an den Pflanze-Pflanze-Interaktionen beteiligt waren, wie zum Beispiel die 

relative Wachstumsrate und maximale Biomasse, als auch solche, die die Toleranz gegenüber abioti-

schem Stress fördern, wie die Keimruhe und Keimungswahrscheinlichkeit. Unter den Umweltfaktoren 

waren die Verfügbarkeit von Bodenwasser und Niederschlag die einflussreichsten Faktoren. Die be-

sondere Rolle von funktionalen Traits in der Gemeinschaftsdynamik einjähriger Wüstenpflanzen zeigt 

die Bedeutung trait-basierter Strategien als Anpassung an die harschen Bedingungen in ariden Gebie-

ten. 

Kapitel 3 befasst sich mit den Ergebnissen eines Simulationsexperiments, das mit dem ATID-

Modell durchgeführt wurde. Dieses Experiment untersuchte den Einfluss funktionaler Traits auf die 

Gemeinschaftsdynamik, die bei zwei Überlebensstrategien eine Rolle spielen, die in der Studie in ei-

nem neuen Strategiekonzept als "Schutz-Konkurrenz"- und "Flucht-Kolonisierungs"-Strategien defi-

niert wurden. Diese Strategien unterschieden sich nicht nur in der Samengröße und der Anzahl der 

Samen, sondern auch in bestimmten Pflanzentraits, die mit Konkurrenz und Überleben zusammenhän-
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gen und die in der Sensitivitätsanalyse des Modells aus Kapitel 2 hervorgehoben worden waren. Die 

Integration der Konzepte des Kolonisierung-Konkurrenz-Trade-offs und des Entkommens in Zeit und 

Raum in einem neuen Strategiekonzept ergab eine realistischere Darstellung der Arten, da die inte-

grierten Strategien den gesamten Lebenszyklus der Pflanze berücksichtigen. 

Um ein besseres Verständnis empirischer Trait-Verteilungen zu erlangen, wurden in Kapitel 4 

Daten zur intraspezifischen Traitvariabilität und zu Trait-Räumen der annuellen Wüstenpflanze A. 

hierochutica aus einem Gewächshausversuch analysiert. Hohe Salzkonzentrationen hatten signifikante 

Auswirkungen auf die Durchschnittswerte der funktionalen Traits der Pflanzen. Zusätzlich beeinfluss-

te Salzstress die intraspezifischen Trait-Räume unterschiedlich in Bezug auf die Umweltbedingungen 

des Ursprungsortes der Pflanzen. Die Trait-Räume der Populationen, die vom gleichen Standort 

stammten, aber unterschiedlichen Salzstress-Niveaus ausgesetzt waren, wurden mit zunehmender Ari-

dität unähnlicher. Daher erwiesen sich die intraspezifische Trait-Variabilität und die Salzeffekte als 

wesentlich für die Aufdeckung von Prozessen auf Populations- und Lebensgemeinschaftsebene in 

Wüsten und sollten in zukünftigen Versionen des ATID-Modells berücksichtigt werden. 

Zur Unterstützung der zukünftigen Entwicklung des in Kapitel 2 entwickelten ATID-Modells 

wurden in Kapitel 5 Metamodelltypen und ihre Anwendungsbereiche in der individuenbasierten Mo-

dellierung überprüft und bewertet. Die Überprüfung berücksichtigte 40 Metamodelle, die für die Sen-

sitivitätsanalyse, Kalibrierung, Vorhersage und Skalierung von individuenbasierten Modellen einge-

setzt werden können und als Leitfaden für die Implementierung und Validierung von Metamodellen 

dienen können. 

Insgesamt beleuchtet diese Arbeit und insbesondere die Analysen des ATID-Modells, wie 

trait-basierte Modellierungsansätze zum Verständnis des Zusammenspiels der Schlüsseltriebkräfte von 

Wüstenpflanzengemeinschaften in ariden Umgebungen beitragen können. Die begleitende Analyse 

des Gewächshausexperiments und die kritischen Literaturübersichten dienen als Grundlage für zu-

künftige Erweiterungen des Modells und die in dieser Arbeit identifizierten Wege zur Überwindung 

technischer Herausforderungen und Datenknappheit. Darüber hinaus empfiehlt diese Dissertation eine 

intensivere Untersuchung der Strategien annueller Wüstenpflanzen für das Überleben unter zeitlich 
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und räumlich heterogenen Umweltbedingungen mit besonderem Schwerpunkt auf funktionalen Pflan-

zen-Traits. Somit bietet das in dieser Arbeit vorgestellte Grundmodell die Basis für zukünftige For-

schungen über das Schicksal von Lebensgemeinschaften in ariden Gebieten unter dem Einfluss globa-

ler Umweltveränderungen. 
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General introduction 

Arid environments experience changes at different levels. Besides the global climate changes that af-

fect most of the environments and their inhabitants across the globe (IPCC, 2018), the organisms in 

arid environments are exposed to spatiotemporal heterogeneity in limiting environmental factors 

(Chesson et al., 2004; Loik et al., 2004). This heterogeneous character of the environment largely de-

termines the existence of arid communities, causing the development of a variety of strategies by liv-

ing organisms to cope with the unpredictable environmental conditions (Chesson, 2000). Plants are 

sessile organisms and thus highly dependent on their environment, as the adults cannot easily escape 

an environment that has suddenly become unfavourable (Venable and Lawlor, 1980). Desert plant 

strategies have contributed to the survival of arid communities in the past and, thus, might play an im-

portant role in their survival in face of global changes (Salguero-Gómez et al., 2012).  

One of the ways to describe plant strategies and their functions in a community is through 

trait-based approaches (Westoby et al., 2002; Wright et al., 2004; McGill et al., 2006; Violle et al., 

2007). In this case, each strategy would be translated to a set of functional traits that can be involved 

in trade-offs (Messier et al., 2017). Trait-based approaches link organismal, morphological and phys-

iological characteristics to functions such as growth, reproduction and survival (Violle et al., 2007). 

Thus, by observing, measuring and analysing functional traits, conclusions can be drawn on what kind 

of strategy an organism applies to succeed in a given environment (Reich et al., 2003; Clark et al., 

2012). However, the majority of research in functional ecology is focused on species-specific func-

tional traits (McGill et al., 2006; Suding and Goldstein, 2008; Albert et al., 2010) or grouping species 

into functional types (McIntyre et al., 1995; Lavorel et al., 1997; Pausas, 1999) based on shared sets of 

traits. Hence, intraspecific trait variability has long been largely ignored (Bolnick et al., 2011; Violle 

et al., 2012) although it underlies the plasticity of species (Turcotte and Levine, 2016) and might ex-

plain their ability to adapt to changing environments (Lepš et al., 2011; Jung et al., 2014) (see also 

chapter 4). In some cases, for example, in harsh environments, the importance and amplitude of intra-

specific trait variability can be even larger than of interspecific trait variability (Read et al., 2017). 
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Thus, trait variability at different levels might be a key to understanding the survival and prospering of 

plant communities in changing arid environments (Albert et al., 2017; Des Roches et al., 2018). 

The mechanisms underlying the survival of plants in arid environments remain understudied. 

One of the reasons for this gap in knowledge lies in the challenge to capture long-term community 

processes under heterogeneous environmental conditions in the framework of short-term empirical 

studies (Herben and Wildová, 2012; Chamberlain et al., 2014). Accompanying empirical studies with 

modelling approaches allows researchers to overcome spatial and temporal constraints and investigate 

the fate of simulated communities over decades. Moreover, modelling in ecology can extend and 

deepen empirical studies by contributing to the understanding of the underlying community mecha-

nisms and to the development of new ecological theory (van der Putten et al., 2009; Meyer et al., 

2009). Additionally, modelling tools promise lower risk of damage to natural plant communities and 

often lower resource requirements. Thus, supporting empirical studies of arid communities with mod-

elling approaches appears to be a promising avenue for current and future investigation. Although a 

number of models have been created that are devoted to different aspects of arid environments (Howes 

and Abrahams, 2003; Reynolds et al., 2004; Li et al., 2018), surprisingly, only few models explicitly 

consider arid vegetation (Venable and Lawlor, 1980; King and Roughgarden, 1982; Chen and Reyn-

olds, 1997; James et al., 2005; Gerlein-Safdi et al., 2018; Wang et al., 2018) or specifically plant 

communities (McAuliffe, 1988). Plant community models mainly exist as a special case of global 

models (Reick et al., 2013). The simulation model ATID developed in the course of this thesis con-

tributes to filling this gap (see also chapters 2 and 3). 

Combining trait-based approaches with tools of ecological modelling (Garrard et al., 2013; 

Weiss et al., 2014) seems to be an appropriate way to study plant communities in arid environments 

(see also chapters 1, 2 and 3). Trait-based approaches describe interactions between organisms in 

terms of traits, and the inherent link of traits to organismal functions provides an insight into mecha-

nisms of population and community dynamics (Shipley et al., 2006; Lamarque et al., 2014). Traits can 

represent both a response to environmental changes and an effect on community properties (Lavorel et 

al., 1997b; Lavorel and Garnier, 2002). This is reflected in the separation into response traits and ef-
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fect traits. Incorporated into a modelling framework, effect traits serve as an input to the model and 

provide insights how different combinations of traits form plant strategies and community properties. 

Furthermore, response traits can be an output of a model reflecting how environmental changes shape 

the community (chapter 1). The integration of plant functional traits with modelling approaches is in-

tuitive in the form of individual-based models (Grimm and Railsback, 2005), because individuals are 

the carriers of traits. Individual-based models capture ecological processes via individual interactions 

with each other and the environment, which leads to the emergence of population- and community-

level dynamics (DeAngelis and Grimm, 2014). Each individual in an individual-based model is asso-

ciated with a set of traits, some of which can be linked to an organismal function, i.e. be functional 

traits (Violle et al., 2007). Moreover, individual-based models are usually well equipped to simulate 

spatial and temporal heterogeneity of environments. A few studies have successfully incorporated this 

combined approach to pursue goals such as exploring plant growth and population dynamics (Bown et 

al., 2007; Taubert et al., 2012), plant-plant interactions and invasions (Radny and Meyer, 2018) as 

well as community assembly (Pachepsky et al., 2007) and dynamics (May et al., 2009; Seifan et al., 

2012; Weiss et al., 2014) (see also chapter 1). 

However, elaborated individual- and trait-based models also experience some limitations. The 

main limitations are requirements of high computing power for calculations and simulations and em-

pirical data for their parameterization and calibration. These limitations of ecological modelling can be 

tackled with the support of adjacent disciplines. The demand for computing power of procedures such 

as sensitivity analysis, calibration and scaling-up can be mitigated with the implementation of meta-

models (Kleijnen and Sargent, 2000; Mertens et al., 2017) (see also chapter 5). Lack of empirical data 

can be overcome by coupling modelling efforts with corresponding data collections and empirical ex-

periments (van der Putten et al., 2009; Herben and Wildová, 2012). In this way, more precise informa-

tion on the links between functional traits and their environment (McGill et al., 2006; Webb et al., 

2010) can be obtained as well as on the characteristic trait distributions and the size of trait spaces 

(Mason et al., 2005) of the modelled species or communities (see also chapter 4).  
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The overarching aim of my thesis was two-fold: 1) to explore intra- and inter-specific variabil-

ity in functional traits in arid environments and 2) to investigate how trait variability affects the re-

sponse of plants to competitive pressure and abiotic stress. To tackle this complex aim, I combined 

different methods such as a literature review on trait-based modelling (chapter 1) and one on meta-

modeling approaches (chapter 5), the development and analysis of a spatially explicit individual- and 

trait-based simulation model (chapters 2 and 3), and the analysis of data from empirical experiments 

(chapter 4). My thesis contributes to the empirical-modelling cooperation project “Population- and 

community-level plant trait variability in changing arid environments”. 

For purposes of strategic modelling and model parameterization and calibration, I used data on 

functional traits and environmental factors from the Negev desert in Israel. This warm desert is charac-

terised by high aridity with a mean annual precipitation below 80 mm at the study sites (Berkowicz et 

al., 1995). In spite of these unfavourable conditions, the annual species Anastatica hierochuntica L. 

(Brassicaceae), the True Rose of Jericho, is widely spread in the Negev desert and dominant in some 

of its plant communities (Gutterman, 1994). The success of the species may partly be due to its ‘pro-

tective’ strategy of seed dispersal that keeps most of the seeds on the plant over a long time and dis-

perses them in small portions when the conditions are favourable (Friedman and Stein, 1980). Field 

observations conducted in different parts of the Negev desert (Fig. 1) demonstrate that A. hierochunti-

ca establishes its populations under environmental conditions that greatly differ in their precipitation, 

aridity, salinity and topography (Hegazy and Kabiel, 2007; Eshel et al., 2017). Moreover, A. hiero-

chuntica grows in species-rich communities and mono-specific communities, demonstrating at the 

same time high plasticity in size and phenology. Therefore, communities dominated by A. hierochun-

tica were chosen as a target for this research.  
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Figure 1. Research sites (from top left to bottom centre: Timna, Shaharut, Shefech Zohar, Meishar and Uvda) across the 

Negev desert with annual plant communities dominated by Anastatica hierochuntica (bottom right). Pictures were provided 

by the research group of Prof. Merav Seifan. 

 

To achieve the overarching aim of my thesis I conducted five interconnected research projects 

with my co-authors. The results of these projects were prepared, submitted or already published as 

manuscripts and represent the five main chapters of my thesis. 

Chapter 1. Trait-based modelling in ecology: a review of two decades of research. 

This chapter is published in the journal “Ecological Modelling” and presents applications of 

trait-based models in ecology in the form of a systematic review. Special attention was paid to defini-

tions and terminology of trait-based approaches and opportunities for cross-discipline exchange of the 

corresponding methods. This chapter also highlighted the advantages of combining the trait- and indi-

vidual-based approach for plant community studies. This led to the development of the trait- and indi-

vidual-based simulation model ATID, which is described in chapter 2. 
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Chapter 2. Combining trait- and individual-based modelling to understand desert plant 

community dynamics. 

This chapter is published in the journal “Ecological Modelling”. The main goal of this re-

search was to develop a spatially explicit two-species trait- and individual-based simulation model. 

The aim of the model was to identify the plant traits and environmental factors that drive the dynamics 

of a community of desert annuals. The chapter contains a detailed model description, a proof-of-

principle simulation, and a comprehensive sensitivity analysis. The proof-of-principle simulation was 

extended into a systematic design and analysis of simulation experiments in chapter 3.  

Chapter 3. The success of plant survival strategies under spatial and temporal heteroge-

neity in warm deserts: a simulation experiment 

This chapter presents scenario analyses of the model developed in chapter 2 to explore and 

compare two survival strategies of annual plants in deserts under four simulated environmental scenar-

ios. Model scenarios differed in precipitation regimes and topographical characteristics, yielding four 

scenarios with all combinations of high and low spatial and temporal heterogeneity. The scenario 

analysis provided insights into the success of plant survival strategies in a two-species community. 

These strategies were defined by combining the competition-colonization trade-off (Levins and Cul-

ver, 1971; Tilman, 1994) and escape-in-time versus escape-in-space seed strategies (Venable and 

Lawlor, 1980). 

Chapter 4. Intra-specific trait variability in desert annual plant communities 

In this chapter, intraspecific trait variability, trait spaces and their responses to changes in sa-

linity in dependence on the environment of origin were investigated based on data obtained from a 

nethouse experiment with A. hierochuntica. The nethouse experiment was mainly conducted by M. 

F.Arroyave Martinez at Ben-Gurion University of the Negev. This data analysis contributes to future 

extensions of the model developed in chapter 2 by filling the information gaps on the distribution of 

functional traits values at the population level and effects of high salinity on average trait values and 

trait spaces. 

Chapter 5. Metamodels for evaluating, calibrating and applying agent-based models: A 

review 



 

 

General introduction 

 

15 
 
 

This chapter covers the results of a literature review and expert assessment on metamodelling 

approaches. It was compiled in cooperation with a group of young scientists applying their expertise 

on ecological modelling. The review was led by B. Pietzsch and published in the “Journal of Artificial 

Societies and Social Simulation”. As stressed in chapter 1 and chapter 2, individual-based models of-

ten have to compromise between the level of detail and computing power limitations. Metamodels can 

assist in operating individual-based models to achieve such goals as prediction, calibration, sensitivity 

analysis and scaling-up with relatively small computing power requirements. This review facilitates 

the choice of a suitable metamodel depending on the specific modelling task and thereby contributes 

to improving future ecological modelling. 
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Chapter 1. Trait-based modelling in ecology: a review of two decades of research 

This chapter was published as: Zakharova, L., Meyer, K. M., & Seifan, M. (2019). Trait-based model-

ling in ecology: A review of two decades of research. Ecological Modelling, 407, 108703. 

https://doi.org/10.1016/j.ecolmodel.2019.05.008. 

 

Authors’ contribution: K. M. M., M. S. and L.Z. conceived of the idea presented. L. Z. led the writing 

of the manuscript with extensive input from K. M. M. and M. S.. 

 

Abstract 

Trait-based approaches are an alternative to species-based approaches for functionally linking 

individual organisms with community structure and dynamics. In the trait-based approach, rather than 

focusing on the species identity of the organism, the focus is on the organism traits, which represent 

their physiological, morphological, or life-history characteristics. Although used in ecological research 

for several decades, this approach only emerged in ecological modelling about twenty years ago. We 

review this rise of trait-based models and trace the occasional transfer of trait-based modelling 

concepts between terrestrial plant ecology, animal and microbial ecology, and aquatic ecology, discuss 

terminology of trait-based approaches and evaluate future implementation of trait-based models, 

including cross-discipline exchange. Trait-based models have a variety of purposes, such as predicting 

changes in community patterns under climate and land-use change, understand underlying mecha-

nisms for community assemblies, planning and assessing conservation management, or studying 

invasion processes. In modelling, trait-based approaches can reduce technical challenges such as 

computational limitations, scaling problems, and data scarcity. However, we note inconsistencies in 

the current usage of terms in trait-based approaches and these inconsistencies must be resolved if trait-

based concepts are to be easily exchanged between disciplines. Specifically, future trait-based models 

may further benefit from incorporating intraspecific trait variability and addressing more complex 
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species interactions. We also recommend expanding the combination of trait-based approaches with 

individual-based modelling to simplify the parameterization of models,

to capture plant-plant interactions at the individual level, and to explain community dynamics 

under global change. 

 

1.1. Introduction 

Understanding community structure and dynamics is a key element of modern ecology, especially in 

the light of global change (Harte and Shaw, 1995; Knapp, 2002). This understanding was traditionally 

mediated by species-based approaches. More recently, such approaches were complemented by 

approaches based on traits. Trait-based approaches are popular, because they allow the direct 

connection of organism performance to its functions and to the functions of higher levels of 

organization such as populations, communities and ecosystems. While trait-based approaches have 

been introduced some decades ago (Grime, 1977) and are now firmly established in empirical research 

(e.g. Violle et al., 2007; Suding and Goldstein, 2008), they were only introduced to modelling about 

twenty years ago. Given that modelling is important for understanding community structure and 

dynamics, trait-based modelling can reduce some of the challenges faced by species-based modelling. 

For example, species-based models are usually complex, difficult to parameterize and often produce 

outcomes that cannot be generalized to other species. Trait-based models often require less 

parameterization effort than species-based models, facilitate scaling-up, and produce more 

generalizable results that can be projected to other systems and be used to fill gaps in species 

knowledge. Trait-based modelling reinforces simplification, which is at the core of all modelling, 

because it focuses on simplified community structure, based on the organismic functions. The 

drawback of such simplification is that the results of trait-based models may not always be very well 

comparable with corresponding species-based modelling results. Here, we review the rise of trait-

based models over the past twenty years, highlighting their main fields of application and pointing out 

avenues for future trait-based modelling.  
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Traits arose from the concept of plant functional groups and these groups were the first 

published classification of organisms according to function (based on morphology and physiology) 

instead of taxonomy (Raunkiaer, 1934; Grime, 1974). The next wave of interest into functional groups 

was led by the desire to predict community and ecosystem responses to environmental change (Diaz 

and Cabido, 1997; Lavorel et al., 1997; Chapin et al., 2000). Grime’s (1977) CSR triangle was the first 

globally accepted concept propagating continuous functional traits in contrast to discrete functional 

groups such as herbs, shrubs and trees. However, the focus of functional ecology shifted only much 

later from functional groups to functional traits and thus from species grouped because they use 

similar strategies to the similar characteristics underlying those strategies (Yang et al., 2015b). Distinct 

aspects of strategies were reflected in sets of correlated traits that were defined as trait dimensions 

(Westoby et al., 2002). This shift from a species-based approach to a trait-based approach is described 

as the ‘Holy Grail of Ecology’ (Lavorel and Garnier, 2002). This approach involves the use of plant 

functional traits, rather than species identities, to generalize complex community dynamics and to 

predict the effects of environmental changes (Suding and Goldstein, 2008).  

Functional traits not only help derive individual strategies (Westoby, 1998; Wright et al., 

2004), but also to connect them to functions at organizational levels higher than those of the species 

such as the community or ecosystem level. There are four requirements for a trait (Lavorel et al. 2007): 

It should be connected with a function; It should be relatively easy to observe and quantify; It should 

be possible to measure it in a standardized way across a wide range of species and environmental 

settings; And it should have a range of values that is comparable among individuals, species and 

habitats. Trait-based ecology is further based on the assumption that trade-offs and constraints have 

shaped phenotypic variation in different trait dimensions (Grime, 1977; Westoby, 1998).  

Sets of plant traits that reliably represent the processes of growth, survival, and reproduction 

(Violle et al., 2007) make it possible to facilitate and generalize empirical and modelling studies. 

Therefore, researchers attempted to define a universal set of traits. Pachepsky et al. (2001) identified 

twelve critical traits that affected resource uptake, the area over which resource is captured, the 

internal allocation of resources between structure, storage and reproduction, time of reproduction, 

number of progeny produced, dispersal of progeny, and survival. Other researchers used smaller 
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numbers of traits. The leaf economics spectrum, for example, contains only six traits (Wright et al., 

2004). Díaz et al. (2015) also used six traits but not those of the leaf economics spectrum, and several 

researchers even used a set with as few as three traits (Westoby, 1998; Westoby et al., 2002; Wright et 

al., 2004; Chave et al., 2009; Garnier and Navas, 2012). Thus, rather than applying a universal trait set, 

modern use of the concept implies a selection of a small set of critical functional traits specific to the 

needs of a specific study and dependent on the specific organisms for which strategies are being 

described.  

Using trait-based approaches overcomes some of the well-known problems of species-based 

approaches. In trait-based approaches, for example, it is possible to directly connect community 

functions such as production to environmental changes via functional traits. Moreover, the trait-based 

approach is an intuitive approach for addressing evolutionary processes because evolution selects 

organisms in a community according to their function and not their taxonomy. Trait-based approaches 

are, furthermore, more suitable than species-based approaches for generalizations across species as 

they are not tied to taxonomy. In addition, trait-based approaches benefit from the rapid expansion of 

trait databases more than species-based approaches, because trait-based approaches are not dependent 

on species-specific trait information; particularly trait-based models can either fill information gaps 

with trait data from species related to a target species or not use species at all and only work with trait 

value distributions. Trait databases are especially well developed for plants (Kleyer et al., 2008; 

Kattge et al., 2011).  

Although current trait-based approaches have several benefits, they also have some 

shortcomings not present in species-based approaches. One of these is the choice of appropriate 

functional traits and their trade-offs with other traits given that a great diversity of traits are available 

(Funk et al., 2017). Furthermore, traits differ intraspecifically but these differences are often neglected 

(Violle et al., 2012; Bolnick et al., 2011). Existing trait databases are usually of limited use when it 

comes to species interactions, intraspecific trait variation and variable environmental settings (Funk et 

al., 2017). In addition, the theoretical assumptions of trait-based studies are not always supported by 

experimental data (Suding and Goldstein, 2008). These shortcomings can be overcome by closer 
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cooperation between empirical and theoretical researchers and by the development of standards for 

trait data collection (e.g. Garnier and Shipley, 2001; Pérez-Harguindeguy et al., 2013).  

In the most recent 20 years trait-based approaches have entered ecological modelling. The 

main advantage of modelling over empirical approaches is that it allows the comparison of several 

scenarios with different sets of assumptions, so conducting virtual experiments. This makes possible 

the systematic exploration of the outcomes under each set of assumptions and the elucidation of the 

mechanisms underlying the patterns observed. Using models therefore avoids the costs and risks of 

real-world experiments. Trait-based models may contain species as carriers of traits, but they also 

work without explicitly modelling species. In species-based models, interactions occur at the level of 

species (potentially depending on species traits), whereas in trait-based models, it is usually the traits 

that are subject to effects and responses (potentially depending on trade-offs; Fig. 1.1). Importantly for 

this distinction, models based on discrete functional types or functional groups are not part of our 

definition of trait-based models, which requires continuous trait values (although we mention some 

examples in sections 1.4.1.5.Trait-based dynamic global vegetation models (DGVMs), 1.4.2.Trait-

based modelling of animals in terrestrial ecosystems and 1.4.4.Trait-based models on microorganisms 

and soil decomposers). In principal, trait-based models consist of combinations of functional traits that 

respond to environmental changes (response traits) and affect community and ecosystem properties 

(effect traits) (Fig. 1.1). Trait-based models should also account for the shape of the distribution of 

these traits, which often has to be derived from empirical observations (e.g. (Gaedke and Klauschies, 

2017). Implementing trait-based approaches for modelling may also help overcome the high data 

demand of species-based models (Garrard et al., 2013; Weiss et al., 2014), simply due to the fact that 

traits usually represent more than one species. For the same reason, trait-based modelling may also 

reduce computing times. Moreover, using traits in modelling can facilitate scaling of physiological 

processes to global scales (Shipley, Vile, & Garnier, 2006; Lamarque et al., 2014), because traits can 

function as a common currency across scales in these models.  
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Given the advantages of trait-based approaches, it is still surprising that their incorporation 

into the tool-kit of ecological modelling has been slow and that they are applied in proportionally 

fewer cases of modelling than of empirical work. In this paper, our aim is to systematically review 

applications of trait-based models in ecology. More specifically, we 1) discuss definitions and 

terminology of trait-based approaches, 2) evaluate how trait-based models are used in different 

disciplines, and 3) identify avenues for the future implementation of trait-based models, including 

cross-discipline exchange. The trait-based modelling applications in this review contribute to 

identifying principles that underlie spatiotemporal community dynamics, exploring species 

distributions, investigating species interactions, scaling ecosystem processes from individual traits to 

Figure 1.1. Conceptual overview of trait-based models compared to species-based models. Functional response and effect 

traits (rounded rectangles) are performance indicators that are related to organismal functions (a). Trait-based models 

represent community (circle) assembly by interacting functional response and effect traits, which may be connected via trade-

offs (b). Species-based models represent community assembly by interacting species that may implicitly contain traits (c). 

Trait-based models can be divided into models that use functional traits only as static inputs (white elements in d) that affect 

community and ecosystem properties and models that use functional traits both as inputs and dynamic outputs (white and 

grey elements in d). Response traits change dynamically depending on changing environmental conditions. 
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ecosystem functioning, explaining the consequences of climate and land-use changes for community 

dynamics, and also supporting conservation and invasion studies.  

 

1.2. Methods 

This paper is based on a systematic literature review. We searched for papers using a topic search on 

the “Web of Science Core collection”. We first used the search term “trait-base*” AND model* and in 

a second search “traitbase*” AND model*. The first search yielded 772 papers all of which turned out 

to postdate 1978. The second search added 4 papers, which were from the period 2010-2018. We ex-

cluded all papers from obviously irrelevant fields, such as psychology, medicine, engineering, busi-

ness, management, history, industrial relations, linguistics, education, nutrition, and biotechnology 

(Appendix. Tab. A1.2). After this filtering of both searches, we retained 623 papers that focused on 

ecology and related biological sciences. These ecological and biological publications were the most 

recent among all the papers we found. In addition to the publications found during this systematic lit-

erature search, we also included papers discovered by the snowball principle, i.e. papers cited in pa-

pers already selected. We also included additional publications recommended by experts in the field. 

We finalized our research by selecting only those papers from our compilation that directly addressed 

concrete trait-based models. We excluded pure genetics, toxicology, climate and evolution studies, 

because we wanted to focus on ecological studies. We did not consider studies that focused on statisti-

cal analysis of empirical data, but we did include statistical models if the focus was on the model such 

as in species distribution modelling. Our focus was on primary modelling papers, so that we only re-

ferred to secondary modelling papers that discuss, use, extend or review previously published models 

when they introduce a new trait-based perspective. We did not consider editorial material or technical 

software descriptions. This procedure yielded 188 papers (Appendix. Tab. A1.1, Fig. 1.2). 
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Types and scales of trait-based models  

We classified the papers discovered in our systematic search according to model type and target scale. 

For model type, we distinguished among conceptual models, statistical models, equation-based mod-

els, individual-based models, and their combinations (see Glossary and Appendix. Tab. A1.1). Statisti-

cal models occurred in 26% and equation-based models in 61% of the reviewed papers. Together they 

were the most common types in trait-based modelling. Conceptual models are probably more common 

than was reflected in the papers we examined (5% of the reviewed papers) because they often precede 

a mathematical or code-based model formulation. Individual-based models represented 16% of the 

reviewed papers.  

Trait-based models address questions at local to landscape and global scales (Appendix. Tab. 

A1.1) and at the organizational level of individuals, species, populations, communities, and ecosys-

tems. Where the models targeted the ecosystem level, they were implemented as equation-based mod-

els. This is probably due to the fact that ecosystem-level models focus on matter or energy fluxes and 

individual-based models are usually not the first choice for modelling fluxes, because this would re-

quire one flux equation per individual. However, models at the species, population or community level 

do not usually consider fluxes but use organisms as their inputs. This is typical of individual-based 

models but all other model types are also used at species, population, and community levels. Models 

Figure 1.2. Papers on trait-based models included in the final list of reviewed models (Appendix. Tab. A1.1). 
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of processes at the level of individual organisms or their organs were either implemented as statistical 

models of plant growth or, when emphasizing physiological mechanisms, as equation-based models.  

Overall, different model types benefit in different ways from the integration of traits depend-

ing on the target scale of the question addressed by the model. In the following sections, we present 

studies that illustrate the potential benefits of using trait-based modelling for various scales and model 

types to study plants and animals in terrestrial and aquatic ecosystems, microbial organisms, and soil 

decomposers.  

 

1.3. Glossary 

Functional traits are well-defined morpho-physio-phenological characteristics of individual 

organisms that relate to the patterns of growth, reproduction, and survival of the species (McGill et al., 

2006; Violle et al., 2007), and that evolved in response to abiotic environmental conditions and 

interactions with other species (Reich et al., 2003; Clark et al., 2012). As proxies of organismal 

strategies functional traits are differently distributed across environmental gradients. This variation in 

distribution may be also shaped by trade-offs among traits (Reich et al., 2003). 

Hard traits are directly related to important physiological processes that define the growth, 

reproduction and survival of an organism. Hard traits are usually hard to measure, and therefore in 

practice they are identified and measured on the basis of surrogate soft traits (Hodgson et al., 1999) 

that are correlated with hard traits but are more easily or cheaply measured.  

Response traits determine how a species reacts to a disturbance or a change in abiotic or biotic 

processes in its environment (Lavorel et al., 1997; Lavorel and Garnier, 2002).  

Effect traits determine how a species influences ecosystem properties (Lavorel et al., 1997; Lavorel 

and Garnier, 2002). Effect traits alter abiotic and biotic processes corresponding to a wide range of 

ecosystem functions (Eviner and Chapin III, 2003).  

Plant functional types (PFT) are groups of species with presumably similar roles in ecosystem 

functioning (Lavorel et al., 1997). They are considered as an important ecological framework for 

describing the mechanisms underlying vegetation responses (McIntyre et al., 1995; Pausas, 1999). 
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Community-weighted mean (CWM) traits provide a quantification and use of aggregated trait 

attributes of the community as a measure of diversity that does not take species into account. To 

calculate a community aggregated trait value, relative abundances of species and their trait values are 

used (Violle et al., 2007; Funk et al., 2016).  

Intraspecific trait variability (variation) is the difference in the values of functional traits within one 

species that results from the development and adaptation of species to environmental change (Albert et 

al., 2011; Schirpke et al., 2017). There are two sources for this variation. One is heritable differences 

between individuals and the other phenotypic plasticity in trait values across different environmental 

conditions (Moran et al., 2016).  

Conceptual models are not implemented in equations or programming code. In practice, they are 

usually a graphical representation of causal relationships (or flows) between factors or processes. 

Statistical models are descriptive mathematical models of relationships between variables based on 

assumptions about the data sampled. They represent a set of probability distributions on the sample 

space (Cox et al., 1979). 

Equation-based models are mathematical models that are formulated as a set of ordinary differential 

equations, partial differential equations, or integro-differential equations. They can be solved 

analytically or numerically. These models are sometimes also called mechanistic models, 

physiological models or process-based models, although each of these terms is also used for non-

equation-based models. For instance, process-based models are based on a theoretical understanding 

of the relevant ecological processes. They are built on explicit assumptions about how a system works, 

and these models are especially well-designed to predict the effects of global change (Cuddington et 

al., 2013). Dynamic Global Vegetation Models (DGVMs) and Earth System Models (ESM) also 

fall in this category.  

Individual-based models (or agent-based models) explicitly consider individual organisms as 

objects with characteristics (traits) that influence interactions with other individuals and the 

environment (Grimm and Railsback, 2005). They adopt a bottom-up approach where population-level 

behaviour emerges from these individual interactions (DeAngelis and Grimm, 2014). Individual-based 

models are usually not based on equations, but on rules implemented in programming code. 
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Individual-based models are highly suitable for spatially explicit implementations (Grimm et al., 2005), 

often combined with a grid-based modelling approach. Individual-based models are inherently linked 

to trait-based approaches, because interactions are mediated by traits in individual-based models (Fig. 

1.4). 

Trait-based models consist of combinations of functional traits that respond to environmental 

changes (response traits) and affect community and ecosystem properties (effect traits). Models based 

on discrete functional types or functional groups are not part of our definition of trait-based models, 

which consider continuous trait values. 

 

1.4.1. Trait-based modelling of plants in terrestrial ecosystems 

Trait-based approaches were originally developed and discussed for plants in terrestrial ecosystems. 

This focus on plant sciences was mirrored in the trait-based modelling studies. Fifty percent of all 

studies in this review addressed terrestrial vegetation (note that we discuss the two studies on fungi in 

our review as part of this section). The aims of trait-based vegetation models were diverse. They cov-

ered investigations of plant growth and interactions, species distributions, plant invasiveness, commu-

nity assembly and dynamics, biodiversity hypotheses, ecosystem services, and global vegetation pat-

terns and dynamics (Fig. 1.3).  

 

1.4.1.1. Trait-based models on plant growth, population dynamics, and interactions  

Plant growth, population dynamics, and interactions were modelled with a range of model types, in-

cluding statistical, equation-based and individual-based models (Appendix. Tab. A1.1). The influence 

of traits on the growth of individual plants or plant organs was most commonly addressed using statis-

tical models. These statistical models were either non-linear regression models (Chavana-Bryant et al., 

2017), Bayesian approaches, or both (Hérault et al., 2011; Aubry-Kientz et al., 2015; Thomas and 

Vesk, 2017a; Thomas and Vesk, 2017b). Equation-based approaches focused on mechanisms such as 

carbon and biomass fluxes within and across plants (Enquist et al., 2007; Sterck and Schieving, 2011), 

water uptake (Fort et al., 2017) or on the physiological processes producing salt tolerance (Paleari et 

al., 2017).  
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Both models on plant population dynamics in our review were equation-based models. One 

study investigated the influence of considering whole life cycles in fitness assessments (Adler et al., 

2014), and the other one studied the population dynamics and viability of a primrose (and a lizard) 

population (Jaffré and Le Galliard, 2016). Comparing the results from the equation-based integral pro-

jection model with those from an analogous individual-based model, Jaffré and Le Galliard (2016) 

highlighted the importance of constructing individual-based models when very small populations are 

investigated. Our review confirms the conclusion of Salguero-Gómez et al. (2018) that trait-based ap-

proaches are still underrepresented in studies of population dynamics. However, note that such combi-

nations of trait-based and demographic approaches are more common for aquatic organisms (Vindenes 

et al., 2014; O’Farrell et al., 2015) or terrestrial mammals (Santini et al., 2016; Jaffré and Le Galliard, 

2016; van Benthem et al., 2017) than for plants. 

Interactions such as competition have mainly been studied with equation- and individual-

based models or their combination. Using dynamic process-based models, Ali et al. (2013) and Ali et 

al. (2015) contrasted two alternative competition theories and demonstrated how elevated carbon diox-

ide concentration influences plant competition and, consequently, community composition in an eco-

system. In a combined equation- and individual-based approach, Fyllas et al. (2014) simulated ecosys-

tem fluxes based on two axes: the leaf economics spectrum (Wright et al., 2004) and tree architecture 

Figure 1.3. Overview of the models of plants in terrestrial ecosystems based on their main purposes and research questions 

(rectangles with green edges). Large circles represent community development in space and time and the rounded rectangle 

represents all traits and their interactions in the model (see Fig. 1.1 for further explanation). 
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spectrums (Chave et al., 2005; Mori et al., 2010). Individual-based models are particularly useful for 

representing plant interactions because it is the individual level at which interactions are initiated. For 

example, Taubert et al. (2012) used them to investigate biofuel production in grasslands of temperate 

regions. In this model, above- and below-ground plant functional traits were used to characterize how 

successful plants were in taking up resources and competing with neighbours.  

Conclusion: Based on these examples and the nature of the models, we suggest that different 

kinds of models have different efficiencies in the sense of producing good results without requiring 

large amounts of data. Statistical models are most efficient for describing the relationship between 

traits and plant growth but equation-based models are most efficient for describing mechanisms, sim-

ple interactions, or ecosystem fluxes. Individual-based models are the best choice, however, for com-

plex trait-based interactions and for very small populations (see also Jaffré and Le Galliard, 2016). 

This is because individuals are the nexus of trait-based interactions. 

 

1.4.1.2. Trait-based models on species distributions 

Although trait-based modelling was often applied as an alternative to species-based approaches, a 

number of trait-based modelling papers were devoted to questions related to species distribution. For 

example, a combination of species distribution models and trait-based approaches was explicitly rec-

ommended to estimate the vulnerability of species to climate change with respect to selected species 

traits (Willis et al., 2015).  

The great majority of the studies on species distribution modelling combined a trait-based ap-

proach with statistical modelling, often by using a Bayesian approach (Appendix. Tab. A1.1). For ex-

ample, Powney et al. (2014) showed that predictions of trait-based species distribution models were 

best for broad-scale changes in regions with similar land-cover composition. Here, the trait-based ap-

proach was implemented by identifying traits that correlated with changes in species ranges and using 

these trait correlations to predict change in other regions. In another example, a new application of 

time-to-detection modelling was able to detect multiple species as a function of plant morphological 
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and phenological traits (Garrard et al., 2013). The model by Rosenfield and Müller (2017) estimated 

the relative abundances of species that meet the values of functional traits found in a target ecosystem.  

Trait-based models provide some advantages when predicting local community assembly, es-

pecially where environmental filtering and niche differentiation shape communities. Among the algo-

rithms used in the papers on trait-based models, MaxEnt (e.g. Shipley et al., 2011; Sonnier et al., 

2010) and the Traitspace model (e.g. Laughlin et al., 2012; Laughlin et al., 2015; Laughlin and Joshi, 

2015) were used for trait-based environmental filtering. These algorithms predict low probabilities for 

any species whose trait distribution fails to pass through an environmental filter (Laughlin and Laugh-

lin, 2013). The MaxEnt model and the Traitspace model differ in their ability to predict the relative 

abundance of species from a regional species pool (Laughlin and Laughlin, 2013). MaxEnt predictions 

are degraded when high intraspecific variability is included (Merow et al., 2011). The importance of 

intraspecific variation in functional traits was underlined by Violle et al. (2012) and by Read et al. 

(2017) who found that intraspecific variability compensated for the effects of interspecific variation 

along a climatic gradient. Therefore, future models should consider to address intraspecific variability 

– at least where the respective data are available. A statistical approach uniting trait-based and species 

distribution models was also applied to model the trait-based response and distribution of wood-

inhabiting fungi with respect to environmental change (Abrego et al., 2017). Finally, the only equa-

tion-based model in this section was a model that incorporated plant physiology to predict tree distri-

butions along resource gradients (Sterck et al., 2014).  

Conclusion: Thus, trait-based approaches are useful for modelling species distributions, espe-

cially where environmental filtering and niche differentiation are the predominating mechanisms. Of 

course, trait-based approaches would be even more suitable to model trait distributions. However, con-

servation managers are still more interested in species than in traits, so that a focus on trait distribution 

modelling is still less applicable. Based on the available examples, we locate the cutting edge of trait-

based species distribution modelling in moving from mean trait values to intraspecific trait variability, 

e.g. by implementing a Bayesian framework (Laughlin et al., 2012).  
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1.4.1.3. Trait-based models of community assembly 

Community assembly results from species sorting by environmental filters and biotic interactions. Un-

til now, trait-based models of community assembly used mainly statistical modelling and equation-

based approaches to capture this process (Appendix. Tab. A1.1). We further found one individual-

based model [(Pachepsky et al., 2007) based on a model by Bown et al. (2007) mentioned in section 

1.1. Trait-based models on plant growth, population dynamics, and interactions], and three conceptual 

models (Bhaskar et al., 2014; Crowther et al., 2014; Losapio and Schöb, 2017), including one on fun-

gal community assembly (Crowther et al., 2014). The group of models of community assembly par-

tially overlapped with models of species distribution and was thus already partly discussed in section 

1.2.Trait-based models on species distributions. Three groups of studies emerged: First, a large group 

of publications where the intention was to identify traits that affect community assembly; second, a 

group of four papers studying intraspecific trait variability (Pachepsky et al., 2007; Laughlin et al., 

2012; Yang et al., 2015a; Schliep et al., 2018); and, third, another group of three papers where traits 

were used as response traits to distinguish between biotic and abiotic filtering (Bhaskar et al., 2014; 

Chauvet et al., 2017) and to assess effects of environmental change (Losapio and Schöb, 2017). 

The majority of the models reviewed in the current section were in the first group that aimed 

to distinguish traits that influence species abundance, richness and functional diversity. One case 

study, for instance, indicated that seed production and dispersion traits are important for regional spe-

cies abundance (Marteinsdóttir, 2014). In another case study, a trait-based model incorporated both 

neutral theory and niche theory to identify whether, and which, plant traits determine community as-

sembly and biodiversity patterns, including plant species richness and abundance, across environments 

(Shipley et al., 2006). To unify classic coexistence theory and evolutionary biology with recent trait-

based approaches, Laughlin et al. (2012) incorporated intraspecific trait variation into a set of trait-

based community assembly models. These models generate species abundances to test theories about 

which traits, which trait values, and which species assemblages are most effective for achieving a 

specified functional diversity. Larson and Funk (2016) advocated for including regeneration traits in a 

model of community assembly.  
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A few statistical trait-based models in the first group aimed at quantifying the relationship be-

tween environmental gradients and individual-level traits or community-weighted mean traits to de-

scribe environmental filters (Laughlin et al. 2015). The common assumption of such models was that 

traits are unimodally distributed and centred on an optimal trait value in any given environment. In 

contrast, an extended Traitspace model (Laughlin et al., 2015) adopting a hierarchical Bayesian ap-

proach (Laughlin et al., 2012) captured multimodal trait distributions. Improving the Traitspace model 

in this way increases the power of trait-based predictions of species abundances. The power increase 

arises because the prediction of species abundance distributions then reflects the true functional diver-

sity of a community. These community assembly models were also used to test the mass ratio hypoth-

esis (Laughlin, 2011; Laughlin, 2014) and to refine restoration objectives, either by manipulating 

abundances of species already existing in the system or by adding species from warmer climates to the 

local species pool (Laughlin et al., 2017). Similar to models on species distribution, the MaxEnt algo-

rithm is also used for models of community assembly to predict the effect of trait-based environmental 

filtering on the species pool, for example, in forest community assembly (Laughlin et al., 2011) or us-

ing the community assembly via trait selection approach (CATS) (Laliberté et al., 2012; Frenette-

Dussault et al., 2013). 

Equation-based models in the first group tended more towards theoretical questions: For ex-

ample, they investigated the multidimensional nature of species coexistence based on traits (Kraft et 

al., 2015), they implemented biophysical principles to test niche vs neutral processes (Sterck et al., 

2011); or they showed that self-limitation promotes rarity (Yenni et al., 2012). 

Conclusion: The examples in this section show that trait-based modelling is a versatile tool to 

investigate mechanisms and effects of community assembly due to the availability of response and 

effect traits, the focus on function, and the possibility to study mechanistic detail by including intra-

specific trait variability. The diversity of examples also emphasizes the suitability of trait-based com-

munity assembly models for tackling questions of fundamental and applied ecology.  
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1.4.1.4. Trait-based models of community dynamics 

Trait-based modelling can be helpful for explaining not only static community assembly but also the 

temporal and spatial dynamics of communities. We found twice as many equation-based models of 

community dynamics as individual-based models (Appendix. Tab. A1.1). The equation-based ap-

proaches included basic and applied research. Among the basic research, two studies investigated veg-

etation dynamics at the landscape level (Falster et al., 2011; Quétier et al., 2011), one study quantified 

environmental filtering and immigration rates of new species (Jabot, 2010), and one study assessed 

plant community stability considering litter decomposition (Miki and Kondoh, 2002). Among the 

more applied research, three studies included the effect of environmental change: Moor (2017) studied 

the relationship between dispersal and species diversity along a climate warming gradient; Savage et 

al. (2007) investigated overyielding and other responses to environmental change; and Tanaka (2012) 

advanced Savage et al.’s (2007) study by considering interspecific competition and trait covariance 

structure. One further equation-based model with an applied question was developed to compare the 

effect of different cropping systems on weed traits (Colbach et al., 2014).  

The individual-based models in this section targeted effects of regional processes on grass-

lands (Weiss et al., 2014), as well as the processes of grazing and disturbances. The effects of grazing 

on a grassland community were investigated in two individual- and trait-based models (May et al., 

2009; Weiss and Jeltsch, 2015). The results of these models indicated that trait size symmetry of com-

petition is central for community dynamics. This indication arose from the model only generating the 

patterns predicted by the grazing reversal hypothesis under specific conditions. These conditions were 

the explicit inclusion in the model of shoot and root competition, and the assumptions that plants with 

larger aboveground parts were superior competitors and belowground competition was consistently 

symmetrical. A similar functional group scheme based on four key traits representing typical species 

responses to disturbance was used in an individual-based model that led to the conclusion that the 

competition-colonization trade-off is insufficient to predict community dynamics (Seifan et al., 2012; 

Seifan et al., 2013).  
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Conclusion: The reviewed studies in this section show that the potential application areas are 

more fully covered by equation- than individual-based approaches. These studies also show the great 

ability of trait-based models to capture the mechanisms that drive plant interactions and their impact 

on community dynamics. Beyond the current focus on grassland communities of individual- trait-

based models, we suggest that desert, savanna and forest community dynamics should be explored in 

future studies. Furthermore, although temporal changes in a community are often accompanied by spa-

tial changes and spatial interactions are often mediated by traits, our review shows that there is still 

some unused potential in modelling spatial community dynamics based on traits. 

1.4.1.5. Trait-based dynamic global vegetation models (DGVMs) 

Beyond the community and ecosystem levels mentioned in previous sections, global vegetation classi-

fication is possible with DGVMs. More specifically, DGVMS advance understanding of the distribu-

tion of plant functional types across spatial scales (Prentice et al., 2004). DGVMs are used as precur-

sors of, or parts of, earth system models in which they represent energy, carbon and water fluxes 

(Scheiter et al., 2013; Drewniak and Gonzalez-Meler, 2017). Dynamic vegetation classification is 

enabled by calculating separately ecosystem fluxes and plant functional type occurrences both of 

which can be based on traits. DGVMs are mainly or entirely equation-based models because this form 

allows them to adequately represent ecophysiological processes (Appendix. Tab. A1.1). More recent 

DGVMs have added individual-based components to account for individual variation (Scheiter et al., 

2013). 

Most DGVMs were used to investigate vegetation responses to current climate and climate 

change (e.g. Verheijen et al., 2013; Sakschewski et al., 2015). Walker et al. (2017) applied the Shef-

field DGVM (Woodward and Lomas 2004) to compare the predictive power of four trait-scaling hy-

potheses on the distribution of global maximum rate of carboxylation. The four hypotheses used were 

those on plant functional type, nutrient limitation, environmental filtering, and plant plasticity. The 

result of this comparison showed that nutrient limitation was the most probable driver of global maxi-

mum rate of carboxylation distributions. DGVMs are criticized for being insufficient realistic. This 

insufficiency arises because they use plant functional types with constant attributes and do not repre-
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sent competitive interactions (Scheiter et al., 2013). This criticism led to a stronger focus on traits and 

to the addition of individual-based modules (Harper et al., 2016). The Jena Diversity-DGVM incorpo-

rates 15 traits with several functional trade-offs that define plant growth strategies (Pavlick et al., 

2012). These functional properties of the vegetation were derived, unlike in standard DGVMs, from 

mechanistic trait filtering via environmental selection. The Jena Diversity-DGVM also demonstrated 

its advantages over bioclimatic approaches (Reu et al., 2010; Reu et al., 2011). Instead of plant func-

tional types, the adaptive DGVM of Scheiter and Higgins (2009) and Scheiter et al. (2013) was based 

on traits. The novelty of this adaptive DGVM lay in the process-based and adaptive modules for phe-

nology, carbon allocation and fire within an individual-based framework. This allowed the vegetation 

component in the model to adapt to changing environmental conditions and disturbances. Such adap-

tion is not possible in models based on static functional types.  

Conclusion: As our review demonstrates, DGVMs provide a good example of the shift from 

plant functional types towards functional traits (Yang et al., 2015b) (e.g. compare Smith et al. (2001) 

and Holzwarth et al. (2015)). The reviewed studies give examples of how adaptive, flexible and realis-

tic trait-based models can be, emphasizing their strengths in these attributes. Moreover, individual-

based modelling is increasingly applied to represent individual interactions and foster the dynamic 

nature of DGVMs. 

 

1.4.1.6. Trait-based models of plant invasions 

Trait-based modelling was frequently used to study invasion (Appendix. Tab. A1.1). The frequency of 

this use probably arises because it is a common goal of invasion biology to identify traits that can be 

used to predict future invaders. This goal was particularly common among statistical models (Ot-

finowski et al., 2007; Herron et al., 2007; Küster et al., 2008). The individual-based models of plant 

invasion focused on understanding the invasion process incorporating, for instance, disturbance (Hig-

gins and Richardson, 1998), or herbivory (Radny and Meyer, 2018). These models have different re-

gional and taxonomic foci including pine trees in the southern hemisphere (Higgins and Richardson, 
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1998), exotic plants in North America (Otfinowski et al., 2007; Herron et al., 2007), invasion success 

in Germany (Küster et al., 2008), and establishment success as the combined effect of functional traits 

and biotic pressures (Radny and Meyer, 2018).  

Conclusion: While usage of trait-based modelling in the study of invasions is growing, these 

models have yet to yield a universal set of traits that characterize potentially invasive species. Future 

trait-based invasion models should address all the processes and interactions relevant to the system 

being studied. This might be facilitated by individual-based modelling approaches, as the broad range 

of individual-based models in this section demonstrates. The models of plant invasions may also bene-

fit from the advantages discussed in Section 1.4.1.4. Trait-based models of community dynamics. 

 

1.4.1.7. Trait-based models of ecosystem services 

Ecosystem service models are usually built with a management goal. Thus, they benefit from includ-

ing plant functional traits because functional traits are aggregate measures that can more easily be tar-

geted by ecosystem management than species. Most models in this section were statistical models 

(Appendix. Tab. A1.1), often in the form of generalized linear models (Diaz et al., 2007; Lavorel et 

al., 2011), whereas three models were equation-based. According to Lavorel et al. (2011), ecosystem 

properties were better captured by models including spatial variation in environmental variables and 

plant traits than by land-use models. Variation across the landscape in the community-weighted mean 

of four traits and their functional divergence were modelled with generalized linear models (Lavorel et 

al., 2011). Compared to remote sensing, this trait-based statistical modelling approach better reflected 

the process of land use that underlay ecosystem properties (Homolova et al., 2014). Another model 

investigated the influence of plant and microbial functional traits on grassland ecosystem services 

(Grigulis et al., 2013). Based on Lavorel et al. (2011) and Grigulis et al. (2013), future ecosystem ser-

vices were estimated for three socio-economic scenarios (Schirpke et al., 2017). The approach demon-

strated that ecosystem services were potentially highly resilient. In two other semimechanistic models, 
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functional traits facilitated the scaling-up of well-understood functional trade-offs from the organismal 

to the ecosystem level (Lamarque et al., 2014).  

Equation-based models of ecosystem services ranged from assessing the sensitivity of ecosys-

tem services to land-use change (Quétier et al., 2007), determining the vulnerability of pollination ser-

vices (Astegiano et al., 2015), and evaluating the management of mown subalpine grasslands (Lochon 

et al., 2018).  

Conclusion: Based on the examples in this section, trait-based models demonstrate great po-

tential for solving applied questions in ecosystem studies as well as for those involving scaling. Trait-

based models are particularly advantageous to explore ecosystem services because of the fact that 

traits help identify underlying mechanisms such as land-use change. 

 

1.4.1.8. Trait-based models on interactions between plants and other organisms 

A few trait-based models did not focus purely on vegetation and interactions among plants but also 

included the interactions of plants with other groups of organisms. These models were partly concep-

tual and partly equation-based (Appendix. Tab. A1.1). For example, the effects of biodiversity on mul-

tispecies interactions and cross-trophic functions were described in a trait-based bottom-up framework 

(Lavorel et al., 2013). This conceptual model was linked to a statistical structural equation model, 

which demonstrated that high functional and interaction diversity of animal mutualists promoted the 

provisioning and stability of ecosystem functions. In another case study, avian body size was identi-

fied as an important response trait related to the susceptibility of avian seed dispersers to disturbance 

by humans (Schleuning et al., 2015). A conceptual model (Pöyry et al. 2017) reconstructed how the 

effects of soil eutrophication cascade to higher trophic levels across a range of plant-herbivore interac-

tions. The model was evaluated based on butterfly and moth data. The authors suggested that a major 

future trend will be the increased dominance of insect species that are large, dispersive dietary general-

ists over those preferring oligotrophic environments. These conceptual models await further testing by 
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being converted into equation- or code-based models and the empirical testing of the predictions of 

these models. 

There were also four equation-based models in this section addressing nutrient competition in 

an earth system model (Zhu et al., 2016), trade-offs of defensive plant traits in plant-herbivore interac-

tions (Mortensen et al., 2018), plant-soil feedback mediated by litter and microorganisms (Ke et al., 

2015), and three-way interactions between a plant, a herbivore and a beneficial microbe in the context 

of biological invasions (Jack et al., 2017). 

Conclusion: Due to the fact that interactions are mediated by traits, trait-based models are ide-

al to capture a variety of conceptual interactions, inclduing the ecologically significant cases of inter-

actions between plants and other organisms. 

 

1.4.2. Trait-based modelling of animals in terrestrial ecosystems 

Animals are underrepresented among papers on the trait-based modelling of terrestrial ecosystems, 

whereas trait-based models of marine ecosystems which included animals abounded. There are about 

three times as many marine as terrestrial papers including animals in our review (see section 1.4.3. 

Trait-based modelling in aquatic ecosystems). The reason for the imbalance may lie in there being 

many different behaviours, feeding strategies and morphologies among terrestrial animals (Scherer et 

al., 2016), making it hard to define common functional traits. Nevertheless, 23 papers covered trait-

based modelling of animals in terrestrial ecosystems. There were twice as many equation-based 

models as individual-based models and almost as many statistical models as equation-based ones 

(Appendix. Tab. A1.1). As the following studies show, these models cover a broad range of topics, 

including population dynamics and survival analysis, predator-prey and host-pathogen interactions, 

species distributions, and community assembly. 

Population dynamics was more frequently investigated in trait-based modelling studies of 

animals than plants in terrestrial ecosystems. We included here pure population dynamics studies, but 

also other studies at the population level, namely time-to-detection studies, survival analysis, 

vulnerability analysis, home range determination, and a study of eco-evolutionary dynamics. For 

example, the effect of functional traits on the population dynamics of mites was studied with equation-
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based integral projection models (Smallegange and Ens, 2018), drawing on the dynamic energy budget 

theory better known from aquatic studies (see section 1.4.3. Trait-based modelling in aquatic 

ecosystems). According to an individual-based model, the population dynamics of meerkats depend on 

intraspecific variation in body mass (Ozgul et al., 2014). In a similar but equation-based model trait-

demography relationships were studied to identify the mechanism underlying population fluctuations 

(van Benthem et al., 2017). Trait-based models of population dynamics investigated the responses of 

populations to environmental changes (Santini et al., 2016) and to perturbations (Ozgul et al., 2012). 

Using an approach similar to that of the time-to-detection studies mentioned in section 1.4.1.2. Trait-

based models of species distributions, Schlossberg et al. (2018) modelled detectability for ten mammal 

species. This model was based on species traits such as body mass, mean herd size and colour and 

employed a statistical approach based on conditional likelihoods. An example of a trait-based survival 

model was the prediction of bat survival based on reproductive, feeding, and demographic traits such 

as age, sex, and type of foraging (Lentini et al., 2015). A trait-based vulnerability index was applied to 

subarctic and arctic breeding birds in a statistical model constructed around MaxEnt and CATs (Hof et 

al., 2017). We found three further individual-based models: Scherer et al. (2016) explored the response 

of bird functional types to climate and land-use change; Buchmann et al. (2011) used the methodology 

to predict the home range and the spatial body mass distribution of species in terrestrial mammal 

communities in fragmented landscapes; And, for a theoretical study of eco-evolutionary dynamics, 

Pontarp and Wiens (2017) simulated the evolutionary radiation of a clade across several habitats with 

differing environmental conditions.  

Predator-prey interactions were considered from a functional perspective relatively early on in 

the history of trait-based approaches, i.e. when generalist and specialist functional types were intro-

duced into modelling (Hanski et al., 1991). Functional traits are a much more recent characteristic of 

predator-prey modelling studies, e.g. in a general additive model of beetle predation with eight preda-

tor traits and four prey traits (Brousseau et al., 2018). The novelty of these models is that the combina-

tion of functional traits and phylogeny overcome the limitations of purely descriptive approaches. 

Where predator-prey interactions are combined into a food web model, body size is often the central 

trait. This was the case in an allometric trophic network model that explicitly featured intra- and inter-
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specific interference including predator-prey interactions in beetles and spiders (Laubmeier et al., 

2018). Pathogen-host interactions resemble predator-prey interactions in many ways as demonstrated 

by the interactions of amphibian species and their fungal pathogens. In this case, the interactions were 

modelled with a statistical approach investigating the predictive power of traits related to phylogenetic 

history, habitat use, and life history traits (Gervasi et al., 2017). Individual- and trait-based movement 

models are very powerful when it comes to scaling-up across several levels of organization. This fea-

ture was exploited in an individual-based model that scaled up from individual movement and behav-

iour to metacommunity structure (Hirt et al., 2018).  

Species distributions and species niches were modelled for the cane toad with a statistical ap-

proach (Kearney et al., 2008; Kolbe et al., 2010) and for endotherms (Porter and Kearney, 2009) and 

ants (Diamond et al., 2012) with an equation-based approach. For the endotherms and the ants, bio-

physical principles were used to link variation in functional traits with environmental data to predict 

thermal niches (Porter and Kearney, 2009; Diamond et al., 2012).  

Community assembly and dynamics were studied with equation-based models which, for ex-

ample, accounted for spatial variation in community structure with a multi-region multi-species occu-

pancy model (Tenan et al., 2017), investigated irreversible changes in community structure in a con-

sumer-resource model (Haney and Siepielski, 2018), and used trait-mediated interactions to analyse 

invasiveness and invasibility of ecological networks (Hui et al., 2016). The need to include such pro-

cess-based components in community assembly models was emphasized by Pontarp and Petchey 

(2016). 

Conclusion: The models in this section show a great diversity of applications for the trait-

based modelling of animals in terrestrial ecosystems, such as studying the influence of intraspecific 

variation in body mass on population dynamics, investigating the mechanisms underlying population 

fluctuations, exploring the response of populations to environmental change, simulating evolutionary 

radiation and scaling up metacommunity structure from individual behaviour. However, each topic is 

represented by one or very few studies. This indicates that there is scope for more applications in these 

and related fields, regardless of model type. 
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1.4.3. Trait-based modelling of aquatic ecosystems 

According to Litchman and Klausmeier (2008), the trait-based approach was first used for modelling 

aquatic ecosystems in a model of a phytoplankton community by Ramon Margalef (Margalef, 1978). 

Nevertheless, Follows and Dutkiewicz (2011), in their analysis of the state of the art of marine ecosys-

tems, concluded that trait-based approaches were just then (i.e. in 2011) starting to be used in marine 

ecosystem models. The conflict between these two statements demonstrates different understandings 

of what a trait-based model is. 

In addition to the research papers, we also found that reviews on trait-based approaches for 

studying aquatic ecosystems are not uncommon. Therefore, we shortly summarize the most important 

reviews here. Litchman et al. (2010) reviewed trait-based approaches applied to phytoplankton and 

revealed a new trend – to look at a trait and the phylogenetic structure of communities simultaneously. 

This trend, in combination with adaptive trait models, makes it possible to predict trait evolution. In 

another review on trait-based approaches for studying phytoplankton, Bonachela et al. (2016) showed 

that it is also possible to successfully use trait-based models to identify and compare possible survival 

strategies described by a set of functional traits. These models typically include trade-offs between 

traits such as cell-size and resource allocation.  

In the following sections, we first review aquatic trait-based models including those for fish 

and then those focusing on plankton. There are few trait-based modelling studies of other aquatic 

realms, which are briefly covered in this paragraph, e.g. studies of bivalve species distribution models 

(Montalto et al., 2015), inland freshwater communities (Gardner et al., 2014), coral reefs (Edmunds et 

al., 2014; Madin et al., 2014), a pelagic microbial mixotrophic food web (Castellani et al., 2013), ma-

rine benthic communities (Alexandridis et al., 2017), diatoms in peatlands (Hagerthey et al., 2012), 

and trace metal concentrations in invertebrates (Hug Peter et al., 2018). Traits were usually the inputs 

for models but in one case were outputs (Rinaldi et al. 2014). In that paper, mechanistic functional trait 

models were used to predict life history traits such as body size and fecundity of shellfish in lagoons. 

The fact that traits were used both as inputs and outputs for models emphasizes the difference between 
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effect traits and response traits (Fig. 1.1), two concepts introduced earlier to terrestrial ecological theo-

ry (Lavorel and Garnier, 2002). 

 

1.4.3.1. Trait-based models including fish 

Trait-based modelling is widely applied to model fish communities. Of those models, the overwhelm-

ing majority were equation-based models (Appendix. Tab. A1.1). There were only four individual-

based models (Brochier et al., 2013; Houle et al., 2013; O’Farrell et al., 2015; Huebert et al., 2018), 

one statistical model (Howeth et al., 2016) and one statistical and conceptual model (Bennett et al., 

2016) that generalised the trilateral life history model by Winemiller and Rose (1992). This prevalence 

of equation-based models may be due to the fact that aquatic ecosystems are more homogeneous than 

terrestrial ecosystems and therefore lend themselves more naturally to the continuous character of 

most equation-based models. 

Size appears to be the main structuring trait in aquatic ecosystems because size influences the 

most important organism processes, such as foraging, growth, and reproduction. For example, fish fall 

into different trophic levels when young than when old. Because size usually correlates with age, 

trophic level in fish is linked to body size. Size structure prevails up to the community level in marine 

ecosystems. This fact prompted the formulation of the community size spectrum (Guiet et al., 2016b). 

The regularity of the community size spectrum is expressed in the constancy of total ecosystem bio-

mass within “logarithmically equal body size intervals” (Guiet et al., 2016b). Thus, community size-

spectrum models represent the ecosystem using two parameters – the slope and the intercept of the 

community size spectrum. This type of model mechanistically addresses the role of species diversity 

via the introduction of the trait size (Hartvig et al., 2011; Maury and Poggiale, 2013; Guiet et al., 

2016a). In these models, community dynamics emerge from individual interactions. Trait-based size-

spectrum models were developed with a range of goals, including to study the benefit to fish of the 

reproductive strategy of producing many small eggs or to analyse coexistence between species and 

link it to maturation sizes and predator-prey size ratios (Hartvig and Andersen, 2013). Trait-based 

size-spectrum models also demonstrate the impact of fishing on species composition (Shephard et al., 
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2012), i.e. that fishing out larger individuals shifts the size spectrum towards the dominance of smaller 

species.  

Originally, Andersen and Beyer (2006) introduced a size- and trait-based model to estimate 

fishing effects at the ecosystem level. In this model, every individual was characterized by two fea-

tures: body size and asymptotic body size. This model was later expanded (Houle et al., 2013; Zhang 

et al., 2013; Jacobsen et al., 2014; Jennings and Collingridge, 2015). The asymptotic body size was 

defined as a main trait because it is the basis for applying life history theory to estimate size at maturi-

ty and reproductive output (Jennings and Collingridge, 2015). The indirect influence of fishing on 

community structure was revealed by an extended version of the initial model considering entire life 

histories and individual energy budgets (Kolding et al., 2016). Another size- and trait-based model 

included individual interactions in the form of competition and predation and individual processes 

such as encounters, growth, mortality and reproduction (Jacobsen et al., 2014). A similar model was 

developed by Andersen and Pedersen (2010) and Andersen and Rice (2010). In this model, all basic 

processes at the community level emerged directly or indirectly from individual-level processes. To 

answer the question how to maximize fishing yield under a certain conservation constraint, Andersen 

et al. (2015) suggested a conceptual size- and trait-based model. An adaptation and a dynamic version 

of the model of a theoretical fish community (Pope et al., 2006), based on classical multi-species fish-

ery models and community size spectrum models, was reconsidered by Andersen and Pedersen (2010) 

and Andersen et al. (2015) in the framework of a trait-based approach. A similar model to describe 

population structure based on the size of the organisms was presented by Hartvig et al. (2011) and 

Hartvig and Andersen (2013). This model was a product of the synthesis between traditional unstruc-

tured food webs, allometric body size scaling, trait-based modelling, and physiologically structured 

modelling (Hartvig et al., 2011). These approaches were further developed into more complex food 

web models that showed that climate change effects are highly unpredictable (Zhang et al., 2014; 

Zhang et al., 2017). Using Approximate Bayesian Computation in their food web model, Melián et al. 

(2014) highlighted the importance of accounting for intraspecific variability when investigating spe-

cies coexistence. Such combinations of traditional approaches with novel modelling techniques pro-

vides a promising new approach to the study of size-structured food webs. 
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Other examples, which we briefly describe in this section, covered the topics of marine biodi-

versity exploitation, marine community modelling including seal species (Houle et al., 2016), adaptive 

behavioural responses, fish-mesozooplankton interactions, fish-jellyfish interactions and freshwater 

fish modelling. Marine biodiversity exploitation was studied with an object-oriented individual-based 

model (Brochier et al., 2013). This model incorporated four main categories of life history depending 

on which part of the life cycle fish spent in the estuary studied. To reduce the computing power need-

ed, Brochier et al. (2013) used a super-individual approach (Scheffer et al., 1995) with one individual 

representing a fish school. They also created 15 groups of ecologically similar model species, each 

representing a group of real species (Ecoutin et al., 2010). Each group contained one or more super-

individuals with similar trophic position and ecological traits. Persistent spatial interactions and cas-

cading behavioural interactions were revealed in a marine ecosystem model with detailed size struc-

ture and life cycles of mesozooplankton and fish (Castellani et al., 2013). This model became a step 

towards a mechanistic and adaptive representation of the upper trophic levels in ecosystem models. In 

this model, the main trait was size at maturation. Based on a traditional ocean ecosystem model in-

cluding chemistry, phytoplankton, micro- and mesozooplankton (Schrum et al., 2006), a new model 

version replaced the compound group of mesozooplankton by a developmental stage- and species-

specific matrix and introduced fish feeding on mesozooplankton (Castellani et al., 2013). A general 

mechanistic food web model of fish-jellyfish competitive interactions was based on the feeding traits 

of fish and jellyfish populations (Schnedler-Meyer et al., 2016). The model also incorporated, in addi-

tion to feeding traits, elemental composition, allometric scaling of vital rates, locomotion, and life-

history traits. The model predicted fish dominance at low primary production and a shift towards jelly-

fish with increasing productivity, turbidity and fishing.  

A few freshwater studies included one on the simulation and screening of freshwater fish in-

vasion which were tackled with the help of trait-based statistical models that used classification trees 

(Howeth et al. 2016). Another example investigated temperature-dependent colonization and extinc-

tion rates of darter fish in a body size-centred dynamic occupancy model (Shea et al., 2015). Stochas-

tic integral projection models were not only used for plants and terrestrial animals, but also in a trait-

based modelling study of pike in a freshwater ecosystem (Vindenes et al., 2014). 
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Conclusion: Based on these publications, we believe there is no question that the long and 

successful history of trait-based modelling including fish centred on size spectrums will continue. Fu-

ture applications are likely to further improve model predictions by following the increasing number 

of examples where traits other than size are also included in the models.  

 

1.4.3.2. Trait-based models focusing on plankton 

As with fish, it is also possible to explicitly model plankton in a trait-based way (Follows et al., 2007; 

Litchman et al., 2007; Bruggeman and Kooijman, 2007; Kiørboe, 2011). The models used are predom-

inantly equation-based models, as they were for those including fish discussed in the previous section 

(Appendix. Tab. A1.1). Similarly, the models considered size as the main functional trait. Only two 

models were supplemented with individual-based modules (Clark et al., 2013; Pastor et al., 2018), two 

adopted a statistical approach (Litchman et al., 2007; Terseleer et al., 2014), and one a conceptual ap-

proach (Glibert, 2016). The great majority of these models targeted the ecosystem level. This focus on 

ecosystems is possibly also one of the reasons for the domination of equation-based approaches be-

cause such approaches are particularly well suited to capture ecosystem fluxes.  

The marine ecosystem model by Follows et al. (2007) became a starting point for the devel-

opment of a number of trait-based models in microbial ecology and plankton research. This is proba-

bly because it successfully reproduced the observed global distributions and community structure of 

the phytoplankton. The model included a diverse phytoplankton community that was described by a 

set of physiological traits defined by field and laboratory data with related trade-offs.  

Phytoplankton cell size, and especially the drivers of small cell size, were addressed with a 

trait-based model of cellular resource allocation (Clark et al., 2013). This model considered a three-

way trade-off between cell size, nutrient and light affinity, and growth rate. It was developed as a 

combination of a classic nutrient-phytoplankton-zooplankton model and ‘cost-benefit’ models. The 

trait-based approach was supported by individual-based modelling such that individual life histories 

gave rise to the evolutionary dynamics of the whole system. This bottom-up approach allowed missing 

ecosystem processes to be derived from model data. Where many individuals are similar, as in the 
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general case of plankton and the specific case of this model (Clark et al., 2013), super-individuals can 

be created that represent groups of individuals with similar traits. As in other super-individual applica-

tions (e.g. Brochier et al., 2013 in section 1.4.3.1. Trait-based models including fish), this approach 

reduces computing power requirements. Plankton cell size and the mechanisms underlying observed 

biogeographical difference in cell size were also studied by Acevedo-Trejos et al. (2015) and Aceve-

do-Trejos et al. (2018). Their models considered trade-offs between cell size and nutrient uptake, zoo-

plankton grazing, and phytoplankton sinking. Macroscopic system properties such as total biomass, 

mean trait values, and trait variance were studied with a continuous trait-based phytoplankton model 

(Chen and Smith, 2018). This model was developed as a sub-module of a larger model the goal of 

which was to simulate ocean dynamics. The model produced realistic patterns of phytoplankton mean 

size and size diversity. Co-evolution of traits with respect to chromatic and temperature adaptation 

was studied with a trait-based ecosystem model (Hickman et al., 2010). Trait-based models with adap-

tive traits were compared to trait-group resolving models in a study of phytoplankton communities in 

partially mixed water columns (Peeters and Straile, 2018). 

Disease transmission in multi-host communities was the focus of a multi-generational plank-

ton-based model that considered epidemiological traits such as foraging or exposure rate, conversion 

efficiency, susceptibility, virulence and spore yield (Strauss et al., 2015). This model succeeded in im-

proving the mechanistic and predictive clarity of the dilution effect by connecting a reduction in dilut-

er species with the increase in disease risk. The dilution effect probably explains links between host 

communities and transmission. In their model of virus infection of plankton based on life-history 

traits, Beckett and Weitz (2018) found that lysis rates were driven by the strains with the fastest repli-

cation and not those with the greatest abundance.  

Compared to models with better resolved species-specific representations of physiological 

processes, improved representation of biodiversity was suggested in a biodiversity-based marine eco-

system model (Bruggeman and Kooijman, 2007). The model was based on a system of infinite diversi-

ty in which species were defined by continuous trait values for light-harvesting investment and nutri-

ent-harvesting investment. The traits chosen affected all parts of the metabolism forming a trade-off 
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between harvesting and net growth. Based on this model and a model by Bruggeman (2009), a trait-

based model was developed to include mixotrophy, succession and evolution of unicellular planktonic 

organisms and to predict optimum trophic strategies of species under changing environmental condi-

tions (Berge et al., 2017). This model contained three key resource-harvesting traits: photosynthesis, 

phagotrophy and inorganic nutrient uptake. To distinguish two different mixotrophic strategies, 

Chakraborty et al. (2017) extended the model by Berge et al. (2017) by explicitly incorporating cell 

size and introducing a pure heterotrophic strategy. 

Different aspects of plankton ecosystems were recently scrutinized at greater detail, including 

trait-based ecosystem function predictions for a global lake data set (Zwart et al., 2015), biological 

interactions, species extinctions, nutrient uptake kinetics, and some theoretical properties as well as 

more applied implications of plankton models. Interactions were investigated in the form of tempera-

ture dependence of competition of phytoplankton species (Bestion et al., 2018) and of host-pathogen 

interactions between zooplankton and a fungal pathogen, which seem to be mediated by host foraging 

under climate warming (Shocket et al., 2018). Species extinctions strengthen the relationship between 

biodiversity and resource use efficiency (Smeti et al., 2018) based on a model studying phytoplankton 

succession (Roelke and Spatharis, 2015a) and assemblage characteristics (Roelke and Spatharis, 

2015b). Based on insights from a size-based model on nutrient uptake kinetics of phytoplankton, 

Smith et al. (2014) emphasized that plankton ecology benefits from mechanistic trait-based models 

that account for physiological trade-offs. In a theoretical exercise, Gaedke and Klauschies (2017) 

showed that the knowledge of the shape of observed trait distributions is beneficial for the elegant 

analysis of aggregate plankton models, because it allows for data-based moment closure. With a new 

scale-invariant size-spectrum plankton model, Cuesta et al. (2018) explored the constancy of the rela-

tionship between biomass density and logarithmic body mass across scales. Finally, there were exam-

ples of trait-based plankton models that explicitly addressed applied questions such as the manage-

ment of harmful algal blooms (Glibert, 2016; Follett et al., 2018). 

Conclusion: The vibrant field of trait-based plankton models is a good example of how trait-

based approaches can inspire ecosystem modelling. The relatively homogeneous conditions in aquatic 
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environments lead to the dominance of one trait – size – over any other trait or any taxonomic catego-

ry in explanations of community and ecosystem processes and patterns. Although size as a main trait 

promotes simplification, which is the core aim of models, size is not always the ideal trait to describe 

all processes relevant for aquatic organisms. Thus, inclusion of further traits such as light and nutrient 

affinity (Bruggeman and Kooijman, 2007; Clark et al., 2013; Acevedo-Trejos et al., 2015; Berge et al., 

2017) is required to improve models that aim to address such processes. Due to the central role of 

body size and other traits for processes in aquatic realms, trait-based approaches are more suitable than 

species-based approaches to model aquatic communities and ecosystems. 

 

1.4.4. Trait-based models on microorganisms and soil decomposers 

Microorganisms and soil decomposers are relatively new subjects of trait-based modelling and are still 

often represented as functional groups or functional types rather than traits. Therefore, the following 

seven examples also included classifications into functional groups. As in models of aquatic ecosys-

tems, the models of microorganisms and soil decomposers were built around the key trait body size 

and were predominantly equation-based (Appendix. Tab. A1.1) with the exception of one statistical 

model (Van Bellen et al., 2017). In terms of scale, all but one model in this section operated at the 

community level. This one exception targeted continental to global scales (Wieder et al., 2015). Such 

scales are surprisingly large for a model including microbial processes. 

Nitrification by ammonia-oxidizing bacteria, ammonia-oxidizing archaea and nitrite-oxidizing 

bacteria was considered in a mechanistic trait-based model (Bouskill et al., 2012). It was based on 

traits connected to the enzyme kinetics of nitrite. Another version of this model simulated the influ-

ence of global change on ecological niches of soil nitrite-oxidizing bacteria types (Le Roux et al., 

2016). This trait-based model grouped nitrite-oxidizing bacteria into a few functional groups. The au-

thors demonstrate that this approach was successful because three main bacterial functional types ex-

pressed contrasting responses to environmental changes. 

Using functional types can be inferior to using functional traits. This was demonstrated by an-

other microbial model that addressed time lags in the enzymatic response of denitrifying microorgan-
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isms to changes in substrate concentration, including the interactive dynamics between enzymes and 

nutrients (Song et al., 2017). This model linked community traits with functional enzymes, not species 

or functional guilds as in previous studies (Taffs et al., 2009; Bouskill et al., 2012). With organisms 

whose multiple functions overlapped with one another, the guild-based (functional type) approach 

failed to properly represent these organisms. Enzyme- and thus trait-based implementations provide 

tools for scaling up biogeochemical functions to the community level without involving the dynamics 

of individual species or their guilds.  

A physiological trade-off between the traits of drought tolerance and carbon use efficiency 

was at the core of two modelling studies on soil decomposition (Allison, 2012; Allison and Goulden, 

2017). In these models, the decomposition submodel of enzymatic traits was derived from the phyto-

plankton model by Follows et al. (2007) to predict litter decomposition rates in soil. The sensitivity of 

microbial traits, community dynamics, and litter decomposition to variation in drought tolerance costs 

was quantified in an updated model (Allison and Goulden, 2017). The model implied that, for the 

Mediterranean climate system, seasonal drought was a more important environmental filter than re-

duced precipitation during the wet season. These models were examples of successful exchange be-

tween disciplines. 

Conclusion: Trait-based models are not yet so common for microorganisms and soil decom-

posers, but the few examples show their great potential for future applications. One example (Song et 

al., 2017) also illustrated nicely how important it can be to use functional traits instead of functional 

types.  

 

1.4.5. General insights on trait-based modelling  

There were few general trait-based models that are applicable to terrestrial and marine ecosystems 

alike. One of the rare cases, Harfoot et al. (2014), was a general ecosystem model based on eight traits 

thought to be the most important for determining rates of ecological processes. These traits were 

realm, nutrition source, mobility, leaf strategy, feeding mode, reproductive strategy, thermoregulation 

mode, and body mass. This model benefited from a coupled individual- and equation-based approach. 

The equation-based approach was applied to autotrophs and the individual-based one to all other or-
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ganisms. In this way, ecosystem structure and function emerged from interactions at the individual 

level. However, the individuals in this model were in fact groups or cohorts of organisms (the super-

individual approach, Scheffer et al., 1995). This general ecosystem model showed that highly complex 

models require the combination of different modelling approaches including simplification tools such 

as the super-individual approach. 

All in all, the variety of models in all sections demonstrates that trait-based modelling ap-

proaches are useful tools that are able to facilitate modelling and improve the predictive power of 

model outcomes across taxa and disciplines (Suding and Goldstein, 2008; Litchman et al., 2010; Pow-

ney et al., 2014; Laughlin et al., 2015; Song et al., 2017). In this variety of models, we nevertheless 

see a number of trends that allows comparison and incorporation of results across taxa and disciplines. 

One of these is a shift from functional types to functional traits. There is also a search for generaliza-

tions across organisms with similar functions and a few examples that scale-up processes from the lo-

cal to the global level. Techniques that appear to be useful, especially in individual-based models, are 

the super-individual approach and the incorporation of intraspecific trait-variability. Nevertheless, it 

seems clear from both empirical and modelling studies that the development of trait-based models did 

not produce a universal set of traits. Therefore, researchers should instead select traits according to the 

research question and strategies of the organisms under investigation. 

 

1.5. Discussion and Conclusions 

Based on our systematic review, it is clear that trait-based approaches are as valuable in modelling 

studies as they were earlier in empirical studies. They facilitate parameterization and scaling-up of 

models as well as the generalization of their results. Despite some inconsistencies in the terminology 

of trait-based studies, trait-based models have been implemented widely for different groups of 

organisms and ecosystems, in different model types, and for achieving a broad range of aims (See 

Appendix. Tab. A1.1). We observed productive exchange of trait-based modelling concepts and 
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techniques, especially between vegetation ecology and other disciplines, and argue that this should be 

intensified and extended to more disciplines in the future. 

Inconsistencies in terminology within trait-based approaches mainly originate from the 

unclear differentiation between functional types and functional traits as categories for grouping 

organisms. For example, Jeltsch et al. (2008) suggested three strategies for applying plant functional 

type approaches in modelling, where the “functional trait” strategy was one of them - together with 

“functional group” and “functional species” strategies. Jeltsch et al. (2008) also pointed to the fact that 

it was not possible to easily separate these strategies from each other. In any case, none of the 

modelling papers explicitly use the classification by Jeltsch et al. (2008). If researchers did so, it 

would certainly clarify terminology.  

In our review, we distinguish between models applying functional types and functional traits, 

following the shift in the theoretical literature from describing vegetation types to describing 

vegetation function (Moore and Noble, 1990; Webb et al., 2010) reflected in the development of 

DGVMs (Van Bodegom et al., 2012). The inconsistent use of terminology biases systematic reviews 

that use key words in search engines. For example, some papers state that they implement a novel 

trait-based modelling approach although in practice they use functional types. Other papers clearly 

consider well-developed trait-based models but are not found using that key word (e.g. Seifan et al., 

2012). Some studies develop crucial theoretical frameworks or methods that are probably useful for 

future model development and validation but do not themselves use any model. They advocate, for 

example, incorporating other organisms in plant trait-based models (Treseder, 2016), including 

community trait distributions to overcome the challenge of estimating single traits (Edwards, 2016), 

considering intraspecific variability (Burton et al., 2017), or using remotely sensed data to 

parameterize trait-based models (McDowell and Xu, 2017). Nevertheless, not all facets of trait-based 

modelling seem to be sufficiently well known in all fields of ecology to warrant correct attribution of a 

study to this method. Thus, unambiguous terminology requires more attention in the future. Adhering 

to a consistent terminology will also simplify the exchange of trait-based concepts between different 

disciplines. 
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Exchange of ideas on implementing trait-based models occurred between the fields of 

vegetation ecology, marine ecology, limnology, animal ecology and microbial ecology. This exchange 

already started with the first trait-based approaches from plant functional ecology (Lavorel & Garnier, 

2002; Wright et al., 2004) being adopted by animal studies of bats (Lentini et al., 2015) and birds 

(Scherer et al., 2016). In ecological modelling, ideas were transferred from phytoplankton research 

(Follows et al., 2007) to a litter decomposition model (Allison, 2012). We encourage the expansion of 

such exchange of trait-based modelling approaches between disciplines. These exchanges are likely to 

be most promising for cases where different organisms have similar functions in their communities.  

Trait-based models have been implemented for answering a number of ecological research 

questions from basic and applied ecology. Basic ecological questions that were addressed with trait-

based models included goals such as identifying which mechanisms drive plant growth, how 

populations develop over time and space, how communities assemble and biodiversity can be 

explained, as well as which factors influence community dynamics. Applied trait-based modelling 

studies investigated biological invasion conditions and consequences, responses of ecosystems to 

climate and land-use change, conservation and management planning, as well as the evaluation of 

ecosystem services. We see potential for the reinforcement of trait-based modelling approaches in 

areas such as the assessment of ecosystem services, invasion prediction and prevention, biodiversity 

studies, connection to demographic approaches (Salguero-Gómez, Violle, Gimenez, & Childs, 2018) 

and, especially, the prediction of community and ecosystem responses under climate and land-use 

changes.  

Many model types were employed to implement trait-based approaches. The greatest 

proportion was equation-based models. The next greatest proportion was that of statistical models that 

describe patterns and demonstrate correlations between, for example, functional traits and 

environmental filters. The combination of trait-based approaches with process-based modelling, as one 

subcategory of equation-based modelling, is particularly interesting because the detailed 

representation of physiological processes in process-based models may not at first be compatible with 

the aggregated approach of trait-based models. However, once united in a model, it is possibly just 

these different perspectives on a study system that, by complementing each other, will overcome the 
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limitations from which the constituent approaches suffer when used in isolation (Scheiter and Higgins, 

2009; Ali et al., 2015; Holzwarth et al., 2015). Combined process- and trait-based models are also able 

to capture a broader range of scales than each approach alone. Trait-based models are challenging to 

implement at extreme scales because the trait concept aggregates information too much for very fine-

scale models and too little for very broad-scale models. However, traits are successfully integrated into 

process-based models that implement plant physiology at fine scales and into DGVMs and earth 

system models at global scales.  

Individual-based approaches (Grimm and Railsback, 2005; DeAngelis and Mooij, 2005) are 

well suited to implement trait-based models, because they can capture variation of trait values at the 

individual level (May et al., 2009; Scheiter et al., 2013; Weiss et al., 2014; Pontarp and Wiens, 2017). 

Despite of the apparent similarity between trait-based modelling and individual-based modelling, 

when considered in isolation, there are differences between them in the main entities of the models 

(traits versus individuals) and in the way interactions are represented (Fig. 1.4). Nevertheless, trait-

based models can easily accommodate individual-level variation, and in individual-based models 

interactions are usually mediated by traits (Fig. 1.4). Thus, it is straightforward to combine these two 

approaches, yielding several advantages: It is possible to link traits directly to environmental 

conditions, so that combined individual- and trait-based models are considered to be an adequate tool 

for investigating community responses to environmental gradients (McGill et al., 2006; Webb et al., 

2010). Moreover, combined individual- and trait-based models are able to offer sufficient flexibility to 

simplify the description of individuals, to capture plant-plant interactions at the individual level and 

thereby explain local community-level phenomena (Jeltsch et al., 2008), and to facilitate model 

parameterization based on trait data that are becoming increasingly available through databases (Weiss 

et al., 2014; Grimm and Berger, 2016). Trait databases will become an even richer source for trait-

based modelling once they expand their current focus on plants to other organisms and start collecting 

and offering information on abiotic and biotic interactions as well as intraspecific trait variation (Funk 

et al., 2016). 
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We conclude that although trait-based modelling approaches have rapidly increased in ecology 

over the past twenty years, the potential advantages of the method have not yet been fully exploited. 

Key terms should be uniquely defined and the main concepts of the theoretical framework should be 

unambiguously clarified. We recommend developing and applying trait-based models to study 

community structure and dynamics and to attempt predicting the direction and intensity of community 

changes under global climate and land-use change. The complexity of such community-level studies is 

outweighed by the usually lower parameterization effort and more general model outcomes of trait-

based modelling approaches. We recommend combining individual-based with trait-based approaches 

more frequently to benefit from the enhanced flexibility. Moreover, trait-based modelling enables the 

capturing of the feedback from communities to the environment, as long as the model includes the 

effects as well as the responses of ecosystems and traits. Trait-based modelling is therefore able to 

become an important contributor to a comprehensive understanding of community structure and 

dynamics under global change. 
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Figure 1.4. Trait-based modelling differs from individual-based modelling in the main entities of the models (traits or indi-

viduals, respectively) and in the way interactions are represented (arrows). A. In trait-based modelling, interactions between 

traits and other traits, populations, communities or the environment can be of three types: 1. direct, e.g. biomass influences 

population growth rate; 2. mediated by species, if interspecific trait variability is considered; or 3. mediated by individuals, if 

intraspecific trait variability is considered. B. In individual-based modelling, interactions between individuals and other indi-

viduals, populations, communities or the environment are always mediated by traits. Functional traits are linked to organis-

mal functions such as growth, reproduction and survival. Non-functional traits are not directly linked to such functions and 

include, for example, x-y-coordinates of individuals. Note that in both cases (A. and B.), arrows represent interactions and 

any process that is related to the respective interaction, such as individual survival, growth, or reproduction. 
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Abstract 

Understanding the mechanisms driving community dynamics helps us to make reliable predictions 

about communities’ response to environmental change. Studying desert plant communities is particu-

larly challenging because of strong intra- and interannual fluctuations in precipitation. Models rise to 

this challenge by providing an arena for systematic evaluation of the parameter space in virtual exper-

iments. We applied a trait- and individual-based model to explore how community dynamics arise 

from the plant traits and interactions of plants among themselves and with their environment. The 

model is based on data from annual plant communities in the Negev Desert dominated by the True 

Rose of Jericho (Anastatica hierochuntica). We showed that functional traits that are involved in 

plant-plant interactions are equally important for community dynamics as traits promoting tolerance to 

abiotic stress. The sensitivity analysis of the model highlights relative growth rate, maximum biomass, 

the amount of time in dormancy and germination probability as the most important traits for communi-

ty dynamics. The model reflects the particular importance of environmental factors such as precipita-

tion and soil water availability based on topography for community dynamics. Our model benefits 

from the ability of individual-based models to capture plant-plant interactions and derive community 

properties from individual characteristics and from the feature of trait-based approaches to link traits 
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to organismal functions. Our study demonstrates the advantages of the combined use of trait- and indi-

vidual-based models for investigating community drivers in changing extreme environments. 

 

2.1. Introduction 

The fate of desert plant communities is unclear in the face of climate change (IPCC, 2018). An exten-

sive understanding the mechanisms driving plant community dynamics is important to predict com-

munity responses to climate change. However, the drivers of community dynamics under arid envi-

ronmental conditions are not well known. This uncertainty is partly due to strong intra- and interannu-

al fluctuations in water supply (Chesson et al., 2004), which are difficult to capture with relatively 

short-term empirical investigations. According to future climate-change predictions, interannual varia-

bility in precipitation will only increase, which may generate extreme weather conditions (IPCC, 

2018).These alterations in precipitation patterns may cause loss of desert vegetation, including annual 

plants, which are a major component of the vegetation community in these regions (Gutterman, 2000). 

Besides water availability (Loik et al., 2004) and its pulsed nature (Chesson et al., 2004), plant growth 

and survival are affected by extreme temperatures, temperature fluctuation (Gutterman, 2000) and soil 

salinity (Gutterman, 1997). Deserts are usually considered to be particularly vulnerable to climate 

change as their inhabitants may already grow at their physiological limits (Ward, 2009; Vale and Bri-

to, 2015). However, some studies claim that the communities of annual plants might be not as vulner-

able as is commonly assumed (e.g. Salguero-Gómez et al., 2012). To support the empirical investiga-

tion of the possible vulnerability of annual plant communities, we present a simulation model that uses 

a trait- and individual-based modelling approach. This approach provides the necessary tools to ex-

plore how community dynamics arise from individual plant traits and plant interactions in an ever-

fluctuating environment. 

Ecological modelling is highly suitable to explain the mechanisms underlying plant communi-

ty dynamics in deserts. An obvious advantage of modelling tools over empirical approaches is the op-

portunity to test different hypotheses without an intrusion into real ecosystems (Meyer et al., 2009). 

For instance, ecohydrological conditions in deserts are studied in a variety of models addressing run-
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off and run-on processes (Howes and Abrahams, 2003), dew effects (Gerlein-Safdi et al., 2018), basic 

flow processes (Dijkema et al., 2018), effect of fog on soil moisture dynamics (Li et al., 2018), extrac-

tion of groundwater through roots (Wang et al., 2018) and groundwater flow in two dimensions (Sun 

et al., 2018). Ecosystem processes including water, carbon and nitrogen fluxes are also represented in 

the desert modelling literature (Chen and Reynolds, 1997; Reynolds et al., 2004). Considering the vul-

nerability of desert vegetation to climatic and anthropogenic change, it is surprising that most of the 

influential models on the topic are more than ten years old. Examples include models considering dis-

persal and germination strategies of annuals (Venable and Lawlor, 1980), calculating optimal biomass 

allocation (King and Roughgarden, 1982) or modelling shrubs (McAuliffe, 1988; James et al., 2005). 

Although global vegetation models target desert vegetation as a special case (Reick et al., 2013), we 

are not aware of any models that address community structure and dynamics of desert annuals.  

Trait-based approaches provide a holistic understanding of the processes driving desert plant 

communities. These approaches link individual characteristics of organisms with their influence on 

organism performance and community functions (Violle et al., 2007). Desert plant strategies to cope 

with abiotic and biotic stress are linked to a set of plant functional traits. Such a trait set connects indi-

vidual performance with the ability of an organism to tolerate changes in its environment and endure 

competition from its neighbours. Based on this, functional traits might be divided into two groups rep-

resenting traits that mediate plant-plant interactions versus traits that help coping with harsh abiotic 

conditions. These two groups of traits represent the opposing sides of the growth-survival trade-off 

(Grime, 1977). These interactions with the environment and with neighbours give rise to community 

structure and dynamics at the local scale (Lortie et al., 2004). Thus, due to the link between traits and 

interactions, trait-based approaches can help to explain the processes underlying community structure 

and dynamics. Such mechanistic explanations are the basis of predictions of the fate of desert plant 

communities (Webb et al., 2010). 

Combining modelling and trait-based approaches provides a better understanding of the pro-

cesses that drive desert plant communities and define their response to environmental changes (May et 

al., 2009; Weiss et al., 2014). Trait-based models may assist in revealing the mutual interaction be-

tween interspecific and intraspecific plant trait variability and changes in the environment and in the 
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community (Auger and Shipley, 2013; Kazakou et al., 2014; Grassein et al., 2014; Jeffers et al., 2015). 

Individual-based modelling is a particularly promising method in combination with trait-based ap-

proaches (Zakharova et al., 2019). Individual-based modelling follows a bottom-up approach, where 

population- or community-level dynamics are derived from interactions between individual organisms 

and their environment (Grimm and Railsback, 2005) and capturing plant-plant interactions at the indi-

vidual level to explain local community phenomena (Jeltsch et al., 2008). Trait-based approaches can 

bridge the gap between the specific phenotypic characteristics of individuals, species performance in 

particular habitats, population dynamics, and community dynamics including species interactions 

(Salguero-Gómez et al., 2018; Zakharova et al., 2019). Thus, combining trait-based modelling with 

individual-based modelling may assist in overcoming limitations of computing power and lack of data 

as well as enrich models by including functional links between individual organisms and higher levels 

of organization.  

We aimed at identifying the plant traits and environmental factors that drive the dynamics of a 

community of desert annuals, particularly concerning traits that mediate plant-plant interactions versus 

traits that help plants to cope with harsh abiotic conditions. Traits that mediate plant-plant interactions 

include, for example, maximum biomass and relative growth rate. Traits related to coping with harsh 

conditions include species-specific dispersal parameters, the species-specific number of seeds, and the 

probabilities to survive and germinate. To tackle our research question, we developed a trait- and indi-

vidual-based simulation model of plant communities of annuals dominated by Anastatica hierochunti-

ca in the Negev desert in Israel. Each species in this model was represented as a set of plant functional 

traits. For now, we focused on two-species interactions to represent two contrasting dispersal strate-

gies. We considered ‘escape’ and ‘protection’ (Gutterman, 2000) seed dispersal strategies as important 

functional traits of desert annual plants ensuring their survival in the desert environment. Species with 

an ‘escape’ strategy produce large numbers of small seeds, which are dispersed unconditionally. Spe-

cies with a ‘protection’ strategy have developed long-term seed banks with seeds that are kept on the 

mother plants and are only dispersed in portions by rain (Gutterman, 2000).  
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2.2. Methods 

2.2.1. Research site 

Model structure, parameterization, and validation are based on an annual plant community in the 

southern part of the Negev Desert, Israel. This part of the desert is characterized by mean annual pre-

cipitation of less than 80 mm, allocated from September to May (“The Meteorologic Service Database, 

Israel Government Portal,” 2020). Soils in this region are reg soil and coarse desert alluvium, which 

have properties of loess soils regarding wilting point and field capacity (Dan et al., 1976). As a proof-

of-principle that the model simulates long-terms patterns similar to those observed in nature, we pa-

rameterized the model with environmental parameters and plant functional traits from a field site in 

the Negev. For this, we focused on a two-species community based on two of the most dominant an-

nual plant species at the Meishar site (30°24'48.3"N 34°56'37.9"E). For this, we considered the plant 

functional traits of Anastatica hierochuntica L. (Brassicaceae) and Malva parviflora L. (Malvaceae) 

(Appendix. Tab. A3.1). 

 

2.2.2. Developing a trait- and individual-based model 

We developed the individual-based ATID-model (Anastatica Trait-Based and Individual-based Desert 

model; atid – a Hebrew word meaning future) to investigate, which environmental factors and plant 

Figure 2.1. Conceptual scheme of the ATID-model. 
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functional traits are important for plant performance and community dynamics in deserts (Fig. 2.1).  

We implemented the model in NetLogo (Wilensky, 1999), version 6.0.2 (Appendix. Model 

code: https://github.com/lazakharova/PhDThesis). We combined trait-based (Violle et al., 2007) and 

individual-based modelling approaches (Grimm and Railsback, 2005). In the following, we describe 

our model according to the Overview, Design concepts, Details (ODD) protocol for describing indi-

vidual- and agent-based models (Grimm et al., 2006).  

 

Overview, Design concepts, and Details 

1. Purpose 

The aim of the ATID-model is to assess the relative importance of environmental factors and traits 

driving biotic versus abiotic interactions, and how these factors and traits affect long-term community 

dynamics.  

 

2. Entities, state variables, and scales 

Agents/individuals.  

Agents are adult individual plants and seeds of two generic species that are inspired by A. hierochunti-

ca and M. parviflora (generic species ‘Anastatica’ and ‘Malva’). These two desert annuals are charac-

terized by two contrasting dispersal strategies: ‘protection’ and ‘escape’ strategies (Gutterman, 2000). 

The model has an in-built opportunity to be extended by an unlimited number of other species with 

their species-specific functional trait combination, depending on the plant community that the model 

represents. Each species in this model is represented as a set of plant functional traits related to plant-

plant interactions and to coping with abiotic stress (Appendix. Tab. A2.1, Tab. A2.2). 

Spatial units.  

The simulated surface of the model is made up of cells representing arid sites with different topogra-

phy and soil water availability with a grain of 1m by 1 m. 
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Environment.  

The environment is simulated as a daily updated soil water availability that depends on two types of 

precipitation, rainfall and dew input, during the vegetation growth season. The model has embedded 

rainfall and topography generators. 

Temporal scale.  

The time step of the model during the simulated vegetation growth season is one day. This time step is 

small enough to consider daily variation in precipitation and, simultaneously, the main physiological 

processes involved in growth, survival and reproduction of plants. Outside of the vegetation growth 

season, there are no daily updates of the model variables. This reflects environmental conditions in the 

Negev desert, where annual plants grow exclusively during winter, the only wet season in the region. 

The vegetation growth season is restricted by precipitation availability. Time extent of a model simu-

lation can be set depending on the research aims, but we recommend at least ten years. A ten-year pe-

riod allows observing relevant fluctuations in environmental factors that may affect the performance 

of annual plants. The time extent can be prolonged if required. 

Spatial scale.  

The size of one grid cell is 1m by 1 m, corresponding to the scale of field measurements of the envi-

ronmental factors and vegetation parameters. The spatial extent covers an area of 100 by 50 m to cap-

ture the most important processes at the level of an annual plant community. This extent also reflects 

the size of the experimental field at the Meishar site used for proof-of-principle-simulations. 

 

3. Process overview and scheduling 

During each time step, the two main parts of the model, Vegetation and Environment, are executed 

(Appendix. Fig. A2.1). The simulation loop continues until the specified time extent is reached or no 

adult plant or seed agents exist anymore. 

The Vegetation part consists of several submodels involving seed and adult plant agents. 
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Processes at the level of seeds:  

Seed germination (Germination submodel) transforms seeds into adult plants if there is enough soil 

water availability. Seed dispersal (Dispersal submodel) distributes seeds. Seed mortality represents the 

loss of seeds caused by processes such as disease, granivory, desiccation or other causes of natural 

mortality. It is incorporated in the Germination submodel as an integrative part of germination proba-

bility. 

Processes at the level of adult plants:  

Adult plants experience natural mortality, inter- and intraspecific competition, growth, ageing and re-

production (Fig. 2.2). Natural mortality is the probability of dying because of any natural mortality 

factors other than direct competition, e.g. disturbance by wild animal activity (Adult mortality sub-

model). Competition occurs via the zone of influence (Competition submodel). Growth is represented 

by an increase in biomass (Growth submodel), based on the share of resources that each adult plant 

gets in the Competition submodel. Ageing is applied for both seeds and adult plants (Ageing submodel) 

Figure 2.2. Causal diagram of the processes at the core of the ATID-model. The blue boxes with the triple frame show envi-

ronmental processes; the green boxes with the simple frame show vegetation processes. The boxes with dashed border: salini-

ty and evaporation are not explicitly included in the current model version, but should be explored at greater detail in future 

model versions. The simple arrows with “+” show the positive influence of the process at the beginning of the arrow on the 

process at the end of it. The double arrows with “-” reflect, respectively, negative influences. The filled box is the model 

output.  
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because age is relevant for some submodels such as Reproduction and Germination. Reproduction 

leads to the production of seeds under certain conditions (Reproduction submodel). 

Within the Environment part, during each time step that is part of the vegetation growth season, soil 

water availability is updated for each cell depending on its topography and precipitation (Water-

availability submodel). The model considers topography as the most important environmental factor 

(Fig. 2.2). This assumption is made based on the nature of the soil in the region that causes a large 

fraction of the rainfall to move at the local scale from the highest sites to the lowest. All other envi-

ronmental factors in the model depend on topography. Refined soil water availability and salinity will 

be incorporated in future model extensions reflecting the progress of ongoing data collections. 

 

4. Design concepts 

The model adopts a trait-based approach, which provides a link between individual functional traits 

and properties of populations and communities (Violle et al., 2007). Plant functional traits also reflect 

strategies adopted by individual plants in response to biotic and abiotic stress. The competition mech-

anism implemented in the model is based on zones-of-influence, which are circular biomass-depended 

zones around each plant (Berger et al., 2008). 

Emergence.  

Heterogeneity of environmental settings together with the variability of plant functional traits deter-

mine emerging plant-plant interactions as well as the patterns of the spatial distribution of adult plants 

and seeds, population sizes of different species and response trait distributions, e.g. size distributions, 

at various temporal and spatial scales. 

Adaptation.  

In the current version of the model, no adaptive processes are implemented.  

Sensing.  

Plants and seeds sense soil water. They indirectly sense other plants in the cells within their zone-of-

influence through shared water resources.  
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Interaction.  

Plants interact with their environment by taking up water depending on soil water availability. Plants 

interact indirectly with other plants during the competition for resources via zones-of-influence. 

Stochasticity.  

Stochasticity is directly embedded in most model processes, namely in the construction of the land-

scape topography, in the temporal distribution of the rain, in seed dispersal, in germination, in growth 

and in natural mortality. Landscape topography is created by drawing differences in heights of neigh-

bouring cells from a normal distribution. Each year, the number of rain days within the vegetation 

growth season is drawn from a uniform distribution. Seed dispersal includes two stochastic compo-

nents, one each regarding direction and distance. The direction is uniformly distributed, while disper-

sal distances are drawn at random from a Weibull-shaped distribution with species-specific parame-

ters. Both seed germination and plant growth are modelled as probabilities that seeds get water to 

germinate and plants get water to grow, respectively. This location-specific probability is a function of 

rainfall, dew, and topography. Natural mortality is modelled as a constant, species-specific probability. 

In addition to these stochastic processes, depending on the chosen model scenario, the initial distribu-

tion of adult plant individuals and seeds in space may also be random 

Observation.  

Table 2.1. Potential output values of the model with the units of measurement and level of observation, which can be ob-

tained in the model simulations. These outputs are aggregated data based on individual variables, such as biomass and spatial 

coordinates, as well as the number of individuals. (The individual level is addressed in the model (e.g. as a carrier of traits), 

but is not considered as output level in this model version). 

Output (unit) Level of observation 

Abundance of species Population 

Population density (Plant/m2) Population 

Population mean of produced seeds Population 

Population mean biomass (g) Population 

Species composition Community 

Spatial pattern of species Community 

Spatial pattern of traits Community 

 

The following outputs of the model can be potentially observed at different levels such as individual, 

population and community (Tab. 2.1). The basis for these compound measures is the number of indi-



 

 

Chapter 2.  

Combining trait- and individual-based modelling to understand desert plant community dynamics 

 

65 
 
 

viduals, both adult plants and seeds, their spatial coordinates and biomass of adult plants. In this paper, 

we used all of these measures except for spatial coordinates as reference values for sensitivity analysis.  

 

5. Initialization 

Model initialization involves setting up a landscape with the cell heights (parameter height) gradually 

distributed between the lowest and the highest heights above sea level. The procedure starts with as-

signing the lowest cell (min-height). The height value of its neighbours is a sum of the height of this 

lowest cell and an increment calculated as a difference between the highest and lowest height divided 

by the width of the modelled landscape. A standard deviation (sd-height) is added to this calculated 

height. Based on this initialization, the following topographic objects can be identified: local maxima, 

local minima, and slopes (Fig. 2.3). Local maxima are 1 by 1 m cells surrounded by eight cells (8-cell-

neighbourhood) lying below them in height. Local minima are cells lying below their eight neighbours 

in height (these microhabitats correspond with “patches” in Hegazy and Kabiel, 2007). Slopes have at 

least one neighbour lying above them and at least one neighbour lying below them. These topographic 

objects differ in their properties in terms of water and seed retention. 

The soil seed bank is initialized by creating and randomly distributing seeds throughout the landscape. 

Figure 2.3. Schematic representation of the simulated topographical objects and their influence on the processes of plant 

growth and seed germination. Note that this figure overemphasizes the steepness of the site slope for visualization reasons, in 

reality and in the model the overall site slope is relatively shallow (e.g. for the simulation as a proof-of-principle the height 

difference is 5 m for the area of 100 by 50 m in size). 
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Seeds are assigned a set of traits. A model simulation starts with the beginning of the first vegetation 

growth season. Thus, only a specific number of seeds representing each species are created. This ap-

proach provides us with as neutral starting conditions as possible, where the influence of the initial 

conditions on model outputs is minimized.  

Depending on topography, the suitability of each cell for seed germination and plant growth is deter-

mined (Water-availability submodel, Growth and Germination submodels). 

 

6. Input data 

Topography and rainfall can be initialized in this model via algorithms (this study) or via input data 

(not implemented in the analyses presented here). The rainfall data must include the number of rainy 

days in a year, their sequential order and the overall length of the vegetation growth season. The in-

corporated rain algorithm is rather simplified due to the absence of suitable rainfall generators for the 

region generating typical, but not historical, rainfall time series. The topography data must include 

distribution of heights above sea level (e.g. from digital elevation models). The simulations presented 

in this paper are based on a topography generator (Initialization) and a rainfall generator (Rain sub-

model). 

 

7. Submodels 

Here we explicitly describe the submodels that make up the Environment part and the Vegetation part. 

We explain theories related to plant physiological processes underlying these submodels and give ref-

erences to the respective variables and parameter values (Appendix. Tab. A2.1, Tab. A2.2).  

 

Environment part.  

Rain submodel 
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Rainy days stimulate plant growth and seed germination through the increase of soil water availability 

(Water-availability submodel) and initiate dispersal according to the ‘protection’ strategy (Appendix. 

Fig. A2.1, Dispersal submodel).  

This submodel generates a list of rainy days annually, where the number of the list items is the number 

of rainy days in a certain year, and the list items themselves are the sequential numbers of the rainy 

days in the vegetation growth season. The potential number of rainy days in the season is predeter-

mined as well as the approximate duration of the season (Appendix. Tab. A2.1). The distance between 

the first and the last simulated rain events determines the actual duration of the vegetation growth sea-

son in the simulated year. Each simulated year starts with the vegetation growth season. The generated 

list of the rainy days serves as an input to the model. On rainy days, soil water availability in the cells 

is updated in accordance with their topographic characteristics (Initialization).  

 

Water-availability submodel 

The Water-availability submodel checks if there is any precipitation, either in the form of rain 

(Rain submodel) or in the form of dew, updating soil water availability daily during the vegetation 

growth season. Soil water availability (p-water-availability) is a cell property in the model and de-

pends only on the presence of precipitation and the topographical properties of the cell. Soil water 

availability is expressed as a probability for plants on this cell to take up enough water for growth (or 

germination in the case of seeds), and it does not depend on the species identity or age of the plant. 

There are three soil water availability values: a local minimum, a slope, and a local maximum. These 

values are assigned to the topographical objects so that a local minimum has the greatest value and a 

local maximum has the smallest value. This dependency of soil water availability on topography in the 

model represents the effects of local water run-off from a higher site to lower neighbouring sites and 

higher evaporation at higher sites (Daws et al., 2002; Hegazy and Kabiel, 2007). In reality, the ampli-

tude of differences in soil water availability between topographical objects depends on soil properties, 

such as soil texture, which define water holding capacity and infiltration rate (Kramer, 2019). Thus, 

soil water availability in the model is a derivative of the soil properties, although these soil properties 

are not modelled explicitly in this model version. 
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Dew, as an additional source of water, is particularly important under water constraints in the desert 

(Hill et al., 2015). Its impact is increasing with the elevation gradient in the Negev (Kidron, 1999). To 

study possible dew effects on plant growth and survival, we included a mechanism in the model to 

consider the possible input of dew throughout the vegetation growth season (with additional days be-

fore and after this season – dew-days-before and dew-days-after, respectively) and accordingly update 

soil water availability beyond the rain events within the vegetation growth season. Dew presence 

equally affects the soil water availability of all the topographic objects. Possible elevation effects on 

dew are negligible within our research area. 

 

Vegetation part. 

Dispersal submodel 

In this submodel, seeds created in the Reproduction submodel are dispersed depending on a species-

specific dispersal strategy: ‘escape’ strategy or ‘protection’ strategy (Appendix. Fig. A2.1), which, in 

the simulated plant community of this model version, correspond to the dispersal strategies of M. par-

viflora and A. hierochuntica, respectively (Gutterman and Ginott, 1994). In general, seeds are only 

dispersed if they reach the dispersal age (s-disp-age), i.e. if they are mature enough to leave the paren-

tal plant.  

The ’escape’ strategy represents an unspecific mechanism of seed dispersal. The direction of seed dis-

persal is drawn at random between 0 and 360 degrees, and distance calculation is based on a Weibull-

shaped dispersal kernel. Parameters β (s-disp-shape) and δ (s-disp-scale) (Appendix. Tab. A2.1) are 

species-specific (Paradis et al., 2002) and are involved in the calculation of the distance (s-disp-

distance) over which seeds are dispersed from a maternal plant, following the cumulative density 

function 𝑓: 

𝑓 = 1 − 𝑒𝑥𝑝[−(𝑑 𝛿⁄ )𝛽] (Eq. 1), 

after rearrangement of (Eq 1):  

𝑑 = −𝛿 ⋅ 𝑙𝑛(1 − 𝑓)1 𝛽⁄  (Eq. 2),  

where d is a distance (Paradis et al., 2002).  
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The ‘protection’ strategy differs from the ’escape’ strategy in an additional protective mechanism. 

Seeds with the ’protection’ strategy are dispersed to other cells only during rain events (Rain submod-

el). Such a mechanism increases the probability that the seeds get enough water to germinate. All the 

following steps, such as setting a direction and distance for dispersal, are equal to the ‘escape’ strate-

gy. Species-specific parameters β and δ as well as dispersal strategies are considered plant functional 

traits related to survival in arid environments. 

Germination submodel 

The submodel runs only during the simulated vegetation growth season. In the main part of this sub-

model, seeds, which were already dispersed, germinate and become adult plants (without explicit 

modelling of the seedling stage). Germination occurs only under the following conditions: soil water 

availability (p-water-availability) is sufficient for germination, the species-specific probability to ger-

minate is met (s-pr-germ), and seeds have spent the species-specific amount of time in dormancy (s-

days-dorm).  

An adult plant inherits the functional trait characteristics of the seed from which it emerged. Age of 

germinated adult plants is set to one. The stage of seedlings is not explicitly modelled, because the 

seedling stage of annuals lasts only a few days. However, seedling mortality is included by giving 

adult plants a lower probability of survival until they reach a certain biomass (Adult mortality submod-

el). This submodel represents the ability of plants to survive in a desert environment. We focus on the 

amount of time in dormancy and probability to germinate as plant functional traits involved in coping 

with the harsh environment. 

 

Competition submodel  

This submodel reflects competition of adult plants for space and resources, which are represented in 

this model version by soil water availability. This submodel determines how space and resources are 

shared; the actual resource uptake expressed in biomass increase is implemented in the Growth sub-

model. The submodel runs only during the simulated vegetation growth season. Plants acquire water 

resources from the neighbouring cells based on their total biomass and asymmetry of competition. The 

competition mechanism occurs through the zone-of-influence (ZOI) approach (Berger et al., 2008). In 



 

 

Chapter 2.  

Combining trait- and individual-based modelling to understand desert plant community dynamics 

 

70 
 
 

this submodel, a set of measurements related to the concept of ZOI is calculated, such as the radius of 

the ZOI and the effective area for resource uptake.  

The ZOI of a plant is calculated as a circular area with a radius reflecting its potential resource use. 

This area can cover more than one cell. The model offers two calculation options for the allometric 

relationship between the radius of the area of the ZOI and the biomass of a plant:  

 𝑟𝑎𝑑𝑖𝑢𝑠 =
𝐵(ⅈ,𝑡)3∕8

√𝜋

 
(Eq. 3), 

or 

𝑟𝑎𝑑𝑖𝑢𝑠 = √𝐵(ⅈ,𝑡)2 3⁄

𝜋
 (Eq. 4), 

where B is plant biomass, i defines an individual in the centre of a given ZOI, and t is a time 

step, after Lin et al., 2012 (Eq. 3) or after Weiner and Damgaard, 2006 (Eq. 4).  

The model offers two alternative implementations of the ZOI approach, Eq. 3, Eq. 6 (Lin et al., 2012; 

Radny and Meyer, 2018) and Eq. 4, Eq. 7 (Weiner et al., 2001; Weiner and Damgaard, 2006), because 

it was not possible to choose one over the other purely based on the literature. We suggest that always 

both implementations are tested to choose the more suitable one for the study at hand based on sensi-

tivity analysis, model calibration, or pattern-oriented modelling (Grimm, 2005). 

If a plant has neighbours, i.e. their zones of influence have an overlap, an effective area of these plants 

is calculated. The effective area is the difference between the area that the plant covers and the area 

lost to competition with its neighbours (Weiner and Damgaard, 2006). In the calculation of the effec-

tive area, the degree of asymmetry (ad-comp-asymmetry or θ) of competition is incorporated. This de-

gree of asymmetry is a measure of competition intensity. It reflects how the competing plants share 

their resources, depending on their biomass relative to the other competitors. The effective area is: 

𝐴𝑒𝑓𝑓(𝑖, 𝑡) = 𝛴
𝐵ⅈ(𝑡)𝜃

𝛴(𝐵𝑗(𝑡)𝜃)
⋅ 𝑅 (Eq. 5), 

where θ is the degree of asymmetry, Bi and Bj are the biomasses of the interacting plants i and 

j, R is the amount of resources shared between individuals (Schwinning and Weiner, 1998). 
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If the degree of asymmetry equals zero, resources are shared equally, regardless of plant biomass. If 

the degree of asymmetry equals one, resources are distributed proportionally to the biomass (perfect 

size-symmetry) (Schwinning and Weiner, 1998; Weiner and Damgaard, 2006; Lin et al., 2012).  

This submodel and the following one reflect the plant-plant interactions in the modelled system. We 

consider here maximum biomass and relative growth rate as traits involved in these interactions. 

 

Growth submodel 

In the Growth submodel, plants increase their biomass based on the available resources. The submodel 

runs only during the simulated vegetation growth season and follows the Competition submodel. If the 

conditions for the Competition submodel are not fulfilled, the Growth submodel is not executed, either. 

The Growth submodel runs only if the zone-of-influence of an individual is larger than zero and soil 

water availability (p-water-availability) is larger than a random number. 

We implemented two alternatives for the calculation of biomass gain 
𝑑B

𝑑t
 as a function of the effective 

area (Aeff) described in the Competition submodel: 

𝑑B

𝑑t
 =  𝑟𝑔𝑟 ⋅  (𝐴𝑒𝑓𝑓 − (

𝐵2

𝐵𝑚𝑎𝑥

4
3

)(Eq. 6), 

or 

 
𝑑B

𝑑t
= 𝑟𝑔𝑟 ⋅ 𝐴𝑒𝑓𝑓 ⋅ (1– (

𝐵

𝐵𝑚𝑎𝑥

)
1 4⁄

) (Eq. 7), 

where 𝐵𝑚𝑎𝑥 is the maximum asymptotic biomass and rgr is a species-specific relative growth 

rate after (Weiner and Damgaard, 2006; Radny and Meyer, 2018) (Eq. 6) or after Lin et al., 2012 (Eq. 

7). The relative growth rate is constant throughout all stages of the plant development in our model. 

The model does not consider the distribution of biomass between plant organs such as leaves, stem, 

and roots. Biomass is equal to all the biomass gained in the process of growth. Plants do not lose bio-

mass because of maintenance and metabolism processes. The biomass gained by a plant during a year 

is positively correlated with the number of seeds it produces. 

The model assumes that plants use all of the water available in the soil during one day according to 

their share in the competition process. The change of soil water availability due to uptake by plants is 
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not explicitly modelled to keep the model simple. Any water left after the uptake is considered lost to 

evaporation. 

 

Ageing submodel 

In the Ageing submodel, the age of both seeds and adult plants is increased daily. The age update is 

relevant for the submodels Reproduction, Dispersal and Germination. Adult plants cannot reproduce 

until they reach the age of reproduction (ad-age-repr). In the Dispersal submodel, the dispersal is pos-

sible only if seeds reach a specific age (s-disp-age). Seeds also cannot germinate before they have 

spent a certain period of their life in dormancy (Germination submodel). 

 

Reproduction submodel  

This submodel allows adult plants to produce seeds. If an adult plant has reached the age of reproduc-

tion (ad-age-repr) and the biomass of reproduction (ad-biomass-repr), it produces several seeds de-

pendent on the plant biomass (s-number-actual) with a certain seed weight (s-mass). This actual num-

ber of seeds is calculated based on a biomass of reproduction (ad-biomass-repr), which is the mini-

mum biomass needed for the production of at least one seed.  

Based on the assessed reproduction effort, the number of seeds, which this specific plant can 

produce at a certain time step, is calculated: 

s-number-actual = int (ad-biomass / ad-biomass-repr), 

where ad-biomass is the actual biomass of this plant and int is a function, which returns the in-

teger part of the argument. 

These seeds receive all functional trait characteristics of their parental adult plant and are dispersed 

(Dispersal submodel). In the model, an adult plant loses biomass equal to the multiplication result of 

seed weight and produced seed number: 

ad-biomass = ad-biomass - s-mass * s-number-actual 

A plant can reproduce more than once during the vegetation growth season if it again reaches the min-

imum biomass necessary for the production of at least one seed (ad-biomass-repr). The counter of the 
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seeds (count-s-number) controls that the plant does not produce more seeds than a species-specific 

number. 

The reproduction process is a strategy for annuals to survive under harsh environmental conditions, 

and seed weight, reproduction age and biomass are plant functional traits involved in this process. 

 

Adult mortality submodel 

Adult plants die randomly with a species-specific probability of survival during a year (ad-prob-surv), 

which reflects the natural mortality caused by processes that are not explicitly modelled (such as dam-

age caused by wild animals or herbivores). If plants have not reached a certain fraction of the maxi-

mum biomass (juv-biomass), they are exposed to a lower survival probability (juv-surv). Seed mortali-

ty is included in the germination probability. The survival probability of plants is considered as a plant 

functional trait that provides information about the survival strategies in a desert environment.  

 

2.2.3. Model analysis 

To assess the relative effects of the model parameters on model output, we conducted a sensitivity 

analysis (Appendix. Tab. A2.1) with R (R Core Team, 2018; version 3.5.1) using the package “nlrx” 

(Salecker and Sciaini, 2019). The nlrx package provides efficient tools to set up, run, and analyse 

NetLogo model simulations in R (Salecker et al., 2019).  

The parameter space of the entire model was analysed in a global sensitivity analysis. To effi-

ciently sample the parameter space, we applied the Morris screening procedure (Morris, 1991), where 

only one parameter out of all model parameters is changed at each step. We used two output indices of 

the Morris screening procedure to assess the relative influence of parameters: μ* and σ. The index μ* 

is the mean of the absolute values of the elementary effects and σ is the standard deviation of the ele-

mentary effects (Iooss and Lemaître, 2015).  

For each model parameter, we provided a minimum and a maximum value to the Morris-

screening algorithm according to expert knowledge (Appendix. Tab. A2.1). As the output reference 

values of the analysis (“metrics” in the nlrx package), we chose mean biomass of adult plants, number 
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of adult plants and number of seeds of two generic species with ‘escape’ (‘Malva’) and ‘protection’ 

(‘Anastatica’) seed dispersal strategies over the vegetation growth season in the first model year. We 

chose to run the analysis for one simulated year to keep the processing time short and capture output 

reference values for those parameter combinations that lead to the death of all seeds and adult plants in 

the first year. We checked the model output sensitivity to many plant functional traits and environmen-

tal parameters (Appendix. Tab. A2.1). The sensitivity analysis was performed under eight scenarios 

combining the absence or presence of dew with one of two calculations of ZOI and plant growth 

(Weiner & Damgaard, 2006 and Lin et al., 2012) and different combinations of two seed dispersal 

strategies.  

The initial number of adult plants and the initial number of seeds were not varied during Mor-

ris screening, simulating the beginning of the vegetation growth season. 

To address the large numbers of parameters and to minimize processing time, we kept the fol-

lowing parameters fixed: asymmetry of competition, the lowest height in the topography generator and 

the shape parameter of the Weibull distribution. The asymmetry of competition parameter was set to 

one as the model considers belowground competition for water as the main limiting resource in deserts 

(Fonteyn and Mahall, 1978) and belowground competition is considered symmetric (Weiner et al., 

1997). We set the lowest height to one, guided by common sense that the minimum height defines the 

starting point from which all other heights and differences are calculated. We set the shape parameter 

of the Weibull distribution to one, which corresponds to an exponential-like distribution function 

(García and Borda‐de‐Água, 2017). In total, we tested the influence on the model output of 37 parame-

ters (Appendix. Tab. A2.1). 

 

2.3. Results 

2.3.1. Model development and validation 

We developed a running model that successfully passed visual plausibility checks. Visual diagnostics 

(Mayer and Butler, 1993) demonstrated that the model output is similar to informal empirical observa-
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tions with respect to annual vegetation growth peaks, long-term species co-occurrence of two species 

and interannual variation in mean biomass of a population (Fig. 2.4).  

 

2.3.2. Results of sensitivity analysis 

We analysed the results of Morris screening for eight scenarios based on the values of μ* and σ. In the 

Figure 2.4. 10-year simulation of the ATID model. Left panel: seasonal fluctuations in plant numbers and co-occurrence of 

two species over time. Right panel: interannual fluctuations in mean biomass of one of the model plants (generic species 

‘Anastatica’). The source of most plant functional traits are the traits of the species A. hierochuntica (‘Anastatica’) and M. 

parviflora (‘Malva’). Vegetation growth seasons are indicated by non-zero population sizes.  

Figure 2.5. Results of the sensitivity analysis for number of adult plants as output metric and for the scenario with ZOI-

calculation after Lin et al., 2012 and dew present in the model. Left panel: ‘Anastatica’, right panel: ‘Malva’, differing mainly 

in dispersal strategy. The graphs show the relationship between the absolute mean of the Morris elementary effects μ*and the 

corresponding standard deviation of the Morris elementary effects σ. Larger μ* means that the corresponding parameter has a 

larger effect on the output. Larger σ means either that the corresponding parameter has a non-linear effect on the output or 

that this parameter is involved in interactions with other parameters. For clarity of representation, only the parameters that are 

among either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma 

correspond to ‘Anastatica’ and ‘Malva’. 
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following, we consider the influence of the parameters and scenarios on the model output following 

the order of the corresponding model parts and submodels (Appendix. Fig. A2.1).  

Environment part. 

Topographical parameters from model initialization did not have a large influence in any scenario. The 

difference between the highest and the lowest site affected only mean biomass out of all possible out-

put reference values, and the standard deviation of the smooth slope only influenced the number of 

adults. The standard deviation of the smooth slope also had a high σ value implying either a non-linear 

effect or interactions with other parameters (Appendix. Fig. A2.2).  

Among the environmental parameters of the Rain submodel, the minimal number of rainy 

days per year and the overall length of a rainy season were highly influential parameters. Both of these 

parameters influenced largely the number of adult plants and number of seeds (Fig. 2.5; Fig. 2.6). For 

the scenarios considering the dew effect, the number of days before the first rain, during which dew 

contributes to water availability in the model, showed a great influence on all output reference values, 

except for the number of adult plants of the generic species with ‘protection’ dispersal strategy 

(‘Anastatica’).  

Figure 2.6. Results of the sensitivity analysis for number of seeds as output metric and for the scenario with ZOI-calculation 

after Lin et al., 2012 and dew present in the model. Left panel: ‘Anastatica’, right panel: ‘Malva’, differing mainly in disper-

sal strategy. The graphs show the relationship between the absolute mean of the Morris elementary effects μ*and the corre-

sponding standard deviation of the Morris elementary effects σ. Larger μ* means that the corresponding parameter has a 

larger effect on the output. Larger σ means either that the corresponding parameter has a non-linear effect on the output or 

that this parameter is involved in interactions with other parameters. For clarity of representation, only the parameters that are 

among either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma 

correspond to ‘Anastatica’ and ‘Malva’. 
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The number of the days after the last rainy days, when dew still can affect plant growth, in 

contrast, had very little influence on any output reference values, although both of these parameters 

increase the length of the possible vegetation growth season. 

Regarding the parameters of the Water-availability submodel, the model demonstrated high 

sensitivity to water availability at local minima and to the difference between local minima and slopes 

for all the scenarios. Both these parameters influenced largely the number of seeds and number of 

adult plants, but much less biomass outputs. The difference in water availability between slopes and 

local maxima influenced only the number of seeds. For scenarios with dew effect included, the differ-

ence in water availability between local maxima and dew contribution to water availability had a high 

influence on the seed number (Fig. 2.5; Fig. 2.6). 

 

Vegetation part. 

The parameters of the Dispersal submodel such as the age at dispersal and the scale parameter 

of the dispersal distribution had no or little influence on model output. Surprisingly, there were no re-

Figure 2.7. Results of the sensitivity analysis for number of adult plants for ‘Anastatica’ as output metric and for the scenario 

with ZOI-calculation after Lin et al., 2012 and dew present in the model. First panel: both ‘Anastatica’ and ‘Malva’ have 

‘escape’ strategy; second panel: ‘Anastatica’ has ‘protection’ strategy and ‘Malva’ has ‘escape’ strategy; third panel: both 

‘Anastatica’ and ‘Malva’ have ‘protection’ strategy. The graphs show the relationship between the absolute mean of the Mor-

ris elementary effects μ*and the corresponding standard deviation of the Morris elementary effects σ. Larger μ* means that 

the corresponding parameter has a larger effect on the output. Larger σ means either that the corresponding parameter has a 

non-linear effect on the output or that this parameter is involved in interactions with other parameters. For clarity of represen-

tation, only the parameters that are among either the largest ten values of μ* or among the largest ten values of σ are shown. 

The parameter suffixes –an and –ma correspond to ‘Anastatica’ and ‘Malva’. 
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markable differences in the sets of the most influential parameters between scenarios considering dif-

ferent combinations of seed dispersal strategies, e.g. scenarios with the contrasting and with the same 

strategies (Fig. 2.7).  

The parameters of the Germination submodel appeared to be more influential. The amount of 

time in dormancy influenced all of the outputs of the corresponding species (Fig. 2.5; Fig. 2.6). Addi-

tionally, the parameter of ‘Malva’ had a large influence on the outputs of ‘Anastatica’ (except the 

number of seeds of ‘Anastatica’ in the scenarios with calculation of ZOI after Weiner & Damgaard, 

2006). Seed weight had a large influence on the biomass of the corresponding species (Fig. 2.8). Seed 

probability to germinate had a large influence on the number of adult plants and seeds of the corre-

sponding species (Fig. 2.5; Fig. 2.6). 

The influence of the parameters of the Competition and Growth submodels were considered in 

relation to the chosen algorithm of ZOI calculation. The relative growth rate had a large influence on 

the output in general. Remarkably, the influence on the output for the opposite species was greater 

than on the corresponding one (but the relative growth rate of ‘Anastatica’ had no influence on outputs 

Figure 2.8. Results of the sensitivity analysis for biomass as output metric and for the scenario with ZOI-calculation after 

Weiner & Damgaard, 2006 and dew absent in the model. Left panel: ‘Anastatica’, right panel: ‘Malva’, differing mainly in 

dispersal strategy. The graphs show the relationship between the absolute mean of the Morris elementary effects μ*and the 

corresponding standard deviation of the Morris elementary effects σ. Larger μ* means that the corresponding parameter has a 

larger effect on the output. Larger σ means either that the corresponding parameter has a non-linear effect on the output or 

that this parameter is involved in interactions with other parameters. For clarity of representation, only the parameters that are 

among either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma 

correspond to ‘Anastatica’ and ‘Malva’. 
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for ‘Malva’ in the scenarios after Weiner & Damgaard, 2006). The maximum biomass of adult plants 

had a high influence on the mean biomass of the corresponding species, but maximum biomass of 

‘Anastatica’ additionally influenced the number of adult plants, while maximum biomass of ‘Malva’ 

had a greater influence on the number of seeds. Furthermore, the maximum biomass of Malva had a 

high influence on the mean biomass for ‘Anastatica’ in the scenarios with calculation of ZOI after Lin 

et al., 2012 but not after Weiner & Damgaard, 2006 (compare left panels of Fig. 2.8 and Fig. 2.9).  

 In general, in the scenarios with calculation of ZOI after Weiner & Damgaard, 2006, the in-

fluence of the involved parameters on the model output of maximum biomass and relative growth rate 

of ‘Malva’ was lower than in the scenarios after Lin et al., 2012.  

The comparison of the scenarios of calculation of ZOI showed that they had different sets of 

highly influential parameters (Fig. 2.10). In the scenarios with calculation of ZOI after Weiner & 

Damgaard, 2006, water availability at local minima was a highly influential parameter for all output 

reference values, including the mean biomass. Furthermore, the precipitation parameters had a high 

influence on the output in these scenarios. It seemed that the calculation of ZOI after Lin et al., 2012 

Figure 2.9. Results of the sensitivity analysis for biomass as output metric and for the scenario with ZOI-calculation after Lin 

et al., 2012 and dew absent in the model. Left panel ‘Anastatica’, right panel: ‘Malva’, differing mainly in dispersal strategy. 

The graphs show the relationship between the absolute mean of the Morris elementary effects μ*and the corresponding 

standard deviation of the Morris elementary effects σ. Larger μ* means that the corresponding parameter has a larger effect 

on the output. Larger σ means either that the corresponding parameter has a non-linear effect on the output or that this pa-

rameter is involved in interactions with other parameters. For clarity of representation, only the parameters that are among 

either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma corre-

spond to ‘Anastatica’ and ‘Malva’. 
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increased the overall influence of parameters from the Competition and Growth submodel on model 

output. 

The parameters of the Reproduction submodel demonstrated different influences on the model 

output depending on the species dispersal strategy. The age of reproduction of ‘Malva’ had a high in-

fluence on all the outputs of the corresponding species (right panels of Fig. 2.5; Fig. 2.6; Fig. 2.7; Fig. 

2.8). The species-specific number of seeds of ‘Malva’ had a high influence only on the number of 

seeds, while it did not have any influence on the number of adult plants and mean biomass (compare 

Fig. 2.6 against Fig. 2.5 and Fig. 2.7). On the contrary, the age of reproduction and the species-specific 

number of seeds of ‘Anastatica’ had either no or very little influence on model output.  

In the Adult mortality submodel, the survival probability of plants had a high influence on the 

number of adult plants of the corresponding species. There was also some influence of the ‘Anastatica’ 

probability on the output reference value for ‘Malva’, while the probability to survive of ‘Malva’ did 

not influence at all any of the outputs of ‘Anastatica’. The biomass threshold between seedling and 

adult plant stages did not markedly influence model output. 

Figure 2.10. Results of the sensitivity analysis for number of adult plants for ‘Anastatica’ as output metric and dew absent in 

the model. Left panel: ZOI- calculation after Weiner & Damgaard, 2006; right panel: ZOI-calculation after Lin et al., 2012. 

The graphs show the relationship between the absolute mean of the Morris elementary effects μ*and the corresponding 

standard deviation of the Morris elementary effects σ. Larger μ* means that the corresponding parameter has a larger effect 

on the output. Larger σ means either that the corresponding parameter has a non-linear effect on the output or that this pa-

rameter is involved in interactions with other parameters. For clarity of representation, only the parameters that are among 

either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma corre-

spond to ‘Anastatica’ and ‘Malva’. 
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2.4. Discussion 

In this paper, we present an individual- and trait-based model simulating desert plant community dy-

namics. With this model, it is possible to study the influence of plant functional traits and environmen-

tal factors on the community dynamics of annual plants. The key aim of the model is to understand 

processes rather than to make forecasts (model for demonstration sensu Evans et al., 2013). Despite of 

the fact that there are some known models describing desert vegetation (James et al., 2005) or desert 

vegetation being a special case of a large vegetation model (Reick et al., 2013), to our knowledge, the 

model presented in this paper is the first one with a special focus on community dynamics of desert 

annuals. The key drivers of community dynamics in our model scenarios were more often plant func-

tional traits than environmental factors. These traits were related to competition, growth, germination 

and survival, but surprisingly much less to dispersal. Environmental factors driving community dy-

namics in the model were based on soil water availability and precipitation. This is in accordance with 

the proposed environmental drivers of actual desert communities (Hegazy and Kabiel, 2007). The 

proof-of-principle simulation reproduced accurate pulse dynamics of desert annual plant communities. 

This shows that the model is structurally realistic. The model can be parameterized to mimic, com-

plement and extend controlled greenhouse experiments. This approach would contribute to not only 

model development but also facilitate empirical experiments, which are often restricted in the possible 

complexity of the experimental design and sample size (Meyer et al., 2009; Radny et al., 2018; Radny 

and Meyer, 2018). To increase the reliability of the model, we suggest further validation of the model 

by comparing model results first against data from one field site, then against several field sites, then 

against data from a different desert ecosystem. 

The results of the sensitivity analysis highlighted the relative importance of different environ-

mental parameters and plant functional traits for a range of model outputs. Among the environmental 

factors, the most important factors were precipitation, the minimum number of rainy days and the 

length of the rainy season, as well as soil water availability at sites with expected higher water availa-

bility (local minima and slopes). When dew effects were included in the model, the parameters defin-

ing dew influence, such as the corresponding increase in water availability and the duration of the pe-

riod of dew deposition, had a high influence on the model output. Based on these implied dew effects 
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on the model output, we advocate for a more elaborated dew submodel in future model versions with 

more detailed effects on plant growth. The topographical parameters affected model outputs only indi-

rectly, via water availability. Taken together, this is in line with water as the main limiting environ-

mental factor in deserts. 

The influence of plant functional traits on model output differed from submodel to submodel 

and between the generic species. The parameters from competition and growth submodels such as the 

relative growth rate and maximum biomass were among the most influential parameters across all the 

considered scenarios. These two parameters are plant functional traits that are involved in plant-plant 

interactions modelled via the calculation of ZOIs. The comparison of the scenarios applying different 

calculations of ZOIs demonstrated that this choice not only directly influenced how biomass is built 

into the model architecture, but also changed the sensitivity of the entire model to the other parameters 

(Fig. 2.10). In accordance with these results, we advocate that the choice of the ZOI approach in the 

model should be based on empirical measurements of the relationship between biomass and growth for 

each considered species or group of species. If these measurements are not available, model calibra-

tion techniques or pattern-oriented modelling (Grimm, 2005) can be applied to select the suitable cal-

culation of ZOI. 

The germination and adult mortality submodels incorporated several highly influential parameters: 

amount of time in dormancy, probability to germinate, and plant probability to survive. These plant 

functional traits are related to the ability of plants to survive in desert environments. Although the im-

portance of such germination- and survival-related traits was expected, it was still surprising that these 

traits were much more important than any dispersal-related traits or strategies in the model. This 

means that coping with the local environmental conditions is much more important than exploring new 

environments, at least in our model communities. This disagrees with informed-dispersal theory, 

which claims that organisms prefer to avoid stressful local environment by investing their costs in dis-

persal (Martorell and Martínez‐López, 2014). We hypothesize that the greater importance of tolerance 

versus avoidance strategies (in the form of dispersal) will decrease with increasing spatial heterogenei-

ty of the environment and that this relationship will depend on the scale of the heterogeneity. We sug-
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gest testing this hypothesis in future simulation experiments with model versions that differ in spatial 

heterogeneity across spatial scales.  

Based on the insights from the sensitivity analysis, refinement of the model parameters would 

be the next logical step of further model development. Highest priority in parameter refinement should 

usually be given to the high-sensitivity parameters, i.e. amount of time in dormancy, probability to 

germinate, probability to survive, relative growth rate, maximum biomass, soil water availability, and 

precipitation parameters. Parameter refinement relies on new or refined empirical measurements. 

However, not all of the high-priority parameters will be easy to measure; some may even turn out to 

be impossible to measure in practice. Traits that are hard to measure can be approximated by ‘soft 

traits’ that are easier to measure (Hodgson et al., 1999; Cornelissen et al., 2003) or easier to model. 

For example, root traits are very hard to measure and were approximated by zones of influence in our 

model. Similarly, seed dispersal parameters can be derived from the spatial distribution of plants rela-

tive to the mother plant (Nathan and Muller-Landau, 2000). 

Where it is impossible to obtain parameter values, these gaps might be filled with the help of 

pattern-oriented modelling (Wiegand et al., 2003; Grimm, 2005). If applied for inverse parameteriza-

tion, this approach may assist in acquiring plant functional traits that are not available in the literature, 

are hard to measure in the field and cannot be easily replaced by ‘soft traits’. For example, the output 

reference values in the sensitivity analysis such as biomass distributions and numbers of adult plants 

would be the first candidate patterns to match with observed natural patterns. Another pattern for 

comparison with real-world observations would be the spatial distribution of individuals with different 

species identities. Of course, if the aim of the model was changed from understanding mechanisms 

towards forecasting concrete community dynamics, different priorities in parameter refinement may 

arise. For forecasts, the model should be run with real-world rainfall data from meteorological stations 

and corresponding height-above-sea-level values from digital elevation models of a reference site in-

stead of the currently used algorithms generating environmental input. For understanding general 

mechanisms, the current model version seems to be valid and applicable, but parameter refinement 

will certainly improve the reliability of its results. 
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Our model combines trait-based and individual-based approaches. This combination provides 

an opportunity to derive community properties from the functional traits of individual plants, interac-

tions between these individuals and between the individuals and their environment (Zakharova et al., 

2019). Moreover, as a mechanistic model, the presented model will contribute to our understanding of 

the processes that affect desert plant communities. As shown in the model, these processes are both 

associated with the interaction between plants and their environment and inter- and intraspecific plant-

plant interactions. We combined a trait-based approach with an individual-based approach by assign-

ing plant functional traits to individual agents in the model, with traits being directly linked to a strate-

gy or an organismal function (Violle et al., 2007). Simultaneously, the bottom-up principle of individ-

ual-based models (Grimm and Railsback, 2005) led to the emergence of population- and community-

level dynamics from interacting traits and individuals (Salguero-Gómez et al., 2018). Modelling these 

individual biotic interactions (e.g. competition) or abiotic interactions (e.g. individual responses to the 

fast-changing desert environment) was possible because of the individual- and grid-based nature of the 

model (Jeltsch et al., 2008). Using a combined trait-based and individual-based approach also im-

proved the mechanistic tractability of the model. 

The model presented in this paper can be considered as a general framework for future case 

studies. We advocate for future elaboration and extension of the model by incorporating more detail at 

the submodel level and by introducing new submodels. For example, explicitly including soil proper-

ties and plant water uptake will refine the water-availability submodel. A future extension to the model 

might consider salinity effects on soil properties, water availability and water uptake, depending on 

precipitation, evaporation and vegetation. Submodels including the most influential parameters ac-

cording to the sensitivity analysis such as competition, growth and germination submodels are of par-

ticular interest. In line with claims for more studies of intraspecific trait variation (Violle et al., 2012; 

Burton et al., 2017), it is principally possible to vary trait values between individuals in our model due 

to its individual-based approach. With these additional details, the model can be used to tackle several 

research questions, including studying communities under different climates representing IPCC sce-

narios (IPCC, 2018). 
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In summary, the model presented here is the first attempt to study plant community dynamics 

of desert annual species with the help of a combined trait- and individual-based approach. The model 

suggests paths to deal with two major challenges: lack of empirical data and difficulty to capture the 

ever-changing environmental conditions that desert plant communities face. The lack of data can be 

addressed by using trait-based approaches and incorporating pattern-oriented modelling to acquire pa-

rameter values that are hard to measure. The spatial and temporal heterogeneity of desert communities 

is tackled with the individual-based modelling approach. In this way, the model presented here will 

advance the research of desert plant communities and understanding their fate under global changes.  
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Abstract  

Heterogeneity of the environment limits the life of desert annual plants. Desert annual plants acquired 

different strategies to survive under high heterogeneity, predominantly targeted at the seed phase. The 

key seed strategies are an escape in time strategy and an escape in space strategy, which have been 

linked to survival under respectively temporal and spatial heterogeneity. We suggest using plant 

functional traits involved in these seed escape strategies to connect them to the colonization-

competition trade-off. This way they align with what was previously coined ‘protection’ and ‘escape’ 

seed strategies of desert plants. Using a spatially explicit simulation model, we investigated the 

survival and performance of two annual plant species as representatives of a protective-competition 

strategy and an escape-colonization strategy. The results confirmed the dominance of the escape-

colonization strategy in the earlier phase of community dynamics, while the protective-competition 

strategy dominated in the later phase. Additionally, the simulation results showed the superiority of the 

protective-competition strategy under high temporal heterogeneity, which relaxed under high spatial 

heterogeneity. The insights from this simulation experiment advocate for a trait-based description and 

integrated consideration of life phases to capture plant survival strategies and their success in 

heterogeneous desert landscapes. 

 



 

 

Chapter 3.  

The success of plant survival strategies under spatial and temporal heterogeneity in warm deserts 

88 
 
 

3.1. Introduction 

Deserts are known as environments with organisms adapted to extreme conditions (Ward, 2009). 

These environments challenge their inhabitants by high heterogeneity in time and space (Chesson, 

2000; Venable et al., 2008). For example, the Negev desert has high inter- and intraannual variation in 

rainfall patterns (Berkowicz et al., 1995), which affects the survival of plants (Tielbörger and Kadmon, 

2000). In addition to the temporal variability, spatial heterogeneity also affects plant performance in 

deserts (Loik et al., 2004; Hegazy and Kabiel, 2007). Annual plants seem to be particularly vulnerable 

to these rapid environmental changes as they have only one growth season for the entire life cycle (but 

see Salguero-Gómez et al., 2012). This group of plants developed intrinsic adaptations to the ever-

changing conditions of deserts, demonstrating a shorter growth cycle and plasticity in the transitions 

from one life cycle stage to another (Aronson et al., 1993).  

Strategies targeted at the seed stage seem to be reliable promises for annual plant survival in 

deserts under temporal and spatial heterogeneity, as they ensure the survival over a specific unfavour-

able growth season and therefore the persistence of the entire population in a certain region (Venable 

and Lawlor, 1980). Plant strategies for increasing the chances of seeds to survive and germinate in 

variable and heterogeneous environments such as deserts involve variability in dispersal strategies and 

timing of germination (Venable and Brown, 1988). Particularly, desert annuals have for many years 

been model organisms to study bet hedging, a phenomenon of sacrificing current performance to en-

sure success in the future, and a number of studies were conducted to understand the underlying 

mechanisms of these survival strategies (Tielbörger and Valleriani, 2005; Gremer and Venable, 2014). 

Plants invest usually in one of two bet-hedging strategies: seed dormancy or seed dispersal (Venable 

and Brown, 1988; Snyder, 2006). Thus, these two main strategies aim to avoid periods of unsuitable 

conditions by escaping in space or in time in form of a seed (Venable and Lawlor, 1980). Escape in 

space increases the chances of finding more suitable habitats, while escape in time contributes to sur-

vival until conditions become more favourable in situ. Although both strategies can potentially con-

tribute to the survival of annual plants in deserts, it was suggested that escape in time is more im-

portant for desert plants (Adondakis and Venable, 2004; Venable et al., 2008). The rationale behind 
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this statement is that precipitation seems to vary more than any spatial factor in deserts (Venable and 

Lawlor, 1980; Ellner and Shmida, 1981). However, others have suggested that escape in space might 

be as important for desert plants, because it is much easier to realize in deserts: Escape in space relies 

on runoff and wind, which are promoted by the openness of desert landscapes (Mott and McComb, 

1974; Reichman, 1984). Thus, it is still not clear, under which environmental conditions escape in 

space or escape in time are more relevant for plant survival. 

Pure escape-in-time or escape-in-space strategies are rare in nature. Many species exhibit 

mixed strategies that include seed dormancy and seed dispersal at varying degrees (Adondakis and 

Venable, 2004; Oudtshoorn and Rooyen, 2013), which are sometimes combined with strategies target-

ing biotic interactions such as competition. For example, larger seed size has been associated with the 

increased ability of plants to compete, while smaller size and greater number of seeds per individual 

facilitates colonization (Leishman, 2001; Turnbull et al., 2004). This difference in seed size has been 

linked to a colonization-competition trade-off (Levins and Culver, 1971; Tilman, 1994), where large‐

seeded species are seen as superior competitors but inferior colonizers and vice versa (Rees, 1995; 

Turnbull et al., 1999). If seed escape strategies are viewed in the framework of the colonization-

competition trade-off, the escape-in-time strategy accounts for superior competitors, whereas the es-

cape-in-space strategy is adopted by superior colonizers that can avoid competition with other plants if 

we assume that the environment offers competitor-free space at least at some locations. For example, 

spatial processes that affect seed dispersal were suggested to promote the persistence of an inferior 

competitor (Weiner and Conte, 1981; Bolker and Pacala, 1999). Escape-in-time strategists are likely 

prone to much higher local competitive pressure than escape-in-space strategists. Furthermore, compe-

tition plays an important role in environments with high spatial and temporal unpredictability, espe-

cially when the rainfall arrives (Chesson et al., 2004). The right timing of germination out of seed 

dormancy contributes to future competitive success among annuals (Chesson et al., 2004). Thus, it 

seems to be promising to link seed escape strategies in deserts and the colonization-competition trade-

off. To our knowledge, the relationship between seed dispersal strategies and the colonization-

competition trade-off has not yet been explored for desert annual species. 



 

 

Chapter 3.  

The success of plant survival strategies under spatial and temporal heterogeneity in warm deserts 

90 
 
 

Two strategies suggested for annual plants in the Negev desert by Gutterman (1994) to some 

extent capture characteristics of both escape-in-time/ escape-in-space strategies and the competition-

colonization trade-off. The first strategy, the ‘protection strategy’ (Gutterman, 1994), is adopted by 

plant species with fewer larger seeds, which conveys superior competitiveness in the competition-

colonization trade-off (Turnbull et al., 2004). The protection strategy can also be considered as a spe-

cial form of the escape-in-time strategy. In contrast to other escape-in-time strategies, the protection 

strategy ensures escape in time before seed dispersal and not afterwards. The large seeds of plants with 

the protection strategy are dispersed in small portions only when there is water available for plant 

growth in the environment (Ellner and Shmida, 1981). The second strategy, the ‘escape’ strategy (Gut-

terman, 1994), follows mainly an escape-in-space strategy by producing many small seeds that facili-

tate seed dispersal and, thus, represents superior colonizers in the competition-colonization trade-off 

(Turnbull et al., 2004). For the purpose of this paper, where we suggest to link seed escape strategies 

with the colonization-competition trade-off, we recoin Gutterman’s (1994) protective strategy as a 

‘protective-competition’ strategy and his escape strategy as an ‘escape-colonization’ strategy. 

In this research, we conducted a simulation experiment with the trait- and individual-based 

spatial-explicit model of annual plant communities ATID (chapter 2). This model simulates different 

seed dispersal mechanisms as well as competition between annual plants. We focus on a two-species 

community as it is observed in several sites across the Negev desert. This community consists domi-

nantly of two annual species, Anastatica hierochuntica L. (Brassicaceae) and Malva parviflora L. 

(Malvaceae). Anastatica hierocuntica is a classical representative of the protection strategy (Gutter-

man, 1994) and escape-in-time strategy (Venable and Lawlor, 1980), where seeds are protected on the 

mother plant and dispersed in portions only under raindrops (Friedman and Stein, 1980). Thus, the 

protective-competition strategy can be attributed to A. hierochuntica. Dispersed seeds usually germi-

nate without any further delay. The escape strategy of Malva parviflora can be seen as a combination 

of escape in time and space. The species produces numerous small seeds that can be eaten by sheep 

and, thus, dispersed to longer distances. Additionally, seeds of M. parviflora have a pronounced dor-
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mancy period (Michael et al., 2006) ensuring that not all seeds germinate at the same time. According-

ly, M. parviflora is considered in this study as a representative of the escape-colonization strategy. 

Our aim was to explore the survival and performance of these two species as representatives 

of different survival strategies of annual plants in the Negev desert and put that into relation with the 

escape-in-space/escape-in-time strategies and the colonization-competition trade-off. By choosing to 

implement real species instead of theoretical species with ‘pure’ strategies, we ensure the biological 

realism and the applicability of our results. We exposed these species to four scenarios representing 

pairwise combinations of high or low spatial heterogeneity and high or low temporal heterogeneity. 

The range of these heterogeneities lies within the ranges observed across the Negev desert and in 

warm deserts in general. We expect that the protective-competition strategy (1) is superior to the es-

cape-colonization strategy under high temporal heterogeneity (and thus unpredictability); (2) is inferi-

or to the escape-colonization strategy under high spatial heterogeneity (and thus unpredictability); and 

(3) is linked to successful competition measured as long-term persistence in a local community and 

that the escape-colonization strategy is linked to successful colonization measured as short-term domi-

nance in a local community. 

 

3.2. Methods 

3.2.1. Study area 

Model input is based on data originating from the Negev desert. For model parameterization and cali-

bration, we focused on the site Meishar (30°24'48.3"N 34°56'37.9"E) near Mizpe Ramon, Israel, ap-

plying a digital elevation model from this site and precipitation information. The initial conditions 

with respect to precipitation (“The Meteorologic Service Database, Israel Government Portal,” 2020), 

topographic data (unpublished), and plant community composition reflect field observations from 

Meishar.  

The functional trait values for the modelled species were determined for two major annual 

species in the plant community in Meishar: Anastatica hierochuntica and Malva parviflora as captured 
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during field observations in the growth season in 2017. Plant functional trait values assigned to these 

species were taken from the literature and expert knowledge based on field observations and nethouse 

experiments (Appendix. Tab. A1). Species composition and abundance of each species used for model 

calibration were measured within 1 by 1 m quadrats, with a distance of 5 m from each other at a study 

site at Meishar with side lengths of 100 m by 50 m.  

Model scenarios were based on simulated input within margins of environmental conditions 

that are typical of those parts of the Negev desert with a mean annual precipitation of less than 80 mm 

(Berkowicz et al., 1995). 

 

3.2.2. Model parameterization and calibration 

We used environmental data derived from topographic data (unpublished) of Meishar and meteorolog-

ical data from the study site as an input to the ATID-model (chapter 2), developed in NetLogo (Wilen-

sky, 1999), version 6.0.2.  

The model was parameterized for two species expressing different survival strategies: Malva 

parviflora and Anastatica hierochuntica. The species differ substantially in their seed dispersal mech-

anisms, seed mass, number of seeds produced per individual and in relative growth rate (Appendix. 

Tab. A3.1). This two-species case of a plant community was observed during the fieldwork in May 

2017, when the number of individuals of other species was negligible (all other species < 1% abun-

dance). We extrapolated the complete counts of plant individuals in 40 1 by 1 m quadrats to the area of 

the full study site with side lengths of 100 m by 50 m, yielding 371,125 adult plants of A. hierochunti-

ca and 246,500 adult plants of M. parviflora plants. We used these values to calibrate the model with a 

special focus on the most uncertain parameters with respect to literature and expert knowledge: num-

ber of seeds at the beginning of the simulation, relative growth rate and maximum biomass of both 

species. These parameters were also associated with high sensitivities in the sensitivity analysis of the 

model (chapter 2). We ran a calibration procedure for individual-based simulation models with R (R 

Core Team, 2018; version 3.5.1) using the package “nlrx” (Salecker and Sciaini, 2019; Salecker et al., 
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2019) to find the corresponding parameter values (Appendix. Tab. A3.1). The calibration was based 

on an Approximate Bayesian computation algorithm coupled with an MCMC sequential scheme after 

Marjoram et al. (2003) as it is implemented in the R package EasyABC (Jabot et al., 2013; Jabot et al. 

2015). 

 

3.2.3. Scenarios 

We defined the environmental conditions at the study site in Meishar as neutral scenario. For the four 

main scenarios in this analysis, we simulated respectively either higher or lower temporal and spatial 

heterogeneity than in this site based on the topography and rainfall simulators provided by the ATID-

model (Tab. 3.1). The ranges of the environmental parameters implemented in the scenarios were arti-

ficial to create clearly different conditions. However, the ranges of the parameters were kept realistic 

with respect to rain data obtained from meteorological observations in this part of the Negev desert 

(“The Meteorologic Service Database, Israel Government Portal,” 2020) and height difference infor-

mation (topographic data, unpublished). Soil water availability was kept the same for all scenarios as 

soils in this part of the Negev have similar properties (Dan et al., 1976). The length of the rain season 

was also constant over all scenarios. For all four scenarios, we simulated two-species communities 

representing species with different survival strategies. The simulations were run until the death of all 

the plants and seeds on a simulated site with side lengths of 100 m by 50 m. Number of seeds, number 

of plants and mean biomass of adult plants were recorded at each time step (one day) to measure sur-

vival and performance of both species. 
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Table 3.1. The parameter values of the four simulated scenarios with respect to height difference and standard deviation (sd) 

of the surface and interannual difference in the number of rain days. For comparison, these are the parameter values for the 

neutral scenario corresponding to the ‘Meishar’ site: height difference = 5 m, height sd = 0.05 m; interannual rain days’ dif-

ference = 30 days (see Appendix. Fig. A3.1 for simulation results for the ‘Meishar’ site). 

 Low spatial heterogeneity High spatial heterogeneity 

Low temporal heterogeneity Scenario A. Height difference = 2 m, 

height sd = 0.01 m; interannual rain 

days difference = 20 days 

Scenario B. Height difference = 8 m, 

height sd = 0.1 m; interannual rain days 

difference = 20 days 

High temporal heterogeneity Scenario C. Height difference = 2 m, 

height sd = 0.01 m; interannual rain 

days difference = 40 days 

Scenario D. Height difference = 8 m, 

height sd = 0.1 m; interannual rain days 

difference = 40 days 

 

3.3. Results 

Simulated two-species communities existed for 18-28 years. The longest simulations were recorded 

for scenario D, with high spatial and temporal heterogeneity (Fig. 3.1 – 3.3). This scenario also 

ensured the longest coexistence of two species, followed by scenario A, with low spatial and temporal 

heterogeneity (Fig. 3.1-C and 3.1-A). The number of plants (Fig. 3.1) and the number of seeds (Fig. 

3.2) for simulated Malva parviflora (escape-colonization strategy) consistently decreased during the 

simulation, whereas the respective numbers for Anastatica hierochuntica (protective-competition 

strategy) remained relatively stable over the years. Mean biomass of adult plants reached its maximum 

after 7-8 years of the simulation runs across all the scenarios (Fig. 3.3). This maximum in mean 

biomass matched in time with the relative equalization in the numbers of seeds and plants between the 

two simulated species. Thus, over all scenarios, two clear phases of coexistence of the two species 

were observed. 
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In the first phase of the simulation, the escape-colonization strategy was superior to the 

protective-competition strategy in the number of plants (Fig. 3.1), the number of seeds (Fig. 3.2) and 

mean biomass of adult plants (Fig. 3.4). In the second phase, the protective-competition strategy was 

dominant and on average was associated to the last species to survive in the given environment (but 

see separate simulation runs: Appendix. Fig. A3.2). 

Figure 3.1. Number of plant individuals of the species with the protective-competition strategy (black) and with the escape-

colonization strategy (grey) over simulated time in four scenarios (A: low temporal and spatial heterogeneity, B: low tem-

poral heterogeneity and high spatial heterogeneity, C: high temporal heterogeneity and low spatial heterogeneity, D: high 

temporal and spatial heterogeneity). 
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Under low spatial heterogeneity (Fig.3-A and -C), mean biomass of the species with the 

protective-competition strategy in the second phase of the simulation remained high up to the end. 

Under high spatial heterogeneity (Fig. 3.3-B and -D), however, mean biomass of the species with the 

protective-competition strategy started to decrease after the species with the escape-colonization 

strategy was outcompeted from the community.  

In scenario C combining low spatial heterogeneity and high temporal heterogeneity, the 

switch to the dominance of the protective-competition strategy clearly coincided with the transition 

Figure 3.2. Number of seeds produced by the species with the protective-competition strategy (black) and with the escape-

colonization strategy (grey) over simulated time in four scenarios (A: low temporal and spatial heterogeneity, B: low tem-

poral heterogeneity and high spatial heterogeneity, C: high temporal heterogeneity and low spatial heterogeneity, D: high 

temporal and spatial heterogeneity). 
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from the first to the second phase of the simulation (Fig. 3.4). For other scenarios, this period was 

more extended, accompanied by spikes in mean biomass of the species with the escape-colonization 

strategy (Fig. 3.3 and 3.4). Under high spatial heterogeneity (Fig. 3.3 and 3.4; scenarios B and D) in 

the second phase of the simulation, the species with the escape-colonization strategy had clear years of 

dominance over those with the protective-competition strategy up to the point of its extinction. 

Figure 3.3. Mean biomass (g) of the species with the protective-competition strategy (black) and with the escape-

colonization strategy (grey) over simulated time in four scenarios (A: low temporal and spatial heterogeneity, B: low tem-

poral heterogeneity and high spatial heterogeneity, C: high temporal heterogeneity and low spatial heterogeneity, D: high 

temporal and spatial heterogeneity). 
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3.4. Discussion 

In this study, we linked seed escape strategies and the colonization-competition trade-off to explore 

the survival and performance of plant species representing the protective-competition strategy and the 

escape-colonization strategy in a two-species community of desert annuals with the ATID-model 

(chapter 2). We assessed the performance of the populations in terms of abundance and biomass. 

Biomass patterns reflected the ongoing processes, while changes in abundance were rather a delayed 

consequence of these processes for the community. Exposing the two strategies to high and low spatial 

Figure 3.4. Proportion of the mean biomass of the species with the protective-competition strategy (left axis) and with the 

escape-colonization strategy (right axis) over simulated time in four scenarios (A: low temporal and spatial heterogeneity, B: 

low temporal heterogeneity and high spatial heterogeneity, C: high temporal heterogeneity and low spatial heterogeneity, D: 

high temporal and spatial heterogeneity). 
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and temporal heterogeneity, we found small differences between the two strategies across the 

scenarios and a general two-phase pattern in the community dynamics over all scenarios with the 

escape-colonization strategy dominating on the short term and the protective-competition strategy 

showing longer persistence.  

Only in the second phase of the community dynamics, the relative dominance of the species 

with the protective-competition and the escape-colonization strategies were in line with our first two 

expectations. Although the protective-competition strategy was ultimately superior to the escape-

colonization strategy in all scenarios, the superiority was clear from the beginning of the second phase 

only in the scenario with high temporal heterogeneity and low spatial heterogeneity (see scenario C in 

Fig. 3.4). This agreed with the expectation that high temporal heterogeneity leads to superiority of the 

protective-competition strategy. In both high-spatial-heterogeneity scenarios, the escape-colonization 

strategy showed dominance (even if only transiently) as predicted by our second expectation. Thus, in 

the scenario with high spatial and temporal heterogeneity (scenario D), where both strategies might 

have been expected to be superior, the escape-colonization strategy won, at least on the short term. 

This is probably due to the fact that the escape-colonization strategy included an, albeit weak, escape 

in time by exhibiting some seed dormancy. This may indicate that mixed strategies are beneficial for 

survival in heterogeneous environments, and especially where both spatial and temporal heterogeneity 

are high (Adondakis and Venable, 2004; Oudtshoorn and Rooyen, 2013;Volis and Bohrer, 2013). 

These results are also in line with the claim that both increases in seed size and dormancy are 

mechanisms developed to cope with environmental unpredictability (Venable and Brown, 1988). 

The separation into two phases with clear dominance of the escape-colonization strategy in the 

first phase and ultimate dominance of the protective-competition strategy in the second phase reflects 

short-term dominance of a colonization strategy at a restricted location such as the simulated site and 

long-term persistence of a superior competitor at this site. This agrees with the third expectation and 

with the predictions of the colonization-competition trade-off (Tilman, 1994; Cadotte, 2007). In 

support of these results, our own field observations showed that Malva parviflora (the escape-

colonization strategy) presence in communities dominated by Anastatica hierochuntica (the 

protective-competition strategy) is usually sporadic and rarely observed during many subsequent 
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years. These observations support the colonizer nature of Malva parviflora, which is of advantage in 

sites with high levels of disturbance or generally high unpredictability in the environmental conditions 

(Hutchinson, 1951; Hastings, 1980). However, it also highlights the dependence of this species on 

long-distance seed dispersal and on reintroductions to the communities by sheep or other animals 

(Michael et al., 2006). 

Two overarching trends emerged across all scenarios: restricted overall community 

persistence and the clear separation of the community dynamics into two phases. The generality of 

these trends implies that stochastic processes might play a more important role than predefined 

environmental heterogeneity settings (Loik et al., 2004). The limited community persistence might 

point at the necessity to include more community processes in the model. For example, the model 

considers a community at a local spatial scale and does not include such large-scale processes as seed 

wash-in and wash-out (Hegazy and Kabiel, 2007) or occasional long-distance dispersal that might play 

a role for both species (Friedman and Stein, 1980; Michael et al., 2006). Thus, model performance and 

the representation of the strategies might be improved by enlarging the spatial extent of the simulated 

landscape. The other overarching trend, the two-phase nature of the simulation runs, reflects the 

performance of colonizers and competitors (Tilman, 1994; Calcagno et al., 2006).  

Overall, this simulation study demonstrates the affinity of seed escape strategies to the 

colonization-competition trade-off. The connections between these two approaches appear more 

pronounced if seen through the lenses of a plant functional trait-approach, which facilitates their 

combination into more versatile plant survival strategies. Thus, we advocate for more comprehensive 

research on the combination of seed escape strategies and the colonization-competition trade-off in 

plant communities in deserts and beyond. 
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Abstract 

Desert plant communities are exposed to strong inter- and intraannual fluctuations in environmental 

factors. Interspecific or intraspecific trait variability provides survival of desert plants under these un-

stable conditions. In this research, we explored intraspecific trait variability and trait spaces of the de-

sert annual plant Anastatica hierochutica. We focused on how the origin of environmentally diverse 

sites shapes the trait response of this species. The effects of aridity and soil salinity of the site of origin 

on plant adaptation to high salinity stress were analysed based on data from the nethouse experiment. 

We tested six hypotheses linking site characteristics with the changes in intraspecific trait spaces 

across five populations subjected to salinity treatments. The underlying analysis was based on func-

tional traits such as dry weight, the number of leaves, seed germination probability, two gas exchange 

parameters and osmolyte concentration. Imposed high salinity had expected negative effects on two 

morphological traits. However, germination probability and osmolyte concentration were affected pos-

itively. Nevertheless, the influence of high salinity on the trait spaces of populations originating from 

the different sites was not equal. Under high salinity, the trait spaces of the stress-related trait of the 

populations from two relatively benign sites increased, whereas the trait spaces of the populations 

from the harsh environments decreased. The trait spaces of growth-related traits always decreased un-

der high salinity regardless of the site of origin. While we were able to capture the effects of site char-
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acteristics and their magnitude on the expression of the average value of functional traits, it was also 

shown that there is no one clear explanation of the changes in trait spaces as a response to salinity 

stress depending on the origin of the populations. However, there was a clear increase of the dissimi-

larity between the trait spaces of the populations originating from the same site but exposed to differ-

ent salt stress levels with increasing environmental aridity. We advocate for outlining other factors 

determining environmental harshness and their interaction with each other. Additionally, collecting 

more information on interspecific variability might provide further insights into environmental filter-

ing in these communities. 

 

4.1 Introduction 

Climate change will affect to some extent all the ecosystems across the globe (IPCC, 2018). Deserts 

are unique environments, which are characterized by strong intra- and interannual fluctuations in envi-

ronmental factors (Biswas et al., 2016), and are specifically vulnerable to climate change and human 

impact (Loarie et al., 2009). The inborn variability in environmental conditions of desert ecosystems 

affects community structure, composition and dynamics (Loarie et al., 2009). Desert communities 

consist of not only different species but also of highly phenotypically diverse individuals. These varia-

tions among individuals influence intra- and inter-specific interactions and demographic parameters 

(Bolnick et al., 2011). 

Trait-based approaches seem to be a suitable choice for desert communities as they can link 

morphological, physiological and phenological traits of individuals to species performance (Violle et 

al., 2007). Interspecific average trait values have been used as predictors for community dynamics for 

a long time (Mcgill et al., 2006; Albert et al., 2010), but intraspecific trait variability has recently also 

been acknowledged to play an important role in plant communities and was recommended to be in-

cluded in both empirical and modelling studies (Burton et al., 2017). As individual response shapes 

communities (Violle et al., 2012), intraspecific trait variability is as important as interspecific trait var-

iability when we aim to explain community structure and dynamics (Albert et al., 2017; Des Roches et 

al., 2018). Moreover, it has been shown to be insufficient to explain environmental filtering and niche 
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differentiation based only on interspecific trait variability (Read et al., 2017) or to apply average trait 

values to describe niches (Warren and Lake, 2013). In communities with higher variability in trait val-

ues within rather than among species, considering of intraspecific trait variability is essential to predict 

the community structure (Read et al., 2017) as environmental filtering limits intraspecific trait varia-

bility. Additionally, explanation of such community-level processes as stabilizing niche differences 

and competitive asymmetries implies plasticity based on intraspecific trait variability (Turcotte and 

Levine, 2016). Incorporating intraspecific trait variability is especially meaningful when investigating 

population responses to environmental change (Jung et al., 2014) or studying communities with low 

diversity (Kraft et al., 2014) and poor species richness (Siefert et al., 2015). Since intraspecific trait 

variability may promote the resilience of a community, at least under small short-term environmental 

changes (Lepš et al., 2011), investigating desert community processes should take into account intra-

specific trait variability. 

Taking into account trait variability assists in predicting the outcomes of ecological interac-

tions (Bolnick et al., 2011). However, the response of plants is defined not by a single trait, but by trait 

combinations and their trade-offs (Reich et al., 2003), so that the multiple traits approach should be 

applied for community ecology (Laughlin, 2014). Considering multiple trait combinations promotes 

understanding of trait adaptive values and, thus, facilitates prediction of species response to changes in 

the environment (Laughlin and Messier, 2015). Multidimensional trait space can be seen as the eco-

logical niche of a species (Bonser, 2006) and provide necessary insights on community functional di-

versity (Mason et al., 2005).  

As plants in deserts are subjected to strong environmental filtering (Biswas et al., 2016), in-

creases of functional redundancy (after Carmona et al., 2016) between sites and decrease in species 

richness are expected. To increase the resilience of a community, narrowing of interspecific trait vari-

ability can be accompanied by increases in intraspecific trait variability (Pérez‐Ramos et al., 2012; 

Jung et al., 2014). In this case, species loss would not decrease community functionality (Mayfield et 

al., 2010). As a result, species richness would be negatively correlated with intraspecific trait variabil-

ity (Siefert et al., 2015).  
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To test these assumptions on intraspecific trait variability and to measure corresponding 

changes in intraspecific trait spaces, we designed a nethouse experiment and measured a set of traits to 

capture the response of intraspecific trait space on the changes in main limiting factors in deserts such 

as aridity and salinity (Rewald et al., 2012; Gong et al., 2017). 

We explore the response of desert plants from origins with different aridities, soil salinities 

and species richness to imposed salinity stress and investigate the role of intraspecific trait variability 

in these responses in line with recent claims (Moran et al., 2016). We selected populations of the de-

sert annual plant Anastatica hierochuntica, which is known by its high tolerance to heat and high sa-

linity (Eppel et al., 2014; Eshel et al., 2017). Anastatica hierochuntica grows across a soil water avail-

ability gradient in different dry ecosystems, from North Africa to Saudi Arabia (Gutterman, 1994). 

This species is characterized by its unique seed bank and seed dispersal strategy (Friedman et al., 

1978; Kabiel, 2013), which is strongly correlated with the amount of rainfall (Hegazy and Kabiel, 

2007). In the selected desert communities, A. hierochuntica is the dominating species, as it is expected 

for a stress-tolerant species that applies effective strategies to acquire limited resources (Pérez‐Ramos 

et al., 2012; Copeland and Harrison, 2017). 

With our experiment, we test the following hypotheses: 

Hypothesis 1: Intraspecific trait variability in stress-related traits is decreasing along the natu-

ral aridity gradient from low to high aridity due to filtering, while intraspecific trait variability in traits 

related to growth and germination is increasing. 

Hypothesis 2: Intraspecific trait variability is increasing with decreasing of community species 

richness because of interspecific competition, which leads to niche differentiation and separation. 

Hypothesis 3: Intraspecific trait variability of growth traits is increasing with increasing of soil 

salinity of the site of origin, while intraspecific trait variability of stress-related traits is decreasing. 

Hypothesis 4: High salinity has a positive effect on the average values of stress-related plant 

traits and a negative effect on the average values of plant traits not directly involved in stress response. 
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Hypothesis 5: With increased imposed salt stress, intraspecific trait variability of growth traits 

is not changing, while intraspecific trait variability of stress-related traits is increasing. This response 

is more pronounced for plants originating from arid sites. 

Hypothesis 6: The similarity of intraspecific trait spaces under no versus imposed salt stress is 

low and decreases with the involvement of stress-related traits. 

 

4.2. Methods 

4.2.1. Research site and materials 

Research sites were located in the southern part of the Negev desert in Israel. This desert is character-

ized as a warm and dry desert with mean annual precipitation below 80 mm. Seed material for the 

nethouse experiment was collected in five sites with different salinity, aridity and species richness 

(Tab. 4.1, Fig. 4.1). The aridity index was calculated according to De Martonne’s method (Martonne, 

1926) with low values representing high aridity of a site. The uniting characteristic of the sites was 

that all of them had a dominant and stable Anastatica hierochuntica population. We considered 

Anastatica hierochuntica as a suitable desert model plant for observations and experiments because of 

its inherited plasticity and supposed adaptation to harsh desert conditions.  

Seeds from ten mother plants of Anastatica hierochuntica were collected in March 2016 from 

the five sites. The collected seeds were sown in February 2017, transplanted in March 2017, and har-

vested in the first week of June 2017, which resulted in 70 days of the experiment. An extra experi-

ment after the end of the main one was conducted to define the germination probability of the second-

generation seeds. Plants grew in 1-L pots containing a 1:1 mixture of soil and sand in a nethouse at 

Ben-Gurion University of the Negev.  
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Table 4.1. Study sites and their characteristics used for the analysis. EC: soil electrical conductivity representing soil salinity 

(unpublished field measurements); AI: De Martonne aridity index with high values for low aridity (calculated from meteoro-

logical observations); SR: species richness expressed as the number of species found in the sites in 2016-2018.  

Site name AI SR EC Coordinates 

Timna 0.62 27 1079.49 29.78, 35 

Uvda 0.75 10 486.23 29.969, 34.975 

Shaharut 0.75 2 2645.53 29.9, 35 

Meishar 0.96 43 3795.75 30.41, 34.94 

Shefech Zohar 1.11 6 6833.36 31.14, 35.37 

 

 

Figure 4.1. Sites of origin of the mother plants of the seeds in the experiment across the Negev Desert, Israel (c) Mapa GIS-

rael, ORION-ME, 2020. 

 

4.2.2. Experimental design 

The experiment was set up to measure the expression of plant functional traits of Anastatica hiero-

chuntica with and without exposure to high salinity. The plants in the experiment differed in their site 

of origin, which allowed us to conclude on intraspecific trait variability.  

Ten individuals per site of origin were grown at two salt levels, control (0 mM) and high (100 

mM). Salt stress experiments started on day 25 of the experiment, with 33% of the final salt solution. 

An increment of 33% in the salt concentrations was added on day 32 and day 39 of the experiment. 
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Irrigation with salt was supplemented with 1 g L-1 of 20-20-20 NPK (Haifa Chemicals). The solution 

consisted of calcium chloride (CaCl2) and sodium chloride (NaCl) in a 1:1 relation. Both salts were 

added conjunctively to avoid a decrease in water infiltration, which could negatively influence root 

foraging due to sodium-induced dispersion, which reduces plant available water due to “surface crust-

ing” and increased run-off (Rewald et al., 2012).  

Ten seeds of each plant grown with and without salt solution were sown posterior to the main 

experiment in 1-L pots containing a 1:1 mixture of soil and sand in a nethouse at Ben-Gurion Univer-

sity of the Negev. This second experiment was conducted to determine germination probability of the 

second-generation seeds. Germination measurements were accomplished on day 30 of this new exper-

iment.  

Measurements of plant functional traits, such as the number of leaves and the gas exchange 

parameters photosynthetic rate (AN, µmol CO2 m
-2

s
-1

) and stomatal conductance (gs, mol H2O m
-2

 s
-1

) 

were conducted on day 60 of the experiment. Stomatal conductance (gs) and photosynthetic rate [AN 

(µmol CO2 m
-2

s
-1

)] were obtained in parallel by exchange parameters using a portable LI-6400 Infra-

red Gas Analyzer (Li-Cor Inc., Lincoln, NE, USA). On day 70 of the experiment, the plants were har-

vested, and dry weight (g) of the entire plant body and osmolyte concentration in the leaf tissues 

(mmol/kg) were measured. Dry weight represented a morphological variable and was calculated by 

clipping living shoots at ground level and drying them for 48 h at 70°C. Osmolyte accumulation in 

plant tissues is positively correlated with stressful environments such as drought, salinity, low temper-

ature, and high irradiance. The osmolytes are compatible solutes that provide protection by decreasing 

electrolyte leakage (protecting the membrane integrity) and decreasing reactive oxygen species 

(Turrens, 2003) concentration, thus preventing oxidative damage in plants (Hayat et al., 2012). For 

osmolyte concentration measurements, fully expanded leaves were macerated in N2 liquid and placed 

into 2-ml Eppendorf tubes. After that, 10 µl of supernatant was utilized to determine the osmolality 

using a vapour pressure osmometer (Vapro® 5520, Wescor, USA). Germination was estimated by col-

lecting the seeds from each plant throughout the experiment. Developing fruits of each plant were 

covered with paper bags to prevent unintentional dispersal of seeds. After harvest, seeds from each 
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plant were cleaned and stored in paper bags and tea bags with silica gel at 4°C to avoid mould. To de-

termine germination, seeds were directly placed in pots. Germination percentages were estimated on 

day 30 of the new experiment for ten seeds per individual.  

 

4.2.3. Statistical analysis 

4.2.3.1. Generalized linear models to assess average trait responses 

To obtain a baseline impression of the responses of average trait values to site characteristics and salt 

treatment, we estimated the influence of the explanatory variables soil electrical conductivity, aridity 

index, and species richness of the site of origin as well as salt treatment on annual plant performance 

reflected in functional traits. Data analysis was done using R 3.5.1 (R Core Team, 2018). 

We built one generalized linear model per response variable. Response variables were the fol-

lowing plant functional traits: dry weight of a plant, number of leaves, germination probability, gas 

exchange parameters photosynthetic rate AN and stomatal conductance gs, and osmolyte concentration 

in leaves. For dry weight measurements, we applied generalized linear models with normally distrib-

uted errors and an identity link after a successful check of the respective assumptions. For gas ex-

change parameters AN and gs and osmolyte concentration in leaves, we built generalized linear models 

with Gamma distributed errors and an inverse link. We modelled the number of leaves with Poisson 

errors and log link and germination probability with binomial errors and logit link. Distribution family 

and link choice were based either on the nature of the data (number of leaves and germination proba-

bility) or on the Akaike information criterion (AIC) of the respective models and diagnostic plots from 

the R DHARMa package, version 0.2.5 (Hartig, 2019) to check the respective assumptions (for the 

other responses). Significance of model terms was assessed with F-tests except for the models with 

binomial or Poisson-distributed errors, where Chi-squared tests were used. In all models, we removed 

those interactions that produced singularities, but kept all other interactions, even if not significant, to 

preserve the original experimental design. 
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4.2.3.2. n-hypervolumes of functional trait space 

With n-hypervolumes we studied intraspecific trait variability of A. hierochuntica in the Negev Desert. 

We largely followed the protocol described in Bittebiere et al. (2019) and applied the R n-hypervolume 

package, version 2.0.11 (Blonder et al., 2014). n-hypervolumes are defined as a set of points within an 

n-dimensional space. The axes of the n-dimensional space represent biologically important and inde-

pendent variables. Here, we chose plant functional traits for the axes. The number of these variables, 

which is equal to the number of the axes, defines the dimensionality of the n-hypervolumes. Values of 

these variables are a set of points forming a given n-hypervolume (Hutchinson, 1957; Blonder et al. 

2014). n-hypervolume volumes are measured in SD-distances (SD for standard deviation) from the 

center, which is the grand mean of the respective functional trait over all related data points. Volumes 

of the n-hypervolume express the width of the multidimensional trait space of the species and thus 

intraspecific trait variability. Changes in n-hypervolumes can provide insights on the response of trait 

spaces to environmental changes. Overlaps of the n-hypervolumes, calculated as the multidimensional 

variation of Sorensen similarity, show the similarity of the compared multidimensional trait spaces, 

i.e. the similarity of trait values between the two sites or two treatments. High overlaps mean more 

similar spaces (Bittebierre et al. 2019).  

Functional trait measurements for the n-hypervolume analysis were obtained in the nethouse 

experiment. We tested how stress through high salinity and the origin of a plant affected trait variabil-

ity and plastic response. As characteristics of the site of origin, we considered species richness, soil 

electrical conductivity and aridity index (Tab. 4.1). For A. hierocuntica six functional traits were 

measured for individuals from five sites of origin.  

Following Bittebiere et al. (2019), we first checked the six functional trait measurements for 

correlation. Since the distributions of all trait measurements except the dry weight were significantly 

different from normal distributions (Shapiro-Wilk tests, significance level 0.05), we determined non-

parametric Kendall correlation coefficients. AN and gs (R=0.65) had a correlation coefficient greater 

than 0.6. Based on these results, we used only one trait measurement from this pair for n-hypervolume 
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construction and volume calculation. Thus, five traits remained: dry weight, number of leaves, osmo-

lyte concentration, germination probability, and gas exchange parameter AN.  

We centred and scaled trait data by using the mean and standard deviation of the data from all 

the treatments simultaneously in a standardization procedure, after Blonder et al. (2014) and Bittebier 

et al. (2019). This involved a z-transformation using the basic R function scale(). As a result, we ob-

tained z-scores, which represent the precise location of each observation within a distribution of the 

values. To be able to calculate the volumes of the n-hypervolumes and compare them between each 

other, we excluded all NAs.  

We constructed n-hypervolumes for both salt treatments, as well as for the different sites with 

the R n-hypervolume package. Each n-hypervolume was constructed by building a Gaussian kernel 

density estimate on an adaptive grid of random points wrapping around the original data points 

(Blonder et al., 2014). We calculated volumes of 3-, 4- and 5-trait hypervolumes to investigate how 

adding new traits affects the volume value. 3-trait hypervolumes included the morphological traits, 

such as dry weight and the number of leaves, and seed germination probability. These traits were 

measured for all individuals so that the corresponding hypervolumes were based on the maximum 

number of observations. To observe the effect of adding one dimension to a hypervolume, we added 

the gas exchange parameter AN for 4-trait hypervolumes. To investigate the effect of a stress-related 

trait on volumes, osmolyte concentration was added to produce 5-trait hypervolumes.  

As the next step, we calculated the multidimensional variation of Sorensen similarity indices 

to estimate the similarity of n-hypervolumes constructed for two different salinity treatments or for 

two different sites of origin. Results of the calculation of n-hypervolumes were presented with the help 

of the R packages ggplot2 (Wickham, 2016) and dplyr, version 0.8.3 (Wickham et al., 2019). 
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4.3. Results  

4.3.1. Generalized linear models to assess average trait responses 

High soil salt concentration had a significant negative effect on the plant functional traits dry weight 

and number of leaves (Tab. 4.2 and 4.3, Appendix. Tab. S4.1). However, the effect of high salinity on 

germination probability and osmolyte concentration was significantly positive (Tab. 4.4 and 4.5, Ap-

pendix. Tab. S4.1), and there were no significant effects of high salinity on any of the gas exchange 

parameters (Tab. 4.6 and 4.7). The aridity index of the site of origin had a significant positive effect on 

dry weight and the number of leaves, as well as a significant negative effect on germination probabil-

ity and both gas exchange parameters (Tab. 4.2 – 4.4, 4.6 and 4.7, Appendix. Tab. S4.1). The only 

significant effect of soil electrical conductivity of the site of origin was a positive effect on the number 

of leaves (Tab. 4.3, Appendix. Tab. S4.1). None of the plant functional traits showed a significant re-

sponse to species richness as a main effect. For dry weight and the number of leaves, the interaction 

between soil electrical conductivity and aridity index of the site of origin had a small significant nega-

tive effect (Tab. 4.2 and 4.3, Appendix. Tab. S4.1). For all other plant functional traits, this interaction 

effect was small and significantly positive (Tab. 4.4 – 4.7, Appendix. Tab. S4.1). The number of 

leaves was the only plant trait that showed further significant interaction effects, i.e. small positive 

effects of the interactions between species richness of the site of origin and salt treatment as well as 

soil electrical conductivity of the site of origin and salt treatment (Tab. 4.3, Appendix. Tab. S4.1).  
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Table 4.2. Analysis of deviance table with the significance of each predictor for dry weight as a response variable. EC: soil 

electrical conductivity of the site of origin; AI: De Martonne aridity index, SR: species richness, HS: treatment with adding 

salt solution (high salinity). EC x AI, EC x HS, AI x HS, SR x HS, and EC x AI x HS are interactions between the corre-

sponding factors. Significant values are in bold fonts (p < 0.05). 

Explanatory variable Df Deviance Resid. Df Resid. Dev 
F 

Pr(>F) 

Intercept   83 75,339   

EC 
1 1.492 82 73.847 2.609 0.111 

AI 
1 2.351 81 71.496 4.11 0.046 

SR 1 0.401 80 71.095 0.701 0.405 

HS 1 23.08 79 48.015 40.352 1.5E-08 

EC x AI 
1 4.568 78 43.447 7.987 0.006 

EC x HS 
1 0.019 77 43.428 0.033 0.855 

AI x HS 
1 0.095 76 43.333 0.165 0.685 

SR x HS 
1 1.007 75 42.326 1.761 0.189 

EC x AI x HS 1 0.001 74 42.325 0.002 0.966 

 

Table 4.3. Analysis of deviance table with the significance of each predictor for number of leaves as a response variable. EC: 

soil electrical conductivity of the site of origin; AI: De Martonne aridity index, SR: species richness, HS: treatment with add-

ing salt solution (high salinity). EC x AI, EC x HS, AI x HS, SR x HS, and EC x AI x HS are interactions between the corre-

sponding factors. Significant values are in bold fonts (p < 0.05). 

Explanatory variable Df Deviance 

Resid. 

Df Resid. Dev Pr(>Chi) 

Intercept   83 1950.39  

EC 
1 29.865 82 1920.52 4.63E-08 

AI 
1 41.51 81 1879.01 1.17E-10 

SR 
1 1.204 80 1877.8 0.272 

HS 1 1313.88 79 563.923 1.1E-287 

EC x AI 
1 18.78 78 545.139 1.5E-05 

EC x HS 
1 3.99 77 541.148 0.046 

AI x HS 1 0.027 76 541.12 0.869 

SR x HS 
1 7.077 75 534.044 0.008 

EC x AI x HS 
1 2.671 74 531.374 0.1028 
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Table 4.4. Analysis of deviance table with the significance of each predictor for seed germination probability as a response 

variable. EC: soil electrical conductivity of the site of origin; AI: De Martonne aridity index, SR: species richness, HS: treat-

ment with adding salt solution (high salinity). EC x AI, EC x HS, AI x HS, SR x HS, and EC x AI x HS are interactions be-

tween the corresponding factors. Significant values are in bold fonts (p < 0.05). 

Explanatory variable Df Deviance Resid. Df Resid. Dev Pr(>Chi) 

Intercept   83 319.841  

EC 
1 0.586 82 319.255 0.444 

AI 
1 6.628 81 312.626 0.01 

SR 1 3.147 80 309.479 0.076 

HS 1 36.76 79 272.718 1.34E-09 

EC x AI 
1 6.582 78 266.135 0.01 

EC x HS 
1 2.93 77 263.204 0.087 

AI x HS 
1 0.003 76 263.201 0.954 

SR x HS 
1 0.086 75 263.115 0.769 

EC x AI x HS 1 2.793 74 260.322 0.095 

 

Table 4.5. Analysis of deviance table with the significance of each predictor for osmolyte concentration as a response varia-

ble. EC: soil electrical conductivity of the site of origin; AI: De Martonne aridity index, SR: species richness, HS: treatment 

with adding salt solution (high salinity). EC x AI, EC x HS, AI x HS, SR x HS, and EC x AI x HS are interactions between 

the corresponding factors. Significant values are in bold fonts (p < 0.05). 

Explanatory variable Df Deviance Resid. Df Resid. Dev 

 

F Pr(>F) 

Intercept   51 19.841   

EC 1 0.021 50 19.82 1 0.323 

AI 
1 0.003 49 19.817 0.152 0.698 

SR 
1 0.014 48 19.803 0.672 0.417 

HS 1 18.885 47 0.918 906.76 4.62E-30 
EC x AI 1 0.01 46 0.908 0.488 0.489 

EC x HS 1 0.025 45 0.883 1.188 0.282 

AI x HS 1 0.016 44 0.866 0.787 0.38 

SR x HS 
1 0.004 43 0.862 0.196 0.66 

EC x AI x HS 
1 0.0004 42 0.862 0.02 0.887 
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Table 4.6. Analysis of deviance table with the significance of each predictor for stomatal conductance gs as a response varia-

ble. EC: soil electrical conductivity of the site of origin; AI: De Martonne aridity index, SR: species richness, HS: treatment 

with adding salt solution (high salinity). EC x AI, EC x HS, AI x HS, SR x HS, and EC x AI x HS are interactions between 

the corresponding factors. Significant values are in bold fonts (p < 0.05). 

Explanatory variable Df Deviance Resid. Df Resid. Dev 

 

F Pr(>F) 

Intercept   59 15.293   

EC 1 0.025 58 15.269 0.118 0.733 

AI 
1 1.413 57 13.856 6.57 0.013 

SR 
1 0.002 56 13.853 0.011 0.918 

HS 1 0.497 55 13.357 2.311 0.135 

EC x AI 
1 2.24 54 11.116 10.419 0.002 

EC x HS 1 0.241 53 10.875 1.122 0.295 

AI x HS 1 0.113 52 10.762 0.526 0.472 

SR x HS 
1 0.041 51 10.721 0.192 0.663 

EC x AI x HS 
1 0.014 50 10.706 0.066 0.799 

 

Table 4.7. Analysis of deviance table with the significance of each predictor for photosynthetic rate AN as a response varia-

ble. EC: soil electrical conductivity of the site of origin; AI: De Martonne aridity index, SR: species richness, HS: treatment 

with adding salt solution (high salinity). EC x AI, EC x HS, AI x HS, SR x HS, and EC x AI x HS are interactions between 

the corresponding factors. Significant values are in bold fonts (p < 0.05). 

Explanatory variable Df Deviance Resid. Df Resid. Dev 

 

F Pr(>F) 

Intercept   59 18.982   

EC 
1 0.339 58 18.644 1.35 0.251 

AI 
1 1.77 57 16.874 7.05 0.011 

SR 1 0.218 56 16.656 0.868 0.356 

HS 1 0.871 55 15.784 3.472 0.068 

EC x AI 
1 1.368 54 14.416 5.449 0.024 

EC x HS 
1 0.273 53 14.143 1.089 0.302 

AI x HS 
1 0.305 52 13.838 1.215 0.276 

SR x HS 
1 0.009 51 13.828 0.039 0.845 

EC x AI x HS 1 0.004 50 13.825 0.015 0.903 

 

 

4.3.2. n-hypervolumes of functional trait space 

As a preparation for the n-hypervolume analyses, we found that photosynthetic gas exchange parame-

ters (AN and gs) were highly correlated with each other (R=0.63), but not with any of the other traits. 

As expected, dry weight and number of leaves also had a relatively high correlation (R = 0.49). Osmo-

lyte concentration had a high negative correlation with the number of leaves (R = -0.55) and dry 

weight (R= -0.28). Germination probability of seeds was negatively correlated with dry weight (R=-
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0.19) and the number of leaves (R=-0.18). Following the recommendations from Bittebiere et al. 

(2019), we excluded one of the traits involved in a correlation with a coefficient larger than 0.6 (gas 

exchange parameter gs) and continued the analysis with the remaining five traits.  

Under the control salinity treatment, the volumes of hypervolumes increased after adding the 

fourth trait, gas exchange parameter AN, and decreased after adding the fifth, osmolyte concentration 

Figure 4.3. Volumes of hypervolumes as proxies of trait spaces constructed from three traits for the populations under the 

control salinity treatment vs. high salinity treatment. Three traits include only morphological traits and seed germination 

probability, four traits include morphological traits plus a gas exchange parameter and five traits add osmolyte concentration 

as a stress-related trait. The sites are ordered based on their aridity from the least arid to the most arid site (from the largest 

aridity index AI to the smallest).  

Figure 4.2. Volumes of hypervolumes as proxies of trait spaces constructed for the populations under the control salinity 

treatment for all the sites of origin based on three, four and five traits. Three traits include only morphological traits and seed 

germination probability, four traits include morphological traits plus a gas exchange parameter and five traits add osmolyte 

concentration as a stress-related trait. The sites are ordered based on their aridity from the least arid to the most arid site 

(from the largest aridity index AI to the smallest). 
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(Fig. 4.2). For all sites of origin but for Shefech Zohar, the volumes of 5-trait hypervolumes were, as a 

result, smaller than for 3-trait hypervolumes. The volumes of 5-trait hypervolumes decreased from the 

least to the more arid sites except for Timna, the most arid site. The volumes of 4-trait and 3-trait hy-

pervolumes increased from Shefech Zohar to Meishar and from Uvda and Timna.  

The population from Meishar, the site with the highest species richness, had the smallest 3-

trait and 4-trait hypervolumes, whereas the population from Shaharut, where A. hierochuntica is ac-

companied only by one more species, had one of the smallest 3-trait and 4-trait hypervolumes (Fig. 

4.2). Furthermore, the population from Shefech Zohar had the largest 5-trait hypervolumes, while the 

population from Shaharut had the smallest 5-trait hypervolume. The population from Uvda, the site 

with lowest soil salinity, had the smallest 3- and 4-trait hypervolumes (Fig. 4.2). 
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For 3- and 4-trait hypervolumes, the high salinity treatment caused a reduction of the trait 

space of the corresponding populations (Fig. 4.3 and 4.4). High salinity in the 5-trait hypervolumes led 

to the increase in the volumes of the trait spaces for the populations originating from Uvda and 

Meishar (Fig. 4.5). However, this increase of the stress-related trait space under high salinity was not 

depended on the aridity of the site of origin (Fig. 4.5).  

 

Figure 4.5. Volumes of hypervolumes as proxies of trait spaces constructed from five traits for the populations under the 

control salinity treatment vs. high salinity treatment. Three traits include only morphological traits and seed germination 

probability, four traits include morphological traits plus a gas exchange parameter and five traits add osmolyte concentration 

as a stress-related trait. The sites are ordered based on their aridity from the least arid to the most arid site (from the largest 

aridity index AI to the smallest).  

Figure 4.4. Volumes of hypervolumes as proxies of trait spaces constructed from four traits for the populations under the 

control salinity treatment vs. high salinity treatment. Three traits include only morphological traits and seed germination 

probability, four traits include morphological traits plus a gas exchange parameter and five traits add osmolyte concentration 

as a stress-related trait. The sites are ordered based on their aridity from the least arid to the most arid site (from the largest 

aridity index AI to the smallest).  
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Table 4.8. The similarity between the trait spaces of populations from the same site of origin that were exposed to the high 

salinity treatment or the control treatment. The similarity was calculated as the Sorensen similarity index between the corre-

sponding n-hypervolumes, where zero shows no overlap, i.e. the trait spaces are dissimilar, and one shows the complete iden-

tity of the trait spaces.  

 3 traits 4 traits 5 traits 

General 0.193 0.117 0 

Meishar 0.143 0.083 0 

Shaharut 0.038 0.013 0 

Shefech Zohar 0.14 0.116 0 

Timna 0.072 0.024 0 

Uvda 0.118 0.126 0.008 

 

The similarity between the hypervolumes from the same population under control versus high 

salinity treatment was generally low and decreased with the increase of the number of traits included 

in the hypervolume calculation, and especially with the involvement of the stress-related trait (Tab. 

4.8). For example, the only site for which any overlaps at all were found for 5-trait hypervolumes was 

Uvda, the most benign site with respect to soil salinity. Populations from the sites with higher soil sa-

linity showed overlapping hypervolumes between the control and high salinity treatment only for 3- 

and 4-trait hypervolumes, which included only growth traits. Here, the most stressed sites with respect 

to aridity, Timna and Shaharut, showed the smallest overlap of control- versus high-salinity hypervol-

umes.  

The same tendency was found for the similarity between hypervolumes from different popula-

tions under the same salinity treatment: the similarity decreased with the increase of the traits included 

in the hypervolume calculation only with few deviations from this tendency (Appendix. Tab. A4.2).  

 

4.4. Discussion 

In this study, we tested six hypotheses on how environment filtering shapes intraspecific trait space 

and how high salinity stress affects intraspecific trait variability spaces of the annual species A. hiero-

chuntica. Based on six functional traits, we compared populations from five sites located on the north-

south gradient of the desert, which differed from each other in their salinity, aridity and species rich-
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ness. We compared calculated hypervolumes between the populations of A. hierochuntica originating 

from different sites and between two salt treatments for plants from the same population. Additionally, 

we observed how the trait space volumes changed when we included traits stepwise. The initial 3-trait 

hypervolumes included only morphological traits and seed germination probability, while the 4-trait 

hypervolumes included a gas exchange parameter, and the final 5-trait hypervolumes also included 

osmolyte concentration as a salt-stress related trait.  

Intraspecific trait variability of the stress-related trait in our analysis, osmolyte concentration, 

was smaller than for other traits. This indicates that A. hierochuntica is less plastic in the trait of osmo-

lyte concentration than in other traits. These results contradict expectations that physiological traits are 

more plastic than morphological traits (DeWitt et al., 1998; Valladares et al., 2000). One possible ex-

planation might be that the effect of the abiotic conditions was lower than expected for this species 

(Jung et al., 2014). However, we were able to support our Hypothesis 1 only partially: stress-related 

trait spaces showed indeed smaller trait spaces at high aridity with an exception for the population 

from the most arid site at Timna, but the growth trait-space increased with aridity only within two dis-

tinct groups of sites. These results imply that the aridity of the site of origin is not the only factor de-

fining the size of the trait spaces, and the environments might be stressed based on other criteria. 

Moreover, trait values may often have small average values in stressed environments (as it was the 

case in this study, see results relating to Hypothesis 4), so that the expected increase in intraspecific 

trait variability cannot be achieved due to the relative proximity of the average trait values to zero.  

Intraspecific trait variability was not increasing with the decrease of community species rich-

ness as was originally expected by Hypothesis 2. This hypothesis was based on an idea that increasing 

intraspecific trait variability would compensate the decrease in interspecific trait variability and spe-

cies richness loss (Pérez‐Ramos et al., 2012; Jung et al., 2014; Siefert et al., 2015) as a result of strong 

environmental filtering (Biswas et al., 2016). Thus, additional information on corresponding interspe-

cific trait variability is needed to draw a conclusion on niche differentiation processes in these desert 

communities (Turcotte and Levine, 2016; Read et al., 2017).  
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Our analysis results also were in disagreement with Hypothesis 3 that the populations originat-

ing from high salinity sites have larger trait spaces of growth traits and smaller trait spaces of stress-

related traits. This hypothesis was in line with the ideas that under unfavourable conditions the genetic 

variability would increase for the traits not involved in stress response directly (Hoffmann and Merilä, 

1999). In benign sites, the trait space of growth-related traits was small, as well, supporting the idea of 

higher stability of this group of traits relative to physiological stress-related traits (Kazakou et al., 

2014; Siefert et al., 2015).  

Average trait value responses largely supported Hypothesis 4. As expected, high salinity had a 

positive effect on the stress-related plant trait osmolyte concentration and a negative effect on dry 

weight and number of leaves, which are morphological traits that are not directly involved in the stress 

response. This reinforces earlier reports on negative effects of salinity on average plant performance 

(Ahmed et al., 2013) and may indicate that stronger environmental filtering decreases not only intra-

specific trait-variability but also average trait values (Spasojevic and Suding, 2012). In slight disa-

greement with hypothesis 4, other non-stress related traits responded positively to high salinity (ger-

mination probability) or not at all (gas exchange parameters). The positive response of germination 

probability to high aridity of the site of origin of the mother plants was also in contrast to the expected 

negative responses of dry weight and number of leaves. This may imply that under stressful conditions 

such as high aridity of the origin and high current salinity, plants follow the strategy to invest more in 

long-term survival over generations than in an instantaneous increase of the biomass in a specific 

stress year. In this case, germination is driven by the environments to which both mother plants and 

seeds were exposed (Gutterman, 2000). As the growing conditions for seeds were benign in this exper-

iment, the positive effect of high salinity on germination of the next generation might also be ex-

plained by the influence of the environment of mother plants (Uller, 2008) and the general adaptation 

of A. hierochuntica to high salinity. 

Moreover, our results directly disagreed with the first and second part of Hypothesis 5. Nei-

ther did the trait space of growth traits remain unchanged, nor did the trait space of stress-related traits 

increase under high salinity for the populations originating from more arid or otherwise stressed sites. 
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The trait space of stress-related traits under the high salinity treatment increased only for relatively 

benign sites. These results can imply that the populations from relatively benign environments might 

invest more resources in the variability of stress-related traits in case of stress, while the populations 

from harsh environments demonstrate low variability in stress-related traits. This contradiction to our 

expectations based on Liancourt and Tielbörger (2009) and Castro et al. (2013) might lie in the nature 

of this specific stress-related trait. Higher osmolyte concentration ensures the protection of plant cells 

from the damaging effect of salinity stress (Hayat et al., 2012). Thus, it is expected that the plants orig-

inating from more harsh environments have a better adaptation to the respective stress and respond to 

the stress in an appropriate way, while plants from benign conditions should still seek for better re-

sponse and show larger trait variability.  

Similarity assessments between the trait spaces of populations originating from different sites 

or between the populations from the same site but subjected to different salinity treatments revealed 

how trait spaces depended on the environment. In general, the similarity between two sites decreased 

with the increase of the number of traits, which can be explained by gradually introducing additional 

trait variation associated with a new trait. However, this result might be also biased by our choice of 

the traits: we started n-hypervolume calculation with morphological traits that were shown to be more 

conservative (Kazakou et al., 2014; Siefert et al., 2015). In line with Hypothesis 6, the dissimilarities 

between the populations from the sites under different salinity treatments were so large that the over-

lap in trait spaces built on all five traits was zero for all sites but one, the site with the lowest soil salin-

ity. These results highlight a possible lack of plasticity in salt-related stress traits for the populations 

originating from benign sites causing a decrease in adaptation to high salinity. Except for such popula-

tions, these results are also in line with the statement by Bittebiere et al. (2019) that trait spaces of the 

populations under benign conditions have a small overlap with those under stress. 

Overall, we observed high intraspecific trait variability in A. hierochuntica. This variability 

partially can be explained by environmental heterogeneity across the sites of origin. Within-site heter-

ogeneity of environmental conditions was not part of this study but may be interesting to explore in 

future studies to potentially extend this explanation to finer spatial scales. The key factors determining 



 

 

Chapter 4.  

Intra-specific trait variability in desert annual plant communities 

 

122 
 
 

intraspecific trait variability in our study seemed to be aridity and soil salinity. The effect of species 

richness, which was used as an additional site characteristic, should be explored more, e.g. we advo-

cate for including interspecific trait variability in the analysis to compare A. hierochuntica with other 

species growing in its communities. Additionally, to better capture multidimensional trait space (Bit-

tebiere et al., 2019), further traits might have to be included in the analysis of species richness effects. 

The intensity of the influence of the aridity and soil salinity depends on the nature of the stress to 

which an individual was exposed at the moment of observation. In our experiment, we considered salt 

stress, and, consequently, this treatment increased the role of the soil salinity of the site of the origin. 

However, salt stress differentially affected trait expression, e.g. with respect to dry weight and number 

of leaves on the one side and germination probability and osmolyte concentration on the other side. 

This complicates the interpretation of salt stress on plant performance and survival. Thus, the decision 

on which traits should be included in consideration of trait spaces for a specific experiment or field 

observation should be made carefully. We also advise conducting further investigations of the rela-

tionships between functional traits, their variability, and the environment they are expressed in, with a 

particular focus on intraspecific trait variability. Such investigations will help to further unravel the 

key role that intraspecific trait variability plays for the success and stability of annual plant communi-

ties in the ever-changing environment of warm deserts. 
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Abstract 

The recent advancement of agent-based modeling is characterized by higher demands on the parame-

terization, evaluation and documentation of these computationally expensive models. Accordingly, 

there is also a growing request for “easy to go” applications just mimicking the input-output behavior 

of such models. Metamodels are being increasingly used for these tasks. In this paper, we provide an 

overview of common metamodel types and the purposes of their usage in an agent-based modeling 

context. To guide modelers in the selection and application of metamodels for their own needs, we 

further assessed their implementation effort and performance. We performed a literature research in 

January 2019 using four different databases. Five different terms paraphrasing metamodels (approxi-

mation, emulator, meta-model, metamodel and surrogate) were used to capture the whole range of rel-

evant literature in all disciplines. All metamodel applications found were then categorized into specific 

metamodel types and rated by different junior and senior researches from varying disciplines (includ-

ing forest sciences, landscape ecology, or economics) regarding the implementation effort and perfor-

mance. Specifically, we captured the metamodel performance according to (i) the consideration of un-

certainties, (ii) the suitability assessment provided by the authors for the particular purpose, and (iii) 
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the number of valuation criteria provided for suitability assessment. We selected 40 distinct metamod-

el applications from studies published in peer-reviewed journals from 2005 to 2019. These were used 

for the sensitivity analysis, calibration and upscaling of agent-based models, as well to mimic their 

prediction for different scenarios. This review provides information about the most applicable meta-

model types for each purpose and forms a first guidance for the implementation and validation of met-

amodels for agent-based models.  

 

5.1. Introduction  

Essentially, a metamodel (MM) is a model that describes the behavior of an original model on a higher 

hierarchical level (Moorcroft et al., 2001; Urban, 2005; Gore et al., 2017). In the context of mechanis-

tically detailed and therefore often computationally expensive agent-based models (ABM) or individ-

ual-based models (IBM
1
), MMs provide an efficient way to facilitate profound model analysis and 

prediction of ABM behaviour over a wide range of parameter combinations.  

The term MM originates from the Design of Experiments literature (Wang and Shan, 2007; 

Montgomery, 2009). It was originally developed to study the effects of a set of explanatory variables 

on a response variable. Therein, optimization via response surface MMs was the most widely per-

formed application (Barton, 1988). Both terms, surrogate models (Dey et al., 2017) or emulators (Con-

ti and O’Hagan, 2010), can also be understood as MMs. Most commonly, they all treat a particular 

ABM as a white, grey or black box (Papadopoulos and Azar, 2016) and link the input and output val-

ues by aggregated functions (Barton, 1988; Friedman and Pressman, 1988; Friedman, 1996; Barton 

and Meckesheimer, 2006). As a result, MM significantly reduce simulation costs in terms of computa-

tional time and allow easier communication and understanding of simulation models’ behavior 

(Kleijnen and Sargent, 2000; Mertens et al., 2018). This review will not consider other related con-

cepts of MMs such as the model framework of concepts (Goldspink, 2000).  

The aim of this review is to condense available information about common MM types used for 

various tasks related to ABM analysis and applications to guide modelers in choosing an appropriate 

                                                             
1 We refer to both individual- and agent-based models synonymously as ABM. 
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MM type for their research problem. For detailed information on specific MMs and their applications, 

it is advised to look for reviews or tutorials elsewhere like Barraquand and Murrell (2013), Barton 

(1988), Gore et al. (2017), Heard et al. (2015), Kalteh et al. (2008), Mertens et al. (2018), O’Hagan 

(2006), Oakley (2002) or Urban (2005). A methodology for rating MM quality and implementation 

effort in an ABM context was developed and applied for the reviewed publications by eight different 

raters with varying mathematical skills and scientific backgrounds. This was done to support readers 

in their selection and application of a metamodel in an ABM context.  

  

5.2. Methods  

5.2.1. Searching procedure  

We conducted a literature survey in Open Access databases (see Tab. 5.1) on the 17th, 18th, 21st and 

24th of January 2019 and considered only peer-reviewed papers. For each database used, we per-

formed ten searches combining the terms agent-based model and individual-based model with each of 

the following keywords: Approximation, emulator, metamodel, meta-model and surrogate. We did not 

limit the time frame of the results but took only a maximum of 50 results per search into account, sort-

ed by their relevance. Papers containing a single or combinations of keyword(s) in their title, abstract, 

or keywords section were selected for review.  

Table 5.1. Complete list of all databases used for the review presented. The survey was conducted in January 2019 without 

limiting the years of publication. 

Database Website 

Academic Search Complete ebscohost.com/academic/academic-search-complete 

Web of Science Core Collection apps.webofknowledge.com 

Google Scholar scholar.google.de 

Scopus elsevier. com/solutions/scopus 

 

5.2.2. Categorization of MMs and purpose of application 

In contrast to Papadopoulos and Azar (2016), we do not sub-classify MMs into white (reduced order), 

gray (both physical equations and stochastically estimated parameters) and black box (Machine Learn-

ing) surrogate models. Instead, we simply distinguish them according to their approach to describe the 

link between input and output variables as deterministic (e.g. Differential Equation) and stochastic 

file:///C:/Users/LiubovZ/!!!Work/Ausschuss/ebscohost.com/academic/academic-search-complete
file:///C:/Users/LiubovZ/!!!Work/Ausschuss/apps.webofknowledge.com
file:///C:/Users/LiubovZ/!!!Work/Ausschuss/scholar.google.de
file:///C:/Users/LiubovZ/!!!Work/Ausschuss/elsevier.com/solutions/scopus
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(e.g. Machine Learning) MMs, respectively. We thus assign, for example, a Partial Differential Equa-

tion used for upscaling (e.g. Moorcroft et al., 2001) to the family of deterministic MMs, whereas 

Bayesian Emulators applied for calibration (e.g. Bijak et al., 2013) are considered as stochastic MMs.  

The MMs were first subdivided into two main classes namely deterministic and stochastic 

models depending on whether they consider probability distributions linked to the input, output, or 

processes described by the ABM.  

The classes were further subdivided into six model families that comprise different MM types 

(Tab. 5.2). In this sense, all MM family names resemble the so-called suitcase phrases and do not nec-

essarily share all attributes or requirements of their namesake in a mathematical context. The names of 

the model types were directly extracted from the accepted papers without any adjustments. Appendix 

A provides complete information about the reviewed papers and the corresponding model families and 

types.  

We categorized the purpose of each MM exclusively based on the declaration of the particular 

authors (Tab. 5.3). Notably, we understand parameter fitting as calibration incorporating calibration, 

parameterization or optimization in accordance to Railsback and Grimm (2012). 

Table 5.2. MM classification derived from the accepted papers with MM applications in an ABM context. The differentiation 

between deterministic and stochastic models depend on whether probability distributions of input, output or processes de-

scribed by the emulated ABM were taken into account. Model families represent the so-called suitcase phrases, which are not 

necessarily mathematical definitions for all MM types included in the family. 

Model Class Model Family Model Type 

Deterministic Ordinary Functional Equation  Difference Equation, Equation-free Modeling, System Dynamics 

Model  

 

 Differential Equation Compartment ordinary Differential Equation (CODE), Ordinary Dif-

ferential Equation (ODE), Partial Differential Equation (PDE) 

 

Stochastic Regression First-order Regression, Linear Regression, Polynomial Regression, 

Weighted ordinary Least Squares Regression 

 

 Bayesian Emulator    

 

Approximate Bayesian Computation (ABC), Dynamic Linear Model 

Gaussian process, Gaussian Process, Spatial correlation (Kriging), 

Parametric Likelihood Approximation 

 

 Machine Learning   

 

Decision Tree, Decision Tree Ensemble, Feature  

Selection, Radial Basis Function Network, Random Forest, Support 

Vector Regression, Symbolic  

Regression 

 

 Markov Chain   Transition  Matrices 
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Table 5.3. Common purposes of emulating ABMs by means of MMs. 

Purpose Description 

Calibration Find reasonable values for input parameters (Friedman and Pressman, 1988; Barton, 1988; 

Friedman, 1996; Kleijnen and Sargent, 2000; Barton and Meckesheimer, 2006). 

 

Prediction Predict model behavior for new scenarios or parameter values while replacing the simulation 

model (Kleijnen and Sargent, 2000). Also known as exploratory analysis (Bigelow and Davis, 

2002), what-if analysis (Barton and Meckesheimer, 2006) or exploration/ inverse exploration 

(Friedman and Pressman, 1988; Friedman, 1996). 

 

Sensitivity analysis  

 

Explore model output sensitivity to changes in parameter values (Railsback and Grimm, 2012; 

Thiele et al., 2014; Ligmann-Zielinska et al., 2020). 

 

Upscaling Scale the model to a coarser spatial resolution (Cipriotti et al., 2016) or from individuals to popu-

lations (Campillo and Champagnat, 2012). 

 

5.2.3. Assessment of MM quality and implementation effort  

In the following paragraphs, we briefly describe how we rated the MM’s quality and implementation 

effort. For more in-depth information on the procedure as well as for some examples of each rating 

criterion, see Appendix C. This guide was used to rate each MM application and to calculate the mean 

quality and implementation effort.  

An inter-rater reliability was calculated using the icc function of the R package irr version 

0.84.1 (Gamer et al., 2019). Following Koo and Li (2016), we applied a two-way mixed effects model 

(all selected raters were the only one of interest), using average as type (we want to use the mean rat-

ings for each MM application) and agreement as definition since we had sought to evaluate the agree-

ment among the raters.  

 

Table 5.4. Criteria applied for assessing the MM quality for the given purpose of emulating the ABM. 

Criteria MM quality Key Questions 

 Low Medium High  

Consideration of 

Uncertainty (CU)  

no yes with evaluation Did the authors give any assessment on the 

uncertainties of the MM assumptions or re-

sults? 

Suitability Assess-

ment (SuA) 

none or bad good (qualita-

tively) 

good (qualita-

tively) 

 

How did the authors state the suitability of the 

MM for the given purpose? 

Number of Evalua-

tion Criteria (NE) 

1 2 >2 How many different criteria were provided by 

the authors for evaluating the MM suitability? 

 

The quality of MM was assessed based on the assessment of the respective source authors us-

ing three different criteria (Tab. 5.4): Consideration of Uncertainty (CU), Suitability Assessment by 
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source authors (SuA), and Number of Evaluation Criteria (NE). With the CU criterion, we evaluated 

how the authors considered uncertainties in the inputs and outputs of the respective MM family. In this 

criterion, the term no means that there was no explicit Consideration of Uncertainty given by the au-

thors using the MM, while yes refers to those where they used at least some (quantitative) measures 

(e.g. error bars or R
2
). We assigned a high quality if the source authors had presented measures of un-

certainty with a corresponding evaluation of such measures. The term suitability in SuA refers to the 

applicability of the given MM type (e.g., Approximate Bayesian Computation) to fulfill the particular 

purpose (e.g., calibration of an ABM). A good MM evaluation by the authors was regarded as medium 

if the assessment is only based a qualitative statement (e.g., “the MM performed extremely well.”). 

We adjudged suitability as good in those cases where the ABM emulation was quantitatively assessed 

with a positive result. The third criteria NE is self-explaining. For example, a basic linear regression 

model provides two criteria for evaluating suitability (R squared for the goodness of fit and p-value for 

evaluating the significance of the linear relationship between the input and output variables) and, thus, 

would receive a medium assessment for this specific criterion if the authors presented those criteria 

within their peer-reviewed research paper. Example statements like, the MM had a 61% probability of 

selecting a parameter set that fitted all investigated outputs, or this procedure was successful in 92% of 

cases, revealing its great potential to assess parameters difficult to measure in nature, were considered 

as SuA = good with NE= low.  

The implementation effort of each MM family was assessed by the following three criteria 

(Tab. 5.5): Availability of Open Access Guiding source s (AG), RC overage (RC), and Out-of-the-Box 

Applicability (OA). Since we focus exclusively on the effort to implement MMs, computational cost 

has been absent in our consideration. The AG criterion evaluates the effort of finding help or further 

information for the potential MM application to own needs. If no sources could be found by perform-

ing a search in Google Scholar and Google.com using the MM type name as search query, the MM 

was regarded with a high implementation effort, while multiple usable sources (e.g. a page on Wikipe-

dia.org and a mathematical blog entry) were considered as a medium implementation effort. Low ef-

forts were assessed if there was one source giving a comprehensive tutorial on implementing the re-
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spective MM. The RC criterion focused on the free available statistical language R (R Core Team, 

2018). If one dedicated package is available to implement the whole MM, it was rated with a low im-

plementation effort. If multiple R packages were necessary, a medium effort was given. We assigned a 

high implementation effort if the entire MM had to be developed from scratch. The last criterion OA 

assessed the possibility of MMs to be immediately usable (partly depends on the existing software). 

MMs were evaluated at a high implementation effort if the derivation of specific equations was re-

quired or some important assumptions had to be investigated for its use. Little adjustments correspond, 

for example, to the derivation of a linear model equation for the corresponding R function, while the 

application of an unsupervised artificial neural network was considered as a low implementation ef-

fort.  

 

Table 5.5. Criteria applied for assessing the MM implementation effort for the given application aims. 

Criteria Implementation effort Key Questions 

 Low Medium High  

Availability of Open 

Access Guiding 

sources (AG) 

1 good source multiple 

sources 

none Are there any openly accessible sources 

like books or blogs that give an implemen-

tation guideline for the MM family of inter-

est? 

R coverage (RC) 1 package multiple  

packages 

none 

 

Are there any dedicated R packages to im-

plement the given MM?  

Out-of-the-Box Ap-

plicability (OA) 

no 

adjustments 

little 

adjustments 

no 

adjustments 

Is it necessary to develop an own equation 

from scratch for the MM to be applicable? 

 

Using the average value of all raters of each criterion, we conducted an overall assessment of 

quality and implementation effort of each MM application. Mean ratings were then analyzed separate-

ly for quality and implementation effort using the five-level classification (low, low-medium, medium, 

medium-high and high) displayed in Tab. 5.6. If, for example, a MM application received a high SuA, 

a high NE and a medium CU, a high overall MM quality was given. These overall assessments were 

used to generate a plot for each application aim (Tab. 5.3) depicting the MM quality in the dependency 

of the MM implementation effort. Within these plots, a bisecting line was drawn for visualizing the 

1:1 ration of quality and implementation effort and highlight favorable MMs scoring above this line 

and less favorable MMs staying below this line.  
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Table 5.6. The overall MM quality and implementation effort was calculated for each application according to the mean 

ratings of each of the three criteria for quality (CU, NE and SuA) and effort (AG, OA and RC). 

Amount of Scores in Overall MM quality / implementation effort 

High Medium Low Level 

3 0 0 high 

2 1 0 high 

2 0 1 medium-high 

1 2 0 medium-high 

1 1 1 medium 

0 3 0 medium 

1 0 2 low-medium 

0 2 1 low-medium 

0 1 2 low 

0 0 3 low 

 

5.3. Results and Discussion  

Following the previously described selection criteria (see Method section), 27 different peer-reviewed 

journal papers published from 2005 to 2019 (Fig. 5.1) were accepted for the review (see Appendix B). 

With this we could extract 40 different MM applications in an ABM context (see Appendix A).  

 

Sensitivity Analysis  

For Sensitivity Analyses, Bayesian Emulators and Regressions have the highest MM quality indicating 

accessible implementation efforts (Fig. 5.2). Half of the reviewed publications with focus on Machine 

Learning scored above the bisecting line indicating a broad MM usage, while the remaining applica-

tions were either on or below the bisecting line.  
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Overall, we found the implementation effort for the three MM families (Bayesian Emulators, 

Machine Learning and Regression) to be reasonable due to a predominantly high RC (R Coverage) 

and the broad AG (availability of Open Access guiding sources) on these MMs. However, a shortcom-

ing in the application of these three MM families for sensitivity analysis is their need for adjustments 

to be applicable for another ABM: there was not a single MM type within those MM families that 

could be reused without any changes. The superior qualities of Bayesian Emulators and Regression 

MMs result from the moderate to good SuA (Suitability Assessment by source authors) in addition to 

their moderate to good CU (Consideration of Uncertainty). The applied Machine Learning MMs for 

sensitivity analysis never exceeded a moderate NE (Number of Evaluation Criteria) while their CU 

and the SuA increased in the following order: Decision Tree Ensemble, Support Vector Regression, 

Symbolic Regression and Random Forest. 

 

Figure 5.1. Number of reviewed papers and categorized MM families according to the publication year. 

Figure 5.2. Results of the MM quality and implementation effort assessment for the application aim of sensitivity analysis. 
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Calibration  

For calibration, Bayesian Emulators, Machine Learning and Regression MMs seem to be the prefera-

ble MM families since they constantly stay above the bisecting line (or thereon) indicating a beneficial 

MM quality to implementation effort ratio (Fig. 5.3). In contrast, Differential Equation and Ordinary 

Functional Equation MMs do not exceed or even reach the bisecting line and therefore seem to be less 

favorable MM families to be applied for the purpose of calibrating ABMs.  

The overall low-medium implementation efforts of the three best scored MM families such as 

Bayesian Emulator, Machine Learning and Regression can be explained with their good to at least 

medium RC (RC overage) as well as the good to moderate AG (Availability of Guiding sources). 

Their OA (Out-of-the-Box Applicability) was never rated as low and always received medium or high 

assessments regarding their implementation efforts.  

High implementation efforts of Differential Equations and Ordinary Functional Equations are 

due to considerably low OA because they have to be rebuilt entirely for every new ABM. Their AG 

and RC remain good to medium, emphasizing their broad usability.  
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The superior MM qualities of Bayesian Emulators are due to their high NE as well as in-depth 

CU (Consideration of Uncertainty). Only SuA (Suitability Assessment of source authors) was poor to 

medium, indicating that not every MM type of this family suited the task of calibration as good as the 

others. Machine Learning MMs always achieved a good SuA while their CU and NE (Number of 

Evaluation Criteria) varied from medium to high. 

The considerably poor qualities achieved by Differential Equations and Ordinary Functional 

Equations result from their low CU and NE. Nevertheless, the respective source authors assessed the 

suitability of these MMs qualitatively as good.  

 

Prediction  

In order to predict the behavior of ABMs, Bayesian Emulators and Machine Learning MMs seem to 

be the most favorable MM families since they continually exceed the bisecting line of 1:1 ratio for 

MM quality and implementation effort (Fig. 5.4). While the only Regression application for predicting 

ABMs achieves a low-medium MM quality as well as implementation effort signaling a trade-off be-

Figure 5.3. Results of the MM quality and implementation effort assessment for the application aim of calibration. 
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tween prediction and implementation. Differential Equations as well as Ordinary Functional Equations 

consistently remain below the bisecting line.  

For predicting ABMs behavior, Bayesian Emulators scored the best quality rating with vary-

ing implementation efforts. The low-medium effort of Gaussian Process Emulator originates from 

very good RC (R Coverage) as well as medium OA (Out-of-the-Box Applicability) and AG (Availa-

bility of Guiding sources). The medium-high effort of the dynamic linear model Gaussian Process is 

due to worse OA, AG as well as RC. The latter two criteria should be considered critically as we used 

the exact name presented here as a key phrase in our online research while looking for R packages and 

guiding sources. We could expect a lower implementation effort had we used a more flexible search 

term for this kind of MM type. The second best MM family for prediction of ABMs are Machine 

Learning models. Their considerably low implementation efforts are due to their broad RC and AG. 

OA varies around a medium ranking with decision trees achieving the highest rating. The varying 

quality within this MM family is because differentiating SuA (Suitability Assessment) by the respec-

tive source authors, while CU (Consideration of Uncertainty) is overall low and NE (Number of Eval-

Figure 5.4. Results of the MM quality and implementation effort assessment for the application aim of prediction. 
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uation Criteria) scores between low and medium. The highest quality is achieved by Random Forest 

for its comparable higher CU and NE. The Regression MM applied for predicting ABMs is a First Or-

der Regression receiving lower quality ratings while still being good at SuA. The implementation ef-

fort consists of a medium OA (the formula of the linear model has to be adapted for every ABM) and a 

moderate RC, which could be caused by using the whole and exact model name for our online re-

search of R packages. 

The overall high implementation efforts of Differential Equations (Compartment Ordinary 

Differential Equation) and Ordinary Functional Equations (Systems Dynamic Model) while scoring 

only low-medium to medium qualities are due to their really low OA, since these MM families have to 

be rebuild anew entirely for each ABM applied. Furthermore, their CU as well as their NE is low, 

which together with only a qualitatively good SuA add up to medium qualities at best.  

 

Upscaling  

For upscaling ABMs only the Markov Chain MM exceeded a neutral MM quality and implementation 

effort ratio (Fig. 5.5). The Differential Equation MM stayed below the bisecting line, making it a less 

favorable choice of MM for upscaling ABMs.  

The Markov Chain MM reached a medium quality because of the considerably high SuA 

(Suitability Assessment by source authors), low-medium CU (Consideration of Uncertainty) and NE 

(Number of Evaluation Criteria). The implementation effort is dominated by its poor OA (Out-of-the-

Box Applicability), meaning many adjustments are required to adapt this kind of MM to another 

ABM. The only accepted Differential Equation (Partial Differential Equation) scored a low OA since a 

new equation has to be derived for every application in ABMs.  

 

MM rating method  and inter-rater  reliability  

The inter-rater reliability never fell below a fair level and even achieved excellent evaluation for CU 

(Consideration of Uncertainty) and OA (Out-of-the-Box Applicability) (Tab. 5.7).  

With eight raters and a sample size of 40 MM applications, the requirements suggested by 

Koo and Li (2016) are met and exceeded, emphasizing the robustness of the inter-rater reliability re-
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sults and therewith the results of the MM rating. Nevertheless, the calculated fair intra-class correla-

tion coefficients for SuA (Suitability Assessment of source authors), AG (Availability of Guiding Lit-

erature) and RC (R Coverage) (Tab. 5.7) indicate a necessity to further improve the clarity of the rat-

ing instruction for these criteria.  

One reason for the stronger variation inside the MM implementation effort criteria AG and RC 

lies within the diverse backgrounds of the raters, which participated in the MM assessment. Since the 

individual knowledge, the experiences with the corresponding MM types as well as the statistical 

software R were different (Appendix D), the assessment of a number of R packages needed to apply a 

given MM varied among reviewers. The only fair agreement within the MM quality criterion SuA 

could be because of the unclear instruction for cases in which the authors provided empirical proof for 

the suitability but never directly assessed it themselves qualitatively. In these cases, some raters gave a 

medium rating and others a high. Additional divergences emerged when the source authors did not 

provide any assessment but some raters were able to identify a good or bad fit by themselves while 

investigating the provided plots, highlighting disparities in certain instances. A more fine-grained 

analysis (e.g. five or seven scale evaluation) might reveal a clustering around high, medium and low 

with some within variations.  

 

 

 

Figure 5.5. Results of the MM quality and implementation effort assessment for the application aim of upscaling. 
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Table 5.7. Calculated inter-rater reliability for the rating criteria with evaluation following Cicchetti (1994). 

Rating category Rating Criterion Inter-Rater Reliability Evaluation 

MM quality Consideration of Uncertainty (CU) 

 

0.859 

 

Excellent 

Suitability Assessment (SuA) 0.556 Fair 

 

Number of Evaluation Criteria (NE) 

 

0.721 Good 

MM implementation 

effort 

Availability of Open Access Guiding 

sources (AG) 

 

0.461 

 

Fair 

 

R Coverage (RC) 0.509 

 

Fair 

 

Out-of-the-Box Applicability (OA) 0. 773 Excellent 

 

5.4. Conclusions  

Metamodelling is a promising approach to facilitate ABM calibration, sensitivity analysis, prediction 

and upscaling. We conducted a review that overviews the MM types used among their purposes. With-

in the 27 papers analysed, we identified 40 different MM applications. For each of them, we (PhD stu-

dents and Postdocs with none up to moderate mathematical background) assessed the performance 

quality and the implementation effort. The methodology applied MM rating in this paper was validat-

ed by the fair to excellent intra-class correlation coefficients during the inter-rater reliability assess-

ment. Our goal was to support MMs election for the various needs of daily ABM problems by high-

lighting the currently most promising MM types with an example each serving as a practical applica-

tion guide: 

Sensitivity analysis: 

The easiest MMs to implement with a medium performance are Regression models (e.g. Polynomial 

Regression model). Several examples with stepwise guidance for implementation in R (Team, 2018) 

are provided by Thiele et al. (2014).  

Calibration: 

Approximate Bayesian Computation from the Bayesian Emulator family provides a good balance of 

effort and performance. Thiele et al. (2014) provides several basic implementation examples of ABM 

calibration with step-by-step guidance in R (Team, 2018).  
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Prediction:  

Gaussian Processes from the Bayesian Emulator MM family provide the best quality while offering 

low-medium implementation effort. In contrast, Random forest MMs (Machine Learning family) offer 

low-medium effort but only medium-high quality. An example on predicting new parameter combina-

tions like an inverted calibration can be found in Peters et al. (2015).  

Upscaling:   

Transition Matrices from the Markov Chain MM family seem to be the most promising tool for scal-

ing up ABMs. Note that we reviewed only two MMs on this application aim. The corresponding ap-

plication can be found in Cipriotti et al. (2016).  

This review was intended as a “first aid” for agent-based modelers who seek to improve the 

performance, optimization or analysis of their simulation model using a metamodel. Our motivation 

for this work ensued from our day-to-day modeling tasks. Please note that the review presented here 

can only provide an initial overview, which is primarily meant to stimulate and guide a potential read-

er through a self-exploration of the wide field of metamodels with ease. The examples presented here 

are not exhaustive and the field of metamodeling itself is constantly and rapidly developing. Particu-

larly, the application of the potentials offered by various methods of artificial intelligence (with the 

branches of Machine Learning or deep learning) is just beginning to emerge. We would therefore like 

to motivate our readers to stay abreast on new developments in applying metamodeling approach to 

ABMs, and above all, try out metamodels in their own ways. 
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General discussion and conclusions 

The overarching aim of my thesis was to study trait variability at population and community levels in 

arid environments and to assess the effect of the trait variability on the ability of plants to interact with 

neighbours and survive under harsh environmental conditions.  

Trait-based modelling is a promising approach to study plant communities in temporally and 

spatially heterogeneous arid environments. Its advantages lie in the combination of the trait-based and 

ecological modelling approaches. Trait-based approaches allow to directly link plant characteristics to 

organismal functions (McGill et al., 2006; Violle et al., 2007). Ecological modelling approaches, in 

turn, provide opportunities to generalize observations, contribute to theory building (van der Putten et 

al., 2009; Herben and Wildová, 2012) and, in case of simulation models, investigate community dy-

namics under a wide range of environmental settings without endangering natural communities (Mey-

er et al., 2009; Zurell et al., 2010). Thus, to tackle the overarching aim of my thesis, I applied model-

ling approaches supported by literature reviews, field observations and empirical measurements of 

plant functional traits. 

In the following, I briefly summarize key findings and contributions of each thesis chapter and 

show how they complement each other (Fig. 6). After this, I address the implications of these results 

for future theory building and practical applications for arid plant communities.  
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 In chapter 1 of this thesis, together with my co-authors, I reviewed the raise of trait-based 

modelling approaches in ecology. Trait-based models appear to be a powerful tool to tackle as diverse 

research questions as understanding mechanisms that drive plant growth, describing population and 

community development in space and time and explaining biodiversity. This application of trait-based 

models across different ecological disciplines can be explained by their intrinsic ability to facilitate 

parameterization, to scale up the embedded processes and to generalize the results. Hence, trait-based 

approaches have been successfully incorporated in conceptual models, statistical models, equation-

based models and individual-based models. Individual-based models (Grimm and Railsback, 2005; 

DeAngelis and Mooij, 2005) are highly suitable for a combination with trait-based approaches. The 

reason for this is that trait values are assigned to an individual, and, thus, trait variation at the individ-

ual level can be considered (May et al., 2009; Scheiter et al., 2013; Weiss et al., 2014; Pontarp and 

Wiens, 2017). Moreover, spatially explicit individual-based models facilitate a direct link between 

traits and environmental factors and provide a suitable tool to study responses in community dynamics 

to environmental changes (McGill et al., 2006; Webb et al., 2010). However, such a detailed represen-

tation in these models comes at the cost of higher demands for parameterization and computing power 

Figure 6. A conceptual scheme showing the flow of theoretical concepts and data from one chapter to another and links be-

tween all of them in order to achieve the overarching aim of the thesis. The rounded rectangle boxes with solid green borders 

on the left reflect the motivation for the next chapter and realized contribution, while the rounded rectangle boxes with 

dashed orange borders on the right show possible future contributions from one chapter to another. 
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(but see chapter 5). Ultimately, combined individual- and trait-based models were shown to be particu-

larly promising when the feedback loop between the environment and a community should be taken 

into consideration in studies of community dynamics.  

Putting our theoretical conclusion in chapter 1 on advantages of combined trait- and individu-

al-based models into practice, together with my co-authors, I developed, implemented, documented 

and analysed the spatially explicit individual- and trait-based ATID-model (chapter 2). The novelty of 

this model is that it considers community dynamics of desert annuals from a plant traits point of view. 

In general, there are not many models known that describe desert vegetation in connection to their en-

vironment (James et al., 2005; Reick et al., 2013), but to my knowledge desert annuals are not in the 

scope of any of them. The sensitivity analysis of the model output demonstrated that the key drivers of 

community dynamics were more often plant functional traits than environmental factors. This finding 

might imply that desert annuals acquired fine-tuned trait-based strategies to tolerate abiotic stress, but 

not avoid it. Simultaneously, these strategies may indicate a high adaptability to an unpredictable envi-

ronment (Adondakis and Venable, 2004; Venable et al., 2008). Among the plant functional traits in-

volved in plant-plant interactions, the most influential traits were relative growth rate and maximum 

biomass. Among the traits involved in tolerating abiotic stress, the most influential traits were the 

amount of time in dormancy and probability to germinate. Soil water availability and precipitation 

were identified as the most influential environmental factors in line with empirical studies (Hegazy 

and Kabiel, 2007). Thus, focusing on traits to explore plant community dynamics in deserts not only 

implements the functional approach but also addresses key drivers of these dynamics. 

The ATID-model from chapter 2 was applied for a simulation study on survival and perfor-

mance of two annual species representing different survival strategies in chapter 3. The model analy-

sis in chapter 2 highlighted the importance of time in dormancy and germination probability but 

showed little influence of dispersal strategies for community dynamics. Therefore, to look at these 

processes in more details, together with my co-authors, I considered complex plant survival strategies 

integrating dispersal, dormancy, germination as well as later life-cycle stages. These strategies, la-

belled by us as a ‘protective-competition’ strategy and ‘escape-colonization’ strategy, synthesized 
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three different concepts: seed strategies of escape in time and space (Venable and Lawlor, 1980), 

competition-colonization trade-off (Levins and Culver, 1971; Tilman, 1994) and a strategy classifica-

tion suggested by Gutterman (1994). The resulting two-phase community dynamics agreed with the 

predictions of the competition-colonization trade-off, whereas the temporal dominance of one or the 

other strategy under different levels of temporal and spatial heterogeneity agreed with expectations for 

escape in time and space. This simulation experiment particularly demonstrates the potential of the 

ATID-model for studying the response of annual plant communities to environmental change. The 

new integrated plant strategy definition suggested in chapter 3, firstly, provided a more realistic repre-

sentation of desert annual plant species and, secondly, granted a plausible explanation of observed pat-

terns of community dynamics in line with the predictions of an established ecological theory, the com-

petition-colonization trade-off. 

To deepen the insights of the influence of environmental factors on community dynamics ob-

tained in chapter 2 and chapter 3, together with my co-authors, I explored the response of average trait 

values and intraspecific trait spaces to imposed salinity stress in chapter 4. Analysis of the data ob-

tained from a nethouse experiment took into account the aridity, soil salinity and species richness of 

the origin of the plants in the experiment. Response to salinity stress was shaped to some extent by the 

origin of plants, for example, plants originating from highly arid sites did not respond by a substantial 

increase in stress-related intraspecific trait spaces. Additionally, salinity stress had a significant effect 

on the average values of functional traits. The results of this chapter, firstly, emphasized the strong 

influence of salinity stress on plant performance and, secondly, provided new insights on the shape 

and overlaps of intraspecific trait spaces of desert annuals. These insights should, thus, be reflected in 

future extensions of the ATID-model (chapter 2). 

To address possible limitations of combined trait- and individual-based models in computing 

power (chapter 1) and to support future extensions and analysis of the ATID-model (chapter 2 and 3), 

we reviewed available metamodels for individual-based models in chapter 5. For purposes of sensi-

tivity analysis, regression models were shown to be an appropriate choice, while for calibration, as it 

was implemented in chapter 3, Approximate Bayesian Computation performed better than other met-
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amodel types. According to the review rating, Gaussian Processes from the Bayesian emulator meta-

model family are a promising approach if individual-based models aim at making predictions, whereas 

for scaling-up, transition matrices from the Markov Chain family are recommended. Applying these 

insights to the ATID-model (chapter 2), I advise to test replacing the model by Bayesian Emulators to 

reduce the complexity of the detailed model versions or implementing transition matrices to transfer 

the model to a coarser spatial resolution. 

This thesis covers a number of facets of trait-based modelling approaches for arid environ-

ments and tackles some challenges and limitations associated with them, but this work also paves the 

way for future research in this direction. In chapter 1, I advocate for applying combined trait- and in-

dividual-based modelling approaches in order to study and to understand the mechanisms driving de-

sert plant communities. Such an approach also provides a functional link between traits of individuals, 

their environment and emerging community properties. In this way, we can draw meaningful conclu-

sions on how different traits influence the ability of plants to tolerate environmental stress and affect 

plant-plant interactions. The implementation of a combined trait- and individual-based approach in the 

development of the ATID-model in chapter 2 highlights the greater importance of functional traits as 

drivers of desert annual plant communities than environmental factors. This finding implies high 

adaptability of desert plants to environmental unpredictability. The simulation experiments in chapter 

3 demonstrated that considering more realistic and integrative plant strategies such as ‘protective-

competition’ and ‘escape-colonization’ strategies provide good explanations of observed patterns in 

community dynamics. These results also supported the idea that interspecific trait variability may ex-

press species adaptations to spatial and temporal heterogeneity of the environment. However, the indi-

vidual response might differ as the analyses of intraspecific variability showed in chapter 4 and may 

even play a more important role than interspecific variability in adaptation to highly heterogeneous 

environments (Read et al., 2014; Jung et al., 2014). The significant influences of salinity stress on 

functional plant traits and observations on changes in trait spaces derived from the analysis in chapter 

4 are to be incorporated in the next versions of the ATID-model (chapter 2).  
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The flexible framework of the model allows for further extensions in form of additional sub-

models, e.g. to model salinity effects (based on chapter 4), or by assigning trait distributions instead of 

constant values to individuals to capture the effects of intraspecific trait variability. Intraspecific trait 

variability is already included to some extent in the ATID-model, but only as emerging variability 

such as in the case of individual biomass. I expect that explicitly considering intraspecific trait varia-

bility as input in the model might provide longer coexistence of species in the simulated communities 

described in chapter 3. This effect is expected to be stronger under highly heterogeneous environ-

ments, as the individual response is a source of population plasticity. Additionally, including intraspe-

cific trait variability in the ATID-model would allow for exploring the effects of environmental filter-

ing on trait spaces in the model simulations to enrich the empirical results on trait spaces from chapter 

4. To overcome possible computing challenges due to the more detailed representation of communities 

I recommend to use metamodels, e.g. for predicting model behaviour, as reviewed and assessed in 

chapter 5. 

In general, incorporating more realistic functional trait data and environmental data will im-

prove model performance and its predictive power in case of applying the model with a prediction 

purpose. This step asks for joint empirical-modelling efforts as model outcomes should be compared 

to reality for validation and mutual improvement of models and experiments. In this regard, the plea 

from chapter 3 to model plant strategies as closely as possible to real species and to include more spe-

cies in model communities will facilitate matching the simulated world with reality. Moreover, joint 

empirical-modelling approaches contribute not only to model parameterization, but also to the experi-

mental design of empirical studies. Starting research by investigating potential hypotheses with corre-

spondingly tailored versions of the ATID-model would help selecting the measurements to be taken 

and possible scenarios to be explored in the experiment as well as factors to pay attention to through-

out the field observations. For example, it would be interesting to use the results obtained in the simu-

lation experiment in chapter 3 as hypotheses for field observations. Such a field observation would 

require precise precipitation and topographical data, measurement of plant biomass in the field and 
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recording of species abundance over several years to assess the relative dominance of different surviv-

al strategies on the short and long term. 

To conclude, my thesis, in line with the main aims of the umbrella project “Population- and 

community- level plant trait variability in changing arid environments”, explored the role of trait vari-

ability at the population level (analysis of the nethouse experiment) and community level (simulation 

experiment) in shaping the response to aridity and salinity. I identified a set of plant functional traits 

that are most influential for community dynamics (model analysis). Additionally, I showed that two 

groups of traits distinguished as those involved in withstanding harsh environmental conditions and 

those involved in plant-plant interactions are equally driving community dynamics (model analysis 

and simulation experiment). Moreover, I demonstrated the suitability of a combined trait-based and 

individual-based approach for studying community dynamics of desert annual plants and underlined 

the importance of the cooperation between modelling and empirical research, which contributes not 

only to model parameterization but also to fine-tuned experimental designs of empirical studies. Final-

ly, with this thesis, I provided a modelling framework for further research on the mechanisms underly-

ing community dynamics and understanding the fate of desert communities in the face of global 

changes. 
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Appendix. Chapter 1.  

Table A1.1. Complete list of models included in this review. Each model is described by its model type and target scale as well as the full reference and the paper section in which this model is mentioned.  

 
Section Reference Model type Target scale 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Sterck, F., Schieving, F., 2011. Modelling functional trait acclimation for trees of different height in a forest light gradient: 

Emergent patterns driven by carbon gain maximization. Tree Physiol. 31, 1024–1037. https://doi.org/10.1093/treephys/tpr065 

equation-based individual 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Ali, A.A., Medlyn, B.E., Aubier, T.G., Crous, K.Y., Reich, P.B., 2015. Elevated carbon dioxide is predicted to promote coex-

istence among competing species in a trait-based model. Ecol. Evol. 5, 4717–4733. https://doi.org/10.1002/ece3.1733 

equation-based ecosystem 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Ali, A.A., Medlyn, B.E., Crous, K.Y., Reich, P.B., 2013. A trait-based ecosystem model suggests that long-term responsiveness 

to rising atmospheric CO 2 concentration is greater in slow-growing than fast-growing plants. Functional Ecology 27, 1011–

1022. https://doi.org/10.1111/1365-2435.12102 

equation-based ecosystem 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Aubry-Kientz, M., Rossi, V., Boreux, J.-J., Hérault, B., 2015. A joint individual-based model coupling growth and mortality 

reveals that tree vigor is a key component of tropical forest dynamics. Ecology and Evolution 5, 2457–2465. 

https://doi.org/10.1002/ece3.1532 

individual-based + 

statistical 

species 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Bown, J.L., Pachepsky, E., Eberst, A., Bausenwein, U., Millard, P., Squire, G.R., Crawford, J.W., 2007. Consequences of intra-

specific variation for the structure and function of ecological communities. Part 1. Model development and predicted patterns of 

diversity. Ecol. Modell. 207, 264–276. https://doi.org/10.1016/j.ecolmodel.2007.05.004 

individual-based species 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Chavana-Bryant, C., Malhi, Y., Wu, J., Asner, G.P., Anastasiou, A., Enquist, B.J., Cosio Caravasi, E.G., Doughty, C.E., 

Saleska, S.R., Martin, R.E., Gerard, F.F., 2017. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochem-

ical measurements. New Phytol. 214, 1049–1063. https://doi.org/10.1111/nph.13853 

statistical individual 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Enquist, B.J., Kerkhoff, A.J., Stark, S.C., Swenson, N.G., McCarthy, M.C., Price, C. a, 2007. A general integrative model for 

scaling plant growth, carbon flux, and functional trait spectra. Nature 449, 218–222. https://doi.org/10.1038/nature06061 

equation-based individual 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Fort, F., Volaire, F., Guilioni, L., Barkaoui, K., Navas, M.-L., Roumet, C., 2017. Root traits are related to plant water-use 

among rangeland Mediterranean species. Functional Ecology 31, 1700–1709. https://doi.org/10.1111/1365-2435.12888 

equation-based species 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Fyllas, N.M., Gloor, E., Mercado, L.M., Sitch, S., Quesada, C.A., Domingues, T.F., Galbraith, D.R., Torre-Lezama, A., Vila-

nova, E., Ramírez-Angulo, H., Higuchi, N., Neill, D.A., Silveira, M., Ferreira, L., Aymard C., G.A., Malhi, Y., Phillips, O.L., 

Lloyd, J., 2014. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1). Geosci. 

Model Dev. 7, 1251–1269. https://doi.org/10.5194/gmd-7-1251-2014 

equation-based ecosystem, 

community 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Hérault, B., Bachelot, B., Poorter, L., Rossi, V., Bongers, F., Chave, J., Paine, C.E.T., Wagner, F., Baraloto, C., 2011. Func-

tional traits shape ontogenetic growth trajectories of rain forest tree species. J. Ecol. 99, 1431–1440. 

https://doi.org/10.1111/j.1365-2745.2011.01883.x et al., 2011.  

statistical individual, 

species 

 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Paleari, L., Movedi, E., Confalonieri, R., 2017. Trait-based model development to support breeding programs. A case study for 

salt tolerance and rice. Sci. Rep. 7, 1–11. https://doi.org/10.1038/s41598-017-04022-y 

equation-based individual 
 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Taubert, F., Frank, K., Huth, A., 2012. A review of grassland models in the biofuel context. Ecol. Modell. 245, 84–93. 

https://doi.org/10.1016/j.ecolmodel.2012.04.007 

individual-based ecosystem, 

community 

 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Thomas, F.M., Vesk, P.A., 2017a. Are trait-growth models transferable? Predicting multi-species growth trajectories between 

ecosystems using plant functional traits. PLoS One 12, 1–19. https://doi.org/10.1371/journal.pone.0176959 

statistical individual 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Thomas, F.M., Vesk, P.A., 2017b. Growth races in The Mallee: Height growth in woody plants examined with a trait-based 

model. Austral Ecol. 42, 790–800. https://doi.org/10.1111/aec.12501 

statistical individual 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Adler, P.B., Salguero-Gomez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, C., Franco, M., 2014. Func-

tional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences 111, 740–745. 

https://doi.org/10.1073/pnas.1315179111 

equation-based population 

1.1. Trait-based models on plant 

growth, population dynamics, 

and interactions 

Jaffré, M., Le Galliard, J.-F., 2016. Population viability analysis of plant and animal populations with stochastic integral projec-

tion models. Oecologia 182, 1031–1043. https://doi.org/10.1007/s00442-016-3704-4 

equation-based population 

1.2. Trait-based models on spe-

cies distributions  

Laughlin, D.C., Joshi, C., 2015. Theoretical consequences of trait-based environmental filtering for the breadth and shape of the 

niche: New testable hypotheses generated by the Traitspace model. Ecological Modelling 307, 10–21. 

https://doi.org/10.1016/j.ecolmodel.2015.03.013 

statistical community 

1.2. Trait-based models on spe-

cies distributions  

Douma, J.C., Witte, J.-P.M., Aerts, R., Bartholomeus, R.P., Ordoñez, J.C., Venterink, H.O., Wassen, M.J., van Bodegom, P.M., 

2012. Towards a functional basis for predicting vegetation patterns; incorporating plant traits in habitat distribution models. 

Ecography 35, 294–305. https://doi.org/10.1111/j.1600-0587.2011.07140.x 

statistical community 

1.2. Trait-based models on spe-

cies distributions  

Garrard, G.E., McCarthy, M.A., Williams, N.S.G., Bekessy, S.A., Wintle, B.A., 2013. A general model of detectability using 

species traits. Methods Ecol. Evol. 4, 45–52. https://doi.org/10.1111/j.2041-210x.2012.00257.x 

statistical species 

1.2. Trait-based models on spe-

cies distributions  

Laughlin, D.C., Joshi, C., van Bodegom, P.M., Bastow, Z.A., Fulé, P.Z., 2012. A predictive model of community assembly that 

incorporates intraspecific trait variation. Ecol. Lett. 15, 1291–1299. https://doi.org/10.1111/j.1461-0248.2012.01852.x 

statistical species to 

community 

1.2. Trait-based models on spe-

cies distributions  

Laughlin, D.C., Laughlin, D.E., 2013. Advances in modeling trait-based plant community assembly. Trends Plant Sci. 18, 584–

593. https://doi.org/10.1016/j.tplants.2013.04.012 

statistical species to 

community 

1.2. Trait-based models on spe-

cies distributions  

Powney, G.D., Preston, C.D., Purvis, A., Van Landuyt, W., Roy, D.B., 2014. Can trait-based analyses of changes in species 

distribution be transferred to new geographic areas? Glob. Ecol. Biogeogr. 23, 1009–1018. https://doi.org/10.1111/geb.12189 

statistical community, 

region 

1.2. Trait-based models on spe-

cies distributions  

Rosenfield, M.F., Müller, S.C., 2017. Predicting restored communities based on reference ecosystems using a trait-based ap-

proach. For. Ecol. Manage. 391, 176–183. https://doi.org/10.1016/j.foreco.2017.02.024 

statistical community 

1.2. Trait-based models on spe-

cies distributions  

Shipley, B., Laughlin, D.C., Sonnier, G., Otfinowski, R., 2011. A strong test of the maximum entropy model of trait- based 

community assembly. Ecology 92, 507–517. https://doi.org/10.1890/10-0394.1 

statistical community 

1.2. Trait-based models on spe-

cies distributions  

Sonnier, G., Shipley, B., Navas, M.-L., 2010. Plant traits, species pools and the prediction of relative abundance in plant com-

munities: a maximum entropy approach. Journal of Vegetation Science 21, 318–331. https://doi.org/10.1111/j.1654-

1103.2009.01145.x 

statistical community 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

1.2. Trait-based models on spe-

cies distributions  

Sterck, F., Markesteijn, L., Toledo, M., Schieving, F., Poorter, L., 2014. Sapling performance along resource gradients drives 

tree species distributions within and across tropical forests. Ecology 95, 2514–2525. https://doi.org/10.1890/13-2377.1 

equation-based species 

1.2. Trait-based models on spe-

cies distributions  

Welsh, M.E., Cronin, J.P., Mitchell, C.E., 2016. The role of habitat filtering in the leaf economics spectrum and plant suscepti-

bility to pathogen infection. J. Ecol. 104, 1768–1777. https://doi.org/10.1111/1365-2745.12632 

statistical community 

1.2. Trait-based models on spe-

cies distributions  

Willis, S.G., Foden, W., Baker, D.J., Belle, E., Burgess, N.D., Carr, J.A., Doswald, N., Garcia, R.A., Hartley, A., Hof, C., 

Newbold, T., Rahbek, C., Smith, R.J., Visconti, P., Young, B.E., Butchart, S.H.M., 2015. Integrating climate change vulnera-

bility assessments from species distribution models and trait-based approaches. Biological Conservation 190, 167–178. 

https://doi.org/10.1016/j.biocon.2015.05.001 

conceptual community 

1.2. Trait-based models on spe-

cies distributions  

Abrego, N., Norberg, A., Ovaskainen, O., 2017. Measuring and predicting the influence of traits on the assembly processes of 

wood-inhabiting fungi. Journal of Ecology 105, 1070–1081. https://doi.org/10.1111/1365-2745.12722 

statistical community 

1.3. Trait-based models of com-

munity assembly  

Bhaskar, R., Dawson, T.E., Balvanera, P., 2014. Community assembly and functional diversity along succession post-

management. Functional Ecology 28, 1256–1265. https://doi.org/10.1111/1365-2435.12257 

conceptual community 

1.3. Trait-based models of com-

munity assembly  

Chauvet, M., Kunstler, G., Roy, J., Morin, X., 2017. Using a forest dynamics model to link community assembly processes and 

traits structure. Functional Ecology 31, 1452–1461. https://doi.org/10.1111/1365-2435.12847 

equation-based community 

1.3. Trait-based models of com-

munity assembly  

Kraft, N.J.B., Godoy, O., Levine, J.M., 2015. Plant functional traits and the multidimensional nature of species coexistence. 

Proceedings of the National Academy of Sciences 112, 797–802. https://doi.org/10.1073/pnas.1413650112 

equation-based community 

1.3. Trait-based models of com-

munity assembly  

Laughlin, D.C., 2011. Nitrification is linked to dominant leaf traits rather than functional diversity. J. Ecol. 99, 1091–1099. 

https://doi.org/10.1111/j.1365-2745.2011.01856.x 

statistical global 

1.3. Trait-based models of com-

munity assembly  

Laughlin, D.C., 2014. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol. 

Lett. 17, 771–784. https://doi.org/10.1111/ele.12288 

equation-based + 

statistical 

community 

1.3. Trait-based models of com-

munity assembly  

Laughlin, D.C., Fulé, P.Z., Huffman, D.W., Crouse, J., Laliberté, E., 2011. Climatic constraints on trait-based forest assembly: 

Climatic constraints on forest assembly. Journal of Ecology 99, 1489–1499. https://doi.org/10.1111/j.1365-2745.2011.01885.x 

statistical community 

1.3. Trait-based models of com-

munity assembly  

Laughlin, D.C., Joshi, C., Richardson, S.J., Peltzer, D.A., Mason, N.W.H., Wardle, D.A., 2015. Quantifying multimodal trait 

distributions improves trait-based predictions of species abundances and functional diversity. J. Veg. Sci. 26, 46–57. 

https://doi.org/10.1111/jvs.12219 

equation-based + 

statistical 

global 

1.3. Trait-based models of com-

munity assembly  

Laughlin, D.C., Strahan, R.T., Huffman, D.W., Sánchez Meador, A.J., 2017. Using trait-based ecology to restore resilient eco-

systems: historical conditions and the future of montane forests in western North America. Restor. Ecol. 25, S135–S146. 

https://doi.org/10.1111/rec.12342 

equation-based + 

statistical 

community 

1.3. Trait-based models of com-

munity assembly  

Losapio, G., Schöb, C., 2017. Resistance of plant-plant networks to biodiversity loss and secondary extinctions following simu-

lated environmental changes. Functional Ecology 31, 1145–1152. https://doi.org/10.1111/1365-2435.12839 

conceptual community 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

1.3. Trait-based models of com-

munity assembly  

Marteinsdóttir, B., 2014. Seed rain and seed bank reveal that seed limitation strongly influences plant community assembly in 

grasslands. PLoS One 9. https://doi.org/10.1371/journal.pone.0103352 

statistical local, regional, 

community 

1.3. Trait-based models of com-

munity assembly  

Pachepsky, E., Bown, J.L., Eberst, A., Bausenwein, U., Millard, P., Squire, G.R., Crawford, J.W., 2007. Consequences of intra-

specific variation for the structure and function of ecological communities Part 2: Linking diversity and function. Ecological 

Modelling 207, 277–285. https://doi.org/10.1016/j.ecolmodel.2007.05.005 

individual-based community 

1.3. Trait-based models of com-

munity assembly  

Schliep, E.M., Gelfand, A.E., Mitchell, R.M., Aiello-Lammens, M.E., Silander, J.A., 2018. Assessing the joint behaviour of 

species traits as filtered by environment. Methods in Ecology and Evolution 9, 716–727. https://doi.org/10.1111/2041-

210X.12901 

statistical community 

1.3. Trait-based models of com-

munity assembly  

Shipley, B., Vile, D., Garnier, E., 2006. From Plant Traits to Plant Communities: A Statistical Mechanistic Approach to Biodi-

versity. Science. 314, 812–814. https://doi.org/10.1126/science.1131344 

statistical global 

1.3. Trait-based models of com-

munity assembly  

Sterck, F., Markesteijn, L., Schieving, F., Poorter, L., 2011. Functional traits determine trade-offs and niches in a tropical forest 

community. Proceedings of the National Academy of Sciences 108, 20627–20632. https://doi.org/10.1073/pnas.1106950108 

equation-based community 

1.3. Trait-based models of com-

munity assembly  

Yang, Y.H., Wang, G., Xiong, Y.C., 2015. The contribution of intraspecific trait variability to plant community assembly pat-

terns on the niche-neutral continuum. Pakistan Journal of Botany 47, 1039-1050. 

equation-based community 

1.3. Trait-based models of com-

munity assembly  

Yenni, G., Adler, P.B., Ernest, S.K.M., 2012. Strong self-limitation promotes the persistence of rare species. Ecology 93, 456–

461. https://doi.org/10.1890/11-1087.1 

equation-based community 

1.3. Trait-based models of com-

munity assembly  

Frenette-Dussault, C., Shipley, B., Meziane, D., Hingrat, Y., 2013. Trait-based climate change predictions of plant community 

structure in arid steppes. Journal of Ecology 101, 484–492. https://doi.org/10.1111/1365-2745.12040 

statistical community 

1.3. Trait-based models of com-

munity assembly  

Laliberté, E., Shipley, B., Norton, D.A., Scott, D., 2012. Which plant traits determine abundance under long-term shifts in soil 

resource availability and grazing intensity?: Plant traits and species abundance. Journal of Ecology 100, 662–677. 

https://doi.org/10.1111/j.1365-2745.2011.01947.x 

statistical community 

1.3. Trait-based models of com-

munity assembly  

Crowther, T.W., Maynard, D.S., Crowther, T.R., Peccia, J., Smith, J.R., Bradford, M.A., 2014. Untangling the fungal niche: the 

trait-based approach. Frontiers in Microbiology 5. https://doi.org/10.3389/fmicb.2014.00579 

conceptual community 

1.4. Trait-based models of com-

munity dynamics  

Colbach, N., Granger, S., Guyot, S.H.M., Mézière, D., 2014. A trait-based approach to explain weed species response to agri-

cultural practices in a simulation study with a cropping system model. Agriculture, Ecosystems & Environment 183, 197–204. 

https://doi.org/10.1016/j.agee.2013.11.013 

equation-based species 

1.4. Trait-based models of com-

munity dynamics  

Moor, H., 2017. Life history trade-off moderates model predictions of diversity loss from climate change. PLOS ONE 12, 

e0177778. https://doi.org/10.1371/journal.pone.0177778 

equation-based community 

1.4. Trait-based models of com-

munity dynamics  

Falster, D.S., Brännström, Å., Dieckmann, U., Westoby, M., 2011. Influence of four major plant traits on average height, leaf-

area cover, net primary productivity, and biomass density in single-species forests: A theoretical investigation. J. Ecol. 99, 148–

164. https://doi.org/10.1111/j.1365-2745.2010.01735.x 

equation-based landscape 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

1.4. Trait-based models of com-

munity dynamics  

Jabot, F., 2010. A stochastic dispersal-limited trait-based model of community dynamics. J. Theor. Biol. 262, 650–661. 

https://doi.org/10.1016/j.jtbi.2009.11.004 

equation-based community 

1.4. Trait-based models of com-

munity dynamics  

May, F., Grimm, V., Jeltsch, F., 2009. Reversed effects of grazing on plant diversity: The role of below-ground competition 

and size symmetry. Oikos 118, 1830–1843. https://doi.org/10.1111/j.1600-0706.2009.17724.x 

individual-based community 

1.4. Trait-based models of com-

munity dynamics  

Miki, T., Kondoh, M., 2002. Feedbacks between nutrient cycling and vegetation predict plant species coexistence and invasion. 

Ecol. Lett. 5, 624–633. https://doi.org/10.1046/j.1461-0248.2002.00347.x 

equation-based community 

1.4. Trait-based models of com-

munity dynamics  

Quétier, F., Lavorel, S., Liancourt, P., Thébault, A., Davies, I.D., 2011. Assessing long-term land-use legacies in subalpine 

grasslands by using a plant trait-based generic modelling framework. Plant Ecology & Diversity 4, 391–402. 

https://doi.org/10.1080/17550874.2011.629232 

equation-based ecosystem 

1.4. Trait-based models of com-

munity dynamics  

Savage, V.M., Webb, C.T., Norberg, J., 2007. A general multi-trait-based framework for studying the effects of biodiversity on 

ecosystem functioning. Journal of Theoretical Biology 247, 213–229. https://doi.org/10.1016/j.jtbi.2007.03.007 

equation-based ecosystem 

1.4. Trait-based models of com-

munity dynamics  

Seifan, M., Seifan, T., Jeltsch, F., Tielbörger, K., 2012. Combined disturbances and the role of their spatial and temporal prop-

erties in shaping community structure. Perspect. Plant Ecol. Evol. Syst. 14, 217–229. 

https://doi.org/10.1016/j.ppees.2011.11.003 

individual-based community 

1.4. Trait-based models of com-

munity dynamics  

Seifan, M., Seifan, T., Schiffers, K., Jeltsch, F., Tielbörger, K., 2013. Beyond the Competition-Colonization Trade-Off: Link-

ing Multiple Trait Response to Disturbance Characteristics. Am. Nat. 181, 151–160. https://doi.org/10.1086/668844 

individual-based community 

1.4. Trait-based models of com-

munity dynamics  

Tanaka, Y., 2012. Trait response in communities to environmental change: effect of interspecific competition and trait covari-

ance structure. Theoretical Ecology 5, 83–98. https://doi.org/10.1007/s12080-010-0100-2 

equation-based community 

1.4. Trait-based models of com-

munity dynamics  

Weiss, L., Jeltsch, F., 2015. The response of simulated grassland communities to the cessation of grazing. Ecological Model-

ling 303, 1–11. https://doi.org/10.1016/j.ecolmodel.2015.02.002 

individual-based community 

1.4. Trait-based models of com-

munity dynamics  

Weiss, L., Pfestorf, H., May, F., Körner, K., Boch, S., Fischer, M., Müller, J., Prati, D., Socher, S.A., Jeltsch, F., 2014. Grazing 

response patterns indicate isolation of semi-natural European grasslands. Oikos 123, 599–612. https://doi.org/10.1111/j.1600-

0706.2013.00957.x 

individual-based community 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Harper, A.B., Cox, P.M., Friedlingstein, P., Wiltshire, A.J., Jones, C.D., Sitch, S., Mercado, L.M., Groenendijk, M., Robertson, 

E., Kattge, J., Bönisch, G., Atkin, O.K., Bahn, M., Cornelissen, J., Niinemets, Ü., Onipchenko, V., Peñuelas, J., Poorter, L., 

Reich, P.B., Soudzilovskaia, N.A., Bodegom, P. van, 2016. Improved representation of plant functional types and physiology in 

the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geoscientific Model Development 9, 

2415–2440. https://doi.org/10.5194/gmd-9-2415-2016 

equation-based global 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Holzwarth, F., Rüger, N., Wirth, C., 2015. Taking a closer look: disentangling effects of functional diversity on ecosystem 

functions with a trait-based model across hierarchy and time. R. Soc. open Sci. 2, 140541. https://doi.org/10.1098/rsos.140541 

equation-based  ecosystem, 

community 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Pavlick, R., Drewry, D.T., Bohn, K., Reu, B., Kleidon, a., 2012. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-

DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. 

Biogeosciences Discuss. 9, 4627–4726. https://doi.org/10.5194/bgd-9-4627-2012 

equation-based  global 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Reu, B., Proulx, R., Bohn, K., Dyke, J.G., Kleidon, A., Pavlick, R., Schmidtlein, S., 2010. The role of climate and plant func-

tional trade-offs in shaping global biome and biodiversity patterns. Glob. Ecol. Biogeogr. 20, 570–581. 

https://doi.org/10.1111/j.1466-8238.2010.00621.x 

equation-based global 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Reu, B., Zaehle, S., Proulx, R., Bohn, K., Kleidon, A., Pavlick, R., Schmidtlein, S., 2011. The role of plant functional trade-offs 

for biodiversity changes and biome shifts under scenarios of global climatic change. Biogeosciences 8, 1255–1266. 

https://doi.org/10.5194/bg-8-1255-2011 

equation-based global 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Sakschewski, B., von Bloh, W., Boit, A., Rammig, A., Kattge, J., Poorter, L., Peñuelas, J., Thonicke, K., 2015. Leaf and stem 

economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob. Chang. Biol. 21, 2711–

2725. https://doi.org/10.1111/gcb.12870 

equation-based + 

individual-based 

global 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Scheiter, S., Higgins, S.I., 2009. Impacts of climate change on the vegetation of Africa: An adaptive dynamic vegetation mod-

elling approach. Glob. Chang. Biol. 15, 2224–2246. https://doi.org/10.1111/j.1365-2486.2008.01838.x 

equation-based + 

individual-based 

global 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Scheiter, S., Langan, L., Higgins, S.I., 2013. Next-generation dynamic global vegetation models: learning from community 

ecology. New Phytol. 198, 957–69. https://doi.org/10.1111/nph.12210 

equation-based + 

individual-based 

global 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Smith, B., Prentice, I.C., Climate, M.T.S., Sykes, M.T., 2001. Representation of vegetation dynamics in the modelling of terres-

trial ecosystems : comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr. 10, 621–637. 

https://doi.org/10.1046/j.1466-822X.2001.00256.x 

equation-based + 

individual-based 

global 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Van Bodegom, P.M., Douma, J.C., Witte, J.P.M.M., Ordoñez, J.C., Bartholomeus, R.P., Aerts, R., 2012. Going beyond limita-

tions of plant functional types when predicting global ecosystem-atmosphere fluxes: exploring the merits of traits-based ap-

proaches. Glob. Ecol. Biogeogr. 21, 625–636. https://doi.org/10.1111/j.1466-8238.2011.00717.x 

equation-based global 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Verheijen, L.M., Brovkin, V., Aerts, R., Bönisch, G., Cornelissen, J.H.C., Kattge, J., Reich, P.B., Wright, I.J., Van Bodegom, 

P.M., 2013. Impacts of trait variation through observed trait-climate relationships on performance of an Earth system model: A 

conceptual analysis. Biogeosciences 10, 5497–5515. https://doi.org/10.5194/bg-10-5497-2013 

equation-based global 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Walker, A.P., Quaife, T., van Bodegom, P.M., De Kauwe, M.G., Keenan, T.F., Joiner, J., Lomas, M.R., MacBean, N., Xu, C., 

Yang, X., Woodward, F.I., 2017. The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxyla-

tion rate (Vcmax) on global gross primary production. New Phytol. 215, 1370–1386. https://doi.org/10.1111/nph.14623 

equation-based global 

1.5. Trait-based dynamic global 

vegetation models (DGVMs)  

Yang, Y., Zhu, Q., Peng, C., Wang, H., Xue, W., Lin, G., Wen, Z., Chang, J., Wang, M., Liu, G., Li, S., 2016. A novel ap-

proach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. 

Scientific Reports 6. https://doi.org/10.1038/srep24110 

equation-based global 

1.6. Trait-based models of plant 

invasions 

Herron, P.M., Martine, C.T., Latimer, A.M., Leicht-Young, S.A., 2007. Invasive plants and their ecological strategies: Predic-

tion and explanation of woody plant invasion in New England. Divers. Distrib. 13, 633–644. https://doi.org/10.1111/j.1472-

4642.2007.00381.x 

statistical species 

1.6. Trait-based models of plant 

invasions 

Higgins, S.I., Richardson, D.M., 1998. Pine invasions in the southern hemisphere: modeling interactions between organism, 

enviroment and disturbance. Plant Ecol. 135, 79–93. https://doi.org/10.1023/a:1009760512895 

individual-based community 

1.6. Trait-based models of plant 

invasions 

Küster, E.C., Kühn, I., Bruelheide, H., Klotz, S., 2008. Trait interactions help explain plant invasion success in the German 

flora. J. Ecol. 96, 860–868. https://doi.org/10.1111/j.1365-2745.2008.01406.x 

statistical species 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

1.6. Trait-based models of plant 

invasions 

Otfinowski, R., Kenkel, N.C., Dixon, P., Wilmshurst, J.F., 2007. Integrating climate and trait models to predict the invasiveness 

of exotic plants in Canada’s Riding Mountain National Park. Can. J. Plant Sci. 87, 1001–1012. 

https://doi.org/10.4141/CJPS07117 

statistical species 

1.6. Trait-based models of plant 

invasions 

Radny, J., Meyer, K.M., 2018. The role of biotic factors during plant establishment in novel communities assessed with an 

agent-based simulation model. PeerJ 6, e5342. https://doi.org/10.7717/peerj.5342 

individual-based community 

1.7. Trait-based models of eco-

system services  

Astegiano, J., Guimarães, P.R., Cheptou, P.-O., Vidal, M.M., Mandai, C.Y., Ashworth, L., Massol, F., 2015. Persistence of 

Plants and Pollinators in the Face of Habitat Loss, in: Advances in Ecological Research. Elsevier, pp. 201–257. 

equation-based  metacommunity 

1.7. Trait-based models of eco-

system services  

Grigulis, K., Lavorel, S., Krainer, U., Legay, N., Baxendale, C., Dumont, M., Kastl, E., Arnoldi, C., Bardgett, R.D., Poly, F., 

Pommier, T., Schloter, M., Tappeiner, U., Bahn, M., Clément, J.-C., 2013. Relative contributions of plant traits and soil micro-

bial properties to mountain grassland ecosystem services. J. Ecol. 101, 47–57. https://doi.org/10.1111/1365-2745.12014 

statistical ecosystem 

1.7. Trait-based models of eco-

system services  

Homolova, L., Schaepman, M.E., Lamarque, P., Clevers, J.G.P.W., De Bello, F., Thuiller, W., Lavorel, S., 2014. Comparison 

of remote sensing and plant trait-based modelling to predict ecosystem services in subalpine grasslands. Ecosphere 5, 1–29. 

https://doi.org/10.1890/ES13-00393.1 

statistical landscape, eco-

system 

1.7. Trait-based models of eco-

system services  

Lamarque, P., Lavorel, S., Mouchet, M., Quétier, F., 2014. Plant trait-based models identify direct and indirect effects of cli-

mate change on bundles of grassland ecosystem services. Proc. Natl. Acad. Sci. U. S. A. 111, 13751–6. 

https://doi.org/10.1073/pnas.1216051111 

statistical ecosystem 

1.7. Trait-based models of eco-

system services  

Lavorel, S., Grigulis, K., Lamarque, P., Colace, M.P., Garden, D., Girel, J., Pellet, G., Douzet, R., 2011. Using plant functional 

traits to understand the landscape distribution of multiple ecosystem services. J. Ecol. 99, 135–147. 

https://doi.org/10.1111/j.1365-2745.2010.01753.x 

statistical landscape, eco-

system 

1.7. Trait-based models of eco-

system services  

Lochon, I., Colace, M.-P., Devaux, C., Grigulis, K., Rettinger, R., Lavorel, S., 2018. Taxonomic and functional facets of the 

resilience to management of mown subalpine grasslands. Applied Vegetation Science 21, 636–646. 

https://doi.org/10.1111/avsc.12392 

equation-based + 

statistical 

ecosystem 

1.7. Trait-based models of eco-

system services  

Quétier, F., Lavorel, S., Thuiller, W., Davies, I., 2007. PLANT-TRAIT-BASED MODELING ASSESSMENT OF ECOSYS-

TEM-SERVICE SENSITIVITY TO LAND-USE CHANGE. Ecological Applications 17, 2377–2386. 

https://doi.org/10.1890/06-0750.1 

equation-based ecosystem 

1.7. Trait-based models of eco-

system services  

Schirpke, U., Kohler, M., Leitinger, G., Fontana, V., Tasser, E., Tappeiner, U., 2017. Future impacts of changing land-use and 

climate on ecosystem services of mountain grassland their resilience. Ecosyst. Serv. 26, 79–94. 

https://doi.org/10.1016/j.ecoser.2017.06.008 

statistical ecosystem 

1.8. Trait-based models on inter-

actions between plants and other 

organisms  

Zhu, Q., Iversen, C.M., Riley, W.J., Slette, I.J., Vander Stel, H.M., 2016. Root traits explain observed tundra vegetation nitro-

gen uptake patterns: Implications for trait-based land models: Tundra N Uptake Model-Data Comparison. Journal of Geophysi-

cal Research: Biogeosciences 121, 3101–3112. https://doi.org/10.1002/2016JG003554 

equation-based global 

1.8. Trait-based models on inter-

actions between plants and other 

organisms  

Lavorel, S., Storkey, J., Bardgett, R.D., De Bello, F., Berg, M.P., Le Roux, X., Moretti, M., Mulder, C., Pakeman, R.J., Díaz, 

S., Harrington, R., 2013. A novel framework for linking functional diversity of plants with other trophic levels for the quantifi-

cation of ecosystem services. J. Veg. Sci. 24, 942–948. https://doi.org/10.1111/jvs.12083 

conceptual + statis-

tical 

ecosystem 

1.8. Trait-based models on inter-

actions between plants and other 

organisms  

Mortensen, B., Abbott, K.C., Danielson, B., 2018. Defensive tradeoffs are not prerequisites to plant diversity in a two species 

model. Oikos 127, 63–72. https://doi.org/10.1111/oik.04300 

equation-based community 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

1.8. Trait-based models on inter-

actions between plants and other 

organisms  

Pöyry, J., Carvalheiro, L.G., Heikkinen, R.K., Kühn, I., Kuussaari, M., Schweiger, O., Valtonen, A., van Bodegom, P.M., 

Franzén, M., 2017. The effects of soil eutrophication propagate to higher trophic levels. Glob. Ecol. Biogeogr. 26, 18–30. 

https://doi.org/10.1111/geb.12521 

conceptual  community 

1.8. Trait-based models on inter-

actions between plants and other 

organisms  

Schleuning, M., Fründ, J., García, D., 2015. Predicting ecosystem functions from biodiversity and mutualistic networks: An 

extension of trait-based concepts to plant-animal interactions. Ecography (Cop.). 38, 380–392. 

https://doi.org/10.1111/ecog.00983 

conceptual community 

1.8. Trait-based models on inter-

actions between plants and other 

organisms  

Ke, P.-J., Miki, T., Ding, T.-S., 2015. The soil microbial community predicts the importance of plant traits in plant-soil feed-

back. New Phytologist 206, 329–341. https://doi.org/10.1111/nph.13215 

equation-based community 

1.8. Trait-based models on inter-

actions between plants and other 

organisms  

Jack, C.N., Friesen, M.L., Hintze, A., Sheneman, L., 2017. Third-party mutualists have contrasting effects on host invasion 

under the enemy-release and biotic-resistance hypotheses. Evolutionary Ecology 31, 829–845. https://doi.org/10.1007/s10682-

017-9912-5 

equation-based + 

individual-based 

species 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Brousseau, Pierre-Marc Gravel, D., Handa, I.T., 2018. Trait-matching and phylogeny as predictors of predator-prey interactions 

involving ground beetles. Funct. Ecol. 12, 3218–3221. https://doi.org/10.1111/ijlh.12426 

statistical community 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Buchmann, C.M., Schurr, F.M., Nathan, R., Jeltsch, F., 2011. An allometric model of home range formation explains the struc-

turing of animal communities exploiting heterogeneous resources. Oikos 120, 106–118. https://doi.org/10.1111/j.1600-

0706.2010.18556.x 

individual-based individual, 

landscape 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Gervasi, S.S., Stephens, P.R., Hua, J., Searle, C.L., Xie, G.Y., Urbina, J., Olson, D.H., Bancroft, B.A., Weis, V., Hammond, 

J.I., Relyea, R.A., Blaustein, A.R., 2017. Linking ecology and epidemiology to understand predictors of multi-host responses to 

an emerging pathogen, the amphibian chytrid fungus. PLoS One 12, 1–23. https://doi.org/10.1371/journal.pone.0167882 

statistical individual, 

species 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Hirt, M.R., Grimm, V., Li, Y., Rall, B.C., Rosenbaum, B., Brose, U., 2018. Bridging Scales: Allometric Random Walks Link 

Movement and Biodiversity Research. Trends in Ecology & Evolution 33, 701–712. https://doi.org/10.1016/j.tree.2018.07.003 

individual-based community 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Hui, C., Richardson, D.M., Landi, P., Minoarivelo, H.O., Garnas, J., Roy, H.E., 2016. Defining invasiveness and invasibility in 

ecological networks. Biological Invasions 18, 971–983. https://doi.org/10.1007/s10530-016-1076-7 

equation-based community 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Kearney, M., Phillips, B.L., Tracy, C.R., Christian, K.A., Betts, G., Porter, W.P., 2008. Modelling species distributions without 

using species distributions: the cane toad in Australia under current and future climates. Ecography (Cop.). 31, 423–434. 

https://doi.org/10.1111/j.2008.0906-7590-05457.x 

statistical species, land-

scape 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Kolbe, J.J., Kearney, M., Shine, R., 2010. Modeling the consequences of thermal trait variation for the cane toad invasion of 

Australia. Ecol. Appl. 20, 2273–2285. https://doi.org/10.1890/09-1973.1 

statistical species, land-

scape 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Lentini, P.E., Bird, T.J., Griffiths, S.R., Godinho, L.N., Wintle, B.A., 2015. A global synthesis of survival estimates for micro-

bats. Biol. Lett. 11. https://doi.org/10.1098/rsbl.2015.0371 

statistical species 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Ozgul, A., Coulson, T., Reynolds, A., Cameron, T.C., Benton, T.G., 2012. Population Responses to Perturbations: The Im-

portance of Trait-Based Analysis Illustrated through a Microcosm Experiment. The American Naturalist 179, 582–594. 

https://doi.org/10.1086/664999 

equation-based population 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Pontarp, M., Wiens, J.J., 2017. The origin of species richness patterns along environmental gradients: uniting explanations 

based on time, diversification rate and carrying capacity. J. Biogeogr. 44, 722–735. https://doi.org/10.1111/jbi.12896 

individual-based clade, land-

scape 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Porter, W.P., Kearney, M., 2009. Size, shape, and the thermal niche of endotherms. Proc. Natl. Acad. Sci. 106, 19666–19672. 

https://doi.org/10.1073/pnas.0907321106 

equation-based species 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Santini, L., Cornulier, T., Bullock, J.M., Palmer, S.C.F., White, S.M., Hodgson, J.A., Bocedi, G., Travis, J.M.J., 2016. A trait-

based approach for predicting species responses to environmental change from sparse data: how well might terrestrial mammals 

track climate change? Global Change Biology 22, 2415–2424. https://doi.org/10.1111/gcb.13271 

equation-based population 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Scherer, C., Jeltsch, F., Grimm, V., Blaum, N., 2016. Merging trait-based and individual-based modelling: An animal function-

al type approach to explore the responses of birds to climatic and land use changes in semi-arid African savannas. Ecol. Modell. 

326, 75–89. https://doi.org/10.1016/j.ecolmodel.2015.07.005 

individual-based community, 

landscape 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Schlossberg, S., Chase, M.J., Griffin, C.R., 2018. Using species traits to predict detectability of animals on aerial surveys: Ecol. 

Appl. https://doi.org/10.1002/eap.1632 

statistical species , popu-

lation 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Smallegange, I.M., Ens, H.M., 2018. Trait-based predictions and responses from laboratory mite populations to harvesting in 

stochastic environments. J. Anim. Ecol. 87, 893–905. https://doi.org/10.1111/1365-2656.12802 

equation-based population 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

van Benthem, K.J., Froy, H., Coulson, T., Getz, L.L., Oli, M.K., Ozgul, A., 2017. Trait-demography relationships underlying 

small mammal population fluctuations. Journal of Animal Ecology 86, 348–358. https://doi.org/10.1111/1365-2656.12627 

equation-based population 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Pontarp, M., Petchey, O.L., 2016. Community trait overdispersion due to trophic interactions: concerns for assembly process 

inference. Proceedings of the Royal Society B: Biological Sciences 283, 20161729. https://doi.org/10.1098/rspb.2016.1729 

equation-based community 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Tenan, S., Brambilla, M., Pedrini, P., Sutherland, C., 2017. Quantifying spatial variation in the size and structure of ecological-

ly stratified communities. Methods in Ecology and Evolution 8, 976–984. https://doi.org/10.1111/2041-210X.12719 

equation-based community 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Laubmeier, A.N., Wootton, K., Banks, J.E., Bommarco, R., Curtsdotter, A., Jonsson, T., Roslin, T., Banks, H.T., 2018. From 

theory to experimental design—Quantifying a trait-based theory of predator-prey dynamics. PLOS ONE 13, e0195919. 

https://doi.org/10.1371/journal.pone.0195919 

equation-based community 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Diamond, S.E., Nichols, L.M., McCoy, N., Hirsch, C., Pelini, S.L., Sanders, N.J., Ellison, A.M., Gotelli, N.J., Dunn, R.R., 

2012. A physiological trait-based approach to predicting the responses of species to experimental climate warming. Ecology 93, 

2305–2312. https://doi.org/10.1890/11-2296.1 

statistical species 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Hof, A.R., Rodríguez-Castañeda, G., Allen, A.M., Jansson, R., Nilsson, C., 2017. Vulnerability of Subarctic and Arctic breed-

ing birds. Ecological Applications 27, 219–234. https://doi.org/10.1002/eap.1434 

statistical species 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Haney, S.D., Siepielski, A.M., 2018. Tipping Points in Resource Abundance Drive Irreversible Changes in Community Struc-

ture. The American Naturalist 191, 668–675. https://doi.org/10.1086/697045 

equation-based community 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

2. Trait-based modelling of ani-

mals in terrestrial ecosystems  

Ozgul, A., Bateman, A.W., English, S., Coulson, T., Clutton-Brock, T.H., 2014. Linking body mass and group dynamics in an 

obligate cooperative breeder. Journal of Animal Ecology 83, 1357–1366. https://doi.org/10.1111/1365-2656.12239 

individual-based population 

3. Trait-based modelling of 

aquatic ecosystems  

Madin, J.S., Baird, A.H., Dornelas, M., Connolly, S.R., 2014. Mechanical vulnerability explains size-dependent mortality of 

reef corals. Ecology Letters 17, 1008–1015. https://doi.org/10.1111/ele.12306 

equation-based + 

statistical 

species 

3. Trait-based modelling of 

aquatic ecosystems  

Alexandridis, N., Dambacher, J.M., Jean, F., Desroy, N., Bacher, C., 2017. Qualitative modelling of functional relationships in 

marine benthic communities. Ecological Modelling 360, 300–312. https://doi.org/10.1016/j.ecolmodel.2017.07.021 

conceptual community 

3. Trait-based modelling of 

aquatic ecosystems  

Castellani, M., Våge, S., Strand, E., Thingstad, T.F., Giske, J., 2013. The Scaled Subspaces Method: A new trait-based ap-

proach to model communities of populations with largely inhomogeneous density. Ecological Modelling 251, 173–186. 

https://doi.org/10.1016/j.ecolmodel.2012.12.006 

individual-based community 

3. Trait-based modelling of 

aquatic ecosystems  

Edmunds, P.J., Adjeroud, M., Baskett, M.L., Baums, I.B., Budd, A.F., Carpenter, R.C., Fabina, N.S., Fan, T.-Y., Franklin, E.C., 

Gross, K., Han, X., Jacobson, L., Klaus, J.S., McClanahan, T.R., O’Leary, J.K., van Oppen, M.J.H., Pochon, X., Putnam, H.M., 

Smith, T.B., Stat, M., Sweatman, H., van Woesik, R., Gates, R.D., 2014. Persistence and Change in Community Composition 

of Reef Corals through Present, Past, and Future Climates. PLoS ONE 9, e107525. 

https://doi.org/10.1371/journal.pone.0107525 

equation-based community 

3. Trait-based modelling of 

aquatic ecosystems  

Gardner, R.H., Engelhardt, K.A.M., Elmore, A.J., Cadol, D., 2014. A traits-based model of species diversity. Ecol. Modell. 

288, 178–194. https://doi.org/10.1016/j.ecolmodel.2014.06.006 

equation-based community 

3. Trait-based modelling of 

aquatic ecosystems  

Hagerthey, S.E., Newman, S., Xue, S., 2012. Periphyton-based transfer functions to assess ecological imbalance and manage-

ment of a subtropical ombrotrophic peatland: Periphyton transfer functions. Freshwater Biology 57, 1947–1965. 

https://doi.org/10.1111/j.1365-2427.2012.02848.x 

equation-based ecosystem 

3. Trait-based modelling of 

aquatic ecosystems  

Hug Peter, D., Sardy, S., Diaz Rodriguez, J., Castella, E., Slaveykova, V.I., 2018. Modeling whole body trace metal concentra-

tions in aquatic invertebrate communities: A trait-based approach. Environ. Pollut. 233, 419–428. 

https://doi.org/10.1016/j.envpol.2017.10.044 

statistical community 

3. Trait-based modelling of 

aquatic ecosystems  

Montalto, V., Rinaldi, A., Sarà, G., 2015. Life history traits to predict biogeographic species distributions in bivalves. Sci. Nat. 

102. https://doi.org/10.1007/s00114-015-1313-4 

equation-based individual 

3. Trait-based modelling of 

aquatic ecosystems  

Rinaldi, A., Montalto, V., Manganaro, A., Mazzola, A., Mirto, S., Sanfilippo, M., Sarà, G., Sara, G., 2014. Predictive mecha-

nistic bioenergetics to model habitat suitability of shellfish culture in coastal lakes. Estuar. Coast. Shelf Sci. 144, 89–98. 

https://doi.org/10.1016/j.ecss.2014.04.013 

equation-based individual 

3.1. Trait-based models includ-

ing fish  

Huebert, K.B., Pätsch, J., Hufnagl, M., Kreus, M., Peck, M.A., 2018. Modeled larval fish prey fields and growth rates help 

predict recruitment success of cod and anchovy in the North Sea. Mar. Ecol. Prog. Ser. 600, 111–126. 

https://doi.org/10.3354/meps12615 

individual-based ecosystem 

3.1. Trait-based models includ-

ing fish  

Andersen, K.H., Beyer, J.E., 2006. Asymptotic Size Determines Species Abundance in the Marine Size Spectrum. Am. Nat. 

168, 54–61. https://doi.org/10.1086/504849 

equation-based ecosystem, 

community 

3.1. Trait-based models includ-

ing fish  

Andersen, K.H., Brander, K., Ravn-Jonsen, L., 2015. Trade-offs between objectives for ecosystem management of fisheries. 

Ecol. Appl. 25, 1390–1396. https://doi.org/10.1890/14-1209.1 

equation-based  community 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

3.1. Trait-based models includ-

ing fish  

Andersen, K.H., Pedersen, M., 2010. Damped trophic cascades driven by fishing in model marine ecosystems. Proc. R. Soc. B 

Biol. Sci. 277, 795–802. https://doi.org/10.1098/rspb.2009.1512 

equation-based  community 

3.1. Trait-based models includ-

ing fish  

Winemiller, K.O., Rose, K.A., 1992. Patterns of life-history in North American: Implications for Population Regulation. Can. J. 

Fish. Aquat. Sci. 49, 2196–2218. https://doi.org/10.1139/f92-242 

equation-based population 

3.1. Trait-based models includ-

ing fish  

Andersen, K.H., Rice, J.C., 2010. Direct and indirect community effects of rebuilding plans. ICES J. Mar. Sci. 67, 1980–1988. 

https://doi.org/10.1093/icesjms/fsq035 

equation-based  species, com-

munity 

3.1. Trait-based models includ-

ing fish  

Bennett, M.G., Whiles, M.R., Whitledge, G.W., 2016. Population-level responses of life history traits to flow regime in three 

common stream fish species: Fish Intraspecific Flow-Life History Relationships. Ecohydrology 9, 1388–1399. 

https://doi.org/10.1002/eco.1734 

conceptual + statis-

tical 

population 

3.1. Trait-based models includ-

ing fish  

Brochier, T., Ecoutin, J.M., de Morais, L.T., Kaplan, D.M., Lae, R., 2013. A multi-agent ecosystem model for studying chang-

es in a tropical estuarine fish assemblage within a marine protected area. Aquat. Living Resour. 26, 147–158. 

https://doi.org/10.1051/alr/2012028 

individual-based community 

3.1. Trait-based models includ-

ing fish  

Castellani, M., Rosland, R., Urtizberea, A., Fiksen, Ø., 2013. A mass-balanced pelagic ecosystem model with size-structured 

behaviourally adaptive zooplankton and fish. Ecol. Modell. 251, 54–63. https://doi.org/10.1016/j.ecolmodel.2012.12.007 

equation-based  ecosystem 

3.1. Trait-based models includ-

ing fish  

Guiet, J., Aumont, O., Poggiale, J.-C., Maury, O., 2016. Effects of lower trophic level biomass and water temperature on fish 

communities: A modelling study. Progress in Oceanography 146, 22–37. https://doi.org/10.1016/j.pocean.2016.04.003 

equation-based ecosystem 

3.1. Trait-based models includ-

ing fish  

Guiet, J., Poggiale, J.C., Maury, O., 2016. Modelling the community size-spectrum: recent developments and new directions. 

Ecol. Modell. 337, 4–14. https://doi.org/10.1016/j.ecolmodel.2016.05.015 

equation-based  ecosystem 

3.1. Trait-based models includ-

ing fish  

Hartvig, M., Andersen, K.H., 2013. Coexistence of structured populations with size-based prey selection. Theor. Popul. Biol. 

89, 24–33. https://doi.org/10.1016/j.tpb.2013.07.003 

equation-based  ecosystem, 

community 

3.1. Trait-based models includ-

ing fish  

Hartvig, M., Andersen, K.H., Beyer, J.E., 2011. Food web framework for size-structured populations. J. Theor. Biol. 272, 113–

122. https://doi.org/10.1016/j.jtbi.2010.12.006 

equation-based  ecosystem, 

community 

3.1. Trait-based models includ-

ing fish  

Houle, J.E., Andersen, K.H., Farnsworth, K.D., Reid, D.G., 2013. Emerging asymmetric interactions between forage and preda-

tor fisheries impose management trade-offs: forage and predator fishery interactions. Journal of Fish Biology n/a–n/a. 

https://doi.org/10.1111/jfb.12163 

individual-based community 

3.1. Trait-based models includ-

ing fish  

Houle, J.E., de Castro, F., Cronin, M.A., Farnsworth, K.D., Gosch, M., Reid, D.G., 2016. Effects of seal predation on a mod-

elled marine fish community and consequences for a commercial fishery. Journal of Applied Ecology 53, 54–63. 

https://doi.org/10.1111/1365-2664.12548 

equation-based ecosystem 

3.1. Trait-based models includ-

ing fish  

Howeth, J.G., Gantz, C.A., Angermeier, P.L., Frimpong, E.A., Hoff, M.H., Keller, R.P., Mandrak, N.E., Marchetti, M.P., Old-

en, J.D., Romagosa, C.M., Lodge, D.M., 2016. Predicting invasiveness of species in trade: climate match, trophic guild and 

fecundity influence establishment and impact of non-native freshwater fishes. Divers. Distrib. 22, 148–160. 

https://doi.org/10.1111/ddi.12391 

statistical trophic guild, 

species 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

3.1. Trait-based models includ-

ing fish  

Jacobsen, N.S., Gislason, H., Andersen, K.H., 2014. The consequences of balanced harvesting of fish communities. Proc. R. 

Soc. B Biol. Sci. 281, 20132701–20132701. https://doi.org/10.1098/rspb.2013.2701 

equation-based  ecosystem 

3.1. Trait-based models includ-

ing fish  

Jennings, S., Collingridge, K., 2015. Predicting consumer biomass, size-structure, production, catch potential, responses to 

fishing and associated uncertainties in the world’s marine ecosystems. PLoS One 10, 1–28. 

https://doi.org/10.1371/journal.pone.0133794 

equation-based  ecosystem 

3.1. Trait-based models includ-

ing fish  

Kolding, J., Jacobsen, N.S., Andersen, K.H., van Zwieten, P.A.M., 2016. Maximizing fisheries yields while maintaining com-

munity structure. Can. J. Fish. Aquat. Sci. 73, 644–655. https://doi.org/10.1139/cjfas-2015-0098 

equation-based  ecosystem, 

community 

3.1. Trait-based models includ-

ing fish  

Maury, O., Poggiale, J.-C.C., 2013. From individuals to populations to communities: A dynamic energy budget model of ma-

rine ecosystem size-spectrum including life history diversity. J. Theor. Biol. 324, 52–71. 

https://doi.org/10.1016/j.jtbi.2013.01.018 

equation-based  individual, 

population, 

community 

3.1. Trait-based models includ-

ing fish  

O’Farrell, S., Salguero-Gómez, R., van Rooij, J.M., Mumby, P.J., 2015. Disentangling trait-based mortality in species with 

decoupled size and age. Journal of Animal Ecology 84, 1446–1456. https://doi.org/10.1111/1365-2656.12399 

individual-based population 

3.1. Trait-based models includ-

ing fish  

Schnedler-Meyer, N.A., Mariani, P., Kiørboe, T., 2016. The global susceptibility of coastal forage fish to competition by large 

jellyfish. Proc. R. Soc. B Biol. Sci. 283. https://doi.org/10.1098/rspb.2016.1931 

equation-based  local 

3.1. Trait-based models includ-

ing fish  

Shea, C.P., Bettoli, P.W., Potoka, K.M., Saylor, C.F., Shute, P.W., 2015. Use of Dynamic Occupancy Models to Assess the 

Response of Darters (Teleostei: Percidae) to Varying Hydrothermal Conditions in a Southeastern United States Tailwater: 

DARTER PATCH DYNAMICS. River Research and Applications 31, 676–691. https://doi.org/10.1002/rra.2766 

equation-based population 

3.1. Trait-based models includ-

ing fish  

Vindenes, Y., Edeline, E., Ohlberger, J., Langangen, Ø., Winfield, I.J., Stenseth, N.C., Vøllestad, L.A., 2014. Effects of Cli-

mate Change on Trait-Based Dynamics of a Top Predator in Freshwater Ecosystems. The American Naturalist 183, 243–256. 

https://doi.org/10.1086/674610 

equation-based population 

3.1. Trait-based models includ-

ing fish  

Zhang, L., Thygesen, U.H., Knudsen, K., Andersen, K.H., 2013. Trait diversity promotes stability of community dynamics. 

Theor. Ecol. 6, 57–69. https://doi.org/10.1007/s12080-012-0160-6 

equation-based  ecosystem 

3.1. Trait-based models includ-

ing fish  

Zhang, L., Hartvig, M., Knudsen, K., Andersen, K.H., 2014. Size-based predictions of food web patterns. Theoretical Ecology 

7, 23–33. https://doi.org/10.1007/s12080-013-0193-5 

equation-based community 

3.1. Trait-based models includ-

ing fish  

Zhang, L., Takahashi, D., Hartvig, M., Andersen, K.H., 2017. Food-web dynamics under climate change. Proceedings of the 

Royal Society B: Biological Sciences 284, 20171772. https://doi.org/10.1098/rspb.2017.1772 

equation-based community 

3.1. Trait-based models includ-

ing fish  

Melián, C.J., Baldó, F., Matthews, B., Vilas, C., González-Ortegón, E., Drake, P., Williams, R.J., 2014. Individual Trait Varia-

tion and Diversity in Food Webs, in: Advances in Ecological Research. Elsevier, pp. 207–241. 

equation-based community 

3.2. Trait-based models focusing 

on plankton  

Acevedo-Trejos, E., Brandt, G., Bruggeman, J., Merico, A., 2015. Mechanisms shaping size structure and functional diversity 

of phytoplankton communities in the ocean. Sci. Rep. 5, 17–20. https://doi.org/10.1038/srep08918 

equation-based ecosystem 



 

 

 

 

 
  
 

Section Reference Model type Target scale 

3.2. Trait-based models focusing 

on plankton  

Acevedo-Trejos, E., Marañón, E., Merico, A., 2018. Phytoplankton size diversity and ecosystem function relationships across 

oceanic regions. Proc. R. Soc. B Biol. Sci. 285. https://doi.org/10.1098/rspb.2018.0621 

equation-based community 

3.2. Trait-based models focusing 

on plankton  

Beckett, S.J., Weitz, J.S., 2018. The Effect of Strain Level Diversity on Robust Inference of Virus-Induced Mortality of Phyto-

plankton. Front. Microbiol. 9, 1–15. https://doi.org/10.3389/fmicb.2018.01850 

equation-based population, 

community 

3.2. Trait-based models focusing 

on plankton  

Berge, T., Chakraborty, S., Hansen, P.J., Andersen, K.H., 2017. Modeling succession of key resource-harvesting traits of mixo-

trophic plankton. ISME J. 11, 212–223. https://doi.org/10.1038/ismej.2016.92 

equation-based ecosystem 

3.2. Trait-based models focusing 

on plankton  

Bestion, E., García-Carreras, B., Schaum, C.-E., Pawar, S., Yvon-Durocher, G., 2018. Metabolic traits predict the effects of 

warming on phytoplankton competition. Ecology Letters 21, 655–664. https://doi.org/10.1111/ele.12932 

equation-based species 

3.2. Trait-based models focusing 

on plankton  

Bruggeman, J., Kooijman, S.A.L.M., 2007. A biodiversity-inspired approach to aquatic ecosystem modeling. Limnol. Ocean-

ogr. 52, 1533–1544. https://doi.org/10.4319/lo.2007.52.4.1533 

equation-based ecosystem 

3.2. Trait-based models focusing 

on plankton  

Chen, B., Smith, S.L., 2018. CITRATE 1.0: Phytoplankton continuous trait-distribution model with one-dimensional physical 

transport applied to the Northwest Pacific. Geosci. Model Dev. 11, 467–495. https://doi.org/10.5194/gmd-11-467-2018 

equation-based ecosystem 

3.2. Trait-based models focusing 

on plankton  

Clark, J.R., Lenton, T.M., Williams, H.T.P., Daines, S.J., 2013. Environmental selection and resource allocation determine 

spatial patterns in picophytoplankton cell size. Limnol. Oceanogr. 58, 1008–1022. https://doi.org/10.4319/lo.2013.58.3.1008 

equation-based + 

individual-based 

ecosystem 

3.2. Trait-based models focusing 

on plankton  

Cuesta, J.A., Delius, G.W., Law, R., 2018. Sheldon spectrum and the plankton paradox: two sides of the same coin—a trait-

based plankton size-spectrum model. Journal of Mathematical Biology 76, 67–96. https://doi.org/10.1007/s00285-017-1132-7 

equation-based ecosystem 

3.2. Trait-based models focusing 

on plankton  

Follows, M.J., Dutkiewicz, S., Grant, S., Chisholm, S.W., 2007. Emergent biogeography of microbial communities in a model 

ocean. Science. 315, 1843–1846. https://doi.org/10.1126/science.1138544 

equation-based ecosystem 

3.2. Trait-based models focusing 

on plankton  

Gaedke, U., Klauschies, T., 2017. Analyzing the shape of observed trait distributions enables a data-based moment closure of 

aggregate models: Trait distributions and aggregate models. Limnology and Oceanography: Methods 15, 979–994. 

https://doi.org/10.1002/lom3.10218 

equation-based community 

3.2. Trait-based models focusing 

on plankton  

Glibert, P.M., 2016. Margalef revisited: A new phytoplankton mandala incorporating twelve dimensions, including nutritional 

physiology. Harmful Algae 55, 25–30. https://doi.org/10.1016/j.hal.2016.01.008 

conceptual community 

3.2. Trait-based models focusing 

on plankton  

Hickman, A., Dutkiewicz, S., Williams, R., Follows, M., 2010. Modelling the effects of chromatic adaptation on phytoplankton 

community structure in the oligotrophic ocean. Marine Ecology Progress Series 406, 1–17. https://doi.org/10.3354/meps08588 

equation-based ecosystem 

3.2. Trait-based models focusing 

on plankton  

Kiørboe, T., 2011. How zooplankton feed: Mechanisms, traits and trade-offs. Biol. Rev. 86, 311–339. 

https://doi.org/10.1111/j.1469-185X.2010.00148.x 

equation-based  ecosystem 
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on plankton  
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statistical ecosystem 
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on plankton  
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Peeters, F., Straile, D., 2018. Trait selection and co-existence of phytoplankton in partially mixed systems: Trait based model-
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on plankton  

Roelke, D.L., Spatharis, S., 2015. Phytoplankton succession in recurrently fluctuating environments. PLoS One 10, 1–17. 
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equation-based community 
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on plankton  

Roelke, D.L., Spatharis, S., 2015b. Phytoplankton assemblage characteristics in recurrently fluctuating environments. PLoS 

One 10, 1–25. https://doi.org/10.1371/journal.pone.0120673 

equation-based community 

3.2. Trait-based models focusing 

on plankton  

Smeti, E., Roelke, D.L., Tsirtsis, G., Spatharis, S., 2018. Species extinctions strengthen the relationship between biodiversity 

and resource use efficiency. Ecological Modelling 384, 75–86. https://doi.org/10.1016/j.ecolmodel.2018.06.006 

equation-based community 

3.2. Trait-based models focusing 

on plankton  

Smith, S., Merico, A., Hohn, S., Brandt, G., 2014. Sizing-up nutrient uptake kinetics: combining a physiological trade-off with 

size-scaling of phytoplankton traits. Marine Ecology Progress Series 511, 33–39. https://doi.org/10.3354/meps10903 

equation-based ecosystem 

3.2. Trait-based models focusing 

on plankton  

Strauss, A.T., Civitello, D.J., Cáceres, C.E., Hall, S.R., 2015. Success, failure and ambiguity of the dilution effect among com-

petitors. Ecol. Lett. 18, 916–926. https://doi.org/10.1111/ele.12468 

equation-based local 

3.2. Trait-based models focusing 

on plankton  

Terseleer, N., Bruggeman, J., Lancelot, C., Gypens, N., 2014. Trait-based representation of diatom functional diversity in a 

plankton functional type model of the eutrophied southern North Sea. Limnology and Oceanography 59, 1958–1972. 

https://doi.org/10.4319/lo.2014.59.6.1958 

statistical ecosystem 

3.2. Trait-based models focusing 

on plankton  

Zwart, J.A., Solomon, C.T., Jones, S.E., 2015. Phytoplankton traits predict ecosystem function in a global set of lakes. Ecology 

96, 2257–2264. https://doi.org/10.1890/14-2102.1 

equation-based ecosystem 

3.2. Trait-based models focusing 

on plankton  

Follett, C.L., Dutkiewicz, S., Karl, D.M., Inomura, K., Follows, M.J., 2018. Seasonal resource conditions favor a summertime 

increase in North Pacific diatom-diazotroph associations. ISME J. 12, 1543–1557. https://doi.org/10.1038/s41396-017-0012-x 

equation-based population 

4. Trait-based models on micro-

organisms and soil decomposers 

Allison, S.D., 2012. A trait-based approach for modelling microbial litter decomposition. Ecol. Lett. 15, 1058–1070. 

https://doi.org/10.1111/j.1461-0248.2012.01807.x 

equation-based community 
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organisms and soil decomposers 

Allison, S.D., Goulden, M.L., 2017. Consequences of drought tolerance traits for microbial decomposition in the DEMENT 
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equation-based community 

4. Trait-based models on micro-

organisms and soil decomposers 
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4. Trait-based models on micro-
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Table A1.2. Search terms and history of the literature search. 

 

5.12.2018   

Web of Science Core Collection  

TOPIC= ("trait-base*" AND model*)  

Results: 772 From: 1978  

   

Refined by excluding Psychology, Medicine, Engineering, Business, Management, History, Industrial relations, 

linguistics, education, nutrition, biotechnology 

Results: 619 From: 1978  

WOS Search 

History: 

TS= ("trait-base*" AND model*) NOT WC=(PSYCHOLOGY BIOLOGICAL OR SPORT 

SCIENCES OR NEUROSCIENCES OR CLINICAL NEUROLOGY OR BIOCHEMICAL 

RESEARCH METHODS OR DENTISTRY ORAL SURGERY MEDICINE OR ECONOM-

ICS OR EDUCATION EDUCATIONAL RESEARCH OR EDUCATION SPECIAL OR 

ENERGY FUELS OR PSYCHOLOGY DEVELOPMENTAL OR ENGINEERING ELEC-

TRICAL ELECTRONIC OR ENGINEERING MANUFACTURING OR GERIATRICS 

GERONTOLOGY OR HEALTH POLICY SERVICES OR PSYCHOLOGY CLINICAL OR 

CRIMINOLOGY PENOLOGY OR HISTORY OR PSYCHOLOGY SOCIAL OR HEALTH 

CARE SCIENCES SERVICES OR HOSPITALITY LEISURE SPORT TOURISM OR 

PSYCHIATRY OR METEOROLOGY ATMOSPHERIC SCIENCES OR IMAGING SCI-

ENCE PHOTOGRAPHIC TECHNOLOGY OR INDUSTRIAL RELATIONS LABOR OR 

LINGUISTICS OR PSYCHOLOGY MULTIDISCIPLINARY OR VETERINARY SCI-

ENCES OR MEDICAL INFORMATICS OR MEDICINE RESEARCH EXPERIMENTAL 

OR ANESTHESIOLOGY OR EDUCATION SCIENTIFIC DISCIPLINES OR NURSING 

OR PEDIATRICS OR PLANNING DEVELOPMENT OR PSYCHOLOGY MATHEMATI-

CAL OR MANAGEMENT OR PUBLIC ENVIRONMENTAL OCCUPATIONAL 

HEALTH OR NUTRITION DIETETICS OR BUSINESS OR PHARMACOLOGY PHAR-

MACY OR FOOD SCIENCE TECHNOLOGY OR PHYSICS FLUIDS PLASMAS OR 

PSYCHOLOGY EXPERIMENTAL OR PHYSICS MATHEMATICAL OR SUBSTANCE 

ABUSE OR WOMEN S STUDIES OR TOXICOLOGY OR POLITICAL SCIENCE OR 

PSYCHOLOGY APPLIED OR PSYCHOLOGY EDUCATIONAL) 

 Indexes=SCI-EXPANDED, SSCI Timespan=All years 

   

   

Web of Science Core Collection  

TOPIC= ("traitbase*" AND model*)  

Results: 4 From: 2010  

   

WOS Search 

History: 

TS= ("traitbase*" AND model*) 
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Table A2.1. Model parameters for sensitivity analysis. Parameters are given with their description, range for Morris screening and unit. Parameters highlighted in bold have constant values. 

Parameter Description Range Unit 

World 

min-days-year the minimal number of rainy days in the season possible for the specific site 1 - 50 day 

rain-days-year-dif the difference between the minimal and the maximal number of rainy days in the season possible for the specific site 1 - 50 day 
rain-season typical length of the vegetation season for the specific site 100 - 200 day 

dew-days-before the number of days before the first rain when dew deposition might affect plant growth 1 - 30  day 

dew-days-after the number of days after the last rain when dew deposition might affect plant growth 1 - 30 day 

Patches 

min-height the lowest height of the simulated site 1 m 

height-dif the difference in height between the lowest patch and the highest patch, controls the steepness of the site 0.1 - 5 m 
sd-height standard deviation from the mean of the absolutely smooth slope, controls the smoothness of the site 0.01 - 1 m 

av-water-min how much soil water is available for plants at the topographic object "local minimum" after a rain event, defined as probability 0.5 - 1 - 

av-water-dif-min-slope how much less water is available for plants at the topographical object “slope” after a rain event in comparison to the topographical object "local minimum" 0.01 - 0.5 - 
av-water-dif-slope-max how much less water is available for plants at the topographical object “local maximum” after a rain event in comparison to the topographical object "slope" 0.01 -0.5 - 

av-water-dif-max-dew how much less water is available for plants at all topographical object as result of dew deposition in comparison to the topographical object "local maximum" 

after a rain event 

0.01 -0.5 - 

Plants (All parameters below are defined separately for each species) 

in-ad-number initial number of adult plants 0 - 

ad-biomass-max maximum biomass a species can potentially achieve, equal to the asymptotic body size 1 - 1000 g 

ad-prob-surv probability of a plant to survive as an entire organism 0.1 - 1 - 
juv-biomass a fraction of maximum biomass which determines the threshold between juvenile and adult plants 0.1 - 1 - 

juv-surv coefficient reducing the juvenile probability to survive relative to the adult probability 0.1 - 1 - 

Procedure Growth 

ad-rgr relative growth rate, part of the biomass equations 0.1 - 1 g·g-1·day-1 

Procedure Reproduction 

ad-biomass-repr reproduction biomass, a threshold which plants should reach to start the production of seeds 1-100 g 
ad-age-repr age at which a plant can start reproducing under suitable conditions 1 - 30 day 

Procedure Competition 

ad-comp-asymmetry degree of asymmetry of competition 1 - 

Seeds 

in-s-number initial number of seeds 10000   

s-mass seed weight, which lies in a species-specific range 0.1 - 10 g 
s-sp-number number of seeds, which lies in a species-specific range for a plant throughout the entire vegetation period 1 - 100 - 

Procedure Germination 

s-pr-germ probability of seed germination, if other conditions are met 0.1 - 1 - 
s-days-dorm number of days that seeds should spend in dormancy; defines the possible start of germination 1 - 365 days 

Procedure of Dispersal 

s-disp-type dispersal type a plant belongs to 1 or 2 - 

s-disp-shape species-specific parameter β in Weibull-shaped dispersal 1 - 

s-disp-age age at which a seed is dispersed after the creation 1 - 1000 day 

s-disp-scale species-specific parameter δ in Weibull-shaped dispersal 0.01 - 10 - 



 

 

 

 
 

 
  
 

Table A2.2. Model variables. The variables are given with their description and the name of the corresponding submodels 

Variable Description Submodel 

World 

rainy-days a list of the rainy days in the current year, where the number of list items lies in a range of rainy days per year and the list item 

itself defines the serial number of rainy days in this season 

Rain 

first-rain-day the first rainy day in a season, defined as the first number in the list of simulated rainy days Rain 

last-rain-day the last rainy day in a season, defined as a last number in the list of simulated rainy days Rain 

season-correction number of days added at the beginning of the vegetation season to simulate the effect of dew on its length Rain 

days one day of simulation, equal to a tick General 

years one year consists of 365 days, super-tick General 

Patches 

height height above sea level Initialization 

topography depends on simulated heights above sea level: "slope" is a patch which has both neighbouring patches lying above and below 

it; "local maximum" is a patch surrounded by the patches lying below it; "local minimum" is a patch surrounded by the patch-

es lying above it 

Initialization 

number-below-neighbors  number of patches strictly below the patch of interest Initialization 

number-above-neighbors number of patches strictly above the patch of interest Initialization 

p-water-availability soil water availability, the probability that plants obtain soil water for growth and seeds for germination Water-availability 

p-biomass_acc accumulated biomass of competitng plants Competition 

Plants 

ad-number number of adult plants Count-plants; Output 

bio-mean mean biomass of all adult plants of each species Plotting; Output 

ad-biomass current biomass; for seeds, equals seed weight Competition; Growth; Reproduction 

age  time since germination for plants and since creation for seeds Ageing; Germination; Reproduction 

ad-radius radius of ZOI Competition 

ad-zoi-patches number of patches inside the radius of ZOI Competition 

ad-zoi-overlap effective area of ZOI Competition 

ad-zoi-resource-share share of resources in the radius of ZOI Competition 

ad-ratio-resource-area available resources per occupied patch Competition 

Seeds 

s-disp-distance seed dispersal distance according to Weibull distribution Dispersal 

s-number-actual number of seeds to be produced depending on current biomass Reproduction 
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Figure A2.1. Flow-chart of the ATID-model. The flow-chart of the ATID-model demonstrates the order of the model processes. 

The long rectangular grey boxes represent the main blocks of the model. The rounded-rectangular blue boxes with the round-dot 

frame are elements of the Environment part; the rounded-rectangular green boxes with the simple frame are the elements of the 

Vegetation part. The rhombi represent conditions that lead to a bifurcation between two processes depending on whether the con-

dition is fulfilled (Y) or not (N). The squared dark boxes are the switches that represent alternative scenarios such as dew presence 

or absence and different algorithms of ZOI-calculation. The processes at the level of adult plants are with the prefixes “Ad:”; the 

processes at the level of seeds are with the prefixes “S:”. The model runs on a daily base within the vegetation season. The pro-

cesses that occur only during the vegetation season are inside the upward-diagonal-pattern box with the dashed frame. 



 

 

 
 

 
  
 

Figure A2.2. Results of the sensitivity analysis for six output metrics (three for each of two generic species) and for eight scenario combining ZOI-calculation, presence or absence of dew in the model and seed 

dispersal strategies. The graphs show the relationship between the absolute mean of the Morris elementary effects μ*and the corresponding standard deviation of the Morris elementary effects σ. Larger μ* means 

that the corresponding parameter has a larger effect on the output. Larger σ means either that the corresponding parameter has a non-linear effect on the output or that this parameter is involved in interactions 

with other parameters. For clarity of representation, only the parameters that are among either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma 

correspond to ‘Anastatica’ and ‘Malva’ (Appendix. Tab. A2.1).  
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Figure A2.2. Results of the sensitivity analysis for six output metrics (three for each of two generic species) and for eight scenario combining ZOI-calculation, presence or absence of dew in the model and seed 

dispersal strategies. The graphs show the relationship between the absolute mean of the Morris elementary effects μ*and the corresponding standard deviation of the Morris elementary effects σ. Larger μ* means 

that the corresponding parameter has a larger effect on the output. Larger σ means either that the corresponding parameter has a non-linear effect on the output or that this parameter is involved in interactions 

with other parameters. For clarity of representation, only the parameters that are among either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma 

correspond to ‘Anastatica’ and ‘Malva’ (Appendix. Tab. A 2.1). 
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Figure A2.2. Results of the sensitivity analysis for six output metrics (three for each of two generic species) and for eight scenario combining ZOI-calculation, presence or absence of dew in the model and seed 

dispersal strategies. The graphs show the relationship between the absolute mean of the Morris elementary effects μ*and the corresponding standard deviation of the Morris elementary effects σ. Larger μ* means 

that the corresponding parameter has a larger effect on the output. Larger σ means either that the corresponding parameter has a non-linear effect on the output or that this parameter is involved in interactions 

with other parameters. For clarity of representation, only the parameters that are among either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma 

correspond to ‘Anastatica’ and ‘Malva’ (Appendix. Tab. A2.1).
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Figure A2.2. Results of the sensitivity analysis for six output metrics (three for each of two generic species) and for eight scenario combining ZOI-calculation, presence or absence of dew in the model and seed 

dispersal strategies. The graphs show the relationship between the absolute mean of the Morris elementary effects μ*and the corresponding standard deviation of the Morris elementary effects σ. Larger μ* means 

that the corresponding parameter has a larger effect on the output. Larger σ means either that the corresponding parameter has a non-linear effect on the output or that this parameter is involved in interactions 

with other parameters. For clarity of representation, only the parameters that are among either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma 

correspond to ‘Anastatica’ and ‘Malva’ (Appendix. Tab. A2.1). S
cen

ario
: Z

O
I-calcu

latio
n
 after L

in
 et al., 2

0
1

2
; d

ew
 ab

sen
t in

 th
e m

o
d

el; ‘A
n

astatica’ w
ith

 seed
 d

isp
ersal 

strateg
y
 ‘p

ro
tectio

n
’; ‘M

alv
a’ w

ith
 seed

 d
isp

ersal strateg
y
 ‘escap

e’. T
h

e u
p
p

er ro
w

 are re
su

lts fo
r th

e o
u

t-

p
u

t m
etrics o

f ‘A
n

astatica’, th
e lo

w
er ro

w
 are resu

lts fo
r th

e o
u

tp
u

t m
etrics o

f ‘M
alv

a’. T
h

e co
lu

m
n

s are 

th
ree o

u
tp

u
t m

etrics: n
u

m
b

er o
f ad

u
lt p

lan
ts, n

u
m

b
er o

f seed
s, m

ean
 b

io
m

ass. 



 

 

 
 

 
  
 

Figure A2.2. Results of the sensitivity analysis for six output metrics (three for each of two generic species) and for eight scenario combining ZOI-calculation, presence or absence of dew in the model and seed 

dispersal strategies. The graphs show the relationship between the absolute mean of the Morris elementary effects μ*and the corresponding standard deviation of the Morris elementary effects σ. Larger μ* means 

that the corresponding parameter has a larger effect on the output. Larger σ means either that the corresponding parameter has a non-linear effect on the output or that this parameter is involved in interactions 

with other parameters. For clarity of representation, only the parameters that are among either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma 

correspond to ‘Anastatica’ and ‘Malva’ (Appendix. Tab. A2.1).
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with other parameters. For clarity of representation, only the parameters that are among either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma 

correspond to ‘Anastatica’ and ‘Malva’ (Appendix. Tab. A2.1).
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dispersal strategies. The graphs show the relationship between the absolute mean of the Morris elementary effects μ*and the corresponding standard deviation of the Morris elementary effects σ. Larger μ* means 

that the corresponding parameter has a larger effect on the output. Larger σ means either that the corresponding parameter has a non-linear effect on the output or that this parameter is involved in interactions 

with other parameters. For clarity of representation, only the parameters that are among either the largest ten values of μ* or among the largest ten values of σ are shown. The parameter suffixes –an and –ma 

correspond to ‘Anastatica’ and ‘Malva’ (Appendix. Tab. A2.1).
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Appendix. Chapter 3. 

Table A3.1. Model parameters for simulation of Meishar community. Parameters are given with their description, value, unit and the 

source of their value.  

Parameter Description Value Unit Source 

World 

min-days-year the minimum number of rainy days in 

the season possible for the specific site 

12   meteorological station 

max-days-year the maximum number of rainy days in 

the season possible for the specific site 

42  meteorological station 

rain-season typical length of the vegetation season 

for the specific site 

120  meteorological station 

dew-days-

before 

the number of days before the first rain 

when dew deposition might affect plant 

growth 

5  educated guess 

dew-days-after the number of days after the last rain 

when dew deposition might affect plant 

growth 

5   educated guess 

Patches 

min-height the lowest height of the simulated site 1 m digital elevation model 

max-height the highest height of the simulated site 6 m digital elevation model 

sd-height standard deviation from the mean of the 

absolutely smooth slope, controls the 

smoothness of the site 

0.05 m digital elevation model 

av-water-min how much soil water is available for 

plants at the topographic object "local 

minimum" after a rain event, defined as 

probability 

0.95  educated guess 

av-water-slope how much soil water is available for 

plants at the topographical object “slope” 

after a rain event 

0.9  educated guess 

av-water-max how much soil water is available for 

plants at the topographical object “local 

maximum” after a rain event 

0.85  educated guess 

av-water-dew how much soil water is available for 

plants at all topographical object as re-

sult of dew deposition 

0.65   educated guess 

ANASTATICA 

Plants 

in-ad-number initial number of adult plants 0 - educated guess 

ad-biomass-

max 

maximum biomass a species can poten-

tially achieve, equal to the asymptotic 

body size 

493 g calibration 

ad-prob-surv probability of a plant to survive as an 

entire organism 

0.53 - Hegazy, A. K., Kabiel, H. F., Alatar, A. A., & 

Lovett-Doust, J. (2013). Plasticity in dynamics 

and hygrochastic persistence in Anastatica hiero-

chuntica L. (Brassicaceae) populations under 

simulated rainfall treatments. Pol. J. Ecol, 61(3), 

493-504. 

juv-biomass a fraction of maximum biomass which 

determines the threshold between juve-

nile and adult plants 

0.04 - calibration 

juv-surv coefficient reducing the juvenile proba-

bility to survive relative to the adult 

probability 

0.95 - calibration 

Procedure Growth 

ad-rgr relative growth rate, part of the biomass 

equations 

2.1 g·g-

1·day-1 

calibration 

Procedure Reproduction 

ad-biomass-

repr 

reproduction biomass, a threshold which 

plants should reach to start the produc-

tion of seeds 

3 g educated guess 

ad-age-repr age at which a plant can start reproduc-

ing under suitable conditions 

18 day Hegazy, A. K., Kabiel, H. F., Alatar, A. A., & 

Lovett-Doust, J. (2013). Plasticity in dynamics 

and hygrochastic persistence in Anastatica hiero-

chuntica L. (Brassicaceae) populations under 
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Parameter Description Value Unit Source 

simulated rainfall treatments. Pol. J. Ecol, 61(3), 

493-504. 

Procedure Competition 

ad-comp-

asymmetry 

degree of asymmetry of competition 1 - below-ground competition 

Seeds 

in-s-number initial number of seeds 9000   calibration 

s-mass seed weight, which lies in a species-

specific range 

1 g El-Keblawy, A., & Gairola, S. (2017). Dormancy 

regulating chemicals alleviate innate seed dor-

mancy and promote germination of desert annu-

als. Journal of Plant Growth Regulation, 36(2), 

300-311. 

s-sp-number number of seeds, which lies in a species-

specific range for a plant throughout the 

entire vegetation period 

1000 - Hegazy, A. K., Kabiel, H. F., Alatar, A. A., & 

Lovett-Doust, J. (2013). Plasticity in dynamics 

and hygrochastic persistence in Anastatica hiero-

chuntica L. (Brassicaceae) populations under 

simulated rainfall treatments. Pol. J. Ecol, 61(3), 

493-504. 

Procedure Germination 

s-pr-germ probability of seed germination, if other 

conditions are met 

0.8 - Bhatt, A., Phondani, P. C., Phartyal, S. S., Santo, 

A., & Gallacher, D. (2017). Influence of aerial 

seed banks on germination response in three de-

sert plant species. Journal of Plant Ecology, 

10(6), 994-1000. 

s-days-dorm number of days that seeds should spend 

in dormancy; defines the possible start of 

germination 

0 days Viemont, J. D., & Crabbé, J. (Eds.). (2000). Dor-

mancy in plants: from whole plant behaviour to 

cellular control.  

Procedure of Dispersal 

s-disp-type dispersal type a plant belongs to 2 - Type 2 describes a mechanism when seeds are 

dispersed in portions only during a rain event 

s-disp-shape species-specific parameter β in Weibull-

shaped dispersal 

2.5 - Kelly, N., Cousens, R. D., Taghizadeh, M. S., 

Hanan, J. S., & Mouillot, D. (2013). Plants as 

populations of release sites for seed dispersal: a 

structural‐statistical analysis of the effects of 

competition on Raphanus raphanistrum. Journal 

of ecology, 101(4), 878-888. 

s-disp-scale species-specific parameter δ in Weibull-

shaped dispersal 

0.4 - Kelly, N., Cousens, R. D., Taghizadeh, M. S., 

Hanan, J. S., & Mouillot, D. (2013). Plants as 

populations of release sites for seed dispersal: a 

structural‐statistical analysis of the effects of 

competition on Raphanus raphanistrum. Journal 

of ecology, 101(4), 878-888. 

s-disp-age age at which a seed is dispersed after the 

creation 

5 day Hegazy, A. K., Kabiel, H. F., Alatar, A. A., & 

Lovett-Doust, J. (2013). Plasticity in dynamics 

and hygrochastic persistence in Anastatica hiero-

chuntica L. (Brassicaceae) populations under 

simulated rainfall treatments. Pol. J. Ecol, 61(3), 

493-504. 

MALVA 

Plants 

in-ad-number initial number of adult plants 0 - educated guess 

ad-biomass-

max 

maximum biomass a species can poten-

tially achieve, equal to the asymptotic 

body size 

474 g calibration 

ad-prob-surv probability of a plant to survive as an 

entire organism despite the death be-

cause of biomass loss, e.g. mechanic 

damages 

0.95 - Golan, S., Faraj, T., Rahamim, E., Zemach, H., 

Lifshitz, D., Singer, A., ... & Gati, E. M. (2016). 

The effect of petroleum hydrocarbons on seed 

germination, development and survival of wild 

and cultivated plants in extreme desert soil. Int. J. 

Agric. Environ. Res., 2, 1743-1767. 

juv-biomass a fraction of maximum biomass which 

determines the threshold between juve-

nile and adult plants 

0.03 - calibration 
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Parameter Description Value Unit Source 

juv-surv coefficient reducing the juvenile proba-

bility to survive relative to the adult 

probability 

0.95 - calibration 

Procedure Growth 

ad-rgr relative growth rate, part of the biomass 

equations 

3.5 g·g-

1·day-1 

calibration 

Procedure Reproduction 

ad-biomass-

repr 

reproduction biomass, a threshold which 

plants should reach to start the produc-

tion of seeds 

3 g educated guess 

ad-age-repr age at which a plant can start reproduc-

ing under suitable conditions 

21 day UWA369 - Agro-ecology of small-flowered mal-

low (Malva parviflora) in Western Australian 

farming systems 

Procedure Competition 

ad-comp-

asymmetry 

degree of asymmetry of competition 1 - below-ground competition 

Seeds 

in-s-number initial number of seeds 9000   calibration 

s-mass seed weight, which lies in a species-

specific range 

0.2 g Proctor, V. W. (1968). Long-distance dispersal of 

seeds by retention in digestive tract of birds. Sci-

ence, 160(3825), 321-322 

s-sp-number number of seeds, which lies in a species-

specific range for a plant throughout the 

entire vegetation period 

3000 - Michael, P. J., Steadman, K. J., Plummer, J. A., & 

Vercoe, P. (2006). Sheep rumen digestion and 

transmission of weedy Malva parviflora seeds. 

Australian Journal of Experimental Agriculture, 

46(10), 1251-1256. 

Procedure Germination 

s-pr-germ probability of seed germination, if other 

conditions are met 

0.45 - Chauhan, B. S., Gill, G., & Preston, C. (2006). 

Factors affecting seed germination of little mal-

low (Malva parviflora) in southern Australia. 

Weed Science, 54(6), 1045-1050. 

s-days-dorm number of days that seeds should spend 

in dormancy; defines the possible start of 

germination 

30 days Michael, P. J., Steadman, K. J., & Plummer, J. A. 

(2007). Seed development in Malva parviflora: 

onset of germinability, dormancy and desiccation 

tolerance. Australian Journal of Experimental 

Agriculture, 47(6), 683-688. 

Procedure of Dispersal 

s-disp-type dispersal type a plant belongs to 1 - Type 1 describes a mechanism when seeds are 

dispersed unrelated to rain events 

s-disp-shape species-specific parameter β in Weibull-

shaped dispersal 

2.5 - Kelly, N., Cousens, R. D., Taghizadeh, M. S., 

Hanan, J. S., & Mouillot, D. (2013). Plants as 

populations of release sites for seed dispersal: a 

structural‐statistical analysis of the effects of 

competition on Raphanus raphanistrum. Journal 

of ecology, 101(4), 878-888. 

s-disp-scale species-specific parameter δ in Weibull-

shaped dispersal 

0.4 - Kelly, N., Cousens, R. D., Taghizadeh, M. S., 

Hanan, J. S., & Mouillot, D. (2013). Plants as 

populations of release sites for seed dispersal: a 

structural‐statistical analysis of the effects of 

competition on Raphanus raphanistrum. Journal 

of ecology, 101(4), 878-888. 

s-disp-age age at which a seed is dispersed after the 

creation 

21 day UWA369 - Agro-ecology of small-flowered mal-

low (Malva parviflora) in Western Australian 

farming systems, 2005, 

https://grdc.com.au/research/reports/report?id=66

3 

1. Topographic information is derived from the digital elevation model. The data was collected by Nir Krintza (Ben-Gurion Univer-

sity, Israel) with a DJI drone (https://www.dji.com/phantom-3-adv) and a mapping program pix4d mapper 

(https://www.pix4d.com/product/pix4dmapper-photogrammetry-software) 

2. Educated guess is based on either field observations, common sense or common knowledge from the literature that cannot be 

quantified precisely and thus directly cited. Calibration stays for values obtained in the calibration procedure with the R package 

'nlrx', the output numbers of plants are interpolated from field measurements. 
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Figure A3.1. Results of simulation runs for the species with the protective-competition strategy (black) and with the escape-

colonization strategy (grey) over simulated time for the neutral scenario corresponding to the ‘Meishar’ site. 

1) Number of plant individuals in ten simulation runs shown together (a) and separately (b) 

 

2) Number of seeds in ten simulation runs shown together (a) and separately (b) 

 



 

 

Appendix. Chapter 3. 

 
 

199 
  
 

Figure A3.1. Results of simulation runs for the species with the protective-competition strategy (black) and with the escape-

colonization strategy (grey) over simulated time for the neutral scenario corresponding to the ‘Meishar’ site. 

3) Mean biomass (g) of plant individuals in ten simulation runs shown together (a) and separately (b) 

 

 

4) Proportion of the number of plants (a), number of seeds (b) and mean biomass of plants (c) 
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Figure A3.2. Results of simulation runs for the species with the protective-competition strategy (black) and with the escape-

colonization strategy (grey) over simulated time in four scenarios (A: low temporal and spatial heterogeneity, B: low temporal hetero-

geneity and high spatial heterogeneity, C: high temporal heterogeneity and low spatial heterogeneity, D: high temporal and spatial 

heterogeneity). 

1) Number of plant individuals in ten simulation runs 
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Figure A3.2. Results of simulation runs for the species with the protective-competition strategy (black) and with the escape-

colonization strategy (grey) over simulated time in four scenarios (A: low temporal and spatial heterogeneity, B: low temporal hetero-

geneity and high spatial heterogeneity, C: high temporal heterogeneity and low spatial heterogeneity, D: high temporal and spatial 

heterogeneity). 

2) Number of seeds in ten simulation runs 
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Figure A3.2. Results of simulation runs for the species with the protective-competition strategy (black) and with the escape-

colonization strategy (grey) over simulated time in four scenarios (A: low temporal and spatial heterogeneity, B: low temporal hetero-

geneity and high spatial heterogeneity, C: high temporal heterogeneity and low spatial heterogeneity, D: high temporal and spatial 

heterogeneity). 

3) Mean biomass (g) of plant individuals in ten simulation runs 
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Figure A3.2. Results of simulation runs for the species with the protective-competition strategy (black) and with the escape-

colonization strategy (grey) over simulated time in four scenarios (A: low temporal and spatial heterogeneity, B: low temporal hetero-

geneity and high spatial heterogeneity, C: high temporal heterogeneity and low spatial heterogeneity, D: high temporal and spatial 

heterogeneity). 

4) Proportion of the number of plants 
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Figure A3.2. Results of simulation runs for the species with the protective-competition strategy (black) and with the escape-

colonization strategy (grey) over simulated time in four scenarios (A: low temporal and spatial heterogeneity, B: low temporal hetero-

geneity and high spatial heterogeneity, C: high temporal heterogeneity and low spatial heterogeneity, D: high temporal and spatial 

heterogeneity). 

5) Proportion of the number of seeds 
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Table A4.1. Output of the summary()-function in R applied to the GLMs as described in the main text for six plant functional traits as 

response variables: dry weight, number of leaves, seed germination probability, osmolyte concentration, stomatal conductance, and 

photosynthetic rate. EC: soil electrical conductivity of the site of origin; AI: De Martonne aridity index, SR: species richness, HS: 

treatment with adding salt solution. EC x AI, EC x HS, AI x HS, SR x HS, and EC x AI x HS are interactions between the correspond-

ing variables. 

Dry weight 

 

Osmolyte concentration 

  Estimate 

Std. 

Error t value Pr(>|t|) 

 

  Estimate Std. Error t value Pr(>|t|) 

Intercept 0.4038 1.5796 0.2556 0.7989 

 

Intercept 0.0013 0.0006 2.1555 0.0369 

EC 0.0007 0.0005 1.3237 0.1897 

 

EC -6.6 E-08 2.0 E-07 -0.3301 0.7430 

AI 4.5892 2.2907 2.0034 0.0488 

 

AI 0.0008 0.0009 0.9387 0.3533 

SR -0.0092 0.0087 -1.0604 0.2924 

 

SR 6.4 E-07 3.6E-06 0.1806 0.8576 

HS -1.5176 2.1477 -0.7066 0.4820 

 

HS -0.0010 0.0006 -1.5347 0.1324 

EC x AI -0.0009 0.0005 -1.8430 0.0693 

 

EC x AI -1.17 E-08 1.9 E-07 -0.0602 0.9523 

EC x HS 0.00001 0.0007 0.0134 0.9893 

 

EC x HS 9.8 E-08 2.09 E-07 0.4708 0.6402 

AI x HS 0.2910 3.1078 0.0936 0.9256 

 

AI x HS -0.0006 0.0009 -0.6095 0.5455 

SR x HS 0.0145 0.0116 1.2496 0.2154 

 

SR x HS -1.7 E-06 3.7 E-06 -0.4633 0.6456 

EC x AI x 

HS 0.0000 0.0006 -0.0431 0.9657 

 

EC x AI x 

HS -2.9 E-08 2.04 E-07 -0.1431 0.8869 

Number of leaves 

 

Stomatal conductance gs 

  Estimate 

Std. 

Error z value Pr(>|z|) 

 

  Estimate Std. Error t value Pr(>|t|) 

Intercept 4.1526 0.1750 23.7325 1.67 E-124 

 

Intercept -19.3232 8.1241 -2.3785 0.0212 

EC 0.00002 0.0001 0.3222 0.7473 

 

EC 0.0049 0.0032 1.5162 0.1358 

AI 1.4387 0.2504 5.7460 0.0000 

 

AI 40.4050 12.2174 3.3072 0.0018 

SR -0.0020 0.0009 -2.0879 0.0368 

 

SR -0.0316 0.0572 -0.5516 0.5837 

HS -1.1353 0.2977 -3.8141 0.0001 

 

HS 7.9093 12.5921 0.6281 0.5328 

EC x AI -0.0001 0.0001 -2.4696 0.0135 

 

EC x AI -0.0070 0.0029 -2.3789 0.0212 

EC x HS 0.0002 0.0001 1.9458 0.0517 

 

EC x HS 0.0002 0.0047 0.0418 0.9669 

AI x HS 0.2277 0.4272 0.5330 0.5940 

 

AI x HS -13.3839 18.3103 -0.7309 0.4682 

SR x HS 0.0030 0.0015 1.9395 0.0524 

 

SR x HS 0.0395 0.0853 0.4632 0.6452 

EC x AI x 

HS -0.0001 0.0001 -1.6343 0.1022 

 

EC x AI x 

HS 0.0011 0.0044 0.2567 0.7985 

Seed germination probability 

 

Photosynthetic rate AN 

  Estimate 

Std. 

Error z value Pr(>|z|) 

 

  Estimate Std. Error t value Pr(>|t|) 

Intercept 5.9828 1.6054 3.7267 0.0002 

 

Intercept -0.2177 0.0983 -2.2144 0.0314 

EC -0.0012 0.0005 -2.6173 0.0089 

 

EC 0.00002 0.00004 0.5209 0.6047 

AI -6.6031 2.3144 -2.8530 0.0043 

 

AI 0.4974 0.1565 3.1779 0.0025 

SR -0.0022 0.0080 -0.2778 0.7812 

 

SR -0.0005 0.0007 -0.7390 0.4633 

HS -1.9451 2.4123 -0.8064 0.4200 

 

HS 0.1340 0.1503 0.8912 0.3771 

EC x AI 0.0014 0.0005 3.0919 0.0020 

 

EC x AI -0.0001 0.00003 -1.6080 0.1141 

EC x HS 0.0013 0.0007 1.8282 0.0675 

 

EC x HS 0.00003 0.0001 0.4975 0.6210 

AI x HS 3.0932 3.4505 0.8965 0.3700 

 

AI x HS -0.2167 0.2297 -0.9432 0.3501 

SR x HS -0.0042 0.0124 -0.3380 0.7354 

 

SR x HS -0.0002 0.0010 -0.2150 0.8306 

EC x AI x 

HS -0.0012 0.0007 -1.6671 0.0955 

 

EC x AI x 

HS -0.000007 0.0001 -0.1221 0.9033 



 

 
 

 
  
 

Table A4.2. The similarity between the trait spaces of the populations of Anastatica hierochuntica from different sites of origin compared pairwise. The left column features populations in the control treatment, 

and the right panel features populations exposed to the high salinity treatment. The similarity was calculated as a Sorensen similarity index between the corresponding n-hypervolumes, where zero corresponds to 

no overlap, i.e. the trait spaces are dissimilar, and one corresponds to the complete identity of the trait spaces. The green gradient, applied for visualization purposes, increases its intensity from zero to one, thus, 

the darkest cells highlight a pair of populations with the highest similarity of their trait spaces. The results show that the similarity between populations from different sites of origin decreased with the increase of 

the number of traits included into the calculation of n-hypervolumes (but see deviations from this tendency in the bold frames). The similarity between the populations under the control treatment is in general 

higher than the similarity between the populations under the high salinity treatment. While under the control treatment the pairs of the most similar populations stayed the same for all three dimensionalities 

(number of traits included into the calculation of the n-hypervolumes), under the high salinity treatment these pairs slightly changed after the stress-related trait, osmolyte concentration, was included in the n-

hypervolume calculations (right column, 5 traits). 

Control 

 
High salinity 

3 traits Meishar Uvda Timna Shaharut Shefech Zohar   3 traits Meishar Uvda Timna Shaharut Shefech Zohar 

Meishar --- 0.4230088 0.4958752 0.51466793 0.5049467 

 

Meishar --- 0.3545028 0.280438 0.3973088 0.3991937 

Uvda 0.4230088 --- 0.5327947 0.6251874 0.4645672 

 

Uvda 0.3545028 --- 0.2552211 0.3088084 0.4097245 

Timna 0.4958752 0.5327947 --- 0.499107 0.6369013 

 

Timna 0.280438 0.2552211 --- 0.53964 0.32688318 

Shaharut 0.51466793 0.6251874 0.499107 --- 0.5017108 

 

Shaharut 0.3973088 0.3088084 0.53964 --- 0.3654795 

Shefech Zohar 0.5049467 0.4645672 0.6369013 0.5017108 ---   Shefech Zohar 0.3991937 0.4097245 0.32688318 0.3654795 --- 

             
4 traits 

     

  4 traits 

     
Meishar --- 0.3505871 0.2973164 0.4727335 0.3304611 

 

Meishar --- 0.2274975 0.16441015 0.2212537 0.3631246 

Uvda 0.3505871 --- 0.2105008 0.5013843 0.2049913 

 

Uvda 0.2274975 --- 0.14218779 0.09197658 0.3963042 

Timna 0.2973164 0.2105008 --- 0.3305808 0.6291125 

 

Timna 0.16441015 0.14218779 --- 0.2532454 0.14505188 

Shaharut 0.4727335 0.5013843 0.3305808 --- 0.352409 

 

Shaharut 0.2212537 0.09197658 0.2532454 --- 0.0898632 

Shefech Zohar 0.3304611 0.2049913 0.6291125 0.352409 ---   Shefech Zohar 0.3631246 0.3963042 0.14505188 0.0898632 --- 

             
5 traits             5 traits           

Meishar --- 0.3828005 0.12177464 0.4321779 0.11445989 

 

Meishar --- 0.1585687 0.02568206 0.03979347 0.1069296 

Uvda 0.3828005 --- 0.13760159 0.3710848 0.07071976 

 

Uvda 0.1585687 --- 0.014436746 0.010240631 0.02459421 

Timna 0.12177464 0.13760159 --- 0.1987431 0.5048132 

 

Timna 0.02568206 0.014436746 --- 0.09527571 0.14708405 

Shaharut 0.4321779 0.3710848 0.1987431 --- 0.12819992 

 

Shaharut 0.03979347 0.010240631 0.09527571 --- 0.17476982 

Shefech Zohar 0.11445989 0.07071976 0.5048132 0.12819992 ---   Shefech Zohar 0.1069296 0.02459421 0.14708405 0.17476982 --- 
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