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Chapter 1

Introduction

The major cause of death worldwide is cardiovascular disease (CVD) with 17.0 million
fatalities every year [1]. This equals a staggering proportion of 31% of the annual
global deaths. Important risk factors are smoking, obesity, diabetes, and age1, which
a�ect developed countries such as the USA in particular [5]. The largest portion (85%)
of CVD patients su�er from heart attacks and strokes, mandating research for reliable
early diagnosis and treatment in this �eld. In this introductory chapter, I outline the
cardiac structure and its function (Sec. 1.1) related to the mechanical implication of
MI (Sec. 1.2). Possible cures, including the principle idea of engineered heart muscle
(EHM), are presented in Sec. 1.3. This is followed by the formulation of the goals of
my work and how it will contribute to a better understanding of MI treatment (Sec.
1.4).

1.1 Structure and Function of the Heart

The human heart, as depicted in Fig 1.1, comprises four chambers, right atrium
and ventricle which are connected to the respiratory system, and the left atrium
and ventricle supplying the rest of the body with oxygenated blood. To achieve
this, a delicate interplay between the electrophysiology, hemodynamics, and structural
mechanics of the valves and chambers is orchestrated on every beat of the heart. In
this subsection I will explain how blood is pumped during a cardiac beating cycle, what
role the myocardial architecture plays therein and how MI arises and disrupts cardiac
performance. The focus is exclusively on the left ventricle (LV) as it is the strongest
and largest cardiac chamber and responsible for the blood circulation through the
body [6].

1.1.1 Myocardial Architecture

The heart wall consists of three di�erent layers, namely the inner layer (endocardium),
the middle layer (myocardium), and the outer layer (epicardium). Both, the en-
docardium and the epicardium are protective layers, which shield the myocardium
against the ventricular blood, and the pericardium [6]. The main constituent of the
heart, though, is the myocardium which is responsible for cardiac contraction and
thus its pump function. The myocardium, as depicted in Fig. 1.2d, is organized in
layers that are three to four cells thick and connected by a collagen network. This
anisotropic myocardial architecture is responsible for the equally orthotropic mechan-
ical response as detailed in Sec. 2.2.1.

Cardiac contraction proceeds almost instantaneously in a wringing manner which

1In the USA, on average, men experience their �rst myocardial infarction (MI) at the age of 65.6
and women at the age of 72 [5].
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Figure 1.1: Schematic of the heart showing the atria and ventricles
together with the �ow of blood directed by the valves. As MI poses
predominantly a threat to the left ventricle, the scope of this work
lies in the highlighted focal region . Please note that neither the peri-
cardium nor the papillary muscles attached to the mitral valve will be
treated throughout this work. Image taken and adapted from Ref. [2]

with permission.

not only compresses the interventricular cavity but also lifts the apex [7]. The rea-
son for this is the helical arrangement the cardiomyocytes follow. As depicted in
Fig. 1.2c muscle �bers coil clockwise at the subendocardium and counterclockwise
at the subepicardium. Although, during contraction, this arrangement leads to a
tug of war between outer and inner cardiomyocytes, the torque they exert depends
on their distance from the ventricular centerline, favoring the cardiomyocytes at the
subepicardium2, leading to a clockwise contraction. A common hypothesis is that the
twisting motion promotes sliding and shearing and thus rearrangement of the �bers,
which leads to a magni�ed wall thickening, which in turn increases the pumped volume
[8, 9].

1.1.2 Cardiac Cycle

The beating cycle of the LV is divided into a phase of passive �lling (diastole) and a
contraction phase (systole), during which blood gets ejected out of the heart. Starting
with the closure of the aortic valve, as depicted in Fig. 1.3, the diastole begins and
ends with the onset of contraction, which is accompanied by the opening of the mitral
valve.

The stroke volume (SV) is an important measure of cardiac pump function. It is
de�ned as the di�erence between end-diastolic volume (EDV) and end-systolic volume

2Additional residul strains amplify this e�ect (see Sec. 4.1).
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Figure 1.2: (a) Schematic of the myocardial architecture in the left
ventricle. (b) Arrangement of myocardial sheets. (c) Transmural vari-
ation of �ber alignment. (d) Sheet structure. (e) schematic of (d)
highlighting the local base system. Image taken from Ref. [6] with

permission.

(ESV). Normalizing the SV by the EDV yields the so-called ejection fraction (EF)

EF =
EDV-ESV

EDV
. (1.1)

People with an EF of 50-70% are typically considered healthy [10�12], while values
between 41-49% are borderline and an EF<40% may be evidence of heart failure or
cardiomyopathy [3]. However, since several di�erent physiological aspects factor into
the EF, heart failure with preserved ejection fraction is a common condition (>50%)
[13].

If a beating cycle features elevated end-diastolic pressure (EDP) while end-systolic
pressure (ESP) remains constant, the additional volume gets pumped according to the
Frank-Starling mechanism infamously referred to as �The heart pumps what it gets�
[14, 15]. This mechanism presents itself as well on a subcellular level within the sar-
comeres, which are the main building block of cardiac muscle cells (cardiomyocytes).
Sarcomeres generate contractile forces through sliding exerted by myosin (motor pro-
tein) on actin �laments. Hence, the overlap of myosin with actin is crucial for the
total force which is highlighted in Fig. 1.4. For large sarcomere extensions, this
overlap is rather small and thus the motor protein cannot fully attach to the actin
�lament, wherefore contractile force increases as the muscle contracts. Once myosin
binding is fully saturated, the length-tension curve plateaus until actin �laments get
in contact with each other and myosin pushes against the so called z-disk. A typically
linear decline in contractile force, determining the end-systolic pressure-volume rela-
tion (ESPVR), is the result [129, 16, 17].

Changing the ESP gives rise to a family of loops, as shown in Fig. 1.3. This is
the so called ESPVR which is a robust measure of contractile performance (inotropy),
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Figure 1.3: Illustration of the pressure-volume relation of the LV
throughout an entire beating cycle. Closing of the aortic valve marks
the onset of diastole, whereas systole begins with the closing of the
mitral valve. Gray lines indicate the family of curves constituting the
ESPVR which often times follows a linear relation (see Eq. 1.2) with
the Ees being the slope. If the systolic pressure is kept constant while
diastolic pressure rises, the excess blood, indicated by ∆V , is pumped
according to the Frank-Starling mechanism. Colored areas highlight

the energy consumption of the heart.

since it is relatively insensitive to ventricular pressure or beat rate, while greatly re-
sponsive to inotropic agents. Most often, the ESPVR follows, just as the tension of
the sarcomeres, a linear relationship [18, 19]

ESP = Ees · (ESV− V0) (1.2)

with end-systolic elastance (Ees) beeing the slope and abscissa V0. The Ees spans a
range of values 1-9mmHg/mL as recorded in healthy humans by Refs. [10, 12, 20,
21].

1.2 Myocardial Infarction

Caused by plaques or thrombosis, ventricular arteries can become occluded, causing
blood �ow restriction. When a region of the heart becomes ischemic due to an in-
su�cient supply of blood and hence oxygen, shortly afterwards the local tissue stops
contracting during systole. Consequently, the tissue bulges under the immense pres-
sure which is accompanied by a drop in pump function. If no immediate action is
taken and this state lasts for too long, cardiomyocytes start to die over the next sev-
eral days. This phase is followed by the onset of �brosis which lasts for weeks to
months, and �nally the tissue remodels [24�26]. With �brosis and maturation of the
cardiac muscle tissue, it becomes sti�er initially, as shown in Fig. 1.6. This is due
to collagen enrichment replacing the much softer cardiomyocytes and their alignment
with the principle strain [27]. Constant stretching causes the material to thin out as
demonstrated in Fig. 1.5, inducing a decrease of e�ective sti�ness [23, 28], which, in
turn, promotes bulging during systole. In addition, this e�ect increases the risk of
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Figure 1.4: Sarcomere length-tension relation in cardiac muscles.
The capacity to develop tension heavily depends on the overlap of
actin �laments with the motor protein myosin and resistive counter
forces once opposite binding regions get into contact [22]. The linear
curve highlighted in dark red is most essential for the ESPVR, shown
in Fig. 1.3. Parameter λ0 is the smallest extension the sarcomere can

achieve through contraction.

Figure 1.5: Infarct A 1 day and B 28 days after onset of MI in a rat
heart. Infarct area is indicated using a dotted line. Wall thinning at
the infarct site can lead to apparent softening of the ventricle (cf. Fig.
1.6) which promotes scar rupture. Image taken from Ref. [23] with

permission.
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scar rupture [29].
Implications for the previously introduced contractility indices are a decrease in

V0, which translates into a decrease in EF for constant EDP and ESP while the Ees
stays constant [19]. Although a staggering proportion (∼50%) of heart failure patients
does not su�er from a decrease in EF [21, 30], a linear relationship between infarct
size and EF was reported by Refs. [31, 32].

Figure 1.6: Impact of �brosis and remodel-
ing of the heart on the end-diastolic pressure
volume relation (EDPVR). First, the material
sti�ens, but in later stages thinning of the in-
farct (see Fig. 1.5) causes apparent softening.
Image taken from Ref. [24] with permission.

Myocardial remodeling often times en-
tails infarct extension. It is a pro-
cess of enlargement of the infarct and
its border zone, progressively degen-
erating the LV and therefore increas-
ing the risk of heart failure. Causes
for infarct extension are still under
current debate. For example, a de-
creased end-diastolic stretch in the bor-
der zone was found to correlate posi-
tively with infarct extension [33]. There
exists also strong evidence that ele-
vated systolic stresses in the border
zone lead to a depressed contractile po-
tential. This is followed by patho-
logical cardiac growth associated with
an ampli�ed oxygen demand exceed-
ing the marginal oxygen supply and
therefore causing cell death [34, 130].
In consequence, MI treatment should
not only aim at reestablishing ini-
tial contractile performance, but should
also target lowered systolic border zone
stresses.

1.3 Engineered Heart Muscle Tissue

Timely treatment of MI is crucial and potentially lifesaving. Especially reperfusion,
as early as one hour after ischemia sets in, strongly bene�ts remodeling and viability
of cardiomyocytes [24, 35] and can even fully reverse ischemia [25]. However, reper-
fusion is not always achieved and, instead, the condition becomes chronic. In such
cases, injection of cells and synthetic extracellular matrices alike show the capacity to
reduce border wall stresses, preserve scar thickness, and decrease scar �brosis [36, 37].
Nonetheless, to this date, cardiac transplantation is considered the only e�cacious
treatment for patients with severe MI [38, 131].

The need for reduced diastolic stresses, together with the suppression of systolic
bulging, likely necessitates cardiac remuscularization to achieve proper healing. A
promising approach to accomplish this are patches made of EHM [36], as depicted
in Fig. 1.7a. These EHM patches comprise embryonic or induced pluripotent stem
cell-derived cardiomyocytes, collagen (type 1), and �broblasts [39], mimicking healthy
myocardial mechanical function. Depending on the maturation of the cardiomyocytes
prior to implantation, these patches can develop contractile forces of roughly 25% of
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Figure 1.7: Hexagonal EHM patch used for implantation (received
from Malte Tiburcy3).

those exerted by adult non-failing myocardium [40]. After implantation, the EHM
tissue engrafts with the healthy tissue allowing strong vascularization which supports
long-term cardiomyocyte survival and maturation [36, 41, 42].

1.4 Constitutive Modeling of Cardiac Mechanics

While the ex vivo mechanical properties of such EHM patches have been heavily
investigated over the past two decades, its impact on ventricular dynamics remains
unclear. Before implantation of an EHM patch, a few important questions must be
addressed, such as:

� How much EHM tissue is needed?

� Where should it be placed and what geometry should it have?

� What micro structure, considering sti�ness and �ber alignment, is most bene�-
cial?

With the increase in computational power and improvement in numerical algorithms,
in conjunction with advanced in vivo measurement techniques like magnetic resonance
imaging (MRI), simulations further gain importance in cardiovascular research [43,
44]. The ability to change parameters, shapes, and functions individually allows
for a broader and at the same time more detailed assessment of cardiac function
and hence therapeutic factors. The increased interest in cardiac simulations over
the last decades gave rise to a manifold of di�erent models with varying levels of
detail, ranging from passive hyperelastic modeling [6], to electrophysiology [45], to
�uid structure interaction comprising hemodynamics [46]. Studying the e�ects of MI
necessitates foremost a good understanding of the stress response of the myocardium,
which facilitates patient risk strati�cation [47] together with contractile function [48].

With the aid of computer simulation, I aim to answer the questions above in a
general, reductionistic manner thus elucidating the core principles for EHM patch
design while, at the same time, laying the foundation for patient speci�c simulation
of EHM treatment.

3Dr. med. Malte Tiburcy, Institute of Pharmacology and Toxicology, University Medical Center
Göttingen.
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In this work, I present the fundamental equations governing the structural me-
chanics of soft incompressible tissue in Ch. 2. This is accompanied by an exemplary
spherical model of the LV explaining experimental data for the normalized EDPVR in
Sec. 2.4. It follows an in-depth investigation of the in�uence of the �ber architecture
in soft materials including dispersion of �ber orientation in Ch. 3, which comprises
my publication [49] (see Sec. 3.2) introducing a novel class of mathematical models
capturing �ber dispersion and its implications for numerical stability. In the subse-
quent Ch. 4 a ventricular model with healthy myocardium, infarcted tissue and EHM,
successively is expanded, ranging from a transversely isotropic spherical model to an
orthotropic, ellipsoidal model with realistic �ber distribution incorporating the �nd-
ings and approach outlined in Ref. [49]. The in�uence of the EHM patch geometry
and its �ber architecture are analyzed with regards to contractile performance and
wall stresses.
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Chapter 2

Structural Mechanics of Soft

Tissues

Simulations of large scale deformations of soft biological tissue are founded on the
mathematical concept of continuum mechanics. Its basics are shortly introduced in
Sec. 2.1 and 2.2 and supplemented with an adaption to passive myocardium in Sec.
2.2.1. While, here, only the core features are laid out, the fundamental principles
can be admired to great detail in the books of Holzapfel [50] and Humphrey [51].
The following Sec. 2.2.2 is concerned with primitive deformations frequently encoun-
tered in experimental assessment of elastic material properties. Sec. 2.2.3 focuses on
incompressibility and how it can be approximated in numerical simulations. These
simulations, throughout my work, are based on the �nite element method (FEM)
which is sketched in Sec. 2.3. This chapter, then, is closed with an application to real
mammalian EDPVR data in the �nal Sec. 2.4.

2.1 Kinematics and Basic De�nitions

When a body undergoes a deformation from state Ω0 to Ω, as depicted in Fig. 2.1,
the map

Ω0 → Ω

X 7→ x = χ(X) (2.1)

is used to mediate between the reference and the new state. If the deformation is
su�ciently smooth, it is said to be a�ne and the deformation gradient can be written
as

F =
∂χ(X)

∂X
. (2.2)

The deformation gradient carries all geometric information necessary to describe a
material's mechanical response. For example, it transforms any vector V from the
reference con�guration to the deformed state by mere matrix multiplication v = FV.
The length of this vector is independent of rotations and translation, granting it the
title of an invariant (or quasi-invariant). It can be written in the form

|v|2 = FV · FV = FTF : V ⊗V = C : V ⊗V, (2.3)

where the right Cauchy-Green deformation tensor is introduced as

C = FTF. (2.4)
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The orthotropic nature of myocardium, which is due to a clear distinction between
�ber (f0), sheet (s0) and normal (n0) direction, forming an orthonormal base system,
is demonstrated in Fig. 2.3. With the aim to address deformations in these distinct
directions, the three invariants, based on Eq. 2.3,

I4f = C : f0 ⊗ f0, I4s = C : s0 ⊗ s0, and I4n = C : n0 ⊗ n0 (2.5)

are commonly used in the literature. The sum of the invariants given in Eq. 2.5 yields
yet another invariant, which measures the length change of the diagonal of a cube
spanned by the three base vectors

I1 =
∑

i∈{f,s,n}

I4i = C : I = tr(C), (2.6)

where I refers to the identity matrix. These invariants prove their value in Sec. 2.2,
where they are used to formulate an objective strain energy function, with �objective�
meaning that the physics they describe does not change as the deformed body gets
translated or rotated, thereby making them independent of the frame of observation.

Myocardium, however, is too complex to be described by these invariants alone,
as it displays coupling between the di�erent �bers it is comprised of. This connection
can be taken into account by the mixing term

I8fs = C : f0 ⊗ s0, (2.7)

which measures the shear between �ber and sheet direction. For completeness, it
should be mentioned, that, when dealing with the energy stored in a deformed body,
it is oftentimes convenient to use a length measure associating zero stretch when the
body is in its reference. Such a strain measure can be obtained by replacing the right
Cauchy-Green with the Green-Lagrange strain tensor

E =
1

2
(C− I) (2.8)

in Eqs. 2.6 and 2.5. Both, the right Cauchy-Green, as well as the Green-Lagrange
strain tensor are symmetric by design. Therefore gradients with respect to them
exhibit an ambiguity in their de�nition [52]. For the applications in this work, it is
important that the derivative of any given function φ with respect to a symmetric
tensor A also is symmetric, wherefore we use the interpretation(

∂φ

∂A

)
αβ

=
1

2

(
∂φ

∂Aαβ
+

∂φ

∂Aβα

)
(2.9)

Beyond length and shear measures, the deformation gradient also o�ers a measure of
the local volume change with

J = det(F). (2.10)

If J > 1 the body expanded, contrasting compression in which case J < 1. An
incompressible material demands the constraint J = 1.

Knowing how volumes and vectors change under deformation, it is easy to derive
how surface elements transform. Let dx be an arbitrary in�nitesimal vector in the



2.2. Constitutive Modeling 11

Figure 2.1: Deformation map χ, as de�ned in Eq. 2.1, transforms
vector γ′ = FΓ′ according to Eq. 2.2.

deformed state, which, together with the surface element ds, spans the volume

ds · dx = dV = JdV0

⇒ ds · dx = JdS · dX = JdS · F−1dx = JF−TdS · dx, (2.11)

where dX is the corresponding vector and V0 is the corresponding volume element in
the reference con�guration. Since the choice of dx was arbitrary, the equality

ds = JF−TdS, (2.12)

also known as Nanson's formula, is obtained.

2.2 Constitutive Modeling

When describing the forces developed by a deformed elastic body, this is done similarly
as with classical, one-dimensional springs. The energy density Ψ depends on the
deformation F (Eq. 2.2) through C (Eq. 2.4) and is measured per volume in the
undeformed state. The force follows from the gradient of the energy density with
respect to the performed deformation consequently. To arrive there, �rst, the true
stress σ is introduced, which relates to the true force dg acting on a given in�nitesimal
surface element ds via

dg = σds. (2.13)

In the next step, it is shown how the total energy of the body

W =

∫
Ω0

ΨdV0, (2.14)
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subject to externally driven in�nitesimal deformation δx, changes. With the same
expressions as in Sec. 2.1 it follows that

δW =

∮
∂Ω
δx · dg Eq.2.13

=

∮
∂Ω
δx · σds

Gauss−law
=

∫
Ω
div(δx · σ)dV =

∫
Ω
grad(δx) : σ + δx · ���:0

divσ dV

Chain−rule
=

∫
Ω
Grad(δx)F−1 : σdV =

∫
Ω0

(δF)F−1 : σJdV0. (2.15)

Therein, div and grad refer to the divergence and gradient in the deformed state,
while Grad refers to the gradient in the reference state. Since all internal forces have
to cancel, it follows that divσ=0. Knowing that a given deformation does not touch
the reference con�guration, the variation and the integral commute, such that Eq.
2.14 yields

δW =

∫
Ω0

δΨdV0. (2.16)

As this equality must hold for any arbitrary subdomain of Ω0, it can, thus, be con-
cluded that

δΨ = JσF−T : δF ⇒ σ = J−1∂Ψ

∂F
FT . (2.17)

The tensor σ is also known as Cauchy stress. Similarly, other stress tensors can be
de�ned, depending on which state the stress refers to. The �rst Piola-Kircho� stress
tensor, de�ned as

P =
∂Ψ

∂F
= J−1σF−T , (2.18)

relates the true forces given in Eq. 2.13 to the reference area via Nanson's formula

(Eq. 2.12):

dg = PdS. (2.19)

In addition to the reference area, the second Piola-Kircho� stress tensor also translates
the forces into the reference con�guration, thus reading

S = F−1P =
∂Ψ

∂E
, (2.20)

where the de�nition of E is given in Eq. 2.8.
To arrive at the expressions of stress in terms of the internal energy density Ψ,

the equilibrium equation divσ=0 was used. For completeness, the nonequilibrium
equation including external body forces b, also known as Cauchy's �rst equation of

motion [50], is presented:

divσ + b = ρa, (2.21)

where ρ is the mass density and a its acceleration. This equation becomes important,
for example, if gravitation and viscoelasticity are no longer negligible.
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Figure 2.2: A schematic of an undeformed (a) and a deformed (b)
�ber network undergoing non-a�ne shear. In case of an a�ne de-
formation the network nodes located along the dashed lines in (a),
representing the far �eld deformation, would stay connected to it after

deformation took place (c.f. Ref. [56]).

2.2.1 Passive Myocardium

With the ingredients introduced so far in this chapter, a huge plethora of di�erent en-
ergy densities describing all kinds of soft (biological) tissues can be formulated, a great
proportion of which are thoroughly reviewed in [53]. Another review, solely concerned
with the description of orthotropic myocardium, is given by Holzapfel & Ogden [6].
After comparison of the already existing models, they propose an exponential energy
density, termed Holzapfel-Ogden (HO) model given by

ΨHO =
a

2b

(
eb(I1−3) − 1

)
+
∑
i=f,s

ai
2bi

(
ebi(I4i−1)2 − 1

)
+

afs
2bfs

(
ebfsI

2
8fs − 1

)
, (2.22)

for which the invariants Ik, with k ∈ {1, 4s, 4f, 8fs}, can be looked up in Sec. 2.1 and
the material parameters a, b, af , bf , as, bs, afs, and bfs have to be matched with regards
to a particular application. The individual summands are meant to represent the
ground matrix, �bers, sheets, and interactions between �bers and sheets respectively.
Employing such an additive superposition of di�erent energy terms quietly postulates
that the constituents do not interact with one another. This is, by all means, a
strong simpli�cation and evidently not valid on a microscopic scale where the polymer
network gives rise to complex dynamics which cannot be captured by a simple mean
�eld approach [54]. Another simpli�cation, which is interwoven with the former,
is introduced by the use of the macroscopic deformation regardless of the structure
that is deformed. Polarized light imaging, however, unveils the discrepancy of the
deformation between ground matrix and �bers in, for example, tendons [55]. When,
on a microscopic level, the deformations of di�erent constituents of a material are
distinct and thus di�erent from the far �eld as pictured in Fig. 2.2, the macroscopic
deformation is said to be non-a�ne [56].

Despite all reservations, the HO model not only captures the experimental data
displayed in Fig. 2.3 very nicely, its potency is also demonstrated in plenty other
studies, including the aforementioned simple shear analysis [57, 58], patient speci�c
heart modeling [59�61], and - after a small adaption - description of arterial walls [50,
62], making it a splendid candidate for cardiac mechanic modeling.

The Cauchy stress, adopted from Eq. 2.17, for the particular energy density given
in Eq. 2.22 then reads

σ =aeb(I1−3)FFT + 2af (I4f − 1)ebf (I4f−1)2f ⊗ f

+ 2as(I4s − 1)ebs(I4s−1)2s⊗ s + afsI8fse
bfsI

2
8fs(f ⊗ s + s⊗ f), (2.23)

where f = Ff0 and s = Fs0 are used.
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2.2.2 Basic Deformations

When experiments are conducted to obtain the material properties of soft biological
tissue, there are several deformation protocols commonly utilized, namely pure shear,
simple shear, monoaxial stretch, and biaxial stretch. To the best of my knowledge,
there is currently no model that can capture adequately more than one of these proto-
cols for the same cardiac tissue sample at once. Hence, which among these protocols
to utilize depends on the application the data should be used for. For example, if the
diastole is to be simulated, biaxial stretch tests are a promising candidate, since it
most accurately captures the deformation emerging in the real heart, whereas strong
shearing during systole might motivate the use of simple shear data instead. However,
the lack of understanding of the interplay between these two deformation modes might
nourishes the need for new experiments in the future.

One possible explanation for the lack of globally valid models may be that the
experiments are not conducted in a transmissible fashion. The tissue patches for bi-
axial stretch tests typically have to be much larger than those for shear (25x25x2mm
vs. 4x4x4mm), thus comprising a larger variety of �ber families. Tissue softening
also comes into play, which rarely is captured in constitutive modeling but certainly
will have di�erent peculiarity for the various protocols. Further, compressible e�ects
are di�erently pronounced in distinct experiments and lack a concise mathematical
understanding, if they are even included at all.

Alternatively, it cannot be dismissed that likely myocardium is by far more com-
plex in its nature than it can be captured by the few parameters - 8 in the case of
the HO model - typically used. The macroscopic description shows de�ciencies with
regards to the entangled interactions of the di�erent �ber families and cells [39].

Bearing that in mind, I further present mathematical descriptions for the two load-
ing protocols that will be used as a reference for material properties throughout this
work. In Fig. 2.3 a cube undergoing simple shear in the (v1v2)-plane is portrayed.
The corresponding deformation gradients are given by

F = I+ γvi ⊗ vj (2.24)

with (i, j) = (2, 1) if v1 is sheared with amplitude γ in v2 direction and (i, j) = (1, 2)
vice versa. Together with Eq. 2.22 it is now possible to capture the tissue mechanics
as shown in Fig. 2.3 using a classical χ2-Test . The same analysis also can be applied
to biaxial stretch. In this case, the deformation gradient takes the form

F = γvi ⊗ vi + ηvj ⊗ vj +
1

γη
vk ⊗ vk (2.25)

where γ and η are the respective stretch amplitude. If the stretch ratio γ/η = 1
the protocol is also called equibiaxial stretch. Please note that for the description
of both deformation gradients, one corresponding to simple shear and the other to
biaxial stretch, the vectors vα with α ∈ {i, j, k} have to be orthonormal and typically
correspond to the �ber, sheet, and normal direction introduced in Eq. 2.5. For
experimental data of human cardiac tissue [57] the resultant optimized parameters
can be found in Tab. 2.1.

2.2.3 Incompressibility

With Eq. 2.22 the tissue is treated as incompressible, an assumption that has to
be reconsidered for two di�erent reasons. First, experiments have shown signi�cant
changes in tissue volume related to �uid �ow through the vascular system. The total
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a (kPa) b af (kPa) bf as (kPa) bs afs (kPa) bfs
Simple Shear 0.945 6.93 3.51 18.3 0.0942 54.3 0.338 1.58

Biaxial Stretch 1.025 22.8 0.985 42.2 �� �� �� ��

Table 2.1: Best �t parameters obtained from a gradient based χ2-
test for the HO model to experimental human data depicted in Fig.
2.3. Nonlinear coe�cients b and bf are strongly pronounced in the
biaxial data set. Due to a de�cit in independence of the di�erent
biaxial modes, which is discussed in Ref. [63], terms belonging to as

and afs are discarded in this case.
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Figure 2.3: Left column: Schematic of the di�erent deformation pro-
tocols according to Eq. 2.24 and 2.25. Right Column: Corresponding
experimental human cardiac data taken from Ref. [57] together with
the result of the least χ2-�t for the HO model. Optimized parameters

can be found in Tab. 2.1.
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change of volume has been measured in porcine [64] and canine [65] myocardium to be
about 5% under passive biaxial load similar to that at the end of diastole. Likewise,
under con�ned compression changes of up to 10% volumetric strain were observed
[64].

Second, when incorporating the material laws into a FEM framework, it is a
common approach to loosen the incompressibility constraint a little in exchange for
easier computations. These laws are commonly referred to as nearly incompressible
and separate additively the total tissue energy density Ψtot into an isochoric and a
volumetric part, thus reading

Ψ(F)tot = Ψiso(F̄) + Ψvol(J). (2.26)

In order to obtain the isochoric term Ψiso, one must simply replace all instances of the
deformation gradient in the incompressible formulation with its isometric counterpart

F 7→ F̄ = J1/3F. (2.27)

For the volumetric strain energy density Ψvol, on the other hand, there is no simple
recipe to follow. A plethora of di�erent functions has been proposed over the decades
many of which are analyzed in Ref. [66]. Common representatives are

Ψvol(J) =



κ

2
(J − 1)2 [6]

κ

2
(log J)2 [67]

κ

(
J2 − 1

2
− log J

)
[68]

(2.28)

the choice among which, in principle, is free as long as the bulk modulus κ is adapted
to match the desired (in)compressibility. The example on the bottom of Eq. 2.28 is
the one, I employ in this work as it has been used successfully in conjunction with the
HO model in the past.

2.3 Finite Element Method

For numerical approximations of di�erential equations, such as Cauchy's �rst equation
of motion (see Eq. 2.21), there exist several di�erent methods that can be made use
of. Popular representatives are the �nite di�erence or �nite volume method. However,
as it has been developed explicitly with the aim to solve structural mechanics1 [132] it
comes to no surprise that the FEM may pride itself to be the most popular approach
in the �eld. In the following, I sketch the principal ideas of the FEM while for
mathematical rigor and elaborate revision of di�erent approaches within the FEM the
book of Hackbusch [69] is recommended.

Consider a boundary value problem on the domain Ω0 taking the form

Lu = g(u) with u = h(u) for u ∈ ∂Ω0 (2.29)

1More precisely: It was researched in a heavy attempt to calculate the stresses arising on the
wings of aircrafts.
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Figure 2.4: Schematic for a possible realization of piecewise linear
�nite elements in a one dimensional domain. The weighted sum of the
base functions bi approximates the true solution u (see Ref. [4]).

with di�erential operator L, inhomogeneity g and boundary values h. Multiplying the
di�erential equation with a test function ϕ and integrating over the domain Ω0∫

Ω0

L(u)ϕdV =

∫
Ω0

g(u)ϕdV (2.30)

transforms the pointwise formulation into the so-called weak formulation by demand-
ing that it must hold regardless of the choice of ϕ. Contrary to the pointwise formula-
tion, the weak formulation in fact weakens the requirement that Eq. 2.29 should hold
on every single point of the domain. Thus, for example, a discontinuity in the �rst
derivative of u does not object its validity as a solution of the di�erential equation
[4].

Following the Galerkin procedure, functions u and ϕ are discretized with respect
to a linearly independent base system {b1, b2, . . . , bn} with n ∈ N, the span of which
approximates the function space covering all possible solutions, yielding

un =

n∑
i=1

uibi and ϕn =

n∑
i=1

φibi. (2.31)

The functions bi, i ∈ {1, 2, ..., n} are the eponymous �nite elements, a piece wise
linear realization of which is depicted in Fig. 2.4. With the de�nitions

(L)i,j =

∫
Ω0

biLbjdV

(f)i =

∫
Ω0

gbidV (2.32)

�nding a solution to the weak formulation of the di�erential equation can be reduced
to solving the linear system of equations

Lun = f . (2.33)
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Throughout this work, I make use of the software package COMSOL Multiphysics�[126]
to perform simulations based on the FEM here introduced. As a means to check the
validity of the algorithms and their applicability to cardiac deformation simulations, I
compared the solutions calculated by COMSOL with a set of benchmarks formulated
in Ref. [70]. Two of the benchmarks can be found exemplary in Appendix A.

While Fig. 2.4 depicts a set of linear elements, also higher-order polynomials can
be consulted, which, if not stated otherwise, are of third-order throughout this work.
As the direct solver PARDISO is employed, the relative tolerance of which is set to
10−3.

2.4 Klotz Curve

The previous chapters laid out the fundamental formalisms of structural mechanics,
which, now, will be put at test by performing a simple experimental analysis. It was
found by Klotz et al. [71] that the EDPVR can be normalized in such a way that, no
matter if dog, rat, or human, all values fall closely onto a single curve, the so-called
Klotz curve which can be admired in Fig. 2.5. To match the Klotz curve, the authors
made use of a simple exponential ansatz reading

p = AnV̄
Bn , with V̄ =

V − V0

V30 − V0
. (2.34)

The normalized volume V̄ (p) comprises volumes measured at di�erent pressure levels
p, namely V0 = V (0) and V30 = V (30mmHg) The data used for the �tting procedure
is provided in Fig. 2.5, yielding the optimal parameters listed in Tab. 2.2.

Eq. 2.34 is an ad-hoc function not involving any physical justi�cation. Further-
more, it shows only poor compliance with the experimental data at small volumes.
Hence, I propose a novel, yet simplistic, model, based on the exponential energy den-
sity provided in Eq. 2.22. Since the EDPVR caters only a single curve, it is an
outright overkill to use Eq. 2.22 to its full extend. Instead, only the isotropic term
involving the parameters a and b is considered, reading

Ψ =
a

2b
[eb(I1−3) − 1]. (2.35)

With the intention to match this simplicity, also the shape of the heart is reduced to
a sphere [72] of inner radius Rendo and normalized wall thickness ∆ as depicted in
Fig. 2.6. Assuming complete incompressibility and purely radial deformation yields
the kinematic constraint λ2

θλρ = 1 with radial and tangential strains λρ and λθ re-
spectively. Thus, the �rst invariant can be expressed as

I1 = λ2
ρ + 2/λρ (2.36)

with the radial strain following the expression

λρ =
R2

r2
, (2.37)

with reference and mapped radius R and r respectively. From incompressibility it
follows straight forward that

R3 −R3
endo = r3 − r3

endo ⇒ r̂ =
r

Rendo
=
(
R̂3 + V̂ − 1

)1/3
, (2.38)
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Figure 2.5: (a): Comparison of original Klotz-Curve (Eq. 2.34) with
the novel, spherical model (Eq. 2.40b ). (b) The same functions now
�tted to two disjoint subsets of the original data set, namely Data 1

andData 2. An F-test did not show any signi�cant di�erence between
the two models. All model parameters for (a) and (b) can be found in

Tab. 2.2.

where R̂ = R/Rendo and V̂ = V/V0 are the corresponding normalized reference radius
and ventricular volume (VV). The pressure-volume relation for such a setup can be
derived in two di�erent ways, both of which are laid out below.

Mechanical Work Approach

Along similar lines as the derivation of Cauchy stress given in Eq. 2.15, let Ω0

denote the reference geometry of the medium, endowing the total elastic energy

W =

∫
Ω0

ΨdΩ =

∫ Repi

Rendo

4πR2Ψ(R)dR. (2.39)
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From classical mechanics it is known that any mechanical work W performed
on the sphere due to a given internal pressure p follows the relation

dW = pdV

⇒ p = 4πR3
endo

∫ Repi

Rendo

R̂2 dΨ

dV
dR̂

= 3V0

∫ Repi

Rendo

R̂2 dΨ

dλρ

dλρ

dV̂

1

V0
dR̂

= −2

∫ ∆

0

λ2
ρ

r̂

dΨ

dλρ
dδ (2.40a)

= 2a

∫ ∆

0

1− λ3
ρ

r̂
eb(I1−3)dδ, (2.40b)

where we incorporated the energy density from Eq. 2.35 together with

dλρ

dV̂
= −2

3

R̂2

r̂5
, (2.41)

which follows directly from substituting Eq. 2.38 into Eq. 2.37.

Stress Approach

While the work approach appeals to the heart of physicists, the following is more
popular among engineers, especially those working with any kind of pressure
vessel. Taking the cross-section of the sphere, I �nd that the change in total
radial force must be balanced by the total stress along the circumference of the
cross-section, leading to the force balance

∂rπr
2σρ = 2πrσθ

⇒ 2rσρ + r2∂rσρ = 2rσθ

⇒ σρ(rendo) = p = 2

∫ repi

rendo

σθ − σρ
r

dr (2.42)

with the boundary conditions σρ(repi) = 0 and σρ(rendo) = p. Considering the
equalities

σρ = λρ∂λρΨ− p̃ , σθ = λθ∂λθΨ− p̃,

λρdδ = dr, and
d

dλρ
= ∂λρ + 2(∂λρλθ)∂λθ , (2.43)

where p̃ depicts the hydrostatic pressure responsible for the incompressible de-
formation, one can easily convert Eq. 2.42 into Eq. 2.40a. For very thin pressure
vessels ∆� 1 Eq. 2.42 simpli�es to the well known Laplace's law [133]

σ =
pr̂

2∆
, (2.44)

where σ is the membrane stress disregarding hydrostatic pressure.

A consistency check presented in Fig. 2.6 shows how well theory and simulation align.
Fitting Eq. 2.40b to the Klotz-Data yields the parameters presented in Tab. 2.2.
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While the parameter a describes the Young's modulus of the material at low stretches,
b represents nonlinear sti�ening. The third parameter ∆ characterizes an interspecies
average of the relative thickness of the left ventricle and is in good agreement with
the value for human wall thickness as calculated in Eq. 4.25.

With the aim to quantify whether the power law or the spherical model is better
suited as a �t function, I perform an F-test, which necessitates independent data
points for the two models to be compared. Thus, I randomly divide the original
dataset from Fig. 2.5(a) into the two subsets shown in Fig. 2.5(b), which, then, are
used for the two independent �ts. For a single realization of this scheme, the Fisher
function

F =
χ2

1/f1

χ2
2/f2

(2.45)

is used, where index 1 represents the spherical model, while 2 refers to the power law,
and fi is the respective amount of degrees of freedom. The result obtained is Fρ = 1.1.
For a Fischer-statistic, the probability to �nd values more extreme than this result
is P (F > Fρ) = 26% thus making the outcome all but signi�cant. On the contrary,
for these subsets, χ2 takes values favoring in fact the power law whereas the full set
favors the spherical model. From a statistical point of view, henceforth, there is no
preference for either of the two models.

However, the spherical model shows clear strengths for small volumes as it shows
a positive linear slope there. It is also worth mentioning that, contrary to this model,
the power law is not constrained to match p(1)=30mmHg. This opens a new de-
gree of freedom, which naturally promotes smaller errors. Nonetheless, violating this
constraint is an actual �aw for computer simulations, since there, by design, it is al-
ways met. The Klotz curve is widely used as a reference value in in vivo parameter
estimation using computational simulations [60, 73, 74]. In the largest part, such sim-
ulations incorporate exponential energy densities and thus show stronger similarity to
Eq. 2.40b. Hence, in such studies, I recommend the use of the idealized sphere over
the power law for better comparability.

Spherical Model, Eq. 2.40b Power Law, Eq. 2.34
∆ a [kPa] b χ2 An [kPa] Bn χ2

Full Data 0.27 ±0.29 1.15±0.7 3.8± 0.5 1007 3.7 2.76 1060
Subset 0.27± 0.42 1.1±1 3.83±0.71 530 3.672±0.048 2.697±0.071 483

Table 2.2: Least square �ts for the two di�erent models with respect
to the data presented in Fig. 2.5. Please note, that this solution is not
unique as the creation of subsets involves randomization. Although
the error estimates are rather large for the spherical model, especially
with regards to ∆, the result for the random subsample shows remark-
able similarity to the full data set, thus reinforcing the trust in their

precision.
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Figure 2.6: The simulation for 1/8th of a sphere with symmetry BCs
shows great accordance to the analytical expression. The von Mises
stress (Ref. [49] Eq. 2) is colorcoded. These results were created with
the parameters ∆ = 0.23, a = 1.6576 kPa and b = 13.9218. Note that
∆ resembles the normalized thickness of the ventricle in the reference

con�guration.
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Chapter 3

Fibre Dispersion

3.1 A Little Tribute to Fiber Reinforced Materials

As laid out in Sec. 1.1.1 �bers play a crucial role in the mechanics of myocardium.
The collagen lends its robustness to withstand stretch under diastolic in�ation while
the cardiomyocytes display their strength when contracting during systole. A �brous
structure also plays a crucial role for example in arteries, where the �ber angle de-
termines its resistance to pressure load as shown in Fig. 3.2c. The versatility of �ber
reinforced materials, however, goes far beyond muscle, collagen or even animal tissue.
Bamboo, for instance, just like other grasses, inherits its bending �exibility from tiny
vessels as shown in Fig. 3.2b allowing it to grow sightly 25 m tall while preserving a
slim waist of mere 20 cm in diameter, thus making it a formidable construction mate-
rial. Similarly, engineering makes great use of �ber reinforced composites like concrete
or laminates to fabricate materials with anisotropic mechanical properties. Whenever
a new material, just like EHM, is designed, the distribution of the comprising �bers
is of prime importance.

Figure 3.1: Variation under in-plane �ber ro-
tation of 1◦ for a dispersion a�icted (angu-
lar integration (AI), see Ref. [49]) and a dis-
persion free (HO) model. Both models were
matched to the same experimental data with
zero �ber rotation, displayed in Fig. 2.3. Pre-
dicted stresses are elevated for the HO model,
exhibiting a 15% increase through rotation vs.

a 5% increase for the AI model.

Henceforth, it comes to no surprise that
the �ber architecture of myocardium has
been researched extensively since the late
1960s1 [57, 75�79], the results of which
are discussed in detail in Sec. 4.3.1.
Also the in�uence of changes of the mean
�ber orientation on cardiac performance
has been studied in silico recently [80].
However, to the best of my knowledge,
there is no study that tests experimen-
tally the robustness of constitutive laws
with respect to mean �ber orientation. It
is unclear, whether a HO model, which
has been �tted to experimental shear ex-
periments as shown in Fig. 2.3, still
can describe the same tissue specimen if
the �ber orientation has slightly changed
(which is equivalent to performing the
same simple shear experiment with a
slightly tilted cut plane). In Fig. 3.1 the
predictions of the HO model with respect
to such a change are demonstrated.

1In fact, �rst documentations reach much further into the past. Already Leonardo da Vinci
mapped the helical �ber orientation of the heart [81].
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It is quite surprising that a reorientation of a mere degree, which is hardly detectable
in advance of the actual simple shear experiment, yields already deviations from the
original value by 15%. As we show in Sec. 3.2, this strong directional sensitivity can
be reduced after inclusion of a new ingredient - Dispersion.

The HO model treats myocardium to be comprised of unidirectional �bers, but

(c) (d)

Figure 3.2: (a): Schematic cross section through a moso bamboo re-
vealing the �ber pores which are responsible for the bending �exibility
(taken from Ref. [82] with permission). (b) Field emission scanning
electron microscope micrograph of the structure of bamboo with its dif-
ferent constituents. (c) Artery schematic depicting the opening angle
φ between two collagen �ber families which in�uences the resistance to
blood pressure (d). The better the �bers align with the circumferential
direction the less the artery stretches under increased blood pressure.

Fig. (c) and (d) are taken from Ref. [19] with permission.

nature is not this precise. Instead, �bers are randomly distributed about their mean di-
rection. This randomization smooths the impact of small alterations in the mean �ber
orientation as demonstrated in Fig. 3.1, thus easing computational simulations that
otherwise would get stuck in numerical instabilities. Interestingly, small dispersion
coe�cients2 already yield a strong impact on model predictions. More importantly,
also the choice of dispersion model highly impacts the prediction for a change in �ber
orientation. This opens a huge ambiguity, which models are actually valid for a given
problem and it mandates new experimental tests to rule out the right one.

In the following paper [49], we present a novel class of dispersion models, which,
among other features, compute faster and are easier to implement into a numeric

2The smaller the dispersion coe�cient the narrower the �ber dispersion distribution given by Eq.
4 Ref. [49].
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scheme than comparable predecessors and although, originally, they have been tai-
lored to serve for cardiac mechanics simulation, these models can be applied to any
soft material undergoing large deformations and which comprises individual �bers
displaying an exponential strain energy. I contributed in large extents to this publi-
cation as I formulated the principle idea and performed all corresponding calculations
either by hand or with the aid of Mathematica [127], the basic functions of which
can be found in Appendix C. In addition, I prepared all simulations as well as the
postprocessing and wrote large proportions of the text.
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Soft tissues, such as skin, myocardium, and chordae tendineae, typically display anisotropic mechan-
ical behavior due to their fibrous nature. In constitutive modeling, fiber families frequently are assumed
to be unidirectional. Recent numerical results, however, display the need to incorporate dispersion of
fiber orientation. This evidence gets supplemented by new experimental results based on high-resolution
second-harmonic imaging microscopy. Generalized structure-tensor (GST) models are frequently uti-
lized to model fiber dispersion, as they are mathematically easy to treat and demand only a little effort
to implement. They can be regarded as Taylor-series expansions of the numerically more challenging
angular-integration (AI) method, which encompasses a distribution of fiber orientations together with the
associated fiber stress. In this work, we show how low-order GST models give rise to numerical insta-
bilities as they show strong sensitivity with regards to the mean fiber orientation. To overcome these
instabilities, we propose a different class of GST models, termed squared GST (SGST), which computes
faster, is easier to implement, and converges to the AI faster than previous GST models of similar order.
The SGST models promise to be adaptable to generalized problems, such as functional decomposition of
fiber density as well as coupling between different fiber families. Advanced simulations with the proposed
models will shed light on the complex behavior of fiber reinforced soft materials.

DOI: 10.1103/PhysRevApplied.13.064039

I. INTRODUCTION

Whether it is neurons, myocytes, or collagen, most soft
biological tissues comprise fibers leading to anisotropic
mechanical behavior [1,2]. In disease, alteration of
mechanical properties of tissues is a valuable biomarker
for diagnosis. Since material stiffness is not always acces-
sible directly via state-of-the-art medical measurements,
computer simulations are becoming a critical tool in both
disease diagnosis and treatment [3–5], necessitating robust
numerical and mathematical models to characterize archi-
tecture and orientation of fibers.

Evidenced by recent findings [6,7], unidirectional fiber
models are insufficient to describe tissue mechanics and
thus dispersion of fiber orientation should be included.
Concerning constitutive modeling, there are two schools
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debating how to treat fiber dispersion mathematically.
The first is dating back to Lanir [8], who proposes to
attribute an elastic energy to every single fiber, the ori-
entation of which follows a given angular distribution.
Then, angular integration (AI) of said energy gives rise to
the macroscopic response to external loading. The second
school, on the other hand, follows the steps of Gasser et
al. [6], who translate the fiber architecture into a gener-
alized structure tensor (GST), which describes collective
fiber deformation. Both schools, expectedly, carry their
own advantages and disadvantages. The AI furnishes a bot-
tom up, easy to understand energy density while on the
other hand, in finite-element simulation, it involves the
task of integrating over angle space on each iteration for
every single Gauss point, which quickly becomes heavily
time consuming. The GST models, in contrast, are easy to
implement and fast to simulate since many calculations can
be precomputed. In return, exclusion of fibers under com-
pression is difficult [9] but necessary to account for the fact
that they usually buckle under compressive loads.

As GST models can be interpreted as low-order Taylor-
series expansions of the AI model, the former have
been criticized for their lack of accuracy as stated by
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Refs. [10–12]. Conversely, it has been shown by Holzapfel
et al. [13] that both models approximate experimental data
equally well.

Although both, the GST and the AI, models can
be matched to the same experiment, they show large
differences in their predictions if small changes in the
fiber architecture are introduced. Especially for simple
shear the sensitivity to the fiber arrangement is substan-
tial, which is highlighted in Fig. 1. Directional sensitivity,
shown in Fig. 1(b), measures how much shear stresses
change relatively if the mean fiber orientation is altered.
Taking, for example, the (fn1) shear mode with a shear of
γ = 0.2, a dispersionless (HO) and a classical GST model
(0GST) deviate in stress by roughly 25% if the fibers are
rotated by only 1◦, contrary to the AI model, which varies
only by roughly 5%. This behavior becomes even more

(a)

(b)

FIG. 1. Directional sensitivity for simple shear. (a) Geomet-
ric setup for simple shear with the frame showing original mean
fiber orientation (ef ) and two normal directions (en1 , en2 ). Unit
vector f portrays the mean fiber direction after rotation ω in the
( fn1) plane. Solid lines depict the reference configuration ver-
sus the deformed one represented by dashed lines. Dotted lines
visualize the shear γ . In (b) the resulting relative change shear
stress εμτ as defined in Eq. (18) shows that directional sensitivity
depends heavily on the degree to which dispersion is embedded
in the model (HO > 0GST > 2GST > AI, cf. Sec. V). All mod-
els incorporate the same elastic parameter bf = 7 and af = 1.
Shear mode (n1 f ) for the 0GST model is shown as an inset while
the corresponding value for the HO model diverges.

pronounced for smaller shear values or the (n1f ) shear
mode.

As we show in this work, directional sensitivity plays
a key role in numerical stability even if only small shear
deformations are present. While for most ordinary shapes,
said sensitivity is negligible, it becomes essential, once
realistic conditions with irregular shapes, such as cardiac
infarctions or wounds, are considered. To prevent insta-
bilities arising from sensitivities, we develop a class of
GST models, termed squared generalized structure-tensor
(SGST) models, which closely match the directional sensi-
tivity of the AI model [cf. 2SGST in Fig. 1(b)], while still
offering the framework of classical GST models, yielding
an easy implementation and rapid numerical calculation.
The approach entails the Taylor-series expansion, which
shows faster convergence to the AI, and is mathemati-
cally easier to implement for higher-order terms, while, at
the same time, reducing computational costs compared to
conventional GST models of the same order.

The general framework incorporates an exponential
fiber strain energy, which has proven successful to describe
cardiac [14–16] as well as aortic [6,17,18] tissue in exper-
iment and simulation likewise. The dispersion of fiber
angles is governed by the von Mises distribution, which
is supported by recent experiments on human myocardium
[19] and aortic tissue [20], although our approach can be
applied to more general fiber arrangements.

An easy-to-use MATLAB library, comprising the differ-
ent models up to sixth polynomial order, is provided as
Supplemental Material [21].

II. CONSTITUTIVE MODELING OF DISPEPRSED
FIBERS

Following a commonly used macroscopic framework,
we assume that deformation is governed by an affine map
x = χ(X), which smoothly transforms a material point X
in the stress-free state into the spatial frame x. The defor-
mation gradient, then, is defined as F = ∂x/∂X, with the
determinant J = det(F) measuring local volume changes
(incompressibility corresponds to J ≡ 1). Multiplicative
decomposition F = (J 1/3I)F splits the deformation gra-
dient into a distortional F and a dilational part J 1/3I.
Postulating perfect bonding between ground matrix and
fibers, we ignore microscopic nonaffine deformations [22].
The strain of an individual fiber f′, thus, follows the simple
relation ε2 = E : M, with isochoric Green-Lagrange strain
E and structure tensor M defined as

E = 1
2
(F

T
F − I), M = f′ ⊗ f′, (1)

where I is the identity tensor. The AI for an arbitrary
function g is defined as the average 〈·〉 over the solid
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angle [8]

〈g〉 = Nfiber

4π

∫ π

0

∫ 2π

0
ρ[f′(�,φ)]g(�,φ) sin�dφd�,

(2)

where the fiber density per volume Nfiber = 1 w.l.o.g.
and ρ[f′(�,φ)] is the fiber density per solid angle d
 =
sin θdφdθ . Assuming an energy density ψf (ε) of an indi-
vidual fiber, the AI yields the total fiber energy density

�f = 〈ψf (ε)〉. (3)

As it has been used successfully to describe, for exam-
ple, mammalian myocardium (human [19] and dog [23])
as well as arterial walls [6], we focus our attention on the
von Mises distribution

ρ(�) = 4

√
bρ
2π

exp(bρ[cos(2�)+ 1])
erfi(

√
2bρ)

, (4)

which is controlled through dispersion coefficient bρ . It
is centered about � = 0 representing the mean fiber ori-
entation ef and shows rotational symmetry. The latter
attribute is chosen for convenience, although the follow-
ing analysis can be applied to more general, asymmetric
distributions. For biological fibers, exponential stiffen-
ing is most commonly observed and can be expressed
using [17]

ψf (ε) = af

2bf

(
e4bf ε

4 − 1
)

, (5)

where af and bf comprise linear and nonlinear elastic
material properties. Using finite-element methods (FEM)
to simulate such material requires repetitive numerical cal-
culation of Eq. (2) on each time step for every single Gauss
point, thus making it heavily time consuming. Contrary to
the exponential energy function shown in Eq. (5), trigono-
metric functions can easily be integrated, inspiring the use
of GST. Classically, the GST H is defined as [6]

H = 〈M〉 = κI + (1 − 3κ)M(� = 0,φ = 0), (6)

together with structure parameter κ

κ = 1
2
〈sin2(θ)〉, (7)

which, in three dimensions, is confined to the interval
[0, 1/3], where 0 reflects unidirectional behavior while 1/3
embodies complete isotropy. Following an approach sim-
ilar to Ref. [11], H can be used as an anchor point for

(a) (b)

FIG. 2. Taylor series of f (x) = ex2
performed for two different

anchor points. The numerals in the respective legends signify the
order to which the Taylor series is performed. If this number, in
the case of (b), is multiplied by 2 the product matches the poly-
nomial order in x of (a). The area shaded in light blue signifies
the integral to be approximated.

a Taylor-series expansion of Eq. (2). Using multi-index
notation, the nth-order approximation is defined as

�nGST
f =

∑
|α|≤n

Dαψf (〈ε2〉)
α!

〈(M − H)α〉. (8)

The zeroth-order term, consequently, reads

�0GST
f = af

2bf
e4bf (E:H)2 = ψf (〈ε2〉2). (9)

Using Jensen’s inequality, however, we find that

〈ψf (ε
4)〉 ≥ ψf (〈ε4〉) ≥ ψf (〈ε2〉2), (10)

which sparks the idea that 〈ε4〉 promises to be better suited
as an anchor point for the Taylor expansion, as we later
confirm in Sec. III. The effects of this paradigm shift are
showcased in Fig. 2, where the averages of two different
Taylor series of the function f

〈f (x)〉 = 〈ex2〉 =
√
π

4
erfi(2) (11)

are compared. For demonstration purposes, here, we focus
on the simple case of a one-dimensional function and
the average 〈·〉 performed with respect to a homogeneous
probability density on the interval [−2, 2]. It is evident
that anchor point 〈x2〉 shows faster convergence, and closer
proximity to Eq. (11), which is highlighted for small orders
in x in Table I.

064039-3

28



KALHÖFER-KÖCHLING, BODENSCHATZ, and WANG PHYS. REV. APPLIED 13, 064039 (2020)

TABLE I. Taylor series of Eq. (11) for two different anchor
points (〈x〉 and 〈x2〉) and different polynomial orders nx.

nx 0 2 4 6 8 10 12 ∞
〈x〉 1 2.3 3.93 5.46 6.64 7.42 7.86 8.23〈x2〉 3.79 3.79 6.491 7.18 7.86 8.08 8.18

We, therefore, define the squared generalized structure
tensor

H2 = 〈M ⊗ M〉, (12)

which yields a corresponding class of fiber-dispersion
models

�nSGST
f =

∑
|α|≤n

Dαψf (〈ε4〉)
α!

〈(M ⊗ M − H2)
α〉, (13)

which computes faster, approximates the AI model more
closely, and is mathematically easier to handle than GST
models of identical order in ε2. All structure tensors needed
for a Taylor expansion up to second order can be found in
the Appendix together with Eq. (6).

III. PROXIMITY ANALYSIS

In the following, we quantify the relation between AI,
GST, and SGST models analytically through variations
in stresses. Therefore, we adopt fiber stress σμ for an
incompressible material [16]

σμ = F
∂�

μ

f

∂E
FT − p(J )I, (14)

where μ ∈ {2GST,4GST,0SGST,2SGST} specifies the
model of interest, and p(J ) is the Lagrangian multi-
plyer function conserving incompressibility. We confine
our analysis to the loading protocol T comprising biax-
ial stretch and simple shear. As depicted in Fig. 1, model
predictions heavily rely on fiber architecture, wherefore T
includes fibers rotated in ( fn1) plane by angle ω. Together
with the different biaxial stretch ratios β we consider the
following loading protocols:

Tshear = [( fn1,ω), (n1 f ,ω), (n1n2,ω)|ω ∈ (0◦, 45◦)],

Tbiax =
{
( ff ,ω,β), (n1n1,ω,β)|ω ∈ (0◦, 45◦)

∧ β ∈
[(

1 :
1
2

)
,
(

1 :
3
4

)
, (1 : 1),

(
1 :

4
3

)
, (1 : 2)

]}
. (15)

The choice for the exponent bf , which defines the nonlin-
ear elastic fiber response, is loosely based on a parameter
estimation attributed to the AI for experimental data for
human hearts acquired by Sommer et al. [15,19].

As a metric of accuracy for a single realization of fiber
distribution belonging to dispersion coefficient κ ∼ bρ [see
Eq. (7)], we define the local relative error (LRE)

�LRE,μ
κ (T, γ ) =

√√√√∑
t∈T

(
1 − σ

μ
t (γ )

σAI
t (γ )

)2
/

||T||, (16)

where γ describes the current shear or stretch depending
on the loading protocol, and the normalization coeffi-
cient ||T|| denotes the cardinality of the set of experi-
ments. Models corresponding to first-order terms are not
listed since they are equivalent to the zeroth-order terms.
Building on the local error estimate, we also define an
accumulated or averaged error. It serves as an estimate
for the accountability of a given model for a specific
choice of κ . As such, we define the averaged relative
error (ARE)

�ARE,μ(T, κ) =
√∫ γmax

γmin

�LRE,μ
κ (T, γ )2

γmax − γmin
dγ , (17)

with (γmin, γmax) = (0, 0.5) for simple shear and (γmin, γmax)

= (1, 1.1) for biaxial stretch.
The resultant proximity estimates are displayed in Fig. 3.

Therein, plots (a) and (d) display how accurately the dif-
ferent models match the AI for a dispersion coefficient
κ = 0.06, which is taken from Ref. [19]. The correspond-
ing LRE plotted in the second column for the same choice
of parameters as in the first column, are consulted for bet-
ter comparability. The double logarithmic plot of the LRE
shows nicely how different orders of approximation scale
linearly with the deformation coefficient γ . It becomes
apparent that the accuracy of the 2GST is related to 0SGST
while 4GST is related to 2SGST in their approximation
behavior. In the case of κ = 0.06 we calculate the AI
model with numerical schemes offered by Mathematica,
where we chose an accuracy of 16 digits. As this numeri-
cal accuracy is exhausted, further numerical errors impact
the LRE, which explains the little kinks in Fig. 3(b), which
emerge as ε2SGST/4GST

τ → 10−7.
It has to be remarked, that for biaxial tests, the 4GST

model shows much larger relative errors than the 2SGST.
Eventually, these errors even exceed those of the 0SGST
and 2GST models as γ increases, which is a natural result
of the different scaling. As large stretch values domi-
nate the ARE, we can observe corresponding peaks at
approximately κ = 0.1 in Figs. 3(c) and 3(f), heavily sug-
gesting not to use the 4GST model for the chosen range
of deformation γ . Conversely, we find that in all cate-
gories, the 2SGST model shows lowest errors within the
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(a) (b) (c)

(d) (e) (f)

FIG. 3. (a)–(c) Proximity analysis for the two different model classes nGST [Eq. (8)] and nSGST [Eq. (13)] to the AI [Eq. (2)] in
the case of simple shear with af = 1 and bf = 7. They share a common legend from (a). (d)–( f) The same analysis for biaxial stretch,
where bf = 50. They share a common legend from (d). (a),(d) Representative Cauchy stress for simple shear and equibiaxial stretch,
respectively, with κ = 0.06, which can be interpreted as 20% isotropy. (b),(e) Local relative errors�LRE,μ

κ [Eq. (16)] with all parameters
chosen as in (a),(d). The logarithmic scale reveals at which power in shear or strain the AI is approximated. (c),(f) are concerned with
the accumulated relative error �ARE,μ [Eq. (17)] for different degrees of dispersion, ranging from unidirectional (κ = 0) to complete
isotropic (κ = 1/3) behavior. Since the (n1n2) mode for shear and the (n1n1) mode for biaxial stretch yield relatively small stresses,
the different models overlap in plots (a),(c).

boundaries considered, making it a promising candidate
for simulation.

With a fixed dispersion coefficient κ we can analyze how
the ARE changes as the polynomial order n gets further
increased. Figure 4 confirms the counterintuitive increase
of the �ARE,nGST with κ = 0.06 as discussed above. For
biaxial tests and simple shear tests incorporating fibers
rotated by 45◦ in the (fn1) plane this tendency even pro-
ceeds beyond n = 10, thus discouraging the use of nGST
models as an approximation to the AI. For the correspond-
ing n/2SGST models depicted, on the other hand, the ARE
shows a desired decreasing tendency. Of course this picture
is by no means complete and different loading protocols
can lead to strikingly divergent error estimates, both for
the GST and SGST model classes. Hence, a careful con-
sideration of the occurring loading protocols together with
the desired accuracy should shed light on the viability of a
given approximation scheme before simulation.

IV. NUMERICAL EFFICIENCY

Quantifying numerical efficency is important to eval-
uate advantages and disadvantages of an approximation
scheme. Nonetheless, finding an appropriate metric for
the numerical efficiency of the AI model is difficult as
it depends not only on the quadrature rule, and precision
requirements used, but it is also heavily influenced by the
deformation gradient F as well as the dispersion coefficient
bρ . For best comparability with the results presented in
Secs. III and V, we constrain our analysis to simple shear
and equibiaxial tests, examining the same range of shear
and extension values γ as there.

In order to keep the efficiency estimation independent
of any additional algorithms used in a FEM solver, we
restrain it to algebraic computation times of the indi-
vidual AI, SGST, and GST expressions. The resulting
computation times can be found in Fig. 5. All calcula-
tions are performed with Mathematica on a Windows 10
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(a)

(b)

FIG. 4. Averaged relative error as defined in Eq. (17) for dif-
ferent polynomial orders n similar as in Figs. 3(c) and 3(e) with
constant dispersion coefficient κ . Clearly, an increase of n does
not imply smaller errors for the GST model, contrasting the
continuous decline for the SGST model.

computer with an Intel® CoreTM i5-7400 CPU and 8GB
of memory. For the AI model we utilize an inbuilt global
adaptive quadrature rule employing a working precision of
eight decimals.

As shown in Fig. 5 the computation time increases
exponentially with the order to which the Taylor series
is performed. For identical values of n ∈ {2, 4, . . . , 12},
the nGST model takes about 25–180% more time com-
pared with the n/2SGST model. This result gets sup-
plemented by calculations performed with our MATLAB
library [21], where 4GST takes roughly 25% more com-
puting time compared with its counterpart 2SGST. Such a
trend can be attributed to the overall larger algebraic com-
plexity of nGST polynomials. Beyond an order of n = 10
the prevalence of the n/2SGST model class over the AI
becomes questionable, as shown in Fig. 5.

V. DIRECTIONAL SENSITIVITY

When measuring the mean fiber orientation of a given
specimen experimentally, such a task can be very difficult,

FIG. 5. Algebraic computation times for individual realiza-
tions of the GST and SGST model classes, grouped with regards
to similar error scaling as presented in Figs. 3(b) and 3(e). The
purple region represents the domain of observed computation
times for the AI with a precision of eight digits.

not only because fibers in reality can show strong dis-
persion, but also because for most tissues this mean fiber
orientation is not constant on scales, which stress measure-
ments are performed on. If the model used shows strong
dependence on the actual fiber orientation, systematic mea-
surement errors are amplified. As a result, when choosing
a model to match experimental results, not only good sta-
tistical agreement, but also small systematic errors should
be accounted for.

In the case of simple shear, fibers initially are aligned
with the cube’s perimeters as graphed in Fig. 1(a). As
before, let ω denote the angle between the assumed and
the true mean fiber orientation in the ( fn1) plane, then, the
relative change in predicted stress for a given model μ is
computed via

εμτ = 1
σμτ

∂σμτ

∂ω
, (18)

where τ ∈ T. When there is no dispersion (μ = HO, as
proposed by Holzapfel and Ogden [16]), i.e., when κ = 0,
Eq. (18) can be calculated analytically

εHO
τ (γ ) =

⎧⎪⎪⎨
⎪⎪⎩

3 + 4bf γ
4

γ
τ = ( fn1)

∞ τ ∈ {(n1 f ), (n1n2)}
0 else

(19)

in the case of simple shear. Figure 1(b) shows how direc-
tional sensitivity εHO

τ diverges for several different loads,
which can lead to undetermined fiber orientations in simu-
lation.

Clearly, dispersion decreases this sensitivity, since such
an arrangement supports loads of different directions. Con-
sequently, studies investigating the dependency of local
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stresses on the fiber architecture, like Refs. [24] and [25]
for the left ventricle, might rather express dependence
on the actual mathematical model used. However, this
dependence not only affects error estimates for material
properties but also highly influences numerical stability as
pointed out by Duong [26].

Numerical stability depends on a multitude of factors,
starting off from the physics through the actual solver
scheme to the the mesh quality. Controlling all these
influences, and factoring out under which conditions insta-
bilities are a major concern, is difficult. Instead of con-
trolling the quality of a simulation through mesh size and
error tolerance we focus on the influence of the order to
which dispersion is captured in a given model. Thus, we
focus on a scenario that reveals checkerboard instabili-
ties for a dispersion-free model. Although the scenario,
demonstrated below, is rather specific, its key features are
applicable to a wide range of problems.

To compare the stability of different models, we match
them to the same loading protocol. Next, we identify
another loading condition, which displays directional sen-
sitivity. Finally, we construct a simulation that is domi-
nantly governed by the former protocol, yet is superposed
with the latter. As shown in Fig. 1(b), both the HO
and 0GST model, show strong directional sensitivity with
respect to shear load. Thus, we match biaxial load and
simulate a monoaxial setup, as depicted in Fig. 6, which
exerts increased shear due to its different constituent mate-
rials A and B. Material B is governed by an isotropic
Neo-Hookean strain energy density

�B
isovol = CHookE : I, (20)

with material coefficient CHook together with the shape of B
chosen such that, during tensile loading, torque is exerted.
Material A on the other hand is a ground matrix-fiber
composite, following the constitutive law

�A
isovol = a

2b
e4bE:I +�

μ

f (E), (21)

FIG. 6. A beam, composed of two different materials A and
B, is subject to monoaxial stretching. Material A consists of
fibers with mean direction pointing along f, supported by a soft
isotropic ground matrix. Material B on the other hand is purely
isotropic and chosen to be stiff enough to give rise to strong shear
forces (cf. Table II). Lines in magenta show the cut plane used
for visualization.

with the different models μ ∈ {HO,0GST,2SGST}. In sim-
ulation, it is easiest to comply closely with incompress-
ibility by employing a volumetric strain energy �vol(J ) to
penalize volume changes. Here we chose [27]

�vol = �[(J 2 − 1)/2 − log J ], (22)

with bulk modulus � = 100 MPa. The total energy density

�
A/B
tot = �vol(J )+�

A/B
isovol(E), (23)

then, leads to Cauchy stress

σμ = F
∂�

A/B
tot

∂E
FT (24)

and von Mises stress

(σ
μ

Mises)
2 = 3

2
{
Tr[(σμ)2] − Tr2(σμ)

}
. (25)

Parameters for the different isovolumetric energies of
material A are listed in Table II and are used together
with CHook = 40 MPa. These parameters are obtained from
minimizing the Chi square

χ2
μ =

∑
τ∈Tequi

N∑
i=0

[
σμτ (1 + i�γ )− σ 2SGST

τ (1 + i�γ )
]2

(26)

for the two equibiaxial stresses Tequi = {( ff , 0◦, 1),
(n1n1, 0◦, 1)} with corresponding discretized stretches
�γ = 0.22/N and N = 22. The relative difference

δμ(γ ) =
∣∣∣∣σ

μ
τ − σ 2SGST

τ

σ 2SGST
τ

∣∣∣∣ (27)

for the resulting set of parameters is portrayed in Fig. 7(a).
If, in contrast, this change of variables is not performed,
and, instead, the same set of parameters is used for all
three models, directional sensitivity becomes pronounced
even more strongly. However, even if equibiaxial loading
is matched to high degree, directional sensitivity analy-
sis shows that sensitivity is lowest for the 2SGST. From

TABLE II. Monoaxial stretch parameters, corresponding to Eq.
(21) after models are matched for equibiaxial stretch as shown in
Fig. 7(a).

Model a (kPa) b af (kPa) bf bρ

2SGST 1.5 1 7 40 4.5
HO 0.0363 26.9 4.65 38.1 0
0GST 0.0183 24.6 8.82 48.43 4.5
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(a)

(b)

FIG. 7. (a) shows how well the HO and 0GST models match
the 2SGST model for equibiaxial stretch after fitting. Corre-
sponding parameters can be found in Table II. True stresses are
plotted in blue, whereas relative differences are depicted in pur-
ple. (b) Directional sensitivity for the same parameters as in (a)
in the case of simple shear.

Fig. 7(b) it can be deduced that, for example, at γ = 0.1
directional sensitivities εμ( fn1)

of the HO and 0GST models
are roughly ten times larger than that of the 2SGST model.
As shear increases, the relation changes qualitatively and
ε2SGST
( fn1)

> εHO
( fn1)

, which can be attributed to the strong non-
linearity in isotropic energy (b = 26.9). Also the bivariate
nature of the 0GST is revealed, approaching ε2SGST

fn1
on the

one hand, and εHO
n1f on the other hand as γ increases.

Surely this sensitivity alone is not capable of predict-
ing stable or unstable behavior, far and foremost because
actual simple shear is not present in this simulation. Yet, it
nicely motivates the appearance of jigsaw patterns, which
can be observed in the von Mises stress defined in Eq. (25)
and pictured in Fig. 8. It can be observed that the strength
of these patterns decreases from HO, over 0GST to 2SGST.
Moreover, the algorithm did not converge for the HO
model beyond a stretch of γ − 1 = 19%. Also the 0GST
model ceased to converge beyond 15% if the ramping is
not reduced from 3% to 1% per step. At the same time,
the 2SGST showed no irregular behavior for stretches up

FIG. 8. von Mises stress as defined in Eq. (25) reveals direc-
tional instability in monoaxial stretch simulation for the HO,
0GST, and 2SGST models in the cut plane mentioned in Fig. 6.
Contrary to the 2SGST model, HO shows a clear checker-
board pattern, which is a namesake for the instability that arises
from directional sensitivity. The 0GST model shows intermedi-
ate behavior as expected. The result is shown in the reference
frame for 18% stretch. The numerical scheme no longer con-
verges for stretches above 19% in the case of HO. In the top
subfigure the three-dimensional (3D) mesh projected onto the cut
plane is plotted. It should be noted that the checkerboard patterns
at the left and right boundaries are due to the numeric scheme.
In the case of internal angles below 90◦ such singularities are a
common feature in FEM simulations.

to 30%. At stretches this large, incompressibility no longer
holds with the chosen bulk modulus and the parameters
are not fine tuned to match equibiaxial stretch beyond
γ − 1 = 22%, prohibiting further comparison between the
models.

All simulations are performed using COMSOL Multi-
physics version 5.4 with FEM solver PARDISO, assuring
a relative error tolerance of 10−3. Variables to be solved
for are fully coupled with an automatic nonlinear New-
ton method. The mesh contains approximately 20 000
prisms, which, together with cubic serendipidity interpola-
tion functions, amount to a total of approximately 450 000
degrees of freedom. Tensile load is initially ramped by 3%
per step, which later gets supplemented by a 1% increase
per step as instabilities arise.

VI. DISCUSSION AND CONCLUSIONS

Considering Jensen’s inequality sparked the idea to use
a squared, instead of linear, GST as an anchor point of the
Taylor series of the AI. Convergence analysis, then, shows
reduced errors for the SGST models compared to their
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GST counterpart of same polynomial order, when consid-
ering simple shear and biaxial stretch. As fiber architecture
has a strong influence on material mechanics, said analy-
sis contains, both fibers aligned with principle directions
of the deformation, as well as fibers rotated by 45◦ in the
respective plane.

Evidently, depending on the extent of deformation, the
2SGST model makes for a reliable substitute of the AI
in simulations. Although, in principle, Taylor expansions
can be taken to an arbitrary order, since we are deal-
ing with multivariate expressions, they quickly increase
in computational costs as demonstrated in Sec. IV. This
effect gets weakened by the nSGST models, because the
amount of summands does not grow as fast as for the nGST
models. Nontheless, if n gets increased, a complementary
increase in accuracy is quickly weighed out by compu-
tation time. As a result, if better accuracy is needed, the
2SGST, instead, might be used in conjunction with addi-
tive decomposition of the fiber density ρ as detailed in
Refs. [7] and [28]. Consequently, also nonaffine deforma-
tions, crimping and buckling [29,30] or reorientation [31]
of fibers, can be included, which is by default not possible
for an approach using Taylor series only.

Sensitivity analysis, on the other hand, reveals how dis-
persion models deviate from unidirectional ones. Although
Holzapfel et al. [13] showed that the 0GST and AI can be
matched equally well to equibiaxial and uniaxial exper-
iments on aortic tissue, it becomes evident that these
models no longer show the same behavior once fibers
are rotated. Further, said sensitivity can lead to checker-
board instabilities during simulation if multiple loading
conditions are superposed. A good recipe for instabili-
ties involves strong directional sensitivity, which might
be due to a weak ground matrix, plus material inhomo-
geneities breaking the symmetry of the loading protocol.
These conditions can be found, for example, in cardiac tis-
sue involving irregular, infarcted regions, which get even
reinforced by strong stresses during systole. Also materials
displaying pronounced gradients in their fiber architecture,
such as the ventricular heart wall or arteries, might be
vulnerable to directional sensitivity.

The advise to use dispersion in order to overcome insta-
bilities is to be taken with a pinch of salt, though, as
numerical stability, in principle, should not decide over
what kind of physics to implement. Consequently, instead,
experiments have to be consulted to rule out the actual
directional sensitivity of a given material. This factors in,
especially, when quantitative, patient-specific studies are
conducted. Further, we want to highlight that simulations
are only a viable tool in predicting material behavior, for as
long as the loading protocols encountered in computations
are validated in experiments. Admittedly, when choosing
our model parameters, we violate this key prerequisite,
as we consider only biaxial stretch as a reference for the
HO, 0GST, and 2SGST model, although in simulation of

monoaxial stretch, a convoluted superposition of shear and
stretch can be observed. Consequently, different numerical
stability and altered stress fields are observed, indicating
that a larger set of reference data is needed to properly
inform simulation. It has been noted in Ref. [32] that
the amount of independent tests, needed to fully describe
a material is at least equal to the amount of invariants
associated with the material. Since different orders n are
associated with qualitatively different nSGST models, we
want to remark that even more independent experiments
are needed to make an accurate choice of n. If the required
amount of independent experiments is not met, we advice
to use the model with lowest sensitivity with respect to
possible sources of errors, like for example the mean fiber
orientation.

We want to emphasize, that, although a specific fiber
density, namely the symmetric von Mises distribution, is
employed in this work, the principle idea behind SGST
models can be extended to other, e.g., nonsymmetric,
distributions analogously [20,29,33]. Also cross terms
between different fiber families as detailed by Melnik et al.
[34] show the potential to benefit from an SGST approach.

Characterizing the architecture and orientation of fibers
is crucial to predict the mechanical response of soft mate-
rials. As the SGST models can be used for fast and robust
simulations, they offer likewise robust and noninvasive
numerical tool for clinical treatment. One of their appli-
cations is to guide patient care in cardiac ischemia. As
demonstrated by Fomovsky et al. [35,36], fiber architec-
ture is essential when designing therapeutic implants. Our
further work focuses on utilization of the SGST models for
in silico experiments to optimize engineered tissue scaf-
folds [37,38] and hence instruct personalized solutions for
recovering pump function of the patient’s heart. Another
potential application for SGST models is the estimation
of peak stresses, which goes hand in hand with the direc-
tional sensitivity of the model of choice. Consequently, this
choice must be made with care, for example, in the analy-
sis of rupture in aortic aneurysm [39], or atherosclerotic
plaque [40]. Likewise, the load-bearing capacity of ten-
dons and ligaments can be studied and optimized [30,41]
using the proposed models.

ACKNOWLEDGMENTS

The authors thank Alain Pumir, Wolfram-Hubertus Zim-
mermann and Gerhard Holzapfel for their advice and
fruitful discussions. This work is supported by the Max
Planck Society and the German Center for Cardiovascular
Research.

APPENDIX: STRUCTURE-TENSOR
COMPONENTS

All structure tensors necessary to calculate either nGST
to fourth, or the nSGST to second order, are listed below.
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Due to the transversely isotropic nature of a rotationally
symmetric fiber family, the following notation is used,
where f denotes the fiber direction while n1 and n2 express
two arbitrary normal directions. Due to this symmetry,
directions n1 and n2 can be used interchangeably. Further,
it holds that all tensors listed below exert the highest degree
of symmetry, meaning that they remain unchanged under
any permutation of indices, wherefore only the amount of
occurrences (i, j , k) is accounted for, employing the style
( f i, nj

1, nk
2). All components not listed are zero.

To further simplify notation, we define the ith tensorial
power of an arbitrary tensor A as

A i© = A ⊗ . . .⊗ A︸ ︷︷ ︸
i times

. (A1)

1. Fourth order

The components have been derived previously by Pan-
dolfi et al. [11] and are as follows:

〈M 2©〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 4κ + κ2 =̂ ( f 4)

2κ − κ2

2
=̂ ( f 2, n2

1)

3κ2

8
=̂ (n4

1)

κ2

8
=̂ (n2

1, n2
2).

(A2)

2. Sixth order

〈M 3©〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 6κ + 3κ2 − κ3 =̂ ( f 6)

κ3

2
+ κ − κ2 =̂ ( f 4, n2

1)

3
κ2 − κ3

8
=̂ ( f 2, n4

1)

κ2 − κ3

8
=̂ ( f 2, n2

1, n2
2)

5κ3

16
=̂ (n6

1)

κ3

16
=̂ (n4

1, n2
2).

(A3)

3. Eighth order

〈M 4©〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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1
2
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1)

3
8
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1
8
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5
16
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1
16
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35
128
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1)

5
128

κ4 =̂ (n6
1, n2

2)

3
128

κ4 =̂ (n4
1, n4

2).

(A4)

4. Different coefficients κi

Generally, we define

κ = 1
2
〈sin2�〉 and κi = 〈sin2i�〉.

It follows straight forward that

κ = 1
2

+ 1
8bρ

− 1√
8πbρ

e2bρ

erfi(
√

2bρ)

bρ→0−−−→ 1
3

κ2 = 3κ − 1
2bρ

+ 2κ
bρ→0−−−→ 8

15

κ3 = 5κ2 − 14κ + 2
4bρ

+ 2(κ2 − κ)
bρ→0−−−→ 16

35

κ4 = 7κ3 − 16κ2 + 22κ − 2
4bρ

+3(κ3 − κ2)+ 2κ
bρ→0−−−→ 128

315
.

(A5)

In the limit bρ → ∞ all parameters converge to zero.
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3.3 Further Investigations

Although the squared generalized structure tensor (SGST) is discussed to great detail
in the paper, a few points remained untouched so far, which are covered in the following
section. First, I discuss shortly the plausibility of the results of some calculations
directly linked to the SGST. Second, possible advances of the SGST, which did not
have room in the paper, are examined. The notation in the following section is adopted
from the paper.

3.3.1 Checks and Balances

Given the case that we worked faultlessly, surely, all calculations leading to the SGST
model together with the corresponding numerical evaluations are correct. But as
experience teaches us the naivety of this assumption, in the following I present some
tests used to validate the calculations.

Before diving into the calculations, let me introduce the notation used for the
contraction of two tensors A and B with respective ranks m > n, given by

(A�B)i1...im−n−1
= Ai1...im−nj1...jnBj1...jn , (3.1)

where the Einstein notation is employed. Regardless whether m > n or vice versa,
contraction implicitly is always performed for the inner indices and in the case of
m = n the result is a scalar.

The full Taylor series expansion was performed using the technical computing
software Mathematica [127], which o�ers a large range of tools to perform analytical
calculations. Further investigations involving Matlab and COMSOL are based on
these results, thus mandating the disclosure of any �aws in the process. A thorough
description of theMathematica codes related to the computation of these Taylor series
components can be found in Appendix C.

In order to check whether the analytics or implementation might be wrong, the
results from Mathematica can be compared to handmade calculations. This is feasible
at least for the lower rank tensors appearing in the expansion, that can be found in
the appendix of the paper and are supplemented with the corresponding derivations in
Appendix B. Since these results are de�ned with respect to the structure coe�cients
κ and κi, they can be written down in a much more concise manner than the direct
representation formulated by Mathematica which is demonstrated exemplary by the
�rst component of the SGST

(H2)f4 =
1

16
√

2π

4
√
bρ(4bρ − 3) exp(2bρ) + 3

√
2πer�(

√
2bρ

er�(
√

2bρ)

= 1− 4κ+ κ2. (3.2)

Using the structure coe�cients de�ned in an iterative fashion also unveils directly
their limit value. Since the coe�cients have to stay �nite, it can be concluded from
Eqs. B.3, B.4a, and B.4b that for bρ → 0

3κ− 1 = 5κ2 − 14κ+ 2 = 7κ3 − 16κ2 + 22κ− 2 = 0
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holds. Expectedly, these results overlap with those computed by Mathematica. Using
Eq. B.8, the general rule, which holds ∀n ∈ N\{1}, can be derived, reading

n−1∑
i=0

(−1)iκi

[
(2n− 3)

(
n− 2

i

)
− (2n− 1)

(
n− 1

i

)]
= 0, (3.3)

where κ0 = 1 and κ1 = κ. For this equation to make sense, the de�nition(
k

l

)
= 0, (3.4)

given that l > k, is employed.
The test given by Eq. 3.3 only checks for correct implementation in Mathematica,

but plausibility of the analytics themselves also needs clari�cation. It can be tested
against a simple deformation for which the result is known even without any advanced
calculation. Because residual stresses are not considered, it is evident that for the
choice C = I the internal energy vanishes, leaving us with

I j �
〈

(M− 〈M〉) j
〉

=

〈
(I : M︸ ︷︷ ︸

=1

− I : 〈M〉︸ ︷︷ ︸
=1

)j

〉
= 0, (3.5)

where the equality C j �M j = (C : M)j is used, which holds for all second-rank
tensors C and M. The relationship given by Eq. 3.5 hands us another check for the
implementation individual powers, reading

I 2 � 〈M 2 〉 = Mf4 + 4Mf2n2
1

+ 2Mn2
1n

2
2

+ 2Mn4
1

= 1 (3.6a)

I 3 � 〈M 3 〉 = Mf6 + 6(Mf4n2
1

+Mf2n4
1

+Mf2n2
1n

2
2

+Mn4
1n

2
2
) = 1 (3.6b)

I 4 � 〈M 4 〉 = Mf8 + 8Mf6n2
1

+ 12(Mf4n4
1

+Mf4n2
1n

2
2
)

+8Mf2n6
1

+ 24Mf2n4
1n

2
2

+ 2Mn8
1

+ 8Mn6
1n

2
2

+ 6Mn4
1n

4
2

= 1. (3.6c)

Inserting the di�erent tensor components given in Eq. A1, A2, and A3 of Ref. [49]
yields the correct results.

3.3.2 Advances

In our publication [49], we introduce a very speci�c structure tensor, namely the
SGST H2, which is used as an anchor point for the Taylor series approximating
the AI model, and yields faster convergence than the generalized structure tensor
(GST) models previously used. Yet, we did not show that this is the best possible
anchor point, showing closest proximity to the target function. On the contrary, it
is very unlikely that such an anchor point even exists for the di�erent basic loading
protocols introduced in Sec. 2.2.2, let alone any superposition. Hence, I want to
stretch that, in principle, any symmetric fourth-rank tensor3 D ∈ R3×3×3×3 is a
possible option as an anchor point for the Taylor series. Finding such a polynomial
yielding better convergence to the AI, however, is all but trivial. One reason is the
large dimensionality of the tensors to be dealt with.

3With symmetric, here, it is meant that under any permutation of indices, the corresponding
entry of D stays untouched. This leads to a positive de�nite tensor, meaning that A : D : A ≥ 0 ∀
real-valued second-rank tensors A
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This, among other things, can lead to observations that might appear counter-
intuitive at �rst glance. Considering the demonstration function f = ex

2
pictured in

Fig. 2 of Ref. [49], for example, it appears rather comforting to observe that both,
〈x〉 and 〈x2〉, lie within the integration bounds [-2,2]. With the tensors H and H2,
though, such a quality no longer holds. This becomes clear when examining their
Euclidean norm4

||H||22 =
∑
i,j

H2
i,j = 6κ2 − 4κ+ 1, (3.7a)

||H2||22 =
35

4
(κ3 − κ4)2 + 14(2κ− 3κ2 + 3κ3 − κ4)2

+
35κ2

4

128
+ (1− 8κ+ 6κ2 − 4κ3 + κ4)2 +

105

4
(κ2 − 2κ3 + κ4)2, (3.7b)

||M||2 = 1. (3.7c)

The norm of M, by design, is constant no matter what angle the corresponding �ber
has. The other two tensors, in contrast, only meet this value for bρ → ∞ which is
demonstrated in Fig. 3.3. This can be interpreted as such that M lies on the surface
of a high dimensional sphere whereas ||H||2 and ||H2||2 are con�ned to the interior
with the SGST being closer to the origin.

Figure 3.3: Euclidian norms of the GST (Eq.
8 Ref. [49]) and SGST (Eq. 13 Ref. [49]). As
a means to keep the two norms related to the
same vector space it is necessary to square the

value for the GST.

For di�erent loading protocols, some ar-
eas of this high dimensional sphere are
a�ected more strongly than others, hence
promoting that tensors closer to such
surface areas will show better proxim-
ity to the AI. This approach might be
of particular interest when including the
decomposition of the �ber density into
a linear superposition of basis functions
as discussed in the paper and used in
Ref. [83]. For the individual basis func-
tions, the importance of particular de-
formations may vary, thus bolstering the
use of di�erent structure tensors.

In addition to various anchor points
that could be used, also various �ber en-
ergy densities Ψ(p(ε)) are potential can-
didates for the Taylor series expansion. As long as p(x) is a convex polynomial,
Jensen's inequality promises that

〈Ψ(p(ε))〉 ≥ Ψ(〈p(ε〉)) ≥ Ψ(p(〈ε〉)), (3.8)

thus advocating to use 〈p(ε)〉 rather than 〈ε〉 as an anchor point. This signi�es a new
paradigm for the approximation of the AI.

4There is no particular reason behind this choice. Other norms can do the same trick.
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Chapter 4

Successive Ventricular Modeling

As discussed in Sec. 1.2, heart disease is a dominant cause of death especially in the
western world. It, thus, comes to no surprise that plenty of medical studies have been
performed so as to unravel the cause, nature, and possible treatments of myocardial
infarction. With an increased computational power, conjoined with advanced mea-
surement techniques, like MRI simulation-aided studies are also performed. The �rst
model describes the left ventricle as spherical pressure vessels [133], which I used as an
inspiration to derive a structure-based model describing the Klotz curve in Sec. 2.4.
Some authors go even as far as to reduce the heart to a thin membrane [14], but it
has been found that for heterogeneous materials, such as an infarcted heart, stresses
in the border zone between the di�erent constituents cannot be captured adequately
this way. Other authors, in contrast, depict the left ventricle as an in�nitely long
cylinder in an e�ort to analyze transmural stress pro�les [84]. Idealized ellipsoidal
models quickly took over as they resemble the left ventricular geometry more closely
[67, 85�88]. With the increasing capacity of MRI also patient-speci�c reconstructions
of the ventricle became more popular [48, 68, 73, 89, 90]. Usually, a snapshot of the
heart at early diastole, where total stresses are the lowest, is used for segmentation
which helps with the three-dimensional (3D) reconstruction of the geometry. This
approach, in turn, gets augmented, nowadays, by algorithms seeking to �nd the truly
unloaded state of the heart/ventricle [47, 91].

Standing on the shoulders of giants, of course, it is tempting to simply adopt the
most recent models in cardiovascular mechanics research and make new �ndings from
there on. However, these models encompass a plethora of di�erent variables, man-
ifest in the geometry, heart architecture, constitutive model, and external loadings,
like e.g. the ESV. Hence, when studying the design of a new EHM graft, it can be
expedient to repeat some of the steps above, therefore reducing the complexity and
amount of variables that allows for a better understanding of the in�uence of those
variables kept. In this chapter, I seek to elucidate the mechanical bene�ts of an EHM
patch that supports an infarcted region in the left ventricle. For that purpose, I �rst
introduce the constitutive laws governing active contraction in Sec. 4.1. In the next
step, the EHM is investigated just by itself in Sec. 4.2.1, which is used to learn how
shape and size in�uence the capacity to exert pressure on the underlying tissue. In
Sec. 4.2.2, a transversely isotropic spherical model of the left ventricle supplements
the interaction between infarct and EHM. Finally, the previous results are used in
Sec. 4.3.1 to guide the modeling of an elliptical ventricle which displays a realistic
�ber architecture incorporating also �ber dispersion. This step is aimed at validating
the results of the spherical model, plus furthering our understanding of how the �ber
architecture in�uences EHM capacity.



42 Chapter 4. Successive Ventricular Modeling

4.1 Active Myocardium

Undoubtedly, a key feature of muscularized tissue is its ability to actively contract
after receiving a corresponding stimulus. The transmission of said stimulus gives rise
to complex and somewhat mesmerizing electro-chemical dynamics which, upon mal-
function, can trigger a cascade of events, causing atrial �brillation which is associated
with an increased risk for the very MI we seek to heal [92]. However, in this work,
signal propagation is completely omitted for the bene�t of mechanical tissue response.
In essence, this means that the electrical stimulus acts simultaneously in the entire
tissue without any delays, which is justi�ed by its rapid propagation.

In Sec. 1.1.2 the Frank-Starling mechanism, often paraphrased as �the heart pumps
what it gets�, was introduced. This increased ejection volume is only possible through
an raise in contractile performance of the cardiomyocytes. It was found in exper-
iments on cardiomyocytes of cats [93] and rats [129, 94] that the relation between
extension and tension is linear. Based on these �ndings, Tözeren formulated a lin-
ear stress-strain relation, where the stress is expressed in terms of the Cauchy stress
[95]. It is important to note here that the aforementioned experiments show a linear
force-length relationship which results in a linear �rst Piola-Kircho� stress tensor as
de�ned in Eq. 2.18 as opposed to a linear Cauchy stress. Nonetheless, the linear
active Cauchy stress model

T0 = Ta(1 + β0(λ− 1)) (4.1)

became popular in simulations involving the entire beating cycle [17, 48, 84, 96, 97]
as, in addition to the stress-strain relation, the author also provides a calcium-based
bridge to electrophysiology. A cross-species study found a set of optimal model param-
eters for Eq. 4.1 which take the values Ta = 125 kPa and β0 = 1.45 [96]. Additionally,
it was also clari�ed that the linear law is only well suited for less than fully activated
sarcomeres. This �nding gets supplemented by another publication [16] suggesting
that the length-tension relationship is nonlinear of the form

F�ber = a(λ− λ0)c, (4.2)

where F�ber is the tensile force, λ is the sarcomere length and a, c, and λ0 are �t
parameters of which the latter represents the minimal sarcomere length under con-
traction, as depicted in Fig. 1.4. The authors found exponents c between 0.52 and
2.37, thus clearly advocating the use of a nonlinear model (as e.g. in [98]).

A simple way to incorporate active stresses into a constitutive equation is by sim-
ply adding them to the passive stresses

σtot = σpassive + σact, (4.3)

where the active stress takes the form

σact = T0FHaF
T (4.4)

with a structure tensor Ha representing the underlying �ber architecture and T0 given
by Eq. 4.1. Di�erent choices for this structure tensor can be found in Tab. 4.1. They
can take a simple form as in example (1) with ν = 0 which relates to the �ber structure
in the HO model concerned with their passive deformation. However, as shown in Ref.
[49] dispersion can signi�cantly alter the mechanics of �brous tissue. Although not
necessarily derived from an AI, dispersion is manifested in a choice ν 6= 0 for any
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(1) Ha = f0 ⊗ f0 + νs0 ⊗ s0 ν = 0[99], ν = 0.4[68],
ν = 0.07 (healthy)/0.14 (MI)[60]

(2) Ha = f0 ⊗ f0 + ν(I− f0 ⊗ f0) ν = 0.2[100]

(3) Ha =
1

I2
4f

[f0 ⊗ f0 + I4fν(
1

I4s
s0 ⊗ s0 +

1

I4n
n0 ⊗ n0)] ν = 0.3[88], ν = 0 [48]

Table 4.1: Comparison of di�erent �ber structure tensors used for
active contraction. As de�ned in Sec. 2.1, the orthonormal base
system f0, s0,n0 represents the �ber, sheet and normal direction in
the reference con�guration. Choosing values ν 
 0 pays tribute to
the dispersed nature of cardiomyocytes. The length measure I4i with

i ∈ {f, s, n} is de�ned in Eq. 2.5.

example given in Tab. 4.1.
An appropriate choice, both for the active stress T0 and the structure tensor

Ha, has to be made in the context of an application. For the active stress, I choose
to invoke a linear force-length relation, that respects the minimal sarcomere length
l0 = 1.58µm [16], and shows a linear ESPVR at an EF of 66%, which is in accordance
with Ref. [10, 12]. This can be accomplished by the energy density

Ψact = Taλ

(
λ

2
− λ0

)
, (4.5)

where λ0 = l0/lR with a sarcomere rest length of lR = 1.85µm [99] and

λ2 = C : Ha. (4.6)

This rule can be augmented easily to account for residual stresses by allowing the
sarcomere rest length lR to vary regionally. It has been found in rats that the rest
length ranges from lR = 1.91µm at epicardium to lR = 1.78µm at endocardium
[101]. However, since no residual stresses are considered for the passive myocardium
in this work, neither is it included in the description of active myocardium. Besides,
estimating residual stresses for the EHM would needlessly complicate the modeling
procedure.

Following the de�nition for the �rst Piola-Kircho� stress tensor given in Eq. 2.18
we arrive at

Pact = Ta(λ− λ0)
FHa

λ
. (4.7)

For the unidirectional structure tensor Ha = f0 ⊗ f0 and uniaxial extension

F = λf0 ⊗ f0 +
1√
λ

(I− f0 ⊗ f0) (4.8)

this translates directly to a linear �rst (as opposed to second) Piola-Kircho� stress

(Pact)ff = Ta(λ− λ0), (4.9)

where λ =
√
I4f as de�ned in Eq. 2.5 holds. From here, a Taylor-Series expansion of

the AI of Eq. 4.5 about the GST

H = κI+ (1− 3κ)f0 ⊗ f0 (4.10)
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Figure 4.1: Showcases for the accuracy with which the 0GST and
2GST model approximate the AI of Ψact (see Eq. 4.5). Since it is
just a linear pre-factor w.l.o.g. Ta = 1 can be chosen. (a) Cauchy
stress under simple shear. (b) Cauchy stress under biaxial tensile load.
Respective deformation protocols can be found in Sec. 2.2.2. In both
cases, the 2GST model shows strong accordance with the AI model.

as introduced in Ref. [49] can be performed, which yields (for a detailed calculation
please see Appendix D)

Ψ0GST
act = Ta

(
1

2
λ2 − λ0λ

)
(4.11a)

Ψ2GST
act = Ta

(
1

2
λ2 − λ0

[
λ− 1

8λ3
C 2 �

{
〈M 2 〉 −H

2
a

}])
. (4.11b)

Please note that, although equations 4.11a and 4.5 look identical, they are di�erent
as the stretch measure λ is de�ned using di�erent structure tensors. The accuracy to
which the two di�erent GST models approximate the AI model is demonstrated in
Fig. 4.1. These results justify the use of Eq. 4.11b for the simulation of an idealized,
elliptical left ventricle as later described in Sec. 4.3.1.

In the simpler case of a transmurally isotropic sphere, analyzed in Sec. 4.2, the
energy density given in Eq. 4.5 is calculated with the structure tensor

Ha = I− er ⊗ er. (4.12)

The normalized base vector er points in transmural (radial) direction.
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4.2 Geometrical Aspects of EHM patches

4.2.1 Disk Shaped EHM

The question sought to be answered in this section is to �nd out which geometric
arrangement of the EHM promotes pressure generation most e�ciently. For that
purpose, I consider solely a single slab of arti�cial tissue undergoing �typical systolic
deformations� and compute the resulting stresses exerted on an imaginary heart lying
underneath. When taking a look at Fig. 4.2 the phrase �typical systolic deformation�
can be understood as a contraction yielding physiological EF, which I mimic by a
radial shrinkage R→ 0.854R.

A problem that emerges when suturing additional tissue on top of the heart is
that, functionally, it can not be integrated completely. This e�ect is brought to an
extreme when the arti�cial tissue takes the shape of a curved disk as pictured in Fig.
4.2. If it would be possible to cut out any infarcted tissue and directly replace it with
EHM (blue), the tissue would be perfectly integrated into the heart and thus could
exert contractile forces to their full extend. Contrary, in the case of a tissue disk
�glued� to the surface of the heart (red), connectivity is lowered due to an additional
degree of freedom. In the operating room, surely, neither of the extremes occurs, yet I
investigate the signi�cance of the e�ect of a free wall on the resulting traction. With
the given setup I measure the strength of the EHM by averaging the absolute value
of the surface stresses over a small area A at the center of the disk, yielding

tavg =
1

A

∫
A
||σn||da with A =

∫
A
da. (4.13)

The surface areaA is de�ned via an intersection between the EHM disk in the reference
con�guration and a cone pointing from the origin to the center of the disk. The cone
exhibits an opening angle of Θcone = 16◦ with the EHM surface in the reference
con�guration.

In the analysis, two di�erent modi�cations of the geometry are distinguished. In
case (I), the opening angle Θ is changed while keeping the thickness ∆ constant,
whereas in case (II), the opening angle is changed while keeping the tissue volume
VEHM constant. This average is chosen as it, both, reduces unphysiological e�ects
of the border zone of the EHM and assures accuracy of a discretized FEM solution,
which potentially could feature discontinuities, as discussed in Sec. 2.3.

For the passive tissue behavior, I adopt the constitutive law as described in Sec.
2.4

Ψpassive =
a

2b
[eb(I1−3) − 1]. (4.14)

For convenience, I assume that the mechanical properties of the EHM are identical to
that of healthy myocardium, which, in principle, I mimic by setting the parameters
to those of the best �t to the Klotz curve, as presented in Tab. 2.2. When only con-
sidering the e�cacy of EHM, though, absolute values are of no interest and therefore
all stresses and corresponding factors can be normalized such that a = 1. Addition-
ally, also spatial dimensions are normalized to account for a hypothetical left ventricle
being encapsulated by the EHM which results in an internal radius R = 1 + ∆ with
∆ = 0.27 as derived in Sec. 2.4. Geared toward the estimation of uncertainties of the
sti�ening factor b, two di�erent such values are considered.

The constitutive law governing active contraction is given by combining Eqs. 4.5,
4.6, and 4.12. For a spherical arrangement and together with Eq. 2.40a this amounts
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a case b Ta

1
(i) 3.83 76.9
(ii) 7.66 95.2

Table 4.2: Constitutive parameters only considering the disk shaped
EHM. Active contractile parameter Ta is chosen such that a full ven-
tricle composed of a tissue with sti�ening factor b would yield a 66%

ejection fraction.

Figure 4.2: Slice of the curved EHM disk. Due to rotational sym-
metry, only a small wedge of the tissue needs to be simulated. In case
of a free boundary (red) the additional degree of freedom yields a low-
ered traction compared with the �xed boundary (blue). Thickness δ
and opening angle Θ of the disk are altered between simulations to
elucidate how much tissue is needed for an optimal traction force.

to a ventricular pressure of

pa =

∫ ∆

0
Ta

1− λ0√
2

√
λρ

r̂
dδ. (4.15)

As before, the total energy, and correspondingly the pressure, is obtained from the
summation of passive and active terms. This allows adjusting the contractile force
coe�cient Ta such that with an EDP of 10 and an ESP of 100 a hypothetical left ven-
tricle as described in Sec. 2.4 would yield an EF of 66%. All constitutive parameters
used in this section are displayed in Tab. 4.2.

Case (I): Constant Thickness

How e�cient is a given EHM patch and what can be considered optimal?

To begin with, let me introduce the term �e�cacy�, which I de�ne here as the ratio
between the actual traction tavg, as de�ned in Eq. 4.13, and the value a sphere of
identical thickness would exert. With this declaration, a blunt answer to the question
above would be to say that, regardless of the infarct, covering the entire heart always
shows maximal e�ect because it allows for optimal connectivity of the EHM, plus,
simply put, more material exerts more force. Given the aforementioned ingredients,
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(a) (b)

Figure 4.3: Average traction as de�ned in Eq. 4.13 against di�erent
opening angles Θ for various thicknesses δ. Dashed, colored lines are
corresponding to maximal values a spherical geometry would yield.
Gray curves depict for which angle a particular fraction of this value
is met (e�ciency). (a) and (b) correspond to the two cases (I,i) and

(I,ii) with values presented in Tab. 4.2.

this statement must hold, however, it is worthwhile to examine how precisely addi-
tional material in�uences the e�ect of the EHM.

In Fig. 4.3 the average traction shows that for small thicknesses δ ≤ 0.1 the
EHM patch does show maximal e�cacy regardless of the opening angle. Implicitly,
this means, that adding more material by covering a larger area does not increase
the ventricle's capacity to withstand loading pressure. Instead, it is advised to in-
crease the thickness of the patch. This reasoning neglects, of course, that for constant
forces, more material sill can deliver more mechanical energy, thus still impacting the
pressure-volume relation of the ventricle1.

Increasing the thickness a bit further reveals that increasing Θ while keeping the
e�cacy constant necessitates likewise an increase in thickness. This e�ect is shown
separately in Fig. 4.4. Except for the total traction values, the results for the two
cases (i) and (ii) (see Tab. 4.2) do not exhibit any di�erences noteworthy, thus mak-
ing the analysis robust against changes in constitutive parameters.

In conclusion, it can be noted that, expectedly, for small thicknesses the e�ect of
a lack of connectivity to the underlying tissue is negligible and other factors should
inform how a EHM should be constructed. Starting from a value of roughly δ ≈ 0.2,
which for ∆ = 0.2712 is equivalent to approximately 75% of the myocardial wall
thickness, connectivity plays a crucial role in patch design.

Case (II): Constant Volume

Given the total volume of the arti�cial material, what is the optimal opening angle?

In the case where the total amount of EHM has to be budgeted, maybe due to its
costs, it may be of interest to know what the optimal relation between patch thickness
and opening angle is. If the volume is kept constant while Θ changes, of course, δ also
has to be adjusted as depicted in Fig. 4.5. Among these, the geometry is considered
optimal if the average traction given by Eq. 4.13 is at its maximum. The results
can be found in Fig. 4.7. Despite V̂EHM displaying a large range from 5-100% of the
interior volume Vref = 4πR3/3 the angles at which the maxima are found are con�ned

1As previously discussed in Sec. 1.1.2, the area encapsulated by the pressure-volume relation
equals the total energy consumption per cycle.
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(a) (b)

Figure 4.4: Curves of constant e�ciency for the results presented in
Fig. 4.3 with the two di�erent subplots (a) and (b) corresponding to
the cases (I,i) and (I,ii) with values presented in Tab. 4.2. The results

stay almost untouched by b.

to the interval between 40◦ − 100◦. This �nding is highlighted in Fig. 4.6. It repro-
duces the previous conclusion that the sti�ening parameter b plays only a minor role.

Figure 4.5: Pro�les of half of the disc with
various opening angles while EHM volume is

kept constant.

Extreme geometries, such as a disk of
small volume V̂EHM = 0.05 and large
opening angles Θ ≥ 300◦, amplify nu-
meric inaccuracies which can be observed
in Fig. 4.7. However, this is not the rea-
son, all curves in Fig. 4.7 show a lit-
tle kink for small values of Θ. Instead,
this feature arises directly from geomet-
ric properties. The same feature can be
found when approximating the simula-
tion analytically by roughly guessing the
deformation pro�le. Since using these models to predict the maxima was not crowned
with success, they are omitted here.

Figure 4.6: Parameters for which the average tension tavg from Fig.
4.7 reaches its maximum. The sti�ening parameters b expresses only

little in�uence on the slope of the curve.
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(a) (b)

Figure 4.7: Average central tensions (E. 4.13) for an EHM of constant
normalized volume V̂text with the two di�erent subplots (a) and (b)
corresponding to the cases (II,i) and (II,ii) with values presented in
Tab. 4.2. The sharp spike in (b) for V̂EHM = 0.2 and Θ ≈ 35◦ stems
from errors in the simulation. The same holds for the sudden increase
beyond Θ = 300◦ concerning V̂EHM = 0.05 in both cases, which is due

to a poor resolution as the shell becomes extremely thin.

4.2.2 Spherical Left Ventricle

Figure 4.8: Halfed cross section
of a spherical, infarcted ventricle on
which EHM is sutured. Colors repre-
sent the three di�erent domains EHM
patch, scarred tissue and regular my-
ocardium. The given opening angle
of the infarct Θinf corresponds to an
infarction size of 25% with respect to
ventricular surface area (induced in
Ref. [28]). While ∆ is normalized
with respect to R, δ is normalized

with respect to R(1 + ∆).

In the previous section, I discussed how the shape
of the EHM alone in�uences its potential to exert
force and thus withstand ventricular pressure. In
this section, I take the same constitutive laws as
in Sec. 4.2.1 and supplement the analysis by a
ventricle featuring a scarred domain as depicted
in Fig. 4.8. This approach helps to illuminate the
interactions between di�erent tissues and further
con�ne previous conclusions.

Constitutive model parameters are chosen
such that the healthy myocardium, displays the
same mechanical properties as the EHM while
matching a left ventricle with an EF of 66% in
the non-infarcted state. The resultant parame-
ters can be found in Tab. 4.3. Just as before, I
analyze the in�uence of b as well as the EHM size
for two di�erent scenarios: (I) constant thickness
& (II) constant volume.

Scarred tissue, as described in Sec. 1.2, un-
dergoes several stages of remodeling in which the
tissue gets thinned out and structurally strengthened by an increase in collagen con-
tent, thus completely changing its mechanical properties. While thinning e�ectively
softens the tissue, the increased collagen content sti�ens it. Depending on the age of
the infarct, this can lead either to an increased or to decreased left-ventricular ED-
PVR [24, 26], as previously depicted in Fig. 1.6. To capture this feature I adopt an
approach from Ref. [102] where the geometry stays untouched and instead pre-factors
in the constitutive law

Ψinf =
ainf
2b

[eb(I1−3) − 1] (4.16)
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are scaled to match with experimental data. Although the authors found an apparent
tissue softening factor of roughly 1/2, I want to accommodate the strong variability of
scar sti�ness, wherefore I include several di�erent constitutive parameters which can
be found in Tab. 4.3. Please note that scared tissue does not contain cardiomyocytes,
which is why Eq. 4.16 contains only a homogeneous, passive term.

In the Introduction (Sec. 1.2) I discussed the importance of the border zone be-
tween scar and healthy myocardium. In simulation contradictory �ndings were made
concerning the importance of explicit modeling of the border zone. In Ref. [99] only
a border zone with greatly impaired contractility could reproduce experimentally ob-
served strains while Ref. [103] found the exact opposite, i.e. that making such a
functional di�erence is unnecessary. Because local strains and remodeling are not the
focus of this section I decide to use the simple approach of ignoring any functional
border zone as re�ected by Fig. 4.8.

Figure 4.9: Slice of the sphere expressing
large stresses exerted by a thick EHM causing
the non-contractile scar underneath to buckle.
This is accompanied by unphysiological volume
ratios J (see Eq. 2.10), rendering adequate
simulations impossible for large values Ta or δ.

A critical problem in the simulation of
the scarred tissue is that, as it gets com-
pressed by the EHM lying on top, it
starts buckling as portrayed in Fig. 4.9.
Consequently, incompressibility is vio-
lated in the vicinity of the kink and the
numerical scheme eventually fails to con-
verge even with the �nest mesh resolu-
tions tested. Although buckling ampli-
�es directional sensitivity, switching to a
�ber dispersion model does not circum-
vent poor convergence, wherefore simu-
lations are performed with the simpler
model nevertheless. This means, ergo,
that not all Θ− δ combinations from the
previous section are compliant for simu-
lation.
The metrics used to evaluate ventricu-
lar performance, derived from pressure-
volume relations, typically are Ees, SV,
and EF. These I want to complement
with a metric combining the SV of the
healthy, infarcted and grafted ventricle,
hence forming the relative gain in SV
(RGSV) which I de�ne as

RGSV = 1− SVhealthy − SVgraft

SVhealthy − SVinf
.

(4.17)

This value is 0 in the infarcted state and
increases as EHM is added to the ventricle, eventually exceeding the original SV at
values of RGSV>1. The normalized Ees is given by the ratio

ν = Eesgraft/Eeshealthy (4.18)

of the linear coe�cients describing the ESPVR as de�ned in Eq. 1.2. Loosely speaking,
deformations, as portrayed in Fig. 4.9, can be rather irregular wherefore the VV must
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a(kPa) ain ∆ Θin case b Ta(kPa)

1.15

(
1

2
, 1, 3

)
· a 0.27 120◦

(i) 3.82 78.3
(ii) 7.64 126

Table 4.3: Constitutive parameters for a spherical left ventricle that
displays an EF of 66% prior to infarction. Passive material properties

are related to the �ndings of Sec. 2.4.

be obtained through integration rather than simple radius identi�cation. Since this
volume is not part of the material and thus the simulation domain, instead Gauss law
is utilized to transform a volume integral into an integral over the endocardial surface
∂Bendo yielding

VV =
1

3

∫
∂Bendo

x · ds (4.19)

following the same notation as introduced in Sec. 2.1.
In Sec. 1.1.1 it is mentioned that ventricular wall thickening is a key player to

achieve large SVs. In the literature, it is claimed that, traditionally, in computer
simulation, it can only be accounted for 20% of the 40% wall thickening as �ber sliding
is not explicitly targeted [104, 105]. With the simplistic, spherical model described
here, a total of 70% wall thickening between diastole and systole can be observed in
the healthy state. This follows directly from volume conservation, an EF of 66% and
a normalized EDV=2 which stems from the adaption to the Klotz curve.

Case (I): Constant Thickness

Case (I,i): The softer the scar e�ectively becomes through remodeling, the more
severely cardiac pump function is impaired as demonstrated in Fig. 4.10. In fact,
during diastole the VV increases due to the infarction but the overall SV, here manifest
in the EF, decreases drastically since the ESV increases greatly. As EHM is added
to the infarcted ventricle, both EDV and ESV decrease expectedly, thus supporting
a regain in SV which eventually exceeds the healthy state. What is alarming at
this point is that a thickness coe�cient δ = 0.05 is equivalent to an EHM being
one fourth the thickness of the myocardium and despite this enormous size it only
recovers roughly 40% of the SV at a maximal angle of Θ = 360◦. While this clearly
is an increase that can decide over life and death it is still telling for how much tissue
is actually needed to sustain a healthy cardiac output. How strong incrementing the
size of the EHM further impacts cardiac output is estimated using the normalized
derivative with respect to volume

Υ =
∂RGSV

∂V̂EHM
=
∂RGSV

∂Θ

(
∂V̂EHM
∂Θ

)−1

=
4

∆V̂ sin(Θ/2)

∂RGSV

∂Θ
, (4.20)

where

∆V̂ = (((1 + ∆)δ + 1 + ∆)3 − (1 + ∆)3) (4.21)

is the normalized volume of a full EHM shell. Since an analytic solution to Eq. 4.20
is not available, instead, I use a midpoint �nite di�erence approximation based on
the simulation data. The result, displayed in Fig. 4.10e, shows strong similarities
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to the curves observed for a disk of constant volume (Fig. 4.4). An initial decrease
followed by a minimum at 40◦ leads to a peak at roughly 100◦ after which EHM im-
pact gradually declines. Both these measures estimate the e�ciency of the heart and
while Fig. 4.6 displays a small rightward shift in maximal e�ciency as EHM thickness
increases, the location of the maximum in Fig. 4.10e is virtually independent of δ. A
simulation, conducted with a larger scar (Θin = 144◦ in Fig. 4.11) reveals how the
maximal e�ciency shifts along with the border zone of the infarct. This advocates an
already intuitive assumption that the EHM should cover at least the scarred tissue.
Also the inotropy displays only weak responses to an increase in EHM thickness and
is mostly dependent on the opening angle.

Varying the scar sti�ness alters the absolute values of the individual metrics with-
out qualitatively changing the analysis, as depicted in Fig. E.1 and E.2. Speci�cally
doubling the value of ain from a/2→ a shows virtually no changes to the simulation
results, whereas a sixfold increase has a small, yet noticeable, impact, thus highlight-
ing the nonlinearity of cardiac mechanics. In e�ect, scar sti�ness plays a minor role
in EHM e�ciency, wherefore, it appears to be negligible for the design of an opti-
mal EHM patch. Which patient might bene�t from an implantation depends on scar
sti�ness though.

Case (I,ii): When increasing the sti�ening factor b, the EDV decreases substan-
tially, mandating an increased contractile force in order to keep the same EF. Conse-
quently, buckling, as depicted in Fig. 4.9, is pronounced much more strongly, where-
fore the span of thickness parameters for which the simulation shows convergence is
reduced. Additionally, the original drop in EF as shown in Fig. 4.12a is not as severe
as for the softer tissue, making the ventricle more resilient to infarcts. The combina-
tion of a lesser drop in SV and a much stronger contractile force also facilitate the
gain in SV shown in Fig. 4.12b. Interestingly, beyond Θ = 200◦ additional EHM has
nearly no e�ect in the RGSV at all. The Ees (Fig. 4.12d) on the other hand drops
signi�cantly and cannot be recovered with the amount of EHM added here. While for
small values Θ the Ees does not show much dependence on the patch thickness, just
like in case i, this behavior changes at roughly Θ ≥ 100◦. Yet, overall changes to the
ESPVR stay small.

Case (II): Constant Volume

The analysis of the case where the volume of the EHM patch is kept constant, follows
the same lines as done in the previous section. For case (i) the extremal values of the
RGSV as shown in Fig. 4.13c, previously observed in the disk model (Fig. 4.6), are
extenuated to the point where it is di�cult to observe them at all. Instead, the curve
quickly plateaus beyond an opening angle of roughly Θ ≥ 150◦. Only at the largest
volumes, the extremal values become signi�cant. This is in great contrast to the
�ndings of case (ii), presented in Fig. 4.14. Here, the extremal values for the RGSV
and ESV are clearly visible and while they do not coincide with those shown for the
disk (Fig. 4.6) they still show the same trend leading to the conclusion that they form
mostly due to the same geometric reasons, i.e. the interplay between connectivity and
wall thickness. As with case (I), changing infarct sti�ness (see App. E.2) impacts
only how e�cient the EHM patch is but not what the optimal shape is. With case
(ii) EHM buckling plays a crucial role which can be diminished by an increased scar
sti�ness.

Just like with case (I,i, ainf = 0.5a) the Ees, shown in Fig. 4.13d, is less in�uenced
by the total amount of EHM tissue and instead relies mostly on larger angles Θ. As
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Case (I,i, ainf = 0.5a) � Changes to the ventricular
performance represented by di�erent metrics (a) EDV, (b) ESV, (c)
EF, (d) regain in SV (Eq. 4.17), and (f) normalized Ees (Eq. 4.18).
While apparent softening of the scarred tissue slightly increases the
EDV this e�ect gets outweighed by the huge increase in ESV thus
causing a drop of SV manifesting itself in a lowered EF. Adding EHM
increases cardiac output even to a point where it exceeds the SV of a
healthy heart. (e) Derivative of RGSV with respect to EHM volume

(Eq. 4.20) indicates strong e�cacy close to the border zone.
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(a) (b)

Figure 4.11: Case (I,i, ainf = 0.5a) Larger scar Θin = 144◦ � (a)
RGSV (Eq. 4.17) is lowered compared with Fig. 4.10d. (b) E�ciency
according to Eq. 4.20 shifts along with the infarct size emphasizing

the need to cover the entire infarct.

(a) (b)

(c) (d)

Figure 4.12: Case (I,ii, ainf = 0.5a) � Changes to the ventricular
performance represented by di�erent metrics (a) regain in SV (Eq.
4.17), (b) EF, and (d) normalized Ees (Eq. 4.18). (c) Derivative of
RGSV with respect to EHM volume (Eq. 4.20).The Ees experiences a
drastic drop which cannot be recovered by the addition of EHM tissue.
Due to the enlarged sti�ening coe�cient b crimping during systole is

ampli�ed wherefore much fewer simulations converge.
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(a) (b)

(c) (d)

Figure 4.13: Case (II,i, ainf = 0.5a) � Changes to the ventricular
performance represented by di�erent metrics (a) EDV, (b) ESV, (c)
RGSV (Eq. 4.17), and (d) normalized Ees (Eq. 4.18). Extrema,
indicating the most e�cient EHM distribution, are shallow for small

values V̂EHM.

myocardial sti�ness is increased, and hence so is the contractile strength of the EHM,
inotropy plummets with little to be done for it.

4.2.3 Conclusion & Discussion

In this section, I presented a parameter study highlighting geometric cues for op-
timal EHM patch design. In the initial Sec. 4.2.1 I focused the attention on how
a free boundary and the resulting lack of connectivity impacts the tissues capacity
to build up traction forces, which in Sec. 4.2.2 was supplemented with a study on
the interaction between myocardium, scar, and patch. The most important conclu-
sions which can be drawn from a comparison of the parameters sets are as follows:

� The intuition that the EHM patch should be larger than the scar is con�rmed
using the e�ciency estimate Υ presented in Figs. 4.10e and 4.11a.

� While traction tavg shows optimal values between 50◦ ≤ Θ ≤ 120◦ for the disk
model at constant EHM volume, these values are right shifted for the sphere
and depend strongly on the contractile coe�cient Ta where smaller such values
promote larger opening angles.
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(a) (b)

(c) (d)

Figure 4.14: Case (II,ii, ainf = 0.5a) � Changes to the ventricular
performance represented by di�erent metrics (a) EDV, (b) ESV, (c)
RGSV (Eq. 4.17), and (d) normalized Ees (Eq. 4.18). Extremal values
in(b) and (c) are strongly pronounced and right shifted compared with
the �ndings from Fig. 4.6. Just as in Fig. 4.12d the Ees experiences a
drastic drop which cannot be recovered by the addition of EHM tissue.



4.2. Geometrical Aspects of EHM patches 57

� Also inotropy bene�ts mostly from larger angles Θ. In case (i) the Ees returns
to normal for values roughly Θ = 150◦ regardless of scar sti�ness.

� For an increased baseline sti�ening factor b = 7.64 the Ees drops much more
drastically and is also much more di�cult to recover, indicating the need of
patient speci�c EHM design.

� Scar sti�ness ainf does not impact the optimal design of the EHM patch but
its total e�ciency.

� While doubling the scar sti�ness shows barely any impact on the di�erent
metrices, increasing it by a sixfold has strong implications. As the myocardium
undergoes remodeling over several weeks after the infarct, the exact time point
at which EHM tissue is implanted might play a crucial role in its potency as a
cure.

This study aimed at obtaining quantitative insights with as little speci�cations as
possible, wherefore normalization is used wherever applicable and also the contractile
force is tied to the EF such that is always the same in the respective healthy ventricle.
Evidently, such a study is by no means exhaustive and many parameters, like scar size
Θinf, scar sti�ening factor binf, or normalized minimal sarcomere length λ0, still can
be tuned for a better understanding of the models used. Additionally, the parameter
space of the patch geometry was probed by just either varying Θ or δ, thus returning
two disjoint optimality measures. For a precise and unique solution, an unconstrained
variation of the two parameters combined with a cost function for EHM volume could
prove to be fruitful. It is discussed in Sec. 1.2 that stresses in the border zone of the
scar can cause the infarction to grow. Respecting this e�ect in the analysis also shows
the potential to change some of the results.

Further, future studies must provide evidence, both in simulation and experiment,
that the �ndings made here still hold under more realistic conditions. Especially con-
sidering actually thinned scar tissue, or even realistic geometries derived from MRI
reconstruction, is of importance to support the claims formulated here.

The following section is dedicated to the understanding of the in�uence of the
�ber architecture in the EHM on its e�ciency. For that purpose, the results, pre-
sented here, are used to inform what parameters should be used as a base line. A
combination of Θ = 180◦ and δ/∆ = 0.5 aims at a reasonable recovery of the SV
while keeping the dimensions reasonable with regards to actual implantations. The
choice is further supported by the result, that with strong contractile forces also the
e�ciency measured with Υ (Eq. 4.20) drastically drops above an angle of Θ ≥ 180◦

rendering additional material ine�ective.
In Sec. 4.2.2 it is discussed that buckling of the scarred tissue yields large bulk

pressures which are accompanied by increased local strains. These strains spread out,
thus leading to a heterogeneous stress distribution at the scar-patch interface bearing
the potential of rupture of the already weaker contact. This invokes the question
whether, depending on the apparent scar sti�ness, there exists a threshold for con-
tractile force which the EHM patch must not cross. If so, it might be bene�cial in
certain cases to reduce the contractility of the EHM deliberately for the purpose of
long-term function preservation.



58 Chapter 4. Successive Ventricular Modeling

Paremter Value De�nition

d 60mm Eccentricity
τ 12.5mm Basal myocardial wall thickness

rs,endo 23.5mm Short inner axis
rl,endo 65mm Long inner axis
rs,epi 36mm Short outer axis
rl,epi 70mm Long outer Axis
λendo 0.38 First prolate spheroidal coordinate, Endocardium
λepi 0.57 First prolate spheroidal coordinate, Epicardium

Table 4.4: Geometric parameters for prolate-spheroidal left ventricle
geometry as proposed by Ref. [67] (and similar to Ref. [86] ). Trun-
cation happens at the center along the short axis as depicted in Fig.

4.15 implicating a reference VV V0 = 74.5mL.

4.3 Aspects of Fiber Architecture of EHM Patches

4.3.1 Geometric Ventricular Properties

Ellipsoidal Shape

To good approximation the left ventricle can be modeled as a hollow and truncated
prolate ellipsoid (depicted in Fig. 4.15) [57, 85, 87, 106]. Most clinical assessments of
left ventricular dimensions involve in vivo measurements using ultrasound, X-ray or
MRI techniques. This means that throughout the measurement process the heart is
constantly under pressure, wherefore in vivo data has only limited use for accessing
left ventricular dimensions of the unloaded reference con�guration. Obtaining the
latter is crucial, since all strains and hence stresses in numerical simulation are based
on it (as outlined in Sec. 2.2). As shown in Ref. [107], in addition, widely used MRI
measurement techniques show signi�cant deviations from classical autopsy techniques
especially for the unloaded excised heart. That said, measurements from di�erent
groups and cohorts show only a lose overlap in their results [51, 108, 109].

For the modeling of an idealized elliptical left ventricle, parameters were taken
from Ref. [67] as they are in agreement with measurements shown in Ref. [57]. Said
parameters can be found in Tab. 4.4.

With the prolate spheroidal coordinates (λ, µ, θ) relating to Euclidian coordinates
~x via

x1 = d coshλ cosµ

x2 = d sinhλ sinµ cos θ

x3 = d sinhλ sinµ sin θ (4.22)

one can de�ne the average over the endocardial surface for any given function f that
shows no dependence on θ as

〈f〉Surf ≡
2πd2

A

∫ π

0
f sinhλ sinµ

√
sinh2 λ cos2 µ+ cosh2 λ sin2 µ dµ, (4.23)
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Figure 4.15: Dimensions (mm) of the elliptic ventricular geometry
corresponding to Tab. 4.4. Colors represent the three di�erent do-
mains EHM patch, scarred tissue and regular myocardium. The thick-
ness of the EHM patch is subject to change between simulation runs.

The infarct has a surface area fraction of roughly 20%.

where

A = 2π

(
a+

c2

√
c2 − a2

arcsin

√
c2 − a2

c

)
(4.24)

is the surface of the ellipse with short and long axis a = d sinhλ and c = d coshλ re-
spectively. Averaging the relative myocardial wall thickness τ(µ) = |~x(λepi)−~x(λendo)|
over the endocardial surface, we, thus, obtain

〈τ/||~x(λendo)||〉Surf = 0.2952. (4.25)

This value is in close agreement with the result from a spherical model matched to
normalized EDPVR as detailed in Sec. 2.4. Please note that the average in Eq. 4.25
overestimates the actual average wall thickness, since it is not de�ned as the shortest
distance between the endocardial and myocardial surface. The di�erence between the
two de�nitions, however, is small for the range of parameters used here.

Fiber Architecture

Healthy Left Ventricle: Triggered by the contraction of cardiomyocytes, in a
twisting fashion, the heart ejects blood to the vascular system. Cardiomyocytes are
cylindrical muscle cells of just roughly 100µm in length and 10-25µm in diameter [110,
111], thus making the acquisition of the cardiac �ber architecture challenging. Yet,
this architecture is vital for both structural mechanics and electrophysiology. Even
though various e�orts have been made over the past decades, the actual �ber archi-
tecture still is a vibrant and controversial topic to this date as reviewed in Ref. [7].

In principle, there are two di�erent approaches most frequently used to mea-
sure the �ber architecture. It is either di�usion tensor MRI (DT-MRI) [112, 113]
or microscopy-based histology [57, 114] that is consulted. While DT-MRI allows �ber
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mapping of the whole and still intact heart, its resolution does not reach that of mi-
croscopy.

Unsurprisingly, in terms of mathematical modeling, there are also several di�erent
paths frequently taken. The avenue often used in conjunction with DT-MRI is based
on di�eomorphic mapping, where the �ber architecture of a donor's heart is smoothly
scaled and deformed to match the geometry of a target heart [73]. This procedure is
feasible as long as di�erences between individuals can be assumed small, which was
shown in a cohort of ten individuals by Ref. [75].

Another approach incorporating DT-MRI showing some advances lately is the di-
rect in vivo assessment of �ber architecture [11]. Since the data acquisition in DT-MRI
is subject to strong time constraints, measurements for the whole heart involve several
beating cycles under breath-holding. For some patients, unfortunately, this technique
is inadequate as breath-holding can become an insurmountable burden depending on
their conditions.

The high resolution of histological data obtained for example from second-
harmonic microscopy comes at the cost of the need for accurately prepared tissue
specimens. This procedure involves cutting the tissue, therefore releasing residual
stresses which might alter the �ber orientation [57]. Additionally, and more impor-
tantly, although in principle possible, reconstructing an exhaustive �ber map for the
entire heart or even just a single ventricle based on a series of speci�cally prepared
specimens is di�cult and time-consuming, rendering it often-times impractical.

The solution to this is a simpli�cation of the data at hand, formulating a single
and simple rule describing the myocardial architecture globally. Sparked by the early
discoveries of Streeter et al. [78], most rule-based methods (RBMs) associate a linear
dependency of �ber orientation on tissue depth as depicted in Fig. 4.16. Fibers are
assumed to be parallel to the epicardial surface and vary from longitudinal alignment
at the endocardium to circumferential alignment at midwall back to a longitudinal
alignment at the epicardium.

In summary, it can be noted that di�eomorphic mapping captures a larger amount
of details, despite its inferior resolution compared to microscopy, which makes it a
more accurate and realistic method in comparison with RBM. However, �ber mapping
involves complex registration algorithms and depends heavily on the quality of the
donor data, unnecessarily complicating implementations [77]. That said, RBMs are
simple to implement, easy to adapt for di�erent shapes and yield good agreement
between simulation and experiment in a series of studies [77, 80, 115], wherefore in
this work I only make use of them.

For any RBM the need to estimate tissue depth is immanent. A common approach
goes back to the work of Potse et al. [116], who de�ned the relative depth at any point
in the tissue as

e =
dendo

dendo + depi
, (4.26)

where dendo and depi denote the minimal distance to endocardium and epicardium
respectively. An issue with the de�nition in Eq. 4.26 is that the minimal distance
is not necessarily a regular function, meaning that it can have discontinuities as well
as degeneracies, which impede numerical approximations. To overcome the issue of
discontinuity in simulation, the authors de�ned the averaged relative depth ē which
takes into consideration the nearest neighbors in the material mesh. This way, ∇ē
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can be used as a reliable transmural base vector, which later is needed to de�ne the
�ber orientation.

Recently, a slightly di�erent myocardial wall depth estimation received an in-
creased interest, as per de�nition it complies with the regularity condition. Wong and
Kuhl [117] propose a Poisson interpolation scheme which relies on the solution of a
homogeneous Laplacian

∆e = 0, with boundary conditions e
∣∣
∂Bendo

= 0 , e
∣∣
∂Bendo

= 1 ,

and n · ∇e
∣∣
∂Bbase

= 0, (4.27)

where ∂Bendo, ∂Bendo and ∂Bbase denote endocardial, epicardial and basal surfaces
respectively, while n represents the surface normal vector. This way, a smooth, dif-
ferentiable and curl free transmural base vector parallel to ∇e emerges. Adapting the
approach of Ref. [104], the orthonormal, local, curvilinear base system (f , s, f × s), as
depicted in Fig. 4.16, can be constructed via the algorithm shown in Box 1 below.

1. De�ne ventricular centerline vector k along the long axis.

2. Obtain wall depth estimator e by solving Eq. 4.27.

3. Calculate sheet vector via s = ∇e/||∇e||.

4. Calculate �ber vector via f = s× k/||s× k||.

5. Calculate �ber inclination angle θ = θendoe+ θepi(1− e).

6. Rotate �ber vector using Eq. 4.28, s.t. f ← Rs(θ)f .

(7. Calculate sheet inclination angle φ = φendoe+ φepi(1− e). )

(8. Rotate sheet vector using Eq. 4.28, s.t. s← Rf (φ)s. )

Box 1: Base Construction Algorithm

The algorithm makes use of the Rodrigues' formula

Rx(ω) =

 cosω + x2
1 x1x2h− x3 sinω x2 sinω + x1x3h

x3 sinω + x1x2h cosω + x2
2h −x1 sinω + x2x3h

−x2 sinω + x1x3h x1 sinω + x2x3h cosω + x2
3h

 ,

with h ≡ 1− cosω, (4.28)

which de�nes a matrix Rx(ω) corresponding to a rotation by the angle ω about
a normalized vector x. Further, a range for the �ber inclination angles, given by
θendo = 60◦ and θepi = −60◦ as observed in humans by Ref. [57, 79], is employed.
However, this speci�c choice is not carved in stone. As it has been worked out in
Ref. [115], �ber angles strongly in�uence the EDPVR, leading to an increased VV
as |θendo − θepi| increases. In a patient-speci�c parameterization study [74], it was
also found that the maximal �ber angles strongly in�uence error estimates with best
values obtained at θendo = −θepi = 50◦ . Interestingly, though, these �ndings are
contradicted by Niederer et al. [45]. They conclude speci�cally that �ber architecture
has so little in�uence on organ scale metrics that considering patient-speci�c �ber
maps is unnecessary.

In step 5, a linear relation is employed due to its experimental prevalence. However,
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Figure 4.16: Ventricular base vectors determined following the algo-
rithm given in Box 1. Variable e is the solution of a Laplace equation
according to Eq. 4.27 and measures the local tissue depth. Please note

that left- or right-handedness of the base vectors is immaterial.

a cubic law also �nds practice in simulations [116], as it shows a better match with
experiments performed on dog hearts [78]. The base system constructed here loosely
makes use of the assumption that �bers are parallel to the endocardial and epicardial
surface, which is justi�ed by the experiments in Ref. [75].

Steps 7 and 8 from the algorithm are only of interest if the constitutive model used
is of orthotropic nature (for more details see Sec. 2.2.1). In the literature [80] the
values φendo = 45◦ and φepi = −45◦ can be found which are based on dog and mouse
experiments [76, 118]. However, in Ref. [9] it is pointed out that a di�erent de�nition
for the inclination angle should be used, since, in experiments, it is measured in the
longitudinal plane, which resembles the (fs)-plane before step 6 of the algorithm shown
in Box 1. This means that instead

φS = arctan(θS tanφ′S) (4.29)

with φ′endo = 45◦, φ′epi = −45◦ and S ∈ {endo, epi} is proposed. The organization
of the sheets is delicate to compute as discussed by Gilbert et al. [119]. As it varies
strongly between di�erent sections of the ventricle [77, 111] and displays irregular angle
�ips on a submillimeter scale [119], wherefore precise numbers have to be taken with
care. For a HO model, though, it has been shown that variability in sheet orientation
only shows little impact on stress development in the left ventricle [76]. Since �ber
dispersion reduces directional sensitivity as shown in Ref. [49], it is reasonable that
also for the 2SGST model sheet direction plays a minor role. That said, a transmural
variation of sheet orientation is omitted in the simulations presented below. Instead,
the values φendo = φepi = 0 are used. For the dispersion coe�cients for �bers and
sheets respectively I adopt the values bρf = 4.5 and bρs = 3.9 which were obtained
from human myocardium [57].
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Infarct: In Sec. 1.2 the di�erent phases of tissue remodeling are mentioned. This
remodeling encompasses not only an increase in local sti�ness, particularly in �ber
direction but also a change in �ber orientation. Where cardiomyocytes die and get
replaced by collagen �bers, these reorient such that they maximize their load-bearing
capacity, meaning that they point in the direction of principal strain [120]. For a scar
at the free wall as depicted in Fig. 4.15, this implicates a predominantly circumfer-
entially alignment [28, 121]. In contrast, at the apex, strains are distributed more
broadly and so are collagen �bers. This is the reason, why, for the scar, I choose the
values θendo = θepi = φendo = φepi = 0.

Along with the mean �ber orientation, of course, also the dispersion of the collagen
is di�erent from that of the myocytes. However, to my knowledge, there exists cur-
rently no study which quanti�es �ber dispersion in infarcted myocardium. Therefore,
and in an e�ort to stay in line with the simpli�cations introduced for the spheri-
cal model, the dispersion for the scarred tissue is assumed to be identical to that of
healthy myocardium as de�ned in the previous section.

EHM patch: In Ref. [122] it has been shown that anisotropic reinforcement of
infarcts can improve pump function. In particular, longitudinal reinforcement was
shown to be superior over circumferential reinforcement. This sparks the question of
whether and how in an EHM patch its performance is in�uenced by the �ber architec-
ture. While, just like the scarred tissue, in simulation EHM is considered to display
the same dispersion as healthy myocardium, three di�erent cases for the mean �ber
orientation are assumed. The �rst two cases revolve around the assumption that it is
possible to train EHM patches prior to implantation, demanding a maturation, which,
as discussed in Sec. 1.3, entails considerable complications [40]. Just as in Ref. [122],
these two cases comprise longitudinal and circumferential mean �ber alignment as
displayed in Fig. 4.17. The third case comprises remodeling occurring after implanta-
tion happened. While it is still unclear how �bers e�ectively change their alignment,
it is postulated here that they align smoothly with the surrounding healthy tissue.
This is realized through solving the Laplace equation for the individual base vectors
with Dirichlet BCs such that the base system, there, is continuous. A subsequent
Gram-Schmidt process ensures that the base vectors are be orthonormal.

4.3.2 Boundary Conditions

The Heart is engulfed in the pericardium, surrounded by the lungs, stomach, and
diaphragm, all pressuring it from the outside, while the pulmonary artery supplies
the heart with freshly oxygenized blood, thus elevating the interior blood pressure. In
preparation to render computational simulations possible, it is obligatory to reduce
the complexity of this zoo of di�erent boundary conditions in a con�ned manner.
Considering that I do not intend to simulate the �uid dynamics of the blood I have to
replace the �uid-structure interaction at the endocardium with a suitable boundary
condition (BC). It is judicious to assign a homogeneous pressure, with zero value at
early diastole versus 8-12mmHg [61, 73] EDP and values around 100mmHg at the
end of systole.

Monoventricular, just like biventricular, models commonly content themselves with
the assumption of a free outer wall, hence rendering its surrounding devoid. However,
studies incorporating the pericardium, a slippery sack enveloping and thereby stabi-
lizing almost the entire heart (see Fig. 1.1), showed that it strongly in�uences cardiac
mechanics [100, 123, 134, 135]. While the in vivo parameter estimation using DT-
MRI strain measurements yields good agreement between experiment and simulation
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Figure 4.17: EHM patch with the three distinct mean �ber align-
ments corresponding to di�erent simulations as shown in Fig. 4.20.
Circumferential and longitudinal alignments are based on the postu-
late that tissue entrainment prior to implantation is possible. Smooth
interpolation of the base belonging to the surrounding healthy tissue
re�ects remodeling after implantation. Fiber orientation exerts only
little transmural variation which is why only �bers on the surface are

shown.

concerning the EF, the deformation patterns showed much stronger accordance to
imaging data after a spring like representation of the pericardium was included. Yet,
also these models leave the e�ect of external organs to wonder. For simplicity, the
epicardium is chosen to be an open boundary.

The left atrium is connected to the left ventricle via the mitral valve, which in
turn is surrounded by a �brous ring known as the mitral annulus. The geometry
presented in Fig 4.15 is truncated at the interface between the mitral annulus and the
myocardium (c.f. Fig 1.1). Although this truncation is frequently used, it is still rather
arti�cial, traversing �broelastic connective tissue, thus giving rise to complex BCs at
the base. In order to make the interface numerically tractable nonetheless, strong
simpli�cations are made. The collagenous material, the mitral annulus is made of, is
rather sti�, which can be accounted for by applying rigid BCs [70]. Compared with
experimental results, however, this appears to be an oversimpli�cation [123]. Finding
the right amount of complexity is not an easy task � Circumstances fertilizing scienti�c
creativity.

In Tab. 4.5 prominent BCs are listed and brie�y described, several of which can
be represented using a spring foundation. Therein, the �rst Piola-Kircho� stress P is
balanced on the boundary via

Pn = [νrer ⊗ er + νzez ⊗ ez + νφeφ ⊗ eφ] (u− u0), (4.30)

where er, ez, and eφ are the radial, longitudinal, and circumferential base vectors
respectively in cylindrical coordinates while u describes the local displacement at the
basal boundary. The reference displacement u0 can be determined by experimental
data but often-times it is simply set equal to zero. The spring constants νr, νz,
and νφ typically are rather large, resembling the sti�ness of the mitral annulus. For
example in Ref. [104, 123] the value νr = νz = νφ = 50 kPa/cm is used, allowing only



4.3. Aspects of Fiber Architecture of EHM Patches 65

Description Ref.

The base is held completely �xed in all directions. [70]

The base surface is kept �xed in accordance with experimen-
tally derived data.

[47]

Translation along and rotation about longitudinal axis are
forbidden, while radial stretching still is allowed.

[67, 73, 98, 115]

Only either the outer or inner ring of the base surface are
held �xed, while the rest may deform unconstrained.

[45, 118]

A spring foundation aligns simulation with experiment, while
at the same time reducing in�uence of experimental errors
and discontinuities.

[104, 123]

Longitudinal displacement is constrained and in plane defor-
mation is restricted with a spring foundation

[100]

Only the center of mass is kept �xed. It is unclear how
rotation is penalized.

[60]

Table 4.5: Short summary of some common base plane BCs. Not
only are the fromalisms and the emanating algorithms di�erent but
also the biology that is hence captured. A clear recepe of when to use
which formalism remains disguised . For more details please see Ref.

[59].

for small deformations at the base including translation in the long-axis direction.
The geometry outlined in Sec. 4.3.1 represents a ventricle which is not directly cut
underneath the mitral annulus and instead has its base at its largest extent in the
short-axis plane. With the intention not to undercut the pump volume of the heart
in the simulations below I employ rather soft BCs as done in Ref. [100]. They use
Eq. 4.30 with the values

νz =∞, νr = νφ = 0.5 kPa/cm and u0 = 0, (4.31)

thus completely denying out of plane movement while twist and radial displacement
still is allowed. A positive side e�ect of using such a spring foundation is that, con-
trary to a �xed boundary, peak stresses get reduced thanks to the additional degree
of freedom. As discussed in Ref. [49], otherwise, internal angles can get so small that
evaluating derivatives proves di�cult at the edges, which, in turn, a�ects the accu-
racy and convergence of the FEM solver. Although the EHM patch shares the basal
boundary, it is not directly connected to the structure of the mitral annulus, which is
why a free BC is chosen instead.

4.3.3 Constitutive parameters

For the studies conducted in Sec. 4.2 an isotropic constitutive law is used, which only
comprises three parameters, therefore allowing for a single curve -the Klotz curve in
this case- to be used as a reliable reference. Nonetheless, the �tting procedure is ac-
companied by large ambiguities in the choice for the �t parameters, which, in parts,
explains the large �tting errors (see Tab. 2.2). When analyzing the in�uence of the
�ber architecture, it is important, not only to capture it in the contractile law as
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a b af bf as bs afs bfs bρf bρs
Simple Shear 0.784 7.08 1.64 10.5 0.53 8.9 0 ��

4.5 3.9
Biaxial Stretch 1.01 22.5 1.43 47.5 �� �� �� ��

Table 4.6: Fit parameters for the 2SGST model corresponding to
the plots shown in Fig. 4.18 together with the prede�ned �ber and
sheet dispersion coe�cients bρf and bρs . Interestingly, although set as
a free parameter in case of simple shear, the coupling coe�cient afs
reached zero after optimization, indicating the capacity of dispersion

to capture �ber-sheet coupling.

de�ned in Eq. 4.11b, but also to consider it in the passive material law, speci�cally
when treating the purely passive scarred tissue. For that purpose, I use a 2SGST
adaption of the HO model (see Sec. 2.2.1), which gives rise to eight passive material
parameters. As previously demonstrated for the dispersion-free HO model in Fig. 2.3,
these parameters are optimized using a minimum chi-square estimation and simple
shear data from experiments performed on human cardiac tissue by Sommer et al.
[57]. The same model is also used to �t biaxial extension tests with the little adjust-
ment that sheet and coupling terms are neglected. The resultant �ts alongside the
resultant optimized parameters are shown in Fig. 4.18.

The circumstance that the two di�erent data sets show strongly di�ering sti�-
nesses albeit originating from the same species2 is a concern not only faced in my
analysis. It is also addressed by Gütlekin et al. [67], who use a viscoelastic 0GST
model to describe the data. Needless to say that they did not succeed in describing
both data sets with a single �t. It is, to this date, unclear whether this shortcoming is
to be addressed by a change in constitutive models or whether the experimental setup,
by design, does not allow for a comparison. Possibly, the fact that the tissue slabs
used for biaxial extension tests are much larger than the cubes used for simple shear
renders the two setups incompatible, or maybe tissue softening has to be taken into
account on a model level. In a preceding analysis (not shown), I used �ber dispersion
to di�erent degrees with the hope the explain the experimental data but even the AI
could not match simple shear and biaxial extension simultaneously.

The question yet left to answer is which of the two data sets appears more trust-
worthy. Since in simulation the EDV proves to be unreasonably small in the case of
biaxial stretch data (103mL vs. 124mL), plus the fact that the resultant Klotz curve
deviates more strongly from the best �t of the spherical model (see Sec. 4.18d), I
choose to use the results obtained from simple shear data in subsequent simulations.

Still, these parameters paired with the geometry de�ned in Sec. 4.3.1 entail a
rather sti� ventricle, demanding contractions close to the minimal sarcomere length
λ0 (c.f. 4.5). Therefore, and as a means to keep the Ees at reasonable levels, I choose
to adjust the contractile parameter Ta such that an EF of 60% is met3. This leads
to Ta = 950 kPa entailing an Ees of 7.88mmHg/mL which compares nicely to the
literature (see Sec. 1.1.2) although it still is a comparably large value.

2We were also supplied with experimental data from a single individual and still faced the same
issue.

3This contrasts the choice of EF=66% previously made in Sec. 4.2.
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(a) (b)

(c) (d)

Figure 4.18: Optimization of the 2SGST adaption of Eq. 2.22 to
experimental data taken from Ref. [57]. (a) and (b) Biaxial stretch
data split into two subplots for better readability. Although both data
sets are nicely �t, simple shear and biaxial stretch express strong devia-
tions concerning the optimal parameters. Biaxial stretch data displays
much larger sti�ening coe�cients b and bf yielding much smaller EDV
in simulation. The biaxial stretch data also leads to a larger deviation
from the spherical model �t to the Klotz data (see Sec. 2.4) where-
fore I choose to use the simple shear data for the study instead. The

corresponding �t parameters can be found in Tab. 4.6.
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4.3.4 Results

With the geometry, �ber architecture, boundary conditions, passive and active ma-
terials described in the previous sections, the simulation almost can be carried out.
Only the constitutive law for the scar is left to be determined. In an identical manner
as in Sec. 4.2, it is de�ned to share the same passive model parameters as the healthy
myocardium just furnished with a factor

Ψinf = αΨ2SGST
healthy (4.32)

integrating apparent material softening. Since the analysis of the spherical model
did not entail qualitative di�erences based on the value of the factor it will remain
α = 1/2 throughout the entire investigation.

Similar to the �ndings in Sec. 4.2, neither infarction nor grafting an EHM patch
on the scar shows any relevant in�uence on the EDPVR which is presented in Fig.
4.19a. This is contrasted by the ESPVR. Infarction, of course, heavily impairs pump
function illustrated by a drop from 60% to 35% in EF depicted in Fig. 4.19c. In all
cases, the pump function greatly bene�ts from the addition of EHM patches. What
comes to a huge surprise, though, is how little it depends on the actual thickness
fraction δ of the EHM (here calculated with respect to the myocardial wall thickness
at the base τ). This con�icts previous results shown in Fig. 4.10c. Using Eq. 4.25 it
is possible to translate the thickness fractions of the elliptical model to those of the
spherical model, resulting in

δ : 1/4→ 0.057 1/3→ 0.077 1/2→ 0.116. (4.33)

Now, considering δ = 0.05 and δ = 0.1 with θ = 180◦ in the spherical model
involves an increase in EF by more than 5 percentage points (pp), whereas in the
elliptical model increasing the patch thickness by a twofold is accompanied by a re-
spective increase in EF of 2 pp at most, which is achieved in the case of circumferential
alignment. Variation between the di�erent �ber alignments is slightly larger with a
di�erence of 4 pp between longitudinal and interpolated �bers at δ = 1/4. Interest-
ingly, the interpolated �ber alignment, which is meant to re�ect remodeling in the
EHM and falls in between longitudinal and circumferential alignment (see Fig. 4.17),
shows the weakest increase in EF. Considering Ees on the other hand, the interpolated
�ber architecture indeed lies in between the two extremal arrangements. As shown in
Fig. 4.19b, the longitudinal alignment has the strongest potential of recovery, whereas
circumferential alignment performs even worse than the infarct alone, thus shattering
the intuition that more muscle tissue should yield stronger contractile performance.
This intuition, however, holds only as long as the additional tissue works conjoined
with the tissue already present. Thus, it can be concluded that, at least in parts,
the cardiomyocytes in circumferential alignment work against those in the healthy
tissue. Similar to the spherical model, the Ees of the circumferential alignment shows
practically no dependents on patch thickness. This is contrasted by the other two
alignments, thus highlighting the importance to study realistic �ber arrangements.

Di�erent �ber alignments impact how contraction alters the shape of the left ven-
tricle. In Fig. 4.20 it can be observed that a longitudinal arrangement, expectedly,
leads to shortening along the long axis, whereas the other two arrangements produce
rather elongated shapes. The von Mises stress (see Eq. 25 in Ref. [49]) in the border
zone of the infarct, also depicted in Fig. 4.20, shows the overall smallest values for the
longitudinal alignment. As discussed in Sec. 1.2, reducing the border zone stresses
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(a)

(b) (c)

Figure 4.19: (a) EDPVR and ESPVR for di�erent �ber orientations
and patch thickness fractions δ (relative to τ) indicated by the gray
colored legend entries. The EDPVR shows virtually no dependence on
either �ber orientation wherefore the resultant curves overlap almost
perfectly. In contrast, the ESPVR is heavily in�uenced by both. (b)
Ees corresponding to (a). How much it changes for di�erent values of
θ depends on the �ber architecture. (c) Resultant EF. Although the
e�ects are small, the longitudinal arrangement shows best Ees and EF

recoveries.

likely reduces the risk for infarct growth, which favors longitudinal alignment over the
others. For similar reasons it is conceivable that stresses and their gradient should be
kept small at the interface between scar and EHM. In Fig. 4.21 the von Mises stress
along the cut line depicted in Fig. 4.20 can be examined. Increasing the wall thickness
eases cooperation between ventricle and EHM by reducing absolute wall stresses at
the interface. Smallest stress values and smallest gradients belong to the interpolated
base system directly followed by the longitudinal alignment.

4.3.5 Conclusion & Discussion

In this section, I reviewed current approaches in computational simulations of the
left ventricle entailing BCs and �ber architecture, which I adjusted to cope with the
simplistic spherical model from Sec. 4.2.2. Of course, these choices strongly a�ect the
entire analysis, and speci�cally so the numeric values. For example a base BC weight-
ing the sti�ness of the mitral annulus more strongly would necessitate even stronger
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Figure 4.20: Shapes and the von Mises Stress (Eq. 25 Ref. [49]) of
the ventricle at the end of systole for the various �ber architectures
of the EHM patch at a thickness δ = 1/2 as shown in Fig. 4.17. In
all cases, reduced von Mises stresses compared to the case of no EHM
graft are reported in the border zone, with the overall smallest values
observed for the longitudinal alignment. Along the cut line von Mises
stresses are the smallest for the interpolated base system as presented

in Fig. 4.21.

contractile forces, which, in turn, alters how infarct and EHM interact. That said,
although the attempt was made to include as realistic material properties as possible
derived from human and animal experiments likewise, a quantitative conclusion based
on my simulations is impermissible. And although the strength of these simulations is
not the accurate prediction of turnout EF or Ees, qualitative trends are clearly visible.

The great advantage of grafts made of active biomaterial is clearly highlighted in
the di�erent pressure-volume relation. Almost no changes are observed during di-
astole, allowing for maximal in�ation while systolic contraction negates bulging and
supports the border zone material, thus increasing the ejected blood volume. From
Fig. 4.19c it becomes evident that these e�ects dominate over �ber architecture and
it can be assumed that even an EHM with purely randomly distributed �bers, bare of
any mean �ber direction, promotes a considerable increase in cardiac pump function.

Yet, if �ber directions are explicitly considered, while not excelling in any particu-
lar �eld by any stretch of the de�nition, the longitudinal alignment shows improvement
in EF and Ees over the alternatives, which is in agreement with the �ndings described
in Refs. [121, 122] where the e�ects of non-bilogical, noncontractile, anistropic rein-
forecement of scarred tissue were tested.

In order to support these �ndings, additional simulations, covering a larger range
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(a) (b)

(c)

Figure 4.21: Transmural von Mises stresses along the cut line de-
picted in Fig. 4.20. In all cases it can be observed that, as EHM
thickness δ increases, the stresses decline. Along the cut line the scar
exhibits a depth of roughly 11.4mm. This is the spot where stresses
show sudden jumps. Here the interpolated �ber architecture shows
smallest absolute values and smallest gradients directly followed by

the longitudinal arrangement.

of parameters, are mandatory. A possible approach could be the consultation of ma-
chine learning which would allow probing also quantitative e�ects while, at the same
time, providing a measure of accuracy. Problematic with such an approach is to �nd
reasonable bounds for the parameter space as not all combinations of passive and
active material properties have real-life relevance. This was, for example, the reason-
ing behind discarding human biaxial stretch data, as it did not show desirable EDVs
and did not comply with the Klotz curve. When inquiring a larger parameter space
additional arbiters must be installed to ensure relevance.

The mere fact that, to this date, there is no constitutive model which can match
biaxial and simple shear data of the same heart simultaneously challenges both, ex-
periment and mathematical description. Still, even a model is found to be trustworthy
and the parameters derived from average human data and combine it with the average
geometry of the LV using average �ber and sheet architectures together with average
rest sarcomere length and adjusted contractile force to capture the average EF, there
is no guaranty that the result yields the average values for the EDPVR and ESPVR.
This ambiguity is due to the complex, nonlinear, and intertwined interaction between
all constituents principally prohibiting the connection between separately obtained
averages. A potential bypass to this issue are patients speci�c models where passive
and active material properties are not adopted to ex vivo but rather in vivo experi-
mental data involving, for example, MRI. Such measurements, expectedly, carry their
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own disadvantages like for example the in�delity of DT-MRI derived �ber architec-
tures. Another issue poses the reference con�guration which, due to external loads,
never is captured throughout a beating cycle. The amount of information obtained
through MRI strain and volume measurements is so scarce that only heavily reduced
constitutive models can be matched adequately, thus compromising their ability to
extrapolate the impact of EHM. In a perfect world, the methods laid out in this work
would be tested against both, ex vivo and in vivo experiments of individual humans
before and after implantation of EHM, which, all things considered, will remain un-
feasible in the near future.

Particular attention appertains to the validity of the active contractile law con-
sidering transversely isotropic like orthotropic representation introduced in Sec. 4.1.
The counterparts to Eq. 4.11b, found in the literature presented, are based on ex vivo

stress-strain curves of sarcomeres and were tested in simulations against in vivo whole
heart/ventricle experiments, whereas the intermittent tissue level, to my knowledge,
is omitted. Thus an important issue is plainly neglected which is the compatibility
between active and passive material laws on said tissue level. If two di�erent ex-
perimental protocols targeting passive tissue response, i.e. biaxial stretch and simple
shear, are incompatible, how can we safely assume that it should hold between diastole
and systole? The problem cements when considering that force-length relationships
typically (if not all) are performed with a monoaxial setup despite the fact that sys-
tole also involves strong shearing. In addition, it became popular recently to neglect
energy terms in the constitutive law associated with �bers under compression [64, 83,
124]. This is reasonable, as �bers are slim and buckle easily. Especially for collagen
and hence scarred tissue it is suggested in future studies to account and check for the
e�ect of compression of �bers. Within the framework of COMSOL, to the best of my
knowledge, this approach remains impractical, considering that COMSOL only allows
for di�erentiable strain energy densities to be used.

Another improvement could be achieved through adaption of BCs. Dealing with
only the left ventricle prompts the question of whether excluding the atria and the
right ventricle can be justi�ed in a quantitative analysis. After all, in Refs. [45, 115]
the importance of the right ventricle (RV) on the EDPVR was demonstrated as it
could increase the VV by up to 5% at a ventricular pressure of 10mmHg.
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Summary & Outlook

Computer-aided therapy design is an intricate endeavor intertwining all scales from
molecules to cells and tissues to organs. Changing one such component in a living sys-
tem can have far-reaching e�ects, di�cult to estimate, which some times only unfold
after months or even years. Thus, a detailed understanding of the key players is crucial
for appropriate diagnosis and treatment planning. Concerning heart failure patients,
scarred tissue shows adverse e�ects for the electrophysiology, electromechanics, and
hemodynamics. In this work, I presented the orthotropic nature of myocardium, what
implications it has for the cardiac cycle, and how the arising structural mechanics can
be captured in quasi-stationary simulations using constitutive modeling.

Based on this model, biaxial stretch, simple shear, and the pressure-volume rela-
tion of the LV across di�erent species (Klotz curve) were described. The resulting �t
for the Klotz curve later was used to inform simulations for a spherical model con-
taining scarred tissue that was covered with an EHM patch. These results show that
for an optimal patch design, mechanical properties of the myocardium and scar alike
play a minor role, when optimizing the slope.

This, rather simple, model was planned be augmented to comprise a more realistic
ellipsoidal shape as well as �ber architecture. Preliminary simulations, however, came
with the sobering realization that unphysiological local stresses in the border zone of
the infarct, ultimately lead to the abortion of the simulations as the algorithms would
no longer converge in a timely manner. A deeper analysis showed that this behavior is
caused by strong directional sensitivity which is inherited from unidirectional consti-
tutive laws. In our publication [49] we showed that even little dispersion of the �ber
orientation signi�cantly eases directional sensitivity and thus permits simulations in-
volving a wider range of geometries and materials. In addition, we also introduced the
novel class of SGSTs, which provide a strong tool in the approximation of the AI. The
paradigm shift to consult Jensen's inequality also widens the scope of potential GSTs
that might be used in the future. Comparing the directional sensitivity of the di�erent
models also highlights the need for new experimental setups. The six di�erent shear
modes used so far are insu�cient to fully describe passive orthotropic cardiac tissue
properties even if used only to describe simple shear itself. And although even with
dispersion included, the constitutive models considered were not able to match biaxial
stretch and simple shear experimental data at the same time, maybe it is still able
to shed light on the issue. Possible model adaptions include viscoelasticity, residual
strains, nona�ne deformations and di�erentiated material properties especially for
the large tissue slabs used in biaxial stretch tests. Considering active contraction,
exclusion of compressed �bers is an in�uential model adjustment that should be con-
sidered in future simulations.

Incorporating �ber dispersion into the constitutive model I simulated the e�ects
of MI and EHM patches on the pump function of the left ventricle. Taking di�erent
measures into consideration the results clearly indicate superiority of longitudinal over



74 Chapter 5. Summary & Outlook

circumferential �ber arrangements in the EHM patch. Although most model param-
eters involved are based on mean experimental results, exact values have to be taken
with care and the model needs clear experimental validation. In particular, the rela-
tion between in and ex vivo parameter estimation is unclear. For reliable quantitative
results also a stronger di�erentiation between scarred, myocardial, and EHM tissue is
needed on a model level. The assumption, for example, that EHM tissue and regular
myocardium behave identically likely is not justi�ed even when maturation occurred
after implantation. This holds in particular for its contractile strength. Additional ef-
fects like right ventricular stretching, �ber crimping, or scar location should be tested
for their in�uence on patch design.

In this work, only quasi-static mechanics modeling was considered. For patient-
speci�c patch design, however, the EHM tissue induced risk of arrhythmias and how it
depends on �ber architecture should be researched. Also the time-dependent coupling
to the circulatory system can a�ect blood pressure and thus SV strongly. Taking this
step also suggests using time-dependent mechanics model incorporating viscoelastic-
ity.
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Appendix A

Validation of the FEM Software

Package

In their paper, Land et al. [70] detail three di�erent benchmarks which are meant
to validate a given software package used for cardiac mechanics simulations. These
benchmarks include a bended beam (see Fig. A.1a), in�ation of the left ventricle
and its contraction (see Fig. A.2a). Along di�erent lines through the myocardium
strains are recorded in various directions. A few of these are presented for the bended
beam and the contracted ventricle in Fig. A.1c and A.2c respectively. For all details
concerning the benchmark setup and the de�nition the probes used for readout please
see Ref. [70]. In this work, only the actual results are compared.

All simulations were performed using the FEM, as described in Sec. 2.3, and
implemented in COMSOL [128] with the direct solver MUMPS. In both cases they are
compared with the Glasgow heart model [125], showing good agreement, and the LifeV
model [104]. Among all participating solvers the latter showed the largest di�erence
from the cohort and, expectedly, shows rather large deviations from my solutions as
well. In later studies, the direct solver was switched to PARDISO without changes to
the quality of the simulation. The reason for this switch was the better compatibility
of PARDISO with the cluster architecture and a resulting increase in computational
speed.
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(a)

x-axis y-axis z-axis

(b)

Figure A.1: (a) Bending beam benchmark according to Problem 1
of Ref. [70]. The von Mises stress is color coded. (b) Strain results
according to Fig. 5 of Ref. [70] with two other solvers as reference.
Strain is measured along center line in the three di�erent principal

directions x, y and z.
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Figure A.2: (a) Contracting ventricle benchmark according to Prob-
lem 3 of Ref. [70]. The von Mises stress is color coded. Arrows
indicate the local �ber orientation. The apex involves a discontinuity
in the de�nition of the �ber orientation wherefore the mesh locally is
resolved to a �ner degree. The reference con�guration is hinted with
black lines. (b) Strain results according to Fig. 12 of Ref. [70] with

two other solvers as reference.
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Appendix B

Derivation of Tensor Components

for GST & SGST

In this section the handcrafted calculations for the tensor components given in the
appendix of Ref. [49] are presented. For that purpose the same notation is adopted

here. Before the calculation of 〈M i 〉 for any power i can be performed it is important
to recall the de�nition for the local �ber orientation

f = sin(Θ) cos(φ)s0 + sin(Θ) sin(φ)n0 + cos(Θ)f0, (B.1)

where Θ is the polar and φ the azimuthal angle. Since the density function ρ can
be split multiplicatively into a Θ and a constant φ term, the same holds for the
corresponding tensor components. The resulting average just for the φ terms after
integration, then, are
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Since only even powers in sini Θ or cosi Θ (i.e. i ∈ 2N) yield nonzero averages,
all tensor components up to rank 8 can be expressed in terms of κ and κj with
j = 2, 3, 4 (Eq. A5 Ref. [49]). Thus, the focus, here, lies on the evaluation of these
structure coe�cients. Using the equality cos(2Θ) = 2 cos2(Θ)−1 with the substitution
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x = cos(Θ) plus ignoring normalization factors, partial integration leads to
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The other two structure coe�cients are attained analogously via
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With the slightly di�erent notation for the �rst two indices κ1 = κ and κ0 = 1,
together with s = sin Θ and c = cos Θ, this rule can be generalized for an arbitrary
power n ∈ N\{1} in the following fashion:
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= (−s2)n +

n−1∑
i=0

[(
n

i

)
−
(
n− 1

i

)]
(−s2)i

⇒ (−s2)n = c2n − c2(n−1) −
n−1∑
i=0

[(
n

i

)
−
(
n− 1

i

)]
(−s2)i. (B.5)



Appendix B. Derivation of Tensor Components for GST & SGST 81

The average results in〈
c2n − c2(n−1)

〉
=̂

∫ 1

−1
x2n − x2(n−1)e2bρx2dx

=
��

���
���

���
�

x2n−1 − x2n−3

4bρ
e2bρx2

∣∣∣∣1
−1

+

∫ 1

−1

(2n− 3)x2(n−2) − (2n− 1)x2(n−1)

4bρ
e2bρx2dx

=
1

4bρ

(
n−2∑
i=0

(−1)iκi

[
(2n− 3)

(
n− 2

i

)
− (2n− 1)

(
n− 1

i

)]
− (2n− 1)(−1)n−1κn−1

)
.

(B.6)

In conjunction and together with the de�nition that(
k

l

)
= 0 (B.7)

if l > k, the formula

(−1)nκn =
1

4bρ

n−1∑
i=0

(−1)iκi

[
(2n− 3)

(
n− 2

i

)
− (2n− 1)

(
n− 1

i

)]

−
n−1∑
i=1

(−1)iκi

[(
n

i

)
−
(
n− 1

i

)]
(B.8)

is obtained.
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Appendix C

Mathematica Codes for SGST &

GST models

C.1 Numerical Angular Integration

Von Mises Distribution:

ρ[θ_, b_]:=4Sqrt
[
b

2π

] Exp[b(Cos[2θ]+1)]
Er�[Sqrt[2b]]

ρ[θ_, b_]:=4Sqrt
[
b

2π

] Exp[b(Cos[2θ]+1)]
Er�[Sqrt[2b]]ρ[θ_, b_]:=4Sqrt

[
b

2π

] Exp[b(Cos[2θ]+1)]
Er�[Sqrt[2b]]

Simplify[ρ[θ, b]]Simplify[ρ[θ, b]]Simplify[ρ[θ, b]]

navgnavgnavg is de�ned as the numerical approximation to the analytical average over
solid Angle Ω: 〈 f 〉= 1

4π

∫ π
0

∫ 2π
0 f (φ,θ)ρ(θ)sin(θ) dddφ dddθ. Working PrecisionWorking PrecisionWorking Precision is crucial

for error estimates of the Taylor series at low stretches and of course the computing
time. The energy function Ψ = 1

2bf
exp

(
bξ2
)
with ξ ≡C:M-1 is used to calculate the

cauchy stress tensor.

navg[f_, b_?NumericQ]:=navg[f_, b_?NumericQ]:=navg[f_, b_?NumericQ]:= 1
4πNIntegrate[f [θ, φ]ρ[θ, b]Sin[θ], {θ, 0, π}, {φ, 0, 2π}1
4πNIntegrate[f [θ, φ]ρ[θ, b]Sin[θ], {θ, 0, π}, {φ, 0, 2π}1
4πNIntegrate[f [θ, φ]ρ[θ, b]Sin[θ], {θ, 0, π}, {φ, 0, 2π},

WorkingPrecision→ 8]WorkingPrecision→ 8]WorkingPrecision→ 8]

fShearfShearfShear and fBiaxfBiaxfBiax return deformation gradients corresponding to simple shear
and biaxial experimental setups respectively. In this case shear and biaxial stretch.
�breTensor�breTensor�breTensor de�nes the structure tensor M=f⊗fM=f⊗fM=f⊗f such that the �rst index corresponds
to the principle direction of �bers (and the other two are orthogonal but arbitrary).

fShear[γ_, experiment_]:=fShear[γ_, experiment_]:=fShear[γ_, experiment_]:=Switch[experiment, 1, {{1, 0, 0}, {γ, 1, 0}, {0, 0, 1}}, 2,Switch[experiment, 1, {{1, 0, 0}, {γ, 1, 0}, {0, 0, 1}}, 2,Switch[experiment, 1, {{1, 0, 0}, {γ, 1, 0}, {0, 0, 1}}, 2,

{{1, γ, 0}, {0, 1, 0}, {0, 0, 1}}, 3, {{1, 0, 0}, {0, 1, 0}, {0, γ, 1}}]{{1, γ, 0}, {0, 1, 0}, {0, 0, 1}}, 3, {{1, 0, 0}, {0, 1, 0}, {0, γ, 1}}]{{1, γ, 0}, {0, 1, 0}, {0, 0, 1}}, 3, {{1, 0, 0}, {0, 1, 0}, {0, γ, 1}}]

fBiax[γ_, ratio_]:=DiagonalMatrix[{1 + γ, 1 + ratio ∗ γ, 1/((1 + ratioγ)(1 + γ))}]fBiax[γ_, ratio_]:=DiagonalMatrix[{1 + γ, 1 + ratio ∗ γ, 1/((1 + ratioγ)(1 + γ))}]fBiax[γ_, ratio_]:=DiagonalMatrix[{1 + γ, 1 + ratio ∗ γ, 1/((1 + ratioγ)(1 + γ))}]

�breTensor[θ_, φ_, rotationMatrix_]:=�breTensor[θ_, φ_, rotationMatrix_]:=�breTensor[θ_, φ_, rotationMatrix_]:=

Module[Module[Module[{fT = {{Cos[θ]∧2,Cos[θ]Sin[θ]Cos[φ],Cos[θ]Sin[θ]Sin[φ]},{fT = {{Cos[θ]∧2,Cos[θ]Sin[θ]Cos[φ],Cos[θ]Sin[θ]Sin[φ]},{fT = {{Cos[θ]∧2,Cos[θ]Sin[θ]Cos[φ],Cos[θ]Sin[θ]Sin[φ]},

{Cos[θ]Sin[θ]Cos[φ],{Cos[θ]Sin[θ]Cos[φ],{Cos[θ]Sin[θ]Cos[φ],Sin[θ]∧2Cos[φ]∧2, Sin[θ]∧2Cos[φ]Sin[φ]},Sin[θ]∧2Cos[φ]∧2, Sin[θ]∧2Cos[φ]Sin[φ]},Sin[θ]∧2Cos[φ]∧2, Sin[θ]∧2Cos[φ]Sin[φ]},

{Cos[θ]Sin[θ]Sin[φ], Sin[θ]∧2Cos[φ]Sin[φ], Sin[θ]∧2Sin[φ]∧2}}},{Cos[θ]Sin[θ]Sin[φ], Sin[θ]∧2Cos[φ]Sin[φ], Sin[θ]∧2Sin[φ]∧2}}},{Cos[θ]Sin[θ]Sin[φ], Sin[θ]∧2Cos[φ]Sin[φ], Sin[θ]∧2Sin[φ]∧2}}},

rotationMatrix.fT.Transpose[rotationMatrix]]rotationMatrix.fT.Transpose[rotationMatrix]]rotationMatrix.fT.Transpose[rotationMatrix]]
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Cauchy stress as de�ned in Eq. 2.17 is given by σ = 2FFF ∂Ψ
∂CCCFFF

T− pJI.σσσ and σBiaxσBiaxσBiax
return the stress for a single �ber which has orientation given by θθθ and φφφ with the
�ber-frame rotated by rotationMatrixrotationMatrixrotationMatrix.

σ[θ_, φ_, b_, experiment_, rotationMatrix_, γ_]:=σ[θ_, φ_, b_, experiment_, rotationMatrix_, γ_]:=σ[θ_, φ_, b_, experiment_, rotationMatrix_, γ_]:=

Module[{f = fShear[γ, experiment],m = �breTensor[θ, φ, rotationMatrix], ξModule[{f = fShear[γ, experiment],m = �breTensor[θ, φ, rotationMatrix], ξModule[{f = fShear[γ, experiment],m = �breTensor[θ, φ, rotationMatrix], ξ

, extract = Switch[experiment, 1, {1, 2}, 2, {2, 1}, 3, {3, 2}]},, extract = Switch[experiment, 1, {1, 2}, 2, {2, 1}, 3, {3, 2}]},, extract = Switch[experiment, 1, {1, 2}, 2, {2, 1}, 3, {3, 2}]},

ξ = Tr[f.m.Transpose[f ]]− 1;ξ = Tr[f.m.Transpose[f ]]− 1;ξ = Tr[f.m.Transpose[f ]]− 1;

2ξ ∗ Exp[b ∗ ξ2](f.m.Transpose[f ])[[extract[[1]], extract[[2]]]]]2ξ ∗ Exp[b ∗ ξ2](f.m.Transpose[f ])[[extract[[1]], extract[[2]]]]]2ξ ∗ Exp[b ∗ ξ2](f.m.Transpose[f ])[[extract[[1]], extract[[2]]]]]

σBiax[θ_, φ_, b_, ratio_, rotationMatrix_, γ_]:=σBiax[θ_, φ_, b_, ratio_, rotationMatrix_, γ_]:=σBiax[θ_, φ_, b_, ratio_, rotationMatrix_, γ_]:=

Module[{f = fBiax[γ, ratio],m = �breTensor[θ, φ, rotationMatrix], ξ, σ},Module[{f = fBiax[γ, ratio],m = �breTensor[θ, φ, rotationMatrix], ξ, σ},Module[{f = fBiax[γ, ratio],m = �breTensor[θ, φ, rotationMatrix], ξ, σ},

ξ = Tr[f.m.Transpose[f ]]− 1;ξ = Tr[f.m.Transpose[f ]]− 1;ξ = Tr[f.m.Transpose[f ]]− 1;σ = 2ξ ∗ Exp[b ∗ ξ∧2](f.m.Transpose[f ]);σ = 2ξ ∗ Exp[b ∗ ξ∧2](f.m.Transpose[f ]);σ = 2ξ ∗ Exp[b ∗ ξ∧2](f.m.Transpose[f ]);

σ = (Diagonal[σ]− ConstantArray[σ[[3, 3]], 3]);σ = (Diagonal[σ]− ConstantArray[σ[[3, 3]], 3]);σ = (Diagonal[σ]− ConstantArray[σ[[3, 3]], 3]);

σ[[{1, 2}]]]σ[[{1, 2}]]]σ[[{1, 2}]]]

Finally the numerical average is de�ned.

avgσ[bExpo_, bDens_, experiment_, rotationMatrix_, γ_]:=avgσ[bExpo_, bDens_, experiment_, rotationMatrix_, γ_]:=avgσ[bExpo_, bDens_, experiment_, rotationMatrix_, γ_]:=

Module[{stress}, stress[θ_?NumericQ, φ_?NumericQ]:=Module[{stress}, stress[θ_?NumericQ, φ_?NumericQ]:=Module[{stress}, stress[θ_?NumericQ, φ_?NumericQ]:=

σ[θ, φ, bExpo, experiment, rotationMatrix, γ];σ[θ, φ, bExpo, experiment, rotationMatrix, γ];σ[θ, φ, bExpo, experiment, rotationMatrix, γ];

navg[stress, bDens]]navg[stress, bDens]]navg[stress, bDens]]

avgσBiax[bExpo_, bDens_, ratio_, exp_, rotationMatrix_, γ_]:=avgσBiax[bExpo_, bDens_, ratio_, exp_, rotationMatrix_, γ_]:=avgσBiax[bExpo_, bDens_, ratio_, exp_, rotationMatrix_, γ_]:=

Module[{stress}, stress[θ_?NumericQ, φ_?NumericQ]:=Module[{stress}, stress[θ_?NumericQ, φ_?NumericQ]:=Module[{stress}, stress[θ_?NumericQ, φ_?NumericQ]:=

σBiax[θ, φ, bExpo, ratio, rotationMatrix, γ][[exp]];σBiax[θ, φ, bExpo, ratio, rotationMatrix, γ][[exp]];σBiax[θ, φ, bExpo, ratio, rotationMatrix, γ][[exp]];

navg[stress, bDens]]navg[stress, bDens]]navg[stress, bDens]]

In the last step, arbitrary shear or biaxial tests can be evualuated.

resultShear =resultShear =resultShear =

Parallelize[Table[TableParallelize[Table[TableParallelize[Table[Table

[avgσ[7, 4.5, n,RotationMatrix[0,UnitVector[3, 3]]γ],[avgσ[7, 4.5, n,RotationMatrix[0,UnitVector[3, 3]]γ],[avgσ[7, 4.5, n,RotationMatrix[0,UnitVector[3, 3]]γ],

{n, 1, 3}], {γ, 0.01, 0.5, 0.01}]]{n, 1, 3}], {γ, 0.01, 0.5, 0.01}]]{n, 1, 3}], {γ, 0.01, 0.5, 0.01}]]

ratioList =
{

1
2 ,

3
4 , 1,

4
3 , 2
}

;ratioList =
{

1
2 ,

3
4 , 1,

4
3 , 2
}

;ratioList =
{

1
2 ,

3
4 , 1,

4
3 , 2
}

;

resultBiax =resultBiax =resultBiax =

Parallelize[Table[TableParallelize[Table[TableParallelize[Table[Table

[avgσBiax[50, 4.5, ratioList[[j]], 1,RotationMatrix[Pi/4,UnitVector[3, 3]], γ],[avgσBiax[50, 4.5, ratioList[[j]], 1,RotationMatrix[Pi/4,UnitVector[3, 3]], γ],[avgσBiax[50, 4.5, ratioList[[j]], 1,RotationMatrix[Pi/4,UnitVector[3, 3]], γ],

{j, 5}], {γ, 0.002, 0.1, 0.002}]]{j, 5}], {γ, 0.002, 0.1, 0.002}]]{j, 5}], {γ, 0.002, 0.1, 0.002}]]
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C.2 Taylor Tensors

C.2.1 Basics

The polynomial in CCC of tensor contraction for both, the nGSTnGSTnGST and nSGSTnSGSTnSGST models,
are calculated below including analytic solutions to the AI for the coe�cientsM

f inj1n
k
2

. They correspond to the function
CCCn � 〈MMMn〉 =

∑
i+j+k=n

M
f inj1n

k
2

∑
I∈Bi,j,k

CI1� C
I4
fn1
CI5fn2C

I2
n1n1

CI6n1n2
CI3n2n2

2I4+I5+I6 with B =

{I ∈ N6| 2I1 + I4 + I5 = i, 2I2 + I4 + I6 = j, 2I3 + I5 + I6 = k}. Below, the high
degree of symmetry is exploited to reduce the sum into fewer factors.
Calculation of the average over solid anlge Ω is separated into integrations over φ &
θ for better performance and simpler work�ow.

avgPhi[f_]:= 1
2π Integrate[f [φ], {φ, 0, 2π}]avgPhi[f_]:= 1
2π Integrate[f [φ], {φ, 0, 2π}]avgPhi[f_]:= 1
2π Integrate[f [φ], {φ, 0, 2π}]

avgTheta[b_, f_]:=1
2 Integrate[f [θ]ρ[θ, b]Sin[θ], {θ, 0, π}]avgTheta[b_, f_]:=1
2 Integrate[f [θ]ρ[θ, b]Sin[θ], {θ, 0, π}]avgTheta[b_, f_]:=1
2 Integrate[f [θ]ρ[θ, b]Sin[θ], {θ, 0, π}]

All possible coe�cients ofM
f inj1n

k
2
with repect to powers in ef , en1 , en2 are averaged

in φ and Θ respectively.

Clear[m];Clear[m];Clear[m];

m[i_Integer, j_Integer, k_Integer]:=m[i, j, k] =m[i_Integer, j_Integer, k_Integer]:=m[i, j, k] =m[i_Integer, j_Integer, k_Integer]:=m[i, j, k] =

Module[{fTheta, fPhi}, fTheta[Θ_]:=Cos[Θ]∧i ∗ Sin[Θ]∧(j + k);Module[{fTheta, fPhi}, fTheta[Θ_]:=Cos[Θ]∧i ∗ Sin[Θ]∧(j + k);Module[{fTheta, fPhi}, fTheta[Θ_]:=Cos[Θ]∧i ∗ Sin[Θ]∧(j + k);

fPhi[φ_]:=Cos[φ]∧j ∗ Sin[φ]∧k; avgPhi[fPhi] ∗ avgTheta[b, fTheta]]fPhi[φ_]:=Cos[φ]∧j ∗ Sin[φ]∧k; avgPhi[fPhi] ∗ avgTheta[b, fTheta]]fPhi[φ_]:=Cos[φ]∧j ∗ Sin[φ]∧k; avgPhi[fPhi] ∗ avgTheta[b, fTheta]]

All symmetries are used to break down the previously de�ned List of polynomials
mmm. In addition, the List gets ordered such that indices are counted down with suc-
cession k → j → i , which is why counting starts with the Last item of orderList.

M
f inj1n

k
2
is symmetric under j↔k, wherfore we only keep entries for which j>k.

reduceMOrder[n_Integer]:=reduceMOrder[n_Integer]:=reduceMOrder[n_Integer]:=

Module[{Mred = List[], orderList = substListOrder[2n], counter = 0},Module[{Mred = List[], orderList = substListOrder[2n], counter = 0},Module[{Mred = List[], orderList = substListOrder[2n], counter = 0},

While[orderList 6= {}, If[j>=k/.Last[orderList], counter+=1;While[orderList 6= {}, If[j>=k/.Last[orderList], counter+=1;While[orderList 6= {}, If[j>=k/.Last[orderList], counter+=1;

AppendTo[Mred,m[i, j, k]/.Last[orderList]], ]; orderList = Drop[orderList,−1]];AppendTo[Mred,m[i, j, k]/.Last[orderList]], ]; orderList = Drop[orderList,−1]];AppendTo[Mred,m[i, j, k]/.Last[orderList]], ]; orderList = Drop[orderList,−1]];

Mred];Mred];Mred];

For every single choice of combinations of coe�cient-occurences in ef , en1 , and en2the
respective summand of the contraction <MMMn > �CCCn is calculated. Note that mixed
Coe�cients are counted twice.

cFactor[i1_Integer, i2_Integer, i3_Integer, j1_Integer, j2_Integer, j3_Integer]:=cFactor[i1_Integer, i2_Integer, i3_Integer, j1_Integer, j2_Integer, j3_Integer]:=cFactor[i1_Integer, i2_Integer, i3_Integer, j1_Integer, j2_Integer, j3_Integer]:=

Module[{n = (2 ∗ i1 + j1 + j2 + 2 ∗ i2 + j1 + j3 + 2 ∗ i3 + j2 + j3)/2},Module[{n = (2 ∗ i1 + j1 + j2 + 2 ∗ i2 + j1 + j3 + 2 ∗ i3 + j2 + j3)/2},Module[{n = (2 ∗ i1 + j1 + j2 + 2 ∗ i2 + j1 + j3 + 2 ∗ i3 + j2 + j3)/2},
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Binomial[n, i1] ∗ Binomial[n− i1, i2]Binomial[n, i1] ∗ Binomial[n− i1, i2]Binomial[n, i1] ∗ Binomial[n− i1, i2]

∗Binomial[n− i1− i2, i3]Binomial[n− i1− i2− i3, j1]∗Binomial[n− i1− i2, i3]Binomial[n− i1− i2− i3, j1]∗Binomial[n− i1− i2, i3]Binomial[n− i1− i2− i3, j1]

Binomial[n− i1− i2− i3− j1, j2]Binomial[n− i1− i2− i3− j1− j2, j3]]Binomial[n− i1− i2− i3− j1, j2]Binomial[n− i1− i2− i3− j1− j2, j3]]Binomial[n− i1− i2− i3− j1, j2]Binomial[n− i1− i2− i3− j1− j2, j3]]

cProduct[i1_Integer, i2_Integer, i3_Integer, j1_Integer, j2_Integer, j3_Integer]:=cProduct[i1_Integer, i2_Integer, i3_Integer, j1_Integer, j2_Integer, j3_Integer]:=cProduct[i1_Integer, i2_Integer, i3_Integer, j1_Integer, j2_Integer, j3_Integer]:=

cFactor[i1, i2, i3, j1, j2, j3] ∗ c[1, 1]i1 ∗ c[2, 2]i2 ∗ c[3, 3]i3 ∗ c[1, 2]j1cFactor[i1, i2, i3, j1, j2, j3] ∗ c[1, 1]i1 ∗ c[2, 2]i2 ∗ c[3, 3]i3 ∗ c[1, 2]j1cFactor[i1, i2, i3, j1, j2, j3] ∗ c[1, 1]i1 ∗ c[2, 2]i2 ∗ c[3, 3]i3 ∗ c[1, 2]j1

∗c[1, 3]j2 ∗ c[2, 3]j3 ∗ 2j1+j2+j3∗c[1, 3]j2 ∗ c[2, 3]j3 ∗ 2j1+j2+j3∗c[1, 3]j2 ∗ c[2, 3]j3 ∗ 2j1+j2+j3

All possible indexcombinations are listed and simpli�ed for symmetries.

substListOrder[n_Integer]:=substListOrder[n_Integer]:=substListOrder[n_Integer]:=

Solve[{i+ j + k == n, i ∈ Integers, j ∈ Integers, k ∈ Integers,Solve[{i+ j + k == n, i ∈ Integers, j ∈ Integers, k ∈ Integers,Solve[{i+ j + k == n, i ∈ Integers, j ∈ Integers, k ∈ Integers,

Mod[i, 2] == 0,Mod[j, 2] == 0,Mod[i, 2] == 0,Mod[j, 2] == 0,Mod[i, 2] == 0,Mod[j, 2] == 0,Mod[k, 2] == 0, i ≥ 0, j ≥ 0, k ≥ 0}, {i, j, k}]Mod[k, 2] == 0, i ≥ 0, j ≥ 0, k ≥ 0}, {i, j, k}]Mod[k, 2] == 0, i ≥ 0, j ≥ 0, k ≥ 0}, {i, j, k}]

substListDistribution[i_Integer, j_Integer, k_Integer]:=substListDistribution[i_Integer, j_Integer, k_Integer]:=substListDistribution[i_Integer, j_Integer, k_Integer]:=

Solve[{2 ∗ i1 + j1 + j2 == i, 2 ∗ i2 + j1 + j3 == j, 2 ∗ i3 + j2 + j3 == k,Solve[{2 ∗ i1 + j1 + j2 == i, 2 ∗ i2 + j1 + j3 == j, 2 ∗ i3 + j2 + j3 == k,Solve[{2 ∗ i1 + j1 + j2 == i, 2 ∗ i2 + j1 + j3 == j, 2 ∗ i3 + j2 + j3 == k,

i1 ∈ Integers, i2 ∈ Integers, i3 ∈ Integers, j1 ∈ Integers, j2 ∈ Integers,i1 ∈ Integers, i2 ∈ Integers, i3 ∈ Integers, j1 ∈ Integers, j2 ∈ Integers,i1 ∈ Integers, i2 ∈ Integers, i3 ∈ Integers, j1 ∈ Integers, j2 ∈ Integers,

j3 ∈ Integers, i1 ≥ 0, i2 ≥ 0, i3 ≥ 0, j1 ≥ 0, j2 ≥ 0, j3 ≥ 0}, {i1, i2, i3, j1, j2, j3}]j3 ∈ Integers, i1 ≥ 0, i2 ≥ 0, i3 ≥ 0, j1 ≥ 0, j2 ≥ 0, j3 ≥ 0}, {i1, i2, i3, j1, j2, j3}]j3 ∈ Integers, i1 ≥ 0, i2 ≥ 0, i3 ≥ 0, j1 ≥ 0, j2 ≥ 0, j3 ≥ 0}, {i1, i2, i3, j1, j2, j3}]

Final summation of Tensor contraction is performed

Clear[polynom]Clear[polynom]Clear[polynom]

polynom[n_Integer]:=polynom[n] =polynom[n_Integer]:=polynom[n] =polynom[n_Integer]:=polynom[n] =

Module[{distList, orderList, sumOuter = 0,Module[{distList, orderList, sumOuter = 0,Module[{distList, orderList, sumOuter = 0,

sumInner = 0}, orderList = substListOrder[2n];sumInner = 0}, orderList = substListOrder[2n];sumInner = 0}, orderList = substListOrder[2n];

While[orderList 6= {}, sumInner = 0;While[orderList 6= {}, sumInner = 0;While[orderList 6= {}, sumInner = 0;

distList = substListDistribution[i, j, k]/.First[orderList];distList = substListDistribution[i, j, k]/.First[orderList];distList = substListDistribution[i, j, k]/.First[orderList];

While[distList 6= {}, sumInner+=cProduct[i1, i2, i3, j1, j2, j3]/.While[distList 6= {}, sumInner+=cProduct[i1, i2, i3, j1, j2, j3]/.While[distList 6= {}, sumInner+=cProduct[i1, i2, i3, j1, j2, j3]/.

First[distList]; distList = Rest[distList]];First[distList]; distList = Rest[distList]];First[distList]; distList = Rest[distList]];

sumOuter+=m[i, j, k] ∗ sumInner/.First[orderList];sumOuter+=m[i, j, k] ∗ sumInner/.First[orderList];sumOuter+=m[i, j, k] ∗ sumInner/.First[orderList];

orderList = Rest[orderList]];orderList = Rest[orderList]];orderList = Rest[orderList]];

sumOuter]sumOuter]sumOuter]

reducePolynomSymmetry[n_Integer]:=reducePolynomSymmetry[n_Integer]:=reducePolynomSymmetry[n_Integer]:=

Module[{polynomReduced = polynom[n]},Module[{polynomReduced = polynom[n]},Module[{polynomReduced = polynom[n]},

Do[Do[polynomReduced = polynomReduced/.m[x_, j, k]→ m[x, k, j],Do[Do[polynomReduced = polynomReduced/.m[x_, j, k]→ m[x, k, j],Do[Do[polynomReduced = polynomReduced/.m[x_, j, k]→ m[x, k, j],

{k, j + 1, 2n}], {j, 0, 2n}];{k, j + 1, 2n}], {j, 0, 2n}];{k, j + 1, 2n}], {j, 0, 2n}];

polynomReduced]polynomReduced]polynomReduced]
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Clear[reducePolynomOrder]Clear[reducePolynomOrder]Clear[reducePolynomOrder]

reducePolynomOrder[n_Integer]:=reducePolynomOrder[n_Integer]:=reducePolynomOrder[n_Integer]:= reducePolynomOrder[n] =reducePolynomOrder[n] =reducePolynomOrder[n] =

If[n == 0, 1,If[n == 0, 1,If[n == 0, 1,

Module[{polynomReduced = reducePolynomSymmetry[n],Module[{polynomReduced = reducePolynomSymmetry[n],Module[{polynomReduced = reducePolynomSymmetry[n],

orderList = substListOrder[2n], counter = 0},orderList = substListOrder[2n], counter = 0},orderList = substListOrder[2n], counter = 0},

While[orderList 6= {}, If[SameQ[Coe�cient[polynomReduced,m[i, j, k]While[orderList 6= {}, If[SameQ[Coe�cient[polynomReduced,m[i, j, k]While[orderList 6= {}, If[SameQ[Coe�cient[polynomReduced,m[i, j, k]

/.Last[orderList]], 0], , counter+=1];/.Last[orderList]], 0], , counter+=1];/.Last[orderList]], 0], , counter+=1];

polynomReduced = polynomReduced/.{m[i, j, k]→ m[counter]polynomReduced = polynomReduced/.{m[i, j, k]→ m[counter]polynomReduced = polynomReduced/.{m[i, j, k]→ m[counter]

/.Last[orderList]}; orderList = Drop[orderList,−1]];/.Last[orderList]}; orderList = Drop[orderList,−1]];/.Last[orderList]}; orderList = Drop[orderList,−1]];

Collect[polynomReduced, x_m]]]Collect[polynomReduced, x_m]]]Collect[polynomReduced, x_m]]]

After the full contraction is calculated, the components of
∂CCCCCC

n� < MMMn>=nCnCnCn−1� < MMMn > can be calculated with ease. The bfactor of 1/2
is owed to the fact that CCC is symmetric.

GradientOfContraction[n_Integer, i_Integer, j_Integer]:=GradientOfContraction[n_Integer, i_Integer, j_Integer]:=GradientOfContraction[n_Integer, i_Integer, j_Integer]:=

Collect
[
If[i == j,D[reducePolynomOrder[n], c[i, j]],Collect
[
If[i == j,D[reducePolynomOrder[n], c[i, j]],Collect
[
If[i == j,D[reducePolynomOrder[n], c[i, j]],

1
2 ∗ If[j > i,D[reducePolynomOrder[n], c[i, j]], ,1
2 ∗ If[j > i,D[reducePolynomOrder[n], c[i, j]], ,1
2 ∗ If[j > i,D[reducePolynomOrder[n], c[i, j]], ,

D[reducePolynomOrder[n], c[j, i]]]], x_m
]

D[reducePolynomOrder[n], c[j, i]]]], x_m
]

D[reducePolynomOrder[n], c[j, i]]]], x_m
]

At this point, all functions are available to create the code needed for Matlab.
What follows is another work�ow to calculate the full Taylor series for nGST and
nSGST in Mathematica. Now, the polynomial coe�cients no longer will be treated as
analytic expressions of bρ → bDensebDensebDense and instead for faster computation are replaced
with the numeric approximation navgnavgnavg de�ned above. Now rotation of �ber-frame is
ignored.

bExpo = 7; bDense = 4.5;bExpo = 7; bDense = 4.5;bExpo = 7; bDense = 4.5;

Ψ[ξ_, b_]:= 1
2b(Exp[b ∗ ξ]− 1);Ψ[ξ_, b_]:= 1
2b(Exp[b ∗ ξ]− 1);Ψ[ξ_, b_]:= 1
2b(Exp[b ∗ ξ]− 1);

ψ[θ_, φ_, b_,F_]:=ψ[θ_, φ_, b_,F_]:=ψ[θ_, φ_, b_,F_]:=

Module
[
{ξ,m = �breTensor[θ, φ,RotationMatrix[0,UnitVector[3, 3]]]},Module
[
{ξ,m = �breTensor[θ, φ,RotationMatrix[0,UnitVector[3, 3]]]},Module
[
{ξ,m = �breTensor[θ, φ,RotationMatrix[0,UnitVector[3, 3]]]},

ξ =
(
Tr
[
F.m.FT

]
− 1
)2

; Ψ[ξ, b]
]

ξ =
(
Tr
[
F.m.FT

]
− 1
)2

; Ψ[ξ, b]
]

ξ =
(
Tr
[
F.m.FT

]
− 1
)2

; Ψ[ξ, b]
]

ψavg[bExp_, bDens_,F_]:=Module[{ψlocal},ψavg[bExp_, bDens_,F_]:=Module[{ψlocal},ψavg[bExp_, bDens_,F_]:=Module[{ψlocal},

ψlocal[φ_?NumericQ, θ_?NumericQ]:=ψ[φ, θ, bExp, F ];ψlocal[φ_?NumericQ, θ_?NumericQ]:=ψ[φ, θ, bExp, F ];ψlocal[φ_?NumericQ, θ_?NumericQ]:=ψ[φ, θ, bExp, F ];

navg[ψlocal, bDens]]navg[ψlocal, bDens]]navg[ψlocal, bDens]]
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reducePolynomialreducePolynomialreducePolynomial is de�ned anew, where m[i, j, k]m[i, j, k]m[i, j, k] is not substituted with m[n]m[n]m[n]
(L=Long). For every choice of b0b0b0 this reducePolynomOrderLreducePolynomOrderLreducePolynomOrderL must be cleared for
dubious reasons only Mathematica knows.

Clear[reducePolynomOrderL]Clear[reducePolynomOrderL]Clear[reducePolynomOrderL]

reducePolynomOrderL[n_Integer, b0_]:=reducePolynomOrderL[n_Integer, b0_]:=reducePolynomOrderL[n_Integer, b0_]:= reducePolynomOrderL[n, b0] =reducePolynomOrderL[n, b0] =reducePolynomOrderL[n, b0] =

If[n == 0, 1,If[n == 0, 1,If[n == 0, 1,

Module[{polynomReduced = reducePolynomSymmetry[n]},Module[{polynomReduced = reducePolynomSymmetry[n]},Module[{polynomReduced = reducePolynomSymmetry[n]},

Collect[N [polynomReduced/.b→ b0], x_m]]/.c[x_, y_]Collect[N [polynomReduced/.b→ b0], x_m]]/.c[x_, y_]Collect[N [polynomReduced/.b→ b0], x_m]]/.c[x_, y_]

→ c[IntegerPart[x], IntegerPart[y]]]→ c[IntegerPart[x], IntegerPart[y]]]→ c[IntegerPart[x], IntegerPart[y]]]

Before the Polynomials can be used, the corresponding prefactors have to be com-
puted for the respective density parameter bbb. Due to a bug, here, it must be checked
(between parameter changes) whether the result still makes sense. If not, try reloading
the de�nitions involved.

For[india = 0, india ≤ 12, india++, reducePolynomOrderL[india, bDense]]For[india = 0, india ≤ 12, india++, reducePolynomOrderL[india, bDense]]For[india = 0, india ≤ 12, india++, reducePolynomOrderL[india, bDense]]

C.2.2 SGST

The second order polynomial contraction is needed repeatedly for every summand of
the nth order Tylor expansion, thus it is only calculated once here.

Clear[SGSTξ]Clear[SGSTξ]Clear[SGSTξ]

SGSTξ[bDense_,F_]:=SGSTξ[bDense, F ] =SGSTξ[bDense_,F_]:=SGSTξ[bDense, F ] =SGSTξ[bDense_,F_]:=SGSTξ[bDense, F ] =

Module
[ {

EE = FT.F − IdentityMatrix[3]
}
,Module

[ {
EE = FT.F − IdentityMatrix[3]

}
,Module

[ {
EE = FT.F − IdentityMatrix[3]

}
,

reducePolynomOrderL[2, bDense]/.c[x_, y_]→ EE[[x, y]]
]

reducePolynomOrderL[2, bDense]/.c[x_, y_]→ EE[[x, y]]
]

reducePolynomOrderL[2, bDense]/.c[x_, y_]→ EE[[x, y]]
]

The individual summands of the Taylor series. Please note that the nSGST model
class is de�ned such that it uses En�〈Mn〉 which is accorded for by simply substituting
c→ EEc→ EEc→ EE.

SGSTSummand[n_Integer, bExpo_, bDense_,F_]:=SGSTSummand[n_Integer, bExpo_, bDense_,F_]:=SGSTSummand[n_Integer, bExpo_, bDense_,F_]:=

Module

[
{EE = FT.F − IdentityMatrix[3], dΨ},Module

[
{EE = FT.F − IdentityMatrix[3], dΨ},Module

[
{EE = FT.F − IdentityMatrix[3], dΨ},

dΨ[x_]:=D[Ψ[ξ0, bExpo], {ξ0, n}]/.ξ0→ x;dΨ[x_]:=D[Ψ[ξ0, bExpo], {ξ0, n}]/.ξ0→ x;dΨ[x_]:=D[Ψ[ξ0, bExpo], {ξ0, n}]/.ξ0→ x;

1
n!dΨ[SGSTξ[bDense, F ]]N

[
Sum

[
Binomial[n, k](−1)n−k1

n!dΨ[SGSTξ[bDense, F ]]N

[
Sum

[
Binomial[n, k](−1)n−k1

n!dΨ[SGSTξ[bDense, F ]]N

[
Sum

[
Binomial[n, k](−1)n−k

reducePolynomOrderL[2k, bDense]reducePolynomOrderL[2k, bDense]reducePolynomOrderL[2k, bDense]

∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}
]
/.c[x_, y_]→ EE[[x, y]]

]]
∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}

]
/.c[x_, y_]→ EE[[x, y]]

]]
∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}

]
/.c[x_, y_]→ EE[[x, y]]

]]

Plain summation yields total Taylor Series of the energy density.
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SGSTΨ[n_Integer, bExpo_, bDense_,F_]:=SGSTΨ[n_Integer, bExpo_, bDense_,F_]:=SGSTΨ[n_Integer, bExpo_, bDense_,F_]:=

Sum[SGSTSummand[india, bExpo, bDense, F ], {india, 0, n}]Sum[SGSTSummand[india, bExpo, bDense, F ], {india, 0, n}]Sum[SGSTSummand[india, bExpo, bDense, F ], {india, 0, n}]

The Gradient with respect to C.

DSGSTSummand[n_Integer, bExpo_, bDense_,F_]:=DSGSTSummand[n_Integer, bExpo_, bDense_,F_]:=DSGSTSummand[n_Integer, bExpo_, bDense_,F_]:=

Module

[
{EE = FT.F − IdentityMatrix[3], dΨ, ddΨ},Module

[
{EE = FT.F − IdentityMatrix[3], dΨ, ddΨ},Module

[
{EE = FT.F − IdentityMatrix[3], dΨ, ddΨ},

dΨ[x_]:=D[Ψ[ξ0, bExpo], {ξ0, n}]/.ξ0→ x;dΨ[x_]:=D[Ψ[ξ0, bExpo], {ξ0, n}]/.ξ0→ x;dΨ[x_]:=D[Ψ[ξ0, bExpo], {ξ0, n}]/.ξ0→ x;

ddΨ[x_]:=D[Ψ[ξ0, bExpo], {ξ0, n+ 1}]/.ξ0→ x;ddΨ[x_]:=D[Ψ[ξ0, bExpo], {ξ0, n+ 1}]/.ξ0→ x;ddΨ[x_]:=D[Ψ[ξ0, bExpo], {ξ0, n+ 1}]/.ξ0→ x;

1
n!
1
n!
1
n!F.F.F.

(
ddΨ[SGSTξ[bDense, F ]]

(
ddΨ[SGSTξ[bDense, F ]]

(
ddΨ[SGSTξ[bDense, F ]]

N

[
Table[Which[j < i, 0.5D[reducePolynomOrderL[2, bDense], c[j, i]],N

[
Table[Which[j < i, 0.5D[reducePolynomOrderL[2, bDense], c[j, i]],N

[
Table[Which[j < i, 0.5D[reducePolynomOrderL[2, bDense], c[j, i]],

j == i,D[reducePolynomOrderL[2, bDense], c[j, i]], ,j == i,D[reducePolynomOrderL[2, bDense], c[j, i]], ,j == i,D[reducePolynomOrderL[2, bDense], c[j, i]], ,

j > i, 0.5D[reducePolynomOrderL[2, bDense], c[i, j]]], {i, 3}, {j, 3}]∗j > i, 0.5D[reducePolynomOrderL[2, bDense], c[i, j]]], {i, 3}, {j, 3}]∗j > i, 0.5D[reducePolynomOrderL[2, bDense], c[i, j]]], {i, 3}, {j, 3}]∗

Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]

∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}]/.c[x_, y_]→ EE[[x, y]]

]
∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}]/.c[x_, y_]→ EE[[x, y]]

]
∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}]/.c[x_, y_]→ EE[[x, y]]

]

+dΨ[SGSTξ[bDense, F ]]N

[
Table[Which[j < i,+dΨ[SGSTξ[bDense, F ]]N

[
Table[Which[j < i,+dΨ[SGSTξ[bDense, F ]]N

[
Table[Which[j < i,

0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]

∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}], c[j, i]],∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}], c[j, i]],∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}], c[j, i]],

j == i,D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]j == i,D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]j == i,D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]

∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}], c[i, j]],∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}], c[i, j]],∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}], c[i, j]],

j > i, 0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]j > i, 0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]j > i, 0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[2k, bDense]

∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}], c[i, j]]],∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}], c[i, j]]],∗reducePolynomOrderL[2, bDense]n−k, {k, 0, n}], c[i, j]]],

{i, 3}, {j, 3}]/.c[x_, y_]→ EE[[x, y]]

])
.FT]{i, 3}, {j, 3}]/.c[x_, y_]→ EE[[x, y]]

])
.FT]{i, 3}, {j, 3}]/.c[x_, y_]→ EE[[x, y]]

])
.FT]

DSGSTΨ[n_Integer, bExpo_, bDense_,F_]:=DSGSTΨ[n_Integer, bExpo_, bDense_,F_]:=DSGSTΨ[n_Integer, bExpo_, bDense_,F_]:=

2Sum[DSGSTSummand[i, bExpo, bDense, F ], {i, 0, n}]2Sum[DSGSTSummand[i, bExpo, bDense, F ], {i, 0, n}]2Sum[DSGSTSummand[i, bExpo, bDense, F ], {i, 0, n}]

De�ne real Cauchy stresses for di�erent experimental setups separately.

SGSTσShear[n_Integer, bExpo_, bDense_, experiment_, γ_]:=SGSTσShear[n_Integer, bExpo_, bDense_, experiment_, γ_]:=SGSTσShear[n_Integer, bExpo_, bDense_, experiment_, γ_]:=

Module[{F = fShear[γ, experiment],Module[{F = fShear[γ, experiment],Module[{F = fShear[γ, experiment],

extract = Switch[experiment, 1, {1, 2}, 2, {1, 2}, 3, {2, 3}]},extract = Switch[experiment, 1, {1, 2}, 2, {1, 2}, 3, {2, 3}]},extract = Switch[experiment, 1, {1, 2}, 2, {1, 2}, 3, {2, 3}]},

DSGSTΨ[n, bExpo, bDense, F ][[extract[[1]], extract[[2]]]]]DSGSTΨ[n, bExpo, bDense, F ][[extract[[1]], extract[[2]]]]]DSGSTΨ[n, bExpo, bDense, F ][[extract[[1]], extract[[2]]]]]
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C.2.3 GST

The second order polynomial contraction is needed repeatedly for every summand of
the nth order Tylor expansion, thus it is only calculated once here.

Clear[GSTξ]Clear[GSTξ]Clear[GSTξ]

GSTξ[bDense_,F_]:=GSTξ[bDense, F ] =GSTξ[bDense_,F_]:=GSTξ[bDense, F ] =GSTξ[bDense_,F_]:=GSTξ[bDense, F ] =

Module
[ {

EE = FT.F − IdentityMatrix[3]
}
,Module

[ {
EE = FT.F − IdentityMatrix[3]

}
,Module

[ {
EE = FT.F − IdentityMatrix[3]

}
,

reducePolynomOrderL[2, bDense]/.c[x_, y_]→ EE[[x, y]]
]

reducePolynomOrderL[2, bDense]/.c[x_, y_]→ EE[[x, y]]
]

reducePolynomOrderL[2, bDense]/.c[x_, y_]→ EE[[x, y]]
]

The individual summands of the Taylor series. Please note that the nGST model
class is de�ned such that is uses En�〈Mn〉 which is accorded for by simply substituting
c→ EEc→ EEc→ EE.

GSTSummand[n_Integer, bExpo_, bDense_,F_]:=GSTSummand[n_Integer, bExpo_, bDense_,F_]:=GSTSummand[n_Integer, bExpo_, bDense_,F_]:=

Module

[
{EE = FT.F − IdentityMatrix[3], dΨ},Module

[
{EE = FT.F − IdentityMatrix[3], dΨ},Module

[
{EE = FT.F − IdentityMatrix[3], dΨ},

dΨ[x_]:=D[Ψ[ξ02, bExpo], {ξ0, n}]/.ξ0→ x;dΨ[x_]:=D[Ψ[ξ02, bExpo], {ξ0, n}]/.ξ0→ x;dΨ[x_]:=D[Ψ[ξ02, bExpo], {ξ0, n}]/.ξ0→ x;

1
n!dΨ[GSTξ[bDense, F ]]N

[
Sum

[
Binomial[n, k](−1)n−k1

n!dΨ[GSTξ[bDense, F ]]N

[
Sum

[
Binomial[n, k](−1)n−k1

n!dΨ[GSTξ[bDense, F ]]N

[
Sum

[
Binomial[n, k](−1)n−k

reducePolynomOrderL[k, bDense]reducePolynomOrderL[k, bDense]reducePolynomOrderL[k, bDense]

∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}
]
/.c[x_, y_]→ EE[[x, y]]

]]
∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}

]
/.c[x_, y_]→ EE[[x, y]]

]]
∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}

]
/.c[x_, y_]→ EE[[x, y]]

]]

Plain summation yields total Taylor Series of the energy density

GSTΨ[n_Integer, bExpo_, bDense_,F_]:=GSTΨ[n_Integer, bExpo_, bDense_,F_]:=GSTΨ[n_Integer, bExpo_, bDense_,F_]:=

Sum[GSTSummand[india, bExpo, bDense, F ], {india, 0, n}]Sum[GSTSummand[india, bExpo, bDense, F ], {india, 0, n}]Sum[GSTSummand[india, bExpo, bDense, F ], {india, 0, n}]

The Gradient with respect to C.

DGSTSummand[n_Integer, bExpo_, bDense_,F_]:=DGSTSummand[n_Integer, bExpo_, bDense_,F_]:=DGSTSummand[n_Integer, bExpo_, bDense_,F_]:=

Module

[
{EE = FT.F − IdentityMatrix[3], dΨ, ddΨ},Module

[
{EE = FT.F − IdentityMatrix[3], dΨ, ddΨ},Module

[
{EE = FT.F − IdentityMatrix[3], dΨ, ddΨ},

dΨ[x_]:=D[Ψ[ξ02, bExpo], {ξ0, n}]/.ξ0→ x;dΨ[x_]:=D[Ψ[ξ02, bExpo], {ξ0, n}]/.ξ0→ x;dΨ[x_]:=D[Ψ[ξ02, bExpo], {ξ0, n}]/.ξ0→ x;

ddΨ[x_]:=D[Ψ[ξ02, bExpo], {ξ0, n+ 1}]/.ξ0→ x;ddΨ[x_]:=D[Ψ[ξ02, bExpo], {ξ0, n+ 1}]/.ξ0→ x;ddΨ[x_]:=D[Ψ[ξ02, bExpo], {ξ0, n+ 1}]/.ξ0→ x;

1
n!
1
n!
1
n!F.F.F.

(
ddΨ[GSTξ[bDense, F ]]

(
ddΨ[GSTξ[bDense, F ]]

(
ddΨ[GSTξ[bDense, F ]]

N

[
Table[Which[j < i, 0.5D[reducePolynomOrderL[1, bDense], c[j, i]],N

[
Table[Which[j < i, 0.5D[reducePolynomOrderL[1, bDense], c[j, i]],N

[
Table[Which[j < i, 0.5D[reducePolynomOrderL[1, bDense], c[j, i]],

j == i,D[reducePolynomOrderL[1, bDense], c[j, i]], ,j == i,D[reducePolynomOrderL[1, bDense], c[j, i]], ,j == i,D[reducePolynomOrderL[1, bDense], c[j, i]], ,

j > i, 0.5D[reducePolynomOrderL[1, bDense], c[i, j]]], {i, 3}, {j, 3}]∗j > i, 0.5D[reducePolynomOrderL[1, bDense], c[i, j]]], {i, 3}, {j, 3}]∗j > i, 0.5D[reducePolynomOrderL[1, bDense], c[i, j]]], {i, 3}, {j, 3}]∗

Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]

∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}]/.c[x_, y_]→ EE[[x, y]]

]
∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}]/.c[x_, y_]→ EE[[x, y]]

]
∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}]/.c[x_, y_]→ EE[[x, y]]

]
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+dΨ[GSTξ[bDense, F ]]N

[
Table[Which[j < i,+dΨ[GSTξ[bDense, F ]]N

[
Table[Which[j < i,+dΨ[GSTξ[bDense, F ]]N

[
Table[Which[j < i,

0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]

∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}], c[j, i]],∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}], c[j, i]],∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}], c[j, i]],

j == i,D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]j == i,D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]j == i,D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]

∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}], c[i, j]],∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}], c[i, j]],∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}], c[i, j]],

j > i, 0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]j > i, 0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]j > i, 0.5D[Sum[Binomial[n, k](−1)n−kreducePolynomOrderL[k, bDense]

∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}], c[i, j]]],∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}], c[i, j]]],∗reducePolynomOrderL[1, bDense]n−k, {k, 0, n}], c[i, j]]],

{i, 3}, {j, 3}]/.c[x_, y_]→ EE[[x, y]]

])
.FT]{i, 3}, {j, 3}]/.c[x_, y_]→ EE[[x, y]]

])
.FT]{i, 3}, {j, 3}]/.c[x_, y_]→ EE[[x, y]]

])
.FT]

DGSTΨ[n_Integer, bExpo_, bDense_,F_]:=DGSTΨ[n_Integer, bExpo_, bDense_,F_]:=DGSTΨ[n_Integer, bExpo_, bDense_,F_]:=

2Sum[DGSTSummand[i, bExpo, bDense, F ], {i, 0, n}]2Sum[DGSTSummand[i, bExpo, bDense, F ], {i, 0, n}]2Sum[DGSTSummand[i, bExpo, bDense, F ], {i, 0, n}]

De�ne real Cauchy stresses for di�erent experimental setups separately.

GSTσShear[n_Integer, bExpo_, bDense_, experiment_, γ_]:=GSTσShear[n_Integer, bExpo_, bDense_, experiment_, γ_]:=GSTσShear[n_Integer, bExpo_, bDense_, experiment_, γ_]:=

Module[{F = fShear[γ, experiment],Module[{F = fShear[γ, experiment],Module[{F = fShear[γ, experiment],

extract = Switch[experiment, 1, {1, 2}, 2, {1, 2}, 3, {2, 3}]},extract = Switch[experiment, 1, {1, 2}, 2, {1, 2}, 3, {2, 3}]},extract = Switch[experiment, 1, {1, 2}, 2, {1, 2}, 3, {2, 3}]},

DGSTΨ[n, bExpo, bDense, F ][[extract[[1]], extract[[2]]]]]DGSTΨ[n, bExpo, bDense, F ][[extract[[1]], extract[[2]]]]]DGSTΨ[n, bExpo, bDense, F ][[extract[[1]], extract[[2]]]]]
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Appendix D

GST Model for Active Myocardium

Following similar steps as outlined in Ref. [49] and borrowing the notation for tensorial
powers therein and their contraction from Eq. 3.1, the derivation for a GST model
for active contraction is derived below. The basic idea is to perform a Taylor-series
expansion of the AI applied to the energy density

ΨAI
act = 〈Ψact〉 = Ta

〈
1

2
λ2 − λ0λ

〉
(D.1)

as de�ned in Eq. 4.5. The anchor point for the Taylor series is chosen to be the GST

Ha = H = κI+ (1− 3κ)M(Θ = 0, φ = 0). (D.2)

as previously de�ned in Eq. 4.10. It is the result of the AI performed on the local
�ber direction de�ned in Eq. B.1. In preparation, the derivatives of λ =

√
C : M (see

Eq. 4.6) are calculated, leading to

∂Mλ =
C

2λ
and ∂

2

Mλ =
−C 2

4λ3
. (D.3)

Since the AI of λ2 can be calculated analytically, it is precluded from the Taylor
expansion and the focus lies on the stretch measure

〈λ〉 = λ

∣∣∣∣
Ha

+ ∂Mλ

∣∣∣∣
Ha

: 〈M−Ha〉︸ ︷︷ ︸
=0

+
1

2
∂

2

Mλ

∣∣∣∣
Ha

�
(
H2 −H

2
a

)
+O(M 3 ), (D.4)

where H2 is the SGST (Eq. 12 Ref. [49]). In conjunction, the energy density simply
reads

Ψ2GST
act = Ta

(
1

2
λ2 − λ0

[
λ− 1

8λ3
C 2 �

(
H2 −H 2

)])
. (D.5)

It follows straight forward that the second Piola-Kircho� stress tensor is given by

S2GST
act = Ta

(
H− λ0

[
H

λ
+

[
3

8λ5
H⊗C 2 − 2

4λ3
I⊗C

]
�
(
H2 −H 2

)])
, (D.6)

where I represents the fourth rank symmetric identity tensor

I
ijkl

=
1

2
(δikδjl + δilδjk). (D.7)
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Appendix E

Simulation Results for Spherical

Model

Here, the results of the simulations detailed in Sec. 4.2.2 are presented for the two
cases of constant EHM thickness and volume with two- and sixfold increased scar
sti�ness parameter ainf.

E.1 Case (I): Constant Thickness
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(a) (b)

(c) (d)

(e) (f)

Figure E.1: Case (I,i, ainf = a) � Changes to the ventricular perfor-
mance represented by di�erent metrics (a) EDV, (b) ESV, (c) RGSV
(Eq. 4.17), (d) EF, and (f) normalized Ees (Eq. 4.18). (e) Derivative

of RGSV with respect to EHM volume (Eq. 4.20).
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(a) (b)

(c) (d)

(e) (f)

Figure E.2: Case (I,i, ainf = 3a) � Changes to the ventricular perfor-
mance represented by di�erent metrics (a) EDV, (b) ESV, (c) RGSV
(Eq. 4.17), (d) EF, and (f) normalized Ees (Eq. 4.18). (e) Derivative

of RGSV with respect to EHM volume (Eq. 4.20).
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(a) (b)

(c) (d)

(e) (f)

Figure E.3: Case (I,ii, ainf = a) � Changes to the ventricular perfor-
mance represented by di�erent metrics (a) EDV, (b) ESV, (c) RGSV
(Eq. 4.17), (d) EF, and (f) normalized Ees (Eq. 4.18). (e) Derivative

of RGSV with respect to EHM volume (Eq. 4.20).
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(a) (b)

(c) (d)

(e) (f)

Figure E.4: Case (I,i, ainf = 3a) Changes to the ventricular perfor-
mance represented by di�erent metrics (a) EDV, (b) ESV, (c) RGSV
[Eq. 4.17], (d) EF, and (f) normalized Ees (Eq. 4.18). (e) Derivative

of RGSV with respect to EHM volume (Eq. 4.20).
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E.2 Case (II): Constant Volume

(a) (b)

(c) (d)

Figure E.5: Case (II,i, ainf = a) � Changes to the ventricular perfor-
mance represented by di�erent metrics (a) EDV, (b) ESV, (c) RGSV
(Eq. 4.17), and (d) normalized Ees (Eq. 4.18). No pronounced ex-
trema, indicating the most e�cient EHM distribution, are present in

either (b) or (c).
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(a) (b)

(c) (d)

Figure E.6: Case (II,i, ainf = 3a) � Changes to the ventricular perfor-
mance represented by di�erent metrics (a) EDV, (b) ESV, (c) RGSV
(Eq. 4.17), and (d) normalized Ees (Eq. 4.18). No pronounced ex-
trema, indicating the most e�cient EHM distribution, are present in

either (b) or (c).
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(a) (b)

(c) (d)

Figure E.7: Case (II,ii, ainf = a) � Changes to the ventricular perfor-
mance represented by di�erent metrics (a) EDV, (b) ESV, (c) RGSV
(Eq. 4.17), and (d) normalized Ees (Eq. 4.18). Extremal values in (b)
and (c) are strongly pronounced and right shifted compared with the

�ndings from Fig. 4.6.
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(a) (b)

(c) (d)

Figure E.8: Case (II,ii, ainf = 3a) � Changes to the ventricular
performance represented by di�erent metrics (a) EDV, (b) ESV, (c)
RGSV (Eq. 4.17), and (d) normalized Ees (Eq. 4.18). Extremal
values in (c) and (d) are strongly pronounced and right shifted for

small values of V̂EHM compared with the �ndings from Fig. 4.6.
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