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Abstract 
 
The mitochondria of yeast Saccharomyces cerevisiae contains more than 1000 proteins, 

majority of which are imported from the cytosol. The TIM23 and the TIM22 complexes in 

the inner mitochondrial membrane are essential transport systems for proper insertion of 

inner membrane and matrix proteins in mitochondria. Additionally, both complexes 

recognise different targeting signals on a precursor protein. In this study, the TIM23 and 

the TIM22 complexes were investigated regarding their structure and substrate spectrum 

respectively.  

The TOM and the TIM23 complexes cooperate for importing presequence-containing 

proteins into mitochondria. However, the lack of structural information of the TIM23 

complex prevents us from completely deciphering the exact mechanism for the import of a 

presequence-containing substrate. In this study, we designed and generated new proteins 

for formation of the TOM-TIM23 supercomplex in organello and in vivo. Subsequently, we 

optimised the isolation strategy to obtain preparatory amounts of the supercomplex for 

structural and cross-linking analysis. Through our cross-linking analysis, we mapped the 

interaction between subunits of the TIM23 complex in its unoccupied state and its 

translocation intermediate TOM-TIM23 supercomplex state. We identified cross-links 

between Tim23-Tom40, Tim21-Mgr2 and Hsp70-Mge1 in the unoccupied TIM23 complex. 

Additionally, cross-links between Tom22-Tim21, Pam16-Tim44 and Pam16-Pam18 were 

also identified in the supercomplex state of TIM23. Together, these suggest the dynamic 

nature of interactions within the subunits of the PAM complex, as well as between TOM 

and TIM23 subunits, during the process of translocation of a protein into mitochondria. 

The TIM22 complex is required for the import of polytopic inner membrane proteins which 

lack a presequence but have internal targeting signals. These proteins have 

predominantly been defined to contain either four or six transmembrane domains. 

However, so far, only a few proteins have been identified as being substrates of this 

complex. Therefore, the primary aim of the second project was to expand the substrate 

spectrum of the TIM22 complex. For this, we utilised a Tim22 temperature sensitive strain 

in combination with quantitative mass spectrometry. Numerous proteins belonging to the 

carrier family, such as Crc1, Odc1, Yhm2 and Hem25, were confirmed as substrates of 

the TIM22 complex. Moreover, previously uncharacterised proteins YPR011C and 

YFR045W were also identified as TIM22 substrates.  

Together, these results expand our knowledge about the molecular interactions between 

mitochondrial translocase components during active protein import, as well as increase 

our repertoire of the TIM22 complex substrates. 
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1. Introduction 
 
1.1 Mitochondria: Origin, function, structure 
 
1.1.1 The endosymbiont hypothesis 
 
Darwin’s principles of natural selection govern most of the biological diversity today. But 

can microscopic events, such as the origin of mitochondria and chloroplast in present day 

eukaryotic cells, also be explained by them? This question is in part answered by the 

endosymbiotic theory, which states that organelles, which are hallmarks of eukaryotic 

cells, evolved as symbionts within early prokaryotic cells. The presence of DNA and active 

translation system within these organelles supports the endosymbiont hypothesis 

(Margulis,1970). In agreement to this, organelle DNA is usually found in the form of 

circular molecules, similar to that found in bacteria (Timmis et al., 2004). Detailed analysis 

of the mitochondrial genome has confirmed the bacterial origin of mitochondria (Gray et 

al., 1984) (Gray et al., 1989), whereas mitochondrial rRNA evolutionary trees showed that 

they evolved from the a-class of proteobacteria (Yang et al., 1985), specifically from the 

Rickettsia species (Andersson et al., 1998) (Gray, 1998). However, a recent study 

suggested that mitochondria and Rickettsias evolved from two independent endosymbiotic 

events (Martijn et al., 2018).  

Endosymbiotic gene transfer (EGT) has led to the transfer of many essential genes from 

the genome of the endosymbiont to that of the host, leading to a reduced organelle 

genome size. This also necessitates transport systems within the organelle to re-import 

the nuclear-encoded proteins from the cytosol (Keeling and Archibald, 2008) (Martin et al., 

2001). The endosymbiont, in return, provided energy required by the host. Therefore, the 

host and the organelle have co-evolved over time to function as one entity. Upon division 

of the host cell, mitochondria also needed to divide and be distributed to each daughter 

cell. The mechanism of formation of new mitochondria is similar to that observed for 

bacteria, i.e. through binary fission (Margolin, 2005). Constant fission and fusion events 

are required to maintain the interconnected and dynamic mitochondrial network within the 

cell.     
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1.1.2 Importance of mitochondria 
 
Mitochondria are essential organelles for the cell and are involved in diverse cellular 

functions. They are predominantly known for their role in the generation of ATP. The 

coupling of ATP synthesis to the electrochemical gradient across the inner mitochondrial 

membrane was proposed in the chemiosmotic theory (Mitchell, 1961). Accordingly, the 

sequential passage of electrons along the respiratory chain complexes (four enzyme 

complexes in the mitochondrial inner membrane, termed complex I-IV) leads to the 

formation of a proton gradient, which is used to generate ATP by ATP synthase (complex 

V) in the mitochondrial matrix (Saraste, 1999).  

Mitochondria are also known for their role in various metabolic pathways, including heme 

biosynthesis, iron sulphur protein biogenesis (Lill et al., 2012), fatty acid and lipid 

metabolism, the tricarboxylic acid (TCA) cycle, amino acid metabolism and the urea cycle. 

They are also involved in important regulatory aspects of the cell, including calcium 

signalling (Clapham, 2007), apoptosis (programmed cell death) (Green and Reed, 1998) 

and ROS signalling (Shadel and Horvath, 2015). Therefore, due to their prominent role in 

energy production, mitochondria dysfunction can lead to diseases. Defects in 

mitochondrial DNA have been implicated in diseases like Leigh syndrome and Leber’s 

hereditary optic neuropathy (LHON) (Osellame et al., 2012).  

 
1.1.3 Mitochondrial structure 
 
The biogenesis of mitochondria is critical for homeostatic functioning of the cell. In most 

eukaryotes, mitochondria are present as a connected network (Friedman and Nunnari, 

2014) and not as single entities. Endosymbiosis has led to mitochondria having two 

membranes. The outer mitochondrial membrane (OM) is similar to the bacterial host 

membrane in its lipid composition, whereas the inner membrane (IM) retains the 

properties of the symbiont organism membrane. Within them, the two membranes enclose 

the aqueous intermembrane space (IMS) and the matrix (Figure 1).    

The mitochondrial outer membrane acts as a barrier for macromolecules, while allowing 

the diffusion of small ions and metabolites (O'Brien and Brierley, 1965) (Benz, 1994). This 

is facilitated by the b-barrel protein porin/VDAC (voltage-dependent anion channel). The 

permeable nature of the outer membrane results in a similar ionic composition of the 

cytosol and IMS. Recently, however, this view was challenged with the identification of 

new channel proteins which were selective for anions or cations, implicating the outer 

membrane in a more regulatory role of metabolite flux (Krüger et al., 2017).   

The mitochondrial inner membrane has a larger surface area and more complex 

architecture compared to the outer membrane. The passage of molecules across this 
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membrane is tightly regulated, since it is highly impermeable in nature. This is required to 

maintain the electrochemical gradient across the membrane, which is generated and 

utilised by the oxidative phosphorylation system.  

 
 

Figure 1 Scheme of mitochondrial structure - The mitochondrial outer membrane (OM) and 
inner membrane (IM) enclose the intermembrane space (IMS) between them. The inner membrane 
can be present as inner boundary membrane (IBM), cristae junction (CJ) or as cristae invaginations 
into the matrix. 

 
The inner membrane can be structurally and functionally subcompartmentalised into 

different domains (Figure 1). These are: (i) Inner boundary membrane (IBM), (ii) cristae 

junction (CJ) and (iii) cristae. The IBM is a stretch of inner membrane in close proximity to 

the outer membrane. Such positioning of the two membranes is thought to facilitate the 

import of proteins into the organelle via dedicated protein complexes (Vogel et al., 2006). 

Extended invaginations of the inner membrane into the matrix are termed cristae. Cristae 

junctions (CJ) form the connection between the IBM and the cristae. Both the CJ and 

cristae are rich in specific protein sets, which are responsible for their curvature. CJ are 

stabilised by MICOS (Mitochondrial contact site and Cristae Organising System) (Hoppins 

et al., 2011) (Malsburg et al., 2011) (Harner et al., 2011) (Alkhaja et al., 2012) (van der 

Laan et al., 2012), whose subunits induce curvature of the membrane. The presence of F1 

Fo-ATP synthase dimers, as well as components of the respiratory chain complexes are 

essential for cristae morphology (Paumard et al., 2002). These complexes can 

oligomerise and stabilise the cristae. Specific mutants of the F1 F0-ATP synthase show 

reduced membrane potential and cristae formation (Alkhaja et al., 2012) (Bornhövd et al., 

2006).  

Taken together, the subcompartmentalisation of the inner membrane and mitochondria as 

a whole, as well as the gene transfer of most mitochondrial proteins to the nucleus, entails 

the need for a protein import machinery specific for the different compartments.       
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1.2 Overview of import routes for different compartments 
 
The mitochondria of yeast Saccharomyces cerevisiae contain about 1000 proteins, as has 

been previously established by proteomic studies (Sickmann et al., 2003), genome-wide 

high throughput localisation screens (Huh et al., 2003), protein functional interaction 

network analysis (Perocchi et al., 2006) and more recently, quantitative mass 

spectrometry (Morgenstern et al., 2017) analysis. Approximately 99 % of these proteins 

have to be imported from the cytosol (Chacinska et al., 2009) (Becker et al., 2012) and 

are targeted to the four different compartments. Initial in vitro studies demonstrated the 

presence of a signal sequence on the precursor mitochondrial protein, which determines 

its final destination to mitochondria (Neupert and Schatz, 1981). Over time, a plethora of 

cleavable and non-cleavable targeting and sorting signals have been identified (Neupert 

and Herrmann, 2007) (Chacinska et al., 2009) (Endo et al., 2011). Dedicated import 

machineries are present in mitochondria to ensure correct targeting of precursor proteins 

(Figure 2) and to maintain mitochondrial function and dynamics.  

 

	
	

Figure 2 Major import routes for mitochondrial proteins - Mitochondrial precursor proteins 
can be subdivided into five major groups. Majority of these proteins enter mitochondria through the 
translocase of the outer mitochondrial membrane (TOM). Presequence containing proteins are 
recognised by the translocase of the inner mitochondrial membrane (TIM23), and are either sorted 
into the inner mitochondrial membrane or transported into the matrix with the help of the 
presequence translocase-associated motor (PAM) complex. Carrier proteins containing internal 
hydrophobic signals, as well as b-barrel proteins, associate with the small TIM chaperones in the 
IMS. They are inserted into the IM and OM by the TIM22 and SAM (sorting and assembly 
machinery) complexes respectively. Cysteine rich proteins associate with the MIA (mitochondrial 
IMS import and assembly) system in the IMS. Some a-helical OM proteins are inserted via the 
mitochondrial import (MIM) complex.   
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Newly synthesised mitochondrial proteins usually associate with cytosolic chaperones of 

the Hsp family to remain in an unfolded state (Young et al., 2003) (Jores et al., 2018). The 

major import routes for these proteins are: 

 
1) Presequence pathway: Almost 2/3rds of mitochondrial proteins have a cleavable 

presequence at the N-terminus. This is an amphipathic a-helix, with positively charged 

amino acids on one face of the helix and hydrophobic ones on the other. Presequence-

containing proteins are recognised by receptors of the TOM (translocase of the outer 

membrane) complex and subsequently the TIM23 (translocase of the inner membrane) 

complex, after which they are sorted into the inner membrane or imported into the matrix. 

The PAM (presequence translocase associated motor) complex is required for localisation 

to matrix. The presequence is cleaved by the MPP (mitochondrial processing peptidase) 

(Schatz and Dobberstein, 1996) (Vögtle et al., 2009) (Schulz et al., 2015) in the matrix. 

2) Carrier pathway: This pathway utilises non-cleavable internal signals within 

multispanning inner membrane proteins. Upon entry through the TOM complex, small TIM 

chaperones in the IMS bind and stabilise the carrier pathway substrate proteins, followed 

by their import into the inner membrane by the TIM22 complex (Sirrenberg et al., 1996) 

(Kerscher et al., 1997) (Koehler et al., 1998a) (Sirrenberg et al., 1998).  

3) b-barrel pathway: Outer membrane b-barrel precursor proteins are imported by the 

TOM complex. In the IMS, they associate with small TIM chaperones. The SAM (sorting 

and assembly machinery) complex then inserts them into the outer membrane 

(Wiedemann et al., 2003) (Paschen et al., 2003).   

4) Cysteine rich IMS proteins: Mitochondrial IMS proteins containing specific cysteine 

motifs are imported by the TOM complex. In the IMS, they associate with MIA 

(mitochondrial intermembrane space import and assembly) machinery which promotes 

their oxidation and folding (Naoé et al., 2004) (Chacinska et al., 2004) (Terziyska et al., 

2005).  

5) a-helical OM proteins: Only a few outer membrane proteins with a-helical 

transmembrane segments are recognised by the MIM (mitochondrial import) complex, 

which also promotes their insertion (Becker et al., 2008) (Hulett et al., 2008) (Popov-

Celeketić et al., 2008).    

 
However, non-conventional import routes are still being discovered, indicating that specific 

import machineries cater to precursor specific requirements. These, along with import via 

the presequence and carrier pathway, will be discussed in detail in the following sections.  
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1.2.1 Translocase of the Outer Mitochondrial Membrane: the TOM 
complex 
 
The majority of mitochondrial proteins are imported via the TOM complex (Figure 3). The 

major components of this complex are: (i) the b-barrel channel-forming protein Tom40 

(Kiebler et al., 1990) (Lackey et al., 2014), which consists of 19 TM b strands (Shiota et 

al., 2015). It is also referred to as the general import pore (GIP); (ii) Receptor a-helical 

proteins, Tom20, Tom22 and Tom70 (Brix et al., 1997). Tom20 is the initial presequence 

receptor, whose cytosolic domain binds the hydrophobic surface of the presequence (Abe 

et al., 2000). Tom22, on the other hand, is the central receptor, which binds to the 

positively charged surface of the presequence. It also has a soluble presequence binding 

domain in the IMS, which helps in the transfer of proteins from the TOM to the TIM23 

complex (Shiota et al., 2011). Moreover, Tom22 is essential for the oligomerisation of the 

TOM complex (van Wilpe et al., 1999). Tom70 acts as the primary receptor for 

hydrophobic proteins (Schlossmann et al., 1994). Its cytosolic domain interacts with 

Hsp70 family proteins bound to the precursors. Recently, the role of Tom70 in 

presequence binding has also been demonstrated (Melin et al., 2015), as well as its ability 

to recognise iMTS-Ls {internal MTS (matrix targeting signal)-like signals} (Backes et al., 

2018); (iii) small Tom proteins Tom5, Tom6 and Tom7. These proteins are involved in the 

TOM complex assembly, stability and dynamics (Wiedemann and Pfanner, 2017). Tom6 

was observed to stabilise the interaction between Tom40 and Tom22 (Alconada et al., 

1995), whereas Tom5 was reported to act as a link during transfer of precursor proteins 

from TOM receptors to the GIP (Dietmeier et al., 1997). A summary of the functions of 

different TOM complex components is mentioned in Table 1.    

        
Figure 3 Translocase of the outer mitochondrial membrane (TOM) - The mitochondrial 
TOM complex is made up of seven subunits. The general import pore Tom40 is the main entry gate 
for proteins. Tom20, Tom22 and Tom70 act as receptors for different classes of preproteins. Small 
proteins Tom5, Tom6 and Tom7 promote assembly and stabilisation of the complex.      
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Table 1 Components of the TOM complex. Different subunits of the TOM complex 
along with their known functions.  
Protein Function 
Tom40 Channel-forming b-barrel protein 

 
Tom20 Initial receptor for presequence-containing proteins 

 
Tom22 Central receptor, involved in TOM complex oligomerisation 

 
Tom70 Receptor for non-cleavable hydrophobic proteins 

 
Tom71 Tom70 paralog 

 
Tom5 TOM complex assembly, transfer of precursor proteins to Tom40 

 
Tom6 TOM complex assembly and dynamics 

 
Tom7 TOM complex disassembly and dynamics 

 
 
Structurally, the TOM complex has been reported as a two or three pore-containing 

complex (Model et al., 2008) (Bausewein et al., 2017) (Figure 3). Tom40 is the protein 

that forms the pore. It has also been shown to associate with translocating proteins and 

prevent their aggregation (Esaki et al., 2003). In Neurospora crassa, two Tom40 proteins 

associate with the small Toms and with Tom22 to form the 148 kDa TOM-core complex 

(TOM-CC). Cryo-electron microscopy analysis of this complex pointed to a double 

symmetric molecule of Tom40 dimers, stabilised by Tom22 transmembrane domains 

(Bausewein et al., 2017). Transmembrane densities of Tom5, Tom6 and Tom7 were also 

present around Tom40. For S. cerevisiae, the 550 kDa Tom20-core (TOM-CC with 

Tom20) complex was structurally analysed (Model et al., 2008). It had a near three-fold 

symmetry, with three pores being identified, along with three Tom22 subunits. Cross-

linking studies in S. cerevisiae indicated that the mature trimeric TOM complex consists of 

three Tom40 proteins tethered by Tom22 transmembrane segments, along with Tom20, 

Tom5, Tom6 and Tom7 (Shiota et al., 2015). This form of the complex is in a dynamic 

exchange process with a Tom22-free dimeric form, which can act as an assembly 

intermediate. From the same study, Tom40 was also shown to have specific hydrophobic 

and acidic amino acid patches in its channel, for transport of carrier and presequence 

proteins.   

To summarise, Tom22 and Tom20 recognise different regions of the amphipathic 

presequence simultaneously. With the help of Tom5, these precursor proteins are guided 

from the Tom22-Tom20 subcomplex to the Tom40 pore. The IMS domain of Tom22 helps 

in the transfer of the preprotein to downstream import complexes.       
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1.2.2 Protein import into the inner membrane via the TIM22 
complex: The carrier pathway 
 
1.2.2.1 The TIM22 complex 
 
Import of a subset of multi-spanning inner membrane hydrophobic proteins is mediated by 

the TIM22 complex. This twin-pore containing complex is made up of the integral 

membrane channel-forming protein Tim22, the single membrane-spanning Tim54 with a 

large IMS domain, Tim18 and Sdh3 (Dudek et al., 2013). Small Tim IMS proteins Tim8, 

Tim9, Tim10 and Tim13, as well as the peripherally attached Tim12, are also involved in 

import via this pathway (Table 2). Known substrates of the TIM22 complex include four 

transmembrane-spanning translocase core components Tim23, Tim22 and Tim17, as well 

as six transmembrane carrier proteins such as the ADP/ATP carrier (AAC), the phosphate 

carrier (PiC) and the dicarboxylate carrier (DiC).  

 

 
Figure 4 Transport along the carrier pathway - Hydrophobic proteins with internal signals are 
kept in an unfolded state by Hsp chaperones in the cytosol (stage I). After being recognised by 
their primary receptor Tom70, the proteins translocate through the TOM complex (stage II). In the 
IMS, small Tim hexamer of Tim9 and Tim10 associates with the peptide (stage III) and guides it to 
the TIM22 complex. A membrane potential dependent insertion by TIM22 (stage IV) is followed by 
assembly of the protein (stage V). ∆Y: membrane potential.    
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Tim22 is the channel-forming core subunit of the 300 kDa TIM22 complex (Sirrenberg et 

al., 1996) (Kovermann et al., 2002) (Rehling et al., 2003). It is an integral membrane 

protein, which has four transmembrane domains and shares a strong sequence similarity 

to Tim23 and Tim17. Tim54 is a membrane protein with a domain in the IMS, which binds 

to the Tim9-Tim10-Tim12 complex (Kerscher et al., 1997) (Wagner et al., 2008). Tim18 is 

a non-essential protein involved in the assembly of Tim54 (Kerscher et al., 2000) (Koehler 

et al., 2000) (Wagner et al., 2008). Another protein which was surprisingly discovered to 

be a part of the TIM22 complex is Sdh3 (Gebert et al., 2011). This protein is also a subunit 

of respiratory chain complex II, and is involved in the assembly and stability of Tim18 and 

therefore the TIM22 complex.     

 

The small Tims are a family of proteins involved in mitochondrial import. These are Tim9, 

Tim10, Tim8, Tim13 and Tim12 and they act as chaperones in the IMS by associating with 

hydrophobic proteins and transferring them to their destination. Tim9 and Tim10 form a 

heterohexameric complex, which interacts with hydrophobic proteins as they exit the TOM 

complex (Sirrenberg et al., 1998) (Koehler et al., 1998a) (Koehler et al., 1998b) (Adam et 

al., 1999). Another essential protein, Tim12, associates with this hexamer and docks it to 

the TIM22 complex (Gebert et al., 2008). Therefore, Tim12 links the soluble and 

membrane-associated components of this import pathway. The Tim9-Tim10 hexamer also 

mediates the transfer of proteins from the TOM complex to the SAM complex 

(Wiedemann et al., 2004). Tim8 and Tim13 are non-essential small Tim proteins that form 

a heterohexamer. These are involved in the transfer of a subset of inner membrane 

proteins such as Tim23 (Koehler et al., 1999) (Paschen et al., 2000) (Curran et al., 2002).   

 
Table 2 Components of the TIM22 complex. Subunits of the TIM22 complex and the 
associated IMS chaperones with their functions. 

Protein Function 
Tim22 

 

Channel-forming subunit 

Tim54 

 

Binding platform for Tim9-Tim10-Tim12 complex 

Tim18 

 
Tim54 assembly 

Sdh3 

 
Assembly of TIM22 complex 

Tim9-Tim10 

 
IMS chaperones for hydrophobic proteins 

Tim8-Tim13 IMS chaperones for subset of inner membrane proteins 

Tim12 Tether for IMS chaperones at the TIM22 complex 
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1.2.2.2 Carrier protein family 
 
Mitochondrial carrier and transporter proteins (MCPs) are a group of inner membrane 

proteins encoded by the nuclear DNA. They are responsible for shuttling a variety of 

charged or hydrophilic solutes across the inner membrane. MCPs don’t have an N-

terminal presequence, but they have several internal targeting signals instead (Saraste 

and Walker, 1982). The typical MCP structure consists of three tandem repeat modules 

(module I-III) of about 100 amino acids, with each repeat containing two transmembrane 

helices connected by hydrophilic loops, as was first reported for the AAC structure (Kunji 

and Harding, 2003) (Pebay-Peyroula et al., 2003). The N- and C-termini are in the IMS. 

The first helix of each repeat has a characteristic conserved sequence at its C-terminal 

end, PX(D/E)XX(K/R), called the carrier signature (CS) (Kunji, 2004) (Nelson et al., 1998) 

(Belenkiy et al., 2000) (Ferramosca and Zara, 2013). Genomic studies have identified 35 

proteins belonging to the MCP group in yeast (Nelson et al., 1998). However, to date, only 

a few of these have been characterised in terms of their import and function. Among the 

most commonly studied carrier proteins are the ADP/ATP carrier (AAC), the phosphate 

carrier (PiC) and the dicarboxylate carrier (DiC). These have also been identified as 

substrates of the TIM22 complex through import analysis (Sirrenberg et al., 1996). The 

role of different MCP modules was studied to identify the targeting information in them. 

Module III by itself (Brandner et al., 2005), or in combination with module II (Pfanner et al., 

1987b) (Endres et al., 1999) has been shown to be important for associating with the 

TIM22 complex for DiC and AAC respectively. Therefore, a broader substrate spectrum is 

required to completely elucidate the roles of different modules.  

 

Transport of carrier proteins across the outer membrane and into the inner membrane is a 

well-studied process. It consists of five distinct stages (Figure 4) (Rehling et al., 2004). 

Carrier proteins synthesised in the cytosol are highly hydrophobic in nature. Chaperones 

in the cytosol, Hsp70 and Hsp90, bind to the precursor proteins post-translationally to 

prevent their aggregation (stage I) (Young et al., 2003). The chaperone-bound precursor 

binds at specific sites on Tom70 (stage II) (Wu and Sha, 2006). The three modules of the 

precursor then bind to three Tom70 dimers (Wiedemann et al., 2001). Chaperone release 

from the precursor is facilitated by ATP (Ryan et al., 1999), after which the carrier proteins 

traverse the TOM complex pore in a loop formation, such that the N- and C- termini 

remains in the cytosol while the middle part enters the channel (Söllner et al., 1992) 

(Curran et al., 2002). At the trans side of the TOM complex, the Tim9-Tim10 complex 

associates with the importing precursor (stage III). In the IMS, Tim9-Tim10 act as 

chaperones for the hydrophobic precursor and associate with Tim12 to dock together at 
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the TIM22 complex (Sirrenberg et al., 1998)	(Koehler et al., 1998a) (Koehler et al., 1998b). 

The membrane potential (∆y) is required for the next two stages as a driving force for 

insertion of protein into the inner membrane. Proteins are inserted into the TIM22 complex 

(stage IV), from which they are laterally released into the inner membrane (Rehling et al., 

2003). Here they assemble to form a mature complex (stage V).    

 

Although the import mechanism of these proteins is understood to some extent, only a few 

carrier proteins have been shown to be imported via this pathway. Therefore, there is a 

need to comprehensively analyse and broaden the substrate spectrum of the TIM22 

complex.         

 
1.2.3 Protein import via the TIM23 complex: The presequence 
pathway   
 
1.2.3.1 The N-terminal presequence 
 
A comprehensive N-proteome study by Vögtle et al demonstrated that majority of the 

mitochondrial proteins (70%) utilise an N-terminal presequence for their import into 

mitochondria. The presequence is typically ~20 - 60 amino acid long, with a net positive 

charge. Presequences with <10 or >65 amino acids have also been reported. In this 

study, Atp17 displays the shortest presequence of 6 amino acids (Vögtle et al., 2009). 

Presequences are present in the form of an amphipathic a-helix, with positively charged 

amino acids on one face of the helix and hydrophobic ones on the other (Schatz and 

Butow, 1983) (Allison and Schatz, 1986) (Roise et al., 1986). The different faces of the 

helix are recognised by specific receptors in the TOM, TIM23 and PAM complexes. 

Tom22 has a preference for the positive side of the presequence, whereas Tom20 binds 

to the hydrophobic side. The overall positive charge of the presequence is significant for 

its membrane potential (∆y) dependent transport across the inner membrane (Martin et 

al., 1991). Recently, the mature portion of the protein was also shown to affect its 

dependence on the ∆y (Schendzielorz et al., 2017).    

 

A presequence-containing protein can be destined for: (i) matrix, (ii) inner membrane and 

(iii) IMS. After import into the matrix, the presequence is usually recognised and cleaved 

by the mitochondrial processing peptidase (MPP) (Pfanner et al., 1988) (Schneider et al., 

1998). An arginine at the C-terminus of the presequence acts as the MPP cleavage site 

(Taylor et al., 2001). An intermediate cleaving peptidase, Icp55, was also reported to 

remove a single amino acid from unstable MPP-cleaved intermediate proteins to promote 

their stability (Vögtle et al., 2009). Proteins targeted for the inner membrane or IMS 
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contain a 16-18 amino acid ‘sorting’ signal after the MTS (Heijne et al., 1989) (Gakh et al., 

2002), which arrests the protein in the TIM23 complex after which it is laterally released 

into the inner membrane. Proteins can either be anchored in the inner membrane via this 

signal or the signal can be cleaved off by proteases in the IMS, releasing the protein into 

the IMS (Glick et al., 1992) (Botelho et al., 2011).  

Not all targeting sequences are at the N-terminus. Proteins with unusual cleavable 

sequences have also been reported: (i) Bcs1, an IM protein, was found to have a 

positively charged sequence at the C-terminus of its transmembrane domain (Fölsch et 

al., 1996), (ii) Another IM protein, Hmi1, was reported to have a cleavable signal 

sequence at its C-terminus (Lee et al., 1999), (iii) For IM protein Pam18, no presequence 

could be identified in the precursor (Truscott et al., 2003), (iv) Multispanning inner 

membrane proteins can also utilise internal signals to insert themselves into the inner 

membrane via the TIM23 complex, as in the case of Sym1 (Reinhold et al., 2012) and (v) 

the hydrophobic extension at the C-terminus of Mgr2 was also shown to act as a targeting 

signal (Ieva et al., 2013).             

 

1.2.3.2 The TIM23 complex 
 
The translocase of the inner mitochondrial membrane (TIM23 complex) is the primary 

import machinery for the majority of mitochondrial proteins destined for the matrix or inner 

membrane. Depending on the protein being imported, the TIM23 complex can exist in 

different forms (Figure 5). The core TIM23 complex (TIM23CORE) is made up of the 

channel-forming protein Tim23, the multispanning protein Tim17, the receptor Tim50 and 

potentially Mgr2 (Table 3).      

 
Tim23 is an essential protein with four transmembrane domains and an IMS domain at the 

N-terminus (Emtage and Jensen, 1993) (Dekker et al., 1993). Through reconstitution and 

electrophysiology studies, it was shown that Tim23 forms a voltage-sensitive cation- 

selective channel of ~13-24 Å. Hence, precursor proteins need to be unfolded prior to 

translocation (Lohret et al., 1997) (Truscott et al., 2001). In addition, conserved amino 

acids lining the pore of the channel contribute to its cation selectivity (Denkert and 

Schendzielorz et al., 2017). Tim23 is also sensitive to presequences. Changes in the 

membrane potential or binding of presequence can cause structural changes in Tim23 

and its interaction with other TIM23 complex subunits (Alder et al., 2008) (Malhotra et al., 

2013) (Lytovchenko et al., 2013).  
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Figure 5 Different forms of the TIM23 complex in yeast - Top left: The polytopic channel-
forming proteins Tim23 and Tim17, the receptor protein Tim50 and the gatekeeper protein Mgr2 
form the TIM23CORE; Top right: the membrane protein Tim21 associates with the CORE to form the 
TIM23SORT and links it to the respiratory complexes for lateral sorting of inner membrane proteins; 
Bottom: The PAM complex associates with TIM23CORE to form the TIM23MOTOR complex for import 
of matrix targeted proteins.      

 
The Tim23 IMS domain is involved in interacting with presequences and other proteins of 

the TIM23 complex through their IMS domains. Additionally, the IMS domain has been 

reported to be intrinsically disordered (Gevorkyan-Airapetov et al., 2009) (la Cruz et al., 

2010). The first half of the IMS domain (residues 1-50) has been suggested to span the 

outer membrane to potentially position the TIM23 complex in proximity to the TOM 

complex (Donzeau et al., 2000) to facilitate preprotein transfer. It was also shown that this 

segment responds to the import of precursor proteins via the TIM23 complex (Popov-

Čeleketić et al., 2008). Through cross-linking studies, the second half of the Tim23 IMS 

domain (residues 51-100) has been shown to interact with a second Tim23 molecule. This 

dimerisation is proposed to occur via formation of leucine zippers between the two IMS 

domains, and is dependent on membrane potential. In the absence of membrane potential 

or the presence of presequences, the dimer becomes destabilised (Bauer et al., 1996) 

(Alder et al., 2008). Furthermore, this domain interacts with Tim21IMS, Tim50IMS and 

Tom22IMS (Gevorkyan-Airapetov et al., 2009) (la Cruz et al., 2010) (Bajaj et al., 2014a). 

Therefore, Tim23IMS has multiple sites for several interactions. However, the lack of 

evolutionary conservation of the extreme N-terminal segment (residues 1-50) in higher 

eukaryotes along with it being dispensable for yeast growth suggests that this domain is 
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not essential for protein import (Chacinska et al., 2005) (Bauer et al., 1996). Taken 

together, these studies reveal a flexible conformation of the Tim23 IMS domain acting as 

a platform for multiple interactions. 

 
Table 3 Components of the TIM23 complex. Subunits of the TIM23 complex with their 
known function. 

Protein Function 
Tim23 
 

Channel-forming subunit 

Tim50 
 IMS presequence receptor, Tim23-Tim17 channel gating 

Tim17 
 

Contributes to Tim23 channel formation and regulation 

Tim21 
 

Involved in TIM23-TOM and TIM23-respiratory chain 
interaction 

Mgr2 Lateral gatekeeper, couples Tim21 to Tim23-Tim17 

 
 
Tim17 is an essential integral membrane protein and a core component of the TIM23 

complex (Ryan et al., 1994) (Maarse et al., 1994). Structurally, it is similar to Tim23, but it 

lacks an IMS domain (Kübrich et al., 1994). The four transmembrane helices traverse the 

inner membrane and are important for the structural integrity of the TIM23 complex. 

Although purified Tim23 can form a channel by itself, Tim17 is required for regulating the 

pore and voltage gating in vivo (Martinez-Caballero et al., 2007). Negatively charged 

residues in the N-terminal IMS, as well as a highly conserved disulfide bond in the IMS 

are critical for preprotein import and structural integrity of the complex (Ramesh et al., 

2016) (Wrobel et al., 2016). Cross-linking studies suggest that TM1 of Tim23 is in 

proximity to TM4 of Tim17 under physiological conditions, and changes in membrane 

potential or presequence causes conformational changes in Tim23. The C-terminal IMS 

domain of Tim23 is also in proximity to Tim50IMS (Alder et al., 2008). TM2 of Tim23 was 

also demonstrated to undergo voltage dependent conformational rearrangement (Alder et 

al., 2008) (van der Laan et al., 2013). Mutations in the GxxxG motifs of TM1 and TM2 of 

Tim23 affect its interactions with Tim17 and overall structural integrity of the complex 

(Demishtein-Zohary et al., 2015).    

 
The inner membrane maintains a strongly impermeable barrier, which is also true for the 

Tim23 channel. Having it in a permanently open state would be futile. An essential protein 

involved in this regulation is Tim50, which is a single transmembrane spanning protein 

with a large hydrophilic domain in the IMS (Geissler et al., 2002) (Yamamoto et al., 2002). 
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Truncated versions of Tim50 indicate that the IMS domain by itself is sufficient for its 

function (Mokranjac et al., 2009). This domain is in proximity to the C-terminus of Tim23IMS 

(Yamamoto et al., 2002) (Alder et al., 2008) and was found to be involved in Tim23 

channel gating. In the absence of a preprotein, the channel is closed and Tim23 is in its 

oligomerised state. In the presence of a precursor, the channel becomes open to 

translocate proteins (Meinecke et al., 2006). In this way, the membrane potential across 

the inner membrane can be maintained. The IMS domain of Tim50 also binds to incoming 

precursors and facilitates their transfer to the TIM23 complex channel. Therefore, Tim50 

acts as a receptor for proteins destined for the matrix or being sorted into the IM. 

Residues 395-476 at the C-terminus of Tim50 are involved in presequence binding and 

are termed PBD (presequence binding domain) (Schulz et al., 2011). Also, a second 

presequence binding site is present in the Tim50 core (Lytovchenko et al., 2013). Crystal 

structure of conserved residues 164-361 (IMS core) pointed to the presence of a 

negatively charged groove, which could bind to the presequence (Qian et al., 2011). 

Furthermore, NMR studies of shortened PBD (residues 400-450) demonstrated that this 

region is important for presequence binding (Rahman et al., 2014). Therefore, Tim50 acts 

as the central presequence receptor for the TIM23 complex.    

Recently, another integral membrane component of the TIM23 complex, called Mgr2, was 

identified. It spans the IM twice, with a matrix loop between the two TM domains (Gebert 

et al., 2012) (Ieva et al., 2013). Mgr2 has been implicated in binding hydrophobic sorting 

signals and controlling the release of these signal-containing proteins into the IM. This 

process is also termed lateral release (Ieva et al., 2014). Deletion of Mgr2 shows an 

increased sorting of proteins, therefore it is also known as a lateral gatekeeper. Mgr2 also 

regulates the recruitment of newly imported Pam18 to the TIM23MOTOR complex (Schulz 

and Rehling, 2014).      

 
Tim21 is an integral membrane protein with a single transmembrane domain (Chacinska 

et al., 2005). The IMS-exposed C-terminal domain is the main platform for interacting with 

Tim50 and Tom22IMS. Tim21 is a non-essential component of the TIM23 complex which 

helps in its association with the TOM complex and the respiratory chain complexes 

(Chacinska et al., 2005) (Albrecht et al., 2006) (van der Laan et al., 2006). The TIM23 

complex, isolated via a tag on Tim21, could be reconstituted into cardiolipin-containing 

proteoliposomes. This complex showed similar channel activity as recombinant Tim23 and 

could also integrate membrane protein into the liposome (van der Laan et al., 2007). 

Additionally, the structure of Tim21IMS (residue 103-225) has been solved using 

crystallography (Albrecht et al., 2006). Furthermore, it was shown to interact with 

Tom22IMS via NMR studies. The surface exposed residues of Tim21IMS have a net charge 
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of +8, and were found to comprise of positively charged, negatively charged, hydrophobic 

or amphipathic residues. Predominant among these were the positively charged surface 

areas. This was shown to be the site for electrostatic interactions with Tom22IMS, which 

has a net charge of -5. Mutation and cross-linking analysis showed that charged amino 

acids between residues 131-147 of Tom22 support its interactions with Tim21. Therefore, 

Tim21 is also involved in linking the TOM complex to the TIM23 complex, specifically with 

the transfer of proteins from Tom22 to the TIM23 complex. Tim21 is also required for 

sorting of membrane proteins into the inner membrane, as will be discussed at the end of 

the next section.  

 
1.2.3.3 The Presequence translocase associated motor (PAM) complex 
 
Complete import of a protein into the matrix requires two driving forces: membrane 

potential across the IM and ATP. The presequence translocase associated motor (PAM) 

complex utilises this second driving force. The PAM complex is composed of the tethering 

protein Tim44, the ATP driven chaperone Hsp70, the J-protein Pam18, the J-like protein 

Pam16, the nucleotide exchange factor Mge1 and Pam17 (Table 4 and Figure 6).  

 
Table 4 Components of the PAM complex. Subunits of the PAM complex with their 
known function.  

Protein Function 
Tim44 
 Couples mtHsp70 to TIM23, binds to presequences 
Pam16 
 

J-like protein, recruits and controls Pam18  
Pam17 
 

Imports motor subunit, interacts with Tim23 

Pam18 
 

J-protein co-chaperone, stimulates mtHsp70 ATPase 
activity 
 

mtHsp70 
(Ssc1) 

Hsp70 family ATPase, involved in protein translocation and 
folding 
 

Mge1 Nucleotide release factor for mtHsp70 

 
The molecular chaperones from the Hsp70 family are involved in a variety of functions 

including protein folding, disassembly and translocation across membranes. The 

mitochondrial Hsp70 family ATPase (mtHsp70), also known as Ssc1, can be present as a 

membrane-associated form, or as a soluble form, with protein translocation and folding 

functions respectively (Kang et al., 1990) (Horst et al., 1997). It is an essential component 

of the PAM complex and uses energy from ATP hydrolysis to drive protein translocation 

across the TIM23 complex. Like other Hsp70 family members, mtHsp70 has two 



Introduction	
	

	 32	

prominent domains, the N-terminal nucleotide binding domain (NBD) and the C-terminal 

substrate binding domain (SBD). These two domains are connected by an interdomain 

linker. Furthermore, the SBD is made up of a substrate binding cleft and a lid (Craig, 

2018). The mechanism of Hsp70-substrate interaction is well established (Takeda and 

McKay, 1996) (Mapa et al., 2010) (Mayer, 2013). In the presence of ATP, mtHsp70 binds 

the substrate in a low affinity state, such that the substrate on-off rate is high. This is the 

‘open’ position. Due to low intrinsic ATPase activity, mtHsp70 requires an external J-

protein to facilitate ATP hydrolysis. In the presence of a J-protein, ATP hydrolysis takes 

place. The conformational changes lead to the formation of a ‘closed’ state, in which the 

lid closes over the cleft. Substrate interaction is thus stabilised in the ADP-bound form. A 

new cycle is initiated by ADP to ATP exchange by a nucleotide exchange factor (Hartl and 

Hayer-Hartl, 2002).  

 
Structural studies of bacterial Hsp70 (DnaK) and its corresponding J-protein (DnaJ), as 

well as mammalian Hsp70, indicate that the conserved J-domain of J-proteins is involved 

in the interaction with Hsp70 (Wall et al., 1994) (Szyperski et al., 1994). Specifically, helix 

2, helix 3 and the conserved HPD motif in the loop between them interact with the 

interdomain linker and proximal residues of Hsp70. The altered interdomain linker 

conformation affects the NBD-SBD interaction, stimulating ATP hydrolysis in the NBD 

(Greene et al., 1998) (Bukau and Horwich, 1998) (Jiang et al., 2005) (Jiang et al., 2007) 

(Swain et al., 2007). 

In mitochondria, other key players of the Ssc1 cycle are Pam18, Mdj1 and Mge1. Pam18 

is the essential inner membrane J-protein co-chaperone of Ssc1 at the motor complex, 

and Mdj1 acts as the J-protein for the Ssc1 soluble form (Truscott et al., 2003) (D'Silva et 

al., 2003) (Rowley et al., 1994). Pam18 spans the IM once, with its J-domain containing 

C-terminus present in the matrix. Mge1 is the essential soluble nucleotide exchange factor 

for Ssc1 (Laloraya et al., 1994) (Schneider et al., 1996) and is required by different 

mtHsp70 proteins (Ssc1 and Ssq1) (Schmidt et al., 2001). Recently it was shown that 

Mge1 does not facilitate the release of ADP, but rather the binding of ATP (Sikor et al., 

2013).    
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Figure 6 Components of the PAM complex - The PAM complex constitutes of the chaperone 
protein Hsp70, the tethering protein Tim44, the J-protein Pam18, the J-like protein Pam16, the 
nucleotide exchange factor Mge1 and the IM protein Pam17. Figure modified from (Craig, 2018).   

 
Two other essential components of the PAM complex are Tim44 and Pam16. Tim44 is a 

peripheral IM-associated protein on the matrix side, which attaches to the membrane 

through interactions of its C-terminal helices (Weiss et al., 1999) (Marom et al., 2009). 

Tim44 couples mtHsp70 to the TIM23 complex and directs incoming preproteins towards 

mtHsp70 (Blom et al., 1993) (Kronidou et al., 1994) (Schneider et al., 1994). Furthermore, 

full length Tim44 has been shown to interact with presequences (Marom et al., 2011). 

Tim44 consists of two domains, the N-terminal domain (NTD, residues 43 to 209) and the 

C-terminal domain (CTD, residues 210 to 431). The NTD was recently shown to be 

intrinsically disordered and to contain residues required for interaction with presequences 

(Ting et al., 2017). Apart from binding to presequences, the NTD has also been shown to 

bind to Hsp70, Pam16 and Tim23 (Schiller et al., 2008) (Schilke et al., 2012) (Ting et al., 

2014) (Ting et al., 2017). Hsp70 interaction sites are scattered throughout the NTD, as 

both NBD and SBD of Hsp70 interact with Tim44 (Krimmer et al., 2000) (Moro et al., 

2002) (D'Silva et al., 2004). For Pam16, the N-terminus was reported to bind to Tim44 

(Schilke et al., 2012). For the CTD, amino acids 234-425 were reported to form an a helix-

b barrel domain (Josyula et al., 2006). Two N-terminal helices of the CTD were reported to 

associate with the membrane (Marom et al., 2009). The CTD also interacts with Tim23 

and Tim17 (Craig, 2018). Both the NTD and the CTD of Tim44 interact with the matrix-
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facing loop 1 of Tim23 (Ting et al., 2017). This loop is present between TM1 and TM2 of 

Tim23. However, exactly how a single loop of 24 residues binds to two separate domains 

of Tim44 is unknown. Loop 3 of Tim17, between TM3 and TM4, also interacts with Tim44 

(Demishtein-Zohary et al., 2017). Therefore, interactions between Tim44 and matrix loops 

of core TIM23 complex subunits leads to stabilisation of Tim44 at the translocase, where it 

can also act as a docking platform for other motor components. Although the two domains 

have been shown to rescue Tim44 function when expressed separately, cell growth was 

found to be poor, pointing towards underlying complexities of its mechanism of action 

(Banerjee et al., 2015).   

 
Pam16, another essential component of the motor, is a co-chaperone of mtHsp70 (Frazier 

et al., 2004) (Kozany et al., 2004). It is tethered at the IM through interactions with Tim44. 

Pam16 is known to be a J-like protein, since it has a matrix domain that is sequentially 

similar to the J-domain, but lacks the HPD motif, which is required to stimulate the 

ATPase activity of Hsp70. In fact, Pam16 was shown to repress the activity of Pam18 (Li 

et al., 2004), and structural analysis of the Pam16-Pam18 heterodimer revealed that the 

Pam18 HPD motif was occupied by Pam16 (Mokranjac et al., 2006). Pam16 and Pam18 

are present in a 1:1 stoichiometry in mitochondria, since separately, both were shown to 

be unstable proteins, whereas the heterodimer is relatively more stable (Iosefson et al., 

2007). The heterodimer associates with the TIM23 complex via multiple interactions. Apart 

from the N-terminal interaction of Pam16 with Tim44, the Pam18 N-terminus interacts with 

Tim17 in the IMS (Chacinska et al., 2005) (D'Silva et al., 2008) and Pam16 interacts with 

the Pam18 HPD motif. Together, these interactions regulate the position of different motor 

components with respect to each other and the TIM23 complex.   

The latest PAM complex protein to be discovered is Pam17 (van der Laan et al., 2005). It 

has two TM domains connected by an IMS loop and a small domain in the matrix, which 

has been shown to interact with Tim17 loop 1 (Ting et al., 2014). The role of Pam17 is not 

very well defined. It has been suggested to help in the co-operation between TIM23 and 

PAM for protein import, based on its interaction with the Tim23-Tim17 core (Popov-

Čeleketić et al., 2008). Tim44 inactivation results in increased association of Pam17 to 

TIM23 (Hutu et al., 2008). Therefore, Pam17 tends to associate with the TIM23 complex 

under specific physiological conditions. Recently, it was also found that Tim50 is required 

for recruiting Pam17 to TIM23 and that the import of specific ∆y-hypersensitive proteins is 

aided by Pam17 (Schendzielorz et al., 2017).          

 
To summarise, the TIM23 complex can exist in different states depending on the nature of 

the precursor protein being imported (Figure 5). The PAM complex and Tim21 are in a 
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state of competition to associate with the TIM23CORE complex. Association of Tim21 with 

TIM23CORE leads to formation of the TIM23SORT, which is predominantly required for lateral 

sorting of proteins into the inner membrane and can also associate with the respiratory 

chain (van der Laan et al., 2007). TIM23CORE-PAM together form the TIM23MOTOR complex, 

which is utilised by matrix targeted proteins. Varying the levels of Tim21 or PAM subunits 

leads to a shift between these forms (Popov-Čeleketić et al., 2008). Upon inactivation of 

Pam16, the TIM23 complex shifts to the TIM23SORT form. Overexpression of Tim21 also 

leads to less PAM complex association with TIM23CORE (Chacinska et al., 2010). For a 

long time, TIM23SORT and TIM23MOTOR were thought to operate individually for the import of 

sorted and matrix proteins, respectively. However, studies have shown that TIM23SORT 

and TIM23MOTOR are in a state of dynamic exchange during the import of precursor 

proteins (Chacinska et al., 2010). TIM23-accumulated sorted and matrix proteins have 

been reported to interact with respiratory chain complexes (Wiedemann et al., 2007). 

Pam16 and Pam18 also interact with these complexes independent of Tim21. Therefore, 

the import of different precursor proteins is not exclusive to different forms of the TIM23 

complex, but involves dynamic exchange and interaction of different subunits with the 

TIM23CORE complex.    

 
1.2.3.4 The translocation intermediate: TOM-TIM23 supercomplex 
 
The question regarding the transport of mitochondrial proteins across the two membranes 

remained unresolved for a long time: was the transfer occurring in two separate steps, or 

was it a single event occurring via fusion of membrane components? Early electron 

microscopy analysis of rat liver mitochondria revealed the presence of contact sites 

between the inner and outer mitochondrial membrane, which were proposed to play a role 

in the passage of solutes between the cytosol and the matrix (Hackenbrock, 1968). These 

were later defined as translocation contact sites (Schleyer and Neupert, 1985).  

A precursor could be accumulated in the translocation intermediate such that the N- 

terminus was processed and the C-terminus was susceptible to added proteases. 

Therefore, the accumulated protein could span both the membranes simultaneously. Such 

an intermediate can be formed by: (i) importing the protein at low temperature (Schleyer 

and Neupert, 1985), (ii) binding the protein with antibodies against the C-terminus before 

import (Schleyer and Neupert, 1985) (Schwaiger et al., 1987), (iii) import at low levels of 

ATP (Pfanner et al., 1987c) and (iv) import of fusion proteins with an N-terminal MTS and 

a stably folded domain at the C-terminus (Rassow et al., 1989) (Figure 7). Following the 

discovery of a stable translocation contact site for the import of proteins, it was suggested 

that the essential components of these sites could be distinct proteins in both membranes, 

which could provide a hydrophilic environment for the precursor protein to pass through 
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(Pfanner et al., 1987a). The b2(167)-DHFR fusion protein, which consisted of N-terminal 

167 residues of cytochrome b2 fused to mouse DHFR (dihydrofolate reductase), could be 

accumulated at the translocation contact sites due to the tight folding of the DHFR moiety 

in the presence of methotrexate (Rassow et al., 1989). Electron microscopy with this 

protein accumulated in mitochondria revealed that the two membranes were not fused 

and the bilayers were separated by 18-20 nm (Rassow et al., 1989).  

As various components of the translocation machinery were discovered, the preprotein 

spanning both membranes was found to be associated with both the TIM23 and the TOM 

complex (Dekker et al., 1997). The TOM complexes are more abundant in mitochondria 

than the TIM23 complexes and as such, only one in four TOM complexes was associating 

with TIM23 for transporting the precursor (Dekker et al., 1997). Preprotein import sites in 

mitochondria were also found to be distributed non-uniformly over the mitochondrial 

surface. The active TOM-TIM23 supercomplexes were revealed to be in the vicinity of 

cristae junctions (Gold et al., 2014).    

 

 
 
Figure 7 The TOM-TIM23 supercomplex formation - TOM and TIM23 complexes are in 
proximity to each other during import of a precursor protein. One of the ways this complex can be 
generated in vivo or in organello is by arresting the import of a preprotein with a tightly folded 
domain at its C-terminus.    
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As the molecular mechanisms for different components of the TOM, TIM23 and PAM 

complexes emerged, the transfer of proteins from the TOM to the TIM23 complex became 

clearer. Tom22IMS is required for stabilisation and Tim50 for the generation of the TOM-

TIM23 intermediate (Chacinska et al., 2003). The IMS domains of both Tom22 and Tim50 

act as presequence receptors, and Tim23 can also recognise presequences. Tim21IMS 

has been shown to bind to Tom22IMS (Chacinska et al., 2005) (Albrecht et al., 2006). 

Therefore, a strong interplay between the IMS domains of Tom22, Tim23, Tim21 and 

Tim50 is involved in the transfer of proteins from the TOM to the TIM23 complex. At the 

trans side of the TOM complex, the presequence of a precursor protein is recognised by 

Tom22IMS (Shiota et al., 2011). Subsequently, the binding of Tim21IMS to Tom22IMS leads to 

dissociation of the precursor protein from Tom22 (Chacinska et al., 2005). The released 

presequence then binds to Tim50. Tim50 and Tim21 IMS domains can interact with each 

other with high affinity, and this interaction can be affected by Tim23IMS (Lytovchenko et 

al., 2013). The Tim50-Tim23 interaction causes the presequence to be released from 

Tim50, following which it can be handed over to the Tim23 channel. Until now, different 

forms of the TOM-TIM23 supercomplex have been reported, either associated with PAM 

or Tim21 (Chacinska et al., 2010), but these proteins are more in dynamic exchange 

during the import of protein and less likely to be found as stable constituents of the 

supercomplex. Furthermore, various constituents of the TOM-TIM23 supercomplex are in 

a state of being recruited and exchanged to promote import motor activity (Schulz and 

Rehling, 2014). Therefore, it appears that the complex mechanism of protein transfer, 

along with the interplay of interactions between the TOM, TIM23 and PAM complex 

subunits during active import of a protein, is not fully elucidated.  

 

1.3 Aims of the work 
 
The translocases of the inner mitochondrial membrane, the TIM23 and the TIM22 

complexes, are crucial for the import of presequence-containing and hydrophobic signal-

containing proteins respectively. Together, these complexes are responsible for the import 

of majority of inner membrane and matrix proteins of mitochondria. Therefore, insights into 

the structure and substrate spectrum of these complexes is important to understand their 

underlying mechanism of action.  

 
The role of various TIM23 complex components has been defined over the last few 

decades. However, structural information of the TIM23 complex is essential to put the 

puzzle together with respect to the various transient and dynamic interactions occurring 

within its subunits. With that in mind, the aim of the first project was to isolate the TIM23 
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complex and the TOM-TIM23 supercomplex in preparatory amounts to analyse it with 

single particle cryo-electron microscopy. In addition, this data was to be complemented 

with a cross-linking mass spectrometry approach to identify protein interactions and 

spatial organisation of proteins within the complex.    

 
The second part of this study is dedicated to identifying and broadening our knowledge 

about the proteins which depend on the TIM22 complex for their import. A very limited 

number of proteins are currently known to import via the TIM22 complex, due to which 

their targeting information is not fully understood. These include both four and six 

transmembrane domain-containing proteins. Therefore, identification of new substrates 

would provide information regarding the targeting signals utilised by the TIM22 complex 

for import of these proteins. 
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2. Materials and Methods 
 
2.1 Materials  
 
2.1.1 Chemicals, kits and buffers 
 
2.1.1.1 Chemicals 
 
Standard chemicals used in this study were obtained from AppliChem (Darmstadt, 

Germany), BD (Heidelberg, Germany), Roche (Mannheim, Germany), Merck, Novagen 

and Calbiochem (Darmstadt, Germany), Roth (Karlsruhe, Germany), Serva (Heidelberg, 

Germany) and Sigma-Aldrich (Taufkirchen, Germany). The complete list of individual 

reagents can be found in Table 5. 

 
Table 5 List of chemicals used in this study and their suppliers. 

Chemical Supplier 
[35S]-L-methionine Hartmann Analytic 

2-mercaptoethanol Sigma-Aldrich 

6-aminocaproic acid Sigma-Aldrich 

Acetic acid Roth 

Acetone Roth 

Acrylamide/bisacrylamide (37.5:1) solution Roth 
 

Acrylamide, 4x crystallised Roth 

Agarose NEEO ultra-quality Roth 

Ammonium persulfate Roth 

Ampicillin AppliChem 

Antimycin Sigma-Aldrich 

ATP  Roche 

Bacto Agar BD 

Bacto Peptone BD 

BactoTryptone BD 
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Bacto Yeast Extract BD 

Bio-Rad Protein Assay Bio-Rad 

Bis-Acrylamide Roth 

Bis-Tris Buffer grade AppliChem 

Bovine serum albumin Sigma-Aldrich 

Bromophenol Blue Merck 

BS2G Thermo Scientific 

BS3 Thermo Scientific 

Complete EDTA-free protease inhibitor mix Roche 
 

Coomassie Brilliant Blue G-250 Roth 

Coomassie Brilliant Blue R-250 Roth 

Creatine kinase Roche 

Creatine phosphate Roche 

CSM-amino acid MP Biomedicals 

D-Desthiobiotin IBA 

DMSO  AppliChem 

DNA ladder mix “Gene Ruler”  Thermo Scientific 

DSG Thermo Scientific 

DSS Thermo Scientific 

DTT  Roth 

EDTA  Roth 

Ethanol Roth 

Ethidium bromide 0.025% w/v Roth 

Galactose, D(+) Roth 

Glucose, D(+) Roth 

GDN101 Anatrace 

L-Glutathione reduced Sigma Aldrich 

Glutaraldehyde EM Grade Polysciences 

Glycerol Sigma-Aldrich 

Glycine Roth 

HEPES Roth 

Herring sperm DNA Promega 

Hydrochloric acid 37% w/v Roth 



Materials and Methods 

	

 41 

Imidazole Sigma Aldrich 

IPTG Sigma Aldrich 

KanamycinSulfate Sigma Aldrich 

Lithium acetate AppliChem 

LMNG Anatrace 

Magnesium chloride heptahydrate Merck 

Methanol Roth 

Methionine Roth 

MitoTracker Orange CMTMRos Thermo Scientific 

MOPS Sigma-Aldrich 

NADH Roche 

Ni2+-NTA agarose Macherey-Nagel 

Oligomycin Sigma-Aldrich 

Ortho-phosphoric acid Merck 

PEG-4000 (polyethylene glycol 4000) Merck 

PMSF  Roth 

Potassium chloride Roth 

Potassium dihydrogen phosphate Roth 

Potassium hydrogen diphosphate Roth 

Proteinase K Roche 

Restriction Enzymes Thermo Scientific 

Roti-Quant Roth 

SDS Roth 

SDS-PAGE protein standard Serva 

Lipodisq SMA Copolymer 3:1 Sigma-Aldrich 

Sodium chloride Roth 

Sodium hydroxide AppliChem 

Sorbitol Roth 

Strep-tactin Sepharose 50% suspension IBA 

Sucrose Roth 

TCA  Merck 

TEMED Roth 

Tricine Roth 
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Tris Roth 

Tween-20 Roth 

Urea Roth 

Valinomycin Sigma-Aldrich 

Yeast nitrogen base without amino acids BD 
Zymolase 20 T Seikagaku Biobusiness Corporation 

 
2.1.1.2 Kits 
 
Commercial kits used in this study are listed in Table 6. They were used according to the 

instructions from the manufacturer.  

 
Table 6 List of commercial kits used in this study along with their manufacturer. 

Kit Supplier 
Alkaline phosphatase, shrimp Roche Applied Science 
ECL Plus Western Blotting Detection 
Reagent 

Thermo Scientific 
 

FastDigest restriction enzymes Thermo Scientific 
Flexi Rabbit Reticulocyte Lysate 
System Promega 

Immobilon-P Transfer membrane  Millipore 

KOD Hot Start DNA Polymerase Merck 
mMessagemMachine SP6 
transcription 
Kit 

Invitrogen 
 

Rapid DNA Ligation Kit Thermo Scientific 
TNT Quick Coupled Transcription/ 
Translation SP6 

Promega 
 

Wizard SV Gel and PCR Clean-Up Promega 

Wizard SV Mini-Prep Promega 

 
2.1.1.3 Buffer and Media Recipes 
 
Recipes of the buffers and culture media used is provided in Table 7. All solutions were 

prepared using analytical grade chemicals. Media for bacteria and yeast growth was 

autoclaved post preparation.  

	
Table 7 List of commonly used buffers in this study along with their composition. 

Buffer Components 
Amino acid-free media 0.67% (w/v) yeast nitrogen base w/o amino acids, 2% 
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 sugar, 0.07% CSM-amino acid 

Ampicillin 100 mg/ml, sterile filtered  
AVO mix 
 

1 mM antimycin, 0.1 mM valinomycin, 2 mM 
oligomycin in ethanol 

Bacteria Lysis Buffer 
40 mM Tris/HCl, pH 7.4, 500 mM NaCl, 10 mM 
Imidazole, 1 mg/ml lysozyme, 0.5 mM PMSF and 
Complete EDTA-free protease inhibitor mix  

BN anode buffer 50 mM Bis-Tris pH 7.0 
BN cathode buffer 
 

50 mM tricine, 15 mM Bis-Tris, with or without 0.02% 
Coomassie Brilliant Blue G-250 

BN gel buffer 
 67 mM 6-aminocaproic acid, 50 mM Bis-Tris pH 7.0 

BN sample loading buffer 
 

0.5% (w/v) Coomassie Brilliant Blue G-250, 50 mM 6-
aminocaproic acid, 10 mM Bis-Tris pH 7.0 

Carrier DNA Herring sperm DNA (10 mg/ml) in TE buffer 
Colloidal Coomassie staining 
solution 
 

0.1% (w/v) Coomassie Brilliant Blue G-250, 2% (w/v) 
phosphoric acid, 10% (w/v) ammonium sulfate, 20% 
methanol 

Coomassie staining solution 
 

1.5 g/l Coomassie Brilliant Blue R-250, 40% ethanol, 
10% acetic acid 

Destaining solution 30% ethanol, 10% acetic acid 
Detergent solubilisation buffer 
 

20 mM HEPES/KOH pH 7.4, 150 mM NaCl, 10% 
glycerol, 0.1 mM EDTA, 1% detergent 

DTT buffer 10 mM DTT, 100 mM Tris/HCl pH 9.4 

EDTA 0.5 M EDTA, pH 8.0 

Glutaraldehyde 25% solution, EM grade 

10% Glycerol buffer 10% glycerol, 20 mM HEPES/KOH, pH 7.4, 150 mM 
NaCl, 0.1 mM EDTA, detergent as indicated 

30% Glycerol buffer 
30% glycerol, 20 mM HEPES/KOH, pH 7.4, 150 mM 
NaCl, 0.1 mM EDTA, detergent as indicated, 
glutaraldehyde as indicated 

Homogenisation buffer 
 

0.6 M sorbitol, 10 mM Tris/HCl pH 7.4, 1 mM EDTA, 
0.2% (w/v) fatty acid free BSA, 1 mM PMSF 

Import buffer 

3% (w/v) fatty acid free bovine serum albumin, 250 
mM sucrose, 80 mM KCl, 5 mM MgCl2, 10 mM MOPS-
KOH pH 7.2, 5 mM methionine, 2 mM KH2PO4, 2 mM 
ATP, 2 mM NADH, with or without 100 μg/ml creatine 
kinase (CK) and 5 mM creatine phosphate (CP)  

LB medium 
 

1% (w/v) tryptone, 0.5% (w/v) NaCl, 1% (w/v) yeast 
extract 

LB Agar LB medium with 1.5% (v/w) agar, sterilised by 
autoclaving (20 min, 120°C)  

Lithium acetate/PEG 
 

0.1 M lithium acetate, 40% polyethylene glycol 4000 in 
water, filter sterilised 

Methotrexate 10 mM stock in water, used as 2000X, stored frozen 
at -20°C in single-use aliquots  

PMSF stock 0.2 M PMSF in ethanol 
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Potassium phosphate buffer 
pH 7.4 80.2% (w/v) K2HPO4, 19.8% (w/v) KH2PO4 

Resolving gel (for SDS-PAGE) 
 

10-16% acrylamide, 80 mM Tris-HCl pH 6.8, 0.1% 
SDS, 0.1% APS, 0.05% TEMED 

SDS Protein loading dye (PLD) 
 

10% glycerol, 2% (w/v) SDS, 0.01% bromophenol 
blue, 60 mM Tris/HCl pH 6.8 

SDS running buffer 25 mM Tris, 192 mM glycine, 0.1% (w/v) SDS 
SEM 
 

250 mM sucrose, 10 mM MOPS-KOH pH 7.2, 1 mM 
EDTA 

SMA solubilisation buffer 50 mM HEPES/KOH pH 7.4, 150 mM NaCl, 5 mM 
Imidazole, 0.2 mM PMSF, 20 mg SMA/ml of buffer   

SMA wash buffer 50 mM HEPES/KOH pH 7.4, 150 mM NaCl, 5 mM 
Imidazole 

Stacking gel (for SDS-PAGE) 
 

4% (w/v) arylamide, 0.1% (w/v) SDS, 380 mM Tris-
HCl pH 8.8, 0.1% (w/v) APS, 0.05% TEMED 

TAE buffer 40 mM Tris/acetate pH 8.0, 2 mM EDTA 

TBST 50 mM Tris, 150 mM NaCl, 0.05% Tween-20 

TBS 50 mM Tris, 150 mM NaCl 

TCA solution 72% trichloracetic acid in water 

Transfer Buffer 25 mM Tris, 192 mM glycine, 10% ethanol 

Wash buffer 
 

20 mM HEPES/KOH pH 7.4, 150 mM NaCl, 10% 
glycerol, 1 mM PMSF, 0.1 mM EDTA, detergent as 
indicated 

YPAD (2x) 
 

2% (w/v) yeast extract, 4% (w/v) peptone, 4% (w/v) 
glucose, 0.008% (w/v) adenine hemisulfate, 
autoclaved 

YPD 
 

1% yeast extract, 2% peptone, 2% glucose, 
autoclaved 

YPG 
 

1% (w/v) yeast extract, 2% (w/v) peptone, 3% (w/v) 
glycerol, autoclaved 

Zymolyase buffer 1.2 M sorbitol, 20 mM potassium phosphate pH 7.4 

 
 
2.1.2 Antibodies 
 
Primary polyclonal antibodies were utilised for detection of S. cerevisiae proteins. The 

serum obtained after injecting an antigen (peptide or purified protein) into rabbits was 

diluted in TBS-T. Secondary goat anti-rabbit immunoglobulin antibodies were used as 

HRP conjugates (1:10,000). For detection of GFP-tagged proteins, the corresponding 

mouse monoclonal antibody (Roche) (1:1000) and HRP conjugated goat anti-mouse 

immunoglobulin antibody (1:10,000) were used. 	
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2.1.3 E. coli strains and Plasmids  
 
E. coli strains used in this study are listed in Table 8. All plasmids used in this study were 

propagated in E. coli XL1 Blue cells. Table 9 lists all the plasmids utilised in this study. 

 
2.1.3.1 E. coli strains 
 
Table 8 E. coli strains used in this study along with their genotype. 

E. coli 
strain Genotype Reference 

XL1 Blue 
 

recA1 endA1 gyrA96 thi-1 hsdR17 
supE44 relA1 lac [F'proAB 
lacIqZ∆M15 Tn10(Tetr)] 

Stratagene 

BL21 (DE3) 
 

fhuA2 [lon] ompT gal 
dcmhsdSl(DE3) (rB

-mB
-) F- Stratagene 

 
2.1.3.2 Plasmids 
 
Table 9 List of plasmids used in this study. 

Plasmid Backbone Insert Purpose Reference 
pRG6 
(AAC2-GFP)  
 

pUG35 AAC2-GFP 
AAC2-GFP 
expression in 
yeast 

This study 

pRG3 
(GFP-Mir1) pUG36 GFP-Mir1 

GFP-Mir1 
expression in 
yeast 

This study 

GST-nGFP-
Strep pGEX-4T2 

GST-
Thrombin-
GFP 
Nanobody-
Strep 

For expression 
and purification 
of GFP 
Nanobody 

Provided by Dr. 
Markus Deckers 
(AG Rehling) 

pCS153 
(SCGP) K27 Sumo F1b-MSP-

sfGFP 

SCGP 
expression and 
purification 

Provided by Dr.  
Christian Schulz 
(AG Rehling) 

pRG9 
(Jac1-sfGFP) K27 Sumo Jac1-

sfGFP 

Jac1-sfGFP 
expression and 
purification 

This study 

pRG10 
(Mam33-
sfGFP) 

K27 Sumo Mam33-
sfGFP 

Mam33-sfGFP 
expression and 
purification 

This study 

pCS189 
(SCGP) p425Gal1 SCGP 

SCGP 
expression in 
yeast 

Provided by Dr.  
Christian Schulz 
(AG Rehling) 

pRG13 
(Jac1-sfGFP) p425Gal1 Jac1-

sfGFP 

Jac1-sfGFP 
expression in 
yeast 

This study 
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2.1.4 Yeast strains 
 
All yeast strains used in this study are derivatives of YPH499 and BY4741 wild type 

strains and are listed in Table 10. 

 
Table 10 S. cerevisiae strains used in this study along with their genotype. 

Strain Genotype Reference 
YPH499  
 

MATa ade2-101, his3-∆200, leu2-∆1, ura3-
52, trp1-∆63, lys2-801 (Sikorski et al., 1989) 

BY4741 MATa his3∆1, leu2∆0, met15∆0, ura3∆0 Euroscarf 
His-
SUMOstar-
Tim23 

His-SUMOstar-Tim23 pRS413, tim23∆ 
MATa ade2-101, his3-∆200, leu2-∆1, ura3-
52, trp1-∆63, lys2-801, tim23::LYS2 

Provided by Dr. Alex 
Schendzielorz 
(AG Rehling) 

His-Nedd8-
Tim23 

His-brNedd8-Tim23 in tim23∆ 
MATa ade2-101, his3-∆200, leu2-∆1, ura3-
52, trp1-∆63, lys2-801, tim23::LYS2 
 

Provided by Dr.  Alex 
Schendzielorz 
(AG Rehling) 

tim22-14 
YPH499 22-M4 
MATa ade2-101, his3-∆200, leu2-∆1, ura3-
52, trp1-∆63, lys2-801, tim22-M4 

(Wagner et al., 2008) 

tim22-F1 
YPH499 22-F1 
MATa ade2-101, his3-∆200, leu2-∆1, ura3-
52, trp1-∆63, lys2-801, tim22-F1 

Yeast collection 
AG Rehling 

 
2.1.5 Instruments and softwares 
 
2.1.5.1 Instruments 
 
Laboratory equipments used in this study are listed in Table 11. 

 
Table 11 List of laboratory equipments used in this study along with their 
manufacturer. 

Instrument Manufacturer 
5415 R (centrifuge) Eppendorf 

5424 (centrifuge) Eppendorf 

5804 R (centrifuge) Eppendorf 

ÄKTA purifier  GE Healthcare 

Amersham Typhoon PhosphorImager GE Healthcare 

Autoradiography Storage Phosphor Screen GE Healthcare 
 

Cawomat 2000 IR Developing machine Agfa 

Delta Vision Fluorescence Microscope Applied Precision 
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EPS 601 power supply GE Healthcare 

EmulsiFlex-C3 homogeniser Avestin 

Fluorescence scanner FLA-9000 Fujifilm 

GD-5040 Gel Dryers Scie-Plas 

GeneAmp PCR System 9700 (thermo cycler) Applied Biosystems 
 

Gradient Master  BioComp Instruments  

HiLoad 16/60 Superdex 200  GE Healthcare  

HisTrap HP, 1 ml  GE Healthcare  

Hoefer SE600 Ruby Blue native system  GE Healthcare  

JA-20 (rotor) Beckman Coulter 

Magnetic Stirrer MR 3001  Heidolph 

Mini-PROTEAN 3 Cell  Bio-Rad 

Mini-Sub Cell GT Cell Bio-Rad 

NanoVueTM Spectrophotometer GE Healthcare 

New Brunswick Innova 2300 Eppendorf 

New Brunswick Innova 44 Shaker Eppendorf 

Optima L-90 K Ultracentrifuge Beckman Coulter 

Potter S (Dounce homogeniser) Sartorius 

PowerPac HC Power Supply  Bio-Rad 

Semi Dry Blotting chamber  PEQLAB Biotechnologie 

Sorvall RC 6 Plus (centrifuge) Thermo Scientific 

Sorvall RC 12BP (centrifuge) Thermo Scientific 

Sorvall SS-34 (rotor) Thermo Scientific 

Sorvall F10S-6x500Y (rotor) Thermo Scientific 

Sorvall H-12000 (rotor) Thermo Scientific 

SW 60 Ti (rotor) Beckman Coulter 

Thermomixer C Eppendorf 

Varian Cary 50 UV-Vis spectrophotometer Agilent Technologies 

Vortex-Genie 2 Scientific Industries 
 

2.1.5.2 Softwares 
 

All softwares used for image visualisation and processing, quantification, data analysis, 

bioinformatics and structure visualisation are listed in Table 12.  
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Table 12 List of softwares used in this study. 

Software Producer 
DataGraph 4.3 Visual Data Tools, Inc. 

Geneious 9.1.2 Biomatters, Auckland, New Zealand 
Fiji Image Processing 
 

Johannes Schindelin, Albert Cardona, Mark Longair, 
Benjamin Schmid, and others 

Illustrator CS6 Adobe Systems, San Jose, CA, USA 

ImageQuant TL GE Healthcare BioSciences AB, Uppsala, Sweden 

Microsoft Office Microsoft Corporation, Redmond, WA, USA 

Papers 2.8.1 Mekentosj, Aalsmeer, Netherlands 

Photoshop CS6 Adobe Systems, San Jose, CA, USA 

PyMol Schrödinger, Portland, OR, USA 
Softworx Image 
Acquisition Software Applied Precision, Bratislava, Slovakia 

 
2.2 Methods 
 
2.2.1 Handling of E. coli 
 
2.2.1.1 E. coli growth 
 
E. coli strains BL21 and XL1 Blue were cultured in LB media or LB Agar plate according to 

standard procedures (Sambrook and Russell, 2001). For antibiotic resistance, 100 µg/ml 

ampicillin or 50 µg/ml kanamycin was added to the media. Optical density at 600 nm 

(OD600) was used to monitor cell growth. Cryo stocks were generated by mixing 800 µl of 

a logarithmic phase culture with 200 µl of sterile glycerol.  

 
2.2.1.2 E. coli transformation 
 
Competent E. coli cells were prepared using CaCl2 method (Sambrook and Russell, 

2001). Briefly, E. coli cells were inoculated from LB agar plate to LB media. After overnight 

growth with vigorous shaking at 37°C, the cells were diluted 1:100 in LB media and grown 

till 0.6 OD600. After keeping them on ice for 5 min, the cells were harvested by 

centrifugation at 2000 x g for 10 min and resuspended in 250 ml cold sterile 50 mM 

CaCl2solution. After 15 min on ice, the cells were harvested followed by resuspension in 

25 ml 50 mM CaCl2. 15 % glycerol was added for storage of cells. 100 µl aliquots were 

prepared and stored at -80°C. 

For transformation, the 100 µl aliquot was thawed on ice. 100-200 ng plasmid DNA or 10 

µl ligation mix was added. Gentle mixing was done, followed by incubation on ice for 15 
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min. Cells were transferred to 42°C, 30 s for BL21 and 45 s for XL1 Blue. After this, the 

cells were cooled down on ice for 2 min. 900 µl of LB media was added, and the cells 

were incubated at 37°C with vigorous shaking for 1 h. Cells were harvested, resuspended 

in 100 µl LB media and plated on LB agar plate with appropriate selection marker.  

 
2.2.2 Handling of S. cerevisiae 
 
2.2.2.1 Yeast growth  
 
Media used in this study for cultivating S. cerevisiae include YPD, YPG, 2X YPAD, as well 

as selective amino acid-free media such as SD-Ura (selective glucose without Uracil) and 

SSuc-Leu (selective sucrose without Leucine) for strains that required additional selection. 

2% sugar or 3% glycerol was used as a carbon source. All liquid cultures were grown at 

30°C with shaking (160-220 rpm), except for temperature sensitive strains which were 

cultivated at 24°C. Heat stress to ts strains was provided at 37°C. For growth on plates, 

1.5% agar was added to the corresponding media. For comparing growth of different 

strains, serial dilutions of an overnight growing culture were prepared and plated on 

appropriate plates. These plates were incubated at 24°C, 30°C and 37°C for 3-5 days. 

Glycerol cryo stocks were prepared by mixing yeast cells from a plate with 1 ml YPAD 

with 15% glycerol and freezing it at -80°C.  

 
2.2.2.2 Transformation in yeast 
 
Competent yeast cells were prepared using a modified Lithium acetate (LiAc)/PEG 

method (Gietz and Woods, 2002). Briefly, yeast strains were pre-cultured in 2X YPAD 

overnight. Next day, the culture was diluted to OD600 of about 0.2 in 2X YPAD, and grown 

for 3-4 h at the corresponding growth temperature of that strain. Cells were harvested at 

OD600 0.6-0.8 by centrifugation for 5 min at 3000 x g. After washing once with sterile water 

followed by washing with 0.1 M LiAc, the cells were resuspended in 2 ml 0.1 M LiAc and 

centrifuged at 12,000 x g for 30 s at 4°C. The pellet was resuspended in 2 ml 0.1 M LiAc 

and 100 µl aliquots were prepared. Cells were stored at -80°C. For transformation, 120 µg 

herring sperm DNA was added to 100 µl of thawed competent cells. Following this, 300 ng 

of plasmid DNA or 2 µg of purified PCR product was added. Cells were incubated for 30 

min at appropriate temperature with mild agitation, after which 600 µl of LiAc/PEG solution 

was added. After this, cells were incubated for 60-90 min at appropriate temperature 

under shaking. 68 µl DMSO was added and the cells were transferred to 42°C for 15 min. 

Finally, the cells were harvested at 100 x g for 2 min, followed by resuspension in 1 M 

sorbitol and seeding on selection plates.  
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2.2.2.3 Whole cell lysate 
 
For analysis of protein expression in yeast cells, whole cell lysates were prepared (Yaffe 

and Schatz, 1984). Briefly, yeast cells were cultured in an appropriate medium and 3 x 107 

cells (3 OD600) were harvested at 3000 x g for 5 min. Following this, the cells were 

resuspended in 1 ml water, followed by addition of 148 µl 2 M NaOH and 12 µl b-

mercaptoethanol. After incubation on ice for 10 min, 160 µl 50% TCA was added. This 

was followed by another incubation on ice for 10 min. Samples were centrifuged at 14,000 

x g for 10 min at 4°C. The pellet was resuspended in 50 µl SDS PLD. Analysis was 

carried out by SDS-PAGE and western blotting.  

 

2.2.2.4 Preparation of mitochondria 
 
Differential centrifugation of yeast cells was done to obtain mitochondria from them 

(Meisinger et al., 2006). To start with, a pre-culture was prepared by inoculating yeast 

cells from a plate in 5 ml YPD media. Subsequent pre-cultures were prepared in 50 and 

300 ml YPG. The last pre-culture was used to inoculate the final culture (1.8 L). Culture 

volumes were varied based on the amounts of mitochondria required. Cells were 

incubated overnight with shaking at 160 rpm at 30°C (24°C for ts strain and 37°C for heat 

shock of ts strains). The following day, cells with 0D600 1.5-2.5 were harvested by 

centrifugation at 4000 x g for 10 min. The pellet was washed with water and then 

resuspended in DTT buffer (2 ml buffer/g cell pellet, see Table 7). They were incubated 

for 30 min at appropriate temperature with shaking. The cells were harvested by 

centrifugation at 3000 x g for 10 min, washed with 1.2 M Sorbitol and resuspended in 

Zymolase buffer (7 ml buffer/g cell pellet). 4 mg Zymolase/g cell pellet was added to 

digest the cell wall, and the cells were incubated for 1 h with shaking at the appropriate 

temperature. After this, the cells were harvested and washed with zymolase buffer. All the 

subsequent steps were carried out at 4°C. Cold homogenisation buffer was added to the 

pellet (7 ml buffer/g cell pellet) and the resuspended cells were homogenised for 15-20 

strokes at 700 rpm using a 60 ml homogeniser. The homogenate was centrifuged at 5000 

x g for 5 min. The supernatant obtained was centrifuged for 10 min at 7000 x g. Finally, 

centrifugation of the supernatant obtained from the previous step was performed at 

15,000 x g for 15 min to obtain the crude mitochondrial fraction. The resulting pellet was 

washed with 5 ml SEM buffer containing 1 mM PMSF, following which it was dissolved in 

an appropriate volume of SEM buffer. Protein concentration was determined by Bradford 

assay. Briefly, serial dilutions of IgG standard were prepared, at concentrations of 7.5, 15, 

30 and 60 µg/ml. For mitochondria, a 1:20 dilution was prepared in water. 5, 10 and 20 µl 

of this dilution was used for protein estimation. 1 ml of 1x Roti-Quant was added. Samples 
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were incubated for 5 min, following which absorption at 595 nm was measured. Final 

mitochondria concentration was adjusted to 10 mg/ml in SEM buffer. Prepared 

mitochondria were aliquoted in appropriate volume, flash frozen in liquid nitrogen and 

stored at -80°C.  

For preparing mitochondria from the Tim22 temperature sensitive strain (tim22-14) and 

the corresponding WT, the yeast cells were cultured at 24°C. After growing the cells till 

late log phase at 24°C, they were shifted to 37°C for 15, 25 and 40 h. Subsequently, 

mitochondria were prepared as described above.   

 
2.2.2.5 Microscopy of yeast cells 
 
Yeast cells were grown in selective media (SD-Ura or SSuc-Leu) depending on the 

plasmid transformed. Cells transformed with SCGP and Jac1-sfGFP containing plasmids 

were inoculated in SSuc-Leu media and grown overnight at 30°C under shaking. Next 

day, galactose was added to final concentration of 2%, for induction of protein expression. 

Cells were visualised at different time points using a DeltaVision fluorescence microscope. 

For this, 1 µl MitoTracker was added to 2 ml of culture. Cells were kept on shaking for 20 

min. Afterwards, the cells were harvested at 3000 x g for 4 min and washed with SSuc-

Leu. The pellet was resuspended in 200 µl SSuc-Leu. 4.5 µl of the suspension was 

applied on a glass slide, after which it was covered with a cover slip. Immersion oil was 

applied on top, and the cells were visualised under the Pol, FITC and TRITC channel.  

STED microscopy of yeast cells expressing Jac1-sfGFP was performed by Dr. Stefan 

Stoldt (Research Group Mitochondrial Structure and Dynamics, Max Planck Institute for 

Biophysical Chemistry, Göttingen, Germany). Antibody against Tom40 was used as a 

marker for mitochondria. 

WT and tim22-14 cells transformed with plasmids containing AAC2-GFP and GFP-Mir1 

were grown in SD-Ura media overnight at 24°C. Next day, MitoTracker treatment and 

visualisation was done as mentioned above. 

 
2.2.3 Molecular Biology Techniques 
 
2.2.3.1 Plasmid isolation from E. coli 
 
5 ml E. coli culture was harvested by centrifugation at 12,000 x g for 5 min. Wizard Plus 

SV Miniprep DNA Purification System (Promega) was used for isolating the DNA. 

Instructions from the manufacturer were followed. Briefly, the cell pellet was resuspended 

in 250 µl resuspension buffer. 250 µl lysis buffer was added along with 10 µl alkaline 

protease. The sample was mixed by inverting 5 times and incubated at room temperature 

for 5 min. Afterwards, 350 µl neutralisation buffer was added. Samples were centrifuged 
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at 16,000 x g for 10 min. The supernatant was applied on a filter column and centrifuged 

for 1 min at 16,000 x g. Subsequently, the filter column was washed with 750 and 250 µl 

wash buffer. After spinning the column dry, DNA was eluted by incubating the column with 

50 µl dH2O for 1 min followed by centrifugation at 16,000 x g for 1 min. Plasmid DNA 

concentration was estimated using NanoVue Spectrophotometer (GE Healthcare) and 

DNA was stored at -20°C.   

 
2.2.3.2 Yeast genomic DNA isolation 
 
For preparing genomic DNA from yeast, YPH499 cells were grown in YPD at 30°C 

overnight. On the next day, the cells were harvested at 3000 x g for 5 min. They were 

resuspended in 150 µl of 50 mM Tris/HCl pH 7.5, 10 mM EDTA, 0.3% b-mercaptoethanol 

and 0.25 mg/ml zymolase. After incubation at 37°C for 1 h, 20 μl of 10% SDS and 100 μl 

of 8 M ammonium acetate was added. After mixing, the solution was incubated for 15 min 

at -20°C. Subsequently, centrifugation was carried out at 15,000 x g. 180 µl of the 

supernatant was mixed with equal volumes of isopropanol. The mixture was centrifuged at 

15,000 x g for 15 min at 4°C. The pellet obtained was washed with 70% ethanol, dried 

and resuspended in 100 µl water.   

 
2.2.3.3 Polymerase Chain Reaction (PCR) 
 
DNA segments were amplified (Saiki et al., 1985) from yeast genomic DNA and plasmid 

DNA for molecular cloning and transformation using KOD Hot Start DNA Polymerase 

(Merck). For each 50 µl reaction, 10-100 ng of template was added. This was 

supplemented by 0.2 mM dNTPs, 1.5 mM MgSO4, 1X KOD buffer, 0.4 µM forward and 

reverse primers, 1 U KOD Hot Start Polymerase and 2% DMSO. Cycle conditions were as 

follows: 95°C for 2 min for denaturation of template DNA, 30 s at 95°C, 10 s at 50-58°C 

(according to the primers used) and 1 min at 70°C for 30 cycles.  PCR products were 

analysed by agarose gel electrophoresis (Scharf et al., 1986) combined with EtBr staining 

for DNA visualisation. Briefly, 1% (w/v) agarose solution was prepared in TAE buffer. 

Agarose was dissolved by heating the mixture. Ethidium bromide was added to a final 

concentration of 1 µg/ml. The gel was allowed to polymerise at room temperature.  

PCR products were purified using Wizard SV Gel and PCR Clean-Up System (Promega) 

according to the manufacturer’s instructions. Briefly, PCR product was mixed with 150 µl 

binding buffer and applied on a filter column. After incubation of 1 min, it was centrifuged 

for 1 min at 16,000 x g. Filter column was washed with 700 and 500 µl wash buffer. 

Elution was carried out by incubating the dried column with 50 µl dH2O for 1 min followed 
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by centrifugation at 16,000 x g for 1 min. DNA concentration was estimated using 

NanoVue Spectrophotometer (GE Healthcare). 	

 
2.2.3.4 Molecular Cloning  
 
Cloning was carried out using restriction enzymes according to established procedures 

(Sambrook and Russell, 2001). In short, both the plasmid and the PCR product were 

digested with appropriate FastDigest restriction enzymes (Thermo Scientific). 30 µl 

reactions were prepared containing 1 µl of both restriction enzymes, 1X FastDigest buffer 

and 500-800 ng DNA. The reactions were incubated for 30 min at 37°C. Digested 

fragments were purified as described in the previous section (2.2.3.3). For ligation, 

reaction mixture with 5 µl digested plasmid, 10 µl digested insert, 4 µl DNA Ligation buffer 

and 1 µl T4 DNA Ligase (Rapid DNA Ligation Kit, Thermo Scientific) was prepared. 

Following incubation at 22°C for 30 min, 10 µl of the mixture was transformed into 

competent E. coli XL1 cells (see section 2.2.1.2). Clones obtained were analysed by 

restriction digestion and sequencing (SeqLab, Göttingen).  

 
2.2.3.5 in vitro transcription and translation 
 
mMessagemMachine SP6 transcription kit (Invitrogen) was used to generate mRNAs in 

vitro. Based on the manufacturer’s instructions, a 20 µl reaction mixture with 1 µg PCR 

product, 2 µl enzyme mix, 1X NTP/CAP and 1X reaction buffer was prepared. 

Transcription was carried out at 37°C for 90 min. This was followed by a TURBO DNaseI 

treatment for 15 min at 37°C. To precipitate the mRNA, 30 µl LiCl solution was added, 

following which the sample was frozen at -20°C for 30 min. The precipitated mRNA was 

obtained by centrifuging the sample at 16,000 x g for 15 min at 4°C. After washing the 

pellet with 70% ethanol, it was dried at room temperature. 30 µl nuclease-free water was 

used to resuspend the pellet. mRNA concentration was estimated using NanoVue 

Spectrophotometer (GE Healthcare), after which it was stored at -80°C. 

For synthesis of radiolabelled protein precursors, in vitro translation was carried out using 

either TNT Quick Coupled Transcription/Translation SP6 kit (Promega) for plasmids or 

Flexi Rabbit Reticulocyte Lysate System (Promega) for mRNA. Manufacturer’s 

instructions were used to prepare the reaction. For translation from mRNA, 33 µl Flexi 

Rabbit Reticulocyte Lysate, 1 µl 1 mM amino acid mix-Met, 1 µg mRNA and 50 µCi 35S 

Met were mixed. KCl and MgAc amounts were optimised depending on the precursor. The 

reaction was incubated at 30°C for 90 min, following which it was quenched by 250 mM 

sucrose. Prepared lysates were used directly for import reactions.  
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2.2.4 Protein analysis 
 
2.2.4.1 Protein purification 
 
For expression of recombinant proteins in E. coli, plasmids were transformed into 

competent BL21 cells as described (see section 2.2.1.1). Cells were inoculated in a pre-

culture of 50 ml LB media with appropriate selection marker (100 μg/ml ampicillin or 30 

μg/ml kanamycin) and grown overnight at 37°C. The next day, it was diluted in the final 

culture (2 L) to an OD600 of 0.1. Cells were grown till OD600 reached 0.6, after which they 

were treated with 1 mM IPTG for induction of protein expression. Cells were grown for 4 h 

with shaking (160 rpm) at 37°C for expression of SCGP, Jac1-sfGFP and Mam33-sfGFP, 

and at 30°C for expression of GFP nanobody. After expression, cells were harvested by 

centrifugation at 4000 x g for 10 min. After a washing step with water, cell pellet was either 

used directly or frozen at -20°C till needed. For opening the cells, the pellet was 

resuspended in bacteria lysis buffer (with additional components according to the protein 

being purified). The suspension was applied to Emulsiflex C3 homogeniser (Avestin) for 3 

rounds of opening the cells. Following this, the suspension was centrifuged at 20,000 x g 

twice for 20 min. The supernatant was filtered using 0.2 μm pore size filters and applied to 

their respective affinity columns. For SCGP, Jac1-sfGFP and Mam33-sfGFP, which have 

a 6X His tag followed by Sumo protease cleavage site at the N-terminus, HisTrap columns 

(GE Healthcare) were used. Purification procedure was the same for all three proteins and 

was carried out using ÄKTA Purifier 10 (GE Healthcare). Briefly, the filtered supernatant 

obtained after lysis was applied to a HisTrap column (column volume 1 ml) pre-

equilibrated with 10 column volumes of HisTrap buffer A (40 mM Tris/HCl pH 7.4, 500 mM 

NaCl, 10 mM Imidazole). The loading was done at a flow rate of 0.5 ml/min. Following 

this, the column was washed with 20 column volumes of HisTrap buffer A and eluted with 

a linear gradient of HisTrap buffer B (40 mM Tris/HCl pH 7.4, 500 mM NaCl, 500 mM 

Imidazole) at a flow rate of 1 ml/min. Fractions were collected, and analysis was done 

using SDS-PAGE followed by Coomassie Brilliant Blue staining. Fractions containing 

protein of interest were pooled. Dialysis was carried out overnight using a SnakeSkin 

membrane (Thermo Scientific) in dialysis buffer (20 mM Tris/HCl pH 7.4, 100 mM NaCl). 

After dialysis, the protein solution was concentrated with Amicon centrifugal filters (Merck) 

with a 10 kDa cut-off column. SUMO protease was added (1 mg protease/200 mg protein) 

along with 1 mM DTT, and the sample was left overnight at 4°C on a shaker. Next day, 

size exclusion chromatography was performed using HiLoad 16/60 Superdex 200 

columns (GE Healthcare). Columns were pre-equilibrated with 2 column volumes of 

corresponding buffer (20 mM Tris/HCl pH 7.4, 100 mM NaCl). After this, protein was 
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applied to the column at a flow-rate of 1 ml/min. Fractions were collected to keep a track 

of protein separation and purification analysis was assessed using SDS PAGE and 

Coomassie Brilliant Blue staining. Desired fractions were pooled together. Proteins were 

aliquoted, snap-frozen and stored at -20°C.            

For GFP nanobody, GSTrap column (GE Healthcare) was used. The affinity purification 

procedure was same as above, except for the buffers used (Buffer A: 140 mM NaCl, 2.7 

mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.3; buffer B: 50 mM Tris/HCl, 10 mM 

reduced glutathione, pH 8.0). After affinity purification, the protein was aliquoted and 

stored at -20°C. 

 
2.2.4.2 SDS-PAGE  
 
Separation of proteins was analysed by SDS polyacrylamide gel electrophoresis 

((Laemmli, 1970) with modifications). Polyacrylamide gels of varying percentage were 

prepared with acrylamide:bisacrylamide ratio 37.5:1 containing 0.1% SDS. Stacking gel 

was composed of 4% acrylamide in Tris buffer pH 6.8, whereas resolving gel contained 

10-16% acrylamide in Tris buffer pH 8.8. Samples were prepared in SDS protein loading 

dye by incubating them at 95°C for 5 min. The gels were run in SDS running buffer at 25 

mA/gel, 220 V. Unstained protein standard (Serva) was used as a molecular weight 

marker. 

 
2.2.4.3 BN PAGE  
 
Electrophoretic separation of native membrane protein complexes was carried out using 

Blue-native polyacrylamide gel electrophoresis (BN PAGE) (Schägger at al., 1991). 

Mitochondria pellet was resuspended in detergent solubilisation buffer to a final 

concentration of 1 mg/ml. Solubilisation was carried out for 20 min at 4°C. After 

centrifugation at 16,000 x g for 10 min to remove the unsolubilised material, the 

supernatant was mixed with BN sample loading buffer. The gel system consisted of a 4% 

stacking gel and a 4-13% or 6-16% resolving gel. Electrophoresis was performed at 4°C. 

Electrophoresis conditions through the stacking gel were at 600 V, 15 mA/gel for 1 h, 

using cathode buffer with Coomassie Brilliant Blue G-250. Subsequently, the cathode 

buffer was exchanged to one without any dye, and the gel was run at 100 V, 15 mA/gel for 

14 h. 

 
2.2.4.4 Coomassie staining 
 
Gels and PVDF membranes were stained using Coomassie staining solution for 

visualisation of proteins. Gels were stained for 1 h and membranes for 2-3 min. Following 
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this, destaining solution was used until protein bands were clearly visible over the 

background. For staining the proteins for mass spectrometry analysis, Colloidal 

Coomassie staining solution was used (modified from (Neuhoff et al., 1988)). Here, the gel 

was first fixed in destaining solution for 2 h at room temperature under shaking conditions. 

Following this, the gel was washed 3 times for 10 min each with dH2O. Staining was done 

using Colloidal coomassie staining solution at room temperature overnight with shaking. 

For destaining, 1% acetic acid was utilised.  

 
2.2.4.5 Western blotting and immunodecoration 
 
Western blotting (Burnette, 1981) was performed for proteins separated by SDS PAGE 

and BN PAGE by transferring them to polyvinylidene difluoride (PVDF) membrane using 

semi-dry blotting chambers (PEQLAB). Briefly, membrane with the same size as the gel 

was activated first using methanol. Following this, the blotting layers were assembled. 

This consisted of three Whatman paper soaked in buffer at the bottom, methanol-

activated membrane, gel and finally three Whatman papers again. Transfer was 

performed at 250 mA for 2 h. Following transfer, membranes were stained with 

Coomassie staining solution as described above. Protein standard bands were marked 

and the membrane was cut into parts depending on the antibodies to be used. After this, 

total destaining was done using methanol. The membranes were incubated in blocking 

solution (5% milk in TBST) for 1 h. Following a brief wash with TBST, the membranes 

were incubated with primary antibodies at room temperature for 1 h or at 4°C overnight. 

Subsequently, three washing steps in TBST of 10 min each were carried out, after which 

the membranes were incubated in their corresponding secondary HRP-conjugated 

antibodies for 1 h at room temperature. three washing steps with TBST were repeated, 

following which ECL reagent (Thermo Scientific) was added and signals were detected 

using X-ray films.  

For fractions collected after GraFix (section 2.2.4.6), dot blotting was performed. 2 µl of 

each fraction was applied on a nitrocellulose membrane (Amersham Protran Supported 

0.45 µm NC). After the blot was dry, blocking and subsequent antibody incubations were 

performed as described above.  

 
2.2.4.6 Digital autoradiography 
 
Samples with import of 35S labelled proteins were separated on SDS PAGE or BN PAGE. 

After staining and destaining with Coomassie solution, the gels were put on two Whatman 

papers and covered with a plastic sheet on top. Subsequently, they were dried on GD-

5040 Gel Dryers (Scie-Plas) for 3 h at 65°C. Following this, the protein standards were 
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marked with radioactive ink and covered with a transparent tape. The gels were exposed 

on Phosphor screens (GE Healthcare) and signals were detected using Amersham 

Typhoon PhosphorImager (GE Healthcare). Quantification of signals was carried out 

using the ImageQuantTL software (GE Healthcare).  

 
2.2.4.7 Glycerol density gradients 
 
10-30% glycerol density gradients were prepared by mixing 10% glycerol buffer and 30% 

glycerol buffer using pre-programmed conditions for 10-30% glycerol gradients on 

Gradient Master (BioComp Instruments). Gradients were cooled at 4°C for 2-3 h. For 

GraFix (Gradient Fixation) (Kastner et al., 2008), the high density 30% buffer contained 

0.05% glutaraldehyde. For GraDeR (Gradient Detergent Removal) (Hauer et al., 2015), 

the low density 10% buffer contained 0.05% GDN while the high density 30% buffer 

contained 0.02% GDN. After isolation, 200 µl protein complexes were overlayed on the 

gradients, after which ultracentrifugation was carried out in Sw60Ti rotors (Beckmann 

Coulter) for 18 h at 121,262 x g at 4°C. 0.4 ml fractions were collected from the top and 

were analysed by SDS-PAGE followed by western blotting or by dot blotting. 	

 
2.2.5 Specialised assays 
 
2.2.5.1 Protein import, assembly and generation of the TOM-TIM23 
supercomplex 
 
Import of radiolabelled precursor or recombinant protein was performed (Ryan et al., 

2001) as follows. Mitochondria were unfrozen on ice. A typical import reaction consisted of 

50 µg mitochondria suspended in import buffer (section 2.1.1.3) to have a final 

concentration of 1 µg/µl. For import reaction longer than 15 min, CK and CP were added 

as ATP regenerating system. In a control sample, membrane potential (∆Y) was 

dissipated using 1% AVO mix. Import was carried out for desired time points at 25°C 

under mild shaking (450 rpm on Thermomixer C) and was terminated by addition of 1% 

AVO. Samples were then placed on ice. Non-imported precursors were digested by 50 

µg/ml proteinase K (PK) treatment for 10 min, whenever required. PK reaction was 

inactivated by 2 mM PMSF. Subsequently, mitochondria were centrifuged at 16,000 x g 

for 10 min, followed by wash with SEM buffer. Samples were analysed by SDS PAGE or 

BN PAGE in combination with western blotting or autoradiography. 

For radiolabelled proteins, maximum 10% (v/v) was used for import reactions. For 

assembly of proteins, 12.5% (v/v) lysate was used. For recombinant proteins, 5-100 µg 

protein was imported for 30 min.  
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For import block assay, different amounts of recombinantly purified proteins were 

imported into mitochondria for 30 min. Mitochondria were then pelleted down, washed 

with SEM buffer, and resuspended in fresh import buffer. This was followed by import of 

6% 35S-labelled F1b for 15 min. After this, mitochondria were centrifuged, washed with 

SEM, PK treated, loaded on SDS gels and analysed by autoradiography. After 

quantification of signals, data processing was carried out using DataGraph.  

Generation of the TOM-TIM23 supercomplex was achieved by arresting the import of a 

tightly folded precursor protein (Rassow et al., 1989). b2(167)∆-DHFR, SCGP, Jac1-sfGFP 

and Mam33-sfGFP were imported to form the supercomplex. Purified b2(167)∆-DHFR was 

provided by Dr. Christian Schulz (AG Rehling, Institute of Cellular Biochemistry, 

Göttingen, Germany), while the other proteins were purified as described (section 2.2.4.1). 

b2(167)∆-DHFR (10 µg/50 µg mitochondria) was incubated with 5 µM methotrexate before 

being imported. For the sfGFP-containing proteins, 20 µg protein was added per 50 µg 

mitochondria. Import was carried out for 30 min as described above.   

 
2.2.5.2 Isolation of complexes 
 
Two different strategies were utilised for the isolation of protein complexes: 1) Using GFP 

nanobody to isolate the TOM-TIM23 supercomplex generated by the import of sfGFP-

containing proteins (see section 2.2.5.1), or 2) TIM23 complex isolation using His-

SUMOstar or His-Nedd8 tag on Tim23.  

 

In the first approach, the TOM-TIM23 supercomplex was generated as described before 

(see section 2.2.5.1). Following import, 250 µg mitochondria were centrifuged at 16,000 x 

g for 10 min at 4°C. After washing with SEM, mitochondria were solubilised in detergent 

solubilisation buffer with 1% digitonin and 1 mM PMSF (unless otherwise specified) as 

described previously (see section 2.2.4.3). In parallel, 25 µl Strep-tactin sepharose beads 

(IBA) were equilibrated with 2 x 500 µl dH2O, followed by 2 x 500 µl PBS in a MobiCol. 

Centrifugation for these steps was carried out at 100 x g for 30 s. After this, 500 µl PBS 

containing 1 µg purified GFP nanobody was incubated with the beads for 1 h at room 

temperature, on shaking. Subsequently, the beads were washed with 2X buffer (40 mM 

HEPES/KOH pH 7.4, 300 mM NaCl, 40% glycerol and 0.2 mM EDTA) and detergent 

solubilisation buffer. The clarified supernatant (Total) of solubilised mitochondria was 

applied to the beads. Binding was done for 1 h at 4°C under shaking. Following this, the 

unbound sample was collected as flowthrough. The beads were washed 10x with wash 

buffer containing 0.3% digitonin. Elution was carried out with 7.5 mM desthiobiotin in wash 

buffer (200 x g, 1 min). Total, flowthrough and elution fractions were analysed by SDS 
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PAGE and western blotting. Total and flowthrough were always loaded at 5% of elution 

unless otherwise indicated.        

 

For the TIM23 complex isolation, His-SUMOstar-Tim23 and His-Nedd8-Tim23 yeast 

strains were utilised. In these strains, the endogenous Tim23 has been replaced by His-

SUMOstar-Tim23 or His-Nedd8-Tim23. Mitochondria from these strains were prepared as 

described previously (section 2.2.2.4). Ni2+-NTA agarose beads (Macherey Nagel) were 

washed with 2 x 500 µl dH2O, followed by 2 x 500 µl 2X buffer and 2 x 500 µl detergent 

solubilisation buffer. Solubilised mitochondria were incubated with equilibrated beads for 

2-3 h at 4°C under mild shaking. Following washing in a buffer without PMSF, elution was 

carried out using 1 µM SUMOstar or 1 µM Nedd8 protease (constructs provided by Dr. 

Alexander Stein) in wash buffer without PMSF for 1 h at 4°C. For mitochondria which 

were subjected to Jac1-sfGFP import, a second GFP nanobody isolation step can be 

added after isolation of the TIM23 complex. This two step isolation strategy leads to a 

specific isolation of the TOM-TIM23 supercomplex.  

All isolations were scaled according to the analysis method. Samples obtained after 

isolation were assessed by SDS PAGE and western blotting or were applied to glycerol 

gradients or directly analysed by negative stain EM or cross-linking-MS.    

 
2.2.5.3 Detergent optimisation 
 
The TIM23 complex stability was assessed under digitonin, LMNG, GDN and SMA 

solubilisation. The TIM23 complex was isolated as described before (see section 2.2.5.2). 

Mitochondria solubilsation was carried out with detergent solubilisation buffer 

supplemented with 1% detergent (digitonin, LMNG or GDN) or with SMA solubilisation 

buffer. With detergents, solubilisation was carried out at a final concentration of 1 mg/ml. 

With SMA, the final concentration was 8 mg/ml during solubilisation, but the sample was 

diluted back to 1 mg/ml before binding. The corresponding wash buffer contained 0.3% 

digitonin, 0.05% LMNG, 0.05% GDN or SMA wash buffer without SMA. To assess the 

effect of detergent exchange on stability of the complex, solubilisation was carried out with 

1% digitonin. However, after the final washing step before elution, wash buffer containing 

either 0.05% LMNG or 0.05% GDN was applied on the beads. They were incubated for 30 

min at 4°C under mild shaking. Elution was carried out with buffer containing 0.05% 

LMNG or 0.05% GDN. Samples were mixed with SDS PLD and analysed by SDS PAGE 

and western blotting.  
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2.2.5.4 Negative staining 
 
For visualisation of the isolated TOM-TIM23 supercomplex by electron microscopy (EM), 

complexes were prepared by negative staining in collaboration with Dr. Niels Fischer 

(Department of Structural Dynamics, Max Planck Institute for Biophysical Chemistry, 

Göttingen, Germany) (Stark and Chari, 2016). Samples were applied onto EM grids in two 

different ways: i) ~5 µl drops of complex solution were directly applied to glow-discharged 

EM grids covered with a continuous carbon film, or ii) ~30 µl complex solution were 

applied into the hole of a Teflon block, carbon film was floated onto the solution and 

incubated thereon for defined time-intervals. After sample application, EM grids were 

blotted with pre-wetted Kim-Wipes paper, excess detergent was diluted by incubating 

grids three times on ~20 µl buffer drops, each time followed by blotting with the pre-wetted 

Kim-Wipes paper. Finally, samples were stained by floating grids onto 2% (w/v) solution of 

uranyl formate for 30 seconds, and excess stain was blotted using the pre-wetted Kim-

Wipes paper. EM images were recorded on a 4kx4k CCD Camera (2x binning, TVIPS 

GmbH, Gauting, Germany) in a Philips CM200 FEG (Thermo Fisher Company, 

Eindhoven, The Netherlands), at nominal magnifications of 88k and 115k, corresponding 

to pixel sizes of about 1.85 Å/px and 2.5 Å/px, respectively.  

 
2.2.5.5 Cross-linking analysis 
 
The two step isolated TOM-TIM23 supercomplex was subjected to cross-linking with 500 

µM of DSS, DSG, BS2G and BS3 for 30 min on ice. Same amount of supercomplex 

without any treatment of cross-linker was also kept on ice. Subsequently, the cross-linking 

reaction was quenched by 250 µM glycine pH 8.0 for 15 min on ice. SDS PLD was added 

and the samples were analysed by SDS-PAGE and western blotting. For cross-linking 

followed by mass spectrometry, the TIM23 complex was isolated after import of buffer or 

Jac1-sfGFP. The isolated complex was treated with 1 mM DSS for 3 h on ice, followed by 

quenching of the reaction with 250 µM glycine pH 8.0 for 30 min. Proteins were 

precipitated overnight at -20°C using 80% acetone. The following day, samples were 

centrifuged. Mass spectrometry analysis was carried out by Andreas Linden (Research 

Group Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 

Göttingen, Germany). Analysis of cross-links obtained was carried out using XVis (Grimm 

et al., 2015) and PyMol (The PyMOL Molecular Graphics System, Version 2.0 

Schrödinger, LLC). 
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2.2.5.6 Quantitative proteomics of mitochondria 
 
WT and tim22-14 cells were cultured in 5 ml YPD media at 24°C. Subsequent cultures 

were done in 50 ml, 300 ml and 2 L YPG. After growing the 2 L culture at 24°C till OD600 of 

1-1.5, the culture was split into 4 x 500 ml and incubated at 37°C for 0 h, 15 h, 25 h and 

40 h. Crude mitochondria were prepared as mentioned above (section 2.2.2.4). 10 μg of 

mitochondria from all conditions were reduced, alkylated and trypsin digested by Dr. Ida 

Suppanz (Biochemistry and Functional Proteomics, University of Freiburg, Freiburg, 

Germany). Mass spectrometry based proteomic analysis was also carried out by her. 

Briefly, the peptides were labelled with light, medium or heavy dimethyl. WT peptides from 

all time points received light labelling, tim22-14 peptides at 0 h time point received 

medium and tim22-14 peptides at time points 15, 25 and 40 h of heat shock received 

heavy labelling. Each sample contained WT (light) and tim22-14 (heavy) peptides for a 

specific heat shock time point along with the tim22-14 0 h (medium) peptides. Heavy/light 

ratio was calculated to identify down-regulated proteins in heat- shocked mitochondria.      
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3. Results 
 
3.1 Analysis of a mitochondrial translocation intermediate: the 
TOM-TIM23 supercomplex  
 
3.1.1 Design and comparison of new supercomplex forming 
proteins 
 
Mitochondrial preproteins form transient translocation contact sites during their import, 

spanning both the TOM and TIM23 complexes. The formation of a TOM-TIM23 

supercomplex has been demonstrated before (Koll et al., 1992)	 (Dekker et al., 1997)	

(Chacinska et al., 2003). This was accomplished with the help of model protein b2(167)∆-

DHFR, which consists of the N-terminal part of cytochrome b2 (1-167, with deletion of 19 

amino acid in the sorting signal between residues 47-65) fused to dihydrofolate reductase 

(DHFR). DHFR folds stably in the presence of methotrexate (MTX), preventing complete 

entry of the protein into mitochondria. However, the inability of b2(167)∆-DHFR to be 

purified to a high concentration leads to it not being utilised to its full potential of 100% 

saturation of the translocases for supercomplex formation. A new set of fusion proteins 

were designed to test if the efficiency of supercomplex formation and isolation can be 

improved. The three main components that such a fusion protein should have are: (i) A 

presequence which gets recognised by mitochondrial translocase receptors, (ii) a spacer 

domain which spans both the mitochondrial membranes and (iii) a blocking moiety which 

arrests the protein at the translocation contact site, leading to formation of the TOM-TIM23 

supercomplex (Figure 8). Three new proteins were designed, all containing superfolder 

GFP (sfGFP) as the blocking moiety at the C-terminus (Pédelacq et al., 2006). Since the 

diameter of GFP (2.4 nm) (Hink et al., 2000) is slightly bigger than that reported for the 

TOM complex pore (1.1 nm short vs 3.2 nm long (Bausewein et al., 2017) or 2.2 nm 

estimated average (Hill et al., 1998)), it would get arrested on the cytoplasmic face of the 

TOM complex. The three proteins were: (i) Supercomplex generating protein (SCGP), 

containing the presequence of Atp2 and a spacer region from membrane scaffold protein 

1E3D1 (ii) Jac1-sfGFP, which had the presequence and spacer from the mitochondrial 
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matrix protein Jac1, and (iii) Mam33-sfGFP, containing the presequence and spacer from 

the mitochondrial matrix protein Mam33 (Figure 8).       

 

														 	
	
Figure 8 Design of supercomplex forming proteins -  The supercomplex forming proteins are 
based on the ability of the protein to span both the inner and the outer mitochondrial membrane 
while being tightly folded at the C-terminus. This protein should have a N-terminal presequence, a 
spacer region to span both the membranes and a blocking moiety to prevent complete 
translocation of the protein into mitochondria. Proteins used in this study are:- fusion protein 
b2(167)∆ - DHFR: presequence and spacer - cytochrome b2 with 19 amino acid sorting signal 
deletion (∆), blocking moiety: mouse DHFR; SCGP (SuperComplex Generating Protein): 
presequence - Atp2, spacer - membrane scaffold protein 1E3D1, blocking moiety - sfGFP; Jac1-
sfGFP: presequence and spacer - Jac1, blocking moiety - superfolder GFP (sfGFP); Mam33-
sfGFP: presequence and spacer - Mam33, blocking moiety - superfolder GFP (sfGFP). Red: 
presequence; blue: spacer; green: blocking moiety. 

 
3.1.1.1 in vivo expression of protein shows localisation to mitochondria 
 
Newly constructed fusion proteins have to be import competent to form the supercomplex. 

To that end, the fluorescence property of sfGFP was utilised to track the localisation of 

these proteins in S. cerevisiae. Plasmids encoding SCGP or Jac1-sfGFP under galactose 

promoter were transformed into BY4741 cells. Expression was induced with galactose. 

Whole cell lysate of SCGP transformed cells showed increasing levels of protein (Figure 

9A, lanes 4,6,8 and 10) with increasing induction time. The corresponding control Mic10 

levels remained the same. The expression and localisation of SCGP and Jac1-sfGFP 

upon galactose induction at different time points was also observed by fluorescence 

microscopy. Both proteins showed localisation to mitochondria in the FITC channel for 

GFP, and co-localised with the membrane potential dependent MitoTracker dye (TRITC 

channel), as can be seen in the Merge column (Figure 9B).                
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Figure 9 Supercomplex forming proteins localise to mitochondria - A. Whole cell lysate of 
yeast cells transformed with plasmids encoding SCGP under galactose promoter. Cells were 
grown in selective sucrose media followed by induction with 2% galactose. Samples were taken 0, 
1, 2, 3 and 4 h after induction. Cell lysates were analysed by SDS-PAGE and western blotting. B. 
Yeast cells were transformed with SCGP (upper panel) and Jac1-sfGFP (lower panel) encoding 
plasmids as in A. After induction of expression, cells were co-stained with MitoTracker Red, a 
fluorescent dye. Cells were viewed with a fluorescent microscope using FITC and TRITC channels. 
Merged green and red fluorescence images are shown (yellow/orange). (Scale bar: 5 µm) 

 
To obtain more insight into the localisation of Jac1-sfGFP, super-resolution STED 

microscopy was carried out for yeast cells transformed with Jac1-sfGFP plasmid. Antibody 

against Tom40, a mitochondrial outer membrane protein, was used to stain for 

mitochondria. Two-colour STED imaging showed Jac1-sfGFP co-localising with clusters 

formed by Tom40 (Figure 10). From these images, it can be concluded that the new 

fusion proteins SCGP and Jac1-sfGFP localise to mitochondria upon expression in yeast 

cells. However, because of toxic effects stemming from expressing the proteins for too 

long in the cells, which occur due to the block of mitochondrial protein translocases, and 

therefore import, this approach was not used for purification of the supercomplex. Instead, 

an in organello approach was used.    
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Figure 10 Super-resolution microscopy of Jac1-sfGFP - Two colour STED microscopy of 
yeast cells transformed with Jac1-sfGFP (green). Cells were labelled with antibody against outer 
membrane protein Tom40 (magenta). Merged images are shown on the left. (Scale bar: 1 µm). 
Images acquired by Dr. Stefan Stoldt, Research Group Mitochondrial Structure and Dynamics, 
Göttingen, Germany.   

3.1.1.2 New fusion proteins form the supercomplex to varying levels 
 
The TOM-TIM23 supercomplex formation has previously been reported with b2(167)∆-

DHFR. To test the efficacy of the new proteins, they were expressed in E. coli under IPTG 

induction. Purification was accomplished using affinity and size exclusion 

chromatography. The His-SUMO tag at the N-terminus was cleaved off using SUMO 

protease (Figure 11A). All three proteins showed a different running profile in size 

exclusion chromatography. Mam33-sfGFP showed a strong tendency to oligomerise, with 

almost 100% of the protein running as an oligomer. SCGP was running as a mixture of 

monomer and dimer. This could be explained by the presence of membrane scaffold 

protein (MSP) 1E3D1 in the protein. MSPs are amphipathic proteins which are used in the 

formation of nanodisc, and have a tendency to form discoidal belts. 
 

	
	
Figure 11 Purification of supercomplex forming proteins shows tendency to 
oligomerise - A. Scheme of the protein purification setup. N-terminally His-SUMO tagged proteins 
were expressed in E. coli and purified using NiNTA beads and SUMO protease treatment, followed 
by size exclusion chromatography. B. Chromatogram of SCGP (green), Mam33-sfGFP (red) and 
Jac1-sfGFP (blue) after size exclusion chromatography. Absorbance scaled for representative 
purpose.  
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Jac1-sfGFP ran mostly as a monomer. Elution profile of a standard protein mixture 

applied on the column was used as a reference for size of the protein and its running 

behaviour (Figure 11B).     

 

	
	
Figure	12 Chemical amounts of SCGP and Jac1-sfGFP form supercomplex - A. Purified 
b2(167)∆-DHFR was imported into isolated WT mitochondria in the absence or presence of 
methotrexate (MTX) for 30 min at 25°C. Mitochondria were then solubilised using digitonin and 
samples were analysed by BN-PAGE followed by western blotting using aTom22 and aTim23 
serum. B. Import of SCGP, as described in A. C. Import of Jac1-sfGFP, as described in A. 		

 
The supercomplex forming efficiency of these purified proteins was visualised on BN-

PAGE. b2(167)∆-DHFR was imported in the presence or absence of methotrexate. SCGP 

and Jac1-sfGFP were imported directly. Samples were solubilised using digitonin, and 

applied on BN-PAGE. In the absence of the precursor, the TIM23 complex was detected 

as two separate complexes with Tim23 antibody - a higher molecular weight sorting form 
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and a lower molecular weight core form (Figure	 12A, lane 1 and 2). Addition of the 

precursor in the presence of MTX led to a shift to the higher molecular weight 

supercomplex form (Figure	 12A, lane 3) around 600 kDa. Similar upshifted complexes 

were detected in the presence of SCGP (Figure	 12B, lane 2) and Jac1-sfGFP (Figure	

12C, lane 2). The TOM complex also showed a corresponding co-migrating complex at 

600 kDa (Figure	12B and C, lane 4). However, only a fraction of the TOM complex was 

shifted into the higher supercomplex form, which can be expected since it has already 

been demonstrated that there are 4X more copies of the TOM complex than the TIM23 

complex (Dekker et al., 1997) (Morgenstern et al., 2017). Therefore, both SCGP and 

Jac1-sfGFP can successfully generate the supercomplex.  

 
3.1.1.3 Accumulation of supercomplex forming proteins at the translocase 
inhibits import of mitochondrial proteins     
 
In order to compare the degree of translocase arrested and amounts of protein required to 

saturate the TIM23 complex import sites, increasing amount of the purified proteins were 

arrested for 30 min. Following reisolation and resuspension of mitochondria in import 

buffer, radiolabelled mitochondrial matrix protein F1b was imported for 15 min. Decrease 

in F1b import could be observed with increasing levels of proteins accumulated at the 

translocase (Figure 13A,B,C,D - mature ‘m’ form). As expected, absence of DY abolished 

import of the protein (Figure 13A,B, lane 9, C,D lane 10). All proteins also behaved 

differently in their ability to saturate the import sites. b2(167)∆-DHFR reached 50% 

saturation at about 8 µg protein/ 50 µg mitochondria. SCGP looked the most promising, 

with 4 µg protein required per 50 µg mitochondria to reach 50% saturation. Jac1-sfGFP 

required around 11 µg and Mam33-sfGFP 50 µg per 50 µg mitochondria (Figure 13E). 
Mam33-sfGFP therefore does not form supercomplex as efficiently as the other proteins. 

Since SCGP, Jac1-sfGFP and Mam33-sfGFP were purified in the same conditions, the 

difference in import could be due to the presequence and spacer regions of these 

proteins. Atp2 of SCGP and Jac1 presequence could have a stronger affinity for the 

translocase receptors than Mam33, leading to a faster import. The inability of b2(167)∆-

DHFR to be purified to a higher concentration leads to its not being utilised to its full 

potential of 100% saturation. Therefore, further experiments were carried out with SCGP, 

Jac1-sfGFP and Mam33-sfGFP.               
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Figure 13 Supercomplex forming proteins block presequence import -  Recombinantly 
purified proteins A. b2(167)∆-DHFR, B. SCGP, C. Jac1-sfGFP and D. Mam33-sfGFP block the 
mitochondrial translocase upon import, preventing the import of presequence proteins. Briefly, 
indicated amount of fusion protein was imported per 50 µg isolated WT mitochondria for 30 min at 
25°C. Mitochondria were briefly washed and [35S] labelled F1b was imported for 30 min. The 
reaction was stopped by addition of AVO followed by PK treatment. Samples were analysed by 
SDS-PAGE and autoradiography. E. Quantification of the autoradiogram. Imported precursor was 
quantified as percent of the 0 µg protein sample with PK treatment (100% control) (lane 3). p - 
precursor, m - mature (processed) form, AVO - mixture of 10 mM Antimycin A, 1 mM Valinomycin 
and 10 mM Oligomycin.  

 
3.1.1.4 The TOM-TIM23 supercomplex isolation with GFP Nanobody (Nb) 
 
The import and subsequent supercomplex formation by SCGP and Jac1-sfGFP could be 

visualised by BN-PAGE analysis. These proteins are tightly held at the C-terminus outside 

the TOM complex by their blocking moiety and at the N-terminus in the matrix by motor 

proteins. To analyse stability of the supercomplex and its subunits, isolation assays were 

performed. SCGP, Jac1-sfGFP and Mam33-sfGFP were imported into mitochondria. They 
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were subsequently lysed, and the supercomplex was isolated with the help of Strep tag-

GFP Nanobody (GFP Nb) by affinity chromatography (Figure 14A). For both SCGP and 

Jac1-sfGFP import, similar levels of TOM (Tom40, Tom22), TIM23 (Tim23, Tim50, Tim17, 

Tim21) and PAM (Tim44, Hsp70) complex components could be isolated (Figure 14B, 

lane 6 and 7). Control proteins such as Pam17 and Aco1 were not co-isolated with the 

supercomplex. Mam33-sfGFP did not import efficiently, therefore the translocase proteins 

could only be faintly detected (Figure 14B, lane 8). As expected, the control column with 

no protein imported did not co-isolate any proteins (Figure 14B, lane 5).       

 

									 	
	
Figure 14 The TOM-TIM23 supercomplex can be isolated using GFP	 Nb -  A. Scheme 
showing strategy for the TOM-TIM23 supercomplex isolation. Recombinantly purified protein was 
imported into isolated mitochondria for 30 min at 25°C. Mitochondria were then solubilised with 
digitonin. Purified GFP Nb with strep tag was incubated with strep-tactin sepharose beads at RT for 
1 h. Solubilised mitos were applied to these beads, followed by elution of the complex with D-biotin. 
B. Import of buffer (-), SCGP, Jac1-sfGFP and Mam33-sfGFP followed by isolation as described in 
A. Samples were analysed by SDS-PAGE and western blotting. Total - 5%, Elution - 100%. 

 
To summarise, out of the three new fusion proteins, Mam33-sfGFP did not purify as a 

monomer and therefore could not be used for supercomplex formation. SCGP and Jac1-

sfGFP seemed to work on all counts. The higher arrest of the translocase import by SCGP 

could be visualised by both BN-PAGE and subsequent import of radiolabelled matrix 

protein (Figure	12B and Figure 13B). So, it is likely that it engages more TIM23 complex 

with the TOM complex to form the supercomplex. However, due to its tendency to 
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dimerise and oligomerise during purification (Figure 11B, green), as well as the tendency 

to degrade upon freeze storage, it was no longer a viable option for further experiments. 

Jac1-sfGFP was used in the ensuing experiments (Table 13).      
 
Table 13 Summary of different supercomplex-forming proteins tested. 4 proteins 
were tested for their ability to be purified from E. coli and form the TOM-TIM23 
supercomplex in isolated mitochondria.  

Protein Mol. Wt. 
(kDa) Expression Purification Import Supercomplex 

isolation 
b2(167)∆-
DHFR	 37.07	 ✓ ✓	 ✓✓	 ✓✓	

SCGP	 58.9	 ✓✓	 ✓	 ✓✓	 ✓✓	

Jac1-sfGFP	 46.6	 ✓✓	 ✓✓	 ✓✓	 ✓✓	
Mam33-
sfGFP	 55.4	 ✓✓	 X	 X	 X 

 
3.1.2 Optimisation of supercomplex isolation conditions 
 
3.1.2.1 SUMOstar and Nedd8 tags on Tim23 are suitable for native isolation 
of the TIM23 complex 
 
The use of Tim23 with Protein A tag at the N-terminus (Tim23PA) for the TIM23 complex 

and supercomplex isolation has already been established (Geissler et al., 2002) 

(Chacinska et al., 2003). In order to define new conditions for more efficient isolation of 

the complex under native condition, a plasmid with His-SUMOstar or His-Nedd8 tag at the 

N-terminus of Tim23 was introduced in S. cerevisiae after shuffling out the endogenous 

TIM23. SUMOstar is a variant of the SUMO protein which is not cleaved by its 

endogenous protease Ulp1 (Peroutka et al., 2008) and can be used for on- or post-

column protein purification using its corresponding protease SUMOstar (Ulp1*) (Frey and 

Görlich, 2015). The resulting yeast cells did not show any growth defect. Mitochondria 

were isolated from these cells and solubilised with digitonin. The TIM23 complex was 

purified using Ni-NTA sepharose and SUMOstar or Nedd8 protease. Western blotting was 

carried out to identify co-purifying proteins. With both proteases, the amount of TIM23 

complex isolated was similar (Figure 15A, lane 6 and 8). Known TIM23 complex subunits 

such as Tim50 and Tim21 could be co-isolated, while the corresponding control protein 

Aco1 was not detected. Not surprisingly, no TOM complex protein was detected in the 

absence of fusion protein. Upon import and arrest of SCGP before solubilisation, subunits 

of the TOM complex such as Tom40 and Tom22 could also be co-isolated with the TIM23 

complex (Figure 15A, lane 5 and 7). GFP antibody showed the co-purified SCGP. 
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Therefore, both tags displayed similar properties in terms of cell growth, mitochondrial 

function and complex isolation. SUMOstar tag and protease was chosen as the option to 

go forward with, because of better purification of SUMOstar protease compared to Nedd8 

protease. An arrested preprotein could lead to specific isolation of the TOM-TIM23 

supercomplex in a stable manner. This single step purification can be combined with GFP 

Nb based purification, to specifically isolate the supercomplex from mitochondria.     
 

	
	
Figure 15 His-SUMOstar and His-Nedd8 tag on Tim23 helps in specific isolation of the 
TIM23 complex - A. Yeast strains expressing N-terminal His-SUMOstar or His-Nedd8 tagged 
Tim23 were generated. Mitochondria prepared from them were used for the TIM23 complex 
isolation. Briefly, mitochondria were subjected to import of buffer (-) or SCGP (+) as described 
previously. The TIM23 complex was purified by Ni-NTA affinity chromatography using SUMOstar or 
Nedd8 protease. Samples were analysed using SDS-PAGE and western blotting. Total - 5%, 
Elution - 100%. B. Large scale isolation of the TIM23 complex and the TOM-TIM23 supercomplex. 
Jac1-sfGFP was used for forming the supercomplex. The TIM23 complex was isolated as in A. 
Control purification from corresponding wild type mitochondria was carried out according to the 
same procedure. The TOM-TIM23 supercomplex was specifically isolated by following the first step 
of purification with isolation using GFP Nb. Samples were analysed using gradient gels. Colloidal 
Coomassie staining of the purified complexes and the corresponding results of mass-spectrometric 
analysis and western blotting analysis of the eluted proteins are shown. * Protein identified only by 
western blotting.   
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To that end, Jac1-sfGFP was imported into WT-Tim23 and His-SUMOstar-Tim23 

mitochondria, which were subsequently lysed. A first step of purification of the TIM23 

complex was performed with SUMOstar protease. In the WT-Tim23 mitochondria control, 

only the non-specifically associated proteins could be seen on the Coomassie stained gel, 

while the corresponding western blot control was clean (Figure 15B, lane 1). The TIM23 

complex and associated proteins could be purified from His-SUMOstar-Tim23 

mitochondria (Figure 15B, lane 2 and 3). In the presence of Jac1-sfGFP (lane 3), specific 

bands of Tom40 and Jac1-sfGFP could be identified on the Coomassie stained gel as well 

as in the western blot analysis. To further enrich the supercomplex, a second step with 

GFP Nb was added. In the absence of Jac1-sfGFP, only the GFP Nb and non-specific 

bands were observed (Figure 15B, lane4). In the presence of Jac1-sfGFP, only proteins 

specifically present in the supercomplex could be isolated (Figure 15B, lane 5). These 

were confirmed by western blotting and mass spectrometry analysis. Therefore, the 

supercomplex can be purified with only GFP Nb or in combination with His-SUMOstar-

Tim23 mitochondria.   
 
3.1.2.2 Optimisation of solubilisation conditions for the TIM23 complex 
purification 
 
To date, the TIM23 complex is only known to be stable in mild detergent digitonin. 

However, previous EM analysis of the complex showed a strong detergent background 

{unpublished data, (Lytovchenko O ,2012)}, even when using re-crystallised digitonin 

(Herrmann et al., 2001). This led to diminished signal to noise ratio, affecting analysis of 

the particles obtained by negative staining EM. Exchanging or replacing digitonin during 

the supercomplex purification might be a viable option.  

 
To that end, two new detergents were tested. One was an amphiphile called LMNG 

(Lauryl Maltose Neopentyl Glycol) (Chae et al., 2010) and other was a synthetic form of 

digitonin, known as GDN (Glyco-Diosgenin) (Chae et al., 2012). Both have been reported 

to solubilise and stabilise various integral membrane proteins (IMP’s). Also, compared to 

digitonin (<0.5 mM or 0.0625 wt %), both LMNG (10 µM or 0.001 wt %) and GDN (18 µM 

or 0.002 wt %) have a lower Critical Micellar Concentration (CMC). Jac1-sfGFP was 

imported into mitochondria. After this, solubilisation was carried out in 1% digitonin, LMNG 

or GDN. Two of the digitonin solubilised samples were also subjected to detergent 

exchange (to 0.05%) during the washing step of isolation. Elution was carried out using 

GFP Nb. In mitochondria extracted and washed with digitonin, most of the TOM (Tom40, 

Tom22) and TIM23 (Tim23, Tim50, Tim17, Tim21) complex proteins could be obtained, 

along with motor protein Tim44 (Figure 16A, lane 6). Control proteins Aco1, Atp20 and 
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Mic10 were not co-isolated. For mitochondria solubilised and washed in LMNG, only GFP 

and small amounts of Tom40 and Tom22 could be detected (Figure 16A, lane 7). No 

TIM23 complex protein was co-isolated, indicating that the TIM23 complex dissociated in 

LMNG. For sample in which digitonin was exchanged to LMNG at the washing step, 

Tim23 and Tim21 could be co-isolated along with Tom40 and Tom22, but other TIM23 

complex components fell apart (Figure 16A, lane 9). Solubilisation and washing with GDN 

was comparatively more successful. All the tested TOM and TIM23 complex proteins were 

isolated, although with a lower efficiency compared to digitonin (Figure 16A, lane 8). 
Exchange of detergent to GDN showed a similar elution profile of the complex as with only 

digitonin (Figure 16A, lane 10). 
As can be seen from this experiment, the solubilisation efficiency of digitonin, GDN and 

LMNG is similar at 1 wt %. However, LMNG by itself or even after the exchange, is 

detrimental to the stability of the TIM23 complex. GDN, the synthetic substitute of 

digitonin, keeps the TIM23 complex intact, and therefore could be a potential new 

detergent for TIM23 complex structural studies.                  
 

	
	
Figure 16 GDN is an alternative detergent that can be used for supercomplex isolation -	
A. The TOM-TIM23 supercomplex was isolated with GFP Nb after import of Jac1-sfGFP as 
described previously. Mitochondria were solubilised with digitonin, LMNG or GDN. To test the 
effect of detergent exchange on complex stability, two of the three digitonin solubilised samples 
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were washed with LMNG or GDN. Samples were analysed with SDS-PAGE and western blotting. 
Total - 5%, Elution - 100%. B. Buffer (-) or Jac1-sfGFP (+) was imported into His-SUMOstar-Tim23 
mitochondria. Digitonin or SMA was used for solubilising mitochondria. Isolation was carried out 
with SUMOstar protease. Samples were analysed by SDS-PAGE and western blotting. Total, FT - 
1.5%, Elution - 100%. Sol: solubilisation, Exch: Exchange, Dig: Digitonin, LMNG: Lauryl Maltose 
Neopentyl Glycol, GDN: Glyco-diosgenin, SMA: Styrene Maleic Anhydride.  

 
In parallel, another approach involving detergent-free membrane protein extraction was 

tested. This was performed using styrene-maleic acid copolymers (SMA) (Dörr et al., 

2016). With this, membrane proteins can be extracted as polymer-bound nanodiscs, with 

their native lipid environment intact around them. Import of Jac1-sfGFP into His-

SUMOstar-Tim23 mitochondria was carried out. Solubilisation was carried out with either 

digitonin or SMA, followed by isolation of the TIM23 complex. As could already be seen 

with the ‘total’ samples, different proteins were extracted to different levels upon SMA 

solubilisation. Tom70, Tom40 and Tim50 could be obtained in similar levels to digitonin 

solubilised mitochondria, whereas other proteins were obtained to a lesser extent (Tom22, 

Tim44, Mic10) or could not be detected at all (Tim21) (Figure 16B, lanes 2 and 4). After 

this, it wasn’t surprising to not obtain any supercomplex components in the elution fraction 

(Figure 16B, lane 6 vs lane 8). It could be argued that since the supercomplex would 

encompass both the outer and inner mitochondrial membrane, the SMA polymer would 

fail to isolate the supercomplex. However, it also failed to isolate the TIM23 complex by 

itself, in the absence of Jac1-sfGFP (Figure 16B, lane 5 vs lane 7). Therefore, SMA 

solubilisation was not considered as a feasible approach.   

 
3.1.2.3 Glycerol density gradient separation of the supercomplex 
 
In order to assess the stability and integrity of the isolated complex, it can be applied to a 

glycerol density gradient. Previous studies with the TOM and TIM23 complexes by 

sucrose gradients or size exclusion chromatography have reported that the complexes run 

as intact units (Stan et al., 2000) (Song et al., 2014) (Ahting et al., 1999) (Denkert et al., 

2017). With that in mind, His-Tim23 isolated complexes were analysed utilising a 10 - 30% 

glycerol density gradient. Fractionation was carried out from top of the gradient, so lower 

molecular weight complexes would be at the top of the gradient and higher molecular 

weight complexes at the bottom. Three different complexes were purified, as indicated in 

Figure 17A: (i) the unoccupied TIM23 complex, in the absence of supercomplex-forming 

protein, (ii) the TIM23 complex in the presence of Jac1-sfGFP and (iii) adding a second 

step GFP Nb purification to get the TOM-TIM23 supercomplex. For condition (i), no GFP 

or Tom40 was obtained in the elution fraction, as expected. The presence of Tim23, 

Tim17 and Tim21 indicated that the TIM23 complex was intact between fractions 2-6 
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(Figure 17B). In condition (ii), both GFP and Tom40 are obtained in the elution fraction. 

They also co-migrated predominantly between fraction 6-9, indicating the formation of a 

high molecular weight complex between them. Free precursor was also detected at the 

top of the gradient (Figure 17C). TIM23 complex components showed a partial upshift 

towards the higher molecular weight fractions, as compared to Figure 17B. This could be 

the TOM-TIM23 supercomplex. This was confirmed in condition (iii), where the double 

step purified supercomplex was applied on the gradient. GFP, Tom40, Tim23, Tim17 and 

Tim21 all migrated predominantly in fraction 6-8, indicating that integrity of the 

supercomplex is mostly maintained after 2 steps of purification (Figure 17D). However, for 

all proteins, bands could also be detected in the lower molecular weight fractions, 

suggesting that the complex is not entirely stable either after the purification or on the 

gradient.  

	

		 	
	
Figure 17 The isolated TIM23 complex and supercomplex on glycerol gradients -	 A. 
Scheme for the TIM23 complex isolation - and + Jac1-sfGFP, followed by second step with GFP 
Nb. Isolated complexes were applied on a glycerol gradient. B. First step TIM23 complex isolated 
in absence of Jac1-sfGFP was applied on 10 - 30% glycerol gradient with 0.3% digitonin. 
Centrifugation was performed at 121,262 x g for 18 h in SW60Ti rotor at 4°C. Fractions were 
collected from the top and were subjected to TCA precipitation. Sample analysis was carried out 
using SDS-PAGE and western blotting. Total - 0.4% of the complex loaded on the gradient, Elution 
1 - 1.5% of the complex loaded on the gradient. C. Same as in B but in the presence of Jac1-
sfGFP. D. The TOM-TIM23 supercomplex was isolated using a second step with GFP Nb after first 
step of SUMOstar protease. Gradient conditions remain the same as in B and C.									          	
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3.1.2.4 Chemical fixation with glutaraldehyde during the gradient run 
(GraFix) 
 
The fragile nature of the TIM23 complex necessitated the introduction of a chemical 

fixative agent during the gradient centrifugation. This can be achieved by using a 

glutaraldehyde gradient in parallel to the glycerol one. The complexes are stabilised by 

gradual formation of cross-links under mild conditions. Such an approach has previously 

been demonstrated to improve stability and homogeneity for low abundance complexes 

(Kastner et al., 2008). Glutaraldehyde gradient was optimised to 0 - 0.05% and was 

applied as indicated (Figure 18A). His-SUMOstar-Tim23 mitochondria were used, and the 

TIM23 complex was isolated after import of Jac1-sfGFP. The resulting eluate was applied 

on a 10 - 30% glycerol + 0 - 0.05% glutaraldehyde gradient. After cross-linking with 

glutaraldehyde, the proteins were not expected to enter an SDS gel, therefore dot-blotting 

was utilised. As before, the TOM complex (Tom40, Tom22 and Tom20) migrated between 

fraction 6-9 in the supercomplex form (Figure 18B). TIM23 complex proteins (Tim23, 

Tim17 and Tim21) and Tim44 migrated both as part of the TIM23 complex (fraction 3-6) 

and in the supercomplex form (fraction 6-9). Tom70 acted as the negative control since it 

does not associate with the supercomplex in significant amounts.  

More supercomplex can be isolated with the TIM23 complex isolation after import of a 

supercomplex-forming protein than with the GFP Nb approach directly. With GraFix, 

different forms of the isolated TIM23 complex could be separated, and the fraction of 

interest containing the supercomplex can be further analysed. This leads to improved 

homogeneity, and the more stable complex could also be allowed to adsorb for longer 

time during grid preparation for EM analysis.         

A                                                                           B 

							 			 	
	
Figure 18 Chemical fixation during gradient centrifugation stabilises the supercomplex 
- A. Scheme for gradient fixation (GraFix) of the purified TIM23 complex after import of Jac1-
sfGFP. B. The TIM23 complex was isolated from His-SUMOstar-Tim23 mitochondria after import of 
Jac1-sfGFP. The complex was separated on a 10 - 30% glycerol gradient with 0 - 0.05% 
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glutaraldehyde. Centrifugation conditions same as described previously. Fractions were collected 
from top and analysed by dot blotting.  

 
3.1.2.5 Detergent exchange during GraFix (GraDeR) 
 
The TIM23 complex is stable in digitonin and to an extent in GDN. However, previous EM 

structural analysis showed high levels of digitonin contaminants in the background 

(Lytovchenko O ,2012). To overcome this, detergent exchange can be performed. 

GraDeR or gradient-based detergent removal allows removal of free detergent in a mild 

manner by applying a reverse gradient of detergent of interest along with the glycerol 

gradient (Hauer et al., 2015).  

 

	
	
Figure 19 Detergent exchange during gradient centrifugation stabilises the 
supercomplex	 -	 The TIM23 complex isolated from His-SUMOstar-Tim23 mitochondria in 
presence of Jac1-sfGFP. The complex was extracted using digitonin, and elution fraction was 
loaded on a 10 - 30% glycerol, 0 - 0.05% glutaraldehyde gradient A. without GraDeR (0.3% 
digitonin in gradient) or B.  with GraDeR (0.05-0.02% GDN). Centrifugation conditions same as 
described previously. Fractions were collected from the top and analysed by dot blotting.		

 
The TIM23 complex was purified from His-SUMOstar-Tim23 mitochondria following import 

of Jac1-sfGFP. This was applied on a glycerol-glutaraldehyde gradient, with or without 

GraDeR. With only GraFix, when the sample was in digitonin, the supercomplex migrated 

between fraction 7-9 (Figure 19A). On addition of an inverse 0.05 - 0.02% GDN gradient, 

there was a slight upshift in the supercomplex migrating pattern, such that it was 
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predominantly present between fraction 6-9 (Figure 19B). The exchange of detergent 

most likely affected the complex sedimentation rate, leading to the upshift.    

 
3.1.3 Structural analysis of the isolated TIM23 complex and the 
TOM-TIM23 supercomplex 
 
3.1.3.1 Negative stain EM analysis of the supercomplex 
 
Structural analysis of mitochondrial translocases remains an ongoing challenge. Recently, 

advances have been made in structural information of the TOM complex (Shiota et al., 

2015) (Bausewein et al., 2017). The small size and dynamic nature of the TIM23 complex, 

however, makes it a challenging study. After optimising the condition for purifying the 

TIM23 complex and the TOM-TIM23 supercomplex in quantifiable amounts, negative stain 

EM analysis was performed in collaboration with Dr. Niels Fischer from the group of Prof. 

Dr. Holger Stark (Department of Structural Dynamics, Göttingen).  

A double step TOM-TM23 supercomplex isolation, as optimised in section 3.1.2.1 (Figure 

15B lane 5), showed the presence of a large number of particles after negative staining 

(Figure 20B). The corresponding control sample, which did not have any TIM23 complex, 

did not show any particles (Figure 20A). Since the preparation was highly heterogeneous 

in terms of complex shape and size, it was decided to improve the complex stability with 

TIM23 complex isolation after Jac1-sfGFP import followed by GraFix. Based on previous 

fixation results (Figure 18B), fraction 7 was decided to be used for analysis. In the 

absence of glutaraldehyde (Figure 20C), the particles seen are small and abundant. On 

applying GraFix (Figure 20D), several larger particles of similar shape and size were 

obtained (blue circles). Also present were digitonin micelles (white arrowheads). To 

eliminate the background contamination from detergent, GraDeR was applied to 

exchange the detergent from digitonin to GDN. Fraction 6-8 were pooled and 

concentrated with 100 kDa cut-off centrifugal concentrator columns. The supernatant was 

used for sample preparation, as it was expected to have enriched supercomplex, while the 

detergent micelles would flow through. Here, the buffer control showed micelles of various 

sizes (Figure 20E), indicating that some micelles greater than 100 kDa survived the 

concentration step. The protein sample revealed a mixture of micelles and particles 

(Figure 20F). Detergent background from the previous step was gone, suggesting that 

GraDeR worked. However, the gradient step was diluting the original sample amount by 

almost 10-fold, resulting in low particle abundance sample. Therefore, single particle 

analysis could not be performed. Further optimisations are required to improve the sample 

yield and homogeneity.  
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A                                                                            B 

           
C                                                                           D 

            
E                                                                            F 

          	
Figure 20	Representative negative stain images	- A-B. Micrographs of (B) 2 step TOM-TIM23 
supercomplex purification and (A) buffer control. C-D. Micrographs of Fraction 7 after gradient 
centrifugation of the TIM23 complex purified after Jac1-sfGFP import (C) without and (D) with 
GraFix. Blue circle: particles, white arrowheads: detergent micelles. E-F. Micrographs of (F) 
concentrated fraction 6-8 from GraFix and GraDeR of the TIM23 complex purified after Jac1-sfGFP 
import and (E) corresponding buffer control. (Scale bar: 100 nm) 
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3.1.3.2 Cross-linking mass spectrometry analysis to define protein dynamics 
in the TIM23 complex and the TOM-TIM23 supercomplex 
 
An alternative approach to obtain structural information utilises chemical cross-linking of 

the isolated complex followed by mass spectrometry. Both the unoccupied TIM23 complex 

as well as the TOM-TIM23 supercomplex can be subjected to cross-linking to obtain an 

insight into the interactions and spatial orientations of subunits with respect to each other.   

To follow this approach, the TOM-TIM23 supercomplex was isolated. Firstly, several 

chemical cross-linkers were tested for the selection of a cross-linker for further 

experiments. The cross-linkers that were tested were homo-bifunctional amino group 

reactive molecules, being either membrane permeable (DSS and DSG) or membrane 

impermeable (BS2G and BS3). Higher cross-linked adducts could be observed for Tim23, 

Tim21, Tom22 and Tom20, compared to the sample without cross-linker (Figure 21, lane 

1-24). For Tim44 and Tim50, the higher cross-links were most likely too big to even enter 

the SDS gel (Figure 21, lane 25-36). Since the cross-linking pattern of the cross-linkers 

was similar, DSS was selected for its ability to permeate the membrane, as this property 

can be utilised for an in organello cross-linking approach in the future.  

	
Figure 21 Comparison of different cross-linkers on the isolated TOM-TIM23 
supercomplex - A two step supercomplex isolation was carried out from His-SUMOstar-Tim23 
mitochondria subjected to Jac1-sfGFP import. Isolation was performed using SUMOstar protease 
and GFP Nb as described previously. Isolated complex was treated with 500 µM of different cross-
linkers for 30 min on ice. Reaction was quenched with 250 µM Glycine pH 8.0 for additional 15 
mins on ice. Samples were analysed using SDS-PAGE and western blotting. XL: cross-linker, 
DSS: disuccinimidyl suberate, DSG: disuccinimidyl gluterate, BS2G: bissulfosuccinimidyl glutarate, 
BS3: bissulfosuccinimidyl suberate.   				

 
A comparison of cross-links in the TIM23 complex isolated in the absence or presence of 

Jac1-sfGFP would be helpful in monitoring the dynamics of individual proteins, as well as 

to see any structural rearrangements which might be happening. To that end, the TIM23 

complex was purified on a large scale in the absence or presence of Jac1-sfGFP. Cross-

linking was carried out with DSS, followed by quenching with glycine. Mass spectrometry 

analysis was performed by Andreas Linden from the group of Prof. Dr. Henning Urlaub 

(Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 
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Göttingen). The PSM (peptide spectrum matches) results for both samples were 

analysed. The PSM value of a protein indicates the total number of identified peptide 

sequences obtained for that protein after mass spectrometry. Fold change for individual 

proteins upon addition of Jac1-sfGFP was calculated based on their PSM values. Since 

the TIM22 complex is known to not co-purify with the TIM23 complex, it was selected as a 

negative control. Indeed, the TIM22 complex proteins (Tim8, Tim13, Tim10, Tim54 and 

Tim22) showed no change in their PSM values between the two samples (Figure 22). 
PSM values of bait protein Tim23 remained the same. In addition, a slight increase was 

observed for Tim21, Mgr2, as well as PAM complex proteins Hsp70 and Tim44 when 

Jac1-sfGFP was present. Not surprisingly, the biggest fold change was observed for the 

TOM complex. Tom40 and Tom22 showed a 9-10 fold increase, whereas Tom20 and 

Tom5 showed a 7-8 fold increased PSM number. Surprisingly, Tom70 and Tom71 also 

had increased PSM values, even though they could never be detected by western blotting 

to be a part of the supercomplex. The difference in fold change for subunits of the TOM 

complex in the presence of Jac1-sfGFP could be due to: (i) different stoichiometry of the 

protein within the isolated complex, or (ii) the number of peptides of that protein which 

were identified, since all proteins were covered to a different extent.       
     

	
	
Figure 22 Fold change in peptide spectrum matches of TOM, TIM23 and TIM22 complex 
components - Jac1-sfGFP was imported or not into His-SUMOstar-Tim23 mitochondria and the 
TIM23 complex isolation was carried out for both samples. These were subjected to mass 
spectrometry analysis after DSS cross-linking. Peptide spectrum matches obtained for both were 
used to calculate the fold change for different proteins between the samples. 
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Furthermore, the cross-links obtained were analysed based on the known structural 

information of individual subunits. An overview of the non-redundant cross-links identified 

by mass spectrometry is shown (Figure 23A,B and C).  
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In the absence of Jac1-sfGFP, cross-links were majorly observed within the subunits of 

the TIM23 complex and the PAM complex (Figure 23A). For the TIM23 complex, inter-

protein links were detected between Tim23 (K66)-Tim50 (K417), Tim23 (K190)-Tim17 

(K55), Tim50 (K363, K217)-Tim21 (K190, K161, K164) and Tim21 (K161, K217, K219)-

Mgr2 (K2).  

 

Fi
g 

23
B

 



Results 

	

 84 

  
 
Figure 23 Visualisation of cross-links obtained in the absence and presence of Jac1-
sfGFP - The TIM23 complex was isolated in (A) absence or (B and C) presence of Jac1-sfGFP. 
Cross-linking was carried out with 1 mM DSS for 3 h on ice. The reaction was quenched with 250 
µM Glycine pH 8.0 for additional 30 mins on ice. Samples were analysed by mass spectrometry. 
Green: Inter-protein cross-link, Purple: intra-protein cross-link.  

 
All cross-links were observed for the IMS- or matrix-exposed domains of these proteins. 

Tim23IMS-Tim50IMS and Tim50IMS-Tim21IMS interactions have previously been reported 

(Alder et al., 2008) (Tamura et al., 2009) (Lytovchenko et al., 2013)	(Bajaj et al., 2014a). 

Surprisingly, an interaction was detected between K66 of Tim23 and K417 of Tim50 in this 

study. K417 forms a part of the presequence binding domain in Tim50, whose structure is 
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not known. Therefore, the cross-link indicated the proximity of Tim23IMS and Tim50PBD in 

the absence of a protein being imported. Additionally, Tim21 interaction with Tim50 was 

occurring in the Tim50 core domain. Tim23 loop 3 (between TM3 and TM4) in the matrix 

was linked to Tim17 loop 1(between TM1 and TM2). Lastly, the N-terminus of Mgr2 (K2) 

was identified to form a cross-link with Tim21IMS. This finding was supported by the known 

role of Mgr2 in Tim21 recruitment to the TIM23CORE complex (Gebert et al., 2012). The N-

terminus of Tim23IMS (K25) also formed cross-links with the predicted IMS-exposed 

domain of Tom40 (K148) and the known IMS-exposed domain of Tom5 (K50), pointing 

towards proximity between the extreme N-terminus of Tim23IMS and the trans side of the 

TOM complex. Taken together, these confirm a compact TIM23 complex structure with 

subunits arranged in close apposition.     

In the PAM complex, cross-links were observed between Pam16 (K89, K109)-Pam18 

(K94), Tim44 (K228, K198, K215, K221, K59)-Ssc1(K444, K574, K514, K445) and Ssc1 

(K445)-Mge1 (K104). Pam16 and Pam18 were interacting through their J-like and J-

domains respectively. These domains have been reported to form a heterodimeric 

complex (Mokranjac et al., 2006) for regulating the Pam18 function. Additionally, cross-

links were observed between Tim44 N-terminus - C-terminus interface and Ssc1 SBD. 

Furthermore, Ssc1 was also found to interact with Mge1, its nucleotide exchange factor in 

the matrix. 

Intra-protein cross-links were also acquired, predominantly for Ssc1, Tim44, Pam16, 

Pam18, Tim21IMS, Tim50 and Tim23IMS. Ssc1 intra-protein cross-links were observed 

between Lys residues of the same domain, i.e., cross-linking was taking place within the 

NBD (nucleotide binding domain) or the SBD (substrate binding domain). This suggested 

that either these domains formed structurally distinct units or the Lys residues were not 

accessible for cross-linking. For Tim44, NTD (N-terminal domain) residues formed more 

cross-links than CTD (C-terminal domain) residues. This could be due to the intrinsically 

disordered nature of the NTD, which would promote the probability of interactions 

compared to the structured CTD. On mapping the Tim21IMS cross-links on the crystal 

structure (PDB ID: 2CIU, (Albrecht et al., 2006)), most were found to be within the range 

of DSS spacer length (< 15 Å). A few links (211-217, 160-164, 219-161) demonstrated 

higher length between the corresponding amino acids. This could be due to the fact that 

the crystal structure represents a recombinantly purified protein, whereas the current 

study deals with an in organello purified complex, and could therefore have different 

conformation and flexibility of proteins. Additionally, cross-links were obtained within the 

N-terminus Tim23IMS domain, potentially due to dimerisation of Tim23.    

For the TIM23 complex isolated after import of Jac1-sfGFP, inter- and intra-protein cross-

links were acquired for the TOM, TIM23 and PAM complexes (Figure 23B and C). Among 
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the TIM23 complex subunits, Mgr2 (K2)-Tim21 (K161) and Tim21 (K135)-Tim50 (K476) 

retained their cross-linking, although at a lower extent compared to the sample without 

Jac1-sfGFP (Figure 24).  

 

 
 
Figure 24 Tim50-Tim21 cross-links in the absence and presence of Jac1-sfGFP - Cross-
linking sites between Tim21IMS and Tim50IMS in the (A) absence and (B) presence of Jac1-sfGFP 
are shown on their cartoon representation. Tim21 (PDB ID: 2CIU (Albrecht et al., 2006)), Tim50 
(PDB ID: 3QLE (Qian et al., 2011)). Cross-linked Lys residues are indicated in green. Cyan: a-
helix, magenta: b-sheet.  

 
Since Tim21 engages with Tom22 during supercomplex formation, it could have less 

interaction sites for Tim50 and Mgr2. These findings were supported by previously 

demonstrated Tim21 dissociation from Tim50 in the presence of a presequence 
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(Lytovchenko et al., 2013). Also, differently localised residues of Tim21 were found to 

interact with Tim50 in the absence or presence of Jac1-sfGFP. K161 and K164, between 

b4 and b5, were in the vicinity of Tim50 in the absence of Jac1-sfGFP (Figure 24A), while 

K135 between a2 and b1 interacted with Tim50 in the presence of Jac1-sfGFP (Figure 

24B). This suggested that Tim21IMS undergoes a conformational rearrangement during the 

formation of a supercomplex.  

 

 
 
Figure 25 Tim21 cross-links with Tom22 in the presence of Jac1-sfGFP - (A) and (B) 
Surface representation of Tim21IMS indicating its positively charged (blue) and Tom22-interacting 
(green) regions. (C) Tim21IMS cartoon representation of individual Tom22-interacting Lys residues. 
Cyan: a-helix, magenta: b-sheet.    
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Tim21 interaction with Tom22 in the IMS has previously been reported (Chacinska et al., 

2005). Negatively charged residues on the IMS-exposed domain of Tom22 were shown to 

be interacting with positively charged residues on Tim21IMS surface (Albrecht et al., 2006). 

Indeed, an overlap could be observed between the positively charged residues and 

Tom22- interacting residues when they were mapped on the Tim21IMS structure (Figure 

25A and B).  These residues seemed to localise around a pocket formed by the b-sheets 

and loops of Tim21IMS, specifically the loop between b4 and b5, C-terminus of b6 and C-

terminal loop after b8 (Figure 25C). Furthermore, Tim23 (K25) also retained its 

interactions with Tom40 (K148) and Tom5 (K50). Since these interactions could be 

observed independent of the presence of a presequence-containing protein, the N-

terminus of Tim23 could be always in the vicinity of the TOM complex under physiological 

conditions. In the TOM complex, inter-protein cross-links were obtained between Tom20 

(48) and Tom22 (K66) on the cytosolic side. This finding is supported by the interactions 

observed between the cytosolic domains of these proteins (Shiota et al., 2011).     

     

            
 
Figure 26 PAM complex subunits undergo intra- and inter-protein cross-linking - (A) 
Cartoon representation of Tim44 CTD (PDB ID: 2FXT, (Josyula et al., 2006)) indicating its intra-
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protein cross-link. (B) Cartoon representation of the Pam16-Pam18 heterodimer (PDB ID: 2GUZ, 
(Mokranjac et al., 2006)) indicating the inter-protein cross-link. Cyan: a-helix, magenta: b-sheet, 
green: Pam18, red: Pam16. Distance between two cross-linked residues is indicated by a dotted 
yellow line.      

 
The PAM complex cross-links in the presence of Jac1-sfGFP hinted at a slightly altered 

arrangement within the subunits (Figure 23C). Ssc1-Tim44 and Ssc1-Mge1 interactions 

were not changed drastically compared to the sample without Jac1-sfGFP. However, 

cross-links were obtained between Pam16 (K34)-Tim44 (K110) and Pam18 (K164)-Tim44 

(K64). Also, Pam16-Pam18 interactions increased in the presence of Jac1-sfGFP, as 

indicated by the more non-redundant cross-links observed between the heterodimer. The 

only observed cross-link which could be mapped on the structure of the Pam16-Pam18 

heterodimer demonstrated the vicinity of the two residues (Figure 26B). Taken together, 

these results suggested that structural rearrangement was taking place within the PAM 

complex subunits as a part of the TOM-TIM23 supercomplex. 

Intra-protein cross-links in the presence of Jac1-sfGFP remained by and large similar to 

the sample without Jac1-sfGFP, except for a couple of additional cross-links within 

Tim50IMS, Ssc1 and Tim44. Again, the Tim44 intra-links were predominantly in the NTD. 

The only CTD cross-link obtained (K311-K333) was mapped on the known Tim44 CTD 

crystal structure (Figure 26A). Another interesting finding was the almost complete lack of 

intra-protein links for Tim23IMS. This, however, was not surprising since the Tim23 dimer is 

known to dissociate in the presence of a presequence (Bauer et al., 1996) (Alder et al., 

2008). Tim17 (K141) and Ssc1 (K152) also showed cross-linking to themselves (a peptide 

containing K141 was linked to another peptide containing K141), suggesting that they 

could potentially be present as a multimer within their respective complexes.   

 
Taken together, these findings provide structural insight into the organisation and 

dynamics of TOM, TIM23 and PAM complex subunits in their free state and in a substrate-

occupied supercomplex state. Some of the cross-links reported here are supported by 

previously demonstrated protein interaction data. Additionally, a new understanding was 

obtained regarding interactions and proximity between proteins whose structural 

information is not known so far. Furthermore, rearrangement in the presence of a 

translocating precursor protein could also be observed for subunits of the TIM23 and PAM 

complex.  

 
3.2 Expansion of substrate spectrum of the TIM22 complex 
 
The TIM22 complex or the carrier translocase has mainly been characterised in yeast. 

Known substrates of this complex lack a predicted presequence at the N-terminus and 
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contain multiple internal targeting signals in the mature protein. However, so far, 

knowledge on the substrate spectrum of TIM22 is very limited. Known substrates include 

the six transmembrane-spanning metabolite carriers, AAC (ADP/ATP carrier), PiC 

(Phosphate carrier) and DiC (Dicarboxylate carrier), as well as the four transmembrane- 

spanning inner membrane translocase subunits, Tim23, Tim17 and Tim22. To broaden 

the substrate repertoire, a quantitative proteomics approach was utilised, using dimethyl 

labelling of proteins to compare a Tim22 mutant mitochondria with the control WT.   

      
3.2.1 Characterisation of the Tim22 temperature sensitive strain   
 
3.2.1.1 Selection of Tim22 temperature sensitive strain 
 
To study possible substrates of the TIM22 complex, Tim22 temperature sensitive (ts) 

yeast strains were utilised. Two ts strains were tested, tim22-F1 and tim22-14, carrying 

point mutations in the Tim22 locus. tim22-14 has already been characterised to an extent 

(Wagner et al., 2008). Growth of each strain was tested on fermentable glucose media 

and non-fermentable glycerol media, at various temperatures. At 25°C, both strains grew 

similar to WT in glucose and glycerol media (Figure 27A). At 30°C, tim22-F1 showed a 

moderate growth defect in glycerol, while tim22-14 grew similar to WT. At the non-

permissive temperature of 37°C, the tim22-F1 strain showed a severe growth defect in 

both glucose and glycerol, while tim22-14 was less affected. To analyse the steady-state 

levels of proteins, mitochondria were isolated from all three strains after growing them at 

25°C, or at 25°C followed by 37°C for 14 h. WT and tim22-14 showed similar levels for 

most proteins at the permissive (25°C) temperature (Figure 27B, lane 1,2 vs lane 5,6), 
except for the mutant Tim22 protein, whose levels were down. At the non-permissive 

temperature (37°C), tim22-14 showed reduced levels of PiC and AAC compared to the 

WT. Furthermore, Tim22 was not detected (Figure 27B, lane 3,4 vs lane 7,8). In contrast, 

the tim22-F1 mitochondria had no detectable levels of Tim22, PiC or AAC even at 25°C. 

Moreover, levels of all other proteins were reduced compared to WT (Figure 27B, lane 1,2 

vs lane 9,10). Therefore, due to its growth defect, in combination with the reduced protein 

levels, this strain was not used for further studies.  
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Figure 27 tim22-14 shows proper growth and Tim22 levels at permissive temperature - 
A. WT and Tim22 temperature sensitive strains tim22-F1 and tim22-14 were grown on fermentable 
(left) and non-fermentable (right) media at 25, 30 and 37°C. B. Mitochondrial steady state levels of 
proteins in WT, tim22-F1 and tim22-14 yeast grown at permissive temperature (25°C), or shifted to 
repressive temperature (37°C) for 14 h were analysed by SDS-PAGE and western blotting.                     

 
3.2.1.2 Temperature induced mislocalisation of known TIM22 complex 
substrates in the tim22-14 strain   
 
GFP-tagged TIM22 complex substrates would be expected to mislocalise from 

mitochondria upon growth in non-permissive conditions. To that end, N- and C-terminal 

GFP fusion constructs on yeast expression plasmid were generated for Mir1 (PiC) and 

AAC2 respectively. After transformation into WT and tim22-14, the strains were grown at 

permissive temperature, followed by a shift to non-permissive temperature for 25 h. 

Protein localisation was analysed with fluorescence microscopy. For both WT and tim22-

14 strains, AAC2-GFP and GFP-Mir1 could be detected in mitochondria at 0 h at 37°C, as 

seen by their co-localisation with MitoTracker (Figure 28, upper panel for both proteins). 
Upon a shift to the non-permissive temperature for 25 h, proteins in both strains were 

affected differently. In WT cells, the proteins remained localised to mitochondria (Figure 

28, lower panels on the left for both proteins). In the tim22-14 strain, however, a 

mislocalisation of the GFP signal from mitochondria was observed. AAC2-GFP could be 

detected at very low levels in mitochondria while the remaining protein was degraded. 

GFP-Mir1 was visible as punctate structures in the cell (Figure 28, lower panels on the 

right for both proteins). These could be aggregates of the non-imported protein. 
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Therefore, abolishing the import pathway of carrier proteins led to their mislocalisation in 

tim22-14 cells.         

								 	
	
Figure 28 Carrier proteins (AAC2 and Mir1) mislocalise from mitochondria in the tim22-
14 strain under repressive growth conditions - Yeast WT and tim22-14 cells were 
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transformed with plasmids encoding AAC2-GFP or GFP-Mir1. Cells were grown in SD medium at 
30°C till late log phase and then shifted to 37°C for 25 h. Samples were also co-stained with 
MitoTracker Red. Fluorescence microscopy was used for analysis (FITC and TRITC channels). 
Merged green and red fluorescence images are shown (yellow/orange). (Scale bar: 5 µm)         

 
3.2.2 Mitochondrial inner membrane carrier and transporter 
proteins are specifically affected in tim22-14 mitochondria under 
non-permissive conditions  
 
3.2.2.1 Mass spectrometric analysis to identify carrier substrates 
 
WT and tim22-14 cells were grown at 25°C to late log phase, followed by a shift to the 

non-permissive temperature for 15, 25 and 40 h. Mitochondria were isolated from all eight 

conditions. This was followed by differential stable isotope dimethyl-based labelling (Hsu 

et al., 2003). Four mixtures were prepared. Each mixture contained differentially labelled 

mitochondria from both WT (light-L) and tim22-14 (medium-M or heavy-H) at a particular 

time point (Figure 29). Mix A had WT-L 0 h, tim22-14-M 0h and tim22-14-H 15 h. Mix B 

had WT-L 15 h, tim22-14-M 0 h and tim22-14-H 15 h. Mix C had WT-L 25 h, tim22-14-M 

0h and tim22-14-H 25 h. Mix D had WT-L 40 h, tim22-14-M 0h and tim22-14-H 40 h. 

Labelling and mass spectrometry analysis was performed by Dr. Ida Suppanz from the 

group of Prof. Dr. Bettina Warscheid (Biochemistry and Functional Proteomics, University 

of Freiburg). Heavy (H)/light (L) ratio was used to detect the specific effect of Tim22 

mutation on mitochondrial proteins, while a heavy (H)/medium (M) ratio was a measure of 

the effect of heat stress within the tim22-14 strain. Overall, the dataset covered 637 out of 

901 (70%) proteins of the High Confidence Mitochondrial proteome (Morgenstern et al., 

2017).   

	
	
Figure 29 Mixing scheme for WT and tim22-14 mitochondria under different conditions - 
Mitochondria were prepared from WT and tim22-14 yeast cells grown for 0, 15, 25 and 40 h at 
37°C after growing them to late log phase at 25°C. Samples were mixed as indicated and 
subjected to triple dimethyl labelling, followed by mass spectrometry.        
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Considering the H/L labelling ratio, at time point 0 h, no component of the TIM22 complex 

was visibly down-regulated. TIM23 and TOM complex subunits remained unaffected at all 

time points. At 15 h heat stress, Tim22 was more than 10x down-regulated. Additionally, 

among the most severely affected proteins were the mitochondrial inner membrane carrier 

and transporter proteins, whose levels were consistently reduced at all three time points.  

When all three heat stress time points (mix B, C and D) were treated as replicates, a t-test 

revealed that most of these carrier proteins were significantly down-regulated in the 

mutant compared to WT (Figure 30). These putative substrate proteins are listed in Table 

14.   
 

 
 
Figure 30 t-test overview of protein levels in tim22-14 and WT mitochondria after heat 
stress - Results from the three heat stress time points (15, 25 and 40 h) were treated as replicates 
to generate a combined t-test for mitochondrial proteins based on the H/L ratio. Colour code 
indicates the protein sub-group. SU: subunit, mito: mitochondria, down-reg: down-regulated, up-
reg: up-regulated.  
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Table 14 Carrier and transporter proteins most affected in tim22-14. MS analysis of 
differentially labelled WT and tim22-14 mitochondria, with average (BCD mixes) 
normalised H/L ratio of < 0.5.  

Gene 
name Protein name Predicted TM 

domains 

TIM22 Mitochondrial import inner membrane translocase 
subunit TIM22 4 

Carrier proteins 
CRC1 
 

Mitochondrial carnitine carrier 6 
ODC1 
 

Mitochondrial 2-oxodicarboxylate carrier 1 6 
 MPC1 

 
Mitochondrial pyruvate carrier 1 2 

ODC2 
 

Mitochondrial 2-oxodicarboxylate carrier 2 6 
 YFR045W 

 
Uncharacterised mitochondrial carrier YFR045W 6 

 RIM2 
 

Mitochondrial carrier protein RIM2 6 
  Uncharacterised mitochondrial carrier YPR011C 6 

PIC2 
 

Mitochondrial phosphate carrier protein 2 6 
 MIR1 

 Mitochondrial phosphate carrier protein 6 
 

YHM2 
 

Citrate/oxoglutarate carrier protein 
 

6 
YMC1 
 

Carrier protein YMC1, mitochondrial 
 

6 
 PET9 

 
ADP/ATP carrier protein 2 
	

6 
 AAC1 

 
ADP/ATP carrier protein 1 6 

 GGC1 
 

Mitochondrial GTP/GDP carrier protein 1 6 
 MPC3 

 
Mitochondrial pyruvate carrier 3 3 

Transporter proteins 
MMT1 
 

Mitochondrial metal transporter 1 6 
 AGC1 

 Mitochondrial aspartate-glutamate transporter AGC1 6 
 

DIC1 
 

Mitochondrial dicarboxylate transporter 6 
 YDL119C 

 
Solute carrier family 25 member 38 homolog- HEM25 
glycine transporter 

6 
 

OAC1 
 

Mitochondrial oxaloacetate transport protein 6 
 SFC1 

 
Succinate/fumarate mitochondrial transporter 6 

 	
	
This analysis was not without its secondary effects. Among the down-regulated proteins 

were also respiratory chain complex III and IV components. Subunits of these complexes 

require co-factors for their stability and assembly and could therefore be affected by the 

reduced levels of metabolite carriers in the tim22-14 mitochondria (Dufay et al., 2017). 

Considering the H/M ratio, which represents the comparison of tim22-14 at 37°C for 

different time points vs 0 h, it was observed that not only mitochondrial carriers and 

transporters, but also other proteins were affected. These also included components of 
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TOM and TIM23 complexes. This suggested that the temperature shift to 37°C led to 

more pleiotropic effects in both WT and tim22-14.      
 
3.2.2.2 Steady-state analysis of mitochondrial proteins after heat shock 
 
Mass spectrometric analyses revealed the down-regulation of proteins of the carrier and 

transporter family. Steady-state protein levels were analysed for mitochondria prepared 

from WT and tim22-14 cells grown at 0, 15, 25 and 40 h at 37°C (Figure 31).  
Tim22 levels were moderately reduced at the 0 h time point in the tim22-14 samples 

compared to WT. However, at higher time points at non-permissive temperature, Tim22 

could not be detected in the tim22-14 strain, in accordance with the mass spectrometric 

results which showed >10x down-regulation. The phosphate carrier (PiC), citrate and 

oxoglutarate carrier (Yhm2) and the ADP/ATP carrier (AAC) all had reduced levels of 

protein in the tim22-14 strain with increasing time at 37°C. Pyruvate carrier subunit, Mpc1, 

was reduced already without any heat shock in the Tim22 mutant strain. Other known 

substrates of the TIM22 complex, Tim23 and Tim17, did not show a significant reduction 

at any time point compared to WT. This could be expected because these are highly 

essential core components of the TIM23 complex, and their turnover would be quite low. 

Other components of the TIM22 complex (Tim54, Tim18), TOM complex (Tom40), TIM23 

and PAM complexes (Tim50, Tim44, Hsp70), Complex V (Atp20) and MICOS (Mic10) 

were not affected, highlighting the specificity of this approach. 

	
For most of the proteins, a temperature specific decrease was observed in both strains, 

suggesting a more secondary effect due to heat stress, which was taken into account 

while preparing the samples for labelling. Thus, a range of inner membrane proteins were 

detected to be specifically depleted in a Tim22 mutant strain.								
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Figure 31 TIM22 complex substrate levels specifically decrease in tim22-14 

mitochondria upon heat stress - Mitochondrial steady state levels of proteins in WT and tim22-
14 yeast grown at permissive temperature (25°C) or shifted to repressive temperature (37°C) for 
15, 25 and 40 h were analysed by SDS-PAGE and western blotting. 
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3.2.3 Import analysis of identified substrates 
 
3.2.3.1 TIM23 complex substrate import is not affected in tim22-14 

mitochondria  
 

																																						 	
Figure 32 Import of TIM23 complex substrates is not affected in tim22-14 mitochondria- 
[35S] labelled A. F1b and B. Atp5 was imported for the indicated time points into WT and tim22-14 
mitochondria. The reaction was stopped by addition of AVO. Samples were analysed by SDS-
PAGE and autoradiography. p - precursor, m- mature form. AVO - mixture of 10 mM Antimycin A, 1 
mM Valinomycin and 10 mM Oligomycin.   

 
For several putative carrier substrates selected from the screen, it was decided to test 

their import and assembly into mitochondria to verify their dependence on TIM22. To rule 

out any indirect effects of the Tim22 mutant on substrates of the TIM23 complex, which 

utilise a presequence, import of Su9-DHFR and Atp5 was carried out. 35S labelled N-

terminal part of the complex V subunit 9 fused to DHFR was synthesised (Figure 32A, 

lane 1). When this precursor was incubated with mitochondria isolated from WT and 

tim22-14 for increasing time points, a faster migrating processed mature (m) form was 

generated, demonstrating efficient import and processing. Time-dependent kinetic 

increase could be observed, and both mitochondria were equally competent for import of 

a presequence-containing protein (Figure 32A, lane 2,3,4 vs lane 6,7,8). No mature form 
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9). Similarly, for 35S labelled Atp5 of complex V, another TIM23 complex substrate, import 

efficiency into WT and tim22-14 mitochondria was similar (Figure 32B).  
This Tim22 mutant strain has previously been reported to have only slightly reduced 

membrane potential compared to WT (Wagner et al., 2008). Therefore, any import defect 

due to a loss of membrane potential can be excluded.           

 
3.2.3.2 Assembly of carrier proteins is affected in tim22-14 mitochondria 
 
To monitor the import and assembly of selected carrier proteins from the MS analysis, 

blue native electrophoresis was used to differentiate between the stage III assembled and 

fully assembled protein. Proteins were divided into three sub-groups: (i) Carrier proteins 

with standard six transmembrane topology (Crc1, Odc1, Mir1, Hem25) (ii) 

Uncharacterised proteins potentially belonging to the carrier family of proteins (YFR045W, 

YPR011C) and (iii) Proteins with unusual number of transmembrane domains for carrier 

substrates (MPC1, MPC3). MPC1 and MPC3 have 2 and 3 predicted transmembrane 

domains each.  

 

For proteins from (i) and (ii), 35S labelled precursors were imported and assembled into 

heat-shocked WT and tim22-14 mitochondria. Crc1 (Carnitine carrier) assembly was 

strongly reduced in tim22-14 mitochondria compared to WT mitochondria (Figure 33A, 

lane 1,2,3 vs lane 5,6,7). The complex did not assemble in the ∆Y control (Figure 33A, 

lane 4 and 8). For Odc1 (OxoDicarboxylate carrier), the decrease in import and assembly 

was not as strong, but still evident (Figure 33B, lane 1,2,3 vs lane 5,6,7). Assembly of 

glycine transporter Hem25 (HEMe synthesis by SLC25 family member) was strongly 

inhibited in the Tim22 mutant (Figure 33C, lane 1,2,3 vs lane 5,6,7). Mir1 or Phosphate 

carrier (PiC) subunit assembly was also reduced, but not to a great extent (Figure 33D, 

lane 1,2,3 vs lane 5,6,7). Taken together, these results show that carrier proteins identified 

from the quantitative MS analysis are indeed substrates of the TIM22 complex. These 

proteins are affected to varying degrees in their assembly, which could be due to 

differences in the affinity of their internal signals for the TIM22 complex.  

One of the uncharacterised proteins identified in the screen, YFR045W, also has six 

predicted transmembrane segments and is a putative mitochondrial transporter protein 

(Belenkiy et al., 2000). Import and assembly of 35S YFRO45W was carried out as 

described before. Strong assembly defects were observed (Figure 34, lane 1,2,3 vs lane 

5,6,7), leading to the conclusion that YFRO45W is also a TIM22 complex substrate.   
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Figure 33 Assembly of carrier proteins is affected in tim22-14 mitochondria - [35S] 
labelled A. Crc1, B. Odc1, C. Hem25 and 4. Mir1 was imported for 15, 30 and 60 min into WT and 
tim22-14 mitochondria to assess the assembly of carrier proteins. The reaction was stopped by 
addition of AVO followed by PK digestion. Assembly of the carrier was monitored on BN-PAGE 
followed by autoradiography. -*: non-specific signal. AVO - mixture of 10 mM Antimycin A, 1 mM 
Valinomycin and 10 mM Oligomycin.  

 
YPR011C is characterised to be a transporter of adenosine 5’-phosphosulfate in yeast 

(Todisco et al., 2014). 35S YPR011C was imported and assembled into WT and tim22-14. 

Assembly was reduced in the Tim22 mutant, indicating that YPR011C is also dependent 

on the TIM22 complex for its import (Figure 35, lane 1,2,3 vs lane 5,6,7).  
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Figure 34 Assembly of uncharacterised carrier protein YFR045W is affected in tim22-14 
mitochondria - [35S] labelled YFR045W was imported for 15, 30 and 60 min into WT and tim22-
14 mitochondria to assess its assembly. The reaction was stopped by addition of AVO followed by 
PK digestion. Assembly was monitored on BN-PAGE followed by autoradiography. -*: non-specific 
signal. AVO - mixture of 10 mM Antimycin A, 1 mM Valinomycin and 10 mM Oligomycin. 

																															 	
Figure 35 Assembly of uncharacterised protein YPR011C is reduced in tim22-14 
mitochondria - [35S] labelled YPR011C was imported for 15, 30 and 60 min into WT and tim22-14 
mitochondria to assess its assembly. The reaction was stopped by addition of AVO followed by PK 
digestion. Assembly was monitored on BN-PAGE followed by autoradiography. -*: non-specific 
signal. AVO - mixture of 10 mM Antimycin A, 1 mM Valinomycin and 10 mM Oligomycin.   
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Taken together, these results confirm some of the established carrier family proteins such 

as phosphate carrier (PiC), carnitine carrier (Crc1), glycine transporter (Hem25) and 2-

oxodicarboxylate carrier (Odc1) as substrates of the TIM22 complex. Additionally, 

uncharacterised proteins YFR045W and YPR011C, which have previously been reported 

to belong to the carrier family of proteins by proteomic studies, were confirmed as 

substrates of the TIM22 complex. Therefore, this quantitative mass spectrometry based 

approach helped in unravelling a set of inner membrane proteins which depend on TIM22 

for their import. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Discussion 

	

 103 

 
 
 
4. Discussion 
 
4.1 Analysis of a mitochondrial translocation intermediate: the 
TOM-TIM23 supercomplex  
 
For the mitochondrial presequence pathway, high-resolution structural information has 

been accumulated over the years for the soluble domains of various components 

(Albrecht et al., 2006) (Mokranjac et al., 2006) (Josyula et al., 2006) (Qian et al., 2011). 

Additionally, cross-linking analyses have shed light on the structural organisation of 

different subunits with respect to each other (Alder et al., 2008) (Shiota et al., 2011) 

(Lytovchenko et al., 2013) (Shiota et al., 2015). Recently, electron microscopy was utilised 

to resolve the structure of the TOM complex in N. crassa (Bausewein et al., 2017). 

However, to date, no high-resolution information is available on the TIM23 complex 

protein-conducting channel. Structural characterisation of this complex will provide a 

platform to integrate the functional information acquired so far with the structure of various 

subunits. This study was focussed on the isolation of the TOM-TIM23 supercomplex for 

structural analysis, as well as the examination of the dynamic interactions of TIM23 

complex subunits in its unoccupied state versus a supercomplex state. 

 
4.1.1 Supercomplex forming proteins as a tool to study active 
protein import in mitochondria 
 
The small size, dynamic nature and intrinsic ability of the TIM23 complex to associate with 

other proteins makes it a challenging sample for structural studies using EM. One way to 

overcome this is by driving the TIM23 complex towards a stable TOM-TIM23 

supercomplex form in the presence of an arrested translocating substrate. To date, 

b2(167)∆-DHFR is the traditional protein which is used to generate the TOM-TIM23 

supercomplex (Dekker et al., 1997) (Chacinska et al., 2003). In this study, new proteins 

were designed to optimise supercomplex generation and its purification on preparatory 

scale. All proteins had superfolder GFP at the C-terminus. The rationale behind the use of 

sfGFP was that a fast-folding blocking domain would be advantageous in case of an in 
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vivo approach to generate the supercomplex. Based on our results, both SCGP and Jac1-

sfGFP could be purified in high amounts and formed the supercomplex more efficiently 

than b2(167)∆-DHFR. However, Jac1-sfGFP was selected as the protein for further 

experiments because of its higher stability during purification. Supercomplex isolation with 

anti-GFP nanobody resulted in co-isolation of TOM, TIM23 and PAM complex 

components. Therefore, new proteins for efficient formation of the TOM-TIM23 

supercomplex were established in this study. 

 
In parallel, an in vivo approach was also utilised. Here, Jac1-sfGFP was expressed in live 

yeast cells for a fixed time to accumulate the precursor in the translocase. Following this, 

cells were lysed open and the supercomplex was purified with the help of GFP nanobody. 

The advantage of this approach was to avoid time-consuming steps for preparing the 

mitochondria and carrying out an import reaction. However, this approach resulted in a 

lower supercomplex yield compared to the in organello isolation (data not shown). We 

hypothesise that since expression of Jac1-sfGFP might be toxic for cells, a mechanism 

might exist in the cell to clear the blocking protein from the import channels. A similar 

mechanism exists for clogged translocon in the ER, where Ste24, a metalloprotease, 

cleaves the clogging protein (Ast et al., 2016). Additionally, cytosolic quality control protein 

Vms1 was reported to antagonise aggregation of ribosome-stalled proteins in the 

mitochondrial translocases (Izawa et al., 2017). Recently, a surveillance mechanism, 

mitoCPR, was also reported for mitochondrial import defects (Weidberg and Amon, 2018), 

where stalled proteins in the translocase are removed by a AAA ATPase Msp1 on the 

OM. In light of these pathways in the cell, the in organello approach for supercomplex 

isolation was adopted in favour of the in vivo approach.                      

 
4.1.2 Optimisation of the TOM-TIM23 supercomplex isolation 
conditions  
 
To date, the TOM-TIM23 supercomplex isolation has predominantly been carried out 

using tags on either a TOM or TIM23 complex subunit (Geissler et al., 2002) (Chacinska 

et al., 2003) (Chacinska et al., 2010). While efficient, this strategy could not be used 

directly for structural analysis due to the heterogeneous nature of the complex isolated, 

since both the TOM and the TIM23 complex associate with other complexes (Qiu et al., 

2013) (Kulawiak et al., 2013) (Mehnert et al., 2014). With that in mind, GFP nanobody was 

purified to specifically isolate complexes in which Jac1-sfGFP was arrested. Free Jac1-

sfGFP was not co-isolated due to introduction of a mitochondria washing step after import 

of Jac1-sfGFP. The Jac1-sfGFP - GFP nanobody combination improved the 

supercomplex isolation, but initial analysis of the sample under electron microscopy 
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pointed towards a heterogeneous population of particles of varying shape and size. These 

particles were most likely individual TOM and TIM23 complexes which had disintegrated 

from the supercomplex during the isolation procedure. A two-step isolation strategy was 

also optimised, wherein first all TIM23 complexes were isolated using a tag on Tim23 

(His-SUMOstar-Tim23), followed by specific isolation of the supercomplex using GFP 

nanobody. While this led to a discernible improvement in sample homogeneity with EM 

analysis, the overall sample still remained heterogeneous.  

To further stabilise the isolated TOM-TIM23 complex, an approach known as GraFix was 

utilised (Kastner et al., 2008). In this method, individual protein complexes are stabilised in 

the presence of a mild fixative agent (glutaraldehyde) while undergoing glycerol gradient 

ultracentrifugation. This method is especially beneficial for fragile complexes or complexes 

with low copy number. When the TIM23 complex isolated after Jac1-sfGFP import was 

applied on a glycerol gradient for GraFix, a separation could indeed be observed for the 

unoccupied TIM23 complexes and the TOM-TIM23 supercomplex form, due to their 

different size. Analyses of fractions containing the supercomplex with EM revealed that 

while there was still some heterogeneity remaining, the particle size on average was 

larger. Therefore, sample preparation was gradually improved with various optimisations.         

 
Detergent micelles were another issue that interfered with the EM analysis. Since the 

TIM23 complex is fragile in nature and known to be stable only in digitonin, it was the 

detergent of choice for isolations. However, the large digitonin micelle size led to 

difficulties in differentiating between protein particles and micelles under EM. Indeed, even 

recrystallisation of digitonin (Herrmann et al., 2001), which purifies the commercially 

available digitonin to a great extent, did not completely eliminate the background 

detergent particles. Extensive detergents and surfactants were previously tested as 

substitutes of digitonin (Lytovchenko O., 2012), but the TIM23 complex dissociated in all 

of them. In this study, two new detergents, GDN and LMNG (Chae et al., 2010) (Chae et 

al., 2012), as well as SMA copolymer for detergent-free membrane protein extraction 

(Dörr et al., 2016) were tested. All three have been shown to stabilise various membrane 

proteins. The TIM23 complex completely disintegrated in LMNG, and solubilisation 

efficiency with SMA was low. Remarkably, with GDN, the TIM23 complex remained stable 

after isolation and was comparable to isolations with digitonin. Indeed, it was visible on 

EM analysis that the background contamination was reduced after exchange of detergent 

from digitonin to GDN. 

Naturally, the next step was to combine detergent exchange with GraFix. In this method, 

called GraDeR, free detergent micelles can be removed from a detergent-extracted 

membrane protein under mild conditions using glycerol gradient centrifugation (Hauer et 
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al., 2015). Analysis of the supercomplex-containing fraction with EM revealed much less 

micellar structures compared to digitonin, indicating the efficiency of the detergent 

exchange. Simultaneously, the particle size remained large on average, pointing towards 

the stability of the supercomplex with this approach.  

Taken together, we developed a new approach for isolating the TOM-TIM23 

supercomplex in preparative amounts for structural analysis with EM. Jac1-sfGFP proved 

to form the supercomplex efficiently, and utilisation of SUMOstar protease and GFP 

nanobody further enhanced the isolation efficiency and specificity. GraFix and GraDeR 

together stabilise the supercomplex and prevent it from degrading. After these extensive 

optimisations, the next step would be to increase the yield of isolation for improved 

negative stain and cryo EM, to get structural insights. Localisation of subunits within the 

acquired structure could be carried out based on the known structural information of some 

of the proteins (Endo et al., 2011) as well as by performing supercomplex isolations from 

strains with deletion or down-regulation of specific subunits. Another approach which can 

enhance the knowledge of spatial orientation of different subunits within a complex is 

cross-linking. This will be discussed in the next section.             

                      
4.1.3 Cross-linking analyses of the mitochondrial TOM-TIM23 
supercomplex 
 
Current view holds that after traversing the TOM complex, the presequence of a precursor 

proteins associates with Tom22IMS. The binding of Tim21IMS to Tom22IMS leads to 

dissociation of the precursor protein from Tom22 (Chacinska et al., 2005). Thereafter, the 

released presequence associates with Tim50, which is the major presequence receptor in 

the IM. Tim23IMS can affect the Tim50IMS-Tim21IMS interaction (Lytovchenko et al., 2013). 

The Tim50-Tim23 interaction causes the presequence to be released from Tim50, 

following which it can be handed over to the Tim23-Tim17 channel.  

Cross-linking followed by mass spectrometry has developed into a significant tool to 

determine protein interactions in dynamic and unstable protein complexes. Additionally, 

cross-linking information provides the perfect complement to structure analysis. With that 

in mind, we looked into the interactions occurring in the TOM, TIM23 and PAM complexes 

in the absence and presence of a translocating protein.          

 
4.1.3.1 Tim21 interacts with Tom22 in the presence of a translocation 
arrested protein 
 
Tim21 is an IM protein with a large domain exposed in the IMS. Tim21IMS is known to 

interact with the IMS domains of Tom22, Tim50 and Tim23, most likely facilitating the 

transfer of precursors from the TOM to the TIM23 complex. However, mitochondrial 
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translocases are not completely dependent on these interactions, since Tim21 is not an 

essential protein and is dispensable for yeast growth (Chacinska et al., 2005).  

In our study, we discovered that in the absence of a translocating protein, Tim21 forms 

cross-links with Tim50CORE and Mgr2 in the IMS. The Tim21IMS and Tim50CORE domain 

interaction has previously been reported for recombinantly purified proteins (Lytovchenko 

et al., 2013), and is now confirmed by our in organello cross-linking approach. Therefore, 

in the absence of a presequence signal, Tim21IMS and Tim50IMS interact with each other. In 

the presence of a translocating protein, only a single cross-link was obtained, between 

Tim21IMS and the last residue of Tim50. This residue is in the PBD, whose structural 

information is not available. This can be due to two reasons: one, that Tim21IMS or 

Tim50IMS undergo a conformational change in the presence of a translocating peptide, 

such that the Tim50 PBD gets in proximity to Tim21IMS, or two, since the score of this 

cross-link was low, its reliability can be questioned. Nevertheless, further proximity based 

in vitro experiments have to be performed to address if the Tim50IMS conformational 

change is actually happening in the presence of a translocating peptide.   

Furthermore, cross-links were obtained between the N-terminus of Mgr2 and Tim21IMS 

under both conditions. Mgr2 is an IM protein most likely forming a part of TIM23CORE. It 

has previously been reported to be required for the recruitment of Tim21 to the TIM23 

complex (Gebert et al., 2012). Therefore, here we could show that Tim21 is in proximity to 

Mgr2 within the TIM23 complex, promoting its recruitment. Interestingly, the number of 

obtained cross-links between them decreased in the presence of a translocating protein. 

This could be due to the increased interaction of Tim21IMS with Tom22IMS, leading to 

reduced number of interaction sites for Mgr2.        

 
Finally, Tim21IMS forms cross-links with Tom22IMS in the presence of an arrested protein. 

While the in organello formation of a supercomplex with an arrested protein is an 

artificially generated system, it reflects the corresponding supercomplex formed by close 

apposition of the TOM and TIM23 complexes during import of protein in vivo. Therefore, 

cross-links between subunits of the TOM and the TIM23 complex were expected. 

Interaction of Tom22IMS with IMS domains of Tim21, Tim23 and Tim50 has been reported 

(Albrecht et al., 2006) (Tamura et al., 2009) (Bajaj et al., 2014a)	 (Waegemann et al., 

2015). For us, cross-links were obtained only between Tim21 and Tom22. The absence of 

cross-links between Tim23-Tom22 or Tim50-Tom22 could be due to the efficiency of 

cross-linking, the nature of cross-linker or the loss of interactions during the isolation 

procedure.  

Negatively charged amino acids on a 17-residue segment of Tom22IMS interact with Tim21 

(Albrecht et al., 2006). However, what are the residues on Tim21 which act as the scaffold 
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for Tom22? Our study identified Tim21 residues in proximity with Tom22 in the IMS. 

These residues are part of the b-sheet and inter-sheet loops (Figure 25) in Tim21IMS. 

Together, these represent an area of positively charged residues on the surface, which 

could potentially interact with Tom22IMS via electrostatic interactions. Site-directed 

mutation analysis has to be performed to pin-point if the pocket formed by these residues 

is indeed the Tom22 binding site.        

  
4.1.3.2 Tim23 is in proximity to the TOM complex in the IMS 
 
Tim23 plays a crucial role in the translocation of a presequence-containing protein across 

the IM. It is a major subunit of the TIM23 complex, consisting of the N-terminal IMS 

domain (1-96) and the C-terminal membrane domain (97-222). The IMS domain is 

intrinsically disordered in nature (la Cruz et al., 2010) and acts as a hub for interacting 

with various proteins within the IMS. However, contradictory results exist regarding the 

functional relevance and topology of Tim23IMS. On the one hand, it has been reported that 

the N-terminus of Tim23IMS (1-50) spans the outer membrane, with 20 amino acids 

exposed in the cytosol, such that the remaining IMS domain (51-96) is in proximity to the 

TOM complex to facilitate protein transfer (Donzeau et al., 2000). On the other hand, it 

has also been reported that these 50 residues at the extreme N-terminus of Tim23 are 

dispensable for protein import and the TOM-TIM23 supercomplex formation (Chacinska et 

al., 2003) (Chacinska et al., 2005).  

According to our cross-linking results, Tim23IMS is in close proximity to multiple proteins.  

Specifically, residue 25 interacts with IMS-exposed residues of Tom40 and Tom5, while 

intra-protein cross-linking occurs between residues 25 or 32 and residue 66. These results 

indicate that the disordered Tim23IMS domain dynamically interacts with multiple proteins 

from both the TOM and the TIM23 complexes within the IMS. This finding is partially 

corroborated by the view that Tim23IMS might dynamically contact both the IM and the OM 

through 2 segments in its N-terminus (residues 1-7, 29-46), while the non-membrane-

bound residues interact with other translocase components (Bajaj et al., 2014b). A point of 

interest in our cross-linking analysis is the interaction of Tim23 with Tom5 and Tom40. 

These interactions have not been reported before, and are observed in both the 

unoccupied TIM23 and the TOM-TIM23 supercomplex. This suggests that Tim23IMS is in 

constant proximity to the TOM complex, which can help in efficient transfer of 

presequence proteins to the TIM23 complex.  

Remarkably, from our study, Tim23 also cross-links with Tim50 in the IMS and Tim17 in 

the matrix. This is not surprising since these three proteins together form the core TIM23 

complex.  What was surprising was that all Tim23 interactions with other TIM23 complex 
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subunits, including with itself since it forms a dimer, were absent in the TOM-TIM23 

supercomplex. While the absence of a cross-link is not an indication of a lack of proximity, 

similar behaviour of Tim23 in the presence of a translocation arrested precursor has 

previously been reported, also through cross-linking analysis (Alder et al., 2008). All in all, 

our findings reproducibly indicate the dynamic nature of the conformationally flexible IMS 

domain of Tim23 in the absence or presence of a translocation intermediate.       

 
4.1.3.3 The dynamic nature of the PAM complex 
 
For complete translocation of a protein into the matrix, a motor complex is required to first 

engage the incoming protein and then to drive precursor movement and unfolding. Tim44, 

Hsp70 (Ssc1), Pam16, Pam18 and Mge1 act together to ensure proper translocation of an 

incoming protein. Due to this, a difference is expected between the arrangements and 

interactions of PAM complex subunits in the TIM23MOTOR state compared to the 

supercomplex state.  

 
Tim44 acts as a scaffold for other PAM complex subunits to anchor them at the TIM23 

complex. Therefore, cross-links between Hsp70 and Tim44 are not surprising. However, 

so far, only the Tim44 NTD has been reported to interact with Hsp70 (Craig, 2018). Based 

on our analysis, residues predominantly in the Tim44 NTD-CTD interface interact with 

Hsp70 SBD independent of the presence of a translocating protein. This interface has 

been implicated with being involved in the interaction of Tim44 with the inner membrane 

(Weiss et al., 1999) (Marom et al., 2009). The seemingly different regions of Tim44 found 

to interact with Hsp70 could be due to differences in complex isolation and cross-linking 

strategies. Another reason could be that the residues in this interface are too flexible 

(Josyula et al., 2006) (Ting et al., 2017), resulting in their random interactions with Hsp70. 

In addition, a lack of structural information for Hsp70 and the Tim44 NTD-CTD interface 

prevents us from confirming the reliability of these cross-links. However, point mutation of 

Pro 442 to Ser in Hsp70 was reported to alter its interaction with Tim44 (Strub, 2002). This 

supports the cross-link we observed of adjacent Lys 444 and 445 residues in Hsp70 with 

Tim44. Therefore, mutation analysis will provide an answer regarding the importance of 

the Tim44 NTD-CTD interface for Hsp70 binding in vivo.    

Furthermore, interactions between Pam16 and Pam18 are a point of interest. These 

proteins act together to either directly stimulate (via Pam18) or indirectly inhibit (via 

Pam16) the ATPase activity of Hsp70 (Li et al., 2004). Based on the known domain 

topology and limited structural information (Mokranjac et al., 2006), the interaction we 

observed was occurring between the J and J-like domains of Pam18 and Pam16 

respectively. Furthermore, the number of cross-links between these proteins increase in 
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the presence of a translocating protein. While this could be a technical issue during mass 

spectrometry measurements, it could also point towards rearrangements within Pam16, 

Pam18, or both, leading to exposure of more Lys residues on the surface, making it more 

accessible to the cross-linker. This rearrangement would not be surprising, since typically, 

Pam16 inhibits the ATPase stimulatory activity of Pam18 by blocking its HPD motif. 

However, for active import of proteins, Pam18 HPD motif should be available to stimulate 

ATPase activity of Hsp70. Additionally, cross-links were also observed between Pam16-

Tim44 NTD and Pam18-Tim44 NTD. The Pam16-Pam18 heterodimer can be expected to 

be present in the vicinity of Tim44 to promote active protein import. The N-terminus of 

Pam16 is known to interact with Tim44 NTD between residues 51 to 82 (Schilke et al., 

2012). However, for us, the cross-link was obtained with residue 110. Since the NTD of 

Tim44 is typically disordered in nature, a different cross-linking and TIM23 complex 

isolation approach could affect its interaction with Pam16 differently. Therefore, the Tim44 

NTD behaves as a scaffold for multiple interactions with PAM complex subunits, 

promoting their assembly at the TIM23 complex. The large number of interactions of 

Tim44 NTD could be explained by its intrinsically disordered nature, which makes it more 

flexible. Moreover, Tim44 CTD has been demonstrated to interact with the matrix loops of 

Tim23 and Tim17, both in intact mitochondria and through recombinantly purified proteins, 

most likely to localise Tim44 in proximity to the TIM23 complex (Ting et al., 2014) (Ting et 

al., 2017) (Banerjee et al., 2015). However, neither of these interactions could be 

observed in our analysis. It could be that the Tim23-Tim44 interaction is labile, such that 

when cross-linking is carried out in intact mitochondria followed by isolation of the TIM23 

complex, Tim23-Tim44 cross-links are detected (Ting et al., 2014) (Ting et al., 2017). 

However, when the TIM23 complex is first isolated and then cross-linked, as is carried out 

in our approach, the Tim23-Tim44 interactions are lost. The seemingly increased 

interactions between motor proteins as part of the TOM-TIM23 supercomplex is supported 

by the results that the supercomplex is a dynamic entity undergoing constant remodelling 

of its subunits (Schulz and Rehling, 2014).  

 
In summary, in the present study, we utilised an in vitro cross-linking approach on an 

isolated TIM23 and TOM-TIM23 supercomplex, to analyse the cross-talk between the 

subunits of these complexes. We also assessed possible changes in the dynamics of 

TIM23 and PAM complex subunits under the condition of active protein import. By doing 

so, we found the following: firstly, Tim21IMS and Tom22IMS are in proximity during import of 

a precursor protein; secondly, Tim23IMS is in the vicinity of the TOM complex, specifically 

to Tom40 and Tom5, in both its unoccupied and supercomplex form. Finally, the PAM 

complex subunits are dynamic and potentially undergo restructuring in the presence of a 
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translocating protein. Therefore, the cross-linking approach can serve as a useful tool for 

membrane proteins, to obtain initial impressions about the protein interaction network. The 

identified cross-links will provide valuable information for future structural studies.         

Apart from electron microscopy and cross-linking analysis, gross structural information of 

protein complexes in their native environment can also be obtained through electron 

tomography. Specifically, the TOM-TIM23 supercomplexes were reported to localise as 

clusters on the mitochondrial surface, most likely for a focussed protein import (Gold et al., 

2014). Refinement of this approach to include larger datasets can provide additional 

information on the surface features of these complexes. Additionally, this approach can be 

adapted to study the TOM-TIM23 supercomplex behaviour under different metabolic and 

physiological conditions. 

Together, these approaches can help to comprehensively understand the structure of the 

TIM23 complex or the TOM-TIM23 supercomplex. That, in turn, will open the 

mitochondrial import field regarding the stoichiometry and underlying mechanisms of 

different subunits involved in the import of presequence-containing proteins into 

mitochondria.      

 
4.2 Expansion of substrate spectrum of the TIM22 complex  
 
To date, the import of only a handful of nuclear-encoded mitochondrial proteins has been 

reported to occur via the TIM22 complex. These proteins belong either to the six 

transmembrane carrier family proteins (AAC, PiC, DiC) or the four transmembrane 

translocase subunits (Tim23, Tim22 and Tim17). The primary channel-forming protein of 

this complex is Tim22. In this study, we utilised a Tim22 temperature sensitive (ts) strain 

in combination with a mass spectrometry-based depletion assay, to identify numerous 

predicted carrier family proteins as substrates of the TIM22 complex. This approach can 

be used as a broad screening tool, since the proteomic analysis is done on a whole 

mitochondria level to uncover specific proteins whose levels are up or down-regulated 

under specific conditions. Recently, a similar approach has been used to successfully 

identify IM proteins which depend on OXA for import (Stiller et al., 2016).    

 
4.2.1 Mitochondrial carrier proteins are depleted in tim22-14 
 
To study the dependence of mitochondrial proteins on Tim22 and therefore the TIM22 

complex, mitochondria from cells grown at repressive temperature for three different time 

points were analysed. Following labelling and MS analysis, numerous proteins were found 

to be down-regulated for all time points. Primarily, the known carrier family proteins could 

be identified, including proteins like Crc1, Odc1, Rim2, Pic2, Mir1, Yhm2 and AAC2. 
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Carrier family proteins have been classified based on their six transmembrane topology, 

with the carrier signature (CS) playing a major role in import (Nelson et al., 1998) 

(Belenkiy et al., 2000) (Kunji, 2004) (Ferramosca and Zara, 2013). With import and 

assembly of these proteins, we could confirm that, indeed, these proteins depend on 

Tim22 for their import. Moreover, these proteins were dependent to different extents on 

Tim22 for their assembly. This variation could be due to the helicity of transmembrane 

domains of that protein or the degree of adherence of the CS motif. Extensive sequence 

analysis would have to be done to address this variation. 

Interestingly, along with the known carrier proteins, two other subsets of proteins were 

obtained. One was a group of uncharacterised six transmembrane predicted proteins, 

including YFR045W and YPR011C. The assembly of these proteins was diminished in the 

Tim22 mutant strain, indicating that they are substrates of the TIM22 complex. 

Remarkably, proteins with atypical transmembrane domains were also detected to be 

Tim22 dependent. These include proteins of the mitochondrial pyruvate carrier: Mpc1 and 

Mpc3. Another subunit, Mpc2, which is topologically and sequentially similar to Mpc3, was 

not obtained in the MS results. This absence could be due to the oxidative growth 

conditions of yeast strain, whereas Mpc2 is expressed under fermentative growth 

conditions (Bender et al., 2015). Mpc1 is a two-transmembrane protein, whereas Mpc2 

and Mpc3 contain three transmembrane domains each. 

 
With this method, few points had to be contemplated: First of all, only 70% of the 

mitochondrial proteome was covered with this approach, based on the High Confidence 

Mitochondrial proteome (Morgenstern et al., 2017). Therefore, the remaining 30% proteins 

could also harbour additional known, uncharacterised or atypical TIM22 complex 

substrates. However, the feasibility of this approach is confirmed by obtaining known 

TIM22 complex substrates as down-regulated proteins in the Tim22 mutant strain. 

Secondly, such assays always come hand in hand with secondary effects stemming from 

either reduction of essential proteins or elevated temperature. In our approach, the former 

was countered by known information about the targeting signal of the proteins obtained. 

For example, complex IV subunits down-regulated in this study are known to be imported 

by the presequence pathway, and could therefore be disregarded as potential TIM22 

substrates. To counter the secondary effects from repressive temperature, careful 

selection was made with respect to the control mitochondria while performing the 

labelling. This ensured that the pleiotropic effect of elevated temperature, which lead to an 

overall reduction in protein levels, was taken into account for all time points.  
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4.2.2 Turnover rate of Tim23 and Tim17 is low  
 
An interesting observation from the MS results was the absence of translocase subunit 

substrates. Tim23 levels seemed to not be affected in the Tim22 mutant strain. 

Unfortunately, Tim17 was not detected, most likely due to low sequence coverage or 

inaccuracy during quantification. While this was surprising, given that some of the carrier 

proteins were very strongly down-regulated indicating the severity of the ts phenotype, it 

could be that since Tim23-Tim17 are essential core proteins of the TIM23 complex, their 

turnover is not that fast. Therefore, once assembled into the TIM23 complex, they are 

stable and not constantly exchanged. Moreover, it was recently reported that hTim23 and 

hTim17b (Tim23 and Tim17 in humans) levels were not down-regulated upon knockout or 

knock-down of human TIM22 complex subunits (Kang et al., 2017) (Pacheu-Grau and  

Callegari et al., 2018). Additionally, it was demonstrated that the relative stability of 

proteins involved in mitochondrial protein biogenesis and turnover, including proteins 

involved in import, folding, maturation and degradation, remained static under different 

growth conditions (Morgenstern et al., 2017). This indicates that the protein import 

machinery forms a part of the housekeeping system of mitochondria, such that their 

functioning remains constantly steady. On the other hand, carrier proteins were described 

to almost double in copy number on change of carbon source for growth from glucose to 

glycerol. This points to the dynamic nature of the carrier protein turnover. Therefore, the 

turnover rate of a potential TIM22 substrate could be governing its extent of down-

regulation in the Tim22 mutant strain. Indeed, this also implies that, like Tim23 and Tim17, 

other four or six transmembrane proteins might be TIM22 substrates but are not down-

regulated due to a low turnover.        

 
4.2.3 Offbeat import pathways into mitochondria  
 
Initial import and assembly results of Mpc1, Mpc2 and Mpc3 point to them being 

substrates of the TIM22 complex (data not shown). This is surprising, since they do not 

belong to the traditional family of carrier proteins with six transmembrane domains. The 

presence of 2, 3 and 3 transmembrane domains in Mpc1, Mpc2 and Mpc3 respectively 

makes them atypical TIM22 substrates. 

Exceptions within a typical import pathway are not uncommon. Outer membrane proteins 

typically only require channels in the outer membrane for their insertion. However, for the 

import of Om45, an OM protein, both the TOM and the TIM23 complexes are involved, 

after which it has been suggested to be imported into the OM with the help of the MIM 

machinery (Song et al., 2014) (Wenz et al., 2014). In another study, it was described that 

the mature part of a presequence-containing protein provides sensitivity to ∆Y, an 
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exception to the established principle that positive charges on the presequence are 

important for ∆Y-driven import of the protein (Schendzielorz et al., 2017). Moreover, OXA 

machinery in the IM was typically assigned for import of mitochondria-encoded proteins 

into the IM. However, based on a recent study, it has also been implicated in being 

involved in import of numerous nuclear-encoded proteins (Stiller et al., 2016). Therefore, 

new information is constantly being obtained regarding the substrates and mechanisms of 

import pathways that are thought to be well-established. This could be a response of the 

organelle to adapt to the ever-evolving cellular physiology.      

 
In summary, the TIM22 complex is required for the import of four and six transmembrane 

domain-containing IM proteins, belonging either to the translocases or the carrier family of 

proteins. Additionally, it is also potentially required for the import of proteins with atypical 

membrane domains. Extensive biochemical analysis will help in understanding the extent 

to which these smaller proteins depend on the typical TIM22 complex pathway for their 

import.  
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5. Summary and Future Perspectives 
 
Eukaryotic cells are dependent on mitochondria for ATP production, apoptosis and 

various metabolic pathways. To maintain properly functioning mitochondria, import of 

proteins synthesised in cytosol to mitochondria is imperative. Dedicated machineries are 

present in mitochondria to ensure correct import of proteins. In this study, we deal with the 

TOM, TIM23, TIM22 and the PAM complexes, as well as the translocation intermediate 

TOM-TIM23 supercomplex.  

 
In the first part of this study, new supercomplex forming proteins were generated. Jac1-

sfGFP emerged as the most promising protein. The presence of a sfGFP domain at the C-

terminus also allowed for the in vivo generation of the supercomplex. Additionally, elution 

of the TIM23 complex with SUMOstar protease provided specificity to the isolation 

approach. Isolated complex could be observed as particles after subjecting them to 

negative staining followed by EM. However, the sample prepared was heterogeneous, 

most likely due to the presence of detergent micelles as background contamination and 

possible degradation of the isolated complex. Application of density gradient based 

fixation and detergent exchange methods improved the sample quality. The yield of the 

preparation has to be improved for single particle analysis in the future.  

From the cross-linking analysis, we could observe that the presequence translocase 

machinery is dynamic in nature, with structural rearrangements taking place within the 

subunits during import of a protein. Specifically, interactions within the (i) TOM and TIM23 

complexes, such as Tim21-Tom22, Tim23-Tom40 and Tim23-Tom5, (ii) TIM23 complex 

subunits, such as Tim21-Mgr2, Tim21-Tim50 and Tim23IMS interactions, and (iii) PAM 

complex subunits, such as Hsp70-Tim44, Pam16-Tim44, Pam16-Pam18, indicate that the 

mitochondrial presequence import pathway involves cross-talk between all the 

components involved for efficient import of protein. This acute response of the translocase 

subunits to a translocating protein will be an essential subject of future studies. Mutations 

within the cross-linking sites followed by biochemical analysis will help in determining the 

extent of importance of these sites for efficient protein interaction.  
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In the second part of this thesis, the TIM22 complex and its substrates were studied. A 

Tim22 temperature sensitive strain was successfully employed for identification of 

additional substrates of the TIM22 complex. Quantitative mass spectrometry was applied 

following labelling of mitochondria from cells grown at repressive temperature for different 

time points. Putative substrates obtained were confirmed using assembly studies in the 

mutant Tim22 strain. Carrier family proteins such as Crc1, Odc1, Hem25 and Yhm2 were 

confirmed as TIM22 substrates. Moreover, uncharacterised proteins YPR011C and 

YFR045W were also verified. Remarkably, mitochondrial pyruvate carrier (MPC) subunits, 

which are two and three transmembrane domain proteins, were also affected in the Tim22 

mutant strain. Import studies of these proteins will shed some light on the topological 

requirements of an inner membrane protein to be a TIM22 complex substrate.          
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