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SUMMARY

Globally, policy-makers increasingly shift value from economic towards social and environ-

mental outcomes of the economy. Successfully achieving economic, social and environmental

goals jointly inevitably leads to trade-offs at multiple stages of agricultural value chains. Agri-

cultural commodity markets provide manifold opportunities for policy makers to mitigate

such trade-offs by creating environmental and societal values. Both real world applications

and advancement of empirical methodology to evaluate those are essential to an exhaustive

evidence-base for economic policy that aims at mitigating trade-offs. This dissertation aims

at extending two distinct scientific frontiers of research on agri-environmental-social policy

trade-offs. The first focus is placed on socio-environmental trade-offs faced at the producer

stage. The palm oil boom and related ecological crisis in Indonesia provides a resourceful case

to empirically explore the role of smallholder agricultural production within the conflicting

aims. The second focus lies on the advancement of data-driven identification techniques in

structural time series analysis and its application to commodity market analysis.

The first two essays (chapters two and three) analyse the technical and environmental

performance of smallholder oil palm producers in Jambi, Indonesia. We focus on policy

implications regarding the production technology, shortcomings in performance compared

with best-practice and biodiversity, and deforestation as environmental aspects. The first

essay asks whether technical efficiency reduces or accelerates oil palm area expansion. The

findings indicate that while the land sparing potential of increased smallholder efficiency

is remarkable, higher returns to palm oil production also increase demand for land by a

factor of one third. Thus, successful rural development and conservationist policy need to

reconcile both effects by connecting smallholder support with more formalized land markets

and stringent land policy. The second essay models the trade-off between oil palm output and

biodiversity loss and estimates the performance of smallholders. It derives respective shadow

prices and simulates several payments for ecosystem services (PES) scenarios. The findings

suggest presence of substantial environmental inefficiency in smallholder oil palm production

which is in part explained by both chemical and manual weeding practices. Payments for



ecosystem services schemes could be a viable policy response to conserve meaningful levels

of biodiversity while at the same time allowing smallholders to increase palm oil output.

Addressing drivers of environmental performance in PES designs could amplify the effect

thereof without reducing production levels. The third essay (chapter four) evaluates the

policy efficacy of the tripartite rubber council (TRC) to detach the international rubber price

from synthetic rubber and crude oil prices. The findings indicate that restricting supply did

not impact international markets as expected and increasing domestic consumption might

even have backfired and contributed to further decreases in international prices.

The last two essays (chapters five and six) are concerned with data-driven identification

methods in multivariate time series models. The fourth essay provides a software implementa-

tion of novel structural identification techniques making use of heteroskedasticty-based and

independence-based assumptions. The fifth essay applies independent component analysis

(ICA) to identify structural crude oil shocks on food markets in Sub-Saharan Africa (SSA).

The findings indicate that SSA food markets respond more strongly to oil-supply shocks and

less pronounced to oil-specific demand end aggregate-demand shocks than global markets. As

transportation costs continue to be very important components of the cost of food production

in SSA, inefficient fuel distribution systems and absence of strategic energy reserves lead to

vulnerability of food prices to oil-supply shocks. Food prices in Sub-Sahara Africa respond

fundamentally different to oil shocks than world market prices or those in developed coun-

tries. In addition, SSA food markets are also not alike in their response to global oil shocks

but very heterogeneous. This is likely to be also the case for other developing countries’ food

markets.
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Chapter One
General Introduction

Since the beginning of the current century, the world population grew by more than one
fourth, and average per capita income doubled1 (World Bank, 2020). As a consequence, agri-
culture attended to an unprecedented surge as well as structural change in demand for food,
fiber, and fuel (OECD-FAO, 2011; McMillan and Rodrik, 2011). Concurrently, a remarkable
advancement in technology continued to enable farmers to produce more efficiently and pro-
vide more output quicker and more targeted than ever before (Fuglie et al., 2012). For the
most part, existing incentive structures rewarded merely economic performance as opposed
to environmental and social outcomes. Subsequently, numerous clashes of agricultural pro-
duction with the environment and society at large unfolded around the globe. For instance,
the far-reaching implications of climate change as well as persistent poverty, food insecurity,
and increasing malnourishment are particularly relevant social and environmental trade-offs
that continue to loom over future generations.

In more recent times, global policy has shifted value from economic towards environ-
mental and societal outcomes of the global economy. Perhaps most representatively, the
Sustainable Development Goals SDG target global non-economic objectives as a means of
overall development. Critically, the SDGs are not only ambitious to reach individually, but
most challenging is probably the achievement of the set of goals jointly. For example, SDGs 1
and 2 target the "eradication of poverty" and "ending hunger", respectively, while at the same
time SDGs 12 and 15 aim at "ensuring sustainable consumption patterns" and "protecting,
restoring and promoting sustainable use of terrestrial ecosystems, sustainably manage forests,
combat desertification, and halt and reverse land degradation and halt biodiversity loss", re-
spectively (United Nations, 2015). Achieving these goals jointly inevitably leads to trade-offs
at multiple stages of agricultural value chains. A tangible implication for agriculture is that
while the provision of food in increasing quantity and quality is still required, concurrently
social and environmental outcomes have become imperative by-products.

Agricultural commodity markets provide manifold opportunities for policy makers to cre-
ate environmental and societal values. Since markets are a hub within value chains where
economic goods are traded between producers (sellers) and consumers (buyers), they mir-

1As measured by the adjusted net national income per capita indicator (World Bank, 2020)
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ror the current economic valuation of agricultural produce. Thus, regulation to mitigate
trade-offs along various stages of value chains often aims to include other - non-marketed,
yet desired - outcomes in the valuation process. The range of policies that address the prob-
lem of such externalities are manifold and idiosyncratically adapted to commodity, country,
culture and environment specific circumstances. Common examples include carbon taxes,
standards and certifications, land titling, and payments for ecosystem services that often are
implemented in pursuit of environmental and social outcomes. Also trade policy - albeit
regulated profoundly in the WTO - continues to be a popular means for countries to im-
prove welfare of domestic agricultural producers (Disdier and Marette, 2010). All of these
are attempts to mitigate particular trade-offs between provision of economic commodities
and other services, as valued by society. Nonetheless, most of the times such measures bring
about a multitude of consequences, not all of which are desired ubiquitously but instead are
unintended by-products (Grant, 2010), adding yet another layer of complexity on the analysis
and mitigation of trade-offs at the intersection of the economy, society and the environment.

Thus, there is no one-size-fits all solution for development and agro-environmental policy.
Even though the problem of externalities and its typical solutions are well studied in eco-
nomics, successful policy amid the joint optimization of economic, social and environmental
values relies not only on general economic theory, but is also adaptive and flexible enough to
adjust situation-specific constraints and challenges (Rodrik, 2007). As much as the trade-offs
at the intersection of economic, social and environmental values are highly heterogeneous,
so can be the outcomes of policy action along the value chains of agricultural commodities
(Grant, 2010; Swinnen, 2010).

At the same time, with more complex trade-offs along agricultural value chains, the
detection of meaningful causal relationships and underlying mechanisms becomes an increas-
ingly taller order for researchers. Econometric models that evaluate observational data often
rely on key economic assumptions which are increasingly pressured as agriculture faces novel
drivers and challenges. Thus, the analysis of trade-offs also imposes stronger requirements on
its methodological tools to design effective mitigation strategies. However, the growing avail-
ability of observational data over several dimensions enables more data-driven approaches
that - in combination with structural models - provide ample avenues for the advancement
of causal identification strategies. Hence, both real world applications and progress of em-
pirical methodology to evaluate those are essential to an exhaustive evidence-base for eco-
nomic policy of agricultural commodities (Waltner-Toews and Lang, 2000; Havlík et al., 2015;
Pinstrup-Andersen, 2015; Brümmer et al., 2016; Jack et al., 2017).

This dissertation analyzes agricultural policies at the intersection of economic, environ-
mental and social trade-offs in agricultural commodity markets. In a collection of five es-
says, the dissertation aims at extending two distinct scientific frontiers of research on agri-
environmental-social policy trade-offs. The first focus is placed on socio-environmental trade-
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offs faced at the producer stage. To that end, the palm oil boom and related ecological crisis
in Indonesia provides a resourceful case to empirically explore the role of smallholder agri-
cultural production within the conflicting aims. The second focus lies on the advancement
of data-driven identification techniques in structural time series analysis and its application
to commodity market analysis. In the remainder of this chapter, I set the stage for the two
foci separately.

1.1 Oil palm boom: Smallholders between economic
success and ecological crises in Indonesia

The first focus of this dissertation is thematic and concerned with developmental and environ-
mental policy analysis of trade-offs amid the palm oil commodity boom and the accompanying
ecological crisis in Indonesia2. This part of the research analyzes the Indonesian smallholder
sector in light of present and hypothetical policy approaches that aim at improving environ-
mental performance and welfare.

With oil palm production continuing to conquest new areas in Indonesia as well as around
the world, policymakers and many more stakeholders along the value chain are facing an
immense socio-environmental trade-off (Qaim et al., 2020; Grass et al., 2020). The oil palm
commodity boom has been shown to both markedly improve rural livelihoods (Krishna et al.,
2014; Klasen et al., 2016; Kubitza et al., 2018a; Sibhatu, 2019) while at the same time
dramatically deteriorate vital ecosystem functions (Koh and Wilcove, 2008; Savilaakso et al.,
2014; Chaplin-Kramer et al., 2015; Fitzherbert et al., 2008; Vijay et al., 2016; Darras et al.,
2019a; Bateman et al., 2015).

In Indonesia, smallholder farmers are at the center of this critical trade-off. Even though
the lion’s share of palm oil output stems from large estates, at present, smallholders manage
more than 40% of oil palm plantation area (Byerlee and Viswanathan, 2018; Qaim et al.,
2020). The comparably high participation of smallholders in the commodity boom is likely
also a result of continuing government support (Jelsma et al., 2017). The Indonesian govern-
ment promoted smallholder participation in oil palm starting in the late 1970s, when inte-
grative schemes eased the establishment of large estates and adoption of smallholders jointly.
Consequently, an increasing number of smallholders adopted the technology of palm oil and
replaced the traditional production of rubber (Kubitza et al., 2018b) as particularly higher
harvest frequency renders rubber four times more labour intensive than palm oil (Schwarze
et al., 2015). Thus, even though rubber remains an important crop for smallholder farmers
in Indonesia and Jambi province, the sector progressively shifts towards oil palm cultivation.

2This part of the research in this dissertation is integrated in a sub-project of the interdisciplinary
Collaborative Research Centre 990: Ecological and Socioeconomic Functions of Tropical Lowland Rainforest
Transformation Systems (EFForTS) and is located in Jambi province on the island of Sumatra, Indonesia.
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On the one hand, oil palm adoption markedly helped to improve livelihoods, particularly in
rural areas, not only in Indonesia but also other tropical regions (Qaim et al., 2020). On the
other hand, environmental degradation resulting from the advance of oil palm plantations
led to increasing international as well as national pressure on both large estates as well as
smallholder producers (IFPRI, 2019; Qaim et al., 2020).

Yet, given the importance of smallholders in palm oil production in terms of their economic
contribution and in terms of policy support, the paucity of microeconomic research on their
environmental performance is striking. The vast majority of environmental economic research
on palm oil production relies on aggregate national level and remote sensing approaches, that
- to a large extend - reflect only large estates and corporation practices, while comparably
little is known about the environmental performance of smallholders (Sayer et al., 2012;
Byerlee and Viswanathan, 2018). As much of the science base stems from such aggregate
level studies, policy responses aimed at mitigating environmental degradation often neglected
the particularities of smallholder producers. Perhaps the most prominent example thereof is
the round table on sustainable palm oil (RSPO) certification scheme, that - albeit certifying a
sizable share of national palm oil output - the literature has largely found livelihood impacts
ranging from mixed to negative for smallholder producers (e.g. Rist et al., 2010a; Brandi
et al., 2013; Krishna et al., 2017a; Glasbergen, 2018; Schleifer and Sun, 2020).

By contrast, the economic role of oil palm production for smallholders and rural devel-
opment as well as related socio-economic challenges and opportunities and policy efficacy
forms another voluminous strand of literature (e.g. Savilaakso et al., 2014; Euler et al., 2017;
Krishna et al., 2017b; Woittiez et al., 2017; Jelsma et al., 2017; Kubitza et al., 2018a), which,
however, only sporadically addresses the environmental performance of smallholders. Simi-
larly, a substantial body of literature in other scientific fields such as biology and ecology on
the environmental effects of oil palm cultivation has formed, however, research linking the
two is scarce and the information bases are rarely merged to provide interdisciplinary results.
Nonetheless, such integrative studies are probably critical for an exhaustive and compre-
hensive evidence base that fully encompasses the economics, society and the environmental
aspects of oil palm production (Qaim et al., 2020). Notable exceptions are the recent works of
Teuscher et al. (2015) and Grass et al. (2020) who find strong trade-offs between production
and biodiversity. Some other studies analyze land expansion behaviour of smallholder pro-
ducers which in turn have consequences on land related environmental degradation (Kubitza
et al., 2018b).

Yet another challenge which smallholder producers face are declining real output prices.
Since Indonesia is the largest exporter of both palm oil and rubber, and the majority of pro-
duce is destined for markets abroad, international market dynamics do not leave Indonesian
smallholders unscathed (Amiti and Konings, 2007; Rifin, 2010). Even though real producer
prices during the 2010s rose sharply, in the more recent past they have been dwindling
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steadily. Between 2012 and 2018, FAO’s producer price index for oil palm fruit bunch and
natural rubber in Indonesia declined by 13 and 16%, respectively (FAOSTAT, 2020). As a
response to the decline of palm oil and rubber commodity prices - which, in turn, are likely to
be supply-driven - the government has made use of trade policies such as tariffs and quotas
as well as domestic demand-stimulating measures in efforts to support producer price levels
(Verico, 2013; Anwar, 2017).

The first essay (chapter two) of this dissertation asks whether technical efficiency of oil
palm smallholder producers in Indonesia reduces or accelerates land expansion. As small-
holders fall short of nearly 40% of oil palm fruit yields, improving smallholder production
efficiency could be a promising avenue for policy to mitigate environmental degradation by
means of slowing down area expansion and increasing rural incomes at the same time. How-
ever, the net effect of such measures critically depends on the rebound effect that measures
the increase of land demand as a response of improved profitability of production. In a two
stage approach, we first estimate the technical efficiency of smallholder producers data using
a linear mixed model (LMM) that allows for hierarchical panel data structures of farmers
who manage multiple plots. Second, we predict current land expansion based on past tech-
nical efficiency using a measurement error model where we account for the attenuation bias
resulting from the first stage model that has not yet been addressed methodologically in the
relevant literature. Both stages rely on a farm survey conducted in a panel of three waves
between 2012 and 2018.

Our findings indicate that while the land sparing potential of increased smallholder effi-
ciency is remarkable, higher returns to palm oil production also increase demand for land by
a factor of one third. Thus, successful rural development and conservationist policy need to
reconcile both effects by connecting smallholder support with more formalized land markets
and stringent land policy.

The second essay (chapter three) of this dissertation explores the relationship between
smallholder oil palm production and loss of biodiversity. In an interdisciplinary approach, we
augment the dataset employed in the first essay by plant diversity data from oil palm plots
and derive a measure of biodiversity. We link biodiversity loss to palm oil production using a
stochastic hyperbolic distance function. Hereby we extend the model of Cuesta et al. (2009)
and provide a restricted form of the function allowing for both fixed and variable input use
in the short term. The duality of the approach moreover allows for the calculation of shadow
prices of environmental degradation which serve as the basis to develop several payments for
ecosystem services schemes.

Our results reveal substantial environmental inefficiency in smallholder oil palm produc-
tion which is in part explained by both chemical and manual weeding practices. The value for
conserving one species on a farmers plantation was 340 USD in 2018, on average. Payments
for ecosystem services schemes could be a viable policy response to conserve meaningful levels
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of biodiversity while at the same time allowing smallholders to increase palm oil output. In
general, addressing drivers of environmental performance in PES designs amplifies the effect
thereof without reducing production levels.

The third essay (chapter four) of this dissertation analyzes the effectiveness of trade
policy measures implemented by the Indonesian government jointly with the members of
the tripartite rubber council (TRC) to steer international rubber prices. Besides oil palm,
rubber remains an important source of income in Indonesia and experienced a considerable
decline of real output price. As the availability of synthetic rubber, which is a derivative of
crude oil is increasingly dominating natural rubber prices, the TRC aims at detaching natural
rubber prices from synthetic ones by shortening supply via export quotas in the short term
and promoting domestic consumption in the long term. Relying on international price data
series, we employ an error correction model to analyze the price transmission mechanisms
between natural and synthetic rubber prices under the assumption of weak exogeneity of
crude oil prices.

Our findings indicate that natural and synthetic rubber are co-integrated and strongly
driven by crude oil. We find that restricting supply did not impact international markets as
expected and increasing domestic consumption might even have backfired and contributed
to further decreases in international prices.

1.2 Identification of structural time series models in
commodity policy analysis

The second focus of this dissertation is concerned with the advancement of methodological
innovations to analyze commodity market dynamics. In turn, a profound understanding
of the direction, magnitude and cause of market movements are key to respective policy.
A substantial body of literature employs time series models to determine the impacts of
macroeconomic policy (Sims et al., 1982; Kilian and Lütkepohl, 2017). Prominent examples
are the analysis of monetary or fiscal policy (e.g. Blanchard and Perotti, 2002; Mertens
and Ravn, 2010; Auerbach and Gorodnichenko, 2012; Lütkepohl and Netsunajev, 2017a;
Olivero et al., 2019), trade policy (e.g. Xu, 2000; Glick and Rose, 2002; Stephens et al.,
2012; Anderson, 2016) and commodity market policy in general (e.g. Meyer and von Cramon-
Taubadel, 2004; Myers et al., 2010; Brümmer et al., 2016; Lloyd, 2017). In their very essence,
multivariate time series models rely on a range of methods and techniques which predict
variables based on past values of the same variable or, past and present values of other
variables. The seminal work of Granger (1969) introduces a concept of causality among time
series variables that conditions that one time series (Yt) is useful in predicting another Xt,
while vice versa, the latter time series is not useful in predicting the former. Thus, in presence
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of other potentially influential variables Zt,

P (Xt+1|Xt, Xt−1, ..., Yt, Yt−1, ...Zt, Zt−1) ̸= P (Xt+1|Xt, Xt−1, ...Zt, Zt−1). (1.1)

The concept of Granger-causality has found numerous applications and inspired a variety
of statistical tests and models in causal time series research (Moneta et al., 2011; Kilian and
Lütkepohl, 2017). Testing for Granger-noncausality corresponds to testing conditional inde-
pendence (Florens and Mouchart, 1982; Moneta et al., 2011), and one particularly prominent
and widely-used approach are vector autoregression models (VAR) that take the form of

yt = µ + A1yt−1 + ... + Apyt−p + ut, (1.2)

as, for instance in (Lütkepohl, 2005). Here yt is a vector of time series variables and µt a
vector of deterministic terms. The matrix Ai captures the autoregressive parameters and p

denotes the lag order of the model. The serially - but not contemporaneously - uncorrelated
error terms are assumed to have E(ut) = 0 and Cov(ut) = Σu. By further assumption, the
system is stationary3. In essence, noncausality between two series of yt thus imply that the
respective coefficients in Ai are not fading out simultaneously over time (Moneta et al., 2011).

The concept of Granger-causality has been widely relied upon in the applied econometric
literature and extended in multiple directions. However, at the same time the Granger-
theorem has been challenged by a number of authors. Most notable is Sims (1972) who
find that money Granger-causes output and not vice versa, but when accounting for interest
rate changes, the effect disappears, as shown by Sims (1980) and Sims et al. (1982) who
point out the critical dependence of Granger-causality on the choice of the conditioning
set. Another example is Thurman et al. (1988) who show that egg production in the US
Granger-causes the chicken population and thereby seemingly solves the problem of which
was first: the chicken or the egg. Moreover, there is no causal flow from chicken to the
egg. However, well noting that their results are critically conditional on their particular
sampling strategy, the authors conclude that causality - in the Granger sense - can be a
misleading term and tests for Granger-noncausality not adequately allow meaningful causal
inference among correlated time series in cases where the conditioning set is specified or other
- usually economic assumptions - are not valid. In such cases, the true structural mechanisms
among time series variables remain undetected.

In an effort to go beyond temporal relation4, Sims (1980) introduces structural vector
autoregression (SVAR) models to reveal the underlying causal directions among time series
interdynamics, and thereby enable a more nuanced inference in more general circumstances.

3Note that in case of non-stationarity and cointegration, resulting VEC models can also be represented
as a stationary VAR process (Lütkepohl, 2005; Kilian and Lütkepohl, 2017)

4Later, Granger and Newbold (2014) referred the Granger (1969)-concept of causality as "temporally
related".
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Following Lütkepohl (2005) and Kilian and Lütkepohl (2017) and emerging from equation
1.2 an SVAR model can be expressed as

yt = µ + A1yt−1 + ... + Apyt−p + Bεt, t = 1, ..., T, (1.3)

where the reduced form error terms ut are a linear transformation of the nonsingular
matrix B that collects the instantaneous effects of the structural shocks εt on all the variables
of the system, and thus ε = B−1ut. The structural shocks are both serially as well as
contemporaneously uncorrelated. The covariance matrix of εt can be expressed as a function
of the reduced-form error term covariance matrix, such that

Cov(ut) = Σu = BΣεB
⊤, (1.4)

showing that the reduced-form error terms hide the uncorrelated shocks and merely convey
the contemporaneously correlated shocks. Thus, B reflects the response of the variables to the
latent drivers of the system. However, even though these economically meaningful shocks can
not be observed directly, they can be revealed under certain conditions or restrictions (Kilian
and Lütkepohl, 2017). While the estimation of reduced-form error terms is straightforward,
e.g. using maximum likelihood (ML) or least squares (LS) estimation, the unique recovery
of structural shocks has been subject of an ongoing debate and methodological advancement
during the past decades (Kilian and Lütkepohl, 2017).

Sims (1980) and a sizable following strand of literature relies on economically motivated
restrictions to identify the structural shocks of multivariate time series systems. An example
in the context of commodity markets is found in oil price related analyses. Empiricists often
assume exogeneity of oil to other markets which hold minor importance in economic terms,
and thereby solve the identification problem by assumption (Serra and Zilberman, 2013).
In the oil shocks literature, authors typically assume zero supply elasticity of crude oil (e.g.
Kilian, 2009; Wang et al., 2014). In the former case, the restriction assumption has found
further evidence in other causal works (Serra and Zilberman, 2013), the latter, by contrast,
has been challenged more recently (Baumeister and Hamilton, 2019a). Thus, resulting policy
implications are conditioned by the identifying assumptions that often are untestable.

A more recent strand of literature aims to unravelling structural shocks by scrutinizing
statistical features of the data. For instance, in presence of heteroskedasticity, the struc-
tural shocks can be identified by unconditional shifts in the (co)variance5 (Rigobon, 2003),
conditional volatility (Normadin and Phaneuf, 2004), and smooth transition in covariance
(Lütkepohl and Netsunajev, 2017a). Other authors augment the assumptions of second or-
der independence of contemporaneous non-correlation among the structural shocks to higher
order moments and reveal the unique B matrix by non-Gaussian maximum likelihood (Lanne

5In presence of an exogenous structural break
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et al., 2017a), or independent component analysis (ICA) relying, for instance, on the distance
covariance statistic (Matteson and Tsay, 2017) or the Cramer-von Mises distance statistic
(Herwartz and Plödt, 2016b)6. Such data-driven approaches are a convenient means to iden-
tify SVARS as they scrutinize the exogeneity of statistical properties of the data and thereby
rendering economic assumptions as testable and overidentifying.

In spite of the growing availability of structural identification strategies, the applied lit-
erature has been adapting rather slowly. A multitude of authors have expressed the need for
structural approaches in context of agricultural time series (e.g. Myers et al., 2010; Nazli-
oglu and Soytas, 2011; Serra and Zilberman, 2013; Grosche, 2014; Lloyd, 2017). Serra and
Zilberman (2013) find that the majority of empirical work on the food-oil price nexus rests
on causality in the Granger-sense, which is particularly alarming as the emergence of biofu-
els could have changed market fundamentals of the food-fuel relationship and consequently
could render traditional economic assumptions erroneous. As more layers of complexity are
added to commodity and agricultural markets, many other reduced-form models or assump-
tion driven structural identification strategies might become error prone, and thus, misguided
evidence-base for policy makers.

As ready-to-use and user friendly software implementations are not available, the fourth
essay (chapter five) of this dissertation provides the R package svars (Lange et al., ming)
which implements data-driven techniques to identify SVAR models. As more identification
approaches become available, the package moreover provides a platform to host further meth-
ods and tools within the framework of SVARS and is continuously updated and extendend.
Furthermore, it connects to the other existing time series analysis R packages such as vars
and strucchange.

Finally, the fifth essay (chapter six) of this dissertation applies independent component
analysis using distance covariance to reveal the impacts of structural oil shocks on food
markets in Sub-Sahara Africa. Even though the crude oil-food market nexus has received
great attention in the literature, most works focus on high-income countries and do not
consider the existence of different types of oil shocks, i.e. aggregate-demand, oil-supply and
oil-specific demand shocks. Yet, food markets have been shown to react differently to different
types of oil shocks in the US and world market levels (Baumeister and Kilian, 2014a; Wang
et al., 2014).

The findings indicate that food prices in Sub-Sahara Africa respond fundamentally differ-
ent to oil shocks than world market prices or those in developed countries. We find significant
responses of some food markets in SSA to oil-supply shocks as opposed to minimal impor-
tance of oil-demand and aggregate-demand. Moreover, SSA food markets are much more
heterogeneous in their response to global oil shocks than high-income countries and world
markets are. As transportation costs are substantially higher in many SSA countries, and

6A more detailed review of the methods follows in chapter five
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also more heterogeneous among different countries, they are a much more powerful trans-
mission channel from oil markets to food markets compared with other parts of the world.
Indeed, historical decompositions reveal that the oil-supply shortfalls induced by the Libyan
revolution and the oil embargo against Iran in 2011 and 2012 subsequently caused most of
the resulting food price increases in SSA. Conversely, the shale oil boom in the US and oil
production expansion in the Middle East exerted downward pressures on corn prices in three
African countries in 2014/15. Food market policy thus aims to keeping transport costs low
and reliant to import shortages, for instance by building up strategic energy reserves.
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Chapter Two
Does technical efficiency promote or
dampen oil palm area expansion in
Indonesia?1

Indonesian forest area has dwindled while palm oil output experienced exponential growth
during the past decades and continues to improve rural livelihoods. Smallholder farmers are
cultivating nearly half of oil palm production area while falling short of 40% of area yields
compared to large estates. Given the substantial opportunities to produce more on less land,
eliminating the inefficiency in production could both save and share additional forest land
from or to palm oil production. However, in contrast to the adverse effects of technological
innovation on land expansion, the link between technical efficiency and demand for land is
still unclear. This paper asks whether technical efficiency of oil palm smallholder producers
in Indonesia reduces or accelerates land expansion. In a two-stage approach, we estimate
technical efficiency by means of a hierarchical random intercept model and determine the ex-
pansion effect of efficiency scores by means of an error in variables (EIV) regression. Our
key finding is that technical efficiency is an important junction within the land sparing vs.
land expansion debate. We show that closing the yield gap provides remarkable land sparing
opportunities, which are at serious risk of being offset by more than one third due to increased
land demand. Thus, successful conservationist policy flanks the problem and ensures proper
land markets in combination with smallholder development measures.

Keywords: Palm oil, deforestation, technical efficiency, rebound effect

1Acknowledgement: This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) project number 192626868 in the framework of the collaborative German-Indonesian
research project CRC990. I’m very grateful to Christoph Kubitza who provided valuable comments and
suggestions as a discussant of the paper at a doctoral seminar in Göttingen. I also thank Bernhard Brümmer,
Daniel Chrisendo, Dela Dem Doe Fiankor and Yashree Mehta for useful feedback. Furthermore, I thank
members of the early career mentoring post-conference workshop at the AAEA meetings in Atlanta, 2019 for
commenting on an early draft of the paper.
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2.1 Introduction

Global expansion of agriculture has come at the expense of many ecosystem functions (Ras-
mussen et al., 2018; TEEB, 2012; Hooper et al., 2012). Particularly tropical forests are
affected by the advancement of agricultural production (Curtis et al., 2018) and have re-
ceded substantially during the past decades. Deforestation has wide ranging and long lasting
implications as many ecosystem functions such as biodiversity and carbon uptake but also
ecosystem services such as water supply, soil maintenance and flood control (Ellison et al.,
2012) are critically conditional on forests. Yet, commodity booms, which remarkably im-
prove rural livelihoods, in conjunction with intangible land use policy set powerful incentives
to further convert forests into crop lands, particularly in lower-income tropical regions around
the world.

A promising solution to the problem is innovation. Total factor productivity (TFP)
increases in agriculture can relieve pressure on land use (Borlaug, 2007), and producing more
on less has been shown to lead to land sparing effects in the long term (Balmford et al.,
2005, 2018; Feniuk et al., 2019; Phalan et al., 2014; Folberth et al., 2020). Consequently,
increasing productivity has become a widely advocated policy goal to combat deforestation
and other environmental externalities. In practice, such measures include the promotion of
agrochemical and machinery use or the adoption of higher yielding varieties which boost
per ha performance of farmers. However, other authors have shown that in turn rising
marginal products can exacerbate instead of mitigate the pressure on forests and the reliant
ecosystem functions either in the short term (e.g. Foster et al., 2011; Garrett et al., 2013;
Desquilbet et al., 2017; Garcia et al., 2020) or depending on the type of technology (Maertens
et al., 2006). Such cases are partly explained by market features, particularly relating to the
elasticity of demand (Hertel, 2018). Yet, besides technical change, innovation in technical
efficiency -or managerial skill- is another important component of TFP change. In contrast
to the adverse relationship between technological innovation and land expansion, which has
has been studied extensively, the link between technical efficiency and demand for land is
still unclear. The gap in the literature is particularly striking as in an effort to boost rural
livelihoods, numerous extension service and outreach programs aim at improving managerial
skills of farmers. Without respective land use policy, such measures could have ecologically
detrimental effects, at least in the short term.

This paper asks whether technical efficiency of oil palm smallholder producers reduces
or accelerates land expansion in Indonesia. On the one hand, smallholders in Indonesia
benefit from the oil palm boom. With about 34% (Indonesian Ministry of Agriculture,
2016) smallholders contribute remarkably to national output and exports which is reflected
in both poverty as well as food security measures (Sayer et al., 2012; Edwards, 2017). At
the same time however, smallholders fall short of nearly 40% of area yield compared to large
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estates (Indonesian Ministry of Agriculture, 2016) and many authors argue that closing the
yield gap could lead to improved livelihoods in conjunction with mitigation of area related
environmental externalities, including deforestation.

Our empirical approach is organized in two stages. First, we estimate the technical effi-
ciency of smallholder oil palm producers based on a short panel dataset from Jambi province
on the island of Sumatra. We model the production technology relying on a translog func-
tional form and employ a random effects model which accommodates the hierarchical struc-
ture of the data. The distance of farmers to the best-practice frontier constitutes the farmers
inefficiency scores and determines by how much they fall short of the maximum attainable
output considering their input use. Second, we estimate an error in variables (EIV) land use
model to link past efficiency levels to land expansion today, revealing how managerial skill
links to land demand.

We provide two main innovations to the existing literature. With regards to methodology,
our paper is closest to Marchand (2012) who estimate the effect of technical efficiency on
land use expansion in the Brazilian amazon using ordinary least squares and potentially
neglecting the measurement error stemming from the efficiency score, which has a known
distribution. We overcome the attenuation bias by employing an error in variable approach
and highlight the advantages thereof. With regards to smallholder oil palm production, our
paper is probably closest to Kubitza et al. (2018b), who analyze the effect of agricultural
intensification on rubber and oil palm farmers close to the forest frontier. As an extension
to their work, our paper focuses exclusively on oil palm producers and particularly assesses
effects of technical efficiency as opposed to productivity changes on land expansion.

The key finding of this paper is that technical efficiency is an important junction within the
land sparing vs. expansion debate. We show that closing the yield gap provides remarkable
land sparing opportunities, which are at risk of being offset by increased land demand by
more than one third. Thus, successful conservationist policy flanks the problem and ensures
proper land rights as well as the enforcement thereof combined with outreach and extension
services which target managerial skill of farmers, simultaneously.

The remainder of this paper is organized as follows: Section 2.2 provides a brief discussion
of key findings from the existing literature. We focus on the rebound effect in agriculture and
conservation as well as the smallholder oil palm situtation in Indonesia. Section 2.3 derives
the two-stage empirical approach and presents the data. In section 2.4 results are presented
and section 2.5 calculates the rebound effect and places the result in a policy perspective.
Section 2.6 concludes the paper.
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2.2 Land sparing vs. land expansion

The role of technical efficiency within the land sparing vs. land expansion debate is not
well understood. Before approaching the problem empirically, we briefly discuss some key
literature around the discourse and revisit essential empirical and theoretical aspects. Sub-
sequently we set the stage for our case study and provide relevant insights regarding the
smallholder oil palm sector in Indonesia.

During the past decades, two distinct views regarding the role of intensification of agricul-
ture in mitigating land use change (LUC) induced deforestation, or other externalities have
emerged. First, the Borlaug hypothesis (Borlaug, 2002) states that as a result of intensified
cereal production more than one billion ha of land have been spared from agricultural produc-
tion since the 1950s. Induced by technological innovation -related to the Green Revolution-
growing demand for food could be met by higher yields as opposed to further area expansion
of agriculture. From a policy persepctive, the land sparing view postulates that deforestation
- and other environmental externalities - around the world could be dampened by increasing
productivity through invention and adoption of new technologies and managing resources
more efficiently.

In sharp contrast to the Borlaug hypothesis stands the backfire-type rebound effect, or
often referred to as the Jevons paradox2, that denotes a contrary situation where intensifica-
tion in agriculture leads to further expansion of land use. In this view, innovation and more
efficient management set further incentives to shift supply outwards as long as demand is
elastic. Given such circumstances, any policy aiming at sparing land while relying solely on
boosting innovation and performance is bound to backfire.

2.2.1 The rebound effect: Definitions

In between both colliding views stands the rebound effect and determines which of the two
potential outcomes are likely and to what extent. In figure 2.1 we illustrate the rebound
effect using a neo-classical representation and apply the considerations of Berkhout et al.
(2000) to the land case.

We consider an agricultural product that has land (L) and other inputs (O). At the
initial equilibrium producers face the isoquant Y that represents all feasible combinations of
land input L and all other inputs O which yield the same amount of output. A technological
innovation which allows producers to produce the same level of output Y using less land input
and constant other-input use, shifts the isoquant to the left (Y ′). Now point B is feasible for
the producer, where Y can be produced at equal level of O of other input, but L− as opposed
to L of land input and thereby sparing the use of L − L− of land input. As a first response,

2The hypothesis goes back to Jevons (1879) who observed that in response to the invention of more
efficient coal ovens, overall coal consumption increased instead of declined.
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Figure 2.1 Rebound effect of producers

the producer shifts production to C where the isoquant is equal to the relative factor prices
and consequently output is maximized. The rebound effect is L′ − L− which reduces the
overall sparing potential of the technology shift.

The second part of the rebound effect depends on market features. Under perfect com-
petition, producers compete for market shares and output prices fall until the point where
profits are equal to the initial equilibrium. If consumer demand is price elastic, producers
respond further and shift supply outward to Y ′′ which supports a higher level of output at, in
turn, higher level of input use. Thus, the final equilibrium is at point D where the rebound
effect is L′′ − L− and net land savings are L − L′′. An exception is the case of perfectly in-
elastic demand, where producers will not respond with a supply shift and limit the rebound
effect to L − L−. By contrast, if demand is highly elastic such that L′′ > L, net savings are
negative and the innovation backfires with regards to land use. Hence, besides the shape of
the production function, the extend of the rebound effect critically depends on the elasticity
of demand (Berkhout et al., 2000; Hertel, 2018; Villoria et al., 2014; Desquilbet et al., 2017).

The mechanisms described in figure 2.1 are connoted with a technological advancement
resulting in an increase of TFP. However, as we may define TFP change as the sum of technical
change and technical efficiency change, the shifts of isoquant may also stem from gains in
technical efficiency as opposed to technological innovation. In that case, changes of the
production process reflect the individual performance of producers given their idiosyncratic
production conditions instead of a technology shift which affects to all producers equally. In
other words, if we consider Y in figure 2.1 to bound a production possibility set, technical
efficiency gains are radial movements of individual producers towards the frontier which,
however, entail the equivalent mechanisms concerning land sparing and land expansion.
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2.2.2 Land sparing and rebound effects in agriculture: Empirical
evidence

Villoria et al. (2014) provide a review of empirical evidence regarding rebound effects in
agricultural production. The authors find that intensification of production is overwhelmingly
associated with land sparing as opposed to land expansion, particularly in the long run.
Furthermore, a number of recent studies confirm the innovation-savings mechanism also
regarding other ecosystem services, for instance biodiversity, greenhouse gas emissions (GHG)
or deforestation (e.g. Balmford et al., 2005, 2018; Feniuk et al., 2019; Phalan et al., 2014;
Folberth et al., 2020). Furthermore, Villoria et al. (2014) find that empirical support for the
existence of backfiring rebound effects in agriculture is scarce and, if found, refers to short
term horizons or is spatially limited. One example thereof is provided in Gutiérrez-Vélez
et al. (2011) who find overall land saving in response of increasing oil palm yields in Peru,
however, at the expense of increased deforestation. The authors furthermore highlight the
importance of local policy to mitigate local leakage effects.

In a more recent study, Garcia et al. (2020) confirm the long term sparing effect of
innovation in agriculture using global aggregate data over a 50 year period, but nonetheless
find strong rebound effects in middle income countries for commodities with elastic consumer
demand. Another case for presence of rebound effects is found in Desquilbet et al. (2017)
who consider global aggregate production and biodiversity conservation.

Strikingly, much of the existing work relies on remote sensing data and aggregates at
country, or even continental level while often also spanning over decades, as opposed to short
term and micro level perspectives. Notable exceptions who take a more local approach are, for
instance, Garrett et al. (2013), Birkenholtz (2017) and Song et al. (2018) who find short term
rebound effects for country level soybean yields in Brazil, the introduction of drip irrigation
in India and agricultural water use in China, respectively.

An explanation for the lack of local focus in the literature might stem from global balanc-
ing effects. Villoria et al. (2014) and Hertel (2018) argue that rebound effects in one region
are typically offset by disproportionately higher savings in another one, given that barriers
to trade are negligible. For instance, even though total factor productivity (TFP) growth
promotes deforestation and LUC resulting in accelerated GHG emissions in South East Asia,
global GHG emissions decline as they are saved in other parts of the world, where comparably
more resource efficient palm oil replaces other - relatively more resource intensive - vegetable
oils. However, such comparisons of local expansion vs. global sparing are conditional on the
perfect substitutability between ecosystem functions or services. This assumption is fairly
reasonable in the GHG case, but questionable with regards to other ecosystem functions and
services. For example, reducing biodiversity in one part of the world can not be compensated
with higher levels of biodiversity in another part as many species are endemic to regional
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environments. Thus, for ecosystem functions which are not spatial substitutes, global savings
can not offset local rebounds.

At present, technical efficiency has received minimal attention in the land sparing vs. ex-
pansion literature as opposed to technological innovation or aggregate TFP growth. To our
knowledge, the only exception is Marchand (2012) who find a quadratic relationship between
technical efficiency and land expansion among soy producers in Brazil. All other relevant
studies consider technical change as part of TFP change and refrain from distinguishing
between TE and technology. This should not be problematic in cases where technology is ho-
mogeneous and all producers are operating close to the production frontier, or put differently,
in absence of inefficiency. Such production systems typically are characterized by advanced
technology as well as a relatively sophisticated production sector. However, in developed
countries, where technology is still catching up and production subject to inherent idiosyn-
crasy of producers, gains in technical efficiency translate into large portions of yield increases.
Consequently, both considerable sparing as well as rebound potentials are thinkable.

Thus far we synthesize that in spite of a multitude of research on innovation in agriculture
amid the land sparing and land expansion debate, the literature lacks (i) local microeconomic
evidence on rebound effects in agriculture, and (ii) approaches which assess innovation in farm
performance as opposed to technology. As ecosystem services are not spatially substitutable
and technical efficiency is a particularly important part of TFP growth, at least in middle-
income countries, both shortcomings could manifest in a shaky evidence-base for designing
local conservationist policy, particularly at the face of agricultural commodity booms.

2.2.3 Smallholder palm oil producers in Jambi, Indonesia

Amid the oil palm boom and the related ecological crisis in South East Asia, smallholder oil
palm producers in Jambi constitute an important case to explore how gains in performance
affect factor demand for land from a microeconomic perspective. First, even though small-
holder farmers in Indonesia significantly contribute to national palm oil output, they do so
at comparably low land productivity, compared to large estates. On average, smallholders in
Indonesia fall short of nearly 40% of potential oil palm output (Indonesian Ministry of Agri-
culture, 2016; Woittiez et al., 2017; Jelsma et al., 2017; Euler et al., 2017) which highlights
the sizeable potential of performance improvements from a production perspective. Second,
the sector has been subject to heavy government intervention from its very beginning. Since
the 1970s, the government launched several development programs - often in conjunction
with international organizations - which aimed at promoting smallholder oil palm produc-
tion. The measures ranged from relocation support and easing of land access (trasmigrasi
program) to credit and fertilizer provision as well as extension services (Jelsma et al., 2017).

Considering that smallholders are likely to experience productivity boosts through tech-

17



Does technical efficiency promote or dampen oil palm area expansion in Indonesia?

nology and managerial performance, further deforestation could be at stake. Aside from
input demand, land markets are a key aspect for rebound effects to translate into accelerated
deforestation(Krishna et al., 2017b). With regards to land use policy, the Indonesian govern-
ment implemented several initiatives aimed at halting deforestation through expedited land
regulation. Most prominently, since 2011 a moratorium prohibiting primary forest ground
conversion is in place. Studies which evaluate the efficacy of the policy find mixed results.
While some authors have found remarkable reduction rates of deforestation associated with
the introduction of the moratorium (e.g. Busch et al., 2015; Chen et al., 2019), others find
relative inefficacy of the ban (e.g. Suwarno et al., 2018). Additionally, Miyamoto (2006)
and Krishna et al. (2014) find that weak property rights favour the direct appropriation of
forestland and furthermore the appropriation of larger estates of smallholder cultivation area.

Similarly, in spite of such regulatory efforts, Kubitza et al. (2018b) and Krishna et al.
(2017b) find that direct forest appropriation has been common regardless of such institutional
developments among smallholder farmers. More precisely - and relevant to our case study -
Krishna et al. (2017b) find that 18% of existing oil palm plantations were acquired through
direct forest land appropriation among smallholder producers in Jambi Province3. Moreover,
the authors find that in 2012, 9% of land expansion occurred at the direct expense of forest
grounds. At present, lowland forest land is limited and few opportunities to appropriate
forest land exist and direct forest land appropriation rates have plummeted. Nevertheless,
the smallholder experience in Jambi province during the past decade could be similar to
that of other parts of Indonesia, where oil palm cultivation started only recently (e.g. in
Kalimantan) or other regions in the world where agricultural commodity booms are closely
linked to ecological crises (Kubitza et al., 2018b).

2.3 Methods and Data

The methodology to measure the rebound effect of performance innovation of smallholder
oil palm producers is organized in two main stages. In the first stage, we estimate technical
efficiency scores of oil palm smallholders and employ a translog production function in a
hierarchical random intercepts model. In the second stage, we predict land expansion of
farmers based on past technical efficiency scores by means of an EIV model which accounts
for the measurement error in the estimated efficiency score introduced in stage one. Moreover,
in this section we present the data at hand and both empirical specifications.

3The sample of Krishna et al. (2017b) and Kubitza et al. (2018b) is also the basis for the analysis in this
study.
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2.3.1 Technical efficiency and production frontier

Since the seminal works of Aigner et al. (1977) and Meeusen and van Den Broeck (1977),
empirical production frontiers are widely used to model production processes of firms and
determine their technical efficiency. In essence, production functions aim at evaluating the
provision of outputs against the usage of inputs and determine how well individual units per-
form compared to each other. Critically, they allow to distinguish the production technology
from technical efficiency, which ultimately is a measure of managerial skill. We define the
latter as the ratio between an individually realized outcome and a best practice outcome.
From an output perspective technical technical efficiency designates the difference between
maximum attainable output and individually achieved, i.e.,

TEi = yi

y∗
i

, (2.1)

where yi and y∗
i designate output of firm i and the best practice scenario respectively.4.

However, aside from technical efficiency, output is conditional on a set of inputs and the
transformation process which, in contrast to technical efficiency, is not adjustable and in
the short term exogenous to the manager. The stochastic version of production function is
generally expressed as

ln(yi) = lnF (xi, β) − ui + vi, (2.2)

where xi are inputs used in the production process and β is a vector of technological pa-
rameters (Parmeter et al., 2014; O’Donnell, 2018). The error components ui and vi capture
inefficiency and statistical noise respectively. Estimating the production frontier parameter-
ically requires, (i) choosing an appropriate functional form for the production process F (x)
and suitable distributions for, (ii) the efficiency term and (iii) the random error term.

2.3.2 Random intercept frontier

The productivity and efficiency literature provides a variety of parametric and non-parametric
frontier models to determine both the production functions as well as efficiency scores of
decision making units (DMUs) fitting a vast set of data types. The problem of heterogeneous
technology, for instance, has been addressed using random coefficient models (Tsionas, 2002;
Skevas, 2019) and latent class models (Emvalomatis, 2012). By the same rationale, we can
express the production frontier as a random intercept model and allow for group specific
effects to vary in between groups as well as across (e.g. Gelman and Hill, 2006; Mehta and
Brümmer, 2020).

4One could also define efficiency from an an input perspective. In this case efficiency refers to the
difference between individually used inputs and minimum level of input use.
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yic = α0 + xic′β − uc + vic

yic = αc + xic′β + vic

vic ∼ N (0, σ2
v).

(2.3)

Where x and y are now logarithmized and the group intercept αc = α0 − uc and uc ≥ 0
is the one-sided inefficiency term. The technical efficiency can be retrieved following the
transformation proposed in Schmidt and Sickles (1984) where uc = max{αc} − αc and sub-
sequently TEc = exp(−uc). Equation 2.3 describes a convenient model for hierarchical data
structures where a production unit operates several production sites. Particularly, the speci-
fication accommodates small and heterogeneous group sizes, where the aggregation of which
would introduce severe bias, for instance resulting from rotating sampling schemes or missing
observations.

One of the drawbacks of the model is that in case of correlation between inputs and the
group level predictor, the estimator is biased as the Gauss-Markov assumption of indepen-
dence is violated. To overcome the problem, we make use of the modification proposed in
Bafumi and Gelman (2006) and allow for correlation between inputs and group effects by
introducing group level predictors5, such that

αc = γ0 + zc′γ + ϵc. (2.4)

Here zi are predictors at the group level. If no additional group characteristics are avail-
able, simple group means of the next level predictors (xic) could be employed to resolve the
correlation problem. Besides addressing the potential correlation between individual level
predictors and group effects, the group level predictors can also be interpreted as determi-
nants of (in)efficiency.

2.3.3 Land expansion model

After estimating the efficiency of smallholders in the first stage, we predict land expansion
using the efficiency estimates from stage one in the second stage. Particularly, we need to
overcome two challenges.

First, it is likely that both inputs and the intercepts reversely cause each other. In other
words, farmers which are efficient could expand their business and conversely, expanded farm-
ers could become more efficient. The literature has numerous approaches in store to address
endogeneity, including reverse causality, in frontier models. Notably Amsler et al. (2016),
Tran and Tsionas (2015) and Kutlu et al. (2019) propose instrumental variables, copula

5Note that this is similar to the Mundlak (1978) correction in panel models
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function and time-varying true individual effects combined with an additional decomposition
of the irregular error term respectively. However, such approaches impose questionable as-
sumptions of the distribution of potential endogeneity, the presence of proper instruments or
availability of a sufficient amount cross-sections.

A simpler yet straightforward to implement solution is to use time lags. Even though time
lags have been shown to avoid identification problems under certain circumstances, they are
still valid under two explicit assumptions (Bellemare et al., 2017; Reed, 2015). The first
assumption relates to no contemporaneous causality from efficiency and land expansion but
merely from efficiency at t − 1 to land expansion at t (Bellemare et al., 2017), which we
can confidently make given the time it takes to either establish new oil palm area or pur-
chase existing plantations. The second assumption is the absence of unobserved confounding
(Bellemare et al., 2017), which is a much harder one to make and - while to some extend
addressed by the addition of controls - needs to be taken into account when interpreting the
estimation results.

Thus, in line with these considerations, we specify the land expansion model

∆Act = wc,t−1′δ + τTEc,t−1 + ei, (2.5)

where δAi is land expansion in period t, or in other words the first difference of x1t. We
predict present land expansion using TE scores in t − 1 and other covariates gathered in w.
The error term ei is assumed to be normally distributed with mean zero and variance σe.

Second, while estimating Equation 2.5 by means of ordinary least squares (OLS) addresses
the reverse causality issue, the attenuation bias arising from the stochastically estimated
variable ui is not accounted for. However, we obtain TEc from αc which is modelled depending
on group specific covariates as well as a measurement error. Thus, Equation 2.5 can be
interpreted as an error in variance model (EIV) (e.g. Fuller, 2009) where land use expansion
is the observed dependent variable and ui the measured variable with known measurement
error ϵc and variance σϵ. Consequently, we can estimate Equation 2.5 as an EIV model, for
instance by means of total least squares (TLS) or M-Estimation relying on an updated design
matrix which is adjusted by ϵc (Stefanski and Boos, 2002; Fuller, 2009).

2.3.4 Data

Our case study relies on a farm survey conducted in Jambi province on Sumatra island, In-
donesia. More precisely, a multi-stage random sampling approach, stratifying on the regency,
district, and village levels which reflects geographical and regional differences. The survey
was conducted in 2012 for the first time and repeated in 2015 and 2018, resulting in a short
panel data set6. The data is hierarchical in that farmers own one or more plots. All plots

6A more detailed description of the data is available in Krishna et al. (2014) and Kubitza et al. (2018a)
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of a farmer have been sampled during the first round in 2012. In the subsequent waves only
one randomly selected plot per farmer has been recorded due to time and budget constraints.
Moreover, in addition to the unbalanced plot dimension, the panel structure is also unbal-
anced. We combine the first two waves for the first stage of the analysis which is depicted
in Table 2.1. In total, the dataset comprises 340 observations (plots) which belong to 211
groups (farmers). 205 of the observations were collected in 2012 and 125 in 2015. Hence, the
resulting data is an unbalanced multilevel data set with small groups. Additionally, we use
total land expansion from the 2018 wave in the second stage model.

Table 2.1 Descriptive statistics

Statistic Unit Mean St. Dev. Min Pctl(25) Pctl(75) Max
Production kg 27,789 33,571 38 8,825 36,000 240,000
Size ha 1.9 1.6 0.3 1.0 2.0 12.0
Labour man hours 3,101.5 6,650.2 9 1,224 2,953.8 100,500
Agrochemicals kg 709 1,073 0 13 1,041.2 12,050
Palm age years 12 7 2 7 18 30
Palm density No. trees 119 30 30 100 130 283
Yield kg ha−1 13,998 8,631 125 7,000 20,000 39,000
Age (manager) years 47 11 24 38 55 80
Education years 7 3 0 6 9 17
Houshold size No. people 5 2 1 4 6 11
Transmigrant binary 0.3 0.5 0 0 1 1

2.3.5 Empirical specification

We propose to estimate the first stage production frontier as a mixed linear estimator in a
multilevel model. We express the production of fresh fruit bunches of oil palm in kg (yict)
as a function of plot size in ha (x1ict), labour in man hours (x2ict), agrochemical application
in kg (x3ict), the age of the palms (x4ict) as well as the density of the palms (x5ict). Based
on conventional tests for nested models we choose the translog functional form which offers
more flexibility as opposed to Cobb-Douglas or quadratic production functions and thereby
estimate output as

yict = αc +
5∑
j

βjxjict + 1
2
∑

j

∑
k

βjkxjictxkict + ρt + vict. (2.6)

The group intercept is additionally modelled as in Equation 2.4 where the specific inde-
pendent variables (z1, ..., z4)′ are age of the farm manager in years, education of the farm
manager in years, gender, household size and transmigratory status. Moreover, we include
a time trend t to capture technical change between the two periods. All variables enter
the equation in mean scaled form such that we can interpret the coefficients as elasticities
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at the sample mean. We estimate model 2.6 by means of restricted maximum likelihood
(REML) and subsequently retrieve technical efficiency using the Schmidt and Sickles (1984)
transformation, namely

TEc = exp(−max{αc} − αc). (2.7)

Finally, we estimate the land expansion model in Equation 2.5 by means of total least
squares (TLS) (Fuller, 2009) accounting for the error in the technical efficiency variable and
retrieve the OLS estimator as a means of comparison.

2.4 Results

Our two-stage empirical empirical approach delivers several layers of results7. First, we
examine the parameter of the production frontier and assess the technology of smallholder
oil palm producers. Second, we evaluate the technical efficiency scores of the farmers and their
determinants. Third, we gauge the land expansion effect resulting from the land expansion
model of the second stage and calculate the rebound effect.

2.4.1 Production technology

Table 3.2 details the REML estimates of the first and second order terms as well as the group
predictors, which we can interpret as drivers of inefficiency within the random intercept
model. The second column lists the corresponding standard errors of the coefficients8. The
coefficients capture the effect of the individual variables on oil palm output. The parameters
associated with the first-order terms are significant in both models and have the expected
sign. Considering the plant-specific variables palm age and density, both exhibit first-order
positive and second order-negative coefficients and thereby empirically confirm the quadratic
relationships for both variables with output, which is often found in the plant-growth liter-
ature (e.g. Corley and Tinker, 2008). Although the time trend coefficient is negative, the
comparably large standard error leads to the presumption of no meaningful technical change
over the three year period, which is also reasonable in light of long lasting life cycles of oil
palm plantations. Notably, the model reveals a considerable effect of land size, while the
elasticity of agrochemical use is quite low, confirming the experimental findings of Darras
et al. (2019b). The effect of labour is not statistically significant while the direction as well
as magnitude are reasonable and finds support in the relevant literature on the low labour
intensity of oil palm production (Kubitza et al., 2018a).

7The econometric analysis is carried out in R (R Core Team, 2017). We estimate the random intercept
model using the lme4 package (Bates et al., 2015) and the EIV model using the eivtools package (Lockwood,
2018).

8A full list of parameter estimates is available Table A.1 in appendix A.1
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Another notable finding of the production function are increasing returns to scale of the
smallholder oil palm production sector. The sum of the size, labour and agrochemical use
coefficients amounts to a scale elasticity of 1.15. In other words, average farm size is smaller
than the equilibrium size where marginal returns to scale are constant. Increasing returns to
scale could manifest in strong incentives for managers to grow their business.

With regards to robustness and model choice, the intra-class correlation (ICC) is 0.85,
suggesting that random intercepts are useful in explaining overall variation. Also a likelihood
ratio (LR) test further supports the use of the LMM.

Table 2.2 First and second order terms and group predictors of the random intercept
estimator

LMM
Technology

β0 (Intercept) 0.16 (0.56)
β1 (Size) 0.90 (0.09)∗∗∗

β2 (Labour) 0.09 (0.05)
β3 (Agrochemicals) 0.16 (0.05)∗∗∗

β4 (Palm age) 0.21 (0.10)∗∗

β5 (Palm density) 0.21 (0.10)∗∗

β11 (Size2) 0.12 (0.12)
β33 (Agrochemicals2) 0.05 (0.02)∗∗

β22 (Labour2) −0.09 (0.05)∗

β44 (Palm age2) −0.95 (0.21)∗∗∗

β55 (Palm density2) −0.89 (0.47)∗

ρ(time) −0.09 (0.14)
Group predictors

γ1 (Age) 0.01 (0.02)
γ11 (Age2) −0.00 (0.00)
γ2 (Education) 0.01 (0.01)
γ3 (Household size) −0.08 (0.03)∗∗∗

γ4 (Transmigrant) 0.05 (0.13)
γ5 (Transmigrant village) −0.03 (0.12)
γ6 (Land title) −0.01 (0.17)

σαc 0.12
σepsilon 0.27
ICC 0.85
Mean TE 0.66
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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2.4.2 Technical efficiency

The distribution of technical efficiency scores is illustrated in Figure 2.2. The estimated
technical efficiency have a mean of 0.66, implying that palm oil output falls short of 44%, on
average. While generally technical efficiency is rather low, in combination with the production
function parameter estimates, which suggest relatively strong importance of land size as a
productive input, we additionally note further evidence for the apparent low land productivity
of smallholder farmers.

With regards to the potential drivers of inefficiency, we merely find household size to sig-
nificantly contribute to inefficiency in oil palm production (Table 3.2). All other coefficients
of the intercept model exhibit relatively large standard errors, including age, education trans-
migratory status as well as presence of a land title, failing to result in statistical significance.
Nevertheless, the signs are as expected. For instance farmers become more efficient with
increasing age until at some point, the slope is negative and additional age is associated in
increased inefficiency.

Figure 2.2 Distribution of technical efficiency scores of smallholder oil palm pro-
ducers
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2.4.3 Land expansion

The efficiency scores obtained from the first-stage estimation serve as an explanatory variable
in the land expansion model. We estimate the effect of lagged efficiency jointly with other
variables on the farm manager level on land expansion in percent by means of OLS and TLS
in an EIV model.

Table 2.3 lists the OLS estimates and associated standard errors es well as the EIV pa-
rameter estimates, where we additionally account for measurement error in the TE variable.
Before interpreting the coefficients, we note that with the exception of the error-prone vari-
able, the coefficients of the other covariates are of comparable dimension in both models.
Nevertheless, the OLS model exhibits substantially more uncertainty in the parameter es-
timates as well as a considerably smaller estimate of τ due to the attenuation bias. Both
the lower precision of estimates as well as the bias of error-prone variable is in line with
the relevant theory Nelson (1995) and highlights the importance of EIV estimation in case
variables are measured with error, as the OLS results can lead to fundamentally different
outcomes and hence, misguided coefficient interpretation.

Aside from these methodological considerations, both models suggest a considerable ef-
fect of past technical efficiency on farm area expansion and the measurement error model
additionally provides statistical confidence of that effect. A unit change in efficiency leads
to an area expansion of 65 percent, on average. Needless to mention, as 0 ≤ TEc ≤ 1 real
unit changes hardly occur and efficiency changes are of the order of decimal changes. Addi-
tionally, we find transmigrant households to be less likely to expand their production which
confirms Kubitza et al. (2018b), who find that transmigrants often intensify their production
and refrain from seeking ways to expand their plantation and is also in line with the finding
that autochthonous farm households are much more involved in deforestation than migrants
of Krishna et al. (2017b).

Table 2.3 Land expansion models

OLS EIV

δ0(Intercept) −1.41 (0.75)∗ −1.48 (0.87)∗

δ1 (Age) 0.02 (0.01)∗∗ 0.02 (0.01)
δ2 (Gender) 0.63 (0.53) 0.63 (0.45)
δ3 (Education) 0.01 (0.03) 0.01 (0.02)
δ4 (HHSize) 0.00 (0.06) −0.00 (0.03)
δ5 (Transmigrant) −0.42 (0.21)∗∗ −0.42 (0.21)∗

δ6 (Zero-expansion dummy) 1.28 (0.19)∗∗∗ 1.28 (0.27)∗∗∗

τ (Technical efficiency) 0.55 (0.66) 0.65 (0.39)∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Altogether, the main findings of the two-stage approach are that (i) the output of small-
holder oil palm producers is overwhelmingly area driven. Other inputs such as labour and
agrochemical application play minor roles for the provision of palm oil. (ii) Smallholders
generally operate farms which are too small. Increasing returns to scale suggests presence
of strong expansion incentives regarding profitability. (iii) The sector exhibits, on average,
relatively low mean, and furthermore heterogeneous levels of technical efficiency. This implies
ample room to increase output without additional use of inputs. (iv) Past technical efficiency
is a good predictor of land expansion in the current period and improvements thereof are
likely to result in increasing demand for land expansion.

2.5 Land sparing vs. land expansion and policy impli-
cations

As returns to scale are increasing, technical efficiency levels low and at the same time act as
drivers of land expansion, the effects of policy aiming at improvements in farm management
could have sizable (detrimental) impacts on deforestation in the Jambi case. In this section
we simulate the potential aggregate outcome of increasing smallholder technical efficiency and
compare it to potential land savings the sector could provide in an effort to better understand
the adverse effects of agricultural development policy.

First, we determine the overall potential of land saving resulting from improvements in
technical efficiency only. In other words, we ask how much less land would farmers require
to produce the given level of output? One way of disentangling the technologically feasible
minimum land input from our production frontier is to follow Reinhard et al. (1999) and
derive a single-input efficiency measure by equating the a hypothetical minimum input use
frontier with the output oriented production frontier. Reinhard et al. (1999) define input
(environmental) efficiency as the ratio of minimum level of input use and observed input
output, which is a convenient measure of land efficiency for our case at hand. Hence, we
apply their √ formula to our production function9

LEict =

[
−
(

β1 +∑4
j β1jxictj + β11x1ict

)
±
{(

β1 +∑4
j β1jxictj + β11x1ict

)2
− 2β11uict

}.5]
β11

.

(2.8)
The resulting measure can be interpreted as the minimum amount of land required to

provide the given level of output, holding all other parts of the technology constant. Applied
to our data at hand, a hypothetical elimination of land inefficiency results in the sparing of
360 ha. Put in perspective, this is more than half of the area under cultivation of the whole

9A detailed derivation of this measure is provided in appendix A.2
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sample. Yet, the large land inefficiency of smallholder oil palm farmers is not surprising in
light of the inherent yield gap compared to larger estates. The finding merely confirms the
ubiquitously recognized circumstance that smallholder oil palm farmers fall remarkably short
of potential production on ecologically valuable land.

Second, we turn to quantifying the land expansion potential as the aggregated effect
from increased technical efficiency on land expansion. Just as in the land sparing case,
we conversely simulate a hypothetical elimination of technical inefficiency and calculate the
resulting additional area demand of the smallholders. Relying on the estimated coefficient
form the second-stage expansion model, we calculate an expansion demand of 139 ha. In
perspective, this represents 22% of the currently cultivated palm oil area of the sampled
farmers.

Comparing both land sparing and land expansion potentials, we calculate a rebound effect
of 0.39, implying that more than one third of potentially spared land input could be offset by
increased land demand. In other words, each ha of land which is saved from efficiency gains
actually translates into 0.61 ha only. In sum, we find a substantial drag of efficiency induced
land sparing.

However, the hitherto found effects should be interpreted cautiously. First, the land
saving potential derives from a scenario in which other production factors are disregarded
and, hence, constitutes a maximum solution which is likely to be different under consideration
of inevitable by-effects from other inputs. Second, so far, we do not account for non-linear
expansion effects. The reason here is that we cannot adequately correct, for instance, a
squared effect of a error-prone variable having at disposal only errors of the linear variable.
In contrast, Marchand (2012) find concave effects of technical efficiency in soy bean on land
expansion in the Brazilian amazon, however, without correcting for measurement errors.
Third, our results should be seen in view of area demand. Between increased land input
demand and deforestation, or other means of land appropriation, stands the land market and
its institutions.

Hence, with regards to policy our results have two main implications. (i) The yield gap
between smallholder producers and large estates is characterized by substantial inefficiency,
also with regards to land use. Therefore, outreach and extension programs which target
managerial skill could be promising avenues to increase smallholder productivity which, in
turn, is likely to show positive impacts on livelihoods. (ii) We join Kubitza et al. (2018b) and
Gawith and Hodge (2019) in advocating that such policies must be accompanied by measures
to control resulting increased input demand in order to mitigate short-term deforestation,
which has ecologically long lasting impacts. Particularly, regulation of land markets and their
proper enforcement are inevitable means of halting LUCs.
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2.6 Summary and conclusion

While deforestation remains a major local and global concern, commodity booms continue to
provide powerful opportunities for rural development and livelihoods. Oil palm production
on Sumatra, Indonesia, is a point in case where nearly half of ecologically invaluable forest
land has made way for more than 7 million ha of oil palm plantation. One solution to
the problem is shifting the oil palm advancement from area expansion to intensification of
existing cultivation by means of technological innovation and improvements of production
management. However, in light of the elastic demand for palm oil, such measures could in
turn accelerate land demand and further fuel deforestation, at least in the short term.

As smallholders cultivate nearly half of Indonesia’s oil palm area and provide nearly
34% of aggregate output, and in addition often subject to informal land regulation, they
are key for both halting deforestation as well as continued rural development. While the
adverse effects of technological innovation within the land sparing vs. land expansion debate
are well researched, the equivalent mechanism for technical efficiency remains empirically
opaque. This paper aimed at at placing smallholder oil palm technical efficiency in context
of the land sparing vs. land expansion controversy. Our empirical approach contains two
stages. First, relying on a random intercept model, we estimate the production frontier of
smallholder oil palm producers in Indonesia in a translog specification and determine their
technical efficiency. Based on the estimated technology parameters, land specific efficiency
can be calculated and we determine the land an overall savings potential. Second, we regress
area expansion on past efficiency scores by means of an EIV model to reveal by how much
farmers are driven to expand with regards to their own efficiency of production.

Our main results are threefold. First, we find that smallholders are considerably techni-
cal and land inefficient. Additionally, land is by far the most decisive factor of production.
Therefore, remarkable opportunities for optimizing the sector persist, including sizable sav-
ings potentials. Second, we find that past efficiency is correlated with future land expansion.
Improvements of managerial skill are likely to into rising demand for land expansion -and in
absence of proper land markets and enforcement- to further deforestation. The problem is
amplified by overall increasing returns to scale. Third, consolidating the first two results, we
find that productivity gains achieved through gains in technical efficiency -for instance by
means of extension and outreach- are are partially offset by one third due to rebound effects.

Consequently, scrutinizing the opportunities of closing the smallholder yield gap are con-
venient means to promote rural development. However, policy-makers should be aware of
partial rebound effects that increasing efficiency is only a partially effective measure to com-
bat deforestation. Successful rural development policy, which is also conservationist, flanks
the problem through both capacity building in conjunction with implementation of thorough
land use policy.

29



Does technical efficiency promote or dampen oil palm area expansion in Indonesia?

In general, we suspect that managerial skill in agriculture is a critical junction within the
land sparing-land expansion debate. Yet, the policy importance of managerial skill, being the
focus of many extension and outreach programs in both developing and developed countries,
is not matched by empirical evidence regarding their potential rebound effects particularly
in settings in which environmental outcomes are envisaged. Particularly in case demand
elasticity conditions are different, much more (less) pronounced rebound effects are likely.
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Chapter Three
On the palm oil - biodiversity
trade-off: Environmental performance
of smallholder producers1

Oil palm remains an important source of rural income in South East Asia. At the same time,
Indonesia has become a hotspot for large-scale species extinction and a loss of biodiversity in
favour of agricultural production. The present study sets out to assess the environmental per-
formance of smallholder oil palm production with respect to biodiversity. Using a panel dataset
that combines conventional farm data together with an account of plant diversity, we estimate
a restricted hyperbolic environmental distance function. We integrate loss of biodiversity as
an undesirable output into the production model which allows explaining shortfalls in envi-
ronmental performance and the derivation of shadow prices of biodiversity conservation. We
find a substantial environmental inefficiency, which is partly explained by both chemical and
manual weeding practices, highlighting the potential for improvements in both the environ-
mental and the economic dimension. Moreover, the value for conserving one species of the
average biodiversity on a farmers plantation was 340 USD in 2018. Payments for ecosystem
services schemes could be a viable policy response to conserve meaningful levels of biodiversity
while simultaneously allowing smallholders to increase palm oil output. In general, address-
ing drivers of environmental performance in PES designs amplifies its effect without reducing
production levels.

Keywords: Palm oil, Biodiversity, Environmental performance, Shadow price, Hyperbolic
distance function

1This chapter is under review at Journal of Environmental Economics and Management and co-authored
by Fabian Brambach (FB), Mirawati Yanita (MY), Holger Kreft (HK) and Bernhard Brümmer (BB). Bern-
hard Dalheimer (BD) and BB conceptualized the research idea. BD and BB developed the theoretical
framework. BD managed and collected the data with support from FB and MY. BD compiled the biodi-
versity indicators under guidance of FB and HK. BD developed the empirical strategy and implemented the
econometric modelling. BD and BB interpreted the results. BD wrote the paper with contributions from FB
(biodiversity sections). All authors edited the manuscript.
Acknowledgement: This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) – project number 192626868 – in the framework of the collaborative German-Indonesian
research project CRC990. The authors are grateful for valuable comments from Sebastian Lakner who dis-
cussed an earlier version of the paper at a doctoral seminar presentation in Göttingen. The authors also
thank Oliver-Ken Haase for feedback on an earlier draft.
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3.1 Introduction

Agriculture is strongly intertwined with the environment and therefore key to the provision
and decay of ecosystem services. Biodiversity is a critical link between the two as numerous
ecosystem functions rely on the diversity of organisms. For instance, the provision of food,
water, medicine, fuels and fiber and air quality are vital ecosystem services that are heavily
dependent on intact biodiversity (TEEB, 2012; Hooper et al., 2012). On the other hand,
many forms of agricultural production and the related land use change (LUC) have been
shown to critically reduce local species diversity (Grass et al., 2020; Clough et al., 2016).
Both expansion and intensification of agricultural production are increasingly threatening
biodiversity and species existence, which have been declining dramatically around the world
(IPBES, 2019; Chaplin-Kramer et al., 2015).

Indonesia has become a hotspot for large-scale species extinction and a loss of biodiversity
in favor of agricultural production. At the expense of several ecological crises, the palm oil
boom contributes to rising exports and poverty reduction. Increases in income and consump-
tion have been linked to palm oil production (Kubitza et al., 2018a; Qaim et al., 2020), and
have been shown to contribute to the remarkably declining rates of poverty and undernour-
ishment in the country (FAOSTAT, 2020). Nonetheless, remedying the trade-offs between
economic and environmental objectives is becoming an increasingly important item on both
national and intergovernmental policy agendas. More precisely, policy-makers are interested
in steering production towards maximized oil palm output over minimized biodiversity loss
(IFPRI, 2019; IPBES, 2019). However, only a few policy programs have been implemented in
the region to date and even fewer have been successful (Hein, 2019). One obstacle to policy
action on a meaningful scale could be the lack of valuation of biodiversity within the palm
oil production system and vice versa.

This paper aims to assess the environmental performance of smallholder oil palm produc-
ers in Indonesia during the past decade. Smallholder producers are particularly interesting
as they contribute to 34% of national palm oil production (Indonesian Ministry of Agricul-
ture, 2016). In addition, given the relatively low yields of smallholders compared with large
estates, the share of the area that they manage is even larger (Euler et al., 2017; Byerlee and
Viswanathan, 2018). On the biodiversity side, smallholders provide exceptional opportunities
for conservation as their mosaic-type spatial arrangements allow for a highly diverse land-
scape matrix. (Sayer et al., 2012). Consequently, the negative impacts on biodiversity related
to production area are considerable (Grass et al., 2020). If possibilities for mitigating such
negative, area-related effects exist, they would hold particular relevance for the smallholder
sector. A critical prerequisite for identifying such an option is to gain a better understanding
of the trade-off between the environmental effects and economic benefits of palm oil produc-
tion. In other words, is there potential to improve environmental outcomes without having to
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give up economic benefits for at least some smallholders, or is there an inevitable trade-off in
terms of the economic benefit forgone for one additional unit of environmental benefit? Thus,
the joint analysis of desirable and undesirable outcomes of the production process enables
not only conservation potentials but also detecting win-win scenarios in which production
could be increased without an additional loss of biodiversity, or vice versa.

Our work offers several contributions to the existing literature. First, instead of limiting
the analysis exclusively to either ecological aspects of the decay of ecosystem services (e.g.
Koh and Wilcove, 2008; Savilaakso et al., 2014; Fitzherbert et al., 2008; Vijay et al., 2016;
Darras et al., 2019a) or its socioeconomics (e.g. Klasen et al., 2016; Lanz et al., 2018; Sibhatu,
2019; Cacho et al., 2014), we choose an interdisciplinary approach to empirically identify the
underlying mechanisms of the trade-off between the two. Second, in contrast to previous work
focusing on macro-relationships between biodiversity and palm oil production (e.g. Chaplin-
Kramer et al., 2015; Bateman et al., 2015), we base our analysis on microeconomic data to
assess the impacts of managerial skill on the trade-off. Third, we analyze the behavior of
smallholder producers of palm oil. The environmental costs of palm oil production are com-
parably well documented for large estates, whereas little is known about the environmental
performance of smallholder oil palm producers (Savilaakso et al., 2014; Robbins et al., 2015).
Fourth, we contribute to the debate on the payments for ecosystem services (PES) policy
debate and highlight the advantages and challenges related to differently-designed incentive
schemes.

We develop a hybrid between hyperbolic and enhanced hyperbolic distance functions
(Cuesta et al., 2009) to model the production process of smallholder oil palm farmers in
Sumatra, Indonesia, including biodiversity loss as an undesirable environmental output. We
use a comprehensive data set on oil palm output, plant biodiversity, conventional produc-
tion inputs, management practices as well as socioeconomic variables of smallholder oil palm
producers to describe the trade-off between oil palm output and biodiversity loss and its un-
derlying mechanisms. Furthermore, the duality of the approach allows us to derive shadow
prices and gain insights into the opportunity cost of biodiversity conservation in this produc-
tion system.

Our results indicate that smallholder oil palm production suffers from environmentally
inefficient production. This implies that either substantially higher output could be achieved
or - conversely - a higher local plant diversity could be maintained at the present level of
input use by eliminating the environmental inefficiency of production. Similarly, overuse
in input results in inefficient outcomes in terms of both desirable and undesirable outputs.
Furthermore, environmental performance is linked to both manual and chemical weeding
practices, as well as the migratory status of the farmer. We calculate the average abatement
cost for farmers of raising average biodiversity on their plantation by one more species at 340
USD per year. Finally, simulating several PES scenarios highlights promising policy options
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to reduce the loss of biodiversity while simultaneously increasing smallholder output levels.
The remainder of this paper proceeds as follows. Section 3.2 sets the stage by providing

some background on the palm oil boom and problems as well as the study site. Section
3.3 introduces the theory and application of environmental performance measurement based
on distance functions and the intuition of biodiversity measurement as well as presenting
the data. Section 3.4 details the results from the analysis and places them in context of
the relevant literature. In section 3.5, we simulate several incentive-based policy schemes.
Finally section 3.6 summarizes and concludes the paper.

3.2 Palm oil: Boom and crisis in South East Asia

In 2018, global palm oil production exceeded 70 million ton per year, making it the most
important vegetable oil in terms of quantity as well as the tenth largest agricultural crop
worldwide. Remarkably, back in 1980 global production levels were only at about 5 million
ton and palm oil held only minor relevance in international oil and commodity markets
(FAOSTAT, 2020). Being relatively more productive in terms of area and labor, it has
emerged as a particularly competitive crop in some agricultural systems around the world.
Although the oil palm originates in Africa, the massive expansion of palm oil mainly occurred
in tropical Asia and more precisely in Indonesia and Malaysia, which together supply more
than 87% of global palm oil. During the times of exponential growth in oil palm output, a
variety of development indicators also sharply improved in the respective areas. For instance,
the prevalence of undernourishment in Indonesia more than halved from 18.5% in 2000 to
8.3% in 2017. The poverty headcount ratio of people living off less than 1.90$ per day
declined from more than 70% in the early-1980s to 6% in 2017 (World Bank, 2020). While
the economic development in Indonesia is certainly tied to a multivariate set of drivers,
agricultural advancement and oil palm production are a significant part of this equation.
Indeed, a number of studies relate increased national palm oil income to improved rural
livelihoods, rural poverty and economic development in general (e.g., Sayer et al., 2012;
McCarthy et al., 2012; Kubitza et al., 2018a).

Smallholder producers are also part of the economic success of palm oil, and as of 2016
they provide 34% of palm oil output in Indonesia (Indonesian Ministry of Agriculture, 2016).
Besides establishing large governmental plantations, the government proactively promoted
smallholder participation in the value chain launching several programs starting in the 1980s.
One prominent example is the trasmigrasi program which supported the relocation of some 1.7
million family farmers from the densely populated islands of Java and Bali to less-populated
parts of Indonesia, including Sumatra, to cultivate - among other crops - oil palm. The
extraordinary large contribution of smallholders is also part of the reason why the economic
benefits of oil palm production became manifested in improvements in rural livelihoods.
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However, in the more recent past, smallholder participation has been declining and small-
holders are increasingly marginalized within the palm oil supply chain in Indonesia. From an
environmental perspective, smallholder producers are still associated with direct forest land
appropriation (Krishna et al., 2017b; Kubitza et al., 2018b), and notoriously low yields, which
imply less efficient environmental performance, at least regarding land input. Additionally,
questionable land rights policy places further pressure on smallholder producers in Indonesia
(McCarthy et al., 2012; Kubitza et al., 2018b; Rist et al., 2010b).

Against the background of massive growth of oil palm output and area expansion, the
accelerated rates of LUC have led to several ecological crises. Koh and Wilcove (2008) suggest
that in Malaysia and Indonesia more than 50% of the palm oil area was formerly forested
land, including rain forests with exceptionally high levels of species diversity and endemism.
Oil palm plantations harbour much lower levels of biodiversity than forests and dramatically
alter species composition across taxonomic groups (Fitzherbert et al., 2008; Grass et al.,
2020). At current rates of deforestation, Sodhi et al. (2004) predicts that 42% of biodiversity
in tropical Southeast Asia could be lost by the end of the century. Similarly, tropical forests
play a role in serving as the terrestrial carbon sink, storing 428 Gt of carbon. LUC has led to
fundamental changes in the balance and according to the IPCC (2000), LUC in the tropics
is the world’s second largest green house gas (GHG) emitter, with estimates ranging from
12-20% of global GHG emissions. Finally, other environmental problems such as wildfire
hazes bearing substantial human health threats, severe soil degradation and pressured water
imbalances as well as quality have been associated with the expansion of oil palm in South
East Asia.

Jambi province on Sumatra Island is a point in case for both the economic palm oil boom
as much as the ecological crises development. Oil palm plantations were first introduced
by large governmental estates and subsequently also adopted by smallholders during 1980s
and 1990s. Smallholder adoption was particularly promoted by the government by means
of contract schemes (Gatto et al., 2017) and the trasmigrasi program in the past, although
today it usually occurs independently. Between 1990 and 2018, oil palm production and
plantation area increased more than tenfold from 45,000 ha to 506,000 ha and 107,000 ton to
1,142,000 ton of oil palm fruit, respectively. As of 2018, more than 200,000 households are
dependent on palm oil production in Jambi province (Kubitza et al., 2018a).

On the environmental side, Jambi has been experiencing severe degradation during the
recent decades. For instance, over 80% of GHG emissions in Jambi result from LUC, defor-
estation as well as forest and peat land degradation. At the peak of the palm oil boom, an
average annual forest loss of 76,522 ha was measured between 2006 and 2009 (Hein, 2019),
leading to a severe reduction of biodiversity (Rembold et al., 2017) and threatening the
survival of plant and animal species (Linkie et al., 2003; IUCN, 2015).

Besides being exemplary for the oil palm boom in the face of several ecological crises,
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Jambi province is also a meaningful region to study the trade-off between desired and un-
desired outputs in the light of a long-standing tradition of incentive-based policy programs,
in particular regarding biodiversity loss mitigation. Already in 2002 the Rewarding Up-
land Poor for Environmental Services (RUPES) by the World Agroforestry Centre (ICRAF)
aimed to pinpoint key monetary benchmarks to develop incentive-based pro-poor PES in
Jambi (Villamor and van Noordwijk, 2011). Since 2010, Jambi is one of Indonesia’s National
Council on Climate Change (DNPI) model provinces for REDD and green growth. However,
environmental policy programs and particularly PES in Jambi have been short lived thus
far (Hein, 2019). One crucial reason is certainly the cumbersome economic valuation of the
complex dovetail of palm oil production systems - composed of smallholders and large estates
- and the manifold ecosystem services in Jambi province. Policy suffers from a lack of value
assessment of local ecosystem services to design fruitful incentive schemes. One particularly
relevant case is the trade-off between palm oil production and biodiversity.

3.3 Modeling the oil palm-biodiversity trade-off

In order to quantify the trade-off between the production of fresh fruit bunches for palm
oil and the associated loss of biodiversity, we need (i) an adequate measure of biodiversity,
and (ii) a suitable economic model that can subsequently be parameterized with the data at
hand. Regarding the latter, we propose a directional distance function in a duality frame-
work considering one desirable output, one undesirable output as well as regular inputs of
production. However, the former warrants some more attention as biodiversity is a relatively
broad term. Accordingly, in order to quantify a particular environmental-economic relation-
ship, we need to establish comprehensible concepts for both. In this section, we focus on the
derivation of the hyperbolic distance function approach to investigate the interdependence
between environmental degradation and economic output, while our measure of choice for
biodiversity is described in a dedicated part of the data section. Finally, we outline our data
at hand and the empirical specification.

3.3.1 Hyperbolic distance functions

Microeconomic production theory provides various ways of measuring firm performance,
starting by evaluating the production of output from usage of inputs building up on the
seminal works of Aigner et al. (1977) and Meeusen and van Den Broeck (1977). Produc-
tion functions help to assess the overall performance and efficiency of firms relying on either
stochastic or deterministic techniques. Expanding the framework to settings in which firms
produce multiple outputs, output distance and input distance functions have been introduced
by Shephard (1970). Subsequently, output distance functions have become the workhorse for
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Figure 3.1 Hyperbolic efficiency and directional distances

evaluating multiple desirable output scenarios (Chambers et al., 1998; Brümmer et al., 2002,
2006), as well as the trade-off between desirable and undesirable outputs (e.g. Coggins and
Swinton, 1996; Chung et al., 1997; Färe et al., 2007; Hoang and Coelli, 2011; Huang et al.,
2016; Dakpo et al., 2016; Tothmihaly et al., 2019).

More recently, Cuesta and Zofío (2005) have developed parametric and non-parametric
estimation approaches for the hyperbolic distance model in a multiple output setting. Cuesta
et al. (2009) extend the model to accommodate desirable and undesirable outputs and con-
sequently the expansion of one output and contemporaneous contraction of another. This
method has been used to address various environmental performance problems of produc-
tion processes (Skevas et al., 2018; Mamardashvili et al., 2016; Adenuga et al., 2019). One
of the advantages of the hyperbolic distance function - as opposed to directional distance
functions - is that the movement of inefficient units towards the frontier is not driven by
an arbitrarily-chosen directional vector; instead, it follows a hyperbolic trajectory based on
equiproportionate increases in desirable outputs and decreases in undesirable outputs as well
as inputs. Therefore, no preference towards either increases in desirable output or decreases
in undesirable output or any distinct weights is required to estimate the efficiency of the unit.
Figure 3.1 presents an illustrative example of the hyperbolic efficiency adapted from Skevas
et al. (2018). Let us assume that a unit produces at point A and therefore is inefficient since
it falls short of the frontier. A directional distance measure directs the farmer on either AC,
AB or any linear vector in between the two. The hyperbolic measure eliminates inefficiency
taking the unit to point D.

In essence, hyperbolic distance functions model the entire production process, including
potential trade-offs among inputs, between inputs and outputs as well as among outputs.
Extending this framework to the presence of environmental outputs also enables model-
ing negative externalities of production, which have been labeled as environmental distance
functions. Assuming that a firm produces a set of desirable outputs y = (y1, y2, ..., yn) and
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b = (b1, b2, ..., bn) undesirable outputs using inputs x = (x1, x2, ..., xn), the value of the dis-
tance function is equal to the maximum possible proportional expansion in desirable outputs
y and the proportional reduction of the undesirable outputs b that is simultaneously feasi-
ble, at the given input level. The frontier spanned by the observations for which no further
expansion (reduction) is feasible constitutes an implicit function of the trade-off between
economic output and the undesirable environmental output. Following Cuesta et al. (2009)
we define the hyperbolic distance function as

DH(x, y, b) = min
{

θ :
(

x,
y
θ

, bθ
)

∈ P (x)
}

, (3.1)

where P (x) represents the production possibility set, i.e., the feasible quantities of y and
b that can be produced from the available input vector x.

For DH(x, y, b) = 1, the farmer is fully efficient in the sense that no reduction of undesir-
able output or an increase of desirable output is possible at the given level of inputs, which
also renders the distance value as a measure of environmentally-adjusted technical efficiency.
In contrast to conventional measures of technical efficiency, the hyperbolic efficiency measure
takes into account the negative environmental outputs of the production process and conse-
quently it may be considered as a measure of environmental performance of the producing
unit.

Further, in order to also allow for adjustments in input use, the enhanced hyperbolic
distance function additionally accommodates potential reductions of inputs, and therefore it
provides an even more flexible framework:

DE(x, y, b) = min
{

θ :
(

xθ,
y
θ

, bθ
)

∈ T
}

, (3.2)

where T represents the technology set of all combinations of y, b, and x that are techno-
logically feasible.

The hyperbolic distance function has properties of (i) almost homogeneity2, and (ii) mono-
tonicity, in particular non-decreasing in desirable outputs3, and non-increasing in undesirable
outputs4, and non-increasing in inputs5 (Cuesta et al., 2009). The enhanced hyperbolic dis-
tance function also allows a simultaneous contraction of inputs in addition to the asymmetric
behavior of desirable and undesirable outputs, such that the almost homogeneous property
is also extended to the inputs6. Additionally, both functions exhibit (iii) concavity: more
precisely they are quasi-concave in desirable outputs for all undesirable outputs and inputs.
In the enhanced hyperbolic case, this also applies for inputs, while the hyperbolic distance

2DH(x, µy, µ−1b) = µDH(x, y, b), for µ > 0
3DH(x, λy, x) ≤ DH(x, y, b), λ ∈ [0, 1]
4DH(x, y, λb) ≤ DH(x, y, b), λ ≥ 1
5DH(λx, y, b) ≤ DH(x, y, b), λ ≥ 1
6DH(µ−1x, µy, µ−1b) = µDH(x, y, b) for µ > 0
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function is concave in inputs for all desired and undesired outputs.
However, the framework of the hyperbolic - and its more flexible version, the enhanced

hyperbolic distance - function either do not allow for input contraction or they do so for
all inputs. In smallholder production systems, only some of the inputs are flexible while
others are not adjusted swiftly such that both hyperbolic and enhanced hyperbolic distance
are too restrictive. To overcome this problem, we propose a hybrid of both functions in
which fixed inputs are distinguished from flexible inputs. Practically, this implies multiplying
only flexible inputs by θ and not others. Thus, our restricted enhanced hyperbolic distance
function becomes

DR(x̄, x, y, b) = min
{

θ :
(

x̄, xθ,
y
θ

, bθ
)

∈ T
}

, (3.3)

where x̄ now designates inputs that are fixed in the short term and x inputs that are
variable. Based on the almost homogeneity property, we obtain an estimable form of the
function by setting θ = 1

ym
, which is the inverse of the mth output. ym is the normalizing

output of the distance function7, which subsequently can be expressed as

DR(x̄i, bixi,
yi

y m

, biym) = 1
ym

DR(x̄i, xi, yi, bi), (3.4)

and in logarithmized form

lnDR(x̄i, xi, yi, bi) = lnDR(x̄i, bixi,
yi

ym

, biym) + lnym. (3.5)

Assigning that ui is the the logarithmized distance function value, we can take equation
3.5 into the form of a stochastic production frontier by isolating ym and adding the error
term vi to capture statistical noise:

− lnym = lnDR(x̄i, xi,
yi

ym

, biym) − ui + vi, (3.6)

which we can estimate by means of maximum likelihood (ML). The procedure is equivalent
to obtaining estimable forms of the regular hyperbolic and the enhanced hyperbolic distance
function (equations 3.1 and 3.2).

3.3.2 Shadow price

The duality of the distance function allows deriving shadow prices, i.e., expressing one output,
either desirable or undesirable, in units of another output. If price data for the base output
are available, shadow prices are widely used to assign a price to unit changes in outputs,
which are difficult to quantify endogenously. Shadow prices are a means to understand the

7Note that θ can also be set equal to any of the undesirable outputs, see e.g. Huang et al. (2016)
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cost at which a producer can contract a unit of undesirable output (Färe et al., 2002; Cuesta
et al., 2009; Mamardashvili et al., 2016; Adenuga et al., 2019) and thereby they represent a
measure of abatement costs. Assuming that a smallholder farmer aims to maximize profits,
she faces the following problem:

Π(x, py, pb) = max
y,b

{
pg

pb

: DR(x̄, x, y, b) ≤ 1
}

. (3.7)

The corresponding first order conditions for the desirable and the undesirable output are:

pg

pb

= λ(∂DR

∂y
)y = λ(∂lnDR

∂lny
)DH (3.8)

and

pg

pb

= λ(∂DR

∂y
)b = −λ(∂lnDR

∂lnb
)DR (3.9)

respectively. Hence, the price ratio is:

−
∂DH

∂b
∂DH

∂ym

pm = pm
dym

db
, (3.10)

which we can solve for the unknown price of the undesirable output. Note that the shadow
price formulation always refers to performance at the frontier, which implies no inefficiency
in production (DR = 1).

3.3.3 Measuring biodiversity

Having established a suitable economic model to quantify the trade-off between conventional
outputs under consideration of conventional inputs, we require an equally suitable measure of
biodiversity. In the context of this study, biodiversity refers to species diversity. While there
are often taxon-specific responses to LUC, plants have been shown to be reliable proxies of
overall species diversity in our study region (Clough et al., 2016). Therefore, we focus on
plants exclusively because they are ecologically highly relevant as well as relatively easy to
record. Plants provide both habitat and energy (e.g. in the form of food) for other organisms
like animals and fungi, and they can thus be considered as the foundation of terrestrial
biological communities. Consequently, plant diversity is closely coupled with that of various
animal groups, thus making it a proper proxy for overall diversity (e.g. Barnes et al., 2017;
Potapov et al., 2019).

In addition, diversity is highly scale-dependent (Chase et al., 2018) and distinguished
into (i), α-diversity, the diversity at a given site with presumed homogeneous environmental
conditions; (ii) γ-diversity, the diversity of a region; and (iii) β-diversity, which describes the
differences in species composition between sites in a region (Jost, 2007). To relate biodiver-
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sity to farmers’ management practices, focusing on the α-diversity at the plantation level
is the most adequate spatial scale, since management practices presumably vary between
farmers. As recording all plant species and individuals of a plantation is eminently time-
consuming, sampling plots of appropriate sizes is preferable under the assumption that they
are representative of the whole plantation (Newbold et al., 2015).

Besides the matters of organism groups and scale considerations, choosing an appropriate
measure is a further critical pillar of reliably quantifying biodiversity. One widely-used mea-
sure of α diversity is species richness (SR) which constitutes the mere count of species. A
notorious problem of SR is that it assigns equal weight to all species regardless of their abun-
dance in the community. By ignoring relative abundance, the measure weighs rare species
disproportionately heavier. In order to correct for the bias towards presence and against
abundance, the measure of the effective number of species (ENS) is commonly employed.
The ENS states the number of species in a hypothetical community with all species being
equally abundant and the same Shannon entropy8 as a given sample and thus it favours
neither rare nor common species (Jost, 2007; Chao et al., 2014). More precisely, the ENS

is the exponential of Shannon entropy, i.e. ENS = exp(−∑(ln pi × pi)), with ln pi × pi = 0
for pi = 0, given the relative abundance p of a species i. Both SR and ENS can be con-
sidered versions of Hill-numbers (Hill, 1973) or measures of diversity of different orders q.
Such diversity of order zero (q = 0, SR) is insensitive to species frequencies, that of order
one (q = 1, ENS) weighs rare and common species equally and higher-order measures of
diversity (q > 1, e.g. Simpson diversity) are biased towards common species (Jost, 2007).

Generally, the lower the order of diversity, the more sensitive to undersampling are mea-
sures such that the real SR is difficult to assess with a reasonable amount of time and
resources. Especially in diverse ecosystems like tropical forests, many species are extremely
rare (Magurran and Henderson, 2003) and therefore they are likely to be missed in a given
sampling plot. Consequently, the observed number of species in a plot will be a biased under-
estimate and highly sensitive to the number of individuals surveyed. Higher-order diversity
measures, like Simpson diversity (q = 2) are more robust to undersampling because they
mostly rely on common species. Their downside is the lower sensitivity to differences in
diversity between samples (Figure B.1 in appendix B.1). ENS provides a good compro-
mise between susceptibility to undersampling and sensitivity to differences between samples.
Techniques of rarefaction and extrapolation that produce species accumulation curves serve
to standardize measures of diversity by estimating them for a given number of individuals,
which is a prerequisite for comparing the diversity of two or more communities (Chao et al.,
2014).

8The Shannon entropy is a widely used diversity index that considers the relative abundances of all
species.
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3.3.4 Data

Just as much as the methods employed in this study, the data also cover two main com-
ponents. The first part emerges from a representative extensive socioeconomic farm survey
conducted in 2012 for the first time and repeated in 2015 and 2018. The panel covers all
conventional input and output data required to accurately model palm oil production as well
as socioeconomic variables that may help to explain managerial performance. The dataset
has been applied in other empirical works (e.g. Kubitza et al., 2018b; Euler et al., 2017;
Kubitza et al., 2018a; Krishna et al., 2017b; Clough et al., 2016)

Table 3.1 lists the variables used in the analysis and the respective units of measurement,
variable designations in the empirical part of the paper as well as key summary statistics.
Production of fresh fruit bunches serves as the desirable output (y) while the inverse of the
effective number of species ENS is the measure of the undesirable output (b). The inputs
for production are selected to represent conventional agricultural production functions, i.e.
area of production, labor and use of agrochemicals which constitutes the sum of herbicides,
pesticides and fertilizer. Additionally, the age of the plantation is crucial to oil palm pro-
duction since the yield of the perennial crop has a nonlinear relationship with time. Oil
palms start only producing fruit bunches 3 years after plantation. Peak yields vary across
regions and can start as early as seven or as late as sixteen years. Usually, at the age of 24 oil
palms exhibit declining yields and after 30 years they reach zero production levels Corley and
Tinker (2008). In addition to the economic production variables, a range of socioeconomic
variables such as age, education and household size are available for specifying the restricted
hyperbolic distance function.

Table 3.1 Variable overview and summary statistics

Variable Unit Variable Mean St. Dev. Min Pctl(25) Pctl(75) Max

Desirable output
Production kg y 33,744 30,896 38 15,800 42,200 204,000

Undesirable output
Biodiversity loss ENSest b 5.009 2.327 1.331 3.244 6.498 15.132

Technology
Size ha x1 2.17 1.78 0 1.5 2 12
Labour man hours x2 2,629 3,068 9 1,369 2,893 31,008
Palm age years x3 16.02 7.46 3 10 22 30
Agrochemicals kg x4 7689 988 0 10 1,222.5 6,000
Yield kg ha−1 - 15,738 7,626 152 10,658 20,000 37,860

Inefficiency
Age years z1 48.07 11.33 25 40 55 79
Education years z2 7.82 4.09 0 6 12 17
HHSize people z3 4.789 1.564 2 4 6 11
Transmigrant binary z4 0.42 0.50 0 0 1 1
Chemical weeding binary z5 0.73 0.44 0 0 1 1
Manual weeding binary z6 0.31 0.46 0 0 1 1
Land title binary z7 0.69 0.46 0 0 1 1
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Variables on the migratory status of farmers have also been collected. They are particu-
larly interesting as the government of Indonesia has been operating the trasmigrasi program
which promoted and assisted in the reallocation of people from Java to Sumatra to cultivate
oil palm. The program also offered training related to oil palm production which makes
the migration variables particularly interesting to model the determinants of (in)efficiency
of production. In our dataset, a dummy variable captures whether the family of the farmer
itself migrated to cultivate oil palm in the past.

Regarding management practices variables on whether a farmer used chemical weeding
or manual weeding are available. Weeding practices on the plot have crucial impacts on both
the growth of the palms and their respective output as well as the plant biodiversity on the
plot. The variable on land titles captures whether the farmer is in possession of any kind of
governmental ownership certificate for his plot9.

To record the α-diversity of vascular plants in the understorey (including ferns, lyco-
phytes, and seed plants), we established a square vegetation plot of 25 m2 in each planta-
tion. Within each plot, we assigned all plant individuals to morphospecies and counted the
number of individuals per morphospecies. Each morphospecies was photographed for later
species identification. Using the iNEXT-package in R (Hsieh et al., 2016), we calculated the
observed per-plot species richness (SRobs) and effective number of species (ENSobs) (Jost,
2006). Since the number of individuals widely varied between plots with a minimum of 3,
a median of 364 and a maximum of 6616, we standardized the diversity measures using the
rarefaction/extrapolation procedure of Chao et al. (2014) which is implemented in Hsieh
et al. (2016) with the median number of individuals (n = 364) as the base sample size. The
plot-wise rarefaction/extrapolation curves indicated that some individual-poor plots did not
adequately represent local SR while sampling coverage was sufficient for ENS. We therefore
used the estimated effective number of species per 364 individuals (ENSest) as our primary
measure of biodiversity, although we also ran our model separately with the estimated species
richness per 364 individuals (SRest) for comparison and robustness checks (Appendix B.3).

3.3.5 Empirical specification

In our distance function framework, we propose combining features of the hyperbolic as well
as the enhanced hyperbolic distance function to model fresh fruit bunches of a plot in kg as
the desirable output (yi) and biodiversity loss on the same plot, measured as the inverse of
the ENS, as the undesirable output (bi). The input variables are the size of the plot x1,
x2 is labor, x3 agrochemicals as well as x4 the age of the plantation. While the size and
age of palms are indubitably fixed inputs, we further argue that labor is also fixed as farms

9Please refer to Kubitza et al. (2018b) for a detailed overview of land ownership structure and certification
in Jambi.
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almost exclusively employ family labor and agrochemicals remain as the variable input10. We
make use of the translog functional form which offers more flexibility as opposed to Cobb-
Douglas or quadratic production functions11. We employ stochastic frontier analysis (SFA) to
estimate the restricted hyperbolic distance function (DR) by means of ML. The final translog
restricted hyperbolic distance function specification is:

−lnyi = α0 +
3∑

k=1
αkln(xki) + α4ln(x∗

4i) + β1ln(b∗
i ) +

3∑
k=1

β1kln(b∗
i )ln(xi)

+β14ln(b∗
i )ln(x∗

4i) + 1
2

3∑
k=1

3∑
l=1

αklln(xki)ln(xli) + 1
2

3∑
k=1

αk4ln(x∗
k)ln(x4)+

+1
2

α44ln(xi)2 + 1
2

β11ln(b∗
i )2 + ρ0ti + ui + vi, (3.11)

where b∗
i = yi ∗ bi and x∗

i = xi

yi
. In order to circumvent potential convergence problems we

scale all variables by dividing them by their mean so that we evaluate elasticities at sample
means. To additionally account for technical change over time, we also include the time
trend ti. Other panel data specifications are unfeasible to implement parametrically due
to the limited number of observations. vi is a normally-distributed component of the two-
component error term and captures statistical noise. The other component represents the
distance function value, or in other words, the inefficiency of production, also accounting for
loss of plant biodiversity. We assume heteroskedasticity of ui and consequently model it using
the farmer, migratory and management practices characteristics captured in zi. Therefore:

σ2
u,i = exp(τ ′zi). (3.12)

We estimate the entire stochastic frontier with heteroskedastic inefficiency by means of
ML techniques. The parameters to be estimated are α, β, ρ and τ .

3.4 Results

Our empirical model delivers several layers of results12. First we evaluate the production
function part of the estimated equation and discuss its insights. Second, we turn to the
coefficients of the inefficiency component model of the error and derive marginal effects as
well their implications regarding smallholder environmental performance. Third, we calculate

10As robust checks, we also derive the empirical specification and estimate the corresponding enhanced
hyperbolic and hyperbolic distance functions where all inputs are treated equally. We also calculate further
resulting measures thereof in appendix B.2.

11The translog specification is tested to be superior to the Cobb-Douglas specification using conventional
tests for nested models.

12The distance functions are estimated in R (R Core Team, 2017) using the npsf package (Badunenko
et al., 2019)
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the cost of abatement by means of shadow price calculation from our dual framework.

3.4.1 Production technology

Table 3.2 exhibits the ML estimates of the first order terms and the determinants of inef-
ficiency as well as the associated standard errors of the restricted hyperbolic distance func-
tion13. The coefficients capture the effect of the individual variables on the distance function
value. Loss of biodiversity as well as increases in inputs augment the distance value which is
reflected in the negative signs of the respective coefficients and compare well with results of
other works on smallholder oil palm production concerning both biodiversity trade-off (Grass
et al., 2020) and input use (Soliman et al., 2016). The effect of labor is not statistically sig-
nificant, while the direction as well as magnitude are reasonable in light of the notoriously
low labor intensity of oil palm production (Kubitza et al., 2018a).

Unsurprisingly the first-order coefficient of the age of trees is significant and explains
a large chunk of desired output. Additionally the coefficient of the time trend ρ suggests
that environmental technology progressed by 8% between periods, i.e. over three years. The
negative and significant β1 and - in the case of the hyperbolic distance function - positive
and significant β11 reflect an inverse-U relationship between palm output and biodiversity
loss. Accordingly, we observe both farmers with low as well as farmers with high levels of
biodiversity loss at equivalent levels of output of oil palm fruits. In between farmers with
such output structures, we also observe a wide range of farmers exhibiting either higher levels
of output, lower levels of biodiversity loss or both. Regarding the environmental production
function this implies the existence of a maximum. As oil palm production increases, biodiver-
sity is lost until a point where in turn, high levels of biodiversity loss are likely to negatively
influence production.

13A table detailing the full list of parameters is listed in Table B.1 of appendix B.2
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Table 3.2 First order terms and parameter estimates of the determinants of ineffi-
ciency of the restricted hyperbolic distance function

DR(x, y, b)

Technology
α0 (Intercept) −0.48 (0.08)∗∗∗

α1 (Size) −0.37 (0.08)∗∗∗

α2 (Labor) −0.06 (0.06)
α3 (Age of Palms) −0.26 (0.08)∗∗∗

α4 (Agrochemicals) −0.06 (0.02)∗∗∗

β1 (Biodiversity loss) −0.42 (0.04)∗∗∗

Inefficiency
τ0 (Intercept) 1.24 (2.36)
τ1 (Age) −0.29 (0.12)∗∗

τ2 (Age2) 0.00 (0.00)∗∗

τ3 (Education) −0.03 (0.43)
τ4 (Education2) 0.03 (0.08)
τ5 (HH size) 0.31 (0.15)∗∗

τ6 (Transmigrant) 1.17 (0.48)∗∗

τ7 (Chemical weeding) 0.50 (0.46)
τ8 (Manual weeding) 1.09 (0.39)∗∗∗

τ10 (Land title) 0.98 (0.55)∗

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

3.4.2 Inefficiency

Figure 3.2 depicts the distribution of hyperbolic efficiency scores across the sample. The
mean efficiency of production under consideration of loss of biodiversity - or alternatively,
the environmental performance regarding loss of biodiversity - is 0.78, implying that farm
managers could expand output by 28.22% (1/0.78) or contract biodiversity loss by 22.01%
(1 - 0.28) at the same (or lower) level of (agrochemical) input use, on average, respectively.

While the bottom end of table 3.2 lists the parameter estimates (ρ) of the drivers of
inefficiency, table 3.3 exhibits the corresponding marginal effects. We find that the age of
the household head of the farm is positively associated with environmental performance.
The switched sign of the squared term additionally indicates that decreasing returns also
exist in this relationship, although, the magnitude of this effect is rather small. Regarding
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Figure 3.2 Histograms of hyperbolic efficiency scores

Table 3.3 Marginal effects of determinants of inefficiency

Mean St. Dev. Min Max

Age -0.041 0.018 -0.099 -0.011
Education -0.004 0.002 -0.009 -0.001
Household Size 0.043 0.019 0.012 0.105
Transmigrant 0.164 0.072 0.045 0.399
Chemical weeding 0.070 0.031 0.019 0.171
Manual weeding 0.153 0.068 0.042 0.373
Land title 0.138 0.061 0.038 0.335

management practices, we find large inefficiency increasing effects from chemical and manual
weeding practices as well as whether the family of the farm has participated in the trasmigrasi
program at some point in the past. The latter two are also statistically significant at the
5% levels in both models. Weeding - whether manual or chemical - targets the elimination
of species on the plot and therefore reduces the performance of the production with respect
to biodiversity. While other authors find that producers who had been associated with the
trasmigrasi program are more productive and economically better off (Gatto et al., 2017),
evidence from our model suggests that their environmental performance is worse than that of
autochthonous producers. A likely explanation is found in the higher agrochemical input use
of transmigrant farmers, as well as the intensified production of farmers with land titles (Ku-
bitza et al., 2018b). Both practices disproportionally inflict stronger effects on biodiversity,
albeit increasing oil palm fruit output on average.

3.4.3 Shadow prices

In order to derive shadow prices expressing the abatement cost of the unmarketed output, we
require real market prices to solve the equation. The survey data reveals the average prices
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Table 3.4 Shadow prices in constant USD (2015)

per farm per ha
Mean Median St. Dev. Mean Median St. Dev.

2018 340 341 227 173 173 71
2015 372 373 248 189 190 78
2012 395 396 264 201 201 83

per kg of oil palm fresh fruit bunch obtained by the sampled farmers are 890, 1, 010 and 1, 023
Indonesian Rupiah (IDR) for 2012, 2015 and 2018, respectively. We deflate the Indonesian
consumer price index retrieved from the Federal Reserve Bank of St. Louis (2020) and apply
a constant exchange rate14. Making use of the duality of the distance function, we calculate
shadow prices for biodiversity loss which are presented on the left-hand side of table 3.4.
The values indicate how much revenue would be forgone if one more species was conserved
on the plot. Shadow prices reflect the dynamics on the frontier, namely in the absence of
inefficiency. The shadow price of an inefficient producer would be zero since biodiversity can
be increased without reducing outputs or - at least for agrochemicals - input use. The right
hand side illustrates individual shadow prices divided by the respective plot size and thus it
provides a measure on both a per species and per ha basis.

The interpretation of shadow prices is subject to some limitations. First of all, variation
of the shadow prices is quite substantial, confirming the results of Bateman et al. (2015) who
find susbtantial idiosyncrasy in oil palm smallholders’ capacities to conserve biodiversity.
In our sample, the value for conserving one species on a farmers plantation is 340 USD
in 2018 on average. However, at the high end of the distribution, farmers exceed shadow
values of 1, 400 USD, although it is important to note that the price level refers to the
plantation that the farmer is operating. Therefore, the stark variability of shadow prices
may also be partly attributed to scale effects. Larger farmers naturally suffer more output
when conserving the same average number of species compared with smaller farmers. In
other words, the abatement costs per unit of detrimental output become more expensive as
producers expand and become larger. This is particularly important when designing potential
financial incentive schemes to increase environmental conservation in smallholder palm oil
production systems. Second, since we measure biodiversity on agricultural production sites
our trade-off measure entails only the lower part of biodiversity. The potential relationship
between oil palm production and biodiversity beyond sample values is unknown and most
likely non-linear. Third, our sample also contains cases of negative shadow prices, which
imply that farmers operate under a technology regime where they produce little oil palm
fruit at high biodiversity loss. In these cases, reducing biodiversity loss comes at no cost but
instead increased oil palm output and higher income.

14 USD
IDR = 0.00007
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To put the average shadow price in perspective, in 2018 the average farm income of
smallholders in Jambi province was 2, 179 USD per year. Thus, for an average farmer, the
abatement cost for raising average biodiversity by one species on the whole plantation area
amounts to almost 16% of the average annual farm palm oil income. In turn, the cost of
eliminating biodiversity shortfalls - namely augmenting the biodiversity of all farmers to the
level of the best practitioner (15.1 ENS) - would inflict costs of 443, 437 USD.

3.5 Payments for ecosystem services (PES) simulation

As shadow prices reveal the opportunity cost of producing less marketable output and instead
diminish unmarketable output, shadow prices are key to designing respective conservationist
policy. Although shadow prices only reflect the private marginal benefit while the social
marginal benefit from conserving biodiversity remains unknown - albeit larger than the pri-
vate one - they still allow us to derive supply functions for the biodiversity provision of
smallholder producers.

PES are a popular policy instrument and they are frequently implemented to preserve
ecosystem services (Bulte et al., 2008; Jack et al., 2008; Salzman et al., 2018; Schomers and
Matzdorf, 2013). In essence, PES schemes take the form of a Pigouvian subsidy in which the
government subsidizes the provision of an environmental good that is otherwise not marketed.
Practically, PESs are implemented in different ways depending on the specific goods as well
as the desired outcomes. Among a variety of PES schemes, two prominent designs are
management- and performance-based PES. The former reward producers for engaging in or
refraining from specific agricultural practices that are harmful to the ecosystem service. In
the latter scheme producers are compensated for providing certain levels of the ecosystem
service which are set a priori (FAO, 2007; Schomers and Matzdorf, 2013). In this section we
examine potential applications of both designs in the smallholder oil palm production sector
of Jambi province.

In the following, we calculate the outcomes of the two alternative incentive settings to
achieve higher levels biodiversity. First, we predict a management-based payment, in which
participants are rewarded for engaging in or refraining from certain practices associated with
environmentally detrimental outcomes. Second, we compare the management-based measure
with a scenario of performance based payments that reward the participant for achieving a
certain level of outcome in the environmental indicator. For the sake of simplicity, we pool
the panel and confine this section to highlighting the incentive mechanisms as well as the
premium and cost magnitudes of environmental policy action in Jambi.
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Table 3.5 Aggregated outcome for different weeding scenarios of practice based PES
measures compared with the elimination of inefficiency

Eliminating ∆ENS ∆ENS (%) ∆y ∆y (%)

Manual weeding 10 1.7 53,013 1.3
Chemical weeding 9 1.4 42,562 1.0
All weeding 19 3.1 99,527 2.4

Inefficiency 118 19.1 1,026,078 24.7

3.5.1 Management-based measures

We argue that manual weeding could be a reward-worthy agricultural practice due to two
particular reasons, one of which is empirical and the other theoretical. First, since weeding
increases the hyperbolic distance to the production frontier and therefore lowers the envi-
ronmental performance of farmers, moderating the management practice could lead to less
loss of biodiversity without losing output. Second, selectively removing plant species from
the plots by definition lowers biodiversity. Hence, a policy targeting manual weeding could
kill two birds with one stone, namely eliminating a source of inefficiency - without a loss of
productivity - as well as technologically lowering the loss of biodiversity - potentially with a
loss of productivity.

Table 3.5 details the aggregated outcome of farmers refraining from weeding practices.
Even though the marginal effects of manual weeding are substantially higher than those of
chemical weeding the omission of either leads to comparable increases of both biodiversity
and oil palm output at around 1.4-1.7% and 1.0-1.3% respectively. If farmers dispense of
both weeding practices biodiversity could be increased by 3% and oil palm output by 2.4%,
lifting the aggregate ENS by 19 species, on average, and the production level by almost
100,000 kg.

Increasing biodiversity by means of encouraging refraining from weeding practices inflicts
no costs and premiums could even be zero as farmers simultaneously benefit from increased
production. Nevertheless, the result that introducing a PES scheme based on rewarding
refraining from weeding will yield win-win situations requires some caution in its interpreta-
tion. Although including both dummy variables in the technology function of the production
function does not reveal a significant dependence of output on the respective weeding prac-
tices, both practices could be more important due to two reasons. First, the insignificant
importance of weeding practices for the production technology and the importance for the en-
vironmental performance could be due to the overall low productivity. In case of non-linearity
of this relationship, with further technological change farmers could reach production levels
where weeding practices make a more profound difference. Second, the significance levels of
the coefficients are conditional on the sample size, which is rather small. Nonetheless, the
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fact that the weeding practices can be associated with negative environmental performance
of smallholders could feed into policy measures to mitigate biodiversity at minimal output
cost.

3.5.2 Performance based payments

Within performance-based PES schemes, policymakers target specific outcomes of an envi-
ronmental variable, either int erms of increases or specific target levels (FAO, 2007; Bulte
et al., 2008; Sattler and Matzdorf, 2013). Additionally, they set a premium - usually based
per cultivation area unit - which the farmer receives if he participates in the program. The
farmer’s willingness to participate is equal to the shadow price. If premium payments are
equal or exceed his potential loss of oil palm output, she is likely to participate, and otherwise
she will not. An obvious starting point for our PES simulation is to target a similar level
of biodiversity increase that could be achieved by eliminating inefficiency in the production
process. In a second scenario, we aim at targeting biodiversity growth levels comparable with
the management based programs from the previous section.

Table 3.6 Policy scenarios targeting social equality, uniform biodiversity dstribution and cost
minimization

Social inclusivity Uniform Biodiversity Cost minimizing

Inefficiency-oriented
Aggregated ENS increase 19.1% 16.7% 20%
px−1

1 448$ 667$ 306 $
∆Y -36,090$ -40,696$ -55,3566$
∆ENS 118 103 122
Participation 100% 98% 73%
Cost 119,489$ 177,922 65,484

Weeding-inefficiency oriented
Aggregated ENS increase 3.1% 2.3% 3.8%
px−1

1 74$ 337$ 51$
∆Y -48,715$ -6,124$ -104,840$
∆ENS 19 14 23
Participation 100% 99% 72%
Cost 19,697 $ 89,895$ 10,697$

px−1
1 designates the premium per land unit (ha), ∆Y the change in oil palm fruit output

(kg) and ∆ENS the change in the effective number of species.

Table 3.6 illustrates the results of playing out different performance based PES. The first
one considers an additional target that ensures that all farmers are willing to participate in the
program, i.e. that the premium is equal to the maximum value of the farmer’s willingness
to pay. While such an approach might not be the most cost-efficient or cheapest one, it
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favors social inclusivity alongside some level of equality of biodiversity. The second column
lists the outcomes of a policy program that targets raising biodiversity to an equal standard
throughout the region. In other words, the policy targets a set minimum level of species
to be present at every plantation. From a biodiversity perspective this makes sense as a
uniform distribution of species across space determine higher gamma-diversity levels. To
achieve similar biodiversity increases as in the previous scenario, the policy rewards farmers
with at least three and five ENS respectively and sets the premium such that all farmers
are willing to participate. The third column eventually exhibits the cost minimizing results
while ensuring participation rates of more than 50%.

From the three sets of results we conclude that, (i) while aiming at equal levels of biodi-
versity throughout the sector is ecologically highly desirable, it is by far the most expensive
endeavor among the three options at hand. The policy sets in on farmers with high levels
of biodiversity loss and high shadow values and targets minimum levels accordingly. On the
downside, many farmers are rewarded without adjustments as their production already by-
produces sufficiently little loss of biodiversity. However, individual losses in forgone produc-
tion revenue are very limited. moreover, (ii) unequal but substantial increases of biodiversity
are comparably cheap to obtain.

However, although PES schemes are frequently applied to address externality problems
in many different - including developing country - settings (Wunder et al., 2008; Sims and
Alix-Garcia, 2017) around the world, their practicality and success are driven by transaction
costs (Banerjee et al., 2017). Monitoring and measuring the provision of environmental goods
is often not feasible at all and if possible associated with very high transaction costs which
in turn often outpaces provision expenses, thus rendering policies as highly cost ineffective.
However, remote-sensing based biodiversity monitoring opportunities are arising and could
soon be available at a granularity that allows cheaply determining site-specific measurements
of biodiversity and other environmental indicators (Gullstrand et al., 2014).

Generally, detecting agricultural practices that are detrimental to the provision of not
only desired outputs but also undesired ones is perhaps a promising start to design PES
schemes. PESs often solely rely on the mere minimization of practices that are harmful to
the ecosystem service and thereby neglect potential win-win scenarios which naturally should
be exploited before policy targets improving environmental outcomes, which inevitably come
at the cost of agricultural production. Therefore, incentive-based environmental policies are
likely to be beneficial not only as they achieve the desired conservation of biodiversity but also
because they might lead farmers to increase their environmental performance, i.e. producing
more at a lower burden of biodiversity loss.
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3.6 Summary and conclusion

Indonesia has become a hotspot for environmental degradation, while providing the world’s
largest supplies of palm oil. Smallholder farmers are substantially contributing to both
palm oil production as well as the decay of ecosystem services. Concurrently, the trade-offs
between oil palm production and several ecosystem services in large-scale operations are well
understood, while the environmental performance of smallholders has not been addressed in
the relevant literature.

In this paper we address the literature gap and derive a full environmental production
function accounting for the economic desirable output, undesirable environmental degrada-
tion - measured as plant biodiversity - conventional farm inputs and socioeconomic factors as
well as management practices to explain shortfalls in managerial outcomes. Additionally, the
duality of the outputs enables calculating the cost of abatement in the smallholder production
system, which we use to simulate several PES policy scenarios.

Our main results are fourfold. First, we find that the production of fresh fruit bunches
leaves ample room to improve efficiency under consideration of environmental degradation.
Oil palm output can be expanded by 28% while loss of biodiversity at given input levels could
be contracted by 22%. Second, both chemical as well as manual weeding result in worsened
environmental performance of oil palm production. Third, aside from potentially eliminating
inefficiency, the abatement cost for increasing average biodiversity by one species on a farmers
plantation amounts to 340 USD, on average, or about 16% of average annual palm oil income
for smallholder oil palm producers. Fourth, PESs are promising policy options to conserve
ecologically meaningful levels of biodiversity while simultaneously allowing smallholders to
increase output levels. In general, identifying drivers of environmental inefficiency is key to
successfully designing respective PES schemes.

Given that smallholders are important contributors to global palm oil supply, our results
regarding their environmental performance suggest that improved management practices can
play an important role in counteracting large-scale species extinction. Smallholders manage
nearly half of Indonesia’s oil palm area at comparably low yields, and effectively-designed
policy aims to eliminate inefficiencies in production and reward conservation of biodiver-
sity at average levels of opportunity costs and thereby provides promising avenues for more
sustainable smallholder palm production.
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Chapter Four
Can the Tripartite Rubber Council
Manipulate International Rubber
Prices?1

The three largest natural rubber producers in the world have collectively introduced a set of
policy measures to detach rubber prices from interlinked markets and to increase world rubber
prices. However, policies intended to manipulate prices in one sector can have unintended
consequences on the prices of goods in other sectors, such as substitute goods or final composite
products. But can such effects be predicted? This paper applies an extended version of the
Gardner Model to the natural and synthetic rubber markets in Southeast Asia, as well as crude
oil, to predict the effects of exogenous policy shocks on the price of goods in related markets.
Using an error correction analysis, we find that prices of natural rubber, synthetic rubber, and
crude oil are co-integrated. Results further indicate that export taxes and supply-restricting
policies, jointly enacted by Thailand, Indonesia, and Malaysia, both serve to detach the price
of natural rubber from that of synthetic rubber in international markets. However, one of the
policy measures to restrict exports, the increased domestic use of natural rubber, might have
caused a decrease in international rubber prices, a consequence detrimental to the intended
targets.

Keywords: VECM, Gardner-Model, Policy Interventions, Rubber, Indonesia

1This chapter is under review at Agricultural Economics and co-authored by Thomas Kopp (TK), who is
the lead author, Mirawati Yanita (MY), Zulkifli Alamsyah (ZA) and Bernhard Brümmer (BB). TK, Bernhard
Dalheimer (BD) and BB conceptualized the research idea. TK developed the theoretical framework. BD
managed and collected the data. TK, BD and BB developed the empirical strategy and BD implemented the
econometric modelling. TK, BD and BB interpreted the results. TK and BD wrote the paper with support
from MY and ZA. All authors edited and revised the final manuscript.
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4.1 Introduction

Natural rubber is one of the most regulated agricultural products in Southeast Asia. Starting
with the first International Rubber Agreement in 1980 (Gilbert, 1996), there has been a long
tradition of hefty government interventions at the multinational level. Currently the three
biggest exporters of natural rubber – Thailand, Indonesia, and Malaysia – are at the fore front
of market intervention. In terms of both production and export quantities these countries
are the most important suppliers of natural rubber globally with a combined share of 63%
of global production. Within the framework of the “Tripartite Rubber Council” (TRC),
launched in November 2001, these countries have set out to alter rubber prices on the world
market (International Rubber Consortium Limited, 2001).

However, despite the TRC’s large market share and the implementing organisations’
claims of these measures to be a great success, anecdotal evidence suggests that the apparent
possibility to exert market power has not translated into international price dynamics as
desired by the member countries (Verico, 2013). To date, no quantitative study has investi-
gated whether policies introduced by the TRC have indeed had any measurable effects, and
if they did, whether such effects were as desired or detrimental.

The markets most closely related to natural rubber are determined by the primary use
of natural rubber, tire manufacturing. The other key components in tire making are, apart
from natural rubber, synthetic rubber and other petrochemical products. While specialised
tires, such as the ones for air planes, racing cars, or heavy machinery, require a specific ratio
between natural rubber and its synthetic counterpart, for regular car and motorcycle tires
this ratio can vary within certain boundaries. Therefore synthetic and natural rubber are
effectively perfect substitutes at the margin, closely interlinking price developments in the
two markets. Both are further influenced by developments in the notoriously volatile crude
oil market, given that synthetic rubber is made from crude oil and that crude oils is the raw
material for most other, non-rubber inputs in tire manufacturing.

The first question that this study seeks to answer is whether the members of the TRC
have indeed managed to detach the price finding process of natural rubber from the ones of
synthetic rubber and crude oil. The second question is in how far the policies have contributed
to the political target of increasing the international price for natural rubber. Understanding
the consequences of these interventions is crucial not only for economic welfare in rural areas,
but also for generating insights on these dynamics’ effects on ecological sustainability. For
example, Feintrenie et al. (2010) highlight the role of price levels and price volatility in natural
rubber for land-use change decisions.

These questions are addressed by modelling policy effects through an extension of the
well-established Gardner Model (Gardner, 1975) by two kinds of policy interventions, fol-
lowed by its empirical application. The first intervention is a long-term reduction of output
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quantities and the second one is an export quota. Our extended Gardner model allows us
to understand the possible effects of policy interventions that try to detach prices on agri-
cultural commodity markets from price trends in other sectors. Employing a standard Error
Correction Model (ECM), we then first analyse the level of integration and cointegration
of natural and synthetic rubber markets in order to establish the presence and extent of
spillovers between these markets. Second, we analyse the spatial and temporal dynamics of
price formation processes in these markets.

In line with economic theory, the econometric results indicate that the prices of natural
and synthetic rubber are cointegrated with a factor of 0.97, indicating close substitutability.
Regarding short run effects, the policies under consideration – an export tax and several
measures to restrict supply – did not affect cointegration, possibly due to a lack of imple-
mentation of the export tax for reasons of free riding. However, both policies were partly
successful in detaching the natural from the synthetic rubber price in international markets
on the long run, possibly due to the signals that the intended policies sent to market stake-
holders. The different measures of output reduction varied in their effects, up to the point
of having consequences opposite to their intended objectives. While the slower expansion
of land dedicated to rubber production has indeed increased world prices, the increased do-
mestic use through subsidised tire manufacturing affected natural rubber prices negatively,
possibly by causing lower world price for tires.

The paper is structured as follows: the following Section 4.2 provides the background of
the policies of the Tripartite Rubber Council. Subsequent Section 4.3 is devoted to model
development. The empirical application is undertaken in Section 4.4, before Section 4.5
concludes.

4.2 Background

4.2.1 Agricultural trade policy against global trends

International trade in intermediate products has increased largely in the past decades and
has become equally important to the trade of final products (Jones, 2000). Besides price-
and technology driven reductions in transport and transaction costs, this development has
largely been fostered by political changes, such as multi-lateral or regional trade liberalisation,
including liberalisation of input markets. Evidence on the trade effects of the role of trade
liberalisation in input markets has been analysed in the existing literature for some emerging
economies, e.g., Chile (Pavcnik, 2002), China (Khandelwal et al., 2013), India (Topalova and
Khandelwal, 2011), and Indonesia (Amiti and Konings, 2007). Bas and Strauss-Kahn (2015)
show that manufacturers of final manufactured goods gain from input trade liberalisation,
especially when specialising in high-quality products. On the firm level, Chevassus-Lozza
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et al. (2013) find that tariffs on agricultural inputs disadvantage lower productive firms while
Olper et al. (2017) find correspondingly that higher levels of trade-integration advantages
the most productive firms stronger.

In contrast to these overall trends in trade liberalisation along supply chains for manu-
factured goods, the situation for agricultural products in general, and non-food agricultural
products that are used in non-agricultural supply chains in particular, remains fundamen-
tally different. Governments continue to intervene heavily in agricultural markets. Mitra and
Josling (2009) observe that especially in times of market turmoil and crises, exporting coun-
tries for example often impose export restrictions on agricultural goods, including non-food
agricultural commodities, before other sectors.

These interventions, targeting one specific sector, can result in undesired by-effects when
spilling over to other sectors – including ones in other regions – due to globally integrated
production networks. Interventions that target prices for agricultural commodities like natu-
ral rubber might not only induce price effects on the targeted market itself but likely induce
effects on markets for close substitutes, such as synthetic rubber. At the same time, the
effectiveness of interventions in agricultural price formation can be affected by price shocks
in related, non-agricultural markets, such as crude oil in this case. The nature of the in-
terplay between targeted and closely connected markets will hence be decisive for both the
effectiveness of government interventions, and the resulting by-effects.

4.2.2 Natural and synthetic rubber value chains

One of the reasons for governments especially in developing and emerging economies to in-
tervene in agricultural markets is the substantial income effects that the prices of these goods
have for smallholder producers. Throughout Southeast Asia, natural rubber is produced pre-
dominantly by small scale farmers and has been subject to policy interventions for decades
(Verico, 2013; Kopp and Brümmer, 2017). Especially for farmers with little land, rubber is
an important income source (Krishna et al., 2017a). Although the TRC member countries’
share of global output has been declining steadily over the past 15 years and is substantially
lower than during the 1960s and 1970s, in 2016 the three producers were still responsible for
about 63% of the world’s production (FAOSTAT, 2017) (Figure 4.1).

The natural rubber supply chain starts with smallholders, who tap rubber trees, grown in
monoculture agroforests, for their sap, the liquid latex. This sap is solidified with chemical
substances, so-called coagulants. The resulting slabs of raw rubber are obtained by crumb
rubber factories, located throughout the rubber producing regions. These factories process
the rubber mechanically to produce technically specified rubber (TSR), a standardised com-
modity which is sold on the international market, mainly to tire factories all over the world
(Kopp and Sexton, 2019). The importers of natural rubber are displayed in figure 4.2.
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Figure 4.1 Global and TRC natural rubber production by year
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Source: Own production, based on data from FAOSTAT (2017).
Annual global production quantities compared to those of the members of the TRC agreement.

The markets for synthetic rubber and tires are characterised by greater competition both
in exports and imports than the one for natural rubber exports, with C3 ratios being substan-
tially below the one for natural rubber exporting (table C.3). The main importers of both
types of rubber are China and the US. The main tire producers and exporters are located
in China, Germany, Japan, the US, and Thailand. Apart from the tire industry, synthetic
rubber is also used in the manufacturing of rubber flooring, shoe soles, and wire insulation,
amongst others (Horowitz, 1963). Synthetic rubber is produced from crude oil, primarily in
Korea, Germany, China, Japan, and the US.

4.2.3 Policy measures within the Tripartite Rubber Council

In an effort to insulate price developments in natural rubber from price shocks in related
markets and to pressure international rubber prices upwards in both long and short term
horizons, the member states of the TRC have established a set of three distinct policy mea-
sures (Ministry of Industry and Trade Indonesia, 2002). All of these policies are implemented
under the supervision of the International Tripartite Rubber Consortium Ltd. (ITRC), which
has been founded jointly by the three governments (Verico, 2013). Policy interventions are
agreed in member state meetings, and then coordinated and implemented by the ITRC.
Within each member country, a National Tripartite Rubber Corporation (NTRC) is respon-
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Figure 4.2 Importers and exporters of rubber and tires
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Source: Own production, based on data from TradeMap (2020) and Market Access Database (2020)
for data on extra-EU trade.
The following data enter the graph: HS400122 (technically specified rubber, i.e., natural rubber),
HS400211 + HS400219 (styrene butadine rubber, i.e., synthetic rubber), HS4011 (new tires made
of rubber, including all kinds of tires, including cars, motorcycles, bicycles, aircrafts, buses, lorries,
heavy machinery).
All numbers are for 2018 and indicate shares of export and import values, respectively. The figure
includes the four largest countries in each category. Detailed numbers provided in appendix table
C.3.
The C3 ratios are, in the order of the bars, 32.4%, 38.5%, 72.6%, 32.1%, 28.3%, and 46.2%,
respectively.
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sible for the implementation of the agreed policy measures. In Indonesia, this function has
been transferred to the Association of Rubber Businesses Indonesia, GAPKINDO (Ministry
of Industry and Trade Indonesia, 2002). In Thailand and Malaysia, the Thai Rubber As-
sociation and the Malaysian Rubber Board, respectively, are in charge of implementing the
policy measures in collaboration with the ITRC.

The first policy, the Supply Management Scheme (SMS), is intended as a long term strat-
egy to influence prices via restraining supply. Measures under the SMS include reducing the
planted area through crop diversification (International Tripartite Rubber Council, 2014),
limiting the establishment of new plantations (ibid.), and an increased frequency of rejuve-
nation of rubber plantations in times of low prices (Ministry of Agriculture Indonesia, 2008),2

as well as promoting domestic consumption (Anwar, 2017) by an “increase in locally manu-
factured rubber based products” (International Tripartite Rubber Council, 2015). In its first
phase from 2002 onwards, the SMS was set to aim at a reduction of aggregate output by 4%
per annum (Verico, 2013). The program goals where redefined following the global finan-
cial crisis to reduce production quantities by 215, 000 tonnes per annum from 2009 onwards
(Ministry of Agriculture Indonesia, 2008).

Second, short term export quotas are applied under the framework of the Agreed Export
Tonnage Scheme (AETS). This scheme provides the potential to limit export supplies to
international markets for a limited time span of less than one year (Anwar, 2017). In practice,
the institutions at the national levels are supposed to implement the AETS by allocating
export quotas to each company producing and exporting rubber (Malaysian Rubber Board,
2012). The governing bodies agree upon targeted reductions in export quantities. However,
the reference period has not clearly been identified which prevents the derivation of de facto
quotas. The AETS was applied in 2002, in 2009, over 2012/2013 (October to March), and in
2016 (March to August) (Anwar, 2017). During 2002 the goal of an export reduction of 10%
has been set for each country in combination with the aforementioned production reduction
of 4% under SMS (Verico, 2013). From 2009 on, the AETS has been defined as export
reduction in tonnes. The countries decided to collectively reduce rubber exports by 700, 000
tonnes in this year as a response to low prices. In 2012/2013 the reduction quantity was set
to 300, 000 tonnes which was shared among the three countries in proportion to production
quantities in 2011 (Malaysian Rubber Board, 2012). In 2016 the member countries agreed
to a reduction of exports by 615, 000 tonnes (Thailand: 324, 005 tonnes, Indonesia: 238, 736
tonnes, Malaysia: 52, 259 tonnes, Ministry of Industry and Trade Indonesia, 2016).

Third, the Strategic Market Operation (SMO) program envisages mostly market informa-
tion systems to support and evaluate other international agreements and policies, in particular

2While rejuvenation is likely to increase output per plot in the first years of the next tree generation, it
reduces the share of area that is productive at an aggregate level, which might outbalance the productivity
gains. The SMS measure is based upon the premise that the aggregate output of a given area of rubber
plantation over a period of time greater than the life span of one tree generation is reduced.
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both SMS and AETS. Furthermore, governments agree to purchase excess supplies for public
storage, aiming to reach certain price levels through this stock management. However, until
2018, only Thailand has actively intervened in its rubber market by building up domestic
stocks. Hence, the SMO is primarily a long term policy with regards to improved informa-
tion systems and monitoring, and serves in rare case as a short term policy when stocks are
bought in times of low prices (International Tripartite Rubber Council, 2016).

However, despite the efforts being undertaken to form the ITRC and to agree upon policy
measures, the success of the intergovernmental union and their policy framework is unclear,
as the body of literature is marginal. Only few scientific studies analysing the efficacy of in-
ternational rubber policy are available. While the implementing organs of all member states
have attributed short term upward price developments towards AETS and SMS implementa-
tions (e.g. Malaysian Rubber Board, 2012; Thai Rubber Association, 2016), some literature
points out that the policies have been largely ineffective due to lack of compliance as well as
coordination. Verico (2013) argues that TRC member states are actually competing instead
of collaborating and exploiting their hypothetical oligopolistic power, despite the decreasing
importance of agricultural exports in all three countries (Yeah et al., 1994). Figure 4.3 re-
veals a point in case. The two periods of active AETS from October 2012 to March 2013
and from March 2016 to August 2016 are represented by the dark shaded area. In the first
period, accumulated exports of the partners have increased, although a drop is observable
after the policy had expired. The second period featured larger fluctuations of exports and a
rather increasing trend in the post implementation period. In both cases no strategic export
reduction can be observed.

Figure 4.3 TRC monthly exports and active AETS periods

0.0

0.2

0.4

0.6

0.8

Jan 2011 Jan 2012 Jan 2013 Jan 2014 Jan 2015 Jan 2016 Jan 2017

M
ill

io
n 

M
et

ric
 T

on
ne

s

Thailand Indonesia Malaysia

Source: Own production, based on data from UNCTAD/WTO (2017).
Natural rubber exports from 2011 to 2017.

62



Can the Tripartite Rubber Council Manipulate International Rubber Prices?

Nevertheless, commodity markets follow complex mechanisms and available quantities
may not solely be responsible for price formation. For instance, the mere announcement of
restrictive policy may already have impacts on international price development. Therefore,
the assessment of the efficacy of TRC policy calls for a more profound analysis.

4.3 Model of the interlinked markets

To evaluate the consequences of the policy measures that try to detach the natural rubber
price from price dynamics in synthetic and crude oil markets it is essential to develop an
understanding of which factors affect these consequences and what outcome is within the
realm of possibility for policy makers. The policies’ success is determined by a) the level
of market power that the implementing stakeholders can exercise, b) the level of the cross
price elasticity between the markets and c) the rigorousness with which the measures are
implemented. The same factors are equivalently decisive for the dynamics in the other sector
as a result of the policy measures.

We base our analysis on the market model introduced by Bruce Gardner (1975), which has
served as a workhorse model for decades (Kinnucan and Zhang, 2015). It includes three mar-
kets, one for the agricultural input, a (natural rubber), one for the non-agricultural/industrial
input, b (synthetic rubber), and one for the composite output, Q (tires). The model accounts
for external effects on production such as factors influencing production like weather, as well
as factors influencing demand, such as the global macroeconomic environment.

The objective of our extensions to the basic Gardner model is to allow for an assessment
of the cross price elasticity between natural and synthetic rubber, and how it can be affected
by measures implemented by stakeholders who have the potential to exercise market power.
The solution of the model allows for a prediction of the highest effect that the policy can
plausibly achieve.

This general intuition stands in the tradition of authors who have applied the Gardner
model and its subsequent extensions to numerous market power related problems. E.g.,
Brümmer et al. (2009) base their price-transmission analysis of Ukrainian wheat and flour
markets on the basic model. Assumptions on the key variables entering the model, i.e., the
elasticities, enabled those authors to derive plausible magnitudes for the long-run relation be-
tween prices, which indeed confirmed their empirical results. Along similar lines, Hosseini and
Shahbazi (2010) and Kinnucan and Tadjion (2014) exploit the basic model’s zero-restrictions
to test for perfect price transmission and to draw conclusions regarding the competitivenesses
of the markets under consideration. Modifications of the model to allow for a non-competitive
market environment include Holloway (1991) who assumes a conjectural-variations oligopoly
with endogenous entry and Azzam (1998)’s extension towards a partially integrated oligop-
sonistic industry. Yu and Bouamra-Mechemache (2016) develop a model similar to Gardner
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to predict the effects of the implementation of production standards which reduce total output
quantity.

4.3.1 Logic of model extension

This paper suggests an approach of explicitly modelling policies that interfere with the market
of the agricultural input in situations of globally distributed production networks. The
producers of natural rubber and synthetic rubber are exporters located in different countries
while the manufacturers of tires import all inputs.

As Figure 4.4 shows, the market of the agricultural input, natural rubber, is subject to
policy interventions in the TRC member countries: policy A refers to the short run policy of
export quotas while policy B refers to the SMS policy, i.e., legislature to reduce farm output
on the long run. Natural rubber is further affected by the demand from tire manufacturers
and synthetic rubber by crude oil and the global economy, which, in turn, also affects demand
for tires. The global economy also affects the tire price because more cars are sold in times
of high macroeconomic growth rates and new cars being marketed requires more tires than
replacement of worn-out tires when cars are used for longer. We do not assume a direct effect
of crude oil price on agricultural supply because energy costs are minor both in production
of natural rubber and its processing.

Figure 4.4 Flow chart of causal chain

Car tires
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Source: own design
Bold refers to policy instruments, italics refer to external factors, and normal font to production
quantities.
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4.3.2 Model components

First we set up demand and supply relations for the markets for natural rubber (input a),
synthetic rubber (input b), and tires (composite output Q) and subsequently derive the
market equilibria. We start with the supplies of the two inputs. Natural rubber supply on
the domestic market, indicated by superscript D, is provided by the inverse supply function,

pD
a = h(a, U), (4.1)

in which U is an exogenous shifter including natural shocks, as well as the SMS policy to
reduce supply and therefore increases the reactivity of supply to price changes. Equivalently,
inverse supply of synthetic rubber is given by

pb = g(b, V ), (4.2)

where V is an exogenous shifter, such as a tax or the global macroeconomic environment.
Note that no superscript is included because no trade policy is assumed to exist on the market
for b. The demand for a and b stems from manufacturers who use inputs a and b to produce
the composite output Q. Demand for the agricultural input a in the world, indicated by
superscript W , is given by the assumption of perfect competition on the output market, i.e.
manufacturers of Q equate the input price for the agricultural input, pW

a , to the value of its
marginal product:

pW
a = pQ

∂Q

∂a
, (4.3)

and equivalently, demand for the industrial input b is given by

pb = pQ
∂Q

∂b
. (4.4)

Demand for the final product Q is given by

Q = D(pQ, N), (4.5)

in which Q represents the demand for output product quantity, pQ is product price,
N is an exogenous demand shifter, for instance income or macroeconomic variables. The
production of Q is given by the production function f :

Q = f(a, b) (4.6)

The elasticity of substitution between a and b in production of Q is given by σ =
(∂Q

∂a
∂Q
∂b

)/Q( ∂2Q
∂a∂b

) (Allen, 1938, p. 343).
The equilibrium on the market for natural rubber, a, is affected by the export quota
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collectively introduced by the members of the TRC. The gross price pW
a that manufacturers

of tires, Q, have to pay for the natural rubber input is the domestic price, pD
a , inflated by the

big exporter’s export quota, represented by the ad valorem equivalent (AVE) of the quota.
Based on Holloway (1991, p. 980), it is equal to the net price, multiplied by the AVE, and
weighted by a proxy for the exporters’ combined market power:

pW
a = pD

a (1 + t), (4.7)

where (1 + t) stands for the effect of a big exporter’s policy instrument. In other words,
t does not represent the mere tax but is furthermore weighted by the exporter’s ability to
exert market power, which can be understood as the conjectural variation anticipated by
the exporter (Huang and Sexton, 1996). Conjectural variations express seller power by a
single parameter and measure how strongly competitors react to changes in price or quan-
tity supplied by the market participant under consideration. It varies between 0 (perfect
competition) and 1 (monopoly).

4.3.3 Policy efficacy

To predict how policies detach the natural from the synthetic and crude oil price dynamics,
the model is solved to express the cross price elasticity between natural and synthetic rubber,
εa,b, as a function of policy-induced alterations in the farm supply:3

εa,b = εU

(1 + t)
(εb + Saσ − SbηQ)

Sa(ηQ + σ)
, (4.8)

where εb is the partial supply elasticity of quantity b, Sa and Sb are output shares, ηQ

is the elasticity of demand for car tires, and εU stands for the quantity-reducing effect of
the SMS policy. It is not possible to make an ad hoc assumption on the magnitude of the
effects of the output reduction caused by the SMS policy (εU). The export tax t enters in
the denominator on the right hand side of equation (4.8), which means that increasing t

will continuously detach the agricultural input price from the industrial input price. The
free-market situation, i.e. when neither the AETS policy (effect of export tax) nor the SMS
Policy (long-term reduction of farm output) are active is accounted for by setting t = 0 and
εU = 1. The combined market power of the rubber exporting countries that are organised
within the TRC might allow them to affect global prices of natural rubber. The AETS policy
of the TRC is the introduction of an export quota, represented by its AVE, which is only
employed by policy-makers if the price is low.4 This gives two cases:

Case 1: If the world price is low, the TRC introduces export tax t, the situation that is
3The derivation is provided in Appendix 7.1.
4There is no clear definition of what ‘high’ and ‘low’ prices are, as the decision on when to implement

measures is made rather spontaneously between the TRC’s member countries.
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described by equation (4.8).
Case 2: If the world price is high, no export quota is issued.Equation (4.8) simplifies to

εa,b = εU
(εb + Saσ − SbηQ)

Sa(ηQ + σ)
(4.9)

Implications of equation (4.8) for the relation between input prices

Brümmer et al. (2009) state some observations regarding the values of a number of variables
in this model of which some can also be applied to this case. Sa and Sb can be generated from
our data.5 The synthetic rubber price has been approximately 2505 US$ per ton and the
natural rubber 2437 US$ per ton on average during 2011-2017. They enter the production in
roughly the same amounts, so Sa ≈ 0.49 and Sb ≈ 0.51. Given that tires are complements to
cars and represent a minor share of the car price, the own price elasticity of demand for tires,
ηQ, can be assumed to be close to zero, so the respective terms is omitted from the formula.
Regarding the elasticity of substitution in production, however, we can – unlike Brümmer
et al. (2009) – not assume σ to be very small because synthetic and natural rubber are indeed
close substitutes at the margins, as indicated by results from qualitative key stakeholder
interviews with tire manufacturers: the quantity-ratio between the two can be varied easily
between 45:55 and 55:45. Harder (2018) reports that 8% of all natural rubber demand in
China could switch to synthetic rubber. This means that the elasticity of substitution in
production σ ≫ 1. For the prediction we assume σ = 10.6 The supply elasticity of synthetic
rubber, εb, is derived from the literature: Horowitz (1963) estimates a supply elasticity for
synthetic rubber of 1.49. Since we cannot make an ad hoc assumption on the magnitude
of εU , this parameter is to be estimated in the subsequent empirical analysis. Inserting all
numbers into equation (4.8) yields

εa,b = εU

(1 + t)
1.29 (4.10)

This means that in the absence of policies (εU = 1 and t = 0) the long-run elasticity
of the natural rubber price relative to the price of synthetic rubber is about 1.3, providing
“an indication of the expected magnitude of the long-run elasticity” of industrial input prices
with respect to agricultural input prices (Brümmer et al., 2009, p. 215). In other words, price
changes in the industrial good – synthetic rubber – are amplified by the factor 1.3 during
transmission to the price for the agricultural good – natural rubber if no policies are active.
The econometric estimation of

E
pW

a ,U

Epb,U will therefore allow an assessment of the success of the
TRC in insulating the prices.

The theoretical model shows that the policy measures under consideration do indeed have
5Calculated as Sa = paqa/(paqa + pbqb) and equivalently for Sb.
6Appendix 7.2 provides a simulation for

E
pW

a ,U

Epb,U
when inserting values for σ ∈ [1; 25].
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the potential to decouple the reaction in prices. The next section provides empirical evidence
on whether this potential was exploited.

4.4 Econometric analysis

4.4.1 Vector Error Correction Model

The substitutability between natural and synthetic rubber suggests that the prices of these
are correlated over time. The theoretical model from section 4.3 implies that policies targeting
the supplies of natural rubber either via export reduction or farm output reduction impact
its international price if the implementing countries are large enough. These impacts could
be transmitted into the industrial input, i.e. prices of petrochemical products, including
synthetic rubber. Both of which obviously are subject to the dynamics of the global economy
and determine the framework for the tire market (figure 4.4).

In order to assess policy efficacy in a time series context, a number of methods have been
implemented in the relevant literature (Ihle et al., 2012, provide a review of this literature).
Two prominent options are regime dependent estimation and dummy variable approaches.
The former entails estimation of different regimes in which policies have been operational or
not, whereby the transition from a policy to a non-policy (or different policy) regime may
be predefined (e.g. Thompson et al., 2000), or estimated (e.g. Brümmer et al., 2009). In the
latter method, policies are simply controlled for using dummy variables. In this application
one long term policy, SMS, and one short term policy, AETS, ought to be evaluated. Since
SMS stretches over the entire time horizon and the AETS has been active for two periods of
six months each, the dummy approach is preferred in this particular setting.

Given the long and short term policy structure of the TRC as well the usual suspicion
that price data are non-stationary and I(1), an Error Correction Model (ECM) is estimated.
In that, both prices are exposed to exogenous shocks from the oil price pCO. Hence, in this
context the oil price is not considered as a cointegrated variable, yet it must be allowed to
impact the relationship exogenously. This approach has been adopted also by Ihle et al.
(2012) who augmented the cointegration relation with exogenous policy variables. The same
idea applies to the long term SMS policy. In accordance with Dickey et al. (1991), we include
pCO and the SMS policy variable in the long run equation and the residuals of which form
the Error Correction Term (ECT) in the ECM representation. Given that the price series
are cointegrated7, the long run equation is formulated as

pNR
t = β0 + β1p

SR
t + β2p

CO
t + β3SMSt + ϵt (4.11)

where pNR
t is the price of natural rubber and corresponds to the price of the agricultural

7This is shown to be the case in section 4.4.3.
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input, pW
a , in equation (4.8). pSR is the price of the industrial input, namely synthetic rubber

and pCO
t stands for the crude oil price. Additionally, the long term policy set of the SMS,

SMSt, is included.8 ϵt is an I(0) variable.

Establishing an indicator for or modelling the SMS policies poses a challenge since it is
impossible to account for specific measures taken in given time periods. The SMS defines a
target and the executive companies then contribute to the target by implementing a variety
of measures. The dynamics of area cultivation over time certainly reflect these measures,
however, they are highly endogenous to the prices. Since no measure for the actually imple-
mented policies exists, we proxy the propensity of the governments and agencies to implement
the measures. To test for robustness proxies are generated for the different measures and
compared to each other. As a further robustness check we also capture the propensity to
implement via a modelling approach as described below.

The SMS policy targets the reduction of rubber that is traded on the world market to
increase the price in the long run. This is achieved through two sub-goals: reducing the
productive area and promoting domestic consumption. Three instruments contribute to the
former: limiting the establishment of new plantations, more frequent rejuvenation of trees,
and crop diversification at farm level.

The first measure of SMS implementation is the promotion of domestic consumption
by motivating local business and public sourcing to use more rubber. The private sector
is incentivised to develop and produce more natural rubber based goods and the public
sector procures goods that contain rubber, such as rubberised roads or dams (Anwar, 2017;
International Tripartite Rubber Council, 2015). Since no panel data are available for the
public procurement of all three countries, this application focuses on the private sector to
proxy these policies. Since the main industry to use rubber are tire manufacturers, the
measurement of choice is the output of the domestic tire industry: the possibly increased
domestic demand for natural rubber due to SMS is proxied by the deviation of the output
of the downstream industry (i.e. tire manufacturing) from its long-run trend, denoted by
SMST O.

As a second measure the acceleration / slowing down of expansion of area under cultiva-
tion is proxied by a dummy variable, SMSex, which takes the value of 1 in case the change
of area harvested a in t is larger than the change in t − 1 and 0 otherwise. In other words,
it distinguishes between slowing down or acceleration of area expansion. While this is also
caused by an array of other factors, it will reflect the efforts of the implementing agencies.

SMSex,t =


1 if ∆at − ∆at−1 > 0

0 otherwise
(4.12)

8The short term policy AETS enters in the estimation of the short-run dynamics.
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The third measure to proxy the effects of this policy instrument was generated via a
modelling approach: the rate of plantation encroachment is the result of small scale farmers
land use decisions which are a function of three key determinants: the SMS policy, the
expected price development of natural rubber and the expected price development of oil
palm, the alternative cash crop growing in these geographical regions and climatic zones. We
therefore isolate the policy effect by stripping the dynamics in the land area used for rubber
production from the other two effects in terms of proportional changes:

At − At−1

At

=SMSha,t + pNR,expected
t − pNR,expected

t−1

pNR,expected
t

+ pP O,expected
t − pP O,expected

t−1

pP O,expected
t

⇔

SMSha,t =At − At−1

At

− pNR,expected
t − pNR,expected

t−1

pNR,expected
t

− pP O,expected
t − pP O,expected

t−1

pP O,expected
t

(4.13)

where the expected price for natural rubber, pNR,expected, and for palm oil, pP O,expected, is
proxied by yearly price indices of the two commodities.

It was considered to include lags of the SMS policy variable since the results of reduc-
ing/not expanding land area may take some time to take effect. We decided against, however,
since a change of land area under cultivation in one year does indeed have already impacts
in the same year since changes in land use policies influence traders’ decisions which drive
the price.

We have therefore three proxies for the SMS policy that targets the long-run reduction of
the international natural rubber supply: first is the deviation from the long-run trend of tire
output, second is a dummy that captures acceleration or slowing down of rubber plantation
expansion and third is a continuous variable that measures rubber plantation expansion,
controlling for price effects. To test for the robustness of these measures we estimate the long
run relation with each of them individually and also combine the first measure (tire exports)
with each of the measures for area expansion.

Having estimated the cointegration relationship, the ECM specification becomes

∆pt = α′β(c pt−1 pCO
t−1 SMSt−1)′ +

k∑
i=1

Γ∆pt−i + γ1∆pCO
t−1 + γ2AETSt + et (4.14)

The endogenous prices of natural and synthetic rubber are gathered in the 2×1 vector pt.
The vector in brackets is the cointegrating vector. The short term policy instrument enters
the equation as a component of the short-run adjustments in form of the dummy variable
AETSt and as k lags of the endogenous variable. et are independent Gaussian errors with
mean zero. In the case of the short term relation, the short term policies are be formulated
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as a dummy variable which indicates periods in which the policy is operational and periods
in which it is not.

4.4.2 Data

Translating the theoretical model into an empirical application requires proxies for petro-
chemical tire inputs, the agricultural input as well as the crude oil price. First, styrene
butadine rubber prices have been obtained from Shanghai Shengiyshe Data Consulting Ltd.
and are expressed in CNY per tonne. Second, the Standard Malaysian Rubber (SMR) price
time series at the Malaysian rubber exchange in Kuala Lumpur in Ringgit per tonne and the
West Texas Intermediate crude oil price in US $ per barrel have been retrieved from Thomp-
son Reuters Datastream. The panel hence consists of three time series covering roughly six
and a half years or 1549 observations. The rubber prices have been converted in US $ us-
ing daily exchange rates. The three series are displayed in figure 4.5. Descriptive statistics
are provided in table 4.1. For the policy data, government bills and documents have been
reviewed to determine periods of active AETS, and data on area harvested have been drawn
from FAOSTAT (2017).

Figure 4.5 International crude Oil, synthetic and natural rubber prices, 2011-2017
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Table 4.1 Descriptive statistics of the variables entering the analysis

Statistic N Mean St. Dev. Min Max
Crude oil 1484 78.6 24.7 26.2 112.4
Natural rubber 1484 800 318 436 1743
Synthetic rubber 1484 158907 6621 8821 34367

Source: Own production.
Styrene butadine rubber prices are expressed in CNY per tonne, the Standard Malaysian Rubber
price time series in Ringgit per tonne, and the West Texas Intermediate crude oil price in US$ per
barrel. The estimation was carried out with the logarithmised variables.

4.4.3 Results

Stationarity and order of integration

In order to analyse univariate stationarity and determine the order of integration, all series
are tested for unit roots using the ADF (Dickey and Fuller, 1979) and KPSS (Kwiatkowski
et al., 1992) test routines. All tests bring about substantial evidence for non-stationarity of
the data and for the variables to be I(1) at significance levels of at least 5%. With respect to
the analysis of interdependence of the time series this implies testing for cointegration, that
is testing for the existence of a long term equilibrium relationship.

Seasonality and structural breaks

The standard decomposition revealed no seasonality. Neither did seasonal dummies make
a significant difference. It is conceivable that the standard tests (ADF, KPSS, etc.) are
biased by the structural breaks that we assume to be in the data (i.e. policy regimes). These
structural breaks are captured by the variables capturing the policies. Apart from these,
there are no a priori reasons to expect other structural breaks.

Cointegration

The focus of the cointegration analysis lies on the prices of synthetic and natural rubber, as
well as crude oil. Considering the substantial degree of substitutability between natural and
synthetic rubber and that synthetic rubber is produced directly from crude oil, we would
assume the three series to be cointegrated, with the two types of rubber following to some
extend the Law of One Price (LOP). Both Johansen trace (Johansen, 1991) and eigenvalue,
as well as the residual based Engle-Granger (Engle and Granger, 1987) testing procedures
reveal the presence of a cointegrating relationship at a 5% significance level. The estimated
long-run equation is depicted in table 4.2.
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Table 4.2 ECM Results

Long run equation Short run coefficients
const. pSR

t pCO
t SMST O,t SMSha,t ECTt−1 ∆pCO

t AETSt

(∆)pNR
t −3.19 0.97 0.28 −0.18 −0.31 0.01 0.09 0.00

(0.06) (0.01) (0.01) (0.01) (0.01) (0.00) (0.02) (0.01)
(∆)pSR

t 0.01 0.16 0.02
(0.01) (0.04) (0.01)

Standard errors in parentheses. Results reported here are based on the long-run model 4 (Appendix 7.3), the
estimation in which the effect of the SMS policy is proxied by the development of the area harvested and the tire
exports. The robustness checks for alternative proxies for the SMS variable can be found in appendix 7.3. The full
results of the short-run dynamics are available in appendix 7.4.

Error Correction Model

The coefficients of the error correction term are significant for natural rubber as well as in
the synthetic rubber equation. That is, both rubber prices are cointegrated with adjustment
speeds to deviations from the long run equilibrium of 1% daily in both natural and synthetic
rubber prices. With regards to the AETS policies, we find a small and statistically insignifi-
cant coefficient in both equations. The prices of both natural and synthetic rubber react to
short-run price dynamics of crude oil. These results are also displayed in table 4.2.

4.4.4 Discussion

Validation of conceptual framework

The price for synthetic rubber and the price for natural rubber are correlated positively in
the long run, showing that these two products are gross substitutes at the margin. This is
in line with insights from interviews with tire manufacturers. Based on the considerations in
the theory section (equation 4.10), the expected long run relationship between natural and
synthetic rubber prices was computed as ln pW

a = 1.29 in the absence of policies and estimated
to be 0.97. The similarity in the order of magnitude validates the theoretical model.

Policy effectiveness

The significant coefficients of the short run parameters for the error correction term and the
crude oil price indicate that even though policies have been operational, they did not fully
insulate the natural rubber price from price developments in related markets. Prices are still
transmitted between the natural and synthetic rubber markets. Additionally, the short run
price dynamics of both natural and synthetic rubber are affected by changes in the crude oil
price.

The AETS policy of export quotas was only partially successful in reducing mutual
dependence between natural and synthetic rubber prices on the long run: since the policy to
reduce farm supply is accounted for in the econometric model, the effect of the export quota

73



Can the Tripartite Rubber Council Manipulate International Rubber Prices?

can be derived from the difference between computation and estimation, subject to errors in
the estimation and assumptions in the computation. 1

1+t
≈ 0.97

1.29 = 0.75, so (1 + t) ≈ 1.33.
This is an indicator for the export quota having led to a minor detachment of the natural
rubber price from the synthetic one’s in the long run.
The part of the SMS policy that leads to an increase of domestic use of natural rubber in
tire production over the long run, proxied by SMST O, is negatively correlated with pNR.
Two transmission channels between the export of car tires from Indonesia, Thailand and
Malaysia and the world price for natural rubber are thinkable: first is that the reduction of
the natural rubber supply base in the rest of the world increases global prices, as intended by
the TRC. However, adverse effects are also conceivable: an increase of tire exports can lead
to an oversupply on the world market, leading to a reduction in the tire price which in turn
results in a reduction of the world prices for the inputs. Since the TRC countries contribute
a combined share of 8.4% to this 74 billion US$ market, which makes them collectively the
second largest tire exporter in the world, this is indeed plausible.9 The negative sign of the
corresponding coefficient indicates that this is indeed happening. This means that – if the
TRC’s SMS policy indeed increased tire exports – the policy backfired, being associated with
an actual reduction in the price for natural rubber.
The coefficient capturing the policy’s effect on land expansion, SMSha, has the politically
desired negative coefficient, indicating that the targeted reduction of land area did indeed
lead to an increase in prices.
The domestic rubber sectors have been subject to a dramatic price decrease between 2012
and 2015. While the determinants of the price fall are empirically not yet understood to
a full extent, it is likely that increased production of non-TRC member countries, most
notably India and Vietnam, in conjunction with a demand shift from Europe and the United
States towards China and India, where tire legislation is laxer regarding minimum natural
rubber contents, have contributed to the phenomenon. From a trade economics perspective,
the comparative advantage of TRC member countries in supplying rubber to world markets
appears to be decreasing giving not only rise to rubber sectors of other countries but also to
other domestic sectors. The inefficacy of policy support underscores the strength of the shift
of land use in the region. It is likely that already observable decreases in rubber production
area in favour of oil palm production systems will continue to prevail.

Oil price

The price of crude oil is a proxy for global business cycles and its positive correlation with
the natural rubber price on the long run and the positive short run dynamics indicate that
increased demand for all goods also increases the natural rubber prices on the long run.

9Numbers from http://www.worldstopexports.com/rubber-tires-exports-country (accessed on
06.01.2019).
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4.5 Conclusions

While the effect of policies on the targeted market are often subject to analysis, their effects
on a secondary market are seldom discussed. A prominent example for this at work is the
world market for natural rubber, dominated by three large exporters which are organised
in the Tripartite Rubber Council. The TRC unites Indonesia, Thailand and Malaysia who
jointly restrict raw rubber production and tax exports with the target to increase the natural
rubber price and to insulate it from the interlinked markets of synthetic rubber and crude
oil.

This paper extends the well-established Gardner Model by the TRC’s policy measures
to predict the maximum feasible outcome of the policy. The findings of the theoretical
model suggest that an export tax on intermediate input a introduced by a big exporter
decouples the price of the industrial input pb from the one of the agricultural input, pa. The
same holds for the other policy under review: implementing policies that reduce the total
output of a weakens the reaction of pa to a change in pb. Empirical results are generated
using cointegration and ECM techniques where policies are modelled as potential exogenous
drivers of price transmission and levels.

Results indicate that the prices of natural and synthetic rubber, as well as of crude oil,
are well cointegrated. The markets for both types of rubber are subject to crude oil price
dynamics. The AETS policy of export restriction seems to have partially detached the
dynamics in synthetic rubber and crude oil from the natural rubber price. The SMS policy
of supply restrictions did have two effects: while the slowing down of plantation expansion
increased price levels as intended, the increased domestic consumption seems to have back
fired and led to a decrease of international natural rubber prices. While the implementing
TRC institutions claim that the policies have unambiguously contributed to price increments
in the past, our results indicate that the export reductions did not cause a measurable effect
and the domestic demand stimulus even caused detrimental effects. However, the reduction
of land expansion slightly contributed to the intended target.
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Chapter Five
svars: An R Package for Data-Driven
Identification in Multivariate Time
Series Analysis1

Structural vector autoregressive (SVAR) models are frequently applied to trace the contempora-
neous linkages among (macroeconomic) variables back to an interplay of orthogonal structural
shocks. Under Gaussianity the structural parameters are unidentified without additional (of-
ten external and not data-based) information. In contrast, the often reasonable assumption
of heteroskedastic and/or non-Gaussian model disturbances offers the possibility to identify
unique structural shocks. We describe the R package svars which implements statistical identi-
fication techniques that can be both heteroskedasticity based or independence based. Moreover,
it includes a rich variety of analysis tools that are well known in the SVAR literature. Next to
a comprehensive review of the theoretical background, we provide a detailed description of the
associated R functions. Furthermore, a macroeconomic application serves as a step-by-step
guide on how to apply these functions to the identification and interpretation of structural
VAR models.

Keywords: SVAR models, identification, independent components, non-Gaussian maximum
likelihood, changes in volatility, smooth transition covariance, R

1This chapter is forthcoming in the Journal of Statistical Software and co-authored by Alexander Lange
(AL), who is the lead author, Simone Maxand (SM) and Helmut Herwartz (HH). AL conceptualized the
R package. AL and Bernhard Dalheimer (BD) coded the R package with support from SM. AL, BD and
SM wrote help files and the user manual. HH and SM provided advisory support throughout the package
development. The essay was written by AL, with support from BD and SM. All authors edited and revised
the final manuscript.
Acknowledgement: We thank the editors and two anonymous reviewers for helpful comments and sugges-
tions. Furthermore, we thank Bernhard Pfaff for his kind help. Financial support of the DFG through project
HE 2188/12-1 and 192626868 as well as the Academy of Finland (308628) are gratefully acknowledged.
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5.1 Introduction

Particularly in macroeconometrics, structural vector autoregressive (SVAR) models have be-
come a prominent tool to determine the impacts of different (economic) shocks in a system of
variables. Within these models, the unobserved structural shocks represent information that
is hidden in the reduced form vector autoregressive (VAR) model. Nevertheless, analysts
might be interested in the system’s reaction to exactly this type of isolated shocks, which is
commonly visualized by means of impulse-response functions. For instance, policy makers
could be interested in revealing the effects of an unexpected interest rate cut. Estimating the
reduced form VAR by means of least squares (LS) or maximum likelihood methods (ML) is
straightforward (see, e.g., Lütkepohl, 2005), however, identifying the non-unique structural
form is a controversial topic in the SVAR literature.

Beginning with the pioneering work of Sims (1980), two main types of identification
strategies have been developed. On the one hand, following Sims (1980) original ideas such
strategies refer to economic theory. Theory based methods implement economic restrictions
(e.g., short-run restrictions (Sims, 1980), long-run restrictions (Blanchard and Quah, 1989)
or specific sign patterns (Uhlig, 2005)) a-priori. On the other hand, statistical identifica-
tion methods which have been developed more recently exploit the informational content of
specific data features (heteroskedasticitiy of structural shocks, uniqueness of non-Gaussian
independent components). The R package svars, which we describe in this paper, focuses on
these statistical methods to identify the structural shocks.

The R (R Core Team, 2017) archive network comprises several widely applied packages
for multivariate time series models and, in particular, for analyzing VAR models. The vars
package (Pfaff, 2008) contains estimation techniques for reduced form VAR models, and
functions to determine the lag order and to perform several diagnostic tests. Moreover, the
vars package allows for the estimation of a basic structural form by means of theory-based
short- and long-run restrictions. Further R packages for multivariate time series analysis
and VAR estimation are tsDyn (Stigler, 2010) and MTS (Tsay, 2015). To the authors’
knowledge, currently only the VARsignR package (Danne, 2015) contains functions for SVAR
identification by means of theory-based sign restrictions.

Given the lack of implementations of statistical identification techniques in R, the pack-
age svars has been explicitly developed to fill this gap by providing various recent statistical
methods to estimate SVAR models. These methods build upon distinct but not mutually
exclusive statistical properties of the data (i.e., covariance changes and the uniqueness of
independent non-Gaussian distributed structural shocks). The svars package supports six
identification techniques. Three identification methods make use of the assumption of het-
eroskedastic shocks, i.e., the identification (i) via changes in volatility (Rigobon, 2003), (ii)
via smooth transitions of covariances (Lütkepohl and Netsunajev, 2017b) and (iii) via gen-
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eralized autoregressive conditional heteroskedasticity (GARCH) (Normadin and Phaneuf,
2004; Bouakez and Normandin, 2010). Three further identification methods connect to the
uniqueness of non-Gaussian independent components, namely the detection of least depen-
dent innovations based on (iv) Cramér-von Mises (CVM) statistics (Herwartz, 2018), (v)
the distance covariances (Matteson and Tsay, 2017) and (vi) a parametric non-Gaussian ML
approach (Lanne et al., 2017b).

By offering a variety of identification methods, the svars package can be applied in di-
verse data settings. Additionally, it extends the existing pool of SVAR techniques in R with
more recent bootstrap procedures, further statistics and hypothesis tests directly related to
inference in SVAR models. In this sense, the svars package is designed as a complete tool-
box for the structural analysis of multivariate time series. Based on objects from reduced
form estimations, svars is compatible with other packages such as vars, tsDyn and MTS.
Moreover, computationally demanding modules are fully implemented in C++ and linked
to R using the Rcpp (Eddelbuettel and François, 2011) and RcppArmadillo (Eddelbuet-
tel and Sanderson, 2014) libraries. The package is available on CRAN at https://cran.r-
project.org/package=svars.

The article is organized as follows: Section 5.2 outlines the SVAR model and the alter-
native identification methods. In Section 5.3, we describe bootstrap methods and further
diagnostic tools for SVAR analysis. Section 5.4 details the package design, and Section 5.5
provides an illustrative application of two identification schemes to a real world dataset.
Lastly, a summary and an outlook on future extensions of the svars package complete this
article.

5.2 Structural vector autoregressive models

Consider a K-dimensional VAR model of order p

yt = µ + A1yt−1 + ... + Apyt−p + ut, (5.1)

= µ + A1yt−1 + ... + Apyt−p + Bεt, t = 1, ..., T, (5.2)

where yt = [y1t, ..., yKt]⊤ is a vector of observable variables, Ai, i = 1, . . . , p, are (K × K)
coefficient matrices, and intercept parameters are collected in µ. We focus on the case of time
invariant deterministic terms for notational clarity. Model augmentation with time-varying
deterministic terms (e.g., breaks, linear trends), however, is straightforward. Furthermore,
the VAR model is stationary (invertible) by assumption. The vector ut consists of reduced-
form residuals, which are serially uncorrelated with E(ut) = 0 and Cov(ut) = Σu. The
nonsingular matrix B captures the instantaneous effects of the structural shocks εt = B−1ut
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on the variables of the system.
In the following, we briefly discuss the identification problem in SVAR analysis. Subsequently,
we present six alternative statistical approaches to uniquely determine the structural shocks.
Finally, we provide a short guidance on how to choose between these alternative identification
approaches.

5.2.1 The identification problem

Cross-equation relations between the reduced-form residuals in Equation 5.1 are characterized
by the covariance matrix

Cov(ut) = Σu = BΣεB
⊤, (5.3)

where the covariance of the structural shocks Cov(εt) = Σε is a diagonal matrix. Thus,
structural shocks are uncorrelated, which enables a meaningful impulse-response analysis
(Lütkepohl, 2005). Without any further model specification, Equation 5.3 holds for every
matrix B which decomposes the covariance matrix Σu. Hence, additional restrictions are
necessary to identify a (unique) matrix B.2 In this paper, we focus on identification tech-
niques which use the underlying data structure to determine the structural matrix. After
estimating the model in Equation 5.1 by means of LS or ML methods, the resulting reduced
form residual estimates ût and the corresponding covariance estimate Σ̂u provide the start-
ing point for the subsequent identification techniques. The following two Sections introduce
the statistical identification methods which constitute the core functions of the svars package.

5.2.2 Identification by means of heteroskedastic innovations

Time series are often characterized by time-varying covariance structures. Therefore, it is
tempting to unravel the structural relationships by means of such changes in the second
order moments (see, e.g., Sentana and Fiorentini, 2001; Rigobon, 2003). The svars package
includes three alternative heteroskedasticity based SVAR identification schemes. The first
approach is built upon unconditional shifts in the covariance (Rigobon, 2003), while the
second procedure allows for a smooth transition between the covariance regimes (Lütkepohl
and Netsunajev, 2017b). The third scheme implements the identification of the structural
shocks via conditional heteroskedasticity (Normadin and Phaneuf, 2004).

2The identification problem is described in more detail, for instance, in Chapter 1 of Lütkepohl (2005).
Kilian and Lütkepohl (2017) resume a variety of traditional and more recent methods to identify the structural
shocks.
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5.2.2.1 Changes in volatility (CV)

Rigobon (2003) uses the presence of shifts in the time series’ variance at known time points
for the identification of structural shocks. He considers a model of exogenous covariance
changes. More precisely, the changes of the covariance matrix occur at prespecified break
dates implying

E(utu
⊤
t ) = Σt = Σu(m) for m = 1, ..., M, t = 1, . . . , T.

Here, the index m = 1, . . . , M indicates the respective variance regime. In the most simple
framework of two volatility states (i.e., M = 2) with a structural break at time point Tsb ∈
{1, . . . , T}, the reduced form covariance matrix is

E(utu
⊤
t ) =


Σ1 for t = 1, ..., Tsb − 1

Σ2 for t = Tsb, ..., T,

where Σ1 ̸= Σ2. The two covariance matrices can be decomposed as Σ1 = BB⊤ and Σ2 =
BΛB⊤, where Λ is a diagonal matrix with diagonal elements λii > 0, i = 1, ..., K. The
matrix Λ formalizes the change of the variance of structural shocks εt in the second regime.
In other words, the structural shocks have unit variance in the first regime, and variances
λii, i = 1, . . . , K, in the second regime. The structural shocks are uniquely identified if all
diagonal elements in Λ are distinct. Under the assumption of Gaussian residuals ut, the
log-likelihood function for the estimation of B and Λ is

log L = T
K

2
log 2π − Tsb − 1

2
[
log det(BB⊤) + tr

(
Σ̂1(BB⊤)−1

)]
− T − Tsb + 1

2
[
log det(BΛB⊤) + tr

(
Σ̂2(BΛB⊤)−1

)]
, (5.4)

where Σ̂1 and Σ̂2 are retrieved from estimated residuals ût, respectively, as

Σ̂1 = 1
Tsb − 1

Tsb−1∑
t=1

ûtû
⊤
t and Σ̂2 = 1

T − Tsb + 1

T∑
t=Tsb

ûtû
⊤
t .

For the numerical log-likelihood optimization of (5.4), the initial matrix B is the lower trian-
gular decomposition of T −1∑T

t=1 ûtû
⊤
t , and the initial matrix Λ is set to the identity matrix.

Lanne and Lütkepohl (2008) introduce an iterative procedure to improve the estimation
precision of this routine. The matrices B̃ and Λ̃, which are obtained from maximizing the
log-likelihood function, are used for iterative generalized least squares (GLS) estimation of
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the deterministic and autoregressive parameters

β̂ = vec[µ̂, Â1, ..., Âp]

=

Tsb−1∑
t=1

(
ZtZ

⊤
t ⊗ (B̃B̃⊤)−1

)
+

T∑
t=Tsb

(
ZtZ

⊤
t ⊗ (B̃Λ̃B̃⊤)−1

)−1

×

Tsb−1∑
t=1

(
Zt ⊗ (B̃B̃⊤)−1

)
yt +

T∑
t=Tsb

(
Zt ⊗ (B̃Λ̃B̃⊤)−1

)
yt

 ,

where Z⊤
t = [1, y⊤

t−1, ..., y⊤
t−p]. Then, the GLS estimator β̂ is used to update the covariance

estimates by means of ût = yt − (Z⊤
t ⊗ IK)β̂. This algorithm iterates until the log-likelihood

converges. Furthermore, standard errors for the structural parameters can be obtained from
the square root of the inverted information matrix (Hamilton, 1994).
Identification through changes in volatility is conditional on the determination of the variance
regimes. If available, the analyst might use external information for the selection of suitable
break points (Tsb). Typically these are extraordinary events in history which can be associated
with a change in data variation (see, e.g., Rigobon and Sack, 2004). Alternatively, the model
might be evaluated conditional on a range of alternative break point candidates from which
the analyst selects the model with the highest log-likelihood as described in Lütkepohl and
Schlaak (2018).

5.2.2.2 Smooth transition (co)variances (ST)

The implementation of identification via smooth transition covariances follows the descrip-
tions in Lütkepohl and Netsunajev (2017b) and generalizes the identification via changes in
volatility. The covariance matrix of the error terms ut consists of several volatility states, and
the transition from one state to another is formalized by means of a non-linear function. For
two volatility regimes with distinct covariance matrices Σ1 and Σ2, the covariance structure
at time t is

E(utu
⊤
t ) = Ωt = (1 − G(st)) Σ1 + G(st)Σ2, t = 1, . . . , T. (5.5)

In (5.5), G(·) is the transition function determined by the transition variable st. While the
transition variable is usually deterministic (e.g., st = t), the model also allows for stochastic
transition variables, for instance, lagged dependent variables (see Lütkepohl and Netsunajev,
2017b, for more details). The most frequently employed transition function is the logistic
function proposed by Maddala (1977), which is of the form

G(γ, c, st) = [1 + exp(− exp(γ)(st − c))]−1 . (5.6)

The coefficient γ determines the slope of the function and c is the time point of transition.
Based on the covariance structure in Equation 5.5 and Equation 5.6, and the assumption of
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normally distributed residuals ut, the log-likelihood function reads as

log L = T
K

2
log 2π − 1

2

T∑
t=1

log det(Ωt) − 1
2

T∑
t=1

u⊤
t Ω−1

t ut. (5.7)

Grid optimization enables the determination of the transition parameters γ and c. Lütkepohl
and Netsunajev (2017b) suggest an iterative procedure for every pair of parameters (γ, c).
The first step is the maximization of the log-likelihood in (5.7) with respect to the structural
parameters B and Λ. In the second step, the estimated matrices B̃ and Λ̃ are used to
re-estimate the reduced form VAR parameters by means of GLS estimation

β̂ =
(
(Z⊤

t ⊗ IK)WT (Zt ⊗ IK)
)−1

(Z⊤
t ⊗ IK)WT y,

where WT is a blockdiagonal (KT × KT ) weighting matrix

WT =


Ω−1

1 · · · 0
... . . . ...
0 · · · Ω−1

T

 .

The GLS step obtains β̂ to update the covariance estimates by means of ût = yt −(Z⊤
t ⊗IK)β̂.

The two steps are performed until the log-likelihood converges. The iterative procedure is
evaluated at every parameter pair (γ, c) within a prespecified range. The parameter pair
which maximizes the log-likelihood in Equation 5.7 is considered to provide the best estimate
for the true transition. For a more detailed discussion of the parameter choice see Lütkepohl
and Netsunajev (2017b).

5.2.2.3 Conditional heteroskedasticity (GARCH)

As proposed by Normadin and Phaneuf (2004), Lanne and Saikkonen (2007) and Bouakez
and Normandin (2010) structural shocks are unique if their conditional variances are of the
GARCH type. For the formal exposition let Ft denote a filtration that summarizes systemic
information which is available until time t. Accordingly, the time-varying covariance can be
represented as

E(utu
⊤
t |Ft−1) = Σt|t−1 = BΛt|t−1B

⊤, (5.8)

where
Λt|t−1 = diag(σ2

1,t|t−1, ..., σ2
K,t|t−1) (5.9)

is a (K × K) matrix with GARCH implied variances on the main diagonal. In the context of
SVAR identification typically low order GARCH(1,1) specifications are assumed, such that
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the individual variances exhibit a dynamic structure as

σ2
k,t|t−1 = (1 − γk − gk) + γkε2

k,t−1 + gkσ2
k,t−1|t−2, k = 1, .., K. (5.10)

Higher-order GARCH structures are rarely employed in practice, even though this can be
done in principle. Under suitable distributional and parametric restrictions, γk > 0, gk ≥ 0
and γk + gk < 1, the marginal GARCH processes εk,t are covariance stationary (Milunovich
and Yang, 2013). Sentana and Fiorentini (2001) have shown that the structural parameters
in B are uniquely identified, if there are at least K − 1 GARCH-type variances present in
Λt|t−1 . The parameters γk and gk can be estimated by means of standard univariate ML
approaches. The multivariate Gaussian log-likelihood to obtain the structural parameters in
B is

log L = T
K

2
log 2π − 1

2

T∑
t=1

log det(Σt|t−1) − 1
2

T∑
t=1

u⊤
t Σt|t−1ut. (5.11)

For the practical implementation of identification through patterns of conditional heteroskedas-
ticity, we follow the approach suggested by Lütkepohl and Milunovich (2016), and estimate
the parameters in (5.10) and (5.11) iteratively until the log-likelihood in (5.11) converges.

5.2.3 Identification through independent components

As implied by a result of Comon (1994), independence of the components of εt could serve
to identify the matrix B if at most one component εit exhibits a Gaussian distribution.
Furthermore, partial identification of the non-Gaussian components is possible if the system
contains multiple Gaussian components (cf. Maxand, 2019). The svars package implements
three distinct approaches for identification by means of independent components. Referring
to principles of Hodges-Lehman estimation (HL estimation, Hodges and Lehmann, 2006),
the first two identification strategies allow for the detection of least dependent structural
shocks by the minimization of nonparametric dependence criteria. More specifically, the
first technique reveals the structural shocks by minimizing the CVM distance of Genest
et al. (2007). Following a suggestion of Matteson and Tsay (2017), the distance covariance
statistic of Székely et al. (2007a) is employed as a nonparametric independence diagnostic
for the second estimator. The third identification scheme is a fully parametric ML approach
for detecting independent Student-t distributed shocks (Lanne et al., 2017b).

5.2.3.1 Least dependent innovations build on Cramér-von Mises statistics (CVM)

Under Gaussianity, the decomposition factor B of the covariance matrix Σu is not unique as
Gaussian random vectors do not change their joint distribution under rotation. In contrast,
assuming not more than one Gaussian distributed component εit in εt, the structural matrix
B can be uniquely determined. Introducing the nonparametric identification scheme, let D
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denote a lower triangular Choleski factor of the covariance matrix of the reduced-form errors,
Σu = DD⊤, which links the structural and reduced form errors by εt = D−1ut. Further
candidate structural shocks can be generated as

ε̃t = Qεt = QD−1ut, (5.12)

where Q is a rotation matrix such that Q ̸= IK , QQ⊤ = IK . The rotation matrix could be
parameterized as the product of K(K − 1)/2 distinct forms of orthogonal Givens rotation
matrices. In the case of K = 3, for instance, Q(θ) is defined as

Q(θ) =


1 0 0
0 cos(θ1) − sin(θ1)
0 sin(θ1) cos(θ1)

×


cos(θ2) 0 − sin(θ2)

0 1 0
sin(θ2) 0 cos(θ2)

×


cos(θ3) − sin(θ3) 0
sin(θ3) cos(θ3) 0

0 0 1

 ,

with rotation angles 0 ≤ θi ≤ π, i = 1, 2, 3. By definition, the random vector ε̃t in Equation
5.12 is a rotation of εt. The set of possible structural matrices B(θ) = D Q(θ) is defined in
terms of the Choleski factor D and the vector of rotation angles θ of the Givens matrices
Q(θ).
To avoid any restrictive assumption on the distribution of εt, nonparametric independence
tests are applied to measure the degree of dependence. For instance, the copula-based CVM
distance of Genest et al. (2007) has been successfully applied in the SVAR literature (Herwartz
and Plödt, 2016a; Herwartz, 2018) to assess mutual dependence. The CVM distance is

Bθ =
∫

(0,1)K

[√
T

(
C(ε̃) −

K∏
i=1

U(ε̃i)
)]2

dε̃, (5.13)

where C is the empirical copula and U is the distribution function of a uniformly distributed
variable on {1/T, . . . , T/T}. The CVM algorithm provides a matrix estimate B̂ such that the
rotated structural shocks ε̃t minimize the CVM dependence criterion. Hence, the obtained
structural shocks are least dependent according to the statistic in (5.13) and the correspond-
ing structural matrix B̂ is the HL estimator. Standard errors for B̂ are obtained by means
of bootstrap procedures as presented in Section 5.3.6.

5.2.3.2 Least dependent innovations build on distance covariance (DC)

There is a variety of nonparametric criteria available to measure the degree of dependence
between random variables, one of which, namely the CVM distance, has been described
before. The ICA algorithm by Matteson and Tsay (2017) provides a matrix estimate B̂ such
that the respective structural shocks ε̃t = B̂−1ût minimize the distance covariance of Székely
et al. (2007a), which we denote as UT (ε̃t), i.e., the elements in ε̃t are least dependent according
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to UT (.). Similar to the procedure building on the CVM statistic, the set of possible structural
matrices B(θ) is defined in terms of the Choleski factor D and the vector of rotation angles
θ of Q(θ). The rotation angles θ̃ = argminθ UT (ε̃t(θ)) determine the estimated structural
matrix B̂ = B(θ̃).3 In the svars package, we take advantage of the function steadyICA from
the R package steadyICA (Risk et al., 2015) to estimate B̂. The minimum is determined by
means of a gradient algorithm.

5.2.3.3 Non-Gaussian maximum likelihood (NGML)

The identification technique described by Lanne et al. (2017b) is also based on the assumption
of non-Gaussian structural error terms. They propose ML estimation to determine the set of
independent structural innovations, which are assumed to exhibit a Student t-distribution.
Moreover, Lanne et al. (2017b) suggest a three-step estimation method for computationally
demanding situations. The first step consists of LS estimation of the VAR parameters β =
vec[µ, A1, ..., Ap] and of the reduced form residuals ut(β̂) = yt−µ̂−Â1yt−1, ..., −Âpyt−p. In the
second step the log-likelihood function is maximized conditional on the first step estimates
β̂. The log-likelihood function is

log L(δ) = log L(β̂, δ) = T −1
T∑

t=1
lt(β̂, δ), (5.14)

where
lt(β̂, δ) =

K∑
i=1

log fi(σ−1
i ′iB(b)−1ut(β̂); dfi) − log det(B(b)) −

K∑
i=1

log σi,

and ′i is the i-th unit vector. The parameter vector of the log-likelihood function is composed
of β̂ and δ = (b, σ, df). Regarding the latter, b is a K(K − 1) × 1 vector which contains the
off-diagonal elements of the covariance decomposition matrix B. The parameters σi and dfi

are the scale and the degrees of freedom parameters of the density function fi of a Student
t-distribution, respectively. In the third step, the parameter vector δ is replaced by the
estimate δ̃ and the log-likelihood

log L(β) = log L(β, δ̃) = T −1
T∑

t=1
lt(β, δ̃)

is maximized.

5.2.4 Choice of an adequate identification technique

In the face of a variety of statistical approaches available to model latent structural relation-
ships, method selection becomes an important step of statistical identification. To facilitate

3For details on the exact minimization procedure and the empirical definition of the dependence measure
we refer to Matteson and Tsay (2017).
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this selection step Table 5.1 provides an overview of the assumptions on the error terms
εt within the alternative identification models. Estimating the structural parameters by
means of heteroskedasticity based approaches necessitates the corresponding type of covari-
ance structure. Contrarily, identification through independent components is only possible
in non-Gaussian distributional frameworks. Note that we distinguish between nonparametric
models (i.e., CVM and DC) where no further specification of the distribution of the innova-
tions is required and fully parametric ML approaches.

Model

Assumptions on
the variance of εt the distribution of εt

Homoskedasticity Heteroskedasticity Gaussian Non-Gaussian
Unconditional Conditional Arbitrary t-distribution

Heteroskedasticity
CV ✓ ✓
ST4 ✓ ✓ ✓
GARCH ✓ ✓

Independence
CVM ✓ ✓
DC ✓ ✓
NGML ✓ ✓

Table 5.1 Overview of identification models and respective underlying assumptions
on the error term εt.

A more detailed discussion on method selection in the context of identification via het-
eroskedasticity can be found in Lütkepohl and Netsunajev (2017a) and Lütkepohl and Schlaak
(2018). Moreover, Herwartz et al. (2019) compare heteroskedasticity and independence based
models in a large scale simulation study. They show that identification by means of covariance
changes provides precise estimation results if the log-likelihood is correctly specified, whereas
under (co)variance misspecification such identification schemes lack efficiency or might suffer
from estimation bias. In contrast, simulation based evidence suggests that identification via
independent components is more robust with respect to alternative distributional frameworks
and heteroskedasticity as long as the innovations are non-Gaussian.

5.3 SVAR tests, tools and bootstrap methods

As a basis for the six identification techniques, the statistical analysis of SVAR models re-
quires a diagnostic analysis of the underlying data structure. The presented package com-
prises two types of data-driven procedures where the first group assumes heteroskedasticity
and the second one non-Gaussianity of the error terms. To decide on Gaussianity of the data
a number of normality tests are available in respective R packages (see e.g., normtest and

4Depending on the choice of the transition variable, the ST model can capture unconditional as well as
conditional heteroskedasticity (Lütkepohl and Netsunajev, 2017b).
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ICtest, Gavrilov and Pusev, 2015; Nordhausen et al., 2018). Furthermore, the svars pack-
age contains several useful tests for SVAR analysis which have not yet been implemented in
R. Next we describe the diagnostics and discuss several tools which support the economic
interpretations of SVAR estimation results.

5.3.1 Tests for structural breaks

As described in Section 5.2, identification based on changes in volatility presumes at least
one break point to occur in the covariance structure. To detect different types of breaks in
the data, several tests that have been implemented in the strucchange package (Zeileis et al.,
2002) are accessible for VAR analysis via the method stability() of the vars package. In
the following, we consider two additional types of multivariate Chow tests, the sample split
and the break point test. The sample split test addresses the null hypothesis of constant VAR
parameters µ and Ai, i = 1, 2, . . . , p. The break point test works similarly, but also tests if
the covariance matrix of the residuals ut is constant over time (Lütkepohl and Kraetzig,
2004, Chapter 3). To implement suitable likelihood ratio statistics, the VAR is estimated
conditional on the full sample of T observations and conditional on the first T1 = Tsb − p − 1
and the last T2 = T − p − Tsb observations with Tsb indicating the break point. The resulting
residuals are denoted by ût, û

(1)
t and û

(2)
t . Then, the sample split and break point test statistic

are defined, respectively, as

λSP = (T1 + T2)
{

log det(Σ̂1,2) − log det
[( 1

T1 + T2
(T1Σ̂1 + T2Σ̂2)

)]}
(5.15)

and
λBP = (T1 + T2) log det(Σ̂(1,2)) − T1 log det(Σ̂1) − T2 log det(Σ̂2), (5.16)

where the covariance estimators are

Σ̂(1,2) = 1
T1

T1∑
t=1

ûtû
⊤
t + 1

T2

T2∑
t=T −T2+1

ûtû
⊤
t ,

Σ̂1,2 = 1
T1 + T2

 T1∑
t=1

ûtû
⊤
t +

T2∑
t=T −T2+1

ûtû
⊤
t

 ,

Σ̂1 = 1
T1

T1∑
t=1

û
(1)
t û

(1)⊤

t , and Σ̂2 = 1
T2

T∑
t=T1+1

û
(2)
t û

(2)⊤

t .

Candelon and Lütkepohl (2001) show that both test statistics λBP and λSP converge to a
non-pivotal asymptotic limit distribution. Hence, bootstrap procedures are a natural device
to obtain critical values for the statistic at hand.
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5.3.2 Testing for identical diagonal elements

Since the structural shocks are estimated by the volatility models under the assumption
that the variance of the structural shocks change differently, respective diagnostic tests are
frequently employed in the SVAR literature (see, e.g., Herwartz and Plödt, 2016b; Lütkepohl
and Velinov, 2016; Lütkepohl and Netsunajev, 2017a). A suitable Wald statistic to test the
null hypothesis of proportional variance shifts, H0 : λii = λjj is defined as

λW,ij = (λii − λjj)2

Var(λii) + Var(λjj) − 2Cov(λii, λjj)
∼ χ2

(2), (5.17)

where parameter estimates and (co)variances obtain from the ML estimation. The null
hypothesis is rejected for large values of λW,ij.

5.3.3 Test for overidentifying restrictions

The non-Gaussian ML and heteroskedasticity based models rest on a stylized log-likelihood
optimization, which also allows for restricting the structural parameter space. Subsequently,
the implied restrictions can be tested by means of likelihood ratio statistics

λLR = 2
[
log L

(
vec(B̃)

)
− log L

(
vec(B̃r)

)]
∼ χ2

(N), (5.18)

where B̃ is the unrestricted ML estimator as defined in Equation 5.4, Equation 5.7 or Equa-
tion 5.14. Moreover, B̃r denotes the restricted ML estimator, and N is the number of
restrictions. The null hypothesis that the restricted model holds is rejected for large values
of λLR (Lütkepohl, 2005).

5.3.4 Test on joint parameter significance

To test joint hypotheses of parameter significance for non likelihood based models as in
Herwartz (2018) the package provides a χ2-test. The statistic for testing a number of J

linearly independent hypotheses is defined as

λJS =
(
Rvec(B̂) − r

)⊤ [
Ĉov

(
vec(B̂∗∗)

)]−1 (
Rvec(B̂) − r

)
≈ χ2

(J), (5.19)

where R is a known J × K2 dimensional selection matrix of rank J , and r is a known J × 1
vector, which represents the considered restrictions, such that the composite null hypothesis
is H0 : Rvec(B) = r. The matrix B̂∗∗ is the bootstrap version of the covariance decomposition
matrix, and can be obtained from one of the bootstrap procedures described in Section 5.3.6
below.
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5.3.5 Tools for SVAR analysis

The identified structural matrix B can help capturing the dynamic and instantaneous im-
pacts of the structural shocks within the set of variables under consideration. Several tools
to analyze these relations are described, for instance, in Kilian and Lütkepohl (2017) and
Lütkepohl (2011). The svars package provides impulse-response functions, forecast error
variance decompositions as well as historical decompositions.

Impulse-response functions

Impulse-response functions describe the impact of isolated unit shocks on the variables of the
system with respect to a certain response delay (e.g., the zero delay gives the instantaneous
impact). For the model formulation in Equation 5.1 the response matrices can be derived as
follows (see, e.g., Lütkepohl, 2005)

A(L)yt = µ + Bεt

yt = A(L)−1µ + A(L)−1Bεt

= ν + Φ(L)Bεt = ν +
∞∑

i=0
ΦiBεt−i = ν +

∞∑
i=0

Θiεt−i,

where ν is the unconditional mean of the series and A(L) = I − A1L − A2L
2 − . . . − ApLp.

The elements of Θi := ΦiB can be interpreted as the responses of the system to shocks εt

which summarize the informational content of dynamic parameters in Φi, i = 1, 2, 3, . . . and
of the structural matrix B. In particular, Θ0 = B.

Forecast error variance decompositions

Forecast error variance decompositions (FEVD) highlight the relative contribution of each
shock to the variation a variable under scrutiny. For the multivariate series yt, the corre-
sponding h-step ahead forecast error is yt+h −yt|t(h) = Θ0εt+h + . . .+Θhεt+1, and the forecast
error variance of the k-th variable is σ2

k(h) = ∑h−1
j=0 (Θ2

k1,j + . . . + Θ2
kK,j) (Lütkepohl, 2005).

Since Σε = IK holds by assumption, the relative contribution of shock εit to the h-step
forecast error variance of variable ykt is

FEV Dki(h) = (Θ2
ki,0 + . . . + Θ2

ki,h−1)/σ2
k(h).

Historical decompositions

Further information on the contribution of structural shocks to a variable of interest can be
drawn from historical decompositions. The contribution of shock εjt to a variable ykt in time
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period t is

y
(j)
kt =

t−1∑
i=0

Θkj,iεj,t−i + α
(t)
j1 y0 + . . . + α

(t)
jp y−p+1,

where α
(t)
ji is the j-th row of A

(t)
i , and [A(t)

1 , . . . , A(t)
p ] consists of the first K rows of the

companion form matrix with exponent t, At (see Lütkepohl, 2005, for more details).

5.3.6 Bootstrap methods

Wild bootstrap

Inferential issues (e.g., estimating standard errors of point estimates or confidence intervals
of impulse-responses) might rely on the so-called wild bootstrap approach, which is robust in
case of various forms of heteroskedasticity (Goncalves and Kilian, 2004; Hafner and Herwartz,
2009). For instance, under a fixed-design, bootstrap samples can be constructed as

y∗
t = µ̂ + Â1yt−1 + Â2yt−2 + · · · + Âpyt−p + u∗

t , t = 1, . . . , T, (5.20)

where Âj, j = 1, . . . , p, and µ̂ are LS parameter estimates retrieved from the data. To de-
termine bootstrap error terms u∗

t = ωtût, the scalar random variable ωt is drawn from a
distribution with zero mean and unit variance (ωt ∼ (0, 1)) which is independent of the ob-
served data. A prominent distribution choice for sampling ωt is the Gaussian distribution.
Two other frequently considered approaches are drawing ωt (i) from the so-called Rademacher
distribution with ωt being either unity or minus unity with probability 0.5 (Liu, 1988), and
(ii) from the distribution suggested by Mammen (1993), where ωt = −(

√
5 − 1)/2 with prob-

ability (
√

5 + 1)/(2
√

5) or ωt = (
√

5 − 1)/2 with probability (
√

5 − 1)/(2
√

5).
For the error terms û∗

t , estimated from (5.20), we determine the bootstrap structural pa-
rameter matrix as B̂∗∗ = Σ̂1/2

u Σ̂−1/2
û∗ B̂∗. Here, B̂∗ is a decomposition of Σ̂û∗ derived by the

described identification procedures. The matrices Σ̂1/2
u and Σ̂1/2

û∗ are symmetric eigenvalue
decompositions of Σ̂u and Σ̂û∗ , respectively. Thus, B̂∗∗ provides a factorization of the sample
covariance matrix Σ̂u such that it can be used for inference on the structural parameters as
depicted, for instance, in (5.19).

Moving-block bootstrap

Brüggemann et al. (2016) suggest the moving-block bootstrap for inference in VAR models
characterized by conditional heteroskedasticity. The moving-block bootstrap depends on a
chosen block length ℓ < T , which determines the number of blocks n = T/ℓ needed for data
generation. The (K × ℓ)-dimensional blocks Mi,ℓ = (ûi+1, ..., ûi+ℓ), i = 0, ..., T − ℓ, are laid
randomly end-to-end together to obtain the bootstrap residuals u∗

1, ..., u∗
T . After centering
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the residuals, the bootstrap time series may be constructed recursively as

y∗
t = µ̂ + Â1y

∗
t−1 + Â2y

∗
t−2 + · · · + Âpy∗

t−p + u∗
t , t = 1, . . . , T. (5.21)

It is important to note that asymptotic theory for block bootstrap schemes is typically
derived under the assumption that ℓ → ∞ as T → ∞. Yet, there is no consensus in the
literature on the choice of ℓ in finite samples and, hence, choosing a block length in prac-
tice is not straightforward. In general, the chosen block length should ensure that residuals
being more than ℓ time points apart from each other are uncorrelated. A more thorough
discussion on the choice of the block length can be found in Lahiri (2003). The bootstrap
covariance decomposition B̂∗∗ is determined analogously to the case of wild bootstrap sam-
pling described before. Note that both the wild bootstrap and the moving-block bootstrap
can be implemented either under a fixed-design as in (5.20) or a recursive-design as in (5.21).

Bootstrap-after-bootstrap

Kilian (1998) proposes a bias-corrected bootstrap procedure to account for small sample
biases. By means of the so-called bootstrap-after-bootstrap method, the true underlying
data generating process (DGP) is not approximated by the bootstrap DGP as in Equation
5.20 and Equation 5.21, but rather by means of a bootstrap DGP with bias-corrected VAR
parameters β̂BC = [µ̂BC , ÂBC

1 , ..., ÂBC
p ].

The approach consists of two stages. In the first stage, bootstrap replications for β̂∗ =
[µ̂∗, Â∗

1, ..., Â∗
p] are generated according to Equation 5.20 or Equation 5.21, and bias terms are

approximated as Ψ̂ = ¯̂
β

∗
− β̂. Subsequently, the modulus of the largest root of the companion

matrix associated with β̂ can be calculated, which is denoted by m(β̂). If m(β̂) ≥ 1, β̂BC = β̂

is set without any adjustment. However, if m(β̂) < 1, then the VAR parameters are corrected
such that β̂BC = β̂ − Ψ̂.5

In the second stage, the actual bootstrap samples can be obtained from substituting β̂BC for
β̂ in Equation 5.20 or Equation 5.21. Kilian (1998) shows by means of a simulation study
that in small samples the bootstrap-after-bootstrap method tends to be more accurate than
standard bootstrap approaches. Kilian and Lütkepohl (2017) provide more insights into the
merits of bias adjustments in resampling, as well as a detailed overview of further bootstrap
approaches in the context of SVAR models.

5.4 Package design

Table 5.2 summarizes the design of the svars package. The package is built around the six core
functions for identification of the structural VAR form (id.cv, id.cvm, id.dc, id.garch,

5The exact bias correction is an iterative procedure and described in Kilian (1998)
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id.ngml, id.st). Moreover, various methods and further diagnostic tools are available for
the resulting objects of class svars which have been described in Section 5.3. In the following,
we describe the mandatory and optional input arguments of the implemented functions in a
detailed manner.

Function or method Class Methods for class Functions for class Description

• Core functions for SVAR identification
⋄ SVAR models refered to (co)variance changes

id.cv svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks via unconditional

(co)variance shifts.

id.garch svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks through conditional

heteroskedasticity.

id.st svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks via smooth

(co)variance transitions.
⋄ SVAR models based on independent components

id.cvm svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks via nonparametric

CVM statistic.

id.dc svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks via nonparametric

distance covariance statistic.

id.ngml svars fevd, irf, hd, mb.boot, − Estimates the structural
print, summary wild.boot shocks via parametric

non-Gaussian ML.
• Functions and methods for SVAR analysis

⋄ Pre-tests and joint significance tests

chow.test chow print, summary − Computes Chow test
types on structural breaks.

stability chowpretest plot, print chow.test − Performs multiple Chow tests
in prespecified range.

js.test
jstest print, summary − Performs chi-square test

on joint parameter
significance.

⋄ Further SVAR statistics

irf svarirf plot, print − Calculates impulse-
response functions.

fevd svarfevd plot, print − Calculates forecast error
variance decomposition.

hd hd plot, print − Computes historical
decomposition.

⋄ Bootstrap procedures

mb.boot sboot plot, ba.boot, js.test − Moving-block bootstrap
print, summary for inferential analysis.

wild.boot sboot plot, ba.boot, js.test − Wild bootstrap
print, summary for inferential analysis.

ba.boot sboot plot, ba.boot, js.test − Bootstrap-after-bootstrap
print, summary for bias correction in

inferential analysis.

Table 5.2 Package design of svars.
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5.4.1 Core functions for SVAR identification

To apply the implemented identification techniques the user needs to provide an estimated re-
duced form VAR or vector error correction model (VECM) object of class varest or vec2var

from the vars package. Alternatively, an object of class nlVar or VECM from the tsDyn pack-
age or the list delivered by the function VAR of the MTS package can serve as an input
argument for id.cv, id.cvm, id.dc, id.garch, id.ngml or id.st. Besides the estimated
VAR objects, the identification procedures allow for further input arguments which differ
across the techniques. In the following, we describe these options separately.

5.4.1.1 SVAR models built on (co)variance changes

For identification by means of changes in volatility the following command can be used

id.cv(x, SB, start = NULL, end = NULL, frequency = NULL, format = NULL,

dateVector = NULL, max.iter = 50, crit = 0.001,

restriction_matrix = NULL).

The function id.cv() requires the specification of a structural break point. Conditional on
the data structure, the user may provide the breakpoint SB in various formats. Firstly, the
sample can be separated into two parts by specifying the breakpoint in either integer or date
formats. Secondly, single time instances can be assigned to a variance regime by passing a
vector consisting of zeros and ones to the function. If the estimation of the reduced form VAR
is based on a non-time series class object (e.g., ts), the user can add the information on the
date and frequency by making use of the parameter dateVector or by specifying start/end

and format/frequency. However, providing time series class objects or specifying dates is
optional and the function also handles conventional observation numbers.

The log-likelihood and VAR coefficients are re-estimated in the algorithm until the log-
likelihood changes by less than the value of crit or the maximum number of iterations
(max.iter) is reached. Additionally, the function id.cv() allows for restricted ML estima-
tion via the input argument restriction_matrix. There are two formats of specifying the
restriction matrix, either pass (i) a K ×K matrix, in which NA indicates unrestricted elements
and 0 a restricted element, or (ii) a K2 × K2 matrix of rank M , where M is the number of
unrestricted coefficients (Lütkepohl, 2005). In this case, unit (zero) values on the main diag-
onal refer to the unrestricted (restricted) coefficients. In case of over-identifying restrictions,
id.cv() estimates the unrestricted and the restricted SVAR to perform the likelihood ratio
test outlined in Section 5.3.3.

The function

id.garch(x, max.iter = 5, crit = 0.001, restriction_matrix = NULL)
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provides model identification if structural shocks exhibit conditional heteroskedasticity. Iden-
tification proceeds in two steps. In the first step K univariate GARCH(1,1) models (see
Equation 5.10) are estimated. In the second step a full, joint ML estimation of the param-
eters in B is performed. These two steps are executed until the multivariate log-likelihood
changes by less than the value of crit or the maximum number of iterations (max.iter) is
reached. Analogously to the id.cv() function, passing a restriction_matrix enables the
user to estimate and test restricted models.

Identification by means of smooth covariance transitions is implemented as

id.st(x, nc = 1, c_lower = 0.3, c_upper = 0.7, c_step = 5, c_fix = NULL,

transition_variable = NULL, gamma_lower = -3, gamma_upper = 2,

gamma_step = 0.5, gamma_fix = NULL, max.iter = 5, crit = 0.001,

restriction_matrix = NULL, lr_test = FALSE),

which entails several input arguments for adjustments. However, the user may run the
function without any further specifications of input arguments only by passing the reduced
form estimated VAR object. Since finding the optimal parameters γ and c as described in
Section 5.2.2.2 is computationally demanding, the id.st function supports parallelization
with nc determining the number of cores used. Grid optimization is optional. By default,
the function searches for the transition point c to be located between 0.3T (c_lower) and
0.7T (c_upper) with a step width of 5 time points (c_step). If the user wants to specify the
transition point in advance, she can pass an observation number to c_fix. Analogously, for
the slope parameter γ the user can either specify a fixed slope parameter gamma_fix, or let
the function optimize the transition coefficient between gamma_lower and gamma_upper.

Conditional on the location (c) and slope (γ) parameter the algorithm consists of an
iterative procedure of log-likelihood optimization and GLS estimation until the improvement
of the log-likelihood is smaller than crit or the maximum number of iterations (max.iter) is
reached. By default, the transition variable corresponds to time, however, the user may choose
another transition variable by passing a numeric vector to transition_variable. Note that
the input argument for the location parameter has to be adjusted to the scale of the transition
variable. Analogously to the previous functions, passing a restriction_matrix enables the
estimation of restricted models. Due to the fact that the smooth transition covariance model
is computationally demanding, it is possible to decide if the function performs a likelihood
ratio test or not by specifying lr_test as either TRUE or FALSE.

5.4.1.2 SVAR models built on independent components

For identifying independent components by means of the CVM distance the function

id.cvm(x, dd = NULL, itermax = 500, steptol = 100, iter2 = 75)
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can be employed. In Section 5.2 we have elaborated on how this approach evaluates a
CVM test for rotated versions of the shocks. We use the implementation of the CVM test in
the package copula (Hofert et al., 2017). The function indepTestSim from the copula package
generates an independent sample to calculate the p-value for the test statistic. The sample is
passed to the svars function id.cvm as argument dd. If dd = NULL the sample is simulated
within the id.cvm function. Simulating the independent sample in advance and passing the
object to the id.cvm function may save computation time if the estimation is repeatedly
applied to the same data set. The estimation of independent components through CVM
statistics proceeds in two steps. The first stage is a global optimization using the differential
evolution algorithm from the DEoptim package (Ardia et al., 2016). In the second stage, the
test statistic is optimized locally around the estimated parameters from the first stage. The
precision of the algorithm can be determined by the input arguments itermax and steptol

at the first stage (for more details see the help file of DEoptim) and iter2 at the second
stage.

The function

id.dc(x, PIT = FALSE)

identifies the structural shocks by means of distance covariance statistics. The implemen-
tation is built on the ICA algorithm from the package steadyICA (Risk et al., 2015). The
function steadyICA therein applies a gradient algorithm to determine the minimum of the
dependence criterion. The option PIT determines if probability integral transformation (PIT)
is applied to transform the marginal densities of the structural shocks prior to the evaluation
of the dependence criterion.

Estimating the structural shocks via non-Gaussian ML estimation is implemented with
the function

id.ngml(x, stage3 = FALSE, restriction_matrix = NULL).

The input argument stage3 indicates if the autoregressive parameters of the VAR model are
estimated by maximizing the log-likelihood function which Lanne et al. (2017b) describe as
the third step of their model. Since this step does not change the result of the estimated
covariance decomposition, and the estimation of the autoregressive parameter is computa-
tionally rather demanding, the default is set to FALSE. Analogously to the functions id.cv,
id.garch and id.st, the user may run a restricted estimation by passing an appropriate
restriction_matrix argument to id.ngml.
All identification functions (id.cv, id.garch, id.st, id.cvm, id.dc, id.ngml) return an ob-
ject of class svars. The summary method for this class returns the estimated impact relation
matrix with standard errors and various further information depending on the chosen identi-
fication method, while print only returns the covariance decomposition. The plot method
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is only applicable to objects from the function id.st and shows the optimized transition
function of the variance from the first to the second volatility regime.

5.4.2 Functions and methods for SVAR analysis

The following functions and methods are built around the cornerstone functions which have
been introduced in the last section. To obtain a user-friendly environment within the svars
package, most of the implementations are feasible only by passing an object of class svars

or sboot and leaving further specifications optional. Moreover, to facilitate compatibility
with other R packages, we refer to the vars package (Pfaff, 2008), and adapt methods for
parameter tests, impulse-response analysis and forecast error variance decompositions.

5.4.2.1 Pre-tests and joint significance tests

For prior analysis of parameter stability, the function

chow.test(x, SB, nboot = 500, start = NULL, end = NULL,

frequency = NULL, format = NULL, dateVector = NULL)

includes two versions of structural break tests. The input argument x needs to be a reduced
form estimation result of class varest, vec2var or nlVar. The time point of the assumed
structural break has to be passed in SB. The user can work with date formats, in the same way
as described for the id.cv() function above. To calculate the p-values and critical values,
the function employs a fixed-design wild bootstrap. The number of bootstrap replications
needs to be provided by nboot. The summary() method returns the results from the sam-
ple split and break point tests. Additionally, the package includes an augmentation of the
stability() method of the vars package (Pfaff, 2008), which provides access to a variety of
parameter stability analysis tools of strucchange (Zeileis et al., 2002). The method has been
extended to contain multivariate Chow tests

stability(x, type = "mv-chow-test", h = 0.15).

By specifying type = "mv-chow-test" and h = 0.15 the test statistics for all possible struc-
tural break points between (h/2)T and (1-h/2)T are calculated. The resulting object of class
chowpretest from stability() can be used as an input argument for x in chow.test()

afterwards without any further input specifications. Subsequently, the function provides the
test results for the structural break at the observation with the corresponding highest break
point test statistic resulting from stability().

After obtaining point- and bootstrap estimates, the user can test joint hypotheses on the
estimated elements in the structural matrix B by means of the function

js.test(x, R, r = NULL),
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where x is an object of class sboot. If r = NULL, the function performs a test of the hypothesis
H0 : Rvec(B) = 0.

5.4.2.2 Further SVAR statistics

Following the descriptions in Section 5.3, impulse-response functions can be calculated by
means of

irf(x, n.ahead = 20)

where x is an object of class svars. The user can specify the time horizon of the impulse-
response functions, which is 20 periods by default. The same input arguments are passed to
calculate forecast error variance decompositions using

fevd(x, n.ahead = 10).

Historical decompositions are calculated by the function

hd(x, series = 1).

By default, the first series, i.e., the series in the first column of the original data set is de-
composed. For all three analysis tools plot methods are available to visualize the resulting
objects.

5.4.2.3 Bootstrap procedures

The bootstrap procedures described in Section 5.3 are implemented in the functions mb.boot,
wild.boot and ba.boot. The required input object x is of class svars. Furthermore, it is
possible to record how often one or multiple bootstrap shocks hold a specific sign pattern.
This helps to evaluate the plausibility of the signs of instantaneous effects as described in
Herwartz (2018). The appearance of specific sign patterns is documented by passing a list of
vectors containing 1 and −1 to the input argument signrest. Every list entry represents the
impact effects of a shock to the variables in the system. Thus, each list entry is of the same
size as the VAR model, i.e., contains K elements. The list can consist of 1 up to K entries,
one for each structural shock. By default, the bootstrap functions evaluate the occurrence of
the sign pattern of the point estimate. The R function for the moving-block bootstrap is

mb.boot(x, design = "recursive", b.length = 15, n.ahead = 20,

nboot = 500, nc = 1, dd = NULL, signrest = NULL, itermax = 300,

steptol = 200, iter2 = 50),
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where the user needs to specify the block length with input argument b.length. As described
in Section 5.3.6 there is no consensus in the literature about the optimal block length in finite
samples. In applied work, however, a typical block length is about 10% of the sample size (see,
e.g., Brüggemann et al., 2016; Lütkepohl and Schlaak, 2019). The wild bootstrap method is
implemented as

wild.boot(x, design = "fixed", distr = "rademacher", n.ahead = 20,

nboot = 500, nc = 1, dd = NULL, signrest = NULL, itermax = 300,

steptol = 200, iter2 = 50).

The user can choose to draw ωt from a Rademacher distribution with distr = "rademacher",
from a Gaussian distribution with distr = "gaussian" or from the distribution suggested in
Mammen (1993) with distr = "mammen". The remaining input arguments for the two boot-
strap functions are identical, e.g., both can be called as fixed-design (design = "fixed") or
as recursive-design (design = "recursive"). Bootstrap impulse-responses are calculated in
the functions for which the horizon needs to be determined via n.ahead. An integer for the
number of bootstrap replications is supplied by the nboot argument. Parallelization is possi-
ble with a suitable choice of nc. The arguments dd, itermax, steptol and iter2 correspond
to the input arguments of the id.cvm model and are only applied if the point estimates have
been derived by this method. Both bootstrap functions return an object of class sboot for
which summary and plot methods can be applied.

Furthermore, the bootstrap-after-bootstrap procedure is implemented as

ba.boot(x, nc = 1).

In contrast to the other bootstrap functions of svars, x is of class sboot, since the function
only performs the bias correction and the second step of the procedure described above in
Section 5.3.6. The necessary results from the first step of the algorithm are determined from
the bootstrap object, which is passed to the function to obtain the most efficient implemen-
tation of this hierarchical bootstrap procedure. The second step bootstrap (after the bias
correction) is executed with exactly the same specifications as in the first stage. Hence, no
further input arguments are needed.

5.5 Example

To illustrate the functions and methods of the svars package, we replicate the empirical results
of Herwartz and Plödt (2016b) obtained through the identification by means of unconditional
covariance shifts (id.cv()). We augment their analysis by further statistics and complement
the analysis with results from identification through independent components using the DC
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approach (id.dc()).6 The main objective of the application in this Section is to present the
usage of the functions rather than discussing the results in depth.
Herwartz and Plödt (2016b) apply identification by means of the CV approach to investigate
the effects of a monetary policy shock on the economy of the United States (US). They
consider three series: the output gap "x", which is defined as the log-deviation of real gross
domestic product (GDP) from the potential output, the inflation "pi" as quarter-on-quarter
growth rates of the GDP deflator and the federal funds rate "i". The data comes from the
Federal Reserve Economic Data (FRED) database of the Federal Reserve Bank of St. Louis.
The time series are sampled at the quarterly frequency and cover the time period from 1965Q1
until 2008Q3. The svars package contains this example data set labeled "USA".

The first step of the analysis is to load the svars package into the workspace. Furthermore,
the ggplot2 (Wickham, 2009) package enables to display the data in a convenient way.

R> library("svars")

R> library("ggplot2")

R> data("USA")

In order to estimate the structural shocks via the id.cv() function, the user has to specify
the time point of the variance shift in advance. An appropriate time point might be found by
visual inspection of the series, historical information or previous analyses. Figure 5.1 depicts
the three time series. Inflation data ("pi") show less fluctuation during the second half of the
data set.

R> autoplot(USA, facets = T) + theme_bw() + ylab('')

Herwartz and Plödt (2016b) determine the break point at 1979Q3 due to a policy shift of the
Federal Reserve Bank which caused a reduction of the volatility in US macroeconomic data
(Stock and Watson, 2003).

The next step of the analysis is the estimation of the reduced form VAR, for instance, by
means of the function VAR() from the vars package. We specify a VAR model with intercept
of order p = 6. After model estimation, we can use the resulting varest object to estimate
the structural form with the function id.cv(). We provide the structural break point with
the function argument SB in ts date format.

R> plain.var <- vars::VAR(USA, p = 6, type = 'const')

R> usa.cv <- id.cv(plain.var, SB = c(1979, 3))

R> summary(usa.cv)
6Estimation via the CVM criterion and DC deliver qualitatively the same results. Identifying independent

components by means of NGML and ST models provide results that are comparable to those obtained from
assuming covariance shifts. Identification via the assumption of GARCH-type variances obtains results which
are qualitatively different from those of all other approaches.
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Figure 5.1 US macroeconomic data.

Identification Results

----------------------

Method: Changes in Volatility

Sample size: 169

Likelihood: -564.2994

Structural Break: At Observation Number 59 during 1979 Q3

Number of GLS estimations: 21

Number of Restrictions: 0

Estimated unconditional Heteroscedasticity Matrix (Lambda):

[,1] [,2] [,3]

x 0.3925906 0.000000 0.000000

pi 0.0000000 0.191641 0.000000

i 0.0000000 0.000000 1.244348

Standard Errors of Lambda:

[,1] [,2] [,3]

x 0.09265819 0.00000000 0.0000000

pi 0.00000000 0.04527264 0.0000000

i 0.00000000 0.00000000 0.2935572
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Estimated B Matrix (unique decomposition of the covariance matrix):

[,1] [,2] [,3]

x 0.61193300 -0.5931964 0.2241237

pi 0.75559400 1.2987520 0.1131134

i -0.02899916 0.1572953 0.7084709

Standard Errors of B:

[,1] [,2] [,3]

x 0.1330924 0.1955350 0.07101215

pi 0.2498466 0.2600376 0.09960245

i 0.1559672 0.1213446 0.07004430

Pairwise Wald Test:

Test statistic p-value

lambda_1=lambda_2 3.80 0.05 *

lambda_1=lambda_3 7.66 0.01 **

lambda_2=lambda_3 12.56 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The summary of the identified object displays the estimated decomposition of the covariance
matrix B̂, as well as the covariance shift matrix Λ̂ and their corresponding standard errors.
Moreover, the summary provides the results of pairwise Wald-type tests for distinct diagonal
elements of Λ̂ which is necessary for unique identification of the structural shocks. In the
present case, all three tests statistics yield a rejection of the null hypotheses of equal diagonal
elements with 10% significance. The ordering of the columns of B̂ is arbitrary and the user
has to arrange them in an economically meaningful way. For instance, Herwartz and Plödt
(2016b) order the columns according to a unique sign pattern which indicates the direction
of the shocks on impact. The code below orders the columns in the same way.

R> usa.cv$B <- usa.cv$B[, c(3, 2, 1)]

R> usa.cv$B[,3] <- usa.cv$B[, 3] * (-1)

R> usa.cv$B_SE <- usa.cv$B_SE[, c(3, 2, 1)]

R> usa.cv$Lambda <- diag(diag(usa.cv$Lambda)[c(3, 2, 1)])

R> usa.cv$Lambda_SE <- diag(diag(usa.cv$Lambda_SE)[c(3, 2, 1)])

R> round(usa.cv$B, 3)
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[,1] [,2] [,3]

x 0.224 -0.593 -0.612

pi 0.113 1.299 -0.756

i 0.708 0.157 0.029

R> round(usa.cv$Lambda, 3)

[,1] [,2] [,3]

x 1.244 0.000 0.000

pi 0.000 0.192 0.000

i 0.000 0.000 0.393

Herwartz and Plödt (2016b) interpret the impact effects in the first column of the matrix B̂

to characterize a demand shock. Similarly, the effects in the second (third) column indicate a
supply (monetary policy) shock. The authors argue that their shock labeling according to the
estmated sign patterns is in line with the relevant literature. Since the matrix Λ̂ represents
the variance of structural shocks in the second regime, Herwartz and Plödt (2016b) interpret
the diagonal elements of Λ̂ such that the supply and monetary policy shocks have relatively
lower variances and the demand shock a higher variance in regime two (i.e., for time instances
t > TSB = 59 or after the second quarter of 1979). The authors compare the results from this
statistical identification scheme with a model structure implied by covariance decomposition
matrix B which is lower triangular by assumption (Sims, 1980). The id.cv() function
enables the user to test for such restrictions by setting up a restriction matrix as described
in the code below.

restMat <- matrix(rep(NA, 9), ncol = 3)

restMat[1, c(2, 3)] <- 0

restMat[2, 3] <- 0

restMat

[,1] [,2] [,3]

[1,] NA 0 0

[2,] NA NA 0

[3,] NA NA NA

R> restricted.model <- id.cv(plain.var, SB = c(1979, 3),

+ restriction_matrix = restMat)

R> summary(restricted.model)

Identification Results

----------------------
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Method: Changes in Volatility

Sample size: 169

Likelihood: -568.6664

Structural Break: At Observation Number 59 during 1979 Q3

Number of GLS estimations: 23

Number of Restrictions: 3

Estimated unconditional Heteroscedasticity Matrix (Lambda):

[,1] [,2] [,3]

x 0.3501948 0.0000000 0.0000000

pi 0.0000000 0.2346854 0.0000000

i 0.0000000 0.0000000 0.9420116

Standard Errors of Lambda:

[,1] [,2] [,3]

x 0.08266738 0.00000000 0.000000

pi 0.00000000 0.05616318 0.000000

i 0.00000000 0.00000000 0.227189

Estimated B Matrix (unique decomposition of the covariance matrix):

[,1] [,2] [,3]

x 0.87988465 0.0000000 0.0000000

pi 0.08137972 1.5306503 0.0000000

i 0.31518384 0.2606745 0.7378484

Standard Errors of B:

[,1] [,2] [,3]

x 0.08638851 0.00000000 0.00000000

pi 0.10334026 0.15169565 0.00000000

i 0.08527442 0.08620187 0.07354585

Pairwise Wald Test:

Test statistic p-value

lambda_1=lambda_2 1.34 0.25

lambda_1=lambda_3 5.99 0.01 **

lambda_2=lambda_3 9.13 <2e-16 ***

---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Likelihood Ratio Test:

Test statistic p-value

8.734 0.033 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Since the structural shocks are just identified by the change in the covariance matrix, any
further restriction on B over identifies the model and makes the restrictions testable. The
function automatically performs a likelihood ratio test in case of such over identifying re-
strictions. The summary depicts the estimation results from the restricted model as well as
the test statistics and p-values. The likelihood ratio test indicates that the null hypothesis
of a lower triangular structural impact matrix has to be rejected at the 5% significance level.
Herwartz and Plödt (2016b) argue that identification by means of zero restrictions according
to a lower triangular matrix lacks economic intuition which we can support with the obtained
diagnostic. Therefore, the unrestricted model should be preferred for further analysis.

The next step is the calculation of impulse-response functions with boostrap confidence
bands to investigate future effects of the economically labeled structural shocks on the vari-
ables included in the model. Moreover, the implemented bootstrap functions allow for an
evaluation of the significance of unique sign patterns in B̂ as described in Herwartz (2018).
We define a list of sign restrictions and label them as demand, supply and monetary policy
shock respectively.

R> signrest <- list(demand = c(1, 1, 1), supply = c(-1, 1, 1),

+ monetary_policy = c(-1, -1, 1))

For illustration, we use the wild bootstrap implemented with a Rademacher distribution,
fixed-design and 1000 bootstrap replications as in Herwartz and Plödt (2016b). To reduce
computation time we parallelize the bootstrap and specify a seed to obtain reproducible
results. The time horizon for the impulse-response analysis has to be determined in advance
using the argument n.ahead.

R> cores <- parallel::detectCores() - 1

R> set.seed(231)

R> usa.cv.boot <- wild.boot(usa.cv, design = "fixed",

+ distr = "rademacher", nboot = 1000, n.ahead = 15,

+ nc = cores, signrest = signrest)

R> summary(usa.cv.boot)
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Bootstrap Results

-----------------

Method: Wild bootstrap

Bootstrap iterations: 1000

Distribution used: rademacher

Design: fixed

Point estimates:

[,1] [,2] [,3]

x 0.2241237 -0.5931964 -0.61193300

pi 0.1131134 1.2987520 -0.75559400

i 0.7084709 0.1572953 0.02899916

Bootstrap means:

[,1] [,2] [,3]

x 0.08562671 -0.51047857 -0.6270604

pi 0.08586727 1.13181279 -0.7800737

i 0.69257452 0.02945994 -0.1839417

Bootstrap standard errors:

[,1] [,2] [,3]

x 0.14112596 0.3093977 0.2501647

pi 0.16608174 0.4580203 0.5958669

i 0.07464771 0.2309445 0.2205195

Identified sign patterns:

=========================

Specified sign pattern:

demand supply monetary_policy

x 1 -1 -1

pi 1 1 -1

i 1 1 1

Unique occurrence of single shocks according to sign pattern:

demand : 64.9 %

supply : 65 %
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monetary_policy : 28.4 %

Joint occurrence of specified shocks: 12.7 %

R> plot(usa.cv.boot, lowerq = 0.16, upperq = 0.84)

The summary reveals that only 12.7% of all bootstrap estimates are in line with all economi-
cally motivated sign patterns jointly. The sign pattern of the monetary policy shock appears
in only 28.4% of all bootstrap samples. Furthermore, the bootstrap means indicate that the
third shock is more in line with the sign pattern of the demand shock. This result is plausible
noting that the point estimate in the lower right corner is close to zero and, therefore, lacks
a significantly positive effect on the interest rate. Figure 5.2 shows the impulse-response
functions of normalized shocks having unit variance in the first regime. Herwartz and Plödt
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Figure 5.2 Impulse-response functions with 68% confidence bands based on 1000
bootstrap replications. Structural shocks identified through unconditional shift in
the covariance structure.

(2016b) argue that the negative reaction of the interest rate to a monetary policy shock after
the initial period is implausible, and puts the interpretation of this shock as a monetary pol-
icy shock into question. The results from the bootstrap support the authors’ argumentation
with regard to the shock labeling.
Furthermore, we can calculate the forecast error variance decomposition to investigate the
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contribution of each shock to the prediction mean squared error of the variables. The fevd()

method creates an object for visual inspection of the forecast error variance decomposition
by means of the plot function.

R> fev.cv <- fevd(usa.cv, n.ahead = 30)

R> plot(fev.cv)

Figure 5.3 depicts the forecast error variance decomposition. It is evident that the monetary
policy shock accounts for more than 50% of the prediction mean squared error of the output
gap, whereas the demand shock constantly accounts for only about 5% of the prediction mean
squared error. Moreover, the demand shock contributes almost 100% of the forecast error
variance of the interest rates on impact. Thus, the forecast error decompositions hint at a
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Figure 5.3 Forecast error variance decomposition for 30 periods. Structural shocks
identified by means of the CV model.

shock labeling which differs from the one developed above on the basis of sign patterns of B̂.
Furthermore, they confirm the conclusion of Herwartz and Plödt (2016b) that the empiri-
cal model fails to identify a monetary policy shock according to its theoretical effect patterns.

We re-estimate the structural form with the DC method under the assumption of inde-
pendent non-Gaussian shocks.7

R> usa.dc <- id.dc(plain.var, PIT = FALSE)

R> summary(usa.dc)
7Component-wise kurtosis and skewness tests as implemented in the package normtest (Gavrilov and

Pusev, 2015) as well as fourth-order blind identification based tests from the package ICtest (Nordhausen
et al., 2018) show no indication for Gaussian components.
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Identification Results

----------------------

Method: Distance covariances

Sample size: 169

Estimated B Matrix (unique decomposition of the covariance matrix):

[,1] [,2] [,3]

x 0.541926899 -0.36707854 0.1964223

pi 0.508827712 0.92428628 0.1967426

i 0.003560267 0.02576151 0.8194037

The estimated structural matrix differs from the estimated matrix obtained from the CV
approach. The matrix identified by means of the DC method does not allow for a labelling
of the shocks that accords with a unique sign pattern. Nevertheless, it is possible to label
the shocks in a meaningful way, since one could assume that the loading of the structural
shocks on reduced form errors is stronger for own effects in comparison with cross variable
effects. The finding that a positive monetary policy shock has a positive effect on output
and inflation might seem to be at odds with intuition at first, although this mechanism can
be observed rather frequently in the literature (e.g., Lütkepohl and Netsunajev, 2017a) and
is usually referred to as a so-called price puzzle (Eichenbaum, 1992). Conditional on the
estimate B̂, we construct the historical decomposition. As an example, we decompose the
output into its underlying determinants over the sample period. In the data set output is
the first column and, hence, series = 1 is the provided option.

R> hd.cv.1 <- hd(usa.dc, series = 1)

R> plot(hd.cv.1)

Figure 5.4 indicates that output fluctuations are mainly explained by demand shocks rather
than supply or monetary policy shocks.

5.6 Summary

The R package svars provides a vast set of estimation techniques that build on several as-
sumptions on the data and a variety of input arguments. In the present article we describe
how the implemented identification techniques for SVAR models depend on assumptions of
heteroskedasticity and independence coupled with non-Gaussianity to retrieve the structural
shocks from the reduced form VAR model. Furthermore, we provide a set of auxiliary func-
tions which complement the cornerstone identification methods, and thereby offer a complete
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Figure 5.4 Historical decomposition of the US output gap in percent deviations
from the mean. Structural shocks are identified by means of the DC algorithm.

toolbox for structural analysis in a multivariate time series context.

We give a step-by-step guideline on how to use the functions on a real dataset comparing
one representative from both groups of heteroskedasticity and independence based identifi-
cation. Even though the estimation results are similar, identification by means of covariance
shifts might imply a misleading sign pattern which is indicated in the forecast error variance
decomposition. Moreover, we illustrate how to test sign and zero restrictions by means of
restricted log-likelihood estimation and bootstrap methods.

The svars package contains six alternative and recent SVAR identification techniques.
Besides these, further popular data-driven identification approaches include, e.g., the het-
eroskedastic model with Markov switching mechanisms (Lanne et al., 2010; Herwartz and
Lütkepohl, 2014) or pseudo ML estimation (Gourieroux et al., 2017). Moreover, an option to
test for long run restrictions by means of likelihood based identification schemes is a possible
augmentation of the package. We regard both directions as promising for future developments
of svars.
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Chapter Six
The threat of oil shocks to food
security in Sub-Sahara Africa1

While the causal relationship between different types of oil shocks and food prices in the US
and other developed countries has been extensively studied, the inter-dynamics between global
oil market turmoils and food prices in Sub-Saharan Africa (SSA) remain unclear. This gap
in the literature is particularly striking as populations in developing countries are much more
vulnerable to food crises than those in developed countries. In this paper we use structural
vector autoregressive (SVAR) models to investigate the impacts of global oil market shocks
on local corn prices in several SSA countries. We estimate the structural shocks through
independent component analysis, which allows for a more agnostic identification compared
with conventional methods. Our key findings are that unlike US or global corn markets,
African corn markets are much less sensitive to the impacts of oil-specific demand shocks,
instead, disruptions in global oil supply can lead to an increase in food prices in several
markets. Countries suffering from oil-supply shocks have neither strategic or natural oil
reserves to buffer import shortages, nor efficient oil distribution systems that translate into
food prices through higher transport costs. We show that a large share of corn price surges in
2011 and 2012 can be attributed to oil-supply shortages caused by the Libyan revolution and
the oil embargo against Iran. Conversely, the shale oil boom in the US and oil production
expansion in the Middle East exerted downward pressures on corn prices in three African
countries in 2014/15. Forecast scenarios reveal the potential threat to corn prices in Africa
from the political tensions between the US and Iran, as well as the recent oil-price war between
Saudi Arabia and Russia.

Keywords: Oil shocks, agricultural markets, SVAR, Sub-Sahara Africa, food security

1This chapter is under review at Energy Economics and co-authored by Alexander Lange (AL), who is
the lead author, and Helmut Herwartz (HH). AL and HH designed the research idea. AL and Bernhard
Dalheimer (BD) conceptualized the theoretical framework. AL selected and collected the variables with
support from BD. AL developed the empirical strategy and implemented the econometric modelling. AL
and BD interpreted the results. AL and BD wrote the paper. HH commented the research at all stages. All
authors edited and revised the manuscript.
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6.1 Introduction

Since the early 2000s, biofuel production has transformed agricultural commodities into en-
ergy carriers by allowing their use as feedstocks for ethanol and biodiesel. This has enabled
the substitution of fuel with food, adding a new level of complexity to the traditional use of
crude oil derivatives as inputs for the farming, transporting and processing of agricultural
products. Since then, fuel has not only been an input but also an output of agricultural
production and a novel transmission channel through which crude oil prices move with food
prices in industrialized countries (Abbott et al., 2011; Serra and Zilberman, 2013). However,
for developing countries where technological progress is lagging behind and biofuels are not
yet available, the link between crude oil and food is not well understood (Nazlioglu and
Soytas, 2011). More specifically, it remains unclear whether and how local food prices are
related to global oil market dynamics, or if any existing co-movement of oil and food prices
is merely determined by underlying economic demand. Consequently, policies based on an
understanding of global oil and food dynamics are perhaps misguided and may not be helpful
in mitigating abrupt food price movements and food price crises.

At the same time, food price swings have probably the most pervasive and far-reaching
impacts on livelihoods in low-income countries. At present, some 820 million people are
undernourished (FAO et al., 2019) and 736 million people live in extreme poverty, the vast
majority of them in non-industrialized countries (World Bank, 2020). SSA is a particularly
vulnerable region, where 43% of the population still lives on less than 1.90 USD/day (World
Bank, 2020). In many regions of SSA, the undernourishment rate is higher than 25% and has
even been rising since 2015 (FAO et al., 2019). Unlike in higher-income countries, where the
food industry is able to cushion price peaks in agricultural commodities and food expenditures
account for only a small proportion of living expenses, people in SSA are extremely vulnerable
to price jumps in agricultural markets as they often spend large fractions of their income
on food. Consequently, understanding the sources of price swings as well as the pertinent
transmission channels in agricultural markets is essential to successful food and nutritional
policies.

In this paper, we investigate the effects of global oil market shocks on local corn prices
in a sample of SSA countries. We use SVAR models, building upon the oil market model of
Kilian (2009) to identify three independent sources of oil market turmoils: oil-supply shocks,
aggregated-demand shocks and oil-specific demand shocks. The model specification allows
us to classify the African corn markets into three groups, (i) markets that are particularly
threatened by global crude oil shocks, (ii) markets that are not linked at all to the global oil
price dynamics, and (iii) markets where the co-movement of oil and food prices is determined
by economic demand. Conditional on the respective link between global oil shocks and
the domestic corn market, we propose policy strategies to stabilize local SSA food prices.
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Furthermore, we show for the first time that disruptions in global oil supply can lead to
substantial surges in corn prices in Africa (e.g. during the Libyan production shortfall in
2011 and sanctions against Iran in 2012), and provide novel insights into the impending risks
of food price crises in SSA resulting from future oil market shocks.

We contribute to the existing literature in several directions. Most analyses of food
markets rely on reduced form vector autoregressive (VAR) or vector error correction model
(VECM) specifications. Notably, few authors have overcome the lack of theoretical inter-
pretability of reduced form VARs by means of SVAR specifications. The results of such
studies show that crude oil (demand) shocks are an important source of price swings in US
or global corn markets, in both the short and long term (McPhail et al., 2012; Hausman
et al., 2012; Wang and McPhail, 2014). However, developing countries are characterized by
different market transmissions due to imperfect competition between producers and retail-
ers, as well as imperfect substitution between imported and domestic products (Chakravorty
et al., 2019; Dillon and Barrett, 2015). Thus, the responsiveness of food markets to oil
markets is likely to depend on the development status of the economy (Nazlioglu and Soy-
tas, 2011). Furthermore, SSA is divided into net energy importers and exporters, which
could add to the heterogeneity of oil shock impacts on food markets (Wang et al., 2013).
Overall, the contribution of oil-supply, aggregated-demand and oil-specific demand shocks
to domestic corn markets in SSA countries remains unclear and has not yet been addressed
empirically. Finally, a critical discourse has recently flared up about techniques to identify oil
shocks, since conventional identification approaches (e.g. recursive causation schemes (Sims,
1980) and sign and elasticity constraints (Kilian and Murphy, 2012)) crucially underestimate
supply-side effects by construction (Baumeister and Hamilton, 2019a,b; Kilian, 2019; Kilian
and Zhou, 2019). We provide a structural analysis based on a new and much less restrictive
data-driven approach, namely independent component analysis (ICA) (Moneta et al., 2013;
Lanne et al., 2017a)2, which has already proven useful in disentangling oil market dynamics
(Herwartz and Plödt, 2016c).

Our main results are threefold. First, SSA corn markets react differently to oil shocks
compared with world markets. Unlike previous studies, we find that oil-supply shocks explain
food prices more than oil-specific demand shocks. Second, SSA food markets are highly
heterogeneous in their price responses to global oil shocks. We can clearly differentiate
between food markets, that are affected by oil market turmoils and countries where food
prices appear to be relatively independent from crude oil. Third, transport costs are the main
channel for global oil-supply disruptions to transmit to local corn prices. Hence, regardless
of the direction, neither net food producers nor net food buyers benefit from oil-supply shock
induced price changes since they merely reflect changes in transport costs. Promising policies

2Under a non-Gaussian distribution, independent components can be uniquely identified (Comon, 1994).
The assumption of non-Gaussianity might be reasonable for economic data (e.g. price series) in general,
allowing for instance leptokurtic distributions (see e.g., Chib and Ramamurthy, 2014; Cúrdia et al., 2014).
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should build up strategic oil inventories to buffer fluctuations in oil supply, or promote efficient
import and distribution systems, which are major bottlenecks in the fuel supply chains.

In section 6.2, we provide an overview of how food security relates to food markets in
developing countries, jointly with a condensed review of the literature concerning the crude
oil-food price nexus. Section 6.3 illustrates our identification strategy and data. Subse-
quently, we present our findings from the baseline estimation as well as case study analysis
and forecasts on recent events as well as hypothetical scenarios. We place the results in a
theoretical context, derive policy implications and relate the findings to the existing literature
in section 6.4, before we summarize and conclude in section 6.5. Appendix D.1 comprises fur-
ther information on the oil-food price nexus. Appendix D.2 provides a detailed description of
the identification strategy by means of ICA and Appendices D.3 and D.4 contain additional
empirical results.

6.2 Food insecurity in Sub-Saharan Africa and the global
oil market

The adverse effects of oil shocks on food security in SSA are not yet well understood. In
this section, we briefly revisit the double-edged relationship between food security and food
prices. Moreover, we provide an inventory of possible transmission channels between the oil
price and food markets and assess their potential applicability to SSA markets. Finally, we
review key empirical findings of the oil-food nexus literature.

6.2.1 Food insecurity in Sub-Saharan Africa

Globally, food security has substantially improved over the past decade.3 One widely used
measure of food insecurity is the prevalence of undernourishment (PoU) indicator, which has
fallen from 14.5% in 2005 to 10.8% in 2018. Despite this long-term progress, FAO et al.
(2019) conclude that food insecurity has been increasing since 2015 and much of the global
increase in hunger is due to rising food insecurity in SSA. At present, 22 out of the 30 most
food insecure countries are located in SSA (FAOSTAT, 2020), while 56% of people living in
extreme poverty are also living in SSA (World Bank, 2020). On the one hand, extreme poverty
and hunger are often immediate results of conflicts, droughts or other shocks, which primarily
affect the availability of food. On the other hand, much of the long-term food insecurity is
due to the lack of access to food, mostly related to the functioning of markets and the food

3The Food and Agricultural Organization of the United Nations (FAO) defines food security as "a situation
that exists when all people, at all times, have physical, social and economic access to sufficient, safe and
nutritious food that meets their dietary needs and food preferences for an active and healthy life". Food
insecurity is the lack thereof. The definition implies four dimensions of food security: (i) availability (ii),
access, (iii) utilization and (iv) stability of food consumption (FAO et al., 2019).

114



The threat of oil shocks to food security in Sub-Sahara Africa

distribution system. Needless to say, price swings may lead to sudden disruptions in access
to food, including in the short term. Moreover, the stability of food consumption is crucial
for ensuring the long-term supply of adequate amounts of food to individuals and it is also
reliant on food markets. As food security is usually an issue in poor households who dedicate
large shares of disposable income to food purchases, higher food prices are often associated
with deteriorating food security. However, since the majority of the world’s poor also earn
their incomes from agriculture - as either smallholder farmers or farm workers - higher food
prices could lead to improved rural incomes and wages (Swinnen and Squicciarini, 2012).
Therefore, the net impact of food price surges on food security - such as the food price crisis
of 2007/08 - depends on how many of the world’s poor are net food consumers and how many
are net producers.

In line with the previous considerations, empirical work on the benefits of shifting levels of
food prices in SSA has found mixed results. For instance, Ivanic and Martin (2008), De Hoyos
and Medvedev (2009) and Arndt et al. (2008) find that higher food prices induced dramatic
increases in global and SSA undernourishment during the 2007/08 food crisis. By contrast,
Headey et al. (2011) and Verpoorten et al. (2013) find that higher food prices have led to
substantial improvements of food security among the global poor. Such starkly contradicting
results could be due to the fact that the direction and extent of the impact of food price
shocks on food security is strongly dependent on the individual context. Thus, understanding
asymmetric dynamics of food price developments and their underlying determinants holds
paramount importance. This implies that a joint analysis of the determinants of increases
and decreases in food prices can help to explain the basis of price formation in food markets
and thus reduce the associated risks.

6.2.2 Global oil shocks and local food prices

One of the sources of both sustained surges and declines of food prices as well as increased
uncertainty and instability of food security is movements in crude oil prices, particularly after
the emergence of biofuel production in the mid-2000s (Tyner and Taheripour, 2007; Baffes
and Haniotis, 2010; Serra et al., 2011; Abbott et al., 2011; Busse et al., 2012; Baumeister
and Kilian, 2014a; Wang et al., 2014; Du et al., 2011; Nazlioglu et al., 2013; Abdelradi and
Serra, 2015; Herwartz and Saucedo, 2020). Biofuels enable the production of fuel from coarse
grains and vegetable oils. Thereby crude oil and some agricultural crops become substitutes
for fuel production and henceforth the co-movement of these two prices has intensified. Most
importantly, the US Energy Policy Act of 2005 induced a considerable expansion of US biofuel
production in 2006.4 The share of US corn harvest used for ethanol production rose from
14% to 40% and persistently changed the long-term relationship between oil and agricultural

4The Energy Policy Act made ethanol produced from corn the only gasoline additive available to US
gasoline producers after May 2006.
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Figure 6.1 Transmission flow from oil shocks to food prices

markets (Carter et al., 2016). Since then, a large body of empirical and theoretical literature
has examined the price relationships over time and strives to disentangle the direction and
magnitude as well as the short- and long-term nature of causal effects.

Figure 6.1 illustrates the crude oil-food prices nexus from a theoretical perspective. The
left-hand side is a stylized representation of the global crude oil market, decomposed into
its three underlying source signals or shock series. Although Kilian et al. (2009) show that
distinct oil shocks have fundamentally different effects on the dynamics in the oil market,
most studies concerned with crude oil-food price relationships neglect the existence of different
types of oil shocks. A notable exception is Wang et al. (2014), who examine the effects of
underlying oil shock mechanisms on food markets using a structural model. The authors
extend the model by Kilian et al. (2009) to include food prices and find that after 2006 food
prices are mainly driven by oil-specific demand shocks. More specifically, if higher oil-specific
demand increases the oil price, this also affects food prices. By contrast, the pass-through
effect of oil-supply shocks to food prices is found to be negligible. For the period prior to
2006, the authors note that the co-movement of oil and food prices has been driven by a
prolonged increase in aggregated demand, which generally raises commodity prices.

The right-hand side of Figure 6.1 details how oil shocks in turn transmit to local food
prices. Based on a careful review of the relevant literature, we encounter a set of three
different transmission channels between crude oil and food prices. First, both inorganic
fertilizers used on the fields and fuel consumption for machinery as inputs to agricultural
production are an integral part of farmers’ production costs and thus influence food supply
and prices (Dillon and Barrett, 2015; Serra and Zilberman, 2013; Wang et al., 2014). Although
input costs constitute a traditional link between energy and food prices, they are generally
considered to contribute only marginally to the extent of the co-movement between oil and
food prices (Tyner and Taheripour, 2007; Serra and Zilberman, 2013; Kristoufek et al., 2012).
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Second, the substitution effect associated with the production of biofuel - spurred by blending
mandates - leads to oil price changes directly affecting plant-based ethanol and biodiesel
prices. The majority of authors argue that the substitution effect channels the lion’s share
of the co-movement between the prices (Tyner and Taheripour, 2007; Serra and Zilberman,
2013; Kristoufek et al., 2012; Abbott et al., 2011). Third, transportation costs for both farm
inputs and marketable output are driven by fuel prices, which in turn are derivatives of crude
oil. Transport costs have been shown to be a particularly relevant transmission channel
in SSA countries, where production and marketing are largely decentralized and transport
absorbs a relatively large share of production and marketing costs compared with in other
parts of the world (Dillon and Barrett, 2015).5

Serra and Zilberman (2013) evaluate a large body of literature that empirically examines
the relationship between crude oil and food prices. The authors conclude that there is a broad
consensus in the literature that disturbances in the energy markets are passed to food markets,
and increasingly so after the emergence of biofuels. One notable exception is Qiu et al. (2012),
who confirm the neutrality of food prices to energy prices in the US based on results from a
structural analysis. It is striking that the majority of studies that find evidence of the non-
neutrality of food prices are based on world market data or observations from industrialized
countries. Evidence from emerging or developing economies is scarce and (if available) tends
to find neutrality of food prices to oil markets (e.g. Nazlioglu and Soytas, 2011; Fowowe,
2016). Nazlioglu and Soytas (2011) hypothesize that direct and indirect effects of oil markets
on food markets might crucially depend on the stage of development of the country, which is
not sufficiently addressed in the relevant literature. Consequently, any understanding of the
link between food markets in developing countries and oil markets, based on global dynamics
might be fundamentally flawed and lead to misguided policy recommendations.

6.3 Empirical framework

The analysis in this paper highlights the response of local corn prices in SSA to global
oil shocks. Due to the heterogeneity of developing countries, we estimate four-dimensional
VARs for each country separately. In the following, we illustrate the empirical model and
identification strategy and briefly present the data.

5Besides these three main transmission channels proposed by most authors, some advocate alternative
channels, which we discuss briefly in Appendix D.1.
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6.3.1 Identifying oil shocks via independent components

The econometric model in our analysis is a (K = 4)-dimensional VAR of order p of the form

yt = ν + A1yt−1 + . . . + Apyt−p + ut, (6.1)

= ν + A1yt−1 + . . . + Apyt−p + Bεt,

⇔ A(L)yt = ν + Bεt, t = 1, ..., T,

where the vector yt = (∆qt, xt, pt, ct) contains the change in global crude oil production
(∆qt), a measure of real global economic activity (xt), the real global price of oil (pt) and
country-specific real corn prices (ct). We adopt the variable selection of Wang et al. (2014),
who examine the response of US corn prices to oil shocks. Furthermore, the Ai are (K × K)
coefficient matrices and the ut are K-dimensional, serially uncorrelated residuals (Lütkepohl,
2005). The model innovations are usually characterized from two perspectives: while zero
mean reduced-form residuals ut, E(ut) = 0, are subject to cross-equation correlation with
covariance matrix Σu = BB′, structural shocks εt = B−1ut are uncorrelated across equations
with E(εt) = 0 and Σε = IK . Estimating equation (6.1) by least squares (LS) or maximum
likelihood (ML) approaches delivers reduced form errors ut straightforwardly. By contrast, it
is more challenging to identify the structural shocks since the decomposition of the covariance
matrix Σu = BB′ is not unique.

In recent decades, a large number of strategies have become available to solve the iden-
tification problem.6 In the context of the crude oil-food price nexus, oil shocks have been
traditionally identified via short-run restrictions (B is restricted to a lower triangular matrix
(Baumeister and Kilian, 2014a; Wang et al., 2013, 2014)). Since exclusion constraints often
do not match real-world dynamics, Kilian and Murphy (2012) suggest a more agnostic ap-
proach to model crude oil market dynamics and rely on a combination of sign restrictions and
elasticity constraints. However, both strategies imply an (almost) zero short-run price elas-
ticity of oil-supply and have therefore been strongly criticized. More specifically, Baumeister
and Hamilton (2019a) show that the oil-supply elasticity is actually much stronger than pre-
viously assumed and oil-supply shocks have a much stronger contribution to the oil price in
general. Both the modeling of oil-supply elasticity and the question of whether the approach
of using recursive structures and/or elasticity constraints is still a legitimate identification
strategy remain controversial (see e.g. Baumeister and Hamilton, 2019b; Kilian, 2019; Kilian
and Zhou, 2019). Therefore, we use a novel and more agnostic data-driven approach based
on ICA, which requires only a minimum of assumptions for identification.

Identification via independent components builds on distributional assumptions of the
structural error terms (i.e. non-Gaussianity), which can be considered as external statistical

6Kilian and Lütkepohl (2017) provide a thorough overview of recent identification techniques.
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information. If no more than one independent component of εt is Gaussian distributed,
the structural matrix B can be uniquely recovered from reduced-form residuals ut (Comon,
1994).7 Using a simulation study, Herwartz et al. (2019) demonstrate that identification via
independent components is robust to a large variety of distributional and heteroskedastic
frameworks. Herwartz and Plödt (2016c) show that ICA is a useful method to identify
different types of oil shocks, which are in line with the corresponding literature. For details
on the exact minimization procedure, we refer to Appendix D.2 and Matteson and Tsay
(2017). On the implementation side, we use the R packages steadyICA (Risk et al., 2015)
and svars (Lange et al., ming) to determine B̂ and ε̂t and calculate all relevant SVAR
statistics, respectively.

6.3.2 Data

The four-dimensional VAR models comprise the following variables:

∆qt - log change in average global crude oil production × 100

xt - global economic activity index

pt - log of the real price of crude oil in US Dollars × 100

ct - linearly detrended log of the real price of corn in domestic currency × 100

First, for crude oil production we use the series from the US Energy Information Admin-
istration (EIA, 2020), which is defined as the average number of crude oil barrels produced
per month. Second, we calculate the real price of oil by deflating the global market price
of crude oil Brent in US Dollars from the IMF with the US consumer price index.8 Third,
we use the global economic activity index - available on Kilian’s website9 - which reflects
dry cargo shipping rates and is particularly constructed to capture dynamics in industrial
commodity markets (Kilian and Zhou, 2018). Fourth, we retrieve the real white corn price
series in local currencies from the GIEWS database of the FAO.10

We choose corn price series to be suitable representatives for food markets in SSA within
our oil-food markets model given their importance as both food and cash crops and the
potential to produce ethanol from corn. Corn is the most important crop in Africa in terms
of both production and consumption. Since 2015, annual production ranged between 75
and 85 million tons, which was more than twice the production of wheat, for instance. We
consider corn prices for Chad, Ethiopia, Ghana, Kenya, Mozambique, Nigeria, Tanzania

7In the case of multiple independent Gaussian components, the system lacks full identification, although
partial identification of the non-Gaussian components is possible (Maxand, 2019).

8https://data.imf.org/.
9https://sites.google.com/site/lkilian2019

10http://www.fao.org/giews
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and Zambia, where the price series are available from January 2006 until June 2019, which
determine the horizon for our oil-food market model, resulting in T = 162 observations. We
use retail prices unless only wholesale prices are available. All price series are collected at
those food markets that are most important in the respective countries and considered to
be representative for their respective domestic market situation. Some of the series contain
missing values, which we linearly interpolate.11 As the world reference price for corn, we
use spot prices for yellow corn No. 2 from the Chicago Board of Trade (CBOT).12 On the
implementation side, we estimate the reduced-form VAR models with p = 3 lags as suggested
by the Akaike information criterion (AIC).

6.4 Empirical findings

Since the decomposition of the reduced-form covariance matrix Σu = BB′ is not unique under
normality, at least three out of four structural shock series need to be non-Gaussian to ensure
identification. We perform component-wise kurtosis and skewness tests as implemented in
the R package normtest (Gavrilov and Pusev, 2014) on the four estimated shock series for
each country. The results displayed in Table D.1 in Appendix D.3 indicate excess skewness
and kurtosis at least in three out of four shock series for all countries, which is consistent
with the findings of Lütkepohl and Netşunajev (2014) and Herwartz and Plödt (2016c), who
detect that oil shocks tend to be non-Gaussian. Since there is clear evidence of non-Gaussian
source signals in the data, the structural shocks are uniquely determined from a statistical
perspective.

Nevertheless, a crucial modeling step in statistical identification is the labeling of shocks,
since the estimated matrix B̂ is only unique up to column sign and column permutation.
In addition, it is not guaranteed that model-implied effects of independent shocks have an
economically meaningful interpretation. A common approach to link the independent compo-
nents with an economic interpretation is to label the columns of B̂ according to a theory-based
sign pattern. The entries in B̂ correspond to the impact effects of the shocks on the variables
in the system. Kilian and Murphy (2012) powerfully argue for a clear pattern of impact di-
rections in the oil market: A negative oil-supply shock (εs < 0, i.e., an unexpected shortage
of crude oil on global markets) lowers oil production and economic activity and raises the
price of oil. A positive aggregated-demand shock (εad > 0, i.e., an unexpected increase in
global economic activity, which raises the demand for all industrial commodities) has positive
effects on all variables on impact. A positive oil specific demand shock (εosd > 0, i.e. an

11Series for Chad, Kenya and Mozambique each contain one missing observation.
12Notably, global markets are dominated by yellow corn, whereas in SSA white corn constitutes the bulk

of consumption. However, the two goods are fairly comparable as they constitute important staple foods
within their respective food markets. As a robustness check, we also used the corn FOB gulf of Mexico price
from the World Bank commodity price database. The results are qualitatively not different.
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unexpected higher demand specifically for crude oil) increases oil production and the price of
oil and dampens economic activity.13 Table 6.1 displays a summary of the expected impact

Table 6.1 Theoretical impact directions of global oil shocks on the variables in the
empirical model as suggested by Kilian and Murphy (2012). The signs are normalized
such that all shocks have a positive impact on the oil price pt.

Shocks
Variable εs → εad → εosd →

∆qt − + +
xt − + −
pt + + +
ct ? ? ?

directions of the structural shocks on the variables. Even though it is unclear how shocks
from the global crude oil market affect domestic corn prices in SSA, shock labeling is possible
due to the unique response of the oil market series. The average impact relation matrix of
the eight SSA countries reads as

¯̂B =



−0.56
(22.36)

−0.15
(4.86)

0.19
(2.97)

0.03
(0.67)

−5.96
(3.93)

19.57
(33.54)

−1.54
(1.05)

−1.97
(1.53)

2.18
(4.07)

2.81
(3.63)

7.03
(24.45)

0.03
(0.06)

0.70
(1.39)

0.95
(1.40)

−0.28
(0.60)

8.57
(12.04)


, (6.2)

where the values in parentheses denote the t-ratios.14 With exception of element ¯̂B12 (i.e the
response of oil production to an aggregated-demand shock), the sign pattern of the upper
left 3 × 3 matrix is in line with the theoretical impact directions in Table 6.1. Moreover,
the fourth column of ¯̂B shows no significant impact effect on any of the first three variables,
leading to the conclusion that the residual shock series has no explanatory content for the
oil market variables on average.

In view of the results of the normality tests and the signs of the impact relation matrices,
we detect three shock series that are consistent with previous oil market studies, namely oil-
supply shock, aggregated-demand shock and oil-specific demand shock. This finding allows
us to assess the impacts of the three independent sources of oil market turmoils on local corn
markets in SSA to determine policy strategies that stabilize food prices.

13The fourth independent component contains other agriculture-specific shocks that are innovations in the
corn price series, which cannot be explained by the three oil market shocks. We do not further characterize
this shock, and label it as residual shock.

14The t-ratios are obtained as the ratio of the group means of the eight different countries and the
corresponding standard errors. The vectors in the matrix B̂ for each country are ordered according to the
sign pattern in Table 6.1.
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6.4.1 Sub-Sahara African corn markets differ compared with world
markets

When discussing the relationship between oil and corn prices in SSA, a natural starting
point is to clarify whether African corn markets are driven by the same dynamics as world
prices. Figure 1 displays the cumulative per cent growth of SSA corn prices compared with
global corn prices since 2006. Shortly after the US biofuel expansion, the global corn price
increased by about 75%. Baumeister and Kilian (2014a) and Wang et al. (2014) mainly
attribute this price surge to the higher demand for corn due to a substitution effect from
fossil-fuel to biofuel. However, at the same time, corn prices in SSA decreased by about 28%
on average, which indicates that US policy interventions have not been transmitted to SSA
markets. Another point in case is the international food price crisis of 2007/08, during which
global corn prices increased by approximately 90%, while SSA corn markets responded more
ambivalently and prices only increased by about 50% on average. For instance, the corn price
in Nigeria more than doubled between August 2007 and July 2008, whereas the corn price in
Zambia only increased by about 20%. Overall, it appears that some SSA countries remain
relatively unaffected by global events, which may be due to poor market integration, but it
also reflects that domestic food prices in SSA are particularly subject to local shocks, such
as extreme weather or civil unrest.

For example, even though the corn price in Mozambique also roughly doubled from August
2007 to June 2008, it had already peaked in May 2006 following an unexpected shortfall in
corn production (Figure D.1 in Appendix D.3). During this particular rally, the Mozambican
corn price doubled in just three months as opposed to the seven-month surge of the 2007/08
episode. From December 2015 to January 2016, corn prices in Mozambique again increased
abruptly by about 270% after drought periods. Similar patterns can also be observed in
Tanzania in 2015 and 2016, when real food prices more than doubled and then rose again
by more than 50% after a year of severe droughts. Over the entire period, the international
food price crisis appears to be a relatively minor episode in SSA corn prices, which tend to
be much more dependent on local events.

We further examine the different movements of African corn market prices compared with
world market prices by replacing the corn price in the baseline model in equation 6.1 with a
ratio of local prices and global prices, i.e.

yt =



∆qt

xt

pt

c
local/global
t

 ,
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Figure 6.2 Comparison of cumulative percentage growth in real global corn prices
and real African corn prices after the US biofuel mandate in May 2006 and during
the international food price crisis in 2007/08. Light blue lines represent the single
African countries, and the green line shows the average of SSA countries.

and calculate impulse response functions (IRFs). We construct c
local/global
t as the ratio of

price indices by standardizing all real corn price series to a unit value in January 2006.15

Table 6.2 provides an overview of statistically significant responses of the ratio c
local/global
t

for at least one time point over 30 periods. The signs in the last column of Table 6.2 suggest
that world prices show a stronger positive response to an unexpected higher demand for crude
oil than most SSA corn prices, i.e. most SSA corn markets are less sensitive to oil-specific
demand shocks. The second column confirms the findings from Figure 6.2 that African corn
markets move rather ambiguously during periods of high economic demand. The first column
shows that some SSA corn markets are more sensitive to global oil-supply disruptions than
others such that oil-supply shocks could have fundamentally different impacts on SSA food
prices compared with global prices. In sum, we note that SSA corn markets are different
not only compared with world markets, but also compared with each other, i.e. we find
considerable heterogeneity of SSA corn markets regarding their response to global oil shocks.
Moreover, we observe that SSA corn markets are relatively less affected by global structural

15We do not discuss the issue of shock labeling again, because three out of four series remain the same
and the sign pattern in Table 6.1 still applies for the model with relative prices.
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Table 6.2 Significant response directions to oil market shocks of African corn prices
relative to global corn prices. An increase of local corn prices relative to global corn
prices at the 5% (10%) significance level is indicated by ’++’ (’+’). A decrease of
local corn prices relative to global corn prices at the 5% (10%) significance level is
indicated by ’– –’ (’–’). Significance is obtained from bootstrapped IRFs.

Oil-supply shock Aggregated-demand shock Oil-specific demand shock
Chad 0 0 0
Ethiopia ++ 0 0
Ghana 0 – – –
Kenya ++ 0 – –
Mozambique 0 – 0
Nigeria 0 ++ –
Tanzania 0 0 –
Zambia 0 – –

changes than world corn prices.

6.4.2 The role of oil-supply shocks in Sub-Saharan African corn
markets

One way of disentangling the many potential country-specific effects and transmission chan-
nels is to take a more disaggregated perspective and investigate the response of corn prices
to each oil shock separately. This section examines the link between the global oil-supply
and corn markets in SSA using IRFs and forecast error variance decompositions (FEVDs)
in conjunction with three case studies. All results are obtained from the baseline model
specification in equation (6.1).

6.4.2.1 Do unexpected oil production shortfalls cause corn prices in Africa to
surge?

Figure 6.3 depicts the estimated IRFs of the three local corn prices, which show a significant
response to an unexpected oil-supply shortage. A comparison with the point estimates of the
remaining countries is provided in Figure D.2 in Appendix D.3.
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Figure 6.3 Responses of corn prices in Ethiopia, Ghana and Kenya to an oil-supply
shortage joint with 68% and 90% confidence bands obtained from 2000 bootstrap
iterations (Hall, 1992).

In Ethiopia, Ghana and Kenya, corn prices sharply rise and reach their maximum after
about two months as a reaction to a global oil-supply shortage. The effect is rather persistent
and only slowly fades out after about two years (with 68% confidence). Even with 90%
confidence, we find a significant response of the corn price to an oil-supply shock in all three
countries. In addition, FEVDs displayed in Table 6.3 reveal that the explanatory content
of oil-supply shocks in the variation of corn prices remarkably differs between the countries.
We can clearly separate corn markets affected by oil-supply disruptions (Ethiopia, Ghana,
Kenya) from corn markets that are largely unaffected by oil-supply shocks (Chad, Nigeria,
Tanzania, Zambia). In the first group, in particular, we find that the relative importance of
oil-supply shocks increases in the long term and explains a large part of variation in the corn
price. In comparison with most African corn markets, global corn markets show an opposite
response with a diminishing explanatory content of oil-supply shocks.

Table 6.3 Contribution of oil-supply shocks to h-step ahead FEVD of local corn
prices in SSA markets and world markets.

h = 1 h = 10 h = 30 h = ∞
Chad 1 3.1 4.6 4.6
Ethiopia 1.6 12.9 13 13.1
Ghana 0.2 8.8 8.8 8.8
Kenya 20.9 52.3 47.7 46.5
Mozambique 0.1 3 3.2 3.2
Nigeria 1.1 1 1.5 1.7
Tanzania 0.5 1.6 1.7 1.7
Zambia 3.2 2.3 2.5 2.5
World 8.7 6.2 4.9 4.9
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6.4.2.2 Two case studies of oil-supply disruptions: The Libyan revolution and
Iranian nuclear sanctions

Oil-supply disruptions are often regarded to have only minor impacts on oil prices and other
commodity prices. The hypothesis is grounded on the assumption that, due to a large number
of oil-producing countries, bottlenecks of oil production in one region lead to an increase of
oil production in other regions, and a decline of oil production caused by geopolitical events
- for example, in the Middle East - accounts for only a small fraction of global oil production
(e.g. Hamilton, 2009; Kilian, 2009; Kilian and Murphy, 2012). Regarding food prices, Wang
et al. (2014) find that oil-supply shocks have negligible impacts on agricultural commodity
prices. As this discrepancy between the recent literature and our results emerges, the impact
of oil-supply shocks in SSA warrants a more nuanced level of analysis.

Baumeister and Kilian (2014a) argue that if there is a link between oil-supply shortages
and corn price increases there should be some reaction of corn prices during certain historical
events. For instance, the authors look at the sharp spike in the oil price in July 1990 when
Saddam Hussein invaded Kuwait and find no remarkable increase of agricultural commodity
prices in the US. Since the SSA price series do not cover this historical event, we consider two
more recent events as case studies to investigate whether the explanatory content of oil-supply
shocks in Ethiopia, Ghana and Kenya persists during these time periods. In particular, we
examine the effects of the Libyan oil production shortfall in 2011 and the oil embargo against
Iran in 2012. Both events are frequently considered as examples of oil price surges with a
strong contribution of negative oil-supply shocks (Baumeister and Kilian, 2014b; Kilian and
Lee, 2014).16

The fall of the eighths largest oil producer in the world
As a consequence of the ongoing civil unrest in Libya and its neighboring countries following
the Arab spring, the Libyan revolution began in February 2011. In the following months,
the oil production in Libya dropped from 1.48 million barrels per day (mdb) in January 2011
to 0.08 mdb in May 2011. Worldwide, the oil production decreased by about 3.6% during
this time period, and it took until December 2011 for global oil production to return to pre-
crisis levels. The rather long delay in the recovery of oil supply was mainly caused by internal
disputes in the organization of the petroleum exporting countries (OPEC) about the need for
an oil production expansion, and hence, it took until June 2011 for Saudi Arabia to increase
its oil production from 8.86 mbd to 10 mbd.17 In addition, the fact that the heavy and sour

16The authors describe oil price increases during these two time periods as mixtures of oil-supply shocks
and oil-specific demand shocks. Nevertheless, both studies base on the oil-supply elasticity constraint by
Kilian and Murphy (2012), which leads to an insufficiently small effect of oil-supply shocks by construction
(Baumeister and Hamilton, 2019a). This circumstance points to the assumption that the actual share of
oil-supply shocks on these price surges is indeed much higher.

17Data on the country-specific oil production comes from the US Energy Information Administration.
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oil from Saudi Arabia is generally considered to be of lower quality than the light and sweet
oil from Libya made it difficult to find buyer countries, which caused further delays in global
oil-supply.18

Figure 6.4 shows that immediately after the onset of the Libyan revolution, the corn price
in Kenya almost doubled and reached the maximum during the entire sample in July 2011.
In Ethiopia, the corn price increased by about 70% and the corn price in Ghana responded
with some delay but increased by about 40% until August 2011. By contrast, corn prices in
the remaining African countries increased moderately by about 25% in the same time span,
which is comparable with the development of the world market price during this period.

Libyan revolution
Oil embargo against Iran
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Figure 6.4 Comparison of cumulative percentage growth of real corn prices in
Ethiopia, Ghana and Kenya with remaining SSA countries after the Libyan oil pro-
duction shortfall in 2011 and the oil embargo against Iran in 2012.

The oil embargo against Iran
Due to its nuclear weapon program, the ongoing political tensions with Iran entered a new
phase in early 2012 when the US and the EU introduced a new series of oil import sanctions.

18Light and sweet crude oils have a lower density and lower content of sulfur, which is desirable because
they can be processed into gasoline fuels with much less sophisticated mechanisms. Even though, crude
oils from different geographic origins are largely interchangeable, they are not perfect substitutes and oil
production slumps cannot immediately be absorbed by other producers. More information on crude oil in
general can be found - for instance - in World Energy Council (2016).
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Because most OECD countries refrained from buying Iranian oil, the production output in
Iran dropped from around 4 mbd in January/February 2012 to 3.1 mbd in October 2012.
However, global oil production recovered quickly such that the worldwide production only
diminished by about 0.8% from March to June 2012, and it already exceeded the pre-embargo
level by July 2012. The main reason appears to be that the other OPEC members (in
particular Saudi Arabia) showed no interest in supporting the Iranian government by freezing
their production ceilings. By contrast, the government in Saudi Arabia immediately signaled
its willingness to close the supply gap caused by the loss of Iran’s heavier type crude oil.

Figure 6.4 shows that the increase in corn prices in Ethiopia, Ghana and Kenya was much
lower after the nuclear sanctions against Iran, compared with the increase after the Libyan
revolution, which is in line with the circumstance that the global oil supply shortage was
quickly compensated. Nevertheless, the corn price in Kenya increased by about 25% in three
months and about 10% (15%) in Ethiopia (Ghana).

Particularly for Kenya and Ghana, we find two clear peaks of the corn prices between
early 2011 and late 2012 before they started to return to the average of the other African
countries. In combination with the results from the IRFs shown in Figure 6.3 and the FEVDs
documented in Table 6.3, oil-supply shocks appear to have major impacts on corn price move-
ments in three countries. However, even if the sharp increase in the corn prices shortly after
two oil-supply disruptions hints towards oil-supply shocks as the main trigger, the precise
role of oil supply during these events is still not convincingly clear. To further investigate
the price surges displayed in Figure 6.3, we return to the structural analysis and disentangle
the contribution of each shock (oil-supply shock, aggregated-demand shock and oil-specific
demand shock) to the corn price surges in Ethiopia, Ghana and Kenya during the Libyan
revolution and the oil embargo against Iran by means of historical decomposition.

Disentangling the price surges in 2011 and 2012
Historical decompositions have become a popular tool in the SVAR literature to disentangle
alternative sources of oil price surges (e.g. Kilian and Murphy, 2012; Kilian and Lee, 2014;
Herwartz and Plödt, 2016c). In particular, Kilian and Lee (2014) propose measuring the
change in a series yit explained by a structural shock εj by comparing the difference between
the contribution of εj to yit at time point yiT1 and time point yiT2 with the total change in
the series between the respective dates. We apply this method to analyze the effects of oil
shocks on corn price increases in Ethiopia, Ghana and Kenya during the Libyan revolution
and Iranian nuclear sanctions.

Figure 6.5 shows that oil-supply shocks are almost exclusively responsible for the corn
price increases in 2012 in all three countries, i.e., at least 70% of the corn price increase can
be attributed to oil-supply shocks. Moreover, at least one other shock series exerts downward
pressure on the corn price in each country, leading to the conclusion that corn prices could
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Figure 6.5 Relative contribution to cumulative change in domestic corn prices in
Ethiopia, Ghana and Kenya during the Libyan production shortfall and the oil em-
bargo against Iran by structural shocks. The contributions of the four shocks add
up to 100%, which represents the total corn price increase.

have been even higher in fall 2012 due to oil-supply shocks. The circumstances are slightly
different during the Libyan revolution in 2011. Particularly in Ethiopia, the lion’s share of
the corn price surge in 2011 can be attributed to non-oil related shocks. However, in Ghana
and Kenya we still find a rather high explanatory content of oil-supply shocks, i.e. half of
the strongest corn price surge in Kenya is most likely due to the downfall of the Libyan oil
production. Although the situation is somewhat less dramatic for Ethiopia and Ghana, the
hypothesis that oil-supply shocks were important determinants of the corn price increases in
2011 and 2012 in Ethiopia, Ghana and Kenya can be confirmed.
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6.4.2.3 A case study of an oil-supply boom: The expansion of oil production in
the US and Middle East

Thus far, we have investigated how negative oil-supply shocks have triggered corn price surges,
although recently oil production has tended to increase in several regions, and therefore it
also holds interest to examine whether positive oil-supply shocks have exerted downward
pressure on corn prices.

About a decade ago, it was well established that global oil production would no longer
keep pace with growing economic oil demand, due to the decline of traditional oil fields and
the declining discovery of new fields (e.g. Hamilton, 2013; Benes et al., 2015). However,
the invention of hydraulic fracturing (so-called ’fracking’) in conjunction with horizontal
drilling has made it possible to extract crude oil from rock formations characterized by low
permeability, which is commonly referred to as tight oil or shale oil. The new technique is
primarily used in the US and sparked the ongoing US shale oil boom in 2009 (Kilian, 2017).
Even though 2009 marks the reversal of the long-standing decline in US oil production since
the late 1970s, it took about three more years for US oil production to start substantially
expanding. By April 2015, the total US oil supply had increased from 6 mbd in December
2011 to 9.6 mdb. As a result, the government first abolished the export ban on crude oil in
2014 and eventually lifted all remaining export restrictions by December 2015, which paved
the way for a remarkable expansion of US crude oil exports.19

In addition to the US shale oil boom, several countries in the Middle East further ex-
panded their production capacities. Predominantly, Saudi Arabia and Iraq were responsible
for a sizable share of the production surge in the region. Iraq increased its oil production
from 3 mbd to 4.5 mbd from January 2014 to January 2016. Despite the threat of terrorist
activities from the Islamic State, the Iraqi government was able to upgrade the midstream
infrastructure (e.g. pipelines and pumping stations) in the southern oil fields - where 90% of
the country’s oil is produced - and to start marketing Basra Heavy grade crude oil.20

Kilian (2017) shows that in conjunction with the US shale oil boom, the oil production
expansion in the Middle East led to a 10$ reduction in the price of crude oil in 2014/15.
We investigate how the real price of corn in Ethiopia, Ghana and Kenya would have evolved
from 2014 to 2016 if one had replaced all oil-supply shocks with zero, as if neither the shale
oil boom nor the oil production expansion in the Middle East had occurred. Kilian and Lee
(2014) and Kilian (2017) propose counterfactuals for the construction of such scenarios by
subtracting the cumulative contribution of oil-supply shocks from the evolution of the real
corn price.

19The US crude oil export ban was part of the Energy Policy and Conservation Act, which was established
in 1975 in response to the 1973 oil crisis.

20A more detailed description of the oil production expansion in Iraq can be found in Asghedom (2016)
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Figure 6.6 Comparison of cumulative percentage growth of real corn prices in
Ethiopia, Ghana and Kenya since January 2014 with and without effects from shale
oil boom and expansion of production capacity in the Middle East.

Figure 6.6 shows that on average the real price of corn in all three countries would have
been about 10% higher between early 2014 and mid-2016 without oil supply shocks. Corn
prices in Ethiopia and Ghana would have been 20% higher and in Kenya even 35% higher
without the downward pressure from increasing oil-supply in late 2014. The US shale oil
boom reached its temporary peak in 2015 and US oil production declined in late 2015/early
2016 along with global oil production, whereby the negative effects from oil-supply shocks
on corn prices in Africa abated in mid 2016.

6.4.2.4 Why are some Sub-Saharan African corn markets responsive to oil-
supply shocks and others not?

In the previous sections, using country specific IRFs and FEVDs statistics and case study
analysis we illustrated the heterogeneous responses of SSA corn prices to oil-supply shocks.
Moreover, we highlighted several possible reasons that help to explain why oil-supply shocks
are the most powerful instigators of domestic corn price fluctuations among all oil shocks in
Ethiopia, Ghana and Kenya.

While upon first glance the importance of oil-supply shocks to SSA food markets is not
intuitive in light of the existing evidence concerning global oil shocks and US food markets
(Baumeister and Kilian, 2014a; Wang et al., 2014), it finds support in the literature on the
crude oil-food price nexus in developing countries to some extent (Nazlioglu and Soytas, 2012).
Furthermore, since food markets in developing countries and even more so in SSA countries
are vertically poorly integrated (Pinstrup-Andersen, 2015), and systematically different in
terms of stability patterns (Minot, 2014), it is unsurprising if they also depend on oil markets
differently compared with global food markets. Dillon and Barrett (2015) show that in some
cases local food prices in SSA are more subject to international oil price fluctuations than
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to global food price movements. The authors conclude that in contrast to other parts of
the world, transport costs are a major determinant of local food prices in some SSA regions,
particularly in Ethiopia, Kenya and Tanzania.

Our empirical results suggest that two of these countries’ corn markets are most exposed
to oil-supply shocks. In Ethiopia and Kenya, a large share of the arable land and farms are
spread out over the countries. With markets being equally dispersed, transport comes in as
an important part of the cost function of production and marketing of corn. Coupled with
particularly bad road connectivity and long travel times in both countries (Dorosh et al.,
2012), transport costs are likely to form a substantial share of costs along the supply chain
and oil-supply disruptions are presumably transmitted to food prices through this channel
(see Figure 6.1).
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Figure 6.7 Comparison of cumulative percentage growth in transportation costs
during the Libyan revolution and during the oil production expansion in several
regions.

Figure 6.7 shows the development of the transportation costs in Kenya compared with
countries that do not respond to unexpected oil-supply shortages.21 During the Libyan
revolution in 2011, half of corn price increase in Kenya of over 90% could be attributed to
oil-supply shocks and at the same time transportation costs increased by about 20% (2.1%
on average per month) while transportation costs in the other three countries grew with
the average rate of about 0.6% per month. Conversely, during the shale oil boom in 2014
and 2015 - when oil production was expanded at global levels - transport costs dwindled in
Kenya and Tanzania, while increasing faster than usual in Zambia and Nigeria (about 1%

21Data for transportation costs is defined as the consumer price index in the transportation sector and
can be downloaded from the national bureaus of statistics. Due to the generally poor data availability in
SSA countries, we cannot provide statistics about the transportation costs in the remaining countries.
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on average per month). The movements of the respective series support the hypothesis that
transportation costs are a major transmission channel of oil-supply shocks in SSA.

One possible reason for the extraordinary vulnerability of local transport costs to global
oil-supply disruptions is the notoriously low strategic oil reserves in Kenya and Ethiopia.
Both countries are net importers of crude oil and do not dispose of sufficient oil inventories to
quickly buffer import shortages. The backlog has been recognized by the respective ministries,
which in the past have called for the creation of national strategic reserves (Ministry of Water
and Energy of Ethiopia, 2013; Ministry of Energy and Petroleum of Kenya, 2015). With the
strong importance of transport costs for producers as well as a high import dependency of
fossil fuels, these countries are counter-examples against the neutrality hypothesis of food
markets to oil-supply shocks (Wang et al., 2014; Baumeister and Kilian, 2014b).22

The circumstances are slightly different for Ghana. Traditionally, Ghana was a major
net energy importer and the Ghanaian Energy Commission (2006) warned of a possible oil
and petroleum shortage due to a lack of strategic oil reserves and refinery capacities. In
combination with a substantial dispersion of a large corn-producing smallholder sector and
bad road quality, it is likely that transport costs are highly supply-shock-prone, similar to
Kenya and Ethiopia. The situation changed in 2011 when the exploitation of off-shore oil
reserves allowed Ghana to become step-wise less dependent on energy imports. Nevertheless,
with an oil production between 0.1 and 0.2 mbd, Ghana still imports a considerable amount
of crude oil, which explains the significant weaker overall reaction of local corn prices to global
oil-supply shocks in Ghana over the entire sample. In further support of the hypothesis that
susceptible transportation costs are the main transmission channel of oil-supply shocks in
SSA countries, one can consider the case of Nigeria. As the largest net exporter of crude oil
in our sample and boasting strategic oil reserves, corn markets in Nigeria remain unscathed
from oil-supply shocks while being rather responsive to aggregated-demand shocks.

In combination with potential bottlenecks in the fuel supply chain in Ethiopia, Ghana
and Kenya, we detect further country-specific characteristics that could help to explain the
strong response of local corn prices in our sample. Kenya’s smallholder farming is dominated
by corn production. More than 70% of national corn output are produced by smallholders
(DAlessandro et al., 2015) and 98% of smallholders produce corn (Dorosh et al., 2012),
i.e., direct substitutes are scarce in case of rising corn prices. Additionally, government
interventions in both fuel and food markets could be obstacles to buffer oil-supply shocks. In
Kenya, a heavily criticized open tender system was in place in which the winning company was
put in charge of importing the entire petroleum demand for the industry (Matthews, 2014).
Moreover, in Ethiopia fuel markets are subject to public tender systems in which fuel imports
are granted to a limited number of companies. Additionally, Kenya operates an agency that

22More recent discoveries of oil fields in both Kenya and Ethiopia could obviously change this in the near
future.
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strongly intervenes in grain markets by purchasing and selling substantial amounts in an effort
to stabilize prices. While monopolistic or oligopolistic import structures do not necessarily
imply inefficient fuel supply, they can quickly turn into narrowing bottlenecks in the supply
chain in cases of collusion or poor management.

By contrast, while Tanzania exhibits similar corn as well as oil market dependencies as
Kenya and Ethiopia, its corn markets are not responsive to oil-supply shocks. Unlike in
Kenya and Ethiopia, Tanzanian petroleum markets are much less subject to government
intervention (Dillon and Barrett, 2015). However, regarding corn, national policy is more
regulative. Although domestically, the government refrained from intervening in domestic
corn markets and limits its role to building up stocks, Tanzania has frequently suspended
international trade to protect from international food price movements at times in which
at least one of its region was declared as food insecure (Minot, 2010). Altogether, it seems
that Tanzania has managed to isolate domestic corn prices from international shocks and
oil shocks, through trade and domestic policy that supports the self-sufficiency of farmers
(Wenban-Smith et al., 2016), as well as minimizing cross-border movements of corn.

In sum, we can deduce two main findings regarding the heterogeneous responsiveness of
SSA corn markets to oil-supply shocks. First, transportation costs are an important trans-
mission channel between oil market movements in SSA. Second, policy relating to strategic
oil reserves and fuel imports as well as policy governing agricultural and energy markets
shape the buffering mechanisms against oil-supply shocks via fuel prices in both food and
energy markets.

6.4.3 The role of aggregated-demand and oil-specific demand shocks
in Sub-Sahara African corn prices

According to Table 6.2, SSA corn markets are less responsive to aggregated-demand shocks
as well as oil-specific demand shocks compared with world markets. The results shown in
Figure 6.8 confirm the findings documented in Table 6.2. Next, we briefly analyze the role of
aggregated-demand shocks and oil-specific demand shocks on SSA corn prices, in a first step
using IRFs and in a second step using a case study.

6.4.3.1 Does increasing commodity demand raise corn prices in Sub-Sahara
Africa?

Aggregated-demand shocks only unfold their impacts in vertically well integrated markets
Aggregated-demand shocks are often considered as the driving force behind fluctuations in
corn prices (e.g., Wang et al., 2014). However, the only SSA corn price that is pushed in an
upward direction by higher aggregated commodity demand is the Nigerian one. All other corn
prices under scrutiny show either no significant reaction or even a small negative reaction for
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a few periods. The underlying presumption about the impacts of aggregated-demand shocks
on corn prices is that higher economic activity increases not only the demand for oil, but also
the demand for agricultural commodities. For example, when international prices rallied in
response to higher aggregated demand in 2007/08, SSA prices only moderately increased. A
likely explanation for diverging responsiveness to global commodity demand is the lack of
vertical integration of both energy and food markets.

The circumstances are slightly different in Nigeria, where two factors come into play. First,
an increase in global economic activity increases commodity demand and therefore Nigerian
oil exports. In turn, increased export demand raises national economic activity as crude oil
production accounts for a large fraction of the Nigerian GDP.23 Increased national economic
activity could translate into rising food demand and prices. This transmission is consistent
with the finding of Wang et al. (2013), who show that for net exporters of crude oil a higher
global commodity demand generates increased income. Second, since the Nigerian economy
is well connected to the global economy via strong crude oil trade ties, aggregated demand
also spurs demand for non-oil commodities in Nigeria, for instance, agricultural commodities.
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Figure 6.8 The left panel shows the response of the corn price in Nigeria to a positive
aggregated-demand shock and right panel shows the response of the corn price in
Chad to a positive oil-specific demand shock joint with 68% and 90% confidence
bands obtained from 2,000 bootstrap iterations.

Oil-specific demand shocks are not determinants of corn price surges in SSA due to the lack
of biofuel production
While we note that world corn prices increase in response to an oil-specific demand shock, we
cannot find this response for SSA corn prices, with the only exception of Chad, where corn
prices show a small positive reaction for the first two periods in response to an unexpected
higher demand for crude oil.24 Wang et al. (2014) find that after the emergence of large-scale

23Between 8 and 38% (World Bank, 2020) in our sample period
24The case of Chad is discussed in more detail in appendix D.4.
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biofuel production in 2006, food prices are much more sensitive to oil-specific demand shocks,
which the authors attribute to the substitutability between corn and crude oil as inputs to
fuel production. However, this relationship presumes either existing capacities to produce
biofuel or free trade with negligible transaction costs to swiftly convert corn into biofuel in
other locations via global markets. Both presumptions are unlikely to hold in the context
of SSA. First, in relative terms, SSA continues to represent less than 1% of global biofuel
production. In our sample, only Kenya and Ethiopia appear with non-zero values in the
respective statistical databases, although both produce substantially less than 1 mbd per
day, at least up until 2015 (EIA, 2020). Thus, the integration of biofuels into national energy
mixes remains in its very infancy in SSA. Second, while corn trade between SSA countries
is common, corn exports of SSA countries to countries with ethanol-producing capacities
do not occur (FAOSTAT, 2020). Consequently, local competition between food and fuel is
negligible in these countries and local prices are not linked directly to local energy prices.
Poor vertical food market integration additionally implies minimal relevance of the global
substitution effect between biofuels and food crops as a transmission channel between energy
and local food markets (Hatzenbuehler et al., 2017; Pinstrup-Andersen, 2015). Altogether,
we conclude that oil-specific demand impacts only affects food prices when opportunities of
biofuel substitution are available, which is strongly in line with the results of Dillon and
Barrett (2015).

Similar to the oil-supply shock analysis in the previous sections, it makes again sense to
consult case studies to better understand the role of both aggregated-demand shocks as well
as oil-specific demand shocks in SSA food markets.

6.4.3.2 A case study on the role of demand shocks: The international food price
crisis of 2007 and 2008

Already in 2003, the long-term decline of real food prices since the 1970s came to halt and
turned around to start an upward trend. By the end of 2006, the FAO’s food price index
(FPI) had increased by 44% compared with its level in January 2003. Starting in 2007,
international food prices began to rally and the FPI increased by 68% until it reached a
peak level in June 2008. While the FPI reflects a multitude of food products, some specific
commodity price spikes were even more dramatic; for instance, rice prices doubled within five
months (Baffes and Haniotis, 2010). This food price explosion has not only been associated
with profound changes in poverty and food insecurity (e.g. De Hoyos and Medvedev, 2009;
Headey et al., 2011) but also resulted in cases of civil unrest (Bellemare, 2015).

Some international organizations and authors have warned of the threat to African food
prices as well as food security from international food price surges (Wiebe et al., 2011; Wodon
and Zaman, 2008, e.g.). However, as illustrated in Figure 6.2, the movements of the corn
prices in Africa are extremely diverse in 2007/08, with some series doubling their values and
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some series almost moving sideways. Next, we consider only SSA corn markets where we find
either at least an indication that the international dynamics in 2007/08 are transmitting to
local prices, or corn markets that respond significantly to aggregated-demand or oil-specific
demand shocks. Figure 6.9 depicts the actual and counterfactual paths of the corn prices in
Chad, Ethiopia, Ghana and Nigeria during the international food crisis. Although all price
series exhibit some remarkable price surges, demand shocks have only marginal effects.
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Figure 6.9 Comparison of cumulative percentage growth of real corn prices in
Ethiopia, Ghana, Nigeria and Tanzania since June 2007 with and without cumu-
lative demand shocks.
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The only exception where corn prices would have been 19% lower on average in 2007/2008
without the upward pressure of high aggregate demand is Nigeria. In May 2008, 40% of the
price surge in Nigeria can be attributed to cumulative effects from aggregated-demand shocks.
By contrast, there is no indication of aggregated-demand shocks as sources of the price rally in
2007/08 for any other local corn price. Overall, both demand shocks played only a minor role
in all countries under consideration, both during the international food crisis and throughout
the entire sample.

6.4.4 What are the future threats to corn price stability from
global oil market shocks?

We note that the main threats to local food security from the global oil market are oil-supply
shocks. In particular, corn prices in Ethiopia, Ghana and Kenya are affected by changes in
oil-supply. In this section, we construct forecast scenarios to assess the sensitivity of reduced-
form VAR forecasts to (hypothetical) future global oil market related events based on the
method of forecast scenarios described in Baumeister and Kilian (2014b).

These forecasts cannot be interpreted as the most likely future outcomes, but rather simu-
late the corn price movements in case of unlikely but extreme events. Since structural shocks
have expectations equal to zero, all future demand and supply shocks are usually set to zero
in a reduced-form VAR forecast. However, forecast scenarios are based on the idea of feeding
into the model a non-zero future shock sequence. To account for interventions by policy-
makers and changes in the behavior of other agents based on the critique by Lucas (1976),
constructed shock series for the forecast scenarios are not allowed to be extraordinarily large
but have to be within the range of historical events.

What if the tensions with Iran escalate?
After Iran and the P5+125 countries agreed upon restricting the Iranian nuclear program in
exchange for ending the sanctions against Iran in 2015, the oil production quickly reached its
pre-embargo level, and Iran again took its place as the fourth largest oil producer in the world
with about 4.5 mbd of crude oil pumped out from the ground. However, in 2018 political
tensions intensified again, which motivated the US administration to withdraw from the Iran
deal and reimpose the sanctions whereby by early 2019 Iranian oil production almost halved
to 2.7 mbd. In January 2020, the conflict between Iran and the US culminated with the
killing of the Iranian general Qassem Soleimani by US battle drones.

In the first scenario, we investigate what would happen if the conflict between the Iran
and the US further escalated and Iranian oil production collapsed by 60%, which corresponds
to a reduction of 1.7 mbd or a global reduction of 2.1%. A drop in the global oil production

25The P5+1 refers to the UN Security Council’s five permanent members plus one non permanent member
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of such a magnitude is comparable with the reduction during the Libyan revolution or after
the US reimposed the sanctions in 2018, and hence it is well within the variation of historical
data. We simulate such an oil-supply shock for one single period and afterwards set all shocks
to zero again.
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Figure 6.10 Alternative forecast scenarios for local real corn prices in domestic
currencies. The vertical lines represent the beginning of the forecast periods.

Figure D.2 shows that a potential breakdown of Iranian oil production can be expected
to lead to a considerably higher corn price in Ethiopia, Ghana and Kenya. The predicted
real price of corn exceeds the baseline forecast by around 15% in Ethiopia and Ghana and
by about 25% in Kenya after approximately five months. As already discussed in Section
6.4.2.4 the corn price increase could be much lower if local governments successfully build up
strategic oil reserves to buffer oil-supply shortages.

What are the consequences of an oil price war?
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During the SARS-CoV-2 outbreak in early 2020 and the prospect of a global economic slow-
down, the OPEC tried to stabilize oil prices by lowering its production ceilings. However,
Saudi Arabia and OPEC+ member Russia were unable to agree on a cut in production, which
prompted Saudi Arabia to raise its production ceilings to make oil production unprofitable
for Russia.

In the second scenario, we simulate the consequences if Saudi Arabia and Russia unex-
pectedly increase their oil production. The production expansion was about 3 mbd, which
is equivalent to a 3.6% increase in global oil production, much larger than the highest single
oil-supply shock in our sample. Therefore, we generate one oil-supply shock that increases
global oil production by 1.4% and a second one which increases global oil production by 1.2%
one month later in an attempt to replicate the real-world scenario. Figure D.2 shows that
corn prices in Ethiopia would be 10% lower, in Ghana about 6% lower and in Kenya about
18% lower, on average, six months after the shocks. The downward pressure on the corn
price is comparable with the effects from the shale oil boom in 2014/15, but although it is
achieved within a much shorter time span. Since the actual increase in oil production is even
stronger, the effect on the price of corn would be equally more pronounced after a sizable
reduction in transport costs.

6.5 Conclusions

Oil prices are closely linked to food prices, particularly after the onset of large-scale biofuel
production about one-and-a-half decades ago. As developed countries increasingly mandated
the conversion of agricultural crops to fuel by policy, worries about adverse effects on food
prices in more vulnerable regions of the world emerged in light of globally integrated markets.
Consequently, a sizable body of literature examines the price relationships of crude oil and
food prices and has gained a better understanding of the effects of oil markets on food
prices. However, many of previous works on the crude oil-food price nexus suffer from three
major shortcomings: (i) they only analyze the impacts of oils shocks on food markets in
developed countries, (ii) they do not differentiate between the alternative sources of oil price
fluctuation, and (iii) most of the structural analyses rely on zero restrictions or elasticity
constraints, which are prone to underestimate the effects from oil-supply shocks. In a data-
based manner, we disentangle the causal relationships between the global crude oil market
and domestic food prices according to alternative sources of oil market turmoils in eight SSA
countries by means of ICA.

We provide three main novel insights into the response of SSA corn markets to global oil
shocks. First, we find that fundamental changes as well as general dynamics on global corn
markets influence SSA food markets very differently compared to how they impact global
food markets. SSA corn markets are significantly less sensitive to oil-specific demand shocks
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and more responsive to oil-supply shocks. Overall, we attribute the non-responsiveness to
oil-specific demand shocks to the absence of biofuel substitution opportunities, and fail to di-
agnose increased global biofuel production (including output stimulated by policy mandates)
as a determinant of corn prices in SSA.

Second, SSA corn markets are not only different compared with global corn markets,
but also very heterogeneous among themselves. We detect three corn markets - namely in
Ethiopia, Ghana and Kenya - that are particularly sensitive to global oil-supply shocks. Some
of the largest corn price surges in Ethiopia, Ghana and Kenya can be attributed to global
oil-supply disruptions. For example, half of Kenya’s strongest corn price increase in early
2011 is due to the unexpected shortfall of Libyan oil production. Conversely, the shale oil
boom in the US combined with the production expansion in the Middle East in 2014/15
reduced corn prices by between 10% and 20% in Ethiopia, Ghana and Kenya. Moreover,
we find that the price surges in SSA corn markets during the international food price crisis
in 2007/08 are not linked to the crude oil market. The corn markets in the remaining SSA
countries are more or less independent of global crude oil market dynamics and much more
subject to unexpected local shocks.

Third, transport costs are the main channel for oil-supply shortfalls to transmit into corn
price increases in SSA, while other transmission channels hold minimal importance in SSA.
We conclude that SSA countries are particularly vulnerable to oil-supply shocks due to their
(temporary) lack of both strategic and natural oil reserves. Further contributing factors are
poor road connectivity combined with long travel distances and inefficient oil distribution
systems.

Finally, we simulate the consequences of different hypothetical events on local SSA corn
prices, i.e. a shutdown of Iranian oil production and the oil price war between Saudi Arabia
and Russia. A shortfall in Iranian oil production can increase corn prices in SSA countries
by up to 25%, while SSA countries can benefit from a global oil price war that leads to corn
prices that are up to 18% lower, on average. Such unusual responsiveness of SSA countries
to oil-supply shocks has rather straightforward implications for the food security of both
net food buyers and food sellers, since price increments or reductions are merely changes
in transaction costs. However, ensuring a stable supply of energy and fuel supports a more
stable food market and is a promising policy option to mitigate the adverse effects of global
oil-supply shocks on food security.

We suspect that in general, food markets in developing countries - such as those in SSA
- respond more heterogeneously to the global oil market than previously thought. In partic-
ular, the vulnerability of oil shocks depends on a variety of country-specific characteristics
surrounding food production sectors and energy distribution systems. Given that both are
often subject to government intervention, policy could be key in determining the magnitude
of the threat of oil shocks on food security.
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Chapter Seven

General Conclusion

This final chapter summarises the results of the five essays and their respective policy im-
plications. Finally, this chapter lays out some of the limitations which could be subject to
future research.

The simultaneous achievement of several goals which carry economic, societal or environ-
mental value generates a multitude of trade-offs among the three dimensions. Particularly,
along agricultural value chains the pursuit of conflicting aims is eminent. For policy-makers,
trade-offs are not only imperative problems to mitigate, but also are opportunities to cre-
ate societal and environmental values which currently are hardly measured by conventional
measures and even more rarely can be pondered adequately with competing outcomes of
the economy. To formulate and successfully design targeted and optimized measures, policy
is critically reliant upon case-by-case evidence and real world studies, which analyze policy
effects and their potential unintended by-effects. Moreover, to deliver timely and adequate
research, the toolsets of policy-analytic research must be up to date and scrutinize novel
methodological innovations in detecting causal effects. To that end, the present dissertation
attempts to advance the evidence-base in two distinct parts. The first part provides novel
insights on the role of smallholders amidst the palm-oil boom and environmental trade-offs in
Indonesia. The second part delivers a software implementation of data-driven identification
techniques for multivariate time series analysis and applies said methods to detect oil shock
threats to Sub-Saharan food markets.

7.1 Summary of results

The first essay (chapter two) asks whether technical efficiency of oil palm smallholder pro-
ducers reduces or accelerates land expansion in Indonesia. Some policy-makers and policy-
oriented institution advocate that intensified oil palm production could lead to sparing addi-
tional ecologically valuable land from oil palm cultivation. By contrast, rebound effects might
induce the opposite thereof and instead, changing economic incentives lead to additional land
expansion when the demand is elastic. In a two stage approach, we first study the production
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process of smallholder producers and determine their technical efficiency using LMM that
accommodate hierarchical data in a heterogeneous production technology function. In the
second stage, we innovate the existing literature by predicting land expansion using technical
efficiency and other covariates accounting for measurement error in an EIV model. Our main
finding is that, although potential land sparing resulting from technical efficiency gains is
remarkable, increasing land demand could offset net sparing by about one third.

The second essay (chapter three) analyses the environmental performance of smallholder
oil palm producers regarding loss of biodiversity. While the environmental externalities of
large-estate production technology has dominated the relevant literature, empirical evidence
is scarce on the environmental trade-offs in smallholder production systems. We extend
the hyperbolic distance functions of Cuesta et al. (2009) and develop a restricted version
thereof to accommodate both fixed and variable inputs in a production function to examine
the interdynamics between provision of desired and undesired outputs. Empirical evidence
suggests the presence of a quadratic relationship between oil palm output and biodiversity
loss and substantial environmental inefficiency. Weeding practices disproportionately lead
to loss of biodiversity as they increase production and thereby significantly contribute to
shortfalls in environmental performance. Moreover, we find rather high shadow prices of
smallholder production amounting to 16% of annual palm oil income to conserve one species
in the average biodiversity on their plantations.

The third essay (chapter four) studies the efficacy of trade policy of Indonesia, Malaysia
and Thailand to manipulate international commodity prices. In light of the continuing decline
of real output prices for rubber the TRC agreed upon several domestic and trade measures
in an effort to counteract international price developments and support domestic production.
Particularly, the set of measures consists of stimulating domestic demand, limit plantation
area and temporary export quotas. We apply the seminal model by Gardner (1975) to natural
and synthetic rubber markets and derive exogneous policy shocks to prices in both related
markets. Empirically, we rely on an ECM and find weak exogeneity of crude oil and co-
integrated synthetic and natural rubber prices. Policy attempts have partly been successful
in disconnecting international rubber prices from synthetic price movements. However, in-
creased domestic consumption of natural rubber in Indonesia might have spurred price decays
in international markets.

The second focus of this dissertation turns to the identification problem in multivariate
time series. Many empirical works rely on reduced form models or assumption driven identi-
fication of structural time series models. However, in the more recent past, novel data-driven
identification techniques have become available in the related SVARs literature. However, at
present relatively few studies overcome the constraints of assumption driven identification.
In cases where it is ambiguous whether the identifying assumptions do hold, for instance the
zero-elasticity restriction of oil-supply, such models allow for a more agnostic approach and
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may lead to more targeted policy measures, particularly in agricultural commodity markets.
The fourth essay (chapter four) introduces the R package svars which allows time series

analysts to implement data-driven identification techniques. It connects to existing packages
on time series analysis and enables the identification of SVARs by heteroskedasticity and
independence based identification techniques, based on a user-provided reduced form model.
In addition, the package delivers an array of popular model diagnostics and other analysis
tools such as IRFs, HD and FEVD.

The fifth essay (chapter six) analyses the threat of global oil shocks to food security in
SSA. Even though the food-oil price nexus is comparatively well understood in high-income
countries and at a global level, the impacts of oil shocks on food markets in developing
countries, particularly in SSA are still unclear. This is particularly striking as these regions
are most affected by food price changes due to high labour force participation in agriculture
as well as large proportions of income spent on food of urban consumers. We find that SSA
corn markets respond fundamentally different to various oil shocks than global prices do.
Moreover, within SSA countries are very heterogeneous in their food market’s response to
oil shocks. Particularly oil-supply shocks play a larger role in SSA than they do on global
markets. As transportation costs are high in some SSA countries and fuel supply chains
characterized by inefficiency and bottlenecks, oil supply shortfalls, such as during the Libyan
revolution in 2011, may translate into higher food prices.

7.2 Policy implications

Regarding smallholder oil palm production in Indonesia, the results of this dissertation postu-
late several implications for domestic and international policy. First and foremost, smallhold-
ers are an important part for environmentally an socially sustainable palm oil production.
Numerous works have pointed out the benefits to rural development of smallholder oil palm
production (Qaim et al., 2020), and moreover, their mosaic-type spatial arrangements allow
for a highly diverse landscape matrix, potentially enabling large-scale biodiversity conserva-
tion (Sayer et al., 2012).

One eminent issue of smallholder oil palm production is the relatively low productivity,
particularly regarding land use. The yield gap between smallholders and large-estate produc-
tion types is about 40%, on average (Woittiez et al., 2017). The results from the production
function of chapter two and, to some extend also the hyperbolic environmental efficiency
function in chapter three, indicate that smallholders fall short of their potential output by a
sizeable margin and could produce more at given input use, including land use. Thus, it is
likely that a sizeable share of the shortfalls in yield can be attributed to technical efficiency
of production. For policy this result is two-edged. On the one hand, shortfalls in yield can be
substantially improved with managerial skill without needing to introduce potentially costly
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technology. I.e. smallholders are likely to be able to increase output at no additional input
cost by just adjusting their management practices. On the other hand, capacity building
and designing proper extension services are also a tall order and come with a number of
challenges. Particularly in view of the long-standing government support smallholders have
already received during the past decades - that is to some extend reflected in the model
results of chapter two and three - any existing support schemes are perhaps not achieving
desired outcomes and thus require thorough revision and redesign.

Turning to the environmental side, deforestation is a problem faced by all stakeholders
along the value chain. While yield enhancing policy sometimes are also expected to slow
down deforestation as they enable producing more on less land, chapter two finds this to
be only partially true. Net land savings are smaller than expected and input demand for
land of smallholder producers increases with efficiency-induced productivity boosts. Thus, if
policy-makers decide to address the yield gap via management enhancing extension derives,
they should be accompanied by stringent land us policy and improved formal land markets.
Additionally, as other authors have shown, more formalized land titles have additionally
promote intensification of production as opposed to expansion (Kubitza et al., 2018b; Gawith
and Hodge, 2019).

The second environmental trade-off addressed in this dissertation is biodiversity loss in
smallholder oil palm production. We find that conserving biodiversity on smallholders plan-
tations is rather costly and amounts to 16% of average annual palm oil income to increase
average biodiversity by one species. This result reflects the magnitude of economic benefits
that oil palm production represents for farmers in Jambi given their current technology and
management practice. However, as the production process leaves ample room to eliminate
inefficiency, policy-makers could achieve both increasing output and conserving biodiversity
at the same time. Specific drivers of shortfalls in environmental performance are weeding
practises which have negligible impact on current production effects and disproportionally
higher detrimental effects on biodiversity. Such insights could be integrated in respective
outreach and extension service policy schemes to strengthen environmental sustainability in
smallholder production. While shortfalls in inefficiency can be mitigated without sacrificing
output and therefore should always be addressed first, if policy is interested in conserving
biodiversity beyond such levels, this will require producers to curb production. PES are a
promising means to compensate farmers for giving up some of their economic output and
instead, provide biodiversity as a public good.

Thus regarding the smallholder trade-offs amid palm oil production we conclude that (i)
improving smallholder oil palm managerial skill, (ii) introducing more formal land markets
and enforcing existing land institutions, (iii) reducing management practices that dispropor-
tionally contribute to environmental degradation, and (iv) PES to compensate farmers for
additional provision of biodiversity as opposed to oil palm output are all viable measures
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to improve economic, social and environmental sustainability in palm oil production. Im-
portantly, measures (i)-(iii) should be implemented jointly to prevent area related rebound
effects. Even though these insights are developed from a case study in Jambi province, where
much of the lowland deforestation already took place and deforestation rates are relatively
low at present, these lessons learned are likely to be valid for other regions in Indonesia where
palm oil production is at an earlier stage, for instance in Kalimantan (Kubitza et al., 2018b).
Moreover, as palm oil production continues to emerge as a competitive cash crop also in other
parts of the world, respective policy are likely to face similar conditions with regards to (i)
productivity shortfalls of smallholders, (ii) highly elastic demand, at least at farm gates, (iii)
shortfalls in environmental performance and (iv) the orders of magnitude of willingness of
farmers to provide environmental services in palm oil production.

Turning to the second part of this dissertation that focused on the oil shock responses
of SSA food markets, one of the main insights is that SSA food markets are highly het-
erogeneous and very different in their response to global oil shocks compared with global
markets. Thus, respective policy measures should be aware of country and region specific
idiosyncrasies. Moreover, this result is likely valid for other food markets in developing coun-
tries. Particularly, oil-supply shocks are more important drivers of SSA food markets than
on world markets while drivers on the demand side remain relatively ineffectual. The usual
global transmission channels between crude oil and food markets, such as biofuel production
have been shown to intensify the oil price-food price co-movement, we find that for our set
of markets, other transmission channels are more important. Transport costs are relatively
dominant factors in local cost functions of food producers and thus, food prices are highly
vulnerable to changes in fuel cost. We thus conclude that strategic oil reserves and ensur-
ing the functioning of fuel distribution systems are promising policy strategies to prevent
domestic food markets from international oil-supply shocks. Being able to protect against
sudden global oil supply shocks mitigates the downward pressure of food prices. Notably,
transport cost related price increases come to the benefit of neither producers nor consumers
and thereby threaten food security in vulnerable regions more unilaterally.

7.3 Limitations and future research

The findings and policy implications of this dissertation highlighted in the previous sections
are of course not free from methodological and conceptual limitations. Also researchers face
trade-offs in their choice of models and approaches and need to settle for assumptions which
sometimes are daunting. Yet, - and needless to say - in all the cases, the compromises are
considered the best option given the conceptual, methodological and data constraints. The
last lines of this dissertation are dedicated to outlining some limitations of the interpretation
of the results in light of such compromises. Furthermore, they ought to point out research
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which could potentially connect to this dissertation beyond these constraints.

Even though in chapters two and three we find substantial technical and environmental
inefficiency, respectively, we succeed only partially in explaining their drivers. In our models,
we find that obvious socioeconomic control variables such as age, education or land titles
do not reveal significant effects. One particularly challenge is to interpret the transmigrant
variables in our work. While we fail to associate meaningful effects on environmental or tech-
nical efficiency, which stands in some contrast to the results of other authors who find higher
yields among transmigrants (Gatto et al., 2015; Euler et al., 2017), we find smallholders to
be less likely to expand their plantation compared to their autochthonous counterparts when
controlling for efficiency heterogeneity. This result finds support in Kubitza et al. (2018b),
who suggest that transmigrant farmers are more likely to hold formal land titles and pro-
duce more intensively than expansively. Yet, the variable is more critical as it reflects the
effects of government support. The result is somewhat against intuition as we would expect
transmigrant farmers - which have received more government support in terms of land and
production practice - to perform better than those who did not, at least regarding provision of
desired outputs. One possible explanation for this result lies in agrochemical use, which has
been shown to be higher in transmigrant farming as well as network effects, as the program
was launched during the 1970s and expired in 2015. Thus, knowledge advantages by now
could have disseminated among all farmers. The latter case, however, provides interesting
avenues for research analyzing management practice dissemination among oil palm produc-
ers. Moreover, also other techniques and approaches could help shed more light on today’s
impact of the trasmigrasi program on economic, social and environmental outcomes as well as
narrowing down further determinants of technical efficiency and shortfalls in environmental
performance.

Another issue is technological and management heterogeneity between smallholders and
large estates in palm oil production. Efficiency only partially explains the yield gap between
the two and the remainder must be attributed to superior production technology. Better
seedlings and fertilizer as well as optimized cutting techniques are thinkable differences which
could lead to the inherent yield differences (Woittiez et al., 2017). However, we devote the
technological differences between smallholder farmer compare technologies to close yield gaps
to subsequent research.

Also the measurement of the biodiversity trade-off in chapter three, is subject to some
limitations. Particularly, the biodiversity indicator (ENS) describes the distance from uni-
formity in species distribution. While this is desirable from an ecological perspective, the
indicator does not account for potential non-linearity over the entire plantation and farm.
Furthermore, the indicator does not differentiate among species. Some plants are beneficial
to the local ecosystem whereas others - often invasive - species are detrimental. Some species,
and to that end biodiversity as a whole - are also beneficial to palm oil production. However,
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such structural effects of biodiversity on oil palm production may not be retrieved from the
chosen indicator and econometric approach. Our results suggest that some farmers operate
the technology at a point where increased biodiversity is associated with higher oil palm
output. Such effects have recently been studied more formally in the recent work by Schaub
et al. (2020). However, our model results do not allow for further conclusions and do not
reveal structural biodiversity effects on production, nor do they allow to distinguish between
species which are beneficial or detrimental to production. The investigation of such effects
provides another avenue for future analysis.

Regarding PES designs, chapter three lays out several potential implementation strate-
gies, costs and premiums. However, they do not include transaction costs. Surveying bio-
diversity as done in this study admittedly will be associated with substantial transaction
costs that naturally threaten the feasibility of the outlined PES. Nevertheless, as more cost
effective measurement technology such as remote sensing becomes available, surveying biodi-
versity outcomes as much as other environmental indicators will come at substantially lower
transaction costs (Gullstrand et al., 2014).

The analyses on smallholder palm oil production and the study of rubber price policy fur-
thermore could suffer from the omission of potential cross-effects from the other commodity,
respectively. In Indonesia - and in particular the study region - both rubber and palm oil
are important cash crops. Farmers’ cultivation decisions - and also rural development policy
actions - often are guided by developments in both sectors. This is a particular relevant
aspect concerning, for instance, the work on shadow pricing biodiversity as some farmers
palm oil plots are adjacent to rubber plots, sometimes also owned by the same farmer, which
often harbour substantially higher levels of biodiversity. On a macro level, the third essay
does not consider the effect of oil palm cultivation on rubber plantation potentials and policy
effects on that. Integrative approaches which base on both sectors might bring about more
comprehensive results which allow reconciling the two market developments and implications
for policy and farmers.

Finally, our results regarding oil shock impacts in SSA rely on a limited number of coun-
tries as well as only once commodity under scrutiny. Since we find substantial heterogeneity
of responses to oil-shocks among our sampled countries, other countries’ food markets as well
a different selection of commodities are likely to yield different results. To some extend this
drawback is due to limited availability of data. However, as the collection and publication
of rural price data series in SSA are continuously expanded with regards to time frequency,
location and commodities, future research on oil shocks and food markets in SSA and other
developing countries could put our results under more scrutiny while further extending the
evidence base on the ambiguous effects of oil shocks.
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Appendix of Chapter Two

A.1 Random intercept model

Table A.1 Random intercept model estimation results

LMM
Technology

β0 (Intercept) 0.16 (0.56)
β1 (Size) 0.90 (0.09)∗∗∗

β2 (Labour) 0.09 (0.05)
β3 (Agrochemicals) 0.16 (0.05)∗∗∗

β4 (Tree age) 0.21 (0.10)∗∗

β5 (Tree density) 0.21 (0.10)∗∗

β13 −0.02 (0.04)
β12 0.04 (0.08)
β14 0.37 (0.12)∗∗∗

β15 −0.12 (0.19)
β23 −0.02 (0.03)
β24 −0.24 (0.09)∗∗∗

β25 0.13 (0.19)
β34 −0.01 (0.04)
β35 −0.03 (0.10)
β45 0.31 (0.24)
β11 0.12 (0.12)
β33 0.05 (0.02)∗∗

β22 −0.09 (0.05)∗

β44 −0.95 (0.21)∗∗∗

β55 −0.89 (0.47)∗

ρ −0.09 (0.14)
InputDummy −0.29 (0.12)∗∗

Group predictors
γ1 (Age) 0.01 (0.02)
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LMM ctd.
γ11 I(Age2) −0.00 (0.00)
γ2 Education 0.01 (0.01)
γ3 HHSize −0.08 (0.03)∗∗∗

γ4 Transmigrant 0.05 (0.13)
γ5 trans −0.03 (0.12)
γ6 Land title −0.01 (0.17)

AIC 774.75
BIC 896.32
Log Likelihood −355.38
Num. obs. 330
Num. groups: hid 211
Var: hid (Intercept) 0.12
Var: Residual 0.27
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table A.1 Statistical models

A.2 Derivation of land efficiency measure

Reinhard et al. (1999) consider a detrimental output and derive the respective environmen-
tal efficiency from a translog production function. In their model, the undesired output
enters the equation as an input and the measure aims at capturing the distance of actual
input (undesired output) level and the potential minimum input (undesired output). In other
words, the ratio between the minimum input (detrimental output) and the actually produced
amount of input (detrimental output) in their model. Thus this represents an input oriented
efficiency measure which is tailored towards one input only while not considering other pro-
duction factors. What follows is an application of the environmental efficiency measure of
Reinhard et al. (1999) to derive land efficiency of the oil palm smallholders. We start from
the translog production specification as in Equation 2.6. At zero inefficiency the land efficient
producer uses xict∗ land and his production function is

yict = β0+β1xict+
∑

j

β5
j=2xictj + 1

2
∑
j=2

5∑
k

βjkxictjxictk +
∑

j

β1jxictjx
∗
ict+0.5β11x

∗2
ict+vict. (A.1)

We can now isolate the logarithmized land efficiency measure LEict = x∗
1ict − x1ict by setting

equations 2.6 and Equation A.1 equal resulting in
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1
2

β11[x2
1ict − x2

1ict] +
5∑

j=2
β1jxict[x1ict − x1ict] + β1[x1ict − x1ict] + uc = 0. (A.2)

A further simplification thereof is

1
2

β11[x1ict − x1ict]2 +
[
β1 +

5∑
j=2

β1jxict + β11x1ict

]
× x∗

1ict − x1ict + uc = 0 (A.3)

which we solve for LEict = x∗
1ict − x1ict yielding the land efficiency measure

LEict =

[
−
(

β1 +∑4
j β1jxictj + β11x1ict

)
±
{(

β1 +∑4
j β1jxictj + β11x1ict

)2
− 2β11uict

}.5]
β11

.

(A.4)
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B.1 Biodiversity indicators

Figure B.1 Density of sample plots with different levels of plant species diversity
assessed by diversity indices of order (q = 0) (SR), (q = 1) (ENS), and (q =
2) (Simpson diversity). SR is more sensitive to differences between samples but
potentially unreliable as diversity measure when undersampling is expected
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B.2 Hyperbolic and enhanced hyperbolic specifications
and estimation results

Empirical specification of the hyperbolic distance function:
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−lnyi = α0 +
4∑

k=1
αkln(xki) + β1ln(b∗

i ) +
4∑

k=1
β1kln(b∗

i )ln(xi) + 1
2

4∑
k=1

4∑
l=1

αklln(xki)ln(xli)+

+1
2

β11ln(b∗
i )2 + ρ0ti + ui + vi.

(B.1)

Empirical specification of the enhanced hyperbolic distance function:

−lnyi = α0 +
4∑

k=1
αkln(x∗

ki) + β1ln(b∗
i ) +

4∑
k=1

β1kln(b∗
i )ln(x∗

i ) + 1
2

4∑
k=1

4∑
l=1

αklln(x∗
ki)ln(x∗

li)+

+1
2

β11ln(b∗
i )2 + ρ0ti + ui + vi.

(B.2)

Table B.1 Hyperbolic and enhanced hyperbolic distance functions

DH(x, y, b) DE(x, y, b)

Technology
α0 (Intercept) −0.49 (0.09)∗∗∗ −0.35 (0.04)∗∗∗

α1 (Size) −0.43 (0.08)∗∗∗ −0.26 (0.03)∗∗∗

α2 (Labor) −0.06 (0.06) −0.10 (0.03)∗∗∗

α3 (Agrochemicals) −0.04 (0.02) −0.00 (0.01)
α4 (Age of palms) −0.33 (0.09)∗∗∗ −0.25 (0.03)∗∗∗

β1 (Biodiversity loss) −0.45 (0.04)∗∗∗ −0.12 (0.04)∗∗

β12 −0.07 (0.07) 0.03 (0.05)
β13 −0.05 (0.05) 0.02 (0.06)
β14 −0.02 (0.02) 0.01 (0.01)
β15 −0.03 (0.07) −0.02 (0.05)
α12 0.04 (0.09) −0.05 (0.05)
α13 0.01 (0.02) 0.00 (0.01)
α14 −0.17 (0.12) −0.05 (0.04)
α23 0.01 (0.01) −0.01 (0.01)
α24 0.18 (0.08)∗∗ 0.10 (0.03)∗∗∗

α34 0.03 (0.02)∗ 0.00 (0.01)
α11 −0.15 (0.13) 0.02 (0.04)
α22 −0.00 (0.03) −0.03 (0.02)
α33 −0.00 (0.01) 0.00 (0.00)
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DH(x, y, b) DE(x, y, b)

α44 −0.20 (0.20) −0.04 (0.06)
β11 0.15 (0.07)∗∗ −0.03 (0.08)
ρ0 0.08 (0.04)∗∗ 0.07 (0.02)∗∗∗

σv

ω0 −3.76 (0.40)∗∗∗ −4.29 (0.15)∗∗∗

Inefficiency
τ0 0.95 (2.42) −1.54 (7.51)
τ1 (Age) −0.28 (0.13)∗∗ −0.71 (0.41)∗

τ2 (Age2) 0.00 (0.00)∗∗ 0.01 (0.00)∗

τ3 (Education) −0.05 (0.44) 1.71 (2.18)
τ4 (Education2) 0.03 (0.08) −0.33 (0.40)
τ5 (HH size) 0.30 (0.16)∗ 0.44 (0.38)
τ6 (Transmigrant) 1.01 (0.49)∗∗ 2.41 (1.34)∗

τ7 (Chemical weeding) 0.64 (0.50) 4.99 (3.22)
τ8 (Manual weeding) 1.09 (0.41)∗∗∗ 3.66 (1.50)∗∗

τ10 (Land title) 0.89 (0.59) 1.68 (1.42)

Mean TE 0.78 0.96
Observations 123 123
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Table B.2 Marginal effects of determinants of inefficiency (from hyperbolic and
enhanced hyperbolic distance functions)

DH(x, y, b) DE(x, y, b)
Mean St. Dev. Min Max Mean St. Dev. Min Max

Age -0.039 0.016 -0.093 -0.011 -0.018 0.029 -0.172 0.000
Education -0.006 0.003 -0.015 -0.002 0.043 0.070 0.000 0.414
Household size 0.042 0.018 0.012 0.101 0.011 0.018 0.000 0.107
Transmigrant 0.141 0.060 0.041 0.336 0.060 0.099 0.000 0.583
Chemical weeding 0.090 0.038 0.026 0.215 0.125 0.204 0.001 1.205
Manual weeding 0.152 0.065 0.044 0.362 0.092 0.150 0.001 0.883
Land title 0.125 0.053 0.036 0.298 0.042 0.069 0.000 0.406

Table B.3 Shadow pirces in ’000 IDR (Derived from hyperbolic and enhanced hy-
perbolic distance functions

DH(x, y, b) DE(x, y, b)
Mean Median St. Dev. Mean Median St. Dev.

2018 6,381 4,187 17,659 1,120 11,357 107,277
2015 6,381 4,187 17,659 1,106 11,212 105,914
2012 5,551 3,642 15,363 975 9,880 93,330

B.3 Hyperbolic, enhanced hyperbolic and restricted hy-
perbolic with SR loss as undesired output

Table B.4 Hyperbolic, restricted and enhanced hyperbolic distance functions with
inverse of SR as an undesirable output

DH(x, y, b) DR(x, y, b) DE(x, y, b)

Technology
α0 (Intercept) −0.49 (0.09)∗∗∗ −0.48 (0.08)∗∗∗ −0.35 (0.04)∗∗∗

α1 (Size) −0.43 (0.08)∗∗∗ −0.37 (0.08)∗∗∗ −0.26 (0.03)∗∗∗

α2 (Labor) −0.06 (0.06) −0.06 (0.06) −0.10 (0.03)∗∗∗

α3 (Agrochemicals) −0.04 (0.02) −0.06 (0.02)∗∗∗ −0.00 (0.01)
α4 (Age of palms) −0.33 (0.09)∗∗∗ −0.26 (0.08)∗∗∗ −0.25 (0.03)∗∗∗

β1 (Biodiversity loss) −0.45 (0.04)∗∗∗ −0.42 (0.04)∗∗∗ −0.12 (0.04)∗∗

β12 −0.07 (0.07) −0.08 (0.06) 0.03 (0.05)
β13 −0.05 (0.05) −0.06 (0.05) 0.02 (0.06)
β14 −0.02 (0.02) −0.01 (0.01) 0.01 (0.01)
β15 −0.03 (0.07) −0.06 (0.07) −0.02 (0.05)
α12 0.04 (0.09) 0.03 (0.08) −0.05 (0.05)
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DH(x, y, b) DR(x, y, b) DE(x, y, b)

α13 0.01 (0.02) 0.01 (0.02) 0.00 (0.01)
α14 −0.17 (0.12) −0.14 (0.11) −0.05 (0.04)
α23 0.01 (0.01) 0.01 (0.01) −0.01 (0.01)
α24 0.18 (0.08)∗∗ 0.16 (0.08)∗ 0.10 (0.03)∗∗∗

α34 0.03 (0.02)∗ 0.04 (0.01)∗∗∗ 0.00 (0.01)
α11 −0.15 (0.13) −0.12 (0.11) 0.02 (0.04)
α22 −0.00 (0.03) −0.00 (0.03) −0.03 (0.02)
α33 −0.00 (0.01) −0.01 (0.00)∗∗ 0.00 (0.00)
α44 −0.20 (0.20) −0.19 (0.19) −0.04 (0.06)
β11 0.15 (0.07)∗∗ 0.18 (0.08)∗∗ −0.03 (0.08)
ρ0 0.08 (0.04)∗∗ 0.06 (0.04) 0.07 (0.02)∗∗∗

σv

ω0 −3.76 (0.40)∗∗∗ −3.94 (0.38)∗∗∗ −4.29 (0.15)∗∗∗

Inefficiency
τ0 0.95 (2.42) 1.24 (2.36) −1.54 (7.51)
τ1 (Age) −0.28 (0.13)∗∗ −0.29 (0.12)∗∗ −0.71 (0.41)∗

τ2 (Age2) 0.00 (0.00)∗∗ 0.00 (0.00)∗∗ 0.01 (0.00)∗

τ3 (Education) −0.05 (0.44) −0.03 (0.43) 1.71 (2.18)
τ4 (Education2) 0.03 (0.08) 0.03 (0.08) −0.33 (0.40)
τ5 (HH size) 0.30 (0.16)∗ 0.31 (0.15)∗∗ 0.44 (0.38)
τ6 (Transmigrant) 1.01 (0.49)∗∗ 1.17 (0.48)∗∗ 2.41 (1.34)∗

τ7 (Chemical weeding) 0.64 (0.50) 0.50 (0.46) 4.99 (3.22)
τ8 (Manual weeding) 1.09 (0.41)∗∗∗ 1.09 (0.39)∗∗∗ 3.66 (1.50)∗∗

τ10 (Land title) 0.89 (0.59) 0.98 (0.55)∗ 1.68 (1.42)

Mean TE 0.78 0.78 0.96
Observations 123.00 123.00 123.00
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Appendix of Chapter Four

C.1 Derivation of relation between agricultural and
industrial input price changes

First we insert equations (4.1) and (4.3) into the equilibrium condition on the agricultural
input market, equation (4.7), which yields

h(a, U)(1 + t) = pQfa, (C.1)

where fa is the partial derivative of Q(a, b) with respect to a. We now differentiate equation
(C.1) with respect to W :1

ha
∂a

∂U
(1 + t) = pQfaa

∂a

∂U
+ pQfab

∂b

∂U
+ fa

∂pQ

∂U
(C.2)

The next step is to derive the equivalent of equation (12) in Gardner (1975, p. 400),
appended by the policy. To do so, the differentiations in equation (C.2) are replaced by
elasticities, then input shares are included, and faa and fab are replaced.2

0 = −
(

Sb

σ
+ 1

εa

)( 1
1 + t

)
EaW + Sb

σ
EbW + EpQW − εa,U (C.3)

The E refer to “elasticities which take into account equilibrating adjustments in all three
markets simultaneously” (Gardner, 1975, p. 400). Regarding notation, the first variable in
the subscript indicates the variable that reacts to a shock stemming from the second one.
From (C.3) we derive the equivalent to equation (A.8) in Gardner (1975, p. 409), analogous
to the appendix in Gardner:

EpW
a ,U = εUεa (εb + Saσ − SbηQ)

(1 + t)D
(C.4)

Equation (C.4) describes the elasticity of the agricultural output price with respect to a
shift and tilting in the agricultural supply. εU is the elasticity describing the reaction of pa

1For the derivation of equation (C.2) see Gardner (1975, p. 400, equation (9)).
2For the derivation of equation (C.3), see Gardner (1975, p. 408, equation (A.8)). The difference to the

cited equation is that Gardner differentiates with respect to N (shift in output demand) while this application
does so with respect to W (shift in agricultural supply) as described in Gardner (1975, p. 402).
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to U .3 εU captures the effect of the policy induced reduction of the agricultural output
resulting from a reduction of production capacity. The industrial output’s reaction to a
supply shift in the agricultural output, EW

pb
, is equivalent to equation A.17 in Gardner

(1975, p. 409):

Eb,U = εaεbSa(ηQ + σ)
D

(C.5)

With Eb,U = εbEpb,U we can derive the expression for Epb,U :4

Epb,U = εaSa(ηQ + σ)
D

(C.6)

The relation between agricultural and industrial input price changes, the cross price
elasticity εa,b between a and b is generated by dividing equation (C.4) by equation (C.6):

εa,b =
EpW

a ,U

Epb,U

= εU

(1 + t)
(εb + Saσ − SbηQ)

Sa(ηQ + σ)
(C.7)

which is text equation (4.8).

3Note the difference to Ea,U , which stands for the total elasticities, while εU accounts for the partial
elasticity.

4The equivalent calculation for good a is provided in Gardner (1975, p. 408).
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C.2 Simulation of elasticities based on varying values
for sigma

Figure C.1 Simulation elasticity based on different values for σ. The red line
indicates the value (σ = 10) that was used for the calculation in equation (4.10).
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C.3 Robustness checks of SMS measure

Table C.1 Long run regression models

Model 1 Model 2 Model 3 Model 4 Model 5
(Intercept) −3.47 −3.52 −3.53 −3.19 −3.35

(0.07) (0.06) (0.06) (0.06) (0.07)
pSR 1.05 1.14 1.07 0.97 1.01

(0.01) (0.01) (0.01) (0.01) (0.01)
pCO 0.17 0.04 0.15 0.28 0.22

(0.01) (0.01) (0.01) (0.01) (0.01)
SMSex −0.01 −0.17

(0.01) (0.01)
SMST O −0.20 −0.07 −0.18

(0.01) (0.01) (0.01)
SMSha −0.31 −0.09

(0.01) (0.01)
R2 0.93 0.95 0.94 0.95 0.93
Adj. R2 0.93 0.95 0.94 0.95 0.93
Num. obs. 1484 1484 1484 1484 1484
RMSE 0.12 0.10 0.12 0.10 0.12
Standard errors in parentheses.
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C.3.1 Results of short run regression

Table C.2 ECM based on LR model 4

∆pNR
t ∆pSR

t

∆pCO
t 0.09 (0.02) 0.16 (0.04)

AETSt 0.00 (0.01) 0.02 (0.01)
ECTt−1 0.01 (0.00) 0.01 (0.01)
∆pNR

t−1 0.17 (0.03) −0.04 (0.06)
∆pSR

t−1 −0.01 (0.01) −0.08 (0.03)
∆pCO

t−1 0.02 (0.02) −0.04 (0.04)
∆pNR

t−2 0.11 (0.03) −0.00 (0.06)
∆pSR

t−2 0.00 (0.01) 0.01 (0.03)
∆pCO

t−2 0.03 (0.02) 0.05 (0.04)
∆pNR

t−3 0.15 (0.03) 0.07 (0.06)
∆pSR

t−3 0.01 (0.01) −0.05 (0.03)
∆pCO

t−3 0.05 (0.02) 0.02 (0.04)
∆pNR

t−4 0.07 (0.03) 0.05 (0.06)
∆pSR

t−4 0.00 (0.01) 0.02 (0.03)
∆pCO

t−4 0.04 (0.02) −0.10 (0.04)
∆pNR

t−5 −0.02 (0.03) −0.01 (0.06)
∆pSR

t−5 −0.01 (0.01) 0.06 (0.03)
∆pCO

t−5 0.01 (0.02) 0.01 (0.04)
∆pNR

t−6 −0.01 (0.03) 0.07 (0.06)
∆pSR

t−6 0.01 (0.01) −0.00 (0.03)
∆pCO

t−6 0.02 (0.02) 0.04 (0.04)
∆pNR

t−7 −0.07 (0.03) −0.01 (0.06)
∆pSR

t−7 0.01 (0.01) −0.05 (0.03)
∆pCO

t−7 0.04 (0.02) −0.06 (0.04)
∆pNR

t−8 0.06 (0.03) 0.01 (0.06)
∆pSR

t−8 0.01 (0.01) 0.02 (0.03)
∆pCO

t−8 −0.02 (0.02) 0.02 (0.04)
∆pNR

t−9 −0.03 (0.03) 0.02 (0.06)
∆pSR

t−9 0.01 (0.01) 0.02 (0.03)
∆pCO

t−9 −0.04 (0.02) 0.07 (0.04)
∆pNR

t−10 0.08 (0.03) −0.11 (0.06)
∆pSR

t−10 0.01 (0.01) −0.01 (0.03)
∆pCO

t−10 0.02 (0.02) −0.01 (0.04)
Num. obs. 1473 1473
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Table C.3 Importers and exporters of rubber and tires

Country Tire Synth. Rubber Nat. Rubber Tire Synth. Rubber Nat. Rubber
Exports Exports Exports Imports Imports Imports

China 18.7% 9.5% 0.1% 1.0% 13.6% 23.2%
European Union 7.3% 13.1% 0.2% 9.5% 8.1% 13.3%
Japan 6.3% 7.9% 0.0% 1.5% 1.9% 8.6%
United States 6.3% 7.2% 0.5% 18.5% 9.3% 14.4%
Thailand 6.1% 3.2% 23.1% 0.6% 4.1% 0.0%
Korea 4.3% 15.2% 0.0% 1.0% 2.1% 5.1%
India 2.2% 0.9% 0.1% 0.5% 3.3% 7.2%
Indonesia 0.2% 0.7% 40.3% 0.8% 3.4% 0.1%
Vietnam 1.2% 0.0% 7.4% 0.4% 2.6% 2.2%
Malaysia 0.4% 0.2% 9.2% 0.8% 1.3% 3.1%
C3 32.4% 38.5% 72.6% 32.1% 28.3% 46.2%

Source: Own production, based on data from TradeMap (2020) and Market Access Database (2020)
for data on extra-EU trade.
The following data enter the table: HS400122 (technically specified rubber, i.e., natural rubber),
HS400211 + HS400219 (styrene butadine rubber, i.e., synthetic rubber), HS4011 (new tires made
of rubber, including all kinds of tires, including cars, motorcycles, bicycles, aircrafts, buses, lorries,
heavy machinery).
All numbers are for 2018 and indicate shares of export and import values, respectively. Table
includes the four largest countries in each category.
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D.1 Alternative transmission channels from crude oil
to food markets

Some authors argue that exchange rates are another transmission channel for oil market
turmoils transmitted to food markets. For instance Abbott et al. (2011), Nazlioglu et al.
(2013) and Wang et al. (2014), consider potential wealth effects to allow the oil price and
oil shocks, respectively, to lead to currency appreciation or depreciation. Others consider
exchange rates more as exogenous determinants of food markets rather than as part of
possible transmission channels of oil shocks to food markets (e.g. Dillon and Barrett, 2015;
Tyner, 2010; Wang and McPhail, 2014; Chakravorty et al., 2019; Zhang and Qu, 2015).
Besides the theoretical exogeneity of exchange rates within the oil-food nexus, reasons for
omission simply stem from empirical infeasibility. While it is rather straightforward to take
exchange rate effects into account by including an appropriate indicator in respective
multivariate time series models, in case of small sample sizes adding further dimensions to
structural models might result in a lack of degrees of freedom, since the number of
parameters increases quadratically with the number of dimensions. Additionally, increased
trader activity on derivative markets could also constitute a pathway for oil price
movements to transmit to food prices (Du et al., 2011; Wang et al., 2014). Nonetheless, this
presumption still lacks sound theoretical foundations as well as empirical evidence.
Therefore, we refrain from accounting for further dynamics in our analysis.

D.2 Identification by means of independent
components

Matteson and Tsay (2017) suggest an approach based on the so-called distance covariance
of Székely et al. (2007b) - denoted UT - for the implementation of ICA. More specifically,
for a K-dimensional vector of structural shocks εt at time t = 1, . . . , T the distance
covariance V2 detects dependence between two subsets of the components. Between the kth
component εt,k, k ∈ {1, . . . , K} and all subsequent ones εt,k+ with k+ = k + 1, . . . , K,

dependence is measured by V2(εt,k, εt,k+) which is the distance between the characteristic
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functions φεt,k,εt,k+ and φεt,k
φεt,k+ , the joint characteristic function and the one under

independence, respectively. To measure mutual dependence - i.e. dependence of all possible
combinations between the variables εt,1, . . . , εt,K - the dependence criterion reads as

UT (εt,1, . . . , εt,K) = T ·
K−1∑
k=1

V2(εt,k, εt,k+). (D.1)

In the sense of Hodges-Lehman (HL) estimation, the distance covariance UT (ε̂t,1, . . . , ε̂t,K) is
then minimized to identify ε̂t = B−1ût with least dependent components, which
consequently determines the estimated matrix B̂. Conditional on a particular nuisance free
test statistic, the HL estimator of a parameter of interest is the specific parameter value
obtaining the largest p-value when subjected to testing. Principles of HL estimation
motivate detecting least dependent structural shocks by minimizing non-parametric
dependence criteria.
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D.3 Further empirical results and data

Table D.1 Test results on kurtosis and skewness of the estimated structural shocks.
Values in parentheses denote p-values.

ε̂1 ε̂2 ε̂3 ε̂4

Chad Kurtosis: 3.07
(0.85)

4.60
(0.00)

3.41
(0.26)

4.21
(0.01)

Skewness: 0.17
(0.38)

−0.50
(0.01)

−0.47
(0.02)

0.33
(0.08)

Ethiopia Kurtosis: 2.98
(0.96)

4.58
(0.00)

3.50
(0.15)

8.01
(0.00)

Skewness: 0.23
(0.23)

−0.40
(0.04)

−0.46
(0.02)

−0.72
(0.00)

Ghana Kurtosis: 2.60
(0.26)

3.68
(0.05)

3.89
(0.02)

5.23
(0.00)

Skewness: 0.27
(0.16)

−0.30
(0.11)

−0.45
(0.02)

−0.31
(0.10)

Kenya Kurtosis: 2.82
(0.62)

3.52
(0.13)

4.30
(0.00)

3.76
(0.04)

Skewness: 0.21
(0.26)

−0.13
(0.49)

−0.71
(0.00)

−0.09
(0.62)

Mozambique Kurtosis: 3.74
(0.04)

4.73
(0.00)

3.40
(0.24)

8.36
(0.00)

Skewness: 0.19
(0.32)

−0.66
(0.00)

−0.52
(0.01)

1.10
(0.00)

Nigeria Kurtosis: 2.98
(0.96)

4.52
(0.00

3.56
(0.12)

4.03
(0.01)

Skewness: 0.17
(0.34)

−0.40
(0.04)

−0.41
(0.03)

−0.17
(0.38)

Tanzania Kurtosis: 2.57
(0.22)

3.68
(0.05)

3.29
(0.43)

4.77
(0.00)

Skewness: 0.26
(0.26)

−0.14
(0.45)

−0.47
(0.02)

0.41
(0.03)

Zambia Kurtosis: 3.04
(0.91)

4.20
(0.01)

3.54
(0.1)

3.14
(0.70)

Skewness: 0.21
(0.27)

−0.48
(0.01)

−0.49
(0.02)

−0.48
(0.01)
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Figure D.1 Real corn price series in domestic currency. World prices are given in
US Dollars.
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Figure D.2 Point estimates of corn price reactions in Africa to different types of oil
shocks and a non-oil related shock to corn price.

D.4 Country case: Chad

Chad is the only country in our sample whose market is responsive to oil-specific demand
shocks. Even though biofuel production capacities are also not available in Chad, its corn
markets are surprisingly similar to global corn markets. One possible reason for this
circumstance is compared with to all other countries in our sample, in Chad corn
constitutes an unusually minor share of caloric intake in diets. Calorie supply per day and
person stands at 130 kcal in 2017 which is less than half of that in Nigeria, one-third of that
in Ethiopia, and one sixth of that in Kenya for instance (FAOSTAT, 2020). With low
consumption rates, much more abundantly available substitutes such as sorghum, millet
and wheat can easily compensate the country-specific impacts of oil shocks such that (in
the absence of impeding policies and trade barriers) local corn price dynamics in Chad
reflect those of global prices.
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