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Chapter 1

Preface

1.1 Synopsis

Emergent biological phenomena can often be characterized as the endpoint of directional devel-
opment. Such directional processes with functionally important target states are spread over all
biologically relevant scales. A prominent example are decision processes where the outcome is
easy to observe as an action, but the underlying stochastic biological dynamics that lead to the
observed behavior are hard to infer. Another example is the fixation of a gene or phenotype in
the course of evolution. Both examples have in common that initial conditions of the underlying
processes are experimentally either in-accessible or ill defined. Typically such dynamics can not
be traced back to a single observable event but emerge from a background of complex ongoing
dynamics. While their onset is often not detectable, such dynamics aggregate over time into a
collective phenomenon with its signal most apparent close to the target state. If such a collective
phenomenon can be summarized in a measurable mesoscopic collective variable, then at least
close to the target state the formulation of an effective dynamics approach is possible. This time
dependent variable sheds light on the relevant mechanisms which trigger the observed phenom-
ena. Due to the intrinsic stochasticity of any time dependent biological observable, a single time
dependent observation is not sufficient to characterize the effective dynamics. Instead, a set of
independently recorded sample paths is required to form an ensemble, evaluate its statistics, and
characterize the process under study. For the here studied class of directional effective dynamics
with well defined target states, I propose to analyze the ensemble in its natural frame of refer-
ence, i.e. to align all sample paths to the target state and infer the dynamics in reverse time.
The target state then becomes the initial condition of the newly formed reverse-time ensemble.

Target state alignment (TSA) allows to determine whether and when such a system can be
characterized by a single collective dynamical variable. Target state alignment however also
implies that sample paths are selected based on a condition. This conditioning of the dynamics
inevitably introduces a bias in the statistics and therefore leads to the inference of spurious
forces. The here derived theory allows to separate these spurious forces from the true underlying
biological dynamics.

The characterization as an ensemble allows for the first time to predict statistical properties
of experimentally acquired TSA ensembles. I derive the universal low-noise and short term
behavior of TSA ensembles. In addition to the intrinsic stochasticity of each sample path
realization, biological processes are never identical copies of each other. They differ slightly
in the underlying microscopic machinery which is summarized in the collective variable. The
TSA theory allows to quantify this heterogeneity between different realizations independently
of the intrinsic stochasticity of the dynamic. The third source of stochasticity relevant for the
study of biological dynamics is the measurement noise. Often excluded in theoretical studies,
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1. Preface

I show how various known techniques to access the measurement error directly from the data
can be combined with the theory of TSA ensembles. The theory of target state alignment thus
establishes a transparent mathematical foundation to quantitatively study directional biological
processes.

In collaboration with the Großhans lab, I apply this theory to study cell contact constriction
of intercalating cells during Drosophila germband extension. At this developmental stage and
directly before the onset of germband extension, the fly embryo is composed of a fairly homo-
geneous single layered football shaped epithelium. The then starting germband extension is a
key process in the reshaping of the developing fly embryo. It is a prototypical process of axis
elongation which establishes the head-tail (anterior-posterior) body axis of a developing organ-
ism. This directional tissue elongation is driven by cell intercalation, that is, cells seemingly
squeeze in between each other effectively shortening the tissue in one direction while elongating
the other direction. Cell intercalation in Drosophila is driven by junction shrinkage of anterior
posterior cell interfaces, its resolution into a vertex of four neighboring cells, and the subsequent
junction formation in orthogonal direction. Here I study the process of junction shrinkage as
a directional process with the target state defined as the 4-vertex. The tissue is treated as an
effective two-dimensional mesh of junctions linked by vertices. The collective variable is the
contact length of the constriction cell contact in this 2 dimensional representation.

The TSA ensemble approach allows to infer an effective dynamical model of junction shrink-
age. I apply the reverse time inference scheme to an ensemble of ∼1000 constriction events. To
my knowledge this is the first time that the full time dependent statistics of such a non-stationary
non-equilibrium biological process are used to systematically test different model classes of in-
creasing complexity. If such an effective model can be inferred, it constrains the modeling space
of more involved biophysical models. If it is possible to infer such a simple effective model which
predicts all observed statistics every more complex model must at least have the same predictive
power.

The most simple dynamical model I find describes cell contact constriction as elastic on short
time scales and viscous on the timescale of constriction. It predicts all accessible statistics in-
cluding mean, variance and two-time covariance. The inferred elastic fluctuations occur around
an assumed equilibrium position. Presumably due to junction remodeling this equilibrium posi-
tion then changes over time. The increasing speed with which the equilibrium position changes
can probably be linked to feedback mechanism reported in the literature.

1.2 Content

Biological processes are often well represented within the mathematical framework of stochastic
dynamics. In chapter 2, I provide a quick review on time-dependent stochastic processes and
their inference from biological data. Due to a revolution in the fluorescence based imaging
technology, today, the development of whole organisms can be imaged in 3d and in single cell
resolution. After a brief review on fluorescence microscopy, I conclude the introductory chapter
with a recapitulation on the stochastic dynamics literature on which my derivation of the TSA
framework builds.

TSA ensemble analysis provides a powerful tool for model analysis, inference and distinction.
It allows to study directional dynamics irrespective of any unknown initial conditions and thus
without perturbation of the system under study. In chapter 3, I introduce the key concepts nec-
essary to understand the mathematical construction of TSA ensembles. I discuss the universal
limit of force and noise driven dynamics close to the target state.

Chapter 4 can be read as an independent building block where the key results of reverse time
TSA inference, introduced in chapter 3, are derived rigorously step by step. I provide analytical
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1.2. Content

results for reverse time TSA ensemble dynamics and compare them to forward simulations after
target state alignment.

With the intuition formed by these results, I show in chapter 5 the applicability of this ap-
proach to a simple model of cytokinetic ring constriction. I provide the mathematical framework
to melt the TSA approach with an ensemble path inference scheme with empathis on numerical
stability.

Chapter 6 starts with an introduction on cell intercalation as an important building block
of the evolutionary preserved phenomenon of convergent extension. It is followed by a review
on the current biological understanding of contact constriction during germband extension and
how such dynamics are currently modeled using biophysical intuition. The intuition about TSA
ensembles invoked in chapter 3 is then used to infer the most simple effective model of cell
contact constriction during germband elongation in Drosophila morphogenesis. Guided by the
experimental evidence the theory is stepwise extended to explore whether a multiplicative noise
model, memory in the noise or heterogeneity in the dynamics is capable to explain the observed
time-dependent statistics. This chapter concludes with preliminary results on myosin dynamics
during contact constriction and how these dynamics can quantitatively be linked to the junction
dynamics.

In its scope, chapter 7 goes beyond the results used in chapter 3 - 6. I show, that Langevin
bridges, i.e. stochastic dynamics with delta initial and final conditions can equivalently be stud-
ied in forward and reverse time. While identical as an ensemble they differ however in their
dynamics. I further show how meander processes, i.e. processes, which up to time t do not
return to their initial conditions, can be constructed additively from Langevin bridges. While
probably known to some experts, both connections have to my knowledge not been linked in a
publication. When ever possible, analytical results for reverse time TSA dynamics are obtained
and compared to forward simulations after target state alignment.
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Chapter 2

Introduction

2.1 Stochastic dynamics in biological systems

Biological systems are comprised of a multitude of interacting components spanning several
orders of magnitude. Starting from the very small scales of individual molecules, via protein
complexes to cells, membranes and whole tissues, one observes noisy fluctuations. Rooted in
thermal fluctuations on the small scales, are the cause of fluctuations on larger scale often active,
energy consuming processes and the response of their environment. Independent of the details
and the exact mechanisms, a prevalent observation for biological systems is a non negligible noise
level on all biological relevant scales. In biological systems constitutive components are typically
densely packed. Individual molecules and higher order structures do not move independently,
but continuously interact with each other. These dynamical interactions lead to an almost
instantaneous dissipation of accelerated dynamics at the typical time scales of observations.
Dynamics are thus almost exclusively observed in the overdamped limit.

This heuristic description of biological systems can be formalized in the framework of statis-
tical physics. In this framework each particle is characterized with its position and momentum.
The whole system is summarized with its Hamiltonian, comprised of the kinetic and potential
contributions of all particles. The Hamilton equations of motion describe the dynamics.

While a biological system with all its details is in principle described by its Hamiltonian, are
the dynamics of interest, typically summarizable as a collective phenomenon, well represented
by one or a few degrees of freedom. This idea has been exploited in a mathematically involved
formalisms which separates the effective dynamics of interest from the residual system9,115,117,185.
This residual degrees of freedom then act as a stochastic bath in which the effective dynamics
evolve. For most biological systems it is furthermore well justified to assume that accelerating
forces have dissipated on the time scale of the observation due to the dominant viscous damping
of the surrounding. Assuming in a last simplifying step that the noisy fluctuations occur on a
smaller timescale than the effective dynamics of interest, one arrives at a simple representation
of effective stochastic biological dynamics. This equation is called an (overdamped) Langevin
equation

dL̂(t) = f(L̂) dt+
√
DdWt , (2.1)

here stated for a single dynamical degree of freedom L̂. It is composed of a deterministic drift
f(L̂) and a stochastic forcing dWt term, which for simplicity, is independent of L̂. The stochastic
forcing is called a Wiener increment dWt and defines a zero mean 〈dWt〉 = 0, delta correlated
〈dWtdWt′〉 = δ (t− t′) Gaussian process. The noise strength is given by the diffusion constant
D. With the Langevin equation, a sample path representation of stochastic biological dynamics,
reduced to the core elements of an effective force and a stochastic component, is achieved.
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2. Introduction

In the limit of infinitely many sample paths, generated by Eq. (2.1) and equipped with a com-
mon initial distribution, the resulting ensemble can equivalently be described by the (forward)
Fokker-Planck equation (FPE)

∂

∂t
P (L̂, t|L̂0, t0) = − ∂

∂L̂
f(L̂)P (L̂, t|L̂0, t0) +

D

2

∂2

∂L̂2
P (L̂, t|L̂0, t0) , (2.2)

where P (L̂, t|L̂0, t0) denotes a with time evolving probability density conditioned on the initial
condition (L̂0, t0). The first term denotes the drift and the second the diffusion. Both terms are
in their effect identical to the respective terms in the Langevin equation. For example setting
f(L̂) = 0 and assuming vanishing probabilities at ±∞ one finds

P (L̂, t|L̂0, t0) =
1√

2πDt
e−

(L̂−L̂0)2

2Dt , (2.3)

which is the continuous representation of diffusion under Gaussian white noise.
The evolution of the transition probability can equivalently be obtained from the backward

Fokker-Planck equation

∂

∂t
P (L̂f , tf |L̂, t) = −f(L̂)

∂

∂L̂
P (L̂f , tf |L̂, t)−

D

2

∂2

∂L̂2
P (L̂f , tf |L̂, t) , (2.4)

here denoted for transitions to the final state (L̂f , tf ). It is important to note that solving
the backward Fokker-Planck equation yields the very same transition probability as the forward
Fokker-Planck equation. It does not(!) describe dynamics in reverse time.

In principle, both the Langevin and Fokker-Planck equation can capture the two recurrent
themes of biological dynamics. That is, biological dynamics are typically (i) out of equilibrium
and (ii) they change over time. To study the temporal evolution of an ensemble, within the
Fokker-Planck approach a common initial reference time must be available to which all sample
paths align. With well defined initial conditions temporal ensemble properties such as mean and
variance can be determined. However, even in in-vitro systems, it is often a technical challenge
to synchronize the observed dynamics (or find a common reference onset for independently
recorded sample paths), to yield an ensemble of observations with identical temporal onset.

Giving up on a temporal description, but not on the non-equilibrium properties of biological
systems, a natural simplifying assumption replaces the time dependent evolution of the FPE
by a constant flux. The classical realization of this state is provided by constant flux boundary
conditions, where the influx and outflux of the system are identical. A for the main text
important generalization of this approach, lifts the confinement between two boundaries and
replaces the insertion boundary by a source term with insertion probability P in(L̂). Under this
assumption the FPE Eq. (2.2) with absorbing boundary at L̂ts simplifies to

−λP in(L̂) = − ∂

∂L̂

(
f(L̂)Q(L̂)

)
+
D

2

∂2

∂L̂2
Q(L̂)

Q(L̂ts) = 0 , (2.5)

where Q(L̂) denotes the non-equilibrium stationary state (NESS) density and λ = D
2
∂

∂L̂
Q(L̂ts)

ensures that influx and outflux are balanced. The differential operator on the right hand side of
Eq. (2.5) is identical to the right hand side of the forward FPE, while the temporal evolution on
the left hand side is replaced by a constant in time. For the NESS density Q(L̂) an analytical
expression has been obtained182. We will recapitulate this solution and its derivation in the
main text. An interesting interpretation of this approach is provided in the Langevin, that is
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2.2. Inference of stochastic dynamics in biological systems

sample path picture. Sample paths which start at A progress over time until they terminate at
B and are instantaneously reinserted at A. This approach thus only gives up on a global wall
clock time to which all sample paths align but fully preserves the non-equilibrium character of
many biological systems. In the next section, I will briefly discuss how the stochastic dynamics
approach recapitulated in this section, underlies both classical and modern inference schemes
used to characterize biological single trajectory dynamics.

2.2 Inference of stochastic dynamics in biological systems

The inference of stochastic dynamics dates back to the first quantitative diffusion experiments.
Two conceptually different approaches have been suggested. In 1908, Perrin tracked individual
diffusing particles to test Einsteins42 and Smoluchowskis174 theory of Brownian motion 122,128,
using the ensemble mean square displacement (MSD)

〈L̂2(t)〉 =

∫
L̂2P (L̂, t) ddL̂ (2.6)

for trajectories aligned to a common initial condition, here chosen as (L̂0, t0) = (0, 0) and for d
dimensions. For “normal” diffusion, the ensemble MSD can be calculated directly from Eq. (2.6)
using the solution of the diffusion equation Eq. (2.11) generalized to d dimensions. One finds

〈L̂2(t)〉 = dDt , (2.7)

where we follow the notation convention used in the stochastic process literature such as Gar-
diner55. Note, that often, and especially in the experimental biophysics literature, a factor 2
occurs in front of the diffusion constant D.

Six years after Perrin, Nordlund characterized the diffusion of single particles from their
trajectories121,122, using the time averaged MSD

δ(∆) = lim
T→∞

1

T −∆

∫ T−∆

0

(
L̂(t+ ∆)− L̂(t)

)2
dt (2.8)

for lag intervals ∆ and total observation time T . For normal diffusion, and in the limit of
T → ∞, ensemble average and time average exactly coincide. The ergodicity assumption of
classical equilibrium statistical physics is fulfilled.

In summary, the first approach evaluates diffusion from its ensemble properties, the second
from the temporal evolution of individual time dependent observations. With recursion to the
stochastic dynamics theory reviewed in section 2.1, this illustrates the two discussed different
representations, either as Fokker-Planck or Langevin equation.

Interestingly, in many biological systems, the measured ensemble MSD does not linearly
depend on t68,114,143. Instead, one finds a powerlaw tα, with α in the range 0 < α < 1. Such
“anomalous” diffusing processes are classified as sub-diffusive. Unlike the ensemble MSD, the
time averaged MSD in such systems typically still depend linearly on the lag ∆122. Several mod-
els have been suggested to explain this statistical phenomenon of ergodicity breaking, including
spatial heterogeneity or temporal correlations in the diffusion term113,114.

Moment based approaches have further been used to classify Langevin dynamics in the over-
damped limit as defined in Eq. (2.1). The classical version of this approach identifies the force
with the ensemble averaged spatial change ∆L̂ in the drift

f(L̂) = lim
∆t→0

〈∆L〉
∆t

(2.9)
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2. Introduction

within one time step ∆t, and for sample paths passing through L̂53,72,156. Assuming that the
force law does not change over time and the dynamics are memory free, the average is with
respect to all increments which originate at L̂ independent of t.

The diffusion constant D is similarly defined as averaged short term MSD

D = lim
∆t→0

〈(∆L)2〉
∆t

(2.10)

of all observed incremental steps53,72,156. In this review section, we only consider spatially
homogeneous diffusion with no dependence on L̂ and thus extend the average over all starting
positions L̂. Importantly, the expression for the diffusion constant is only valid in the limit
∆t → 0. For processes observed in discrete time, corrections can be obtained using maximum
likelihood based estimators as detailed below.

In general, these classical time and ensemble average approaches face several problems when
applied to biological systems95. (i) First and foremost, time averages are clearly not suitable
under with time change conditions as they often occur in vivo, i.e. they fail if the system is non-
stationary. (ii) While time averages introduce temporal coarse graining, are ensemble averages,
of the kind defined in Eq. (2.9) and Eq. (2.10), based on spatial coarse graining. Only if enough
sample paths enter the interval [L̂, L̂+∆L̂], can Eq. (2.9) and Eq. (2.10) faithfully be evaluated.
The chosen bin width ∆L̂ defines the coarse graining. (iii) The limit assumption ∆t→ 0 is often
inadequate to describe data sampled in discrete timesteps. For processes observed in discrete
time, the description used in Eq. (2.9) and Eq. (2.10) breaks down and corrections of O(∆t)
become important.

In the framework of likelihood based inference, all these problems can formally be addressed.
For example, corrections for the expressions Eq. (2.9) and Eq. (2.10) can be derived under the
assumption of Gaussian transition probabilities, where the increments are distributed according
to

P (∆L̂) =
1√

2πD∆t
e−

(∆L̂−f(L̂)∆t)2

2D∆t . (2.11)

This expression can directly be read off from the Langevin equation Eq. (2.1), bringing the
force term to the left side of the equation. The resulting form implies, that fluctuations around
the drift corrected increment are drawn from a Gaussian. With the further assumption of Nind

independent measurements, the likelihood function L, is the product over independent Gaussian
increment transition probabilities. For numerical stability typically the logarithm is evaluated

logL = −
Nind∑
j=1

(∆L̂(j) − f(L̂(j))∆t)2

2D∆t
− Nind

2
log (2πD∆t) . (2.12)

Assuming that all processes are memory free, the likelihood function can be extended to include
all increments at all measured times. Taking the derivative with respect to D and f to evaluate
the maxima, the resulting maximum likelihood estimators are108

f̂(L̂) =

∑Nind
j=1 ∆L̂(j)

Nind∆t
(2.13)

and

D̂ =

∑Nind
j=1

(
∆L̂(j) − f̂(L̂(j))∆t

)2

Nind∆t
. (2.14)
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2.3. A revolution in the imaging technology

While the estimator for the force is identical to the classical estimate stated in Eq. (2.10), the
equation for the diffusion constant Eq. (2.9) is corrected by the estimator of force induced drift
f̂(L̂).

For single trajectory measurements, the likelihood inference scheme can be generalized to
include the full history of each sample path. The respective stochastic process is defined by
its transition probability P (L̂n, tn|L̂n−1, tn−1, . . . , L̂0, t0). To simplify the analysis it is often
assumed that the current state of a stochastic process only depends on the previous position.
The dynamics are thus assumed to be memory free and the Markov property

P (L̂n, tn|L̂n−1, tn−1, . . . , L̂0, t0) = P (L̂n, tn|L̂n−1, tn−1) (2.15)

holds. The probability of an observed sample path with N data points can then be written as the
product

∏N
i=1 P (L̂i, ti|L̂i−1, ti−1) over all transition probabilities. Studying nens independently

recorded sample paths of equal duration N∆t, the likelihood

L =

nens∏
j=1

N∏
i=1

P (L̂
(j)
i , ti|L̂(j)

i−1, ti−1) (2.16)

is evaluated as the product over both.
For small enough forces the Gaussian assumption for the transition probability is often well

justified. With increasing ∆t, the transition probability in general becomes skewed and starts
to deviate from a pure Gaussian. Especially Aı̈t-Sahalia has proposed a powerful approach,
which allows to systematically correct for deviations from the Gaussian reference2,3. For sparse
sampled data numerical techniques which allow to approximate the incremental transition prob-
abilities have been proposed13. In practice, the numerical evaluation of transition probabilities
is still computationally demanding. If the estimation pipeline is already computationally highly
demanding, the numerical evaluation of transition probabilities can exactly be what breaks the
inference scheme95.

While the classical approaches were designed to efficiently find estimates for maximum like-
lihood parameters, it is now possible to sample the full likelihood. This provides access to the
moments of the likelihood and thus allows to determine confidence intervals for the inferred
parameter.

The likelihood approach however neglects prior knowledge about the inference objective.
Sole goal of this “frequentist” inference approach is to provide as good estimates as possible on
the “true” underlying parameter. This is contrasted with Bayesian inference, where measure-
ments are updates of our beliefs, given reasonable prior distributions. The resulting posterior
distribution P (Θ|D) ≈ P (D|Θ)P (Θ) is given as the likelihood L = P (D|Θ) times the prior of
the parameter P (Θ), divided by a normalization. In practice the difference between both meth-
ods is often that the Bayesian approach is explicit about its assumptions, while the likelihood
approach either implicitly includes prior knowledge, using regularizing terms, or assumes flat
(constant) priors, where both methods become indistinguishable. In the limit of larger sam-
ple data sets, maximum posterior parameters converge to the maximum likelihood parameters
14,25,89,175.

2.3 A revolution in the imaging technology

Over the last two decades a revolution in the capabilities of life imaging and massive parallel
data acquisition has occurred. Early single trajectory or particle measurements were often only
possible under the well defined in vitro circumstances and for only a few sample paths 121,128.
Unlike these classical experiments, today in vivo single particle tracking in ∝ 1nm resolution in
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2. Introduction

small volumes is possible7, and, on larger scales, the development of whole organisms can be
imaged in single cell resolution and with minimal experimental interference. Movies in single
cell resolution have been recorded for the embryonic development of Drosophila92,165(Fig. 2.1a)
and the early stages of zebrafish83(Fig. 2.1b) and C.elegans29(Fig. 2.1c) development. For the
visualization of such complex and rapidly changing biological systems, large improvements in
the available optical microscopy imaging technology were necessary.

a b c

3:04

3:20

3:42

4:53

Dorsal view

Figure 2.1: Progress in the microscopy techniques enables time-lapse imaging of develop-
mental processes in 3d and all cell resolution. (a): Time-lapse imaging of nuclei in early Drosophila
development, recorded with a multiview lightsheet setup4(reproduced from Amat et. al.4). The time inset
denotes hours and minutes after egg laying. Scale bar, 50µm. (b): Early zebrafish development, visual-
ized with a GFP-Histone marker127 and recorded with multi-view lightsheet microscopy with recordings
taken every 3min and over a course of 12h176(reproduced from Weber et. al.176). The time inset denotes
hours post fertilization (hpf). Scale bar, 150µm. (c): First division of C. elegans oocyte, recorded with
a lattice lightsheet and with respect to its actin dynamics29(reproduced from Chen et. al.29). Time in
minutes with t = 0min placed during pseudocleavage ingression. Scale bar, 5µm.

The imaging revolution began with the discovery of the green fluorescent protein (GFP),
and the ability to specifically tag proteins of interest26,101. Early experiments illuminated the
entire fluorescence tagged system, while simultaneously recording from it122. This wide field
microscopy termed technique, faces two problems when recording living systems164. (ii) Illumi-
nating all focal planes simultaneously yields a diminished resolution both due to background
noise and light scattering from out of focus planes and directions. (i) For time lapse recordings,
illuminating the whole system simultaneously leads to fast photo-bleaching and faces the prob-
lem of photo-toxicity. The first problem is addressed in confocal microscopy, which due to an
illumination pinhole in front of the light source and the confocal pinhole in front of the camera,
only illuminates and records from fluorophores in one spot of the focal plane122,164. In confocal
laser scanning microscopy (LSM), this spot is then scanned over the probe162,164. Due to the
high scanning frequencies, the laser intensity must be high to excite enough fluorophores during
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2.3. A revolution in the imaging technology
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Figure 2.2: Schematic overview of different fluorescence based microscopy techniques. Shown
are the illumination (green) and recording (blue) beams including the name giving and essential compo-
nents (Figure adapted from Stephens and Allan162). (Left): Widefield microscopy records from the full
specimen simultaneously122. (Middle left): In laser scanning confocal microscopy (LSCM) a laser beam is
scanned over the probe and a confocal pinhole prevents out of focus light from entering the detector162,164.
(Middle right): In spinning disc confocal microscopy (SDCM), a Nipkow disk parallelizes the concept of
a confocal pinhole from LSCM. Often, a second in sync spinning disk, placed in the incoming lightpath
and equipped with microlenses, is used to realize SDCM as a fully parallelized version of a LSCM61.
(Right): Selective plane imaging microscopy (SPIM) replaces the illumination beam with a lightsheet
orthogonal to the detection pathway, which only illuminates the current focal plane132. Lightsheets have
been realized optically76, as digital laser scanning beam83, or as an interfering lattice of bessel beams29.
Today, they are often realized with two orthogonal lighsheets to allow for true 3d recordings92,132,165.

the short illumination time per spot61. While the resolution is increased compared to widefield
microscopy, photo-toxicity and photo-bleaching stays a relevant problem61,164.

Spinning disc confocal microscopy (SDCM) addresses the problem of slow single beam scan-
ning and its high illumination intensities per spot61,162,164. In SDCM the single excitation and
emission pinhole in the LSM is replaced by up to 1000 pinholes on a rotating disc, which, in
current designs, serve both as illumination and confocal pinholes61. Instead of illuminating one
spot at a time up to 1000 spots are simultaneously illuminated and recorded from61. This allows
for a drastic increase in the obtained frame rates. Compared to single beam LSM, it allows to
illuminate each individual spot longer, and thus with less intensity, which is believed to reduce
both bleaching and photo-toxicity164. To enhance the resolution of spinning disc microscopy,
and avoid losing most of the incoming light at the spinning disc, the incoming light is often
guided through another disc equipped with micro-lenses which rotates in sync with the pinhole
disc61. Modern spinning disc microscopes are thus parallel confocal microscopes61.

In general, confocal imaging techniques can be combined with two-photon approaches75,152.
This technique exploits the spectroscopic properties of the used fluorophores. Instead of one-
photon excitation, fluorophores are excited by 2 (or more) photons, with longer wavelength122.
This switch to longer wavelengths then allows for a deeper penetration into the tissue with less
scattering and as it seems increased resolution122,152. However, as the likelihood of simultane-
ously photo absorption is relatively low, high laser peak intensities are required in two-photon
microscopy, which is associated with increased photo-toxicity83,122.

The relatively low light efficiency of confocal microscopy and in consequence, resulting in-
creased bleaching and photo-toxicity, has been addressed with selective plane imaging microscopy
(SPIM)76. In this already 1902 by Zsigmondy invented155 and decades later recovered tech-
nique75,76,173, a light-sheet illuminates the probe perpendicular to the optical axis, and thus
almost only the plane in focus. The pinhole used in convocal microscopy to confine the recorded
light in z-direction becomes obsolete75. Additionally, the whole plane defined by the light-sheet
can be recorded simultaneously. Sequentially illuminating and recording from several planes
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2. Introduction

has been used to reconstruct 3d images76,83. Combining two perpendicular light-sheets, it is
now possible to record a developing organism in 3d and with equal resolution in all spatial
directions92,132,165.

The currently standard SPIM microscopy relies on light-sheets with a relatively thick Gaus-
sian intensity profile in z-direction29,132. This problem has been addressed with lattice light-sheet
microscopy. This technique replaces the lightsheet by a lattice of Bessel beams, which through
interference, yield an adjustable light-sheet29. This constructive version of a light-sheet now al-
lows to combine super resolution techniques with 3d all cell long term imaging in one conceptual
setup54,102.

2.4 Parallel dynamics in complex systems

With unprecedented temporal and spatial resolution, complex biological systems can now be
studied in-vivo and with minimal experimental interference. These qualitatively and quantita-
tively new data sets raise new questions for model inference and data analysis. One of the key
tasks is to identify meaningful collective variables that summarize the complex observed dynam-
ics. In systems based on fluorescence tagging, as described above, the choice of such collective
variables is already partially pre-determined by the current knowledge about the systems and its
constitutive elements. In developing organisms, such collective variables could be properties of
cells, such as their outlines, apical cell area or volume, or sub-cellular properties such as protein
or RNA concentrations.

To distinguish between random fluctuations and the “true” underlying dynamics a single
observation of such a collective variable is never enough. Only ensemble properties such as
mean, variance and covariance are able to faithfully represent the full dynamics. To acquire
such ensemble properties, researchers have in the past typically repeated the experiment a few
dozen times to determine the (often stationary) mean. We here assume the perspective that,
with the revolution in the imaging technology, complex, with time changing, biological systems
can now be analyzed with the same rigor as diffusing single particle trajectories. With the
parallel recording of all cells in a developing organism, it is now possible to study repetitions of
the same process in different cells and occurring at different times. This in principle allows to
form an ensemble comprised of both repeated experiments, and repetitions of the same process
within one organism. The number of observations multiplies, and higher order statistics can be
evaluated, which allows to distinguish between different models.

For stationary systems, the assembly of such ensembles is straightforward and all individually
recorded and independent observations can be used in the averaging procedure. In practice, and
for living systems, with time changing asynchronous dynamics, it is surprisingly difficult to
define these ensembles. Such systems are typically neither stationary nor in equilibrium. Well
defined collective observables often only crystallize over time, while true onsets of the dynamics
are buried under a plethora of parallel ongoing processes. Without well defined initial conditions
and a common reference time, classical ensemble analysis is prevented.

Although, a clear onset is rarely detectable, developmental processes seem to be directed
towards functionally important target states – mandatory steps in a complex scheme that leads
to an ever increased complexity of the developing organism. With ill defined initial conditions,
these states of convergence provide a natural point of data alignment. Ensembles are then defined
in reverse time, using their time to completion as natural system time. Data analysis in reverse
time then allows to study biological dynamics in their natural frame of reference, and without
perturbation by artificially induced synchronization, to obtain common initial conditions.
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2.5. Reverse Time Stochastic Processes

2.5 Reverse Time Stochastic Processes

Time reversal of a stochastic process is a difficult task. We here discuss the case of the Langevin
equation as defined in Eq. (2.1). Setting the noise to zero (D → 0), time reversal for this
deterministic dynamics is achieved by a simple sign flip of the temporal increment dt → −dτ ,
where τ = tf − t > 0 measures the reverse time starting from the time after which the process
is reversed tf . To distinguish reverse time dynamics from forward dynamics we denote variables

in the forward process as L̂ and in the reverse time dynamics with L. In this notation, the final
condition of the forward process (L̂f , tf ) is now the initial condition (L0, t0) of the reverse time
process.

In a stochastic dynamics setting, the operation of time reversal faces two complicating factors.
(i) Due to the intrinsic stochasticity of each sample path, the final condition of a stochastic
process is not a fixed position, but a random variable. The initial conditions of the reverse
time process must be drawn from the final distribution of the forward process. (ii) In addition
to the sign flip in front of the drift term, for the noise free case, the entropy production on
the single trajectory level must be counteracted. Due to the stochasticity in the dynamics,
information about the initial conditions is lost, as the single trajectory entropy148 increases over
time. Time reversed dynamics must therefore evolve uphill along the spatial gradient of the
single trajectory entropy. Both aspects, the distribution of final values (i) and the reversal of
the entropy production (ii), are captured in the reverse time Langevin equation5

dL(τ) =

(
−f(L) +D

∂

∂L
log
(
P fw(L, T − τ |Lf , 0)

))
dτ +

√
D dWτ , (2.17)

where P fw(L̂, t|L̂0, t0) denotes the solution of the forward Fokker Planck equation Eq. (2.2)
evaluated in reverse time τ , with T = tf − t0 defined as the duration of the forward process
before time reversion. The condition is with respect to the initial condition of the forward
process. The first term is the sign flipped forward force, the second a “guiding force” which
compensates the entropy production of the forward process. For τ → T , the guiding force starts
to dominate and ensures that reverse time sample paths approach the initial conditions. The
Wiener increment dWτ obeys the same gaussian statistics as the forward process. A step by
step derivation of Eq. (2.17) is provided in chapter 4.

We note, that the reversal of a stochastic process has also been introduced in the stochastic
thermodynamics literature30,103. Here, however, not the time is reversed, but a general control
parameter is used to reverse an external (time-dependent) protocol149. While in principle, this
approach should be complementary to the here taken Langevin approach towards time reversal,
its power lies in a different objective, that is, the characterization of out-of equilibrium ensemble
properties. It is based upon the realization that macroscopic thermodynamic quantities such
as heat, work and entropy can also be characterized on the mesoscopic scale148,150, and that
these quantities are, even for strongly out-of equilibrium systems, exactly related to equilibrium
system ensemble properties via fluctuation theorems149.

For the task at hand, the here assumed Langevin approach seems most suitable to charac-
terize and synthesize reverse time ensembles dynamics. This approach is rooted in the wider
context of constraint (forward) Langevin dynamics, which i.a. is suggested for the sampling of
rare events104. One example of constrained stochastic dynamics are bridge processes, where the
initial and final position of a stochastic process are kept fixed, i.e. the initial and final distri-
bution of a stochastic process are drawn from delta-distributions centered at L̂0 and L̂f . Until
recently, such a bridge process could not be synthesized from a Langevin equation. Majumdar
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and Orland have shown, that such a bridge process can be written as 104

dL̂(t) =

(
f(L̂) +D

∂

∂L̂
log
(
P (L̂f , tf |L̂, t)

))
dt+

√
D dWt . (2.18)

With P (Lf , tf |L, t), obtained as the solution of the backward Fokker-Planck equation Eq. (2.4),
the guiding term constrains transitions from the current position to the final state. Note that
here the time evolves normally. The apparent similarity of the reverse time Langevin equation
and the forward bridge will be discussed in chapter 7.

Interestingly, choosing different guiding probabilities, very different stochastic dynamics can
be constructed. One example is the meander process, which defines stochastic dynamics, which
up to time tf , have not returned to its initial starting point. The constrained Langevin dynamics
formulation of the meander process reads 104

dL̂(t) =

(
f(L̂(t)) +D

∂

∂L̂
log

(∫ ∞
0

dL̂fP (L̂f , tf |L̂, t)
))

dt+
√
D dWt , (2.19)

where P (L̂f , tf |L̂, t) is again the solution of the backward FPE, however now with absorbing
boundary conditions implied, to prevent sample paths from returning to the starting point at
L̂0. The integral inside the logarithm is performed over all possible final states, and thus lifts
the conditioning to a specific final position as included in the definition of bridge processes.

In this work, I derive a consistent theory of reverse time and target state aligned ensembles
dynamics. While the reverse time part of the formalism strongly relies on Eq. (2.17), is the here
derived mathematical construction of target state alignment, inspired by a, to my knowledge,
not known construction of meander processes from an ensemble of bridge processes. Adapting
ensemble and path inference techniques from section 2.2, I will further demonstrate how the in
general non-equilibrium and non-stationary emergent dynamics of developing organisms can be
analyzed within the here provided framework.
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Chapter 3

Reverse-time inference of biological
dynamics evolving towards target-states

3.1 Introduction

Accumulating time-dependent, out-of-equilibrium ensembles from single trajectory measure-
ments is an emerging practice in the study of mesoscopic bio-systems95,105,133,151. Examples
include force extension measurements of molecules 34,38,77,100, direct observations of active trans-
port6,17,24,140 and anomalous diffusion in cells122. The process under study is then characterized
by time dependent ensemble statistics22,51,68,69,72,113,116,171. Today, the development of whole
organisms can be recorded in vivo and in single cell resolution165. Unlike classical in vitro
recordings, in vivo experiments face the problem that the onset of consecutive dynamical pro-
cesses is not defined by the experimental design. Different dynamical processes overlap or change
continuously and the concept of well defined initial conditions, core to dynamical theories, blurs.

Instead, and despite lacking clear initial conditions, many biological processes when observed
in vivo are well characterized by their convergent dynamics towards a functional target state,
i.e. end point. While undetectable at their onset, such dynamics often aggregate into a collective
phenomenon, with only a single collective variable necessary to summarize the effective dynamics
short before completion. Such target state directed effective dynamics encompass as diverse
processes as cytokinetic ring constriction until cell separation129,130,179 (Fig. 3.1A), evidence
accumulation during decision making19,31,66,134,135,141 (Fig. 3.1B), or the dynamical change of
protein concentrations within cells (Fig. 3.1C) which trigger a new process upon reaching a
threshold33,57,63,119. Due to the intrinsic stochasticity of these examples a single time dependent
recording is insufficient. Instead, only an ensemble of independently recorded sample paths is
capable of summarizing the respective dynamics and characterize the dynamics in terms of its
moments. This raises the question, how such a time dependent ensemble of directional non-
equilibrium dynamics with target states has to be constructed. Because the dynamics are most
evident in the vicinity of the target state, I propose to analyze such dynamics in their natural
frame of reference, i.e. by target state alignment. The dynamics can then be analyzed in reverse
time with the target state used as the new initial conditions.

In this chapter, I present a consistent mathematical theory of target state alignment (TSA)
and reverse time data inference. I demonstrate the applicability of this theory on sample data
from a simple biophysical model of cytokinetic ring constriction. This chapter provides an
intuitive approach to TSA dynamics. A detailed derivation of all stated results is provided in
chapter 4.
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Figure 3.1: Biological processes with target states. (a): Cytokinetic ring constriction until cell
separation. (b): Neuronal firing rates as a neural correlate of evidence accumulation during decision
making. (c): Dynamic threshold crossing of protein concentration levels as a mechanism to trigger
downstream processes. For each process representative model trajectories (see chapter 4) are shown. The
target states (orange line), of full cell separation (a), decision- (b) and concentration-threshold (c), and
the target state (orange triangle) of each individual sample path are marked.

3.2 Terminal pseudo forces and the mixed nature of TSA
ensembles

The intricacies that arise from targe-state-alignment become apparent already for the simplest
case, i.e. a random (molecular) search process for a target site10,60,67,146 (Fig. 3.2a). The TSA
ensemble resulting from this undirected motion has intriguing properties. For instance, the
proximity of all sample paths to the ensemble mean induced by target state alignment as depicted
in Fig. 3.2 suggests that a low noise approximation could be used close to the target state. If
the TSA ensemble has an effective stochastic differential equation (SDE) with conventional low
noise behavior then the ensemble mean should be the deterministic solution and thus directly
reveal the drift term. This however is obviously wrong as the mean, which grows ∼ τ

1
2 , would

indicate a diverging force ∝ 1
L although there is no force at all in the forward dynamics.

How such spurious pseudo forces arise can be understood quite generally for processes L̂(t)
satisfying a Langevin equation of the form

dL̂(t) = f(L̂) dt+
√
DdWt . (3.1)

Here f(L̂) denotes a deterministic drift term and
√
D the strength of the fluctuations dWt. The

term dWt denotes the Wiener process increment with zero mean 〈dWt〉 = 0 and delta correlated
covariance 〈DdWt dW

′
t〉 = Dδ(t− t′). Each observation i consists of a trajectory L̂i(t) with wall

clock time t and length Ti.
The reverse time TSA ensemble is described by a time dependent distribution R(L, τ) with

Li(τ) = L̂i(Ti− τ) as a function of the reverse time τ = Ti− t. To construct R(L, τ) two aspects
must be taken into account: i.) the underlying dynamics evolve in reverse time; ii.) the lifetime
of the trajectories is itself a random variable. Over time less and less trajectories contribute
to the ensemble until eventually all trajectories have reached their maximal lifetime at their
original point of initiation. R(L, τ) is thus not normalized and decays with τ . For readability
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Figure 3.2: Target-state-alignment creates pseudo forces for 1d random target search. (a):
Random walk like sliding of transcription factor confined between inaccessible DNA and promoter binding
site (orange). (b): (Left): Sample path realizations of a random walk with one reflecting and one
absorbing boundary (orange). (Middle): Target state (promoter binding site) aligned sample paths.

(Right): Aligned and time reversed ensemble of sample paths. The mean, growing with ∼ τ 1
2 (red line),

indicates the presence of a non-linear alignment force.

we leave out all these dependencies in the notation of this chapter. In chapter 4 a detailed
construction of R(L, τ) is provided and the dependencies stated.

In absence of noise (D = 0), time-reversal of Eq. (3.1) is straightforward. All trajectories
starting at L̂0 end at L̂f at time t = T . The reversed process satisfies L(τ) = L̂(T − τ). The
time-reversed dynamical equation for L(τ) is dL(τ) = −f(L)dτ .

In a stochastic system even for a fixed lifetime T , changing the sign in front of the time
derivative does not yield the correct time-reversed equation. For instance for a stationary
Ornstein-Uhlenbeck processes f(L̂) = −L̂ starting from a stationary distribution at t = 0,
inverting the sign of the drift term −L → L results in exponentially diverging trajectories – a
completely different behavior as in forward time.

Under the assumption of equal sample path lifetimes T , the correct time-reversal of the SDE
Eq. (3.1), is5

dL(τ) =
(
−f(L) + fG(L)

)
dτ +

√
D dWτ , (3.2)

where

fG(L) = D
∂

∂L
log
(
P fw(L, T − τ)

)
(3.3)

is a guiding force that depends on the solution P fw(L, T − τ) of the forward process. For the
Ornstein-Uhlenbeck example the correct time-reversed equation can be readily checked. The
guiding force fG(L) ensures that the forward and reverse time dynamics are identical. Hence
stating the time-reversed SDE requires knowledge of the solution of the forward process and its
initial distribution.

The lifetime T however is not fixed but a random variable denoted as Ti. To assemble
the ensemble in reverse time, we partition the trajectories into sub-ensembles R(L, τ |T ;Lf ) of

fixed lifetime Ti which end at Lf = L̂0 (Fig.3.3). The initial condition of each of the time
reversed sub-ensembles is a delta-function R(L, τ = 0|Ti;Lf ) = δ(L − Lts), where Lts denotes
the absorbing target state. Each of these sub-ensembles experiences a different force, because
the guiding force Eq. (3.3) depends on the full forward distribution P fw(L, Ti − τ) up to time
Ti, which is different for every Ti.

To assemble the TSA ensemble, sub-ensembles defined by Eq. (3.2) must be superimposed
(Fig.3.3). Three aspects are important. First, each sub-ensemble of lifetime T only contributes
to the full ensemble up to this time. Second, the relative weight of trajectories of this lifetime
in the full ensemble is given by the hitting time distribution of the forward process ρ(T |Lf ),
which conditionally depends on the starting points Lf of forward realizations. Third, the relative
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Figure 3.3: Construction of the full aligned time reversed ensemble from sub-ensembles
of different lifetimes. (Left): The full forward ensemble is split into sub-ensembles with different
completion times Ti. We show three exemplary cases in red (T1), green (T2) and blue (T3). To guide the
eye, one sample path per sub-ensemble is highlighted. (Right): After target state alignment and time
reversal all sub-ensembles together form the new ensemble R(L, τ).

weight of each sub-ensemble additionally depends on the initial conditions of the forward process,
i.e. on P in(Lf ). Hence, R(L, τ) for the aligned time-reversed ensemble is

R(L, τ) =

∫ ∞
Lts

dLfP
in(Lf )

∫ ∞
τ

dT R(L, τ |T ;Lf )ρ(T |Lf ) . (3.4)

The lower integration limit of the inner integral accounts for the fact that only sub-ensembles
that have at least a length of τ contribute to the full ensemble. The outer integral accounts
for the distribution of initial values of the forward process. A more in depth discussion of this
construction is provided in chapter 4.

We her pause to summarize the implications of our considerations upto this point. First of
all, for fixed lifetime sub-ensembles, we can state the general form of the guiding force close to
the target state. With P fw(L, T − τ) vanishing close to Lts, we can approximate it to leading
order by a powerlaw Lδ with δ > 0. The guiding force close to the target state then evaluates to
fG(L) ∝ 1

L , explaining i.a. the above discussed behavior of the mean of the TSA random walk
(Fig. 3.2). Second, the construction of the TSA ensemble R(L, τ) from sub-ensembles of varying
lifetimes Ti (and thus varying guiding forces) suggests that in general there is no unique SDE
which describes the full reverse time dynamics. Different force laws seem to be active at the
same state (L, τ). The explicit construction of R(L, τ) as an integral over T Eq. (3.4) however
demonstrates that the only dependence of the TSA ensemble on T is given as the constraint,
that contributing sample paths must still be alive. We resolve this puzzling observation in the
next section.

3.3 Reverse time Fokker-Planck and SDE for the TSA
ensemble

Starting from Eq. (3.4), we show in chapter 4 that the dynamics underlying the evolution of
R(L, τ) can be cast into the form of a Fokker-Planck equation (FPE)

∂

∂τ
R(L, τ) =− ∂

∂L

((
f(L) + fF (L)

)
R(L, τ)

)
+
D

2

∂2

∂L2
R(L, τ)− P in(L)ρ(τ |L) (3.5)

with time-dependent sink −P in(L)ρ(τ |L), where P in(L) denotes the distribution of initial posi-
tions of the forward dynamics. The sink ensures that the distribution of sample path lifetimes
in the reverse time ensemble is the same as in the forward dynamics. Note, that unlike for
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Figure 3.4: TSA FPE and SDE exactly describe the target state aligned ensemble. (a):
Schematic depiction of the dependency of the TSA dynamics Eq. (3.5) and Eq. (3.7) on the forward
initial condition H(L) and the killing measure k(L, τ). In the green region, i.e. above the bulk of the
initial distribution measured by the sigmoidal H(L), we find fF (L) ≈ 0. Below fF (L) contributes in
full strength. In τ direction, an increase in the red gradient indicates that more and more trajectories
are killed. The residual white L− τ plane close to the target state defines the region where k(L, τ) ≈ 0
and H(L) = 1 holds, and the approximation of well separated initial and final states holds. Cicrles
mark the killing of example trajectories. Superimposed lines and colors are only visualizations of the
general TSA FPE and SDE. (b): Comparison of the forward (blue), sub-ensemble based (red), exact
(black) and approximate (green) reverse time dynamics for f(L) = −γ/L. Shown are the mean (Top) and
variance (Bottom) of all four cases. 95% bootstrap confidence intervals are shown for the cases involving
sampling. To exclude numerical inaccuracies due to rarely visited tails of the distribution of completion
times ρ(T |Lf ), we directly sampled Ti from the numerically obtained hitting time distribution of the
forward process. Results were obtained using each 1000 sample path realizations with parameter settings
γ = 1, D = 0.2, L̂init = 2.

the sub-ensemble dynamics Eq. (3.2), f(L) is not (!) sign inverted compared to the forward
dynamics. The “free energy force”

fF (L) = D
∂

∂L
log

(∫ L

Lts

dL′ e−
2Φ(L′)
D H(L′)

)
(3.6)

captures the combined effect of the total entropy production of all sample paths and the potential
difference necessary to overcome for time-reversion of the dynamics up to a position L. The
potential Φ(L) =

∫ L
f(L′)dL′ is defined with respect to the sign inverted drift term. H(L) =

1 −
∫ L
Lts

P in(L′)dL′ is a sigmoidal like function which continuously switches from one to zero

depending on the forward initial distribution P in(L). Above the bulk of P in(L) the free energy
force fF (L) therefore evaluates to zero, and forward and TSA dynamics are indistinguishable in
their dynamical law. Below however the free energy force not only reverses the forward dynamics
but also adds additional terms, such as the for the guiding force discussed term ∝ 1

L .
We here face the problem that in a target state aligned ensemble our trajectories only have

a finite lifetime. For this reason we have to find a mathematical way to include the truncation
of stochastic trajectories into our framework. From the theory of reaction diffusion systems177

we know that a Fokker-Planck equation with sink proportional to the density can be cast into a
SDE with killing measure k(L, τ) proportional to the rate of degradation 45,70,147. Adapted to
the reverse time FPE for TSA ensembles the corresponding SDE then reads

dL(τ) =
(
f(L) + fF (L)

)
dτ +

√
D dWτ , (3.7)

equipped with a killing measure k(L, τ)dτ = ρ(τ |L)P in(L)
R(L,τ) dτ . For TSA ensembles originally com-

prised of nens sample paths this implies that the killing measure in each timestep dτ terminates
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nensρ(τ |L)dτ of the then still present sample paths. Where this happens is determined by the

weight P in(L)
R(L,τ) . The explicit lifetime T dependence of the sub-ensemble based construction of

the TSA-dynamics Eq. (3.4) can thus completely be moved to a time and ensemble dependent
boundary condition in the form of a killing measure.

3.4 The TSA ensemble close to the target state

Expressing the dynamics of R(L, τ) in terms of a single SDE allows to separate the contribution
of the forward initial conditions from the pure TSA dynamics close to the target state. This
claim is easily verified by inspecting fF (L) defined in Eq. (3.6). For L sufficiently below the bulk
of the forward initial distribution P in(L) the term H(L), which describes the influence of the
forward initial conditions on the reverse time TSA dynamics, evaluates to approximately one.
If most of the sample paths have not yet reached the sink at P in(L), this further implies that
almost no sample path has terminated in reverse time. The killing measure k(L, τ) evaluates to
zero and H(L) ≈ 0. With k(L, τ) = 0 and H(L) = 1 the remaining SDE – up to exponentially
small corrections – describes TSA dynamics temporally and spatially close to target states and
irrespective of any possibly unknown initial conditions. In Fig. 3.4 one example is shown where
the ensemble mean and variance of this approximation agree excellent with the exact solution.
In chapter 4 we discuss further examples where the approximation holds equally well.

Separating genuine and alignment induced forces

Motivated by the quality of this approximation we searched for a general mapping between
forward forces and aligned reverse-time dynamics valid close to its target state. Using Eq.(3.6)
with H(L) = 1 we find a mapping for power law forces

f(L̂) = −γL̂α , (3.8)

with γ > 0, α ∈ R, target state at L̂tp = 0 and L̂in →∞. Under these conditions the free energy
force is

fF (L) =
(Dα+D)

(
− 2γ
Dα+D

) 1
α+1

e
2γLα+1

Dα+D

Θ(α+ 1)Γ
(

1
α+1

)
− Γ

(
1

α+1 ,−
2Lα+1γ
αD+D

) . (3.9)

It is valid for α 6= −1, with the exceptional connecting case fF (L) = 2γ+D
L at α = −1. Γ(L)

is the gamma-function, Γ (n,L) the upper incomplete gamma-function and Θ(n) the Heaviside-
function. The derivation is presented in chapter 4.

Noise induced vs. force induced target state arrival

For power law forces, reverse time dynamics fall into two generic classes. For α ≥ 0 the for-
ward force vanishes at the target state and the system typically terminates noise induced (see
Fig. 3.5a). Aligned, in reverse time and close to the target state L̂ts = 0, such an ensemble is
indistinguishable from the dynamics of a random walk (α = 0, γ = 0) with fF (L) = D

L (see
chapter 4 for details). We tested this behavior in Fig. 3.5b for three different noise strengths D.
The analytic expression for the mean

L(τ) =

√
8D

π
τ , (3.10)
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Figure 3.5: TSA ensembles are noise and parameter sensitive, and qualitatively differ for
diffusion or drift dominated target-state approaches. (a): For α > 0 only noise induced irre-
versible transitions occur in finite time. (b): Close to their target state, reverse time statistics of noise
induced transitions (α > 0) are indistinguishable from random fluctuations and thus α-independent. The

mean grows ∼ τ
1
2 (random-walk-like, Eq. (3.10), dotted) independent of the noise strength D as shown

in both the log-log inset and main plot. (c): The hitting time of force driven irreversible transitions
(α < 0) scatters around the deterministic solution (black line). (d): The mean of the aligned reverse
time ensemble (dashed line) for α < 0 deviates positively from the deterministic solution with increasing
noise strength D. Together (c) and (d) motivate a small noise moments expansion. (e),(f): The small
noise expansions of mean Eq. (3.12) and variance Eq. (3.13) (lines) agree with the numeric evaluation
of the reverse-time TSA dynamics with fF (L) Eq. (3.9) (circles). (g),(h): The small noise two-time
correlation Eq. (3.14) solely depends on the power law exponent α. Linear equi-correlation lines (dashed)
allow for an easy distinction. For all plots we chose γ = 1 and D = 0.2 if not stated differently.

of the aligned reverse-time random walk almost perfectly matches the mean of the aligned
reverse-time data for the case α = 1 and close to L̂ts = 0. It starts to deviate for Lf(L) > D
where the approximation is expected to break down (see chapter 4 for further details). Note
that Eq. (3.10) also explains the result found for the random target search (Fig. 3.2).

For α < 0 the termination of the forward dynamics is force induced as f(L̂) diverges at
the absorbing boundary. The corresponding reverse time dynamics exhibit the genuine (sign
inverted) force law dependence plus corrections proportional to the noise strength D. Fig. 3.5c,d
shows exemplary sample paths for the case with α = −1. It demonstrates the gradual deviation
of the mean from the deterministic solution with increasing noise strength D.

Further insights can be obtained by examining the small L weak noise regime of the free
energy force Eq. (3.9) derived in chapter 4. In this regime the reverse time SDE for α < 0
simplifies to

dL(τ) =

(
γLα − αD

L

)
dτ +O

(
D2

L2+α

)
+
√
D dWτ . (3.11)

This shows that for all α < 0 the leading order correction to the time reversed genuine force is
random-walk like (∼ D/L), modulated in its strength by the power law exponent α. Despite
its simplicity Eq. (3.11) can not be solved analytically for general α < 0. Adopting the low
noise expansion for moments of ordinary SDEs (Gardiner chapter 6.255), we expand Eq. (3.11)
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around its deterministic solution (D → 0) for small D and obtain

L(τ) = ((1− α)γτ)
1

1−α +D
(7α− 3)((1− α)γτ)

α
α−1

4(3α− 1)γ
(3.12)

σ2
L(τ) = D

1− α
1− 3α

τ (3.13)

corrL(τ, τ ′) =

(
min[τ, τ ′]

max[τ, τ ′]

) 3
2

+ 1
α−1

(3.14)

for mean, variance and two-time correlation function up to order D (see chapter 4 for details).
In Fig. 3.5e,f we compare this approximation to simulations and find excellent agreement.

Motivated by their high accuracy we propose Eqs. (3.12)-(3.14) as basis for fast inference
schemes: Given sufficiently good statistics, α can be read off directly from a 2d correlation plot
using Eq. (3.14) (see Fig. 3.5g,h). Once α is identified, D can be extracted from the variance
Eq. (3.13). The force strength γ follows directly from a α and D constrained fit of the mean
Eq. (3.12). Notably this is quite distinct to a normal low noise approximation in which the mean
would be the deterministic solution and thus only depend on γ.

3.5 Inferring actomyosin turnover from the terminal dynamics
of cytokinesis

To demonstrate the inference of biological dynamics from TSA ensembles we set up a biophysical
model of cytokinetic ring constriction which has all ingredients that one expects to complicate
the correct identification of directional biological dynamics. In biological systems forces exer-
tion is mediated by myosin motors. The contractile behavior of the actomyosin ring can exhibit
very different types of concentration-tension relationships depending on the regime of molecular
turnover. Three qualitatively different mechanisms are conceivable. First, the effective constric-
tion force is proportional to the myosin concentration along the cable of length L. The shorter
the cable gets, the more myosin per ring perimeter accumulates. The constriction force increases
∝ 1/L (α = −1), assuming a low myosin turnover rate. A similar reasoning holds for the second
scenario. Here, the otherwise individually occurring force exerting molecules, e.g. actin, need
a partner to exert forces. The effectively generated constriction force is ∝ 1/L2 (α = −2).
The third mechanism is favored for high turnover rates of the force generating molecules. In-
dependent of L, force molecules are under this scenario present in constant concentration. The
constriction force is constant (α = 0).

To test our inference scheme and to generate artificial cytokinetic sample paths we fall back
on the Zumdieck model184, which covers all three scenarios as limiting cases. Both the details
of the model and the analytic limits are covered in chapter 5. The here used generalization
describes the full process of constriction, starting from its equilibrium perimeter via a transition
regime towards the final regime which leads to the separation. Internal fluctuations of the ring
perimeter are modeled as white noise. After target state alignment we obtain a prototypical TSA
ensemble with contributions from both biological and guiding forces. Its target and equilibrium
state are well separated and we can hope for the dynamics to assume a pure force law short
before cell separation.

For the quantitative inference of the most likely constriction scenario hidden in the forward
simulation of the Zumdieck model, we evaluated the path-ensemble likelihood for the TSA
ensemble forces Eq. (3.6) with H(L) = 1 and for each of the three scenarios with α = 0,−1,−2.
The details of this approach are stated in chapter 5. The (true) case α = −1 was clearly singled
out with the highest maximum likelihood value (Fig. 3.6). Further baseline scenarios are tested
and unambiguously identified in chapter 5.
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Figure 3.6: Accurate inference of actomyosin turnover from dynamics in the noise ex-
tended Zumdieck model184 of cytokinetic ring constriction. (a): Schematic representation of
three different cytokinesis scenarios assuming constriction-forces proportional to molecule concentrations
along the ring: Constant shrinkage due to high myosin turnover (α = 0, orange), 1/L-shrinkage with
stalled myosin turnover (α = −1, green) and 1/L2-shrinkage for actin-pair driven constriction with stalled
turnover (α = −2, red). (b): Using path-ensemble maximum likelihood inference (chapter 5) the dynam-
ical law leading to constriction can unambiguously be inferred from realizations of the Zumdieck model
(grey lines, blue circles). We visually confirm the inferred underlying force law (α = −1) by numerically
evaluating mean and variance for the reverse-time TSA dynamics for each of the three inferred maximum
likelihood parameter sets (γαML, D

α
ML). (c): The two-time correlation of the Zumdieck model and the

correlations of the inferred dynamics for α = −1 are in perfect agreement. To facilitate the comparison
we show one equi-correlation line for both (Zumdieck: blue circles, α = −1: green dashes).

Without considering the peculiarities of TSA ensembles several mistakes in interpreting the
sample paths might have occurred. First, a scenario of constant force could erroneously be
classified as one driven by a divergent force which we now understand as the guiding force
correction of the form D/L. Second, the strength of the force for the myosin dominated case
could be overestimated as both genuine and guiding force are proportional to 1/L. Third, for the
actin dominated case an erroneous crossover from 1/L to 1/L2 might be inferred. In contrast,
the TSA methods give the genuine force law in all three cases.

3.6 Discussion

In this chapter, we develop the first consistent statistical theory that allows us to infer directed
biological processes by target-state-alignment. We show whether and when such a dynamic
can be represented by a single SDE and how spurious forces, which inevitably arise due to
target-state-alignment can be separated from genuine biological forces. To provide intuition
for the effect of target-state-alignment on data we derive the universal low-noise and short-
term behavior of TSA ensembles. The biophysical applicability is demonstrated for a model of
cytokinetic ring constriction where many complicating factors are present which might hamper
the correct identification of directional biological dynamics.

In the literature target-state-alignment is typically avoided in favor of well established but
less informative approaches based on hitting time distributions57. For this analysis only the
last data point from a full trajectory is used and thus most of the information in the data is
discarded. Its explicit dependence on (possibly ill defined) initial conditions makes this approach
further error prone. Nevertheless, target-state-alignment has been used as means of data analysis
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in various fields. It has been employed to infer entropic force differences of DNA in partially
blocked spaces168, or to determine the dynamics that lead up to an irrevocable decision e.g.
represented by a saccadic eye movement65. The inevitable occurrence of spurious forces in TSA
ensembles however has never been noted.

With the present TSA framework one dimensional powerlaw like biological forces in an
uncorrelated mean free fluctuating environment can be identified. Erroneous assignments due
to inevitable alignment forces can be avoided. It turns out that TSA ensembles fall into two
broad classes. For power law exponents α > 0, the biological forces vanish at the boundary and
directed dynamics become indistinguishable from the dynamics of a target-state aligned random
search process with its analytically determinable moments. For power law exponents α < 0,
directed dynamics are force induced and reverse-time statistics can be treated as random-walk
like corrections to the deterministic solution. Expanding on these results, we present small noise
expressions for reverse-time mean, variance and two-time correlation function valid for force
induced target state convergence. The generic analysis of noise and force induced transitions can
be used to guide the eye when searching for the driving phenomenological mechanism underlying
target-state aligned data. For direct high precision inference of the true biological forces, we use a
path ensemble maximum likelihood scheme adopted to reverse time dynamics. We demonstrate
its applicability for different scenarios of cytokinetic ring constriction and point out possible
force miss-assignments when ignoring the peculiarities of TSA ensembles.

The TSA approach allows for a new perspective on the design of future experiments. It
renders the search for suitable (artificially induced) initial conditions superfluous and allows to
study directed dynamics under as natural circumstances as possible using a biologically mo-
tivated alignment point. Nevertheless, the identification of transition times, when dynamics
change e.g. from an equilibrium state into target state directed dynamics such as during cy-
tokinesis, remains a biologically highly relevant question. The here sketched path ensemble
framework provides a possible route to this inference problem. A further generalization of the
formalism at hand might include different types of fluctuating environments, the inclusion of
external variables and an extension of the framework to more than one degree of freedom. In
principle all these generalizations are mathematically straight forward. At least for the case of
power law like multiplicative noise analytical extensions of the TSA-theory are possible.

Concluding, the here presented theory provides the mathematical foundations for the in-
ference of target-state-aligned directed dynamics. It offers an intuitive understanding for the
ensemble changing effects of target-state-alignment and provides a new tool for the study of
non-stationary biological dynamics.
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Chapter 4

The mathematical theory of target
state alignment

4.1 Stochastic dynamics setting

Markov processes

A time dependent stochastic process is defined by its probability to be at its current position
L̂n at time tn and by the transitions it takes to get there starting at L̂0, t0. In this chapter L̂
denotes processes in forward time t. Formally such as process can be written as the transition
probability P (L̂n, tn|L̂n−1, tn−1, . . . , L̂0, t0). For simplicity we assume that the current state of
a stochastic process does only depend on its last step and not on its full history, i.e. that the
process is memory free and obeys the Markov property

P (L̂n, tn|L̂n−1, tn−1, . . . , L̂0, t0) = P (L̂n, tn|L̂n−1, tn−1) . (4.1)

The Markov property implies that the Chapman Kolmogorov equation

P (L̂n, tn|L̂n−2, tn−2) =

∫
dL̂n−1P (L̂n, tn|L̂n−1, tn−1)P (L̂n−1, tn−1|L̂n−2, tn−2) (4.2)

is fulfilled which we will use repeatedly in the subsequent derivations.

SDE and Fokker Planck representations

The evolution of a dynamical system under the influence of random forcing can often be studied
using a Langevin equation

dL̂(t) = f(L̂) dt+
√
DdWt . (4.3)

The first term defines the deterministic drift f(L̂) the second the strength D of random fluc-
tuations. Here the term dWt denotes the Wiener process increment with zero mean 〈dWt〉 = 0
and delta correlated covariance 〈DdWt dW

′
t〉 = Dδ(t − t′). Throughout this text we adopt the

Ito-interpretation of Eq. (4.3) which assures that the random forcing is always applied at the
beginning of a discrete time interval dt.

Using Ito’s Lemma55

dg(L̂(t)) =

(
f(L̂)

∂g(L̂)

∂L̂
+
D

2

∂2g(L̂)

∂L̂2

)
dt+

√
D
∂g(L̂)

∂L̂
dWt , (4.4)
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which shows how to apply a change of variables for quantities that are governed by Eq. (4.3), we
can derive an evolution equation for its probability distribution P (L̂, t|L̂0, t0). This evolution
equation is called the (forward) Fokker-Planck equation (FPE) and is an equivalent description
of the stochastic dynamics described in Eq. (4.3). A derivation can be found in Gardiner55.
Averaging Eq. (4.4) with respect to P (L̂, t|L̂0, t0), twice integrating by parts and identifying
g(L̂) with a delta-function then leads to the seeked evolution equation55. The resulting partial
differential equation

∂

∂t
P (L̂, t|L̂0, t0) = − ∂

∂L̂
f(L̂)P (L̂, t|L̂0, t0) +

D

2

∂2

∂L̂2
P (L̂, t|L̂0, t0) (4.5)

is the seeked (forward) Fokker-Planck equation. The adjoint equation is called the backward
Fokker-Planck equation

∂

∂t
P (L̂f , tf |L̂, t) = −f(L̂)

∂

∂L̂
P (L̂f , tf |L̂, t)−

D

2

∂2

∂L̂2
P (L̂f , tf |L̂, t) . (4.6)

and defines the evolution from an initial condition L̂ to a final state L̂f . It is important to note
that after relabeling both equations yield the same transition probabilities and that it is only a
different perspective to solve the same problem. The term ’backward’-Fokker-Planck equation
is somewhat ill-posed and can not be exchanged for ’time-reversed’. In analogy to quantum
mechanics, the forward Fokker-Planck equation describes the time evolution of the probability
distribution and an average of any dynamical property is taken at a specific time point t like
in the Schrödinger picture. Conversely, the backward Fokker-Planck equation corresponds to
the Heisenberg picture where the focus lies on the time evolution of a dynamical observable and
the averages are taken over initial conditions. Like in quantum mechanics both approaches are
thus describing exactly the same physics. They are merely offering different perspectives and
can be interchanged by a simple transformation. Ultimately both approaches hence refer to the
same transition probability. In the next section I show how the concept of time-reversal is to be
introduced into a stochastic framework.

4.2 Time reversal and alignment

The mathematical construction of the aligned and time reversed ensemble can be split into
three parts. (i) The general definition of time reversal for SDEs, (ii) its adaptation to sample
paths L̂i(t) that hit a target state L̂ts after time Ti, and (iii) the alignment and time reversal
of a complete ensemble of sample paths Li(τ) into one ensemble depending on their “time to
completion” τ = Ti − t.

In the first part I present the SDE for the time reversal of sample paths L̂i(t) of fixed lifetime
T . The ensemble P (L̂, t) of sample paths L̂i(t), evolves freely according to a general stochastic
law of motion. The reverse time ensemble then consists of sample paths Li(τ) = L̂i(T − τ).
All sample paths L̂i(t) start at the same time t0 and evolve for the same time interval T . The
time reversed SDE describes precisely this ensemble, but in reverse time. It starts from the final
distribution of the forward process P (L, τ0) = P (L̂, T ) and evolves into the initial distribution
P (L, T ) = P (L̂, t0). One illustrative example realization of both a forward ensemble P (L̂, t) and
time reversed ensemble P (L, τ) is shown in Fig. 4.1.

In the second part, we consider the time reversal of sample paths L̂i(t) that hit a target state
L̂ts after a fixed time Ti = T . In this step, we pick precisely those sample paths Li of the full
forward ensemble P (L̂, t) that arrive at a starget state after a particular time to completion Ti.
The time reversed SDE for this sub-ensemble is the same as derived in the first part, with the
initial condition of the reverse time process specialized as a delta-function P (L, τ0) = δ(L̂− L̂ts)
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Figure 4.1: Time reversal of an ensemble with natural boundary conditions. (Left): Evolution

of a set of sample paths L̂i(t) up to a time T . (Right): The set of time reverted sample paths Li(τ).

Natural boundary conditions are defined as P (L̂→ ±∞, t) = 0.

localized at the target state. All sample paths of this sub-ensemble start at L̂ts and progress
towards the initial conditions of the forward process. They are all of the same lifetime Ti. A
realization of this time reversed sub-ensemble together with the full forward ensemble up to time
Ti is shown in Fig. 4.2.

0 1 2
t

0

1

2

3

L̂
(t

)

0 1 2
τ

0

1

2

3

L
(τ

)

Figure 4.2: Time reversal of a terminating sub-ensemble. (Left): Evolution of a set of sample

paths L̂i(t) up to an irreversible target point. Different sample paths L̂i(t) hit L̂ts at different times Ti.

(Right): Time reversal of a representative sample path L̂i(t) that has hit L̂ts after time Ti (dark blue).
A realization of the sub-ensemble that has terminated after Ti (light blue).

Finally, in the last step, we construct the complete ensemble of time reversed TSA sample
paths Li(τ), of different lifetimes Ti, in a common time to completion reference frame. Depending
on its noise and underlying stochastic law of motion each sample path L̂i(t) hits L̂ts after a
different time Ti, which by itself is a random variable. The distribution ρ

L̂ts
(T |L̂0) of lifetimes

T is defined by the forward SDE of Eq. (4.3) and its initial conditions. To obtain the complete
time reversed ensemble, we first construct a time reversed sub-ensemble for each lifetime Ti.
ρ
L̂ts

(T |L̂0) . The complete time reversed ensemble is then obtained by averaging over these

sub-ensembles with respect to the distribution of lifetimes ρ
L̂ts

(T |L̂0) . This construction of the
complete time reversed ensemble out of sub-ensembles of different lifetimes is demonstrated in
Fig. 4.3. Target state alignment is achieved by constructing each time reversed sub-ensemble
starting from L̂ts and τ = 0. The full time reversed ensemble then also starts from this initial
state (L̂ts, τ = 0).

29



4. The mathematical theory of target state alignment

0 1 2 3
t

0

1

2

3
L̂

(t
)

0 1 2 3
τ

0

1

2

3

L
(τ

)

Figure 4.3: Time reversal and alignment of the complete terminating ensemble. (Left): A
set of realizations of the complete forward ensemble. Three exemplary sample paths of different lifetimes
Ti are highlighted. (Right): Time reversal of terminating sub-ensembles according to their lifetime Ti.
The full ensemble is formed of sub-ensembles where three are exemplary highlighted.

The following sections give a mathematically detailed account of the three steps leading
to the construction of a target state aligned and time reversed ensemble. We start with the
derivation of a general time reversed SDE.

The reverse time Fokker-Planck equation

Time reversal of a stochastic process is a non-trivial operation. While a deterministic process is
described by an ODE and a single final condition, time reversal of a stochastic process does not
simply turn a forward SDE into a reverse time SDE. This finding is rooted in the observation
that transition probabilities of the reverse process must depend both on the initial and final
conditions of the forward process. We start by noting that a stochastic process constrained by
initial and final conditions can be constructed from the product of two transition probabilities

P (L̂f , tf |L̂, t)P (L̂, t|L̂0, t0) . (4.7)

To ensure that sample paths start at (L̂0, t0) and end at (L̂f , tf ) with probability one, this
process is normalized using the Chapman Kolmogorov Eq. (4.2). The normalized process

P (L̂, t|L̂f , tf , L̂0, t0) =
P (L̂f , tt|L̂, t)P (L̂, t|L̂0, t0)

P (L̂f , tf |L̂0, t0)
(4.8)

is called a bridge process of duration T = tf − t0 and defines the evolution of stochastic pro-

cesses conditioned on both the initial (L̂0, t0) and final conditions (L̂f , tf )104. We note that

P (L̂, t|L̂f , tf , L̂0, t0) is symmetric under time reversal i.e. relabeling of indices. The initial con-

ditions of the forward process (L̂0, t0) are then the final conditions of the reverse time process
(Lf , τf ) and vice versa. The bridge process defined in reverse time τ = tf − t and with τ0 = 0
then reads P (L, τ |L0, τ0, Lf , τf ). The SDE that describes this process is known 5 and assumes
the form

dL(τ) =

(
−f(L) +D

∂

∂L
log
(
P fw(L, T − τ |Lf , 0)

))
dτ +

√
D dWτ (4.9)

where P fw(L, T − τ |Lf , 0) denotes the solution of the forward Fokker Planck equation evaluated
in reverse time τ . The initial conditions of this process are given by the final distribution
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P fw(L̂f , tf |L̂0, t0) of the forward process. The guiding force D ∂
∂L logP fw(L, T − τ |Lf , 0) ensures

that every Li(τ) synthesized in reverse time τ is statistically indistinguishable from a forward
sample path L̂i of lifetime T . Close to τ ≈ T , P fw(L, T−τ |Lf , 0) becomes peaked and deviations

from P (L̂0) = δ(L̂−L̂0) are suppressed by strong gradients of the guiding potential. The system
is driven towards the initial conditions of the forward process. Note that the guiding force
takes the form of an entropic force159 which reverses the single trajectory entropy production
of the forward process148 until the entropy of the forward initial conditions is reinstalled. An
illustration of both an example forward ensemble and its time reversed equivalent is shown in
Fig. 4.1.

The SDE Eq. (4.9) captures the dynamics of a time reversed process of fixed duration T
and is the first key equation to our approach. Its original derivation5 builds on the equivalence
of Langevin and Fokker-Planck equations in which Eq. (4.9) is obtained from the reverse time
Fokker-Planck Equation

∂P (L, τ |Lf , τf , L0, τ0)

∂τ
=

∂

∂L

[(
f(L)−D ∂

∂L
logP fw(L, T − τ |Lf , 0)

)
P (L, τ |Lf , τf , L0, τ0)

]
+
D

2

∂2

∂L2
P (L, τ |Lf , τf , L0, τ0) . (4.10)

The probability distribution P (L, τ |Lf , τf , L0, τ0) describes the evolution of reverse sample paths

L(τ) of fixed lifetime T . It depends on both, the initial and final conditions L̂0 and L̂f of the
forward process. The subsequent derivation of Eq. (4.10) follows Anderson’s5. I here use the
notation employed in chapter 3 and add intermediate steps omitted in Anderson5. A mathe-
matically more rigorous derivation can be found in Föllmer52.

The derivation proceeds in three steps: First, I will derive an evolution equation of the
joint probability distribution P (L̂, t, L̂f , tf |L̂0, t0) using both the backward and forward Fokker-

Planck equation Eq. (4.6) and Eq. (4.5) for the forward sample paths L̂(t) that evolve with
time t. From this intermediate result the evolution equation for the conditional probability
P (L̂, t|L̂f , tf , L̂0, t0) follows directly. It describes sample paths L̂i(t) that are constrained to both

initial and final conditions. Finally I transform the evolution equation of P (L̂, t|L̂f , tf , L̂0, t0)
into the reverse time Fokker-Planck Equation for P (L, τ |Lf , τf , L0, τ0) by time reversal.

Note, that I will omit writing out the explicit dependence on the initial conditions (L̂0, t0)
during this derivation for notational clarity. Even if not stated, every probability distribution
used in this derivation carries (L̂0, t0) as a condition.

I start with writing the joint probability distribution from Eq. (4.7)

P (L̂, t, L̂f , tf ) = P (L̂f , tf |L̂, t)P (L̂, t) (4.11)

as a product of a conditional probability and a probability density assuming tf ≥ t. Taking the
derivative with respect to t on both sides and multiplying both sides with (−1), we obtain

−
∂P (L̂, t, L̂f , tf )

∂t
= −P (L̂, t)

∂

∂t
P (L̂f , tf |L̂, t)− P (L̂f , tf |L̂, t)

∂

∂t
P (L̂, t) . (4.12)

Substituting ∂
∂t
P (L̂f , tf |L̂, t) using the backward Fokker-Planck Eq. (4.6) and ∂

∂tP (L̂, t) using
the forward Fokker-Planck Eq. (4.5) yields

−
∂P (L̂, t, L̂f , tf )

∂t
= P (L̂, t)

[
f(L̂)

∂

∂L̂
P (L̂f , tf |L̂, t) +

D

2

∂2

∂L̂2
P (L̂f , tf |L̂, t)

]
+ P (L̂f , tf |L̂, t)

[
∂

∂L̂
f(L̂)P (L̂, t)− D

2

∂2

∂L̂2
P (L̂, t)

]
. (4.13)
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In the next step I consider the diffusion terms yielding an effective diffusion like term of the
form D

2
∂2

∂L̂2
P (L̂f , tf , L̂, t). Application of the product rule to both terms leads to

D

2

[
P (L̂, t)

∂2

∂L̂2
P (L̂f , tf |L̂, t)

]
− D

2

[
P (L̂f , tf |L̂, t)

∂2

∂L̂2
P (L̂, t)

]
=

=
D

2

[
∂

∂L̂

(
P (L̂, t)

∂

∂L̂
P (L̂f , tf |L̂, t)

)
−
(
∂

∂L̂
P (L̂, t)

)(
∂

∂L̂
P (L̂f , tf |L̂, t)

)]
− D

2

[
∂

∂L̂

(
P (L̂f , tf |L̂, t)

∂

∂L̂
P (L̂, t)

)
−
(
∂

∂L̂
P (L̂f , tf |L̂, t)

)(
∂

∂L̂
P (L̂, t)

)]
. (4.14)

Here the product term cancels

=
D

2

∂

∂L̂

(
P (L̂, t)

∂

∂L̂
P (L̂f , tf |L̂, t)− P (L̂f , tf |L̂, t)

∂

∂L̂
P (L̂, t)

)
, (4.15)

using the product rule a second time, but now only for the first term

=
D

2

∂

∂L̂

(
∂

∂L̂

(
P (L̂, t)P (L̂f , tf |L̂, t)

)
− P (L̂f , tf |L̂, t)

∂

∂L̂
P (L̂, t)− P (L̂f , tf |L̂, t)

∂

∂L̂
P (L̂, t)

)
,

(4.16)

and summing identical terms, yields

=
D

2

∂2

∂L̂2

(
P (L̂, t)P (L̂f , tf |L̂, t)

)
−D ∂

∂L̂

(
P (L̂f , tf |L̂, t)

∂

∂L̂
P (L̂, t)

)
. (4.17)

Next I consider all f(L̂) containing terms in Eq. (4.13). Application of the product rule here
yields

P (L̂, t)f(L̂)
∂

∂L̂
P (L̂f , tf |L̂, t) + P (L̂f , tf |L̂, t)

∂

∂L̂
f(L̂)P (L̂, t) =

=
∂

∂L̂

(
f(L̂)P (L̂f , tf |L̂, t)P (L̂, t)

)
. (4.18)

Now we can collect terms and apply Eq. (4.11) to join the probability distributions P (L̂f , tf |L̂, t)
and P (L̂, t), which allows to bring Eq. (4.13) into the form

−
∂P (L̂, t, L̂f , tf )

∂t
=

∂

∂L̂

[
f(L̂)P (L̂, t, L̂f , tf )−D P (L̂f , tf |L̂, t)

∂

∂L̂
P (L̂, t)

]
+
D

2

∂2

∂L̂2
P (L̂, t, L̂f , tf ) . (4.19)

Note that the term −D P (L̂f , tf |L̂, t) ∂

∂L̂
P (L̂, t), although depending on the diffusion constant

D, is now assigned to the drift part. Rewriting this term, using again Eq. (4.11) in the form
P (L̂f , tf |L̂, t) = P (L̂f , tf , L̂, t)/P (L̂, t), yields

−
∂P (L̂, t, L̂f , tf )

∂t
=

∂

∂L̂

[(
f(L̂)− D

P (L̂, t)

∂P (L̂, t)

∂L̂

)
P (L̂, t, L̂f , tf )

]

+
D

2

∂2

∂L̂2
P (L̂, t, L̂f , tf ) . (4.20)
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This is our first intermediate result. The evolution equation for the joint probability distribution
P (L̂, t, L̂f , tf ).

Dividing this equation by P (L̂f , tf ), the distribution of the final state, results in an evolution
equation of the forward probability distribution

−
∂P (L̂, t|L̂f , tf )

∂t
=

∂

∂L̂

[(
f(L̂)− D

P (L̂, t)

∂P (L̂, t)

∂L̂

)
P (L̂, t|L̂f , tf )

]

+
D

2

∂2

∂L̂2
P (L̂, t|L̂f , tf ) , (4.21)

which in its force term can be simplified further

−
∂P (L̂, t|L̂f , tf )

∂t
=

∂

∂L̂

[(
f(L̂)−D ∂

∂L̂
logP (L̂, t)

)
P (L̂, t|L̂f , tf )

]
+
D

2

∂2

∂L̂2
P (L̂, t|L̂f , tf ) . (4.22)

To make the interpretation of this equation and especially of the term P (L̂, t) explicit, the
dependence of every probability term on the initial conditions (L̂0, t0), suppressed throughout
this derivation, is now restored to yield

−
∂P (L̂, t|L̂0, t0, L̂f , tf )

∂t
=

∂

∂L̂

[(
f(L̂)−D ∂

∂L̂
logP (L̂, t|L̂0, t0)

)
P (L̂, t|L̂0, t0, L̂f , tf )

]
+
D

2

∂2

∂L̂2
P (L̂, t|L̂0, t0, L̂f , tf ) . (4.23)

The probability distribution P (L̂, t|L̂0, t0, L̂f , tf ) describes the evolution of sample paths L̂(t)

in wall time t connecting an initial state L̂0, t0 with a final state L̂f , tf . This is our second
intermediate result.

The time reversed Fokker-Planck Equation can be obtained from Eq. (4.23) by replacing the
wall time t with the reverse time τ . Setting τ = tf − t, and the duration of the forward process
after which it is reverted to T = tf − t0, the resulting equation reads

∂P (L, τ |L̂0, t0, L̂f , tf )

∂τ
=

∂

∂L

[(
f(L)−D ∂

∂L
logP fw(L, T − τ |L̂f , 0)

)
P (L, τ |L̂0, t0, L̂f , tf )

]
+
D

2

∂2

∂L2
P (L, τ |L̂0, t0, L̂f , tf ) . (4.24)

The superscript (fw) was added for clarity. In the final step we replace all forward coordinates
L̂ by their time reversed equivalent L and obtain the final result already stated in Eq. (4.10).
The initial conditions of Eq. (4.10) can be drawn from the final distribution of the forward
process P fw(L̂f , tf |L̂0, t0). Solving or approximating the time reversed Fokker-Planck Equation
therefore crucially depends on knowledge about the forward process.

The time reversal of a terminating sub-ensemble

Time reversal of a sub-ensemble which ends at a target state L̂ts after time T = tf − t0 is a
special case of the general formulation of the reverse time Fokker-Planck Eq. (4.10). From a
constructive perspective two specifications are necessary. First, to invoke an irreversible target
state, an absorbing boundary condition

P (L̂, t|L̂0, t0) = 0 for L̂ = L̂ts (4.25)
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must be implemented. Second, with absorbing boundary conditions the product of the two
transition probabilities which define the not yet normalized bridge Eq. (4.7), is zero for L̂f → L̂ts.

The second transition P (L̂f , tt|L̂, t) in Eq. (4.7) must therefore be replaced by the probability

to reach the target state L̂ts starting from L̂ and after a time tf − t. This probability flux into
the boundary is called a hitting time distribution and is defined as

ρ
L̂ts

(tf |L̂, t) = − ∂

∂tf

∫ ∞
L̂ts

dLf P (L̂f , tf |L̂, t) . (4.26)

The un-normalized bridge, which starts at L̂0, ends at L̂f = L̂ts and only includes sample paths
which reach the target state exactly after a time T = tf − t0, is then defined as

ρ
L̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0) . (4.27)

To ensure that sample paths starting at L̂0 end at L̂f = L̂ts with probability one, Eq. (4.27) is

normalized with respect to the hitting time distribution ρ
L̂ts

(tf |L̂0, t0). The full bridge ending
at a target state then reads

R
L̂ts

(L̂, t|L̂0, t0; tf ) :=
ρ
L̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0)

ρ
L̂ts

(tf |L̂0, t0)
. (4.28)

We will show below, that ρ
L̂ts

(tf |L̂, t) is a solution of the backward Fokker Planck and that
the normalization of this bridge process is again a hitting time distribution. The dynamics of
Eq. (4.28) written in reverse time τ are therefore formally identical to Eq. (4.10) and read

∂RLts(L, τ |Lf , τf ; τ0)

∂τ
=

∂

∂L

[(
f(L)−D ∂

∂L
logP fw(L, T − τ |Lf , 0)

)
RLts(L, τ |Lf , τf ; τ0)

]
+
D

2

∂2

∂L2
RLts(L, τ |Lf , τf ; τ0) . (4.29)

We again added the upper index (fw) for clarity. The corresponding reverse time SDE is thus
identical to Eq. (4.9) with P fw(L, T − τ |L̂0, 0) assumed with an absorbing boundary at Lts.
Assuming absorbing boundary conditions for P fw(L̂, t|L̂0, t0), the guiding force in Eq. (4.9)
automatically prevents time reversed sample paths Li(τ) from returning to L̂ts for τ > 0. This
can be seen by evaluating the guiding force D ∂

∂L logP fw(L, T − τ |L̂0, 0) with respect to the

absorbing boundary condition. Lets assume the irreversible target state L̂ts is a lower boundary
of the one dimensional dynamic. As P fw(L, T − τ |L̂0, 0) −−−−→

L→L̂ts

0 approaches zero from above

close to the absorbing boundary, logP fw(L, T − τ |L̂0, 0) −−−−→
L→L̂ts

−∞ diverges. The guiding

force D ∂
∂L logP fw(L, T − τ |L̂0, t0) −−−−→

L→L̂ts

∞ therefore diverges as well and thus behaves as an

infinitely large barrier that prevents all Li(τ) from returning to L̂ts.

The target state bridge normalization

In this sub section we show that ρ
L̂ts

(tf |L̂0, t0) is the normalization for the target-state bridge
process. One step in this calculation is based on the assumption that the Chapman-Kolmogorov
equation Eq. (4.2) also holds, when not the full probability space is considered but only those
transitions which do not end at a target state, i.e. P (L̂′, t′|L̂, t). This assumption is implicit
to all calculations of Fokker-Planck equations with absorbing boundary conditions imposed.
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4.2. Time reversal and alignment

Nevertheless, as I am not aware of an explicit demonstration of this claim, I will briefly sketch
a derivation below. This subsection first shows that a Chapman Kolmogorov also holds for this
subspace of transitions. In a second step this result is used to determine the normalization of a
bridge process with target state at an absorbing boundary.

I first demonstrate that a Chapman-Kolmogorov like equation also holds for P (L̂, t|L̂0, t0)
and P (L̂f , tf |L̂, t) which are not normalized, as transitions to the absorbing boundary are split
off as an extra term. Splitting the expression into those two terms yields

P full(L̂, t|L̂0, t0) = δ
(
L̂− L̂ts

)
P ts(t|L̂0, t0) + P (L̂, t|L̂0, t0) , (4.30)

where P ts(t|L̂0, t0) denotes the over time t−t0 at the target state accumulated probability mass.
For this normalized expression Chapman-Kolmogorov holds

P full(L̂f , tf |L̂0, t0) =

∫ ∞
L̂ts

dL̂ P full(L̂f , tf |L̂, t)P full(L̂, t|L̂0, t0) (4.31)

and can be rewritten using the definition Eq. (4.30) to yield

=

∫ ∞
L̂ts

dL̂
(
δ
(
L̂f − L̂ts

)
P ts(tf |L̂, t) + P (L̂f , tf |L̂, t)

)
P full(L̂, t|L̂0, t0) .

(4.32)

Evaluating the first term of the product we find

= δ
(
L̂f − L̂ts

)
P ts(tf |L̂0, t0) +

∫ ∞
L̂ts

dL̂ P (L̂f , tf |L̂, t)P full(L̂, t|L̂0, t0) .

(4.33)

Due to the absorbing boundary condition, transitions from L̂0 → L̂ → L̂f , with L̂f 6= L̂ts, are
only possible if the intermediate step does not end at the absorbing boundary. We can therefore
simplify the remaining integral to include only transitions that do not end at the target state.
The final equation reads

= δ
(
L̂f − L̂ts

)
P ts(tf |L̂0, t0) +

∫ ∞
L̂ts

dL̂ P (L̂f , tf |L̂, t)P (L̂, t|L̂0, t0) . (4.34)

Comparing this result with the definition of P full(L̂f , tf |L̂, t) in Eq. (4.30), this implies, that the
Chapman Kolmogorov like identity

P (L̂f , tf |L̂0, t0) =

∫ ∞
L̂ts

dL̂ P (L̂f , tf |L̂, t)P (L̂, t|L̂0, t0) (4.35)

holds. We next use this identity to obtain the normalization for the target-state bridge Eq. (4.27)
by integration over L̂. Using the definition of the hitting time distribution∫ ∞

L̂ts

dL̂ ρ
L̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0) = −
∫ ∞
L̂ts

dL̂ P (L̂, t|L̂0, t0)
∂

∂tf

∫ ∞
L̂ts

dL̂f P (L̂f , tf |L̂, t) ,

(4.36)

taking both the derivative with respect to tf and the integral with respect to L̂f to the outside,
we arrive at

= − ∂

∂tf

∫ ∞
L̂ts

dL̂f

∫ ∞
L̂ts

dL̂ P (L̂, t|L̂0, t0)P (L̂f , tf |L̂, t) .

(4.37)
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We replace the inner integral by the above derived version of the Chapman Kolmogorov equation
Eq. (4.35)

= − ∂

∂tf

∫ ∞
L̂ts

dL̂f P (L̂f , tf |L̂0, t0) (4.38)

and find that the hitting time distribution

= ρ
L̂ts

(tf |L̂0, t0) (4.39)

for processes starting at (L̂0, t0) and ending at (L̂ts, tf ) is the normalization of the bridge process
Eq. (4.28).

Backward Fokker-Planck for hitting time distribution

To conclude the above section on bridge processes with target states we recall that the hitting
time distribution ρ

L̂ts
(tf |L̂, t) fulfills the backward Fokker-Planck equation Eq. (4.6). This can

be easily seen by taking the derivative of Eq. (4.26) with respect to t

∂

∂t
ρ
L̂ts

(tf |L̂, t) = − ∂

∂tf

∫ ∞
L̂ts

dLf
∂

∂t
P (L̂f , tf |L̂, t) . (4.40)

Substituting the backward Fokker-Planck equation Eq. (4.6)

= − ∂

∂tf

∫ ∞
L̂ts

dLf

(
−f(L̂)

∂

∂L̂
P (L̂f , tf |L̂, t)−

D

2

∂2

∂L̂2
P (L̂f , tf |L̂, t)

)

and replacing all P (L̂f , tf |L̂, t) dependent terms by the definition of the hitting time distribution
Eq. (4.26), we obtain the backward Fokker Planck for hitting time distributions

= −f(L̂)
∂

∂L̂
ρ
L̂ts

(tf |L̂, t)−
D

2

∂2

∂L̂2
ρ
L̂ts

(tf |L̂, t) . (4.41)

The time reversal and alignment of the full terminating ensemble

So far we considered the time reversal of sample paths L̂i(t) of identical lifetime Ti = T . The
lifetime Ti, however, is a stochastic variable. Different sample paths L̂i(t) reach the target
state after different lifetimes Ti. The distribution of lifetimes is the hitting time distribution
ρ
L̂ts

(tf |L̂0, t0). The full forward ensemble of all sample paths starting at (L̂0, t0) and end-

ing at L̂ts after a random time tf can therefore be understood as comprised of sub-ensembles

RLts(L̂, t|L̂0, t0; tf ) each of a different lifetime Ti. Each of these sub-ensembles then contributes

to the full ensemble with a weight given by the hitting time distribution ρ
L̂ts

(tf |L̂0, t0)
In this perspective, target state alignment consists of detaching all these sub-ensembles from

their initiation point (L̂0, t0) and shifting all sample paths to reach the target state at a common
reference time tf . The resulting target state aligned ensemble in forward time

R
L̂ts

(L̂, t; tf |L̂0) =

∫ t

−∞
dt0ρL̂ts

(tf |L̂0, t0)R
L̂ts

(L̂, t|L̂0, t0; tf ) (4.42)

is then given as the hitting time weighted integral of target-state aligned sub-ensembles. By
target state alignment we choose one tf for all sub-ensembles. Keeping tf fixed, Ti = tf − t0
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or respectively t0 becomes the random variable over which we integrate. Notably, not all sub-
ensembles contribute to the full TSA ensemble at all times. The longer the lifetime tf − t,
the fewer sub-ensembles have a lifetime Ti long enough to still contribute. The integral bounds
therefore enforce that at time t only those sub-ensembles with a minimal lifetime tf−t contribute.

In reverse time τ the expression for the TSA ensemble is

RLts(L, τ ; τ0|Lf ) =

∫ ∞
τ

dτfρLts(τ0|Lf , τf ) RLts(L, τ |Lf , τf ; τ0) . (4.43)

With τ0 identically fixed for all sub-ensembles only those sub-ensembles contribute at time τ
with a lifetime Ti ≥ τ − τ0. The reverse time TSA ensemble RLts(L, τ ; τ0|Lf ) is therefore not
normalized. It decays with the the hitting time distribution ρLts(τ0|Lf , τf ).

In the next step we generalize this expression to include sample-paths with their initial
position L̂0 drawn from an input distributions P in(L̂0). For the reverse time TSA ensemble this
generalization simply amounts to integrating over Eq. (4.43) with respect to P in(Lf ) and we
arrive at

RLts(L, τ ; τ0) =

∫ ∞
Lts

dLfP
in(Lf )

∫ ∞
τ

dτfρLts(τ0|Lf , τf ) RLts(L, τ |Lf , τf ; τ0) . (4.44)

This expression is exactly the same as stated in chapter 3.4 Eq. (3), where the concept of
TSA ensembles is introduced. There, we set R(L, τ) := RLts(L, τ ; τ0) and neglected the for the
intuition irrelevant dependency on Lts and τ0.

Independent of its notation, RLts(L, τ ; τ0) satisfies an easy to interpret reverse time Fokker-
Planck equation which reads

∂

∂τ
RLts(L, τ ; τ0) = −P in(L)ρLts(τ |L)

− ∂

∂L

([
f(L) +D

∂

∂L
log

(∫ L

Lts

dL′ e−
∫ L′ 2f(L′′)

D
dL′′

(
1−

∫ L′

Lts

P in(L′′)dL′′

))]
RLts(L, τ ; τ0)

)

+
D

2

∂2

∂L2
RLts(L, τ ; τ0) . (4.45)

The exact derivation is presented further below in this section. The first term constitutes a sink
where probability mass proportional to the hitting time distribution is lost. For delta initial
conditions P in(L) = δ(L − Lf ) the sink is only active for L = Lf . For arbitrary input distri-
butions P in(Lf ) the rate of probability loss is still proportional to the hitting time distribution
but now additionally to the number of sample paths which originated in an interval P in(L)dL.
This is exactly in accordance with the construction of RLts(L, τ ; τ0) in Eq. (4.44). The second
line represents the drift and the third a simple diffusion term.

This form of the Fokker Planck equation for the reverse time TSA ensemble Eq. (4.45)
corresponds to the Langevin equation

dL(τ) =

(
f(L) +D

∂

∂L
log

(∫ L

Lts

dL′ e−
∫ L′ 2f(L′′)

D
dL′′

(
1−

∫ L′

Lts

P in(L′′)dL′′

)))
dτ +

√
D dWτ

(4.46)

under Ito interpretation.
For further use, we split Eq. (4.46) into conceptually meaningful components. We call the

total deterministic contributions to the force, the TSA force fTSA(L). This allows rewriting
Eq. (4.46) as

dL(τ) = fTSA(L) dτ +
√
D dWτ . (4.47)
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The TSA force

fTSA(L) = f(L) + fF (L) (4.48)

is comprised of two parts. A term which is exactly identical to the drift term of the forward
Fokker Planck Eq. (4.5) and points in the same direction. Second, a “free energy force”

fF (L) = D
∂

∂L
log

(∫ L

Lts

dL′ e−
∫ L′ 2f(L′′)

D
dL′′H(L′)

)
(4.49)

=: D
∂

∂L
logZ(L) (4.50)

which reverses the combined entropy production of all sample paths of the force driven system.
The partition function Z(L) is here defined as the weighted integral over the Boltzmann factor
for the sign inverted forward force f(L) times the sigmoidal function

H(L) = 1−
∫ L

Lts

P in(L′)dL′ . (4.51)

For forward initial conditions P in(L) = δ(L−Lf ), the term H(L) evaluates to a Heaviside step
function. Above Lf only the term f(L), identical to the forward dynamics, contributes. Below
Lf the free energy force contributes fully.

For stochastic dynamics, the probability of the system to be found at a certain position
does not only depend on the potential, but also on the possible number of states it can assume,
i.e. on the entropy. When studied over all possible sample path lifetimes as implied by the
construction of the TSA ensemble, the potential to be reverted is not only the integral over
the force but also the entropic contribution summarized over all times, i.e. (and in analogy to
stochastic thermodynamics148) the single particle free energy. To revert the forward force f(L)
and the effect of the stochastic forcing, the free energy force must be proportional to twice the
force f(L). Once to compensate for the forward dynamics and once to redirect the dynamics on
the free energy surface back to the forward initial conditions. The factor 2 can either be read
off from the Boltzmann factor in Eq. (4.49), or more intuitively, by substituting the Einstein
relation D = 2kBT

γ
55. kB would the Boltzmann constant, T the temperature and γ the friction

coefficient. With this substitution it becomes apparent that the contribution due to the change
in free energy comes with a factor of 2.

For an arbitrary input distribution P in(L), the contribution of the free energy force to the
drift vanishes gradually along a sigmoidal-like curve with larger values of L. This implies that
above the bulk of initial positions forward and TSA dynamics are indistinguishable in their
dynamical law. Below however the free energy force reverses the forward dynamics and adds
additional terms which I will study below.

While the drift and diffusion terms are straightforward to transfer, the sink is not represented
by the SDE Eq. (4.46) and needs to be handled with care. For diffusion limited reaction diffusion
systems177 it is known that a Fokker-Planck equation of the form

∂

∂τ
P (L, τ) = −k(L, τ)P (L, τ)− ∂

∂L
a(L)P (L, τ) +

D

2

∂2

∂L2
P (L, τ) (4.52)

transforms to a Langevin equation with Ito interpretation and killing measure k(L, τ)70,147. The
killing measure here defines the probability pk = k(L, τ)dτ of a sample path to be terminated
at position L at time τ . It must be evaluated in each timestep and for each sample path.
Comparing terms, Eq. (4.52) and Eq. (4.45) tell us, that the killing measure for the reverse time
TSA ensemble is given by

k(L, τ) =
P in(L)ρLts(τ |L)

RLts(L, τ ; τ0)
. (4.53)
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It defines the fraction of at time τ and position L still present sample paths that must be
terminated. In general, it is surprisingly hard to correctly execute the killing measure on a
single trajectory level when doing simulations. For example in the case of a delta-sink, i.e. a
Robin or radiation boundary condition, it yields the wrong result to simply terminate all sample
paths that cross the sink within a finite simulation step ∆τ with probability pk = k(L, τ)∆τ .
Instead, the sink crossing must be modeled as a diffusion process of duration ∆τ and the case
of not seen crossings within the simulation step ∆τ must be included. For details we refer to
Erban and Chapman45.

For the killing measure of reverse time TSA ensembles these problems are in a sense less
severe but come with a prize. Notably, the killing measure in Eq. (4.53) can not be executed on
a trajectory by trajectory level as it depends on the full distribution of still present sample paths
RLts(L, τ ; τ0). This however suggests to simply do counting. We determine the fraction of still
present sample paths Nτ , that must be killed in the space-time interval [L,L+∆L]× [τ, τ+∆τ ],

i.e.
P in(L)ρLts (τ |L)dLdτ

Nτ
and divide it by the fraction of sample paths

nτ,∆L
Nτ

, which are actually in
the interval. nτ,∆L denotes the bin count. For ratios larger than one we terminate all sample
paths in the interval. For ratios smaller than one we draw uniform random numbers and compare
to the ratio. Formally this is called a metropolis criterion and we obtain the empirical killing
measure

k(L, τ)∆τ = min

(
1,
P in(L)∆LρLts(τ |L)∆τ

nτ,∆L∆L

)
. (4.54)

Comparing the value of the killing measure for each trajectory at time τ to an iid random
variable, this criterion allows to determine for each trajectory whether it must be terminated in
the current step or not.

Derivation of the reverse time TSA Fokker Planck equation

Our derivation starts from the definition of the TSA ensemble for an arbitrary initial distribution
Rlts(L, τ ; τ0) Eq. (4.44), here defined in forward time t

R
L̂ts

(L̂, t; tf ) =

∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0ρL̂ts

(tf |L̂0, t0)R
L̂ts

(L̂, t|L̂0, t0; tf ) . (4.55)

Using the definition of TSA sub-ensembles Eq. (4.28) this expression simplifies to

=

∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0ρL̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0) . (4.56)

To derive the corresponding Fokker Planck equation we take the time derivative on both sides
of Eq. (4.55) and Eq. (4.56) and arrive at

∂

∂t
R
L̂ts

(L̂, t; tf ) =

∫ ∞
L̂ts

dL̂0P
in(L̂0)

∂

∂t

∫ t

−∞
dt0ρL̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0) . (4.57)

Applying the Leibniz rule leads to

=

∫ ∞
L̂ts

dL̂0P
in(L̂0)

(
ρ
L̂ts

(tf |L̂, t)P (L̂, t|L̂0, t) +

∫ t

−∞
dt0

∂

∂t

(
ρ
L̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0)
))
(4.58)
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or equivalently

=

∫ ∞
L̂ts

dL̂0P
in(L̂0)

(
ρ
L̂ts

(tf |L̂, t)δ(L̂− L̂0) +

∫ t

−∞
dt0

∂

∂t
R
L̂ts

(L̂, t; tf |L̂0, t0)

)
. (4.59)

The first term evaluates to the hitting time distribution times the probability to be at the initial
position L̂0. The second term defines a double integral over the dynamics of a single contributing
bridge process /sub-ensemble. We obtain

= ρ
L̂ts

(tf |L̂, t)P in(L̂) +

∫ ∞
L̂ts

dL̂0P
in(L̂0)

(∫ t

−∞
dt0

∂

∂t
R
L̂ts

(L̂, t; tf |L̂0, t0)

)
. (4.60)

In the next step we substitute ∂
∂tRL̂ts

(L̂, t; tf |L̂0, t0) with the Fokker Planck equation of the
non-normalized bridge process as derived above in this section. We substitute the dynamics in
the form given by the intermediate result Eq. (4.19), which allows us to handle the integral over
t0 and L0 more easily. Note, that the transition probability to reach the final state P (L̂f , tf |L̂, t)
in Eq. (4.19) was replaced by the hitting time probability ρ

L̂ts
(tf |L̂, t), and the joint probability

P (L̂, t, L̂f , tf |L̂0, t0) of the two transitions by the respective joint probability R
L̂ts

(L̂, t; tf |L̂0, t0),
to map the general bridge process to a bridge process which ends at a target state. The resulting
evolution equation reads

∂

∂t
R
L̂ts

(L̂, t; tf ) = ρ
L̂ts

(tf |L̂, t)P in(L̂)

−
∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0

∂

∂L̂

[
f(L̂)R

L̂ts
(L̂, t; tf |L̂0, t0)−Dρ

L̂ts
(tf |L̂, t)

∂

∂L̂
P (L̂, t|L̂0, t0)

]
−
∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0

D

2

∂2

∂L̂2
R
L̂ts

(L̂, t; tf |L̂0, t0) . (4.61)

We recall that R
L̂ts

(L̂, t; tf |L̂0, t0) is defined as ρ
L̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0) according to Eq. (4.27).

This allows us to use the defining equation of R
L̂ts

(L̂, t; tf ) Eq. (4.56), and we arrive at the
simplified evolution equation

= ρ
L̂ts

(tf |L̂, t)P in(L̂)

− ∂

∂L̂

[
f(L̂)R

L̂ts
(L̂, t; tf )−Dρ

L̂ts
(tf |L̂, t)

∂

∂L̂

∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0P (L̂, t|L̂0, t0)

]
− D

2

∂2

∂L̂2
R
L̂ts

(L̂, t; tf ) . (4.62)

To obtain the guiding force and recover R
L̂ts

(L̂, t; tf ) in the second drift term as well, we multiply

ρ
L̂ts

(tf |L̂, t) by
∫∞
L̂ts

dL̂0P
in(L̂0)

∫ t
−∞ dt0P (L̂, t|L̂0, t0) both in numerator and denominator

= ρ
L̂ts

(tf |L̂, t)δ(L̂− L̂0)

− ∂

∂L̂

[
f(L̂)R

L̂ts
(L̂, t; tf ) (4.63)

−
D
∫∞
L̂ts

dL̂0P
in(L̂0)

∫ t
−∞ dt0P (L̂, t|L̂0, t0)ρ

L̂ts
(tf |L̂, t)∫∞

L̂ts
dL̂0P in(L̂0)

∫ t
−∞ dt0P (L̂, t|L̂0, t0)

∂

∂L̂

∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0P (L̂, t|L̂0, t0)

]

− D

2

∂2

∂L̂2
R
L̂ts

(L̂, t; tf ) . (4.64)
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The numerator then evaluates to DR
L̂ts

(L̂, t; tf ), using again Eq. (4.56). The denominator
together with the rest of the expression can then be simplified to the form of a guiding force
with L0 and t0 integrated out from the guiding probability. We arrive at our first intermediate
result

= ρ
L̂ts

(tf |L̂, t)P in(L̂)

− ∂

∂L̂

[
f(L̂)−D ∂

∂L̂
log

(∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0P (L̂, t|L̂0, t0)

)]
R
L̂ts

(L̂, t; tf )

− D

2

∂2

∂L̂2
R
L̂ts

(L̂, t; tf ) (4.65)

in the derivation of the full reverse time TSA Fokker-Planck equation Eq. (4.45). Both this
intermediate result and the dynamics for the free reverse time bridge Eq. (4.10) depend on
the solution of the forward Fokker Planck P (L̂, t|L̂0, t0). Unfortunately, explicit solutions for
P (L̂, t|L̂0, t0) are only known for very few cases. Interestingly, the above transformations have
shown that it is not P (L̂, t|L̂0, t0) but

Q(L̂) := λ

∫ ∞
L̂ts

dL̂0 P
in(L̂0)

∫ t

−∞
dt0P (L̂, t|L̂0, t0) (4.66)

we need an expression for. We introduce λ as a normalization factor to treat Q(L̂) as a nor-
malized distribution. The normalization is necessary as P (L̂, t|L̂0, t0) is implied with absorbing
boundary conditions and decays with the hitting time distribution, as discussed above.

To derive an explicit expression for this integral we start with the forward Fokker-Planck
equation

∂

∂t
P (L̂, t|L̂0, t0) = − ∂

∂L̂

(
f(L̂)P (L̂, t|L̂0, t0)

)
+
D

2

∂2

∂L̂2
P (L̂, t|L̂0, t0) (4.67)

and integrate out the dependence on the initial time t0∫ t

−∞
dt0

∂

∂t
P (L̂, t|L̂0, t0) =

∫ t

−∞
dt0

(
− ∂

∂L̂

(
f(L̂)P (L̂, t|L̂0, t0)

)
+
D

2

∂2

∂L̂2
P (L̂, t|L̂0, t0)

)
.

(4.68)

To evaluate the left hand side we change to an integral over the distance s = t − t0 and adapt
the derivative accordingly. The resulting integral∫ t

−∞
dt0

∂

∂t
P (L̂, t|L̂0, t0) = −

∫ 0

∞
ds

∂

∂s
P (L̂, s|L̂0, 0) = −P (L̂, 0|L̂0, 0) = −δ(L̂− L̂0) (4.69)

evaluates to minus the delta initial conditions of the forward process. The +∞ term vanishes
due to the natural boundary condition we impose. We define the non-equilibrium stationary
probability density with delta insertion probability at L̂0

Q(L̂|L̂0) := λ

∫ t

−∞
dt0P (L̂, t|L̂0, t0) = −λ

∫ 0

∞
dsP (L̂, s|L̂0, 0) = Q(L̂,∞|L̂0, 0) . (4.70)

The generalization Q(L̂) Eq. (4.66) to arbitrary insertion probabilities is obtained by multi-
plication with P in(L̂0) and subsequent integration over L̂0. The resulting ordinary differential
equation then reads

−λP in(L̂) = − ∂

∂L̂

(
f(L̂)Q(L̂)

)
+
D

2

∂2

∂L̂2
Q(L̂)

Q(L̂ts) = 0 . (4.71)
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Integrating Eq. (4.71) over the full interval L̂ ∈ [L̂ts,∞] and with
∫∞
L̂ts

P in(L̂′) dL̂′ = 1 we find

λ =
D

2

∂

∂L̂
Q(L̂ts) (4.72)

For completeness note, that λ, as already discussed in Zhang et. al. 182, defines a steady state
probability flux at L̂ts. Importantly equation Eq. (4.71) can be solved exactly. For completeness
we here reproduce the result given in Zhang et. al. 182.

To solve the ordinary differential equation Eq. (4.71) for Q(L̂) we first integrate over L̂

− f(L̂′)Q(L̂′)
∣∣∣L̂
L̂′ts

+
D

2

∂2

∂L̂2
Q(L̂′)

∣∣∣∣L̂
L̂ts

= −λ
∫ L̂

L̂ts

P in(L̂′)dL̂′ (4.73)

and obtain

− f(L̂)Q(L̂) +
D

2

∂

∂L̂
Q(L̂) = λ

(
1−

∫ L̂

L̂ts

P in(L̂′)dL̂′

)
. (4.74)

Combining the terms on the left hand side into a single expression yields

D

2
e
∫ L̂ 2f(L̂′)

D
dL̂′ ∂

∂L̂

(
Q(L̂)e−

∫ L̂ 2f(L̂′)
D

dL̂′
)

= λ

(
1−

∫ L̂

L̂ts

P in(L̂′)dL̂′

)
. (4.75)

In the last step we again integrate from L̂ts to L̂ and solve for Q(L̂) to obtain

Q(L̂) =
2λ

D
e
∫ L̂ 2f(L̂′)

D
dL̂′
∫ L̂

L̂ts

dL̂′ e−
∫ L̂′ 2f(L̂′′)

D
dL̂′′

(
1−

∫ L̂′

L̂ts

P in(L̂′′)dL̂′′

)
, (4.76)

which is the second intermediate result.

In the final step of the derivation of the full reverse time TSA dynamics we plug the obtained
result for Q(L̂) into Eq. (4.65). Using the obtained result for Q(L̂), and P in(L̂) as normalized
distribution, we find for the guiding force

D
∂

∂L̂
logQ(L̂) = 2f(L̂) +D log

(∫ L̂

L̂ts

dL̂′ e−
∫ L̂′ 2f(L̂′′)

D
dL̂′′

(
1−

∫ L̂′

L̂ts

P in(L̂′′)dL̂′′

))
. (4.77)

With this, we obtain the final reverse time Fokker Planck written in forward time

∂

∂t
R
L̂ts

(L̂, t; tf ; L̂0) = P in(L̂)ρ
L̂ts

(tf |L̂, t)

+
∂

∂L̂

([
f(L̂) +D

∂

∂L̂
log

(∫ L̂

L̂ts

dL̂′ e−
∫ L̂′ 2f(L̂′′)

D
dL̂′′

(
1−

∫ L̂′

L̂ts

P in(L̂′′)dL̂′′

))]
R
L̂ts

(L̂, t; tf ; L̂0)

)

− D

2

∂2

∂L̂2
R
L̂ts

(L̂, t; tf ; L̂0) . (4.78)

To revert the time axis we set τ = tf − t, Lf = L̂0 and obtain the full reverse time TSA
Fokker-Planck equation as stated in Eq. (4.45).

42



4.3. Normalized TSA dynamics

4.3 Normalized TSA dynamics

The TSA ensemble RLts(L, τ ; τ0), derived in section 4.2, is the exact mathematical description
of an ensemble of target state aligned trajectories. In reverse time more and more trajectories
reach the end of their lifetime and stop to contribute to the ensemble. At τ →∞ the ensemble
vanishes. To calculate the moments of this ensemble, averages however must be taken with
respect to a for each time τ normalized distribution. This normalized TSA ensemble then reads

RNLts
(L, τ ; τ0) =

RLts(L, τ ; τ0)∫∞
Lts

dL RLts(L, τ ; τ0)
(4.79)

In this section we show that Eq. (4.79) can not only be obtained subsequently by normaliza-
tion, but also directly from a constitutive Fokker-Planck equation. We first observe that, using
the definition of RLts(L, τ ; τ0) as stated in Eq. (4.44) and integrating over L, the normalized
TSA ensemble can be written as

RNLts
(L, τ ; τ0) =

RLts(L, τ ; τ0)∫∞
Lts

P in(Lf )
∫∞
τ dτfρLts(τ0|Lf , τf )

. (4.80)

Using this definition of the normalized TSA ensemble we can derive a constitutive Fokker-Planck
equation of the form

∂

∂τ
RNLts

(L, τ ; τ0) = −
ρLts(τ0|L, τ)P in(L)−RNLts

(L, τ ; τ0)
∫∞
Lts

dLfP
in(Lf )ρLts(τ0|Lf , τ)∫∞

Lts
dLfP in(Lf )

∫∞
τ dτfρLts(τ0|Lf , τf )

− ∂

∂L

([
f(L) +D

∂

∂L
log

(∫ L

Lts

dL′ e−
∫ L′ 2f(L′′)

D
dL′′

(
1−

∫ L′

Lts

P in(L′′)dL′′

))]
RNLts

(L, τ ; τ0)

)

+
D

2

∂2

∂L2
RNLts

(L, τ ; τ0) . (4.81)

The detailed derivation is given below. Importantly, the dynamics of the with τ -decaying TSA
ensemble Eq. (4.45) and the normalized ensemble Eq. (4.81) are identical. They differ however
in the sink. While the un-normalized TSA dynamics loses probability mass according to their
forward initial and lifetime statistics, is the normalized ensemble probability mass preserving.
The same amount of trajectories that are terminated are simultaneously created. Sink and
source however differ in their position. While the sink is positioned according to the forward
initial distribution is the source proportional to the normalized TSA ensemble at time τ and the
instantaneous change in the normalization. The whole expression is then evaluated with respect
to the TSA ensemble normalization.

Under these considerations, the Langevin equations of both the not- and normalized ensemble
are identical. While the killing measures are identical in their location, the normalized ensemble
features an additional source term that compensates for all terminated sample paths. Reverse
time trajectories in this ensemble thus not only start at τ = τ0, but over the whole time course
of the reverse time dynamics. In analogy to the discussion in section 4.2, the killing measure
reads

k(L, τ) =
P in(L)ρLts(τ0|L, τ)

RLts(L, τ ; τ0)
. (4.82)

Note, that the normalization of the sink and of the normalized ensemble cancel and only the
un-normalized distribution RLts(L, τ ; τ0) remains. In terms of the killing measure, normalized
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and un-normalized TSA Langevin dynamics are thus virtually identical. For the normalized
TSA ensemble additionally a source of the form

s(L, τ) =

∫∞
Lts

dLfP
in(Lf )ρLts(τ0|Lf , τ)∫∞

Lts
dLfP in(Lf )

∫∞
τ dτfρLts(τ0|Lf , τf )

. (4.83)

occurs. We note that the source is independent of the position L and equals the instantaneous
change of the normalization divided by the normalization.

The normalized TSA ensemble is clearly useful to calculate moments. From a conceptual
perspective however, an ensemble which creates sample paths “on the fly” is clearly not the
ensemble which matches the experimental protocol of target state alignment. It thus depends
on the question we ask, whether the normalized ensemble could be profitably used. With the
exception of the following derivation, in the rest of this chapter we always refer to the un-
normalized case and indicate if a normalized version is used.

Derivation of the normalized TSA dynamics

In this section we derive the normalized TSA dynamics. We start from the definition of the
normalized ensemble Eq. (4.79) written in forward time

RN
L̂ts

(L̂, t; tf ) =
R
L̂ts

(L̂, t; tf )∫∞
L̂ts

dL̂0P in(L̂0)
∫ t
−∞ dt0ρL̂ts

(tf |L̂0, t0)
.

We then substitute the definition Eq.(4.55) of the un-normalized ensemble

=

∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0

ρ
L̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0)∫∞
L̂ts

dL̂0P in(L̂0)
∫ t
−∞ dt0ρL̂ts

(tf |L̂0, t0)
, (4.84)

to obtain our starting point expression. In forward time the time-derivative of the normalized
ensemble reads

∂

∂t
RN
L̂ts

(L̂, t; tf ) =
∂

∂t

∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0

ρ
L̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0)∫∞
L̂ts

dL̂0P in(L̂0)
∫ t
−∞ dt0ρL̂ts

(tf |L̂0, t0)
. (4.85)

Applying the Leibniz rule we find

=

∫∞
L̂ts

dL̂0P
in(L̂0)ρ

L̂ts
(tf |L̂, t)P (L̂, t|L̂0, t)∫∞

L̂ts
dL̂0P in(L̂0)

∫ t
−∞ dt0ρL̂ts

(tf |L̂0, t0)

+

∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0

∂

∂t

ρ
L̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0)∫∞
L̂ts

dL̂0P in(L̂0)
∫ t
−∞ dt0ρL̂ts

(tf |L̂0, t0)
. (4.86)

Recognizing P (L̂, t|L̂0, t) in the first term as a delta function and evaluating the time derivative
in the second term then leads to

=

∫∞
L̂ts

dL̂0P
in(L̂0)ρ

L̂ts
(tf |L̂, t)δ(L̂− L̂0)∫∞

L̂ts
dL̂0P in(L̂0)

∫ t
−∞ dt0ρL̂ts

(tf |L̂0, t0)

−
∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0

ρ
L̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0)
∫∞
L̂ts

dL̂0P
in(L̂0)ρ

L̂ts
(tf |L̂0, t)(∫∞

L̂ts
dL̂0P in(L̂0)

∫ t
−∞ dt0ρL̂ts

(tf |L̂0, t0)
)2

+

∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0

∂
∂tρL̂ts

(tf |L̂, t)P (L̂, t|L̂0, t0)∫∞
L̂ts

dL̂0P in(L̂0)
∫ t
−∞ dt0ρL̂ts

(tf |L̂0, t0)
. (4.87)
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We next evaluate the delta-function in the first term. The resulting term can be identified
with the sink in the non-normalized reverse time TSA, here divided by the TSA-normalization.
The second term can be associated as a source that ensures that the reverse time TSA stays
normalized. We substitute RN

L̂ts
(L̂, t; tf ) as defined in Eq. (4.80) where possible. The third term

describes the dynamics of the TSA ensemble as in the non-normalized ensemble Eq. (4.58),
divided by the normalization. The normalized reverse time SDE written in forward time t then
reads

=
ρ
L̂ts

(tf |L̂, t)P in(L̂)−RN
L̂ts

(L̂, t; tf )
∫∞
L̂ts

dL̂0P
in(L̂0)ρ

L̂ts
(tf |L̂0, t)∫∞

L̂ts
dL̂0P in(L̂0)

∫ t
−∞ dt0ρL̂ts

(tf |L̂0, t0)

+
∂

∂L̂

([
f(L̂) +D

∂

∂L̂
log

(∫ L̂

L̂ts

dL̂′ e−
∫ L̂′ 2f(L̂′′)

D
dL̂′′

(
1−

∫ L̂′

L̂ts

P in(L̂′′)dL̂′′

))]
RN
L̂ts

(L̂, t; tf )

)

− D

2

∂2

∂L̂2
RN
L̂ts

(L̂, t; tf ) . (4.88)

Switching from forward time to the reverse time description we arrive at the final expression
stated in Eq. (4.81).

4.4 Exactly solvable reverse time dynamics

Our construction of the reverse time TSA ensemble in section 4.2 has revealed three conceptually
different approaches to obtain information on its distribution and dynamics. First, the TSA
ensemble can be obtained from its definition Eq. (4.55). Given both the transition probability
and the hitting time distribution of the forward problem are known we can construct the non-
normalized bridge Eq. (4.27). Integration over all possible initial times and switching to the
reverse time notation then leads to the reverse time TSA ensemble ending at Lf . If an initial
distribution is known, it is easy to generalize the TSA ensemble to include a distribution of
forward initial conditions. Below we discuss one example of this type.

The second method to obtain the reverse time TSA ensemble is based on sampling the
reverse time dynamics. We derive an analytic expression for the reverse time sub-ensemble SDE
Eq. (4.9) and synthesize sample paths with duration T drawn from the forward lifetime time
distribution. Three analytically tractable cases are shown below.

The third approach is based on directly solving the full reverse time TSA Fokker Planck
equation Eq. (4.45). We discuss one example.

Constructing the TSA ensemble from its definition – the random walk

TSA ensembles can be constructed from their defining equation Eq. (4.55), which demands
to integrate over t0 with respect to the non-normalized bridge process. We demonstrate this
construction for the simple case of a target state aligned Gaussian random walk, or equivalently
the diffusion process with f(L̂) = 0. The transition probability of a diffusion process with
absorbing boundary conditions at L̂ts = 0 is

P (L̂, t|L̂0, t0) =
e
− (L̂−L̂0)2

2D(t−t0) − e−
(L̂+L̂0)2

2D(t−t0)√
2πD(t− t0)

(4.89)
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and can easily be obtained by using the technique of mirror charges. The lifetime (or hitting)
time distribution is

ρ0(tf |L̂, t) =
L̂e
− L̂2

2D(tf−t)√
2πD(tf − t)3

(4.90)

and follows directly from Eq. (4.26). Combining these two terms into the non-normalized bridge
Eq. (4.27), and integrating over t0 according to Eq. (4.55), we obtain

R0(L, τ ; 0|Lf ) =
L(L+ Lf − |L− Lf |)e−

L2

2Dτ

√
2πDτ3

, (4.91)

here written in reverse time τ and Lf = L̂0. The initial time of the reverse time process is set
to zero. It is the solution of the target state aligned diffusion process with a delta distributed
forward initial probability at P in(L) = δ(L− Lf ). Integrating over L we obtain the cumulative
of the hitting time distribution of the random walk. The probability mass of the TSA ensemble
changes proportional to the hitting time distribution Eq. (4.90) and thus with the rate enforced
by the sink in the full reverse time TSA Fokker-Planck equation Eq. (4.45).

The Fokker-Planck equation for the reverse time TSA ensemble Eq. (4.45) can be used to
directly verify this result by insertion. As the process under consideration is a random walk,
for the forward force holds f(L) = 0. We briefly discuss this substitution for the equivalent and
easier to read TSA Langevin equation Eq. (4.46) and therein the free energy force Eq. (4.49).
Substituting f(L) = 0 into Eq. (4.49), the exponential simplifies to one. With delta distributed
forward initial conditions, H(L) becomes a step function with jump at L = Lf . Below Lf , the
step function H(L) is one and the integral inside the logarithm evaluates to L. For L > Lf
we find H(L) = 0 and thus no contribution of the free energy force to the TSA dynamics. For
L 6= Lf , the resulting Langevin equation is

dL(τ) =

{
D
L dτ +

√
D dWτ for L < Lf√
D dWτ for L > Lf .

(4.92)

The drift term of the Fokker Planck equation is thus strongly simplified and Eq. (4.91) can be
checked by insertion. Note, that the TSA force law assumes the important form D

L for L < Lf
that we will meet time and again in the following considerations. For L = Lf the reverse time
TSA Fokker-Planck Eq. (4.45) assumes a more complicated form as we must evaluate the delta
initial conditions of the forward process P in = δ (L− Lf ) inside the free energy force, which
yields a non-analytical expression. To circumvent this problem, and to demonstrate the validity
of Eq. (4.45) for non-delta distributed forward initial conditions, we mix the TSA ensemble
solutions with delta insertion Eq. (4.91), using a truncated Gaussian insertion probability

P in(Lf ) =

√
2
πe
−

(Lin−Lf )2

2σ2

σ
(

erf
(
Lin√

2σ

)
+ 1
) (4.93)

normalized to the interval Lf ∈ [0,∞], and marginalize over Lf . We obtain the TSA reverse
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time ensemble

R0(L, τ ; 0) = e−
L2
(
σ2

Dτ
+1

)
+2L2

in

2σ2

×
Le

L2+L2
in

2σ2

(√
2πe

L2
in

2σ2

(
(Lin − L)erf

(
L−Lin√

2σ

)
+ Linerf

(
Lin√

2σ

)
+ L

)
+ 2σ

)
− 2σLe

Lin(2L+Lin)

2σ2

π(Dτ)3/2
(

erf
(
Lin√

2σ

)
+ 1
)

(4.94)

for diffusive target search starting with Gaussian insertion probability. This expression satisifes
Eq. (4.45) with f(L) = 0.

Sampling TSA ensembles via reverse time random bridges

In this section, we discuss three different example cases for which the full TSA ensemble is
explicitly constructed from fixed lifetime sub-ensembles. This can either be done by numerical
integration of analytical obtainable sub-ensembles, or directly via sampling of reverse time bridge
SDEs, where the lifetime is drawn from the hitting time distribution for each realization. We
here discuss only the latter case for the three example cases of the Bessel, advected random walk
and Ornstein-Uhlenbeck process.

Bessel process

The dynamical law of the Bessel process reads18

dL̂(t) = − γ
L̂
dt+

√
D dWt . (4.95)

Its solution with γ > 0, absorbing boundary condition at L̂ts = 0, and natural boundary
conditions at L̂→∞ is known as Bessel process and reads18

P fw(L̂, t|L̂0, t0 = 0) =
L̂0e

− L̂
2+L̂2

0
2Dt

(
L̂

L̂0

) 1
2
− γ
D
I γ
D

+ 1
2

(
L̂L̂0
Dt

)
Dt

. (4.96)

Iν(z) is the modified Bessel function of the first kind, with series expansion

Iν(z) =
(z

2

)ν ∞∑
k=0

(
z2

2

)k
k!Γ(ν + k + 1)

(4.97)

for real valued ν from Abramovitz & Stegun Eq. (AS 9.6.10)1 . A derivation and the lifetime
distribution

ρ0(T |L̂0) =
2−

γ
D
− 1

2 e−
L̂2

0
2DT

(
L̂2

0
DT

) γ
D

+ 1
2

T Γ
( γ
D + 1

2

) (4.98)

can be found in18,107. Knowing the forward probability distribution Eq. (4.96), the time reversed
sub-ensemble SDE of this process can directly be obtained by evaluating the derivative of the
logarithm of Eq. (4.96) using the identity

d

dz

Iν+ 1
2
(z)

√
z

=
Iν+ 3

2
(z)

√
z

+
νIν+ 1

2
(z)

z
3
2

(4.99)
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from (AS 10.2.21)1. We arrive at

dL(τ) =

D
L
− L

(T − τ)
+
γ

L
+

LfI γ
D

+ 3
2

(
LLf

D(T−τ)

)
(T − τ)I γ

D
+ 1

2

(
LLf

D(T−τ)

)
 dτ +

√
D dWτ , (4.100)

where the first term results from the power law term in Eq. (4.96), the second from the expo-
nential and the last two from Iν(z) using the stated identity. For the interpretation, recall that
the initial conditions of the forward process are the final conditions of the reverse time process
and thus Lf = L̂0. To obtain the full result for the time reversed dynamics, we first need to
solve Eq. (4.100) for fixed T and subsequently average over all T according to the distribution
of lifetimes Eq. (4.98). In Fig. 4.4, we compare two ways to synthesize this ensemble. One
generated from Eq. (4.95), subsequently aligned and time reverted, the other directly generated
using Eq. (4.100) and Eq. (4.98). Comparing statistics of both the mean and variance, as shown
in Fig. 4.4, confirms our calculations.
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Figure 4.4: Forward (blue) and time reversed dynamics (red) show excellent agreement
with respect to the Bessel process. Shown are the mean (Left) and variance (Right) of both processes
with 95% bootstrap confidence intervals. To exclude numerical inaccuracies due to rarely visited tails of
Eq. (4.98), we directly sampled from the numerically obtained hitting time distribution of the forward
process. Results were obtained using each 1000 realizations of the respective ensemble with parameter
settings γ = 1, D = 0.2 and L̂0 = 2. The larger τ , the broader the confidence intervals become, as less
and less sample paths contribute to the averaging due to differences in their lengths Ti.

Advected random walk

The advected random walk changes with constant drift velocity (γ > 0) until the target state
L̂ts is reached. Its forward SDE is

dL̂(t) = −γ dt+
√
D dWt . (4.101)

We set the absorbing boundary to L̂ts = 0 and use natural boundary conditions at L̂→∞. The
conditional probability for the forward process is

P fw(L̂, t|L̂0, t0 = 0) =
1√

2πDt

(
e−

(L̂+γt−L̂0)2

2Dt − e−
(L̂+γt+L̂0)2

2Dt
+

2γL̂0
D

)
, (4.102)

and the associated distribution of lifetimes is

ρ0(T |L̂0) =
L̂0√

2πDT 3
e−

(L̂0−γT )2

2DT , (4.103)

as given in Redner138.
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Substituting Eq. (4.102) into the reverse time SDE for a sub-ensemble of fixed lifetime T
Eq. (4.9), yields

dL(τ) = −
L− Lf coth(

LLf
D(T−τ))

T − τ
dτ +

√
D dWτ . (4.104)

Recall that the initial conditions of the forward process are the final conditions of the reverse
time process and thus Lf = L̂0. Interestingly this time reversed SDE is independent of the drift
velocity and thus identical to the random walk bridge. This puzzling finding is resolved when
considering not only the sub-ensemble of fixed lifetime T , but the complete aligned and time re-
versed ensemble according to Eq. (4.42). Averaging all sub-ensembles defined by Eq. (4.104) over
T with respect to the distribution of lifetimes Eq. (4.103), recovers the expected γ-dependence.
The γ-dependence is thus fully mediated by the lifetime distribution. A numerical comparison
of the forward ensemble (after time reversion and alignment), and the time reversed ensemble,
defined by Eq. (4.104) and Eq. (4.103), is displayed in Fig. 4.5.
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Figure 4.5: Forward (blue) and time reversed dynamics (red) of the advected random
walk show excellent agreement. Shown are the mean (Left) and variance (Right) of both processes
with 95% bootstrap confidence intervals. To exclude numerical inaccuracies due to rarely visited tails of
Eq. (4.103), we directly sampled from the numerically obtained hitting time distribution of the forward
process. Results were obtained using 1000 realizations of the respective ensemble with parameter settings
γ = 1, D = 0.2 and L̂0 = 2. The larger τ , the broader the confidence intervals become, as less and less
sample paths contribute to the averaging due to differences in their lengths Ti.

Ornstein-Uhlenbeck type process

The stochastic relaxation process describes dynamical processes with a linear restoring force.
Its forward SDE is

dL̂(t) = −γL̂ dt+
√
D dWt , (4.105)

where γ > 0. The conditional probability density of this process with an absorbing boundary
at L̂ts = 0, can be constructed using the method of mirror charges. We obtain

P fw(L̂, t|L̂0, t0 = 0) =

√
γ

πD(1− e−2γt)

e− γ(L̂−L̂0e
−γt)

2

D(1−e−2γt) − e
−
γ(L̂+L̂0e

−γt)
2

D(1−e−2γt)

 (4.106)

and the associated distribution of lifetimes T

ρ0(T |L̂0) =
2DL̂0

( γ
D

)3/2
e

2γT− γL̂2
0

D(e2γT−1)

√
π (e2γT − 1)3/2

, (4.107)
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given in Ricciardi and Sato139. Using the forward probability distribution from Eq. (4.106), the
time reversed SDE describing sub-ensembles of length T reads

dL(τ) =

γL+D
∂

∂L

e− γ(L−Lf e
−γ(T−τ))

2

D(1−e−2γ(T−τ)) − e
−
γ(L+Lf e

−γ(T−τ))
2

D(1−e−2γ(T−τ))


 dτ +

√
D dWτ

=

− γL

tanh((T − τ)γ)
+
Lfγ coth(

LLfγ
D sinh((T−τ)γ))

sinh((T − τ)γ)

 dτ +
√
D dWτ . (4.108)

Note, that the initial conditions of the forward process are now the final conditions of the reverse
time process with Lf = L̂0. The full aligned and time reversed ensemble is then obtained by
averaging over all possible sub-ensembles, defined by Eq. (4.108), with respect to the distribution
of lifetimes given in Eq. (4.107). In Fig. 4.6, we compare mean and variance obtained by terminal
alignment of Eq. (4.105), and directly from Eq. (4.108) sampling lifetimes from Eq. (4.107). We
find excellent agreement.
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Figure 4.6: Forward (blue) and time reversed dynamics (red) of Ornstein-Uhlenbeck type
processes agree excellent. Shown are the mean (Left) and variance (Right) of both processes with
95% bootstrap confidence intervals. To exclude numerical inaccuracies due to rarely visited tails of
Eq. (4.107), we directly sampled from the numerically obtained hitting time distribution of the forward
process. Results were obtained using 1000 realizations of sample paths with parameter settings γ = 1,
D = 0.2 and L̂0 = 10. Unlike for the previous examples, we used a larger value for L̂0 to reveal the
interesting concave convex shape of the mean, which, for too small L̂0 values, is not detectable. The
larger τ , the broader the confidence intervals become, as less and less sample paths contribute to the
averaging due to differences in their lifetimes Ti.

Constructing TSA ensembles from their reverse time TSA Fokker-Planck
equation – the Bessel process

The third approach to obtain the density of complete reverse time TSA ensembles, directly
solves the defining Fokker-Planck Eq. (4.45) or SDE Eq. (4.46). We here consider the case of
the Bessel process for which this approach is analytically tractable. The forward process is
defined by Eq. (4.95) with initial condition Lf = L̂0. The probability density which describes
the forward process is given by Eq. (4.96). Defined as a TSA ensemble the SDE for the Bessel
process reads

dL(τ) =

(
− γ
L

+D
∂

∂L
log

(∫ L

0
dL′ L′

2γ
D Θ(L̂0 − L′)

))
dτ +

√
D dWτ , (4.109)
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where we substituted f(L) = − γ
L into Eq. (4.46). We assume Lts = 0 and Lf = L̂0. For L 6= Lf

this SDE simplifies to

dL(τ) =

{
γ+D
L dτ +

√
D dWτ for L < Lf

− γ
L dτ +

√
D dWτ for L > Lf ,

(4.110)

which both have known solutions in terms of their transition probability densities when defined
on the complete interval L ∈ [0,∞] 18. These solutions can be used to piecewise solve the full
SDE. We start with the solution of the process defined in Eq. (4.110) for L < Lf , but assume
for the moment that we are interested in the solution on the complete interval L ∈ [0,∞]. The
transition probability, for arbitrary L0, which describes this process, is then given as18

P<(L, τ |L0, τ0 = 0) =
Le−

L2+L2
0

2Dτ

(
L
L0

) γ
d

+ 1
2
I γ
D

+ 1
2

(
LL0
Dτ

)
Dτ

. (4.111)

Using the series expansion of Iν(z) Eq. (4.97) from Abramovitz & Stegun (AS 9.9.10)1, we can
evaluate this process for L0 → 0 and obtain

P<(L, τ |L0 = 0, τ0 = 0) =
2−

γ
D
− 1

2 (Dτ)−
γ
D
− 3

2 e−
L2

2Dτ L
2γ
D

+2

Γ
( γ
D + 3

2

) . (4.112)

The needed contribution of the sub-process defined in Eq. (4.110) (L > Lf ) is more complicated
to obtain, as its transition probability Eq. (4.96) goes to zero for L0 → Lts. We first guess that
the L dependent part of the solution of Eq. (4.110) (L > Lf ), now defined on L ∈ [0,∞], can be
obtained by first normalizing the known solution of the Bessel process Eq. (4.96). The resulting
ensemble consists of sample paths which at time t have not been absorbed at the target state but
are generated by the process defined in Eq. (4.110) (L > Lf ). We then take the limit L0 → Lts.
The normalization is simply done by the cumulative of the hitting time distribution stated in
Eq. (4.98). The seeked expression for L0 → 0 then reads

P>(L, τ |L0 = 0, τ0 = 0) ∝ lim
L0→0

L0e
−L

2+L2
0

2Dτ

(
L
L0

) 1
2
− γ
D
I γ
D

+ 1
2

(
LL0
Dτ

)
Dτ

1−
Γ

(
γ
D

+ 1
2
,
L2

0
2Dτ

)
Γ( γD+ 1

2)

 =
Le−

L2

2Dτ

Dτ
, (4.113)

where (>) denotes the forward force law − γ

L̂
. To find the limit L0 → 0 we again use the zero-th

order of the series expansion for Iν(z) stated in Eq. (4.97). With the help of Eq.(AS 6.5.3),
Eq.(AS 6.5.4) and Eq.(AS 6.5.29) 1, we replace the upper incomplete gamma function in the
denominator of Eq. (4.113) by the series

Γ(ν, z) = Γ(ν)− zν
∞∑
n=0

(−z)n

(ν + n)n!
for |z| <∞ . (4.114)

The zero-th order cancels the one in the denominator. The next order cancels all remaining
L0-terms of the nominator. The resulting term is proportional to the probability density of
those sample paths which have survived until τ and started at Lts = 0.

In the next step, we combine Eq. (4.111) and Eq. (4.113) into one expression which solves
Eq. (4.109). Assuming continuity but not differentiability at L = Lf , we can easily connect the
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two solutions at Lf , as Eq. (4.113) is fully included in Eq. (4.111). We obtain

R0(L, τ ; 0|Lf ) =


2(2Dτ)−

γ
D
− 3

2 e−
L2

2Dτ L
2γ
D

+2

Γ( γD+ 3
2)

L < Lf

2(2Dτ)−
γ
D
− 3

2 e−
L2

2Dτ L
2γ
D

+1

f L

Γ( γD+ 3
2)

L ≥ Lf .
(4.115)

For L 6= Lf , we confirm this solution by insertion into the Fokker-Planck equation corresponding
to Eq. (4.110). Furthermore, integrating R0(L, τ ; 0|Lf ) over L yields one minus the cumulative
of the forward hitting time Eq. (4.98) and shows that R0(L, τ ; 0|Lf ) from Eq. (4.115) decays
with the rate given by the hitting time distribution as demanded by the reverse time TSA
Fokker Planck equation Eq. (4.45). As Lts, according to the Feller boundary classification107 is
an entrance boundary and the other boundary is a natural boundary all lost probability mass
must be due to the kink of R0(L, τ ; 0|Lf ) at Lf , i.e. due to the sink at δ(L−Lf ). This confirms
that Eq. (4.115) is the full solution of the reverse time TSA Fokker-Planck associated with
Eq. (4.109).

To calculate mean and variance with respect to all not yet killed sample paths of the reverse-
time ensemble, we normalize Eq. (4.115) to unity with respect to L for all times τ . We obtain
for the mean

L(τ) =
A1 +A2

B
(4.116)

with

A1 = e
L2
f
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− Γ
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− Γ
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and for the variance
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− Γ
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2 ,
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f
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)) − L(τ)2 .

(4.117)

Both mean and variance are depicted in Fig. 3.4b.

4.5 TSA dynamics close to the target state

The dynamics valid for final stages of convergence to the target state can be characterized by
a single SDE valid for all forward initial conditions. This claim is easily verified by inspecting
Eq. (4.46). For L sufficiently below the bulk of the forward initial distribution P in(L), the term

H(L) = 1 −
∫ L
Lts

P in(L′)dL′, which describes the influence of the forward initial conditions on
the reverse time TSA dynamics, evaluates to approximately one. If most of the sample paths
have not yet reached the sink at P in(L), this further implies that almost no sample path has
terminated in reverse time. The killing measure k(L, τ) (Eq. (4.53)), i.e. the product of hitting
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time and initial distribution normalized to the current number of still existing sample paths,
therefore defines a sector of the L− τ plane, where, for k(L, τ) ≈ 0, TSA ensembles are – up to
exponentially small corrections – governed by

dL(τ) =

(
f(L) +D

∂

∂L
log

(∫ L

Lts

dL′ e−
∫ L′ 2f(L′′)

D
dL′′
))

dτ +
√
D dWτ . (4.118)

This form of the reverse time TSA ensemble, valid for final stages of convergence to the tar-
get state, provides a powerful tool to infer forward dynamics irrespective of unknown initial
conditions.

The reverse time SDE for TSA ensembles close to completion Eq. (4.118) can be analytically
expressed for a broad class of forward forces. Exemplary, we study the properties of power law
like forward dynamics with force term

f(L̂) = −γL̂α , (4.119)

with γ > 0, α ∈ R and constant additive noise D. We derive analytical expressions for the free
energy force using forward forces of the form Eq. (4.119). We check their validity numerically
and use the derived expressions to characterize general time-reversed ensembles near the target
state.

The TSA reverse time dynamics for forward dynamics Eq. (4.119) are

dL(τ) =

−γLα +
(Dα+D)

(
− 2γ
Dα+D

) 1
α+1

e
2γLα+1

Dα+D

Θ(α+ 1)Γ
(

1
α+1

)
− Γ

(
1

α+1 ,−
2Lα+1γ
αD+D

)
 dτ +

√
D dWτ α 6= −1 ,

(4.120)

where Γ(z) is the gamma-function, Γ (ν, z) the upper incomplete gamma function and Θ(ν) the
Heaviside step function. The case for α = −1 connecting α > 1 and α < 1 is the Bessel process
with reverse time TSA dynamics

dL(τ) =
γ +D

L
dτ +

√
D dWτ α = −1 . (4.121)

A detailed derivation and an exemplary comparison to the exact dynamics, already discussed in
section 4.4, is provided below.

TSA dynamics independent from forward initial conditions

In this section we derive reverse time TSA dynamics under the assumption that the forward
initial conditions are spatially and temporally well separated from the target state. We derive
Eq. (4.120) for a forward force of the form f(L̂) = −γL̂α, as stated in Eq. (4.119).

We start from the definition of the free energy force as stated in Eq. (4.49) for general reverse
time TSA dynamics with

fF (L) = D
∂

∂L
log Ĩ(L) , (4.122)

where the integral

Ĩ(L) =

∫ L

0
e

2Φ(L′)
D H(L′)dL′ (4.123)
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4. The mathematical theory of target state alignment

takes the form of a canonical partition function for the potential

Φ(L) = −
∫ L

f(L′)dL′ , (4.124)

associated with the sign inverted forward force. The influence of the forward initial conditions
on the TSA dynamics is captured by H(L) Eq. (4.51). It is a sigmoidal like function, which is
one at the target state and decreases the closer L is to the bulk of the forward initial condition.
It approaches zero beyond. For well separated target states and forward initial conditions we
can therefore safely set H(L) = 1, close to Lts, and define I(L) = Ĩ(L)|H(L)=1.

The derivation of Eq. (4.120) then starts with evaluating the potential

Φ(L) =

∫ L

γLαdL′ =
γLα+1

α+ 1
α 6= −1 . (4.125)

Substituting the resulting Φ(L) into I(L) and with help of Eq. (AS 6.5.25) from Abramowitz &
Stegun1, yields

I(L) = C̃(α) Γ

(
1

α+ 1
,− 2γLα+1

D(α+ 1)

) ∣∣∣L
0

α 6= −1 , (4.126)

where Γ (n, z) is the upper incomplete gamma function and C̃(α) := − 1
α+1

(
− 2γ
D(α+1)

)− 1
α+1

is a

prefactor depending on α and independent of L. Depending on α, the lower boundary assumes

two different values. For α > −1, the argument z := − 2γLα+1

D(α+1) of the upper incomplete gamma

function Γ(ν, z), goes to zero and Γ(ν, z) reduces to Γ(ν). For α < −1, the argument z diverges
(z → ∞) as L → 0 and Γ(ν, z) → 0, as can be read off from Eq. (AS 6.5.32) in Abramowitz &
Stegun1. Combined into a single expression using the Heaviside step-function Θ(ν) we arrive at

I(L) = C̃(α)

(
Γ

(
1

α+ 1
,− 2γLα+1

D(α+ 1)

)
−Θ(α+ 1)Γ

(
1

α+ 1

))
α 6= −1 . (4.127)

To obtain the final expression for the free energy force fF we rewrite

fF (L) = D
∂

∂L
log I(L) =

D

I(L)

∂

∂L
I(L) , (4.128)

which allows us to directly read off the sought expression, as ∂
∂LI(L) is simply the integrand of

I(L), and obtain

fF (L) =
(Dα+D)

(
− 2γ
Dα+D

) 1
α+1

e
2γLα+1

Dα+D

Θ(α+ 1)Γ
(

1
α+1

)
− Γ

(
1

α+1 ,−
2Lα+1γ
αD+D

) α 6= −1 . (4.129)

Substituting the resulting fF (L) into the equation for the time reversed SDE Eq. (4.118) yields
the final result as stated in Eq. (4.120).

Comparing TSA dynamics with and without forward initial conditions

To demonstrate the excellent agreement of the TSA approximation stated in Eq. (4.120) and
Eq. (4.121) with the corresponding aligned forward simulations close to completion we use the
three, from section 4.4 known, analytically tractable example cases of constriction (α = −1),
advection (α = 0) and relaxation (α = 1). From above, we further know that the TSA-
approximation of well separated initial and final conditions breaks down when a relevant fraction
of time reversed sample paths reaches the level of the initial state of the forward process. To
observe this phenomenon, we state the initial conditions of the forward process explicitly and
adapt the plot range accordingly.
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4.5. TSA dynamics close to the target state

Bessel process

The Bessel process within the TSA close to completion approximation is given by Eq. (4.121).
Fig. 4.7 shows the comparison between this approximation and the corresponding exact forward
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Figure 4.7: Forward dynamics (blue) and the approximate time reversed TSA dynamics
(red) of the Bessel process agree excellently close to the target state. Shown are the mean
(Left) and variance (Right) of both processes with 95% bootstrap confidence intervals. Results were
obtained using 1000 realizations for each of the respective ensembles with parameter settings γ = 1,
D = 0.2 and L̂in = 2.

process starting at L̂in = 2. Close to completion clearly both mean and variance are very well
reproduced by Eq. (4.121).

Important for benchmark tests in section 4.6, Eq. (4.121) can be solved analytically and
results in the transition probability stated in Eq. (4.111).

Specifying Eq. (4.111) with respect to the initial conditions (L0, τ0) = (0, 0) yields Eq. (4.112),
which can be used to obtain expressions for mean

L(τ) =

√
2
√
DτΓ

( γ
D + 2

)
Γ
( γ
D + 3

2

) (4.130)

and variance

σ2
L(τ) = Dτ

(
2γ

D
−

2Γ
( γ
D + 2

)2
Γ
( γ
D + 3

2

)2 + 3

)
. (4.131)

Forming the joint probability distribution P (L, τ, L′, τ ′) from Eq. (4.111) and Eq. (4.112) we
obtain the two-time covariance function

CL(τ, τ ′) =
2DΓ( γD + 2)2

(√
τ ′τ−

γ
D
−2(τ − τ ′)

γ
D

+ 5
2 2F1

(
γ
D + 2, γD + 2; γD + 3

2 ; τ
′

τ

)
−
√
τ ′τ
)

Γ
( γ
D + 3

2

)2
(4.132)

stated for τ > τ ′, where 2F1(a, b; c; z) is the Gaussian hypergeometric function. The obtained
mean Eq. (4.130), variance Eq. (4.131) and two-time covariance Eq. (4.132) are later in this text
used as a baseline reference for further derivations.

Advected random walk

Assuming advection and thus α = 0, the TSA approximation close to completion stated in
Eq. (4.120) simplifies to

dL = γ

(
2

1− e−
2γL
D

− 1

)
dτ +

√
D dWτ . (4.133)
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Close to completion, the dynamics match both in mean and variance with the exact aligned for-
ward simulation as displayed in Fig. 4.8. With help of Eq. (4.133), we can now explain the general
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Figure 4.8: Forward dynamics (blue) and the approximate time reversed TSA dynamics
(red) of the advected random walk agree excellently close to the target state. Shown are the
mean (Left) and variance (Right) of both processes with 95% bootstrap confidence intervals. Results
were obtained using each 1000 realizations of the respective ensemble with parameter settings γ = 1,
D = 0.2 and L̂in = 2.

behavior of aligned advection processes close to completion. For small L, Eq. (4.133) reduces to
D
L and induces a square root like behavior of the mean (see chapter 3 or Eq. (4.130)(γ = 0)).
Further away from the absorbing boundary, the time reversed force term simplifies to γ, yielding
a linear behavior of the mean. Then, eventually, the influence of the initial conditions (L̂in = 2)
of the forward process can no longer be neglected and the approximated and exact mean start
to deviate.

Ornstein-Uhlenbeck type process

The TSA-approximation of well separated initial and final conditions Eq. (4.120) reduces for
the case of relaxation (α = 1) to the form

dL =

−γL+

√
γD

F
(
L
√

γ
D

)
 dτ +

√
D dWτ , (4.134)

where F (x) = e−x
2 ∫ x

0 e
y2
dy is the Dawson integral1. In Fig. 4.9, we compare this approximation
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Figure 4.9: Forward dynamics (blue) and the approximate time reversed TSA dynamics
(red) of an Ornstein-Uhlenbeck type process agree excellently close to the target state.
Shown are the mean (Left) and variance (Right) of both processes with 95% bootstrap confidence intervals.
Results were obtained using each 1000 realizations of the respective ensemble with parameter settings
γ = 1, D = 0.2 and L̂in = 10.
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4.6. Small L and weak noise approximation – Force and Noise driven TSA dynamics

with the forward simulation. In particular noteworthy here is the behavior of the mean, changing
from a root like to a convex shape. We further observe that the approximate variance is a convex
function, which seems to be a preserved feature of all processes with α > 0.

4.6 Small L and weak noise approximation – Force and Noise
driven TSA dynamics

Depending on the form of the force law f(L̂), dynamics close to the target state are either
dominated by the deterministic drift or by random fluctuations which eventually determine
when a trajectory reaches the target state. To quantitatively characterize this effect we assume
that sufficiently close to the target state, most dynamics are well approximated by a powerlaw.
Evaluating a small L-expansion of Eq. (4.120) then yields separable contributions due to the
forward force law and due to the noise. Evaluating the limit L → Lts allows to characterize
which contribution dominates.

We start our derivation with the expansion of Eq. (4.120) for small L. The behavior of
the expansion depends on the argument of both the upper incomplete gamma function and the

exponential
∣∣∣ 2γLα+1

D(α+1)

∣∣∣ and whether it diverges or vanishes for L→ 0. If we only consider L then

its behavior is clear and we observe divergence for α < −1 and convergence for α > −1. If we,
however, additionally demand that our results should not deteriorate in the limit of small noise,
i.e. L → 0 and D → 0, then the case −1 < α < 0 switches its class and starts to diverge for
L → 0. A detailed argument and derivation is given below in this section. We here only state
the results for the two regimes α ≥ 0 and α < 0.

For α ≥ 0 the reverse time SDE Eq. (4.120) reduces to

dL(τ) =

(
D

L
− γ α

α+ 2
Lα +O

(
L2α+1

D

))
dτ +

√
D dWτ α ≥ 0 . (4.135)

Independent of the exact value of α, the force that drives the time reverse ensemble away from
L̂ts is thus always the pure free energy force D

L as exhibited by the random walk case Eq. (4.92).
This finding has important implications for the reconstruction of f(L) from TSA data. Close to
L̂ts all time reversed processes with α ≥ 0 mimic pure diffusion. The identification of genuine
forces has thus to rely on dynamics sufficiently far away from L̂ts. For larger values of L, however,
higher order terms can no longer be neglected. Their contributions mix and no clear universal
approximation is achievable. We conclude that a reliable reconstruction of the genuine force
f(L) for α > 0 is only possible using the full time reversed expression as stated in Eq. (4.120).

For the domain α < 0, and for −1 < α < 0 only under the assumption of small noise
(D → 0), Eq. (4.120) reduces to

dL(τ) =

(
γLα − αD

L
+O

(
D2

L2+α

))
dτ +

√
D dWτ α < 0 . (4.136)

For α < −1, and for 0 < α < −1 given sufficiently small noise, the TSA dynamics close to the
target state are fully governed by the sign inverted forward force law plus a contribution due
to the noise similar to Eq. (4.135), however, here reweighted by a factor α. We note that the
case α = −1, i.e. the reverse time bessel process Eq. (4.121), is exactly included in Eq. (4.136).
Dynamics with α < 0 should thus be distinguishable by inspecting their behavior near the target
state.

In summary, Eq. (4.135) and Eq. (4.136) together allow to distinguish between noise driven
Eq. (4.135) and force driven Eq. (4.136) TSA dynamics close to the target state. The noise
driven case (α ≥ 0) close to the target state is indistinguishable from a pure TSA random
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walk with free energy force D
L . This process is a Bessel process and fully characterized by the

transition probability Eq. (4.111)(γ = 0) and density Eq. (4.112) (γ = 0). To form expectations
about TSA ensemble data, we calculate then mean, variance and two-time correlation function
below in this section.

The force driven case (α < 0) has a non negligible contribution due to the sign inverted
forward force close to the target state. This sensitivity to the parameter of the forward dynamics
close to Lts motivates to seek for a small noise expansion around the sign inverted forward law.
Further below, we demonstrate that expressions for mean, variance and two-time correlation
function can be obtained in the limit of small noise.

The derivation of the small L expansion

The expansion of fF (L) Eq. (4.129) depends on the limit properties of the argument z = −2Lα+1γ
αD+D

of the rewritten free energy force

fF (L) =
C(D)e−z

Θ( 1
ν )Γ (ν)− Γ (ν, z)

α 6= −1 (4.137)

and whether the limit of |z|, with respect to D and L, rather approaches zero or infinity. For
readability, we collect all non z-dependent terms into

C(D) = (Dα+D)

(
− 2γ

Dα+D

) 1
α+1

(4.138)

and set ν = 1
1+α . In the following three subsections we discuss the expansion of fF (z) with

respect to z, given small L, for the regimes α ∈ (−∞,−1), (−1,∞). We then reassess the reverse
time forces in the interval α ∈ (−1, 0) and with respect to its dependency on the size of the
diffusion constant D.

The case |z| → 0

For α > −1 (ν > 0) the expansion variable |z| decreases with decreasing L. For these cases the
denominator of Eq. (4.137) can be written as

Γ(ν)− Γ(ν, z) = Γ(ν)zνe−z
∞∑
n=0

zn

Γ(ν + n+ 1)
for |z| <∞ , (4.139)

using Eq. (AS 6.5.3), Eq. (AS 6.5.4) and Eq. (AS 6.5.29)1. The free energy force fF (L) is

fF (L) =
C(D)

Γ(ν)zν
∑∞

n=0
zn

Γ(ν+n+1)

α > −1 , (4.140)

where we canceled the exponential function in numerator and denominator. Truncating the
series in the denominator to include only the terms up to first order, we arrive at

fF (L) =
νC(D)z−ν

1 + z
ν+1 +O(z2)

α > −1 . (4.141)

We here used the recurrence relation Γ(ν + 1) = νΓ(ν) from Eq. (AS 6.1.15) Abramowitz &
Stegun1 to simplify the expression. In the last step we approximate the denominator to lowest
order in z and obtain

fF (L) = νC(D)z−ν
(

1− z

ν + 1
+O(z2)

)
α > −1 . (4.142)
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Replacing the effective parameters and variable z with the original parameters ν, γ,D and vari-
able L, we arrive at the small L expansion

fF (L) =
D

L
+

2γLα

α+ 2
+O

(
L1+2α

D

)
α > −1 . (4.143)

Substituting Eq. (4.143) into Eq. (4.118) we arrive at the small L-expansion stated in Eq. (4.135).

The case |z| → ∞

For α < −1 (ν < 0) the expansion variable z goes to infinity for small L. With ν < 0 the
Heaviside step function evaluates to zero and the denominator simplifies to Γ(ν, z) which we
expand for large z, using the known asymptotic expansion Eq. (AS 6.5.32)1

Γ (ν, z) = zν−1e−z
(

1 +
ν − 1

z
+O(z−2)

)
for |z| → ∞ . (4.144)

We substitute this expansion into Eq. (4.137) and arrive at

fF (L) = − C(D)z1−ν

1 + ν−1
z +O(z−2)

α < −1 (4.145)

after canceling the exponential terms. In a final step we approximate the denominator for
z →∞, i.e. Taylor expand for small orders of 1/z, and obtain

fF (L) = −C(D)z1−ν
(

1− ν − 1

z
+O(z−2)

)
α < −1 . (4.146)

Re-substituting the original parameters and variable L, the final free energy force reads

fF (L) = 2γLα − αD

L
+O

(
D2

L2+α

)
α < −1 . (4.147)

The L and D dependent range −1 < α < 0

For α in the range −1 < α < 0, the value of the expansion variable z depends on the choice of
the diffusion constant D. For large D the limit behavior of z is fully defined by L and we find

lim
L→0
|z| = lim

L→0

∣∣∣∣− 2Lα+1γ

αD +D

∣∣∣∣ = 0 for − 1 < α < 0 . (4.148)

If we additionally assume, that the expansion holds in the limit of small noise, the limiting
behavior changes and we find

lim
L→0,D→0

|z| = lim
L→0,D→0

∣∣∣∣− 2Lα+1γ

αD +D

∣∣∣∣ =∞ for − 1 < α < 0 . (4.149)

This implies that for a given L, we can always find a small enough D so that the expansion
variable z becomes large. Thus, we also consider |z| → ∞ in the regime −1 < α < 0. Under
this condition, the Θ(α + 1) dependent term in the denominator of Eq. (4.137) does no longer
vanish automatically. Eq. (4.145) then reads

fF (L) = − C(D)z1−ν

m(z) + 1 + ν−1
z +O(z−2)

α < −1 (4.150)

59



4. The mathematical theory of target state alignment

with

m(z) = −ezz1−νΓ(ν) . (4.151)

In the following we argue, that m(z) becomes negligible for large |z|. We show that the limes of
m(z) with respect to D → 0 is zero and conclude that we can always find a D, which is small
enough to neglect m(z) in the expansion of fF (L). For small D, Eq. (4.150) therefore follows
the same expansion as the case α < −1 discussed before.

To proof these statements, we first recall, that z = − 2L1+αγ
(1+α)D is negative for −1 < α < 0. The

exponential thus decays with increasing |z|. With ν = 1
1+α , the exponent 1 − ν is negative for

−1 < α < 0 and the power law |z|1−ν decays with increasing |z|. For |z| → ∞ we therefore find

lim
|z|→∞

|m(|z|)| = 0 for − 1 < α < 0 . (4.152)

We next show, that |m(z)| also approaches zero for D → 0. We start by rewriting m(z) in
terms of α, γ,D and L and obtain

m(L) = Γ

(
1

α+ 1

)
Lα
(
− 2γ

D(1 + α)

) α
α+1

e
− 2γLα+1

D(1+α) . (4.153)

To clarify the behavior of the first D-dependent term we note, that its absolute value can be

written as

∣∣∣∣(− 2γ
D(1+α)

) α
α+1

∣∣∣∣ =
∣∣∣D(1−|α|)

2γ

∣∣∣ 1−|α|
|α|

.With |α| ∈ (0, 1), the exponent is greater than

zero and the full term goes to zero for D → 0. The second D dependent term in Eq. (4.153) is
the exponential. For D → 0 the exponent goes to −∞ and the exponential vanishes. We can
therefore write

lim
D→0
|m(L)| = 0 for − 1 < α < 0 . (4.154)

In the final step we show that |m(L)| also vanishes in the simultaneous limit of D → 0 and
L→ 0. To perform this limit we set w.l.o.g. D = L and rewrite Eq. (4.153) accordingly. In the
resulting equation

m(L) = Γ

(
1

α+ 1

)
L

α2

1+α

(
− 2γ

1 + α

) α
α+1

e−
2γLα

1+α , (4.155)

we can directly read off that the powerlaw L
α2

1+α decays to zero for decreasing L, as does the
exponential. We conclude, that

lim
L→0,D→0
D∼L

|m(L)| = 0 for − 1 < α < 0 (4.156)

holds. It is thus always possible to find a small enough D, where the large z expansion of fF (L),
discussed above, holds also in the regime −1 < α < 0.

We conclude this section by a remark. Reinspecting Eq. (4.153) we observe that all D’s
are multiplied by 1 + α. For α decreasing from zero to minus one we therefore expect m(L) to
become smaller and smaller until it approaches zero for α→ −1 using the very same argument
as for D. The large |z| expansion will therefore hold for the larger D values, the closer α is to
−1.
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Moments and universal correlation function for noise driven TSA ensembles

For α > 0, the SDE Eq. (4.135) with respect to the free energy force fF (L) expanded in small
L tells us that the dynamics close to the target state are purely governed by the force term D

L .
From section 4.4, or simply by inserting f(L) = 0 into Eq. (4.118), we know, that the SDE

dL(τ) =
D

L
dτ +

√
D dWτ (4.157)

describes the dynamics of a TSA random walk close to the target state and well separated from
its forward initial conditions. For completeness and easy use we here state the mean

L(τ) =

√
8Dτ

π
, (4.158)

variance

σ2
L(τ) =

(3π − 8)Dτ

π
(4.159)

and two-time covariance

CL(τ, τ ′) =


2D
(
−4
√
ττ ′+3

√
τ(τ ′−τ)+(2τ+τ ′) sin−1(

√
τ
τ ′ )
)

π for τ < τ ′

σ2
L(τ) for τ = τ ′

2D

(
−4
√
τ ′τ+3

√
τ ′(τ−τ ′)+(2τ ′+τ) sin−1

(√
τ ′
τ

))
π for τ > τ ′ .

(4.160)

They can be obtained either from the known transition probability Eq. (4.111) and density
Eq. (4.112) of the Bessel process with an entrance boundary at Lts = 0 and in the limit γ → 0,
or from the moments stated in section 4.4. Using the obtained variance and covariance, the
correlation function corrL(τ, τ ′) = CL(τ, τ ′)/(σL(τ)σL(τ ′)) reads

corrL(τ, τ ′) =



2
(
−4
√
ττ ′+3

√
τ(τ ′−τ)+(2τ+τ ′) sin−1(

√
τ
τ ′ )
)

(3π−8)
√
ττ ′

for τ < τ ′

1 for τ = τ ′

2

(
−4
√
τ ′τ+3

√
τ ′(τ−τ ′)+(2τ ′+τ) sin−1

(√
τ ′
τ

))
(3π−8)

√
τ ′τ

for τ > τ ′ .

(4.161)

Let us briefly discuss the obtained reverse time moments. For the mean, we observe that it
grows with

√
τ . It is thus similar to a forward random walk which starts at the boundary but

never returns to it. Such a random walk can be constructed from Eq. (4.89) (random walk with
mirror charges), after normalization to one (for every τ), and in the limit L̂0 → 0. The result is
the same we obtained as an intermediate step in the derivation of the exact TSA reverse time
Bessel process Eq. (4.113)

P (L, τ) =
Le−

L2

2Dτ

Dτ
(4.162)

and is known as a Rayleigh distribution. For the mean of this restricted random walk we find

L(τ) =

√
πDτ

2
, (4.163)
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which shows the same τ dependence as the mean of the TSA random walk Eq. (4.158) but with
a different pre-factor. This observations motivates to also study the variance of the restricted
random walk

σ2
L(τ) =

1

2
(4− π)Dτ . (4.164)

We again find the same dependence on τ as in the variance of the TSA random walk but again
a different pre-factor. This shows that fitting mean or variance independently can lead to wrong
conclusions. Comparing for example the coefficient of variation CV = σL(τ)

L(τ)
we find the two

different constants CVTSA−rw =
√

3π
8 − 1 ≈ 0.42 for the TSA random walk and CVrest−rw =√

4
π − 1 ≈ 0.52 for the restricted random walk. This shows the TSA random walk, as one might

have assumed, is not the same as a restricted random walk.
While sample paths in both cases are generated by the same dynamics, they differ in the

selection of sample paths which contribute to the ensemble. In the TSA ensemble, sample paths
in principle have had the time to explore the full half plane L ∈ [0,∞] before they reach the
target state. The fraction of sample paths which predominantly “walk” in one direction close
to the target state is therefore enriched compared to a restricted random walk, which only
neglects all sample paths which ever return to the initial conditions. Formally, its the difference
between a TSA ensemble and a meander process104, which never returns to its initial position.
For mathematical details on meander processes we refer to Majumdar and Orland104, for a
constructive perspective that helps understanding this effect to section 7.4.

Moments for force driven TSA ensembles

For α < −1 and for −1 < α < 0 under the additional constraint of small D, TSA dynamics
are force driven close to the target state. This motivates to try a small noise expansion around
the deterministic time reversed dynamics to obtain expression for the moments of the SDE
Eq. (4.136). We adopt the approach defined for a standard SDE (see Gardiner chapter 6.255)
to include order D drift terms and find for the mean

L(τ) = ((1− α)γτ)
1

1−α +D
(7α− 3)((1− α)γτ)

α
α−1

4(3α− 1)γ
+O(D3/2) , (4.165)

variance

σ2
L(τ) = D

1− α
1− 3α

τ +O(D2) (4.166)

and covariance

CL(τ, τ ′) =


(
τ
τ ′

) α
α−1 σ2

L(τ) +O(D2) for τ < τ ′(
τ ′

τ

) α
α−1

σ2
L(τ ′) +O(D2) for τ > τ ′

σ2
L(τ) +O(D2) for τ = τ ′

(4.167)

by a perturbation theory calculation around the deterministic solution of Eq. (4.136) in the Dif-
fusion constant up to order D. The correlation function corrL(τ, τ ′) = CL(τ, τ ′)/(σL(τ)σL(τ ′))
reads

corrL(τ, τ ′) =


(
τ
τ ′

) 3
2

+ 1
α−1 for τ < τ ′(

τ ′

τ

) 3
2

+ 1
α−1

for τ > τ ′

1 for τ = τ ′ .

(4.168)
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4.6. Small L and weak noise approximation – Force and Noise driven TSA dynamics

Note, that for all expressions (Eq. (4.165)-Eq. (4.168)) boundary conditions are already implicitly
included due to the contribution of the free energy force. We further recall that the expansion
stated in Eq. (4.136) was truncated at order D. Only terms up to this order are therefore
considered in Eq. (4.165), Eq. (4.166) and Eq. (4.167). Given this approximation, we have
shown above in this section that only the mean Eq. (4.165) carries a relevant contribution from
the approximate free energy force −αD

L .
The obtained expression can be used to infer power law forward forces f(L) = −γLα from

TSA ensembles in the limit of small noise. For example, starting from the two-time correlation
function, we read off the power law exponent α. With α we can fit the variance and determine
the diffusion constant D. The force strength γ is obtained from the mean.

For the small noise approximation to hold well, and as a rule of thumb, the coefficient of
variation CV = σL(τ)/L(τ), approximated as the lowest order small noise terms, should be well
below one. For example for α = −1 this implies CV =

√
D/(4γ) < 1. For all other α-values

we find CV ∼ τ
α+1

2(α−1) . The approximation thus becomes better the larger τ given −1 < α < 0,
and for α < −1 the smaller τ . In the following, I will briefly comment on the expressions for
L(τ), σ2

L(τ) and CL(τ, τ ′), and present a more detailed discussion and a step by step derivation
below.

The mean L(τ) (Eq. (4.165)) is given as the deterministic solution to Eq. (4.136)(D → 0) plus
a (for all α < 0) solely positive contribution of order D. The case α < 0 thus shows that a purely
deterministic approach to extract the mean from any experimentally obtained and terminally
aligned data is bound to fail. As the mean, given by Eq. (4.165), adds up a deterministic
term and a deterministic positive contribution due to the noise, a pure deterministic approach
overestimates the underlying forward force by the contribution of the noise. The difference
between the deterministic approximation (order D0 of Eq. (4.165)) and the correct analytic
obtainable solution Eq. (4.130) is exemplary shown in Fig. 4.10 (Left) for the case α = −1. To
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Figure 4.10: The small noise approximation up to order D is an excellent approximation
of the exact dynamics. Shown are small noise expressions (red) for the mean (Left) Eq. (4.165)
and variance (Right) Eq. (4.166) in comparison to the exact analytic expressions (blue), as stated in
Eq. (4.130) Eq. (4.131) for the Bessel process. For the small noise expression of the mean we additionally
show the curve up to order D0 (dotted). Curves are obtained for the parameters α = −1, γ = 1, D = 0.2.

be precise, in Fig. 4.10 we compare the exact solution of the TSA Bessel process with forward
initial conditions shifted to infinity, and the small noise approximation stated in Eq. (4.165) and
Eq. (4.166). We find excellent agreement.

The variance σ2
L(τ), up to order D (Eq. (4.166)) is a γ-independent function linearly growing

with Dτ . It thus shows the same dependence on Dτ as the exact variance result Eq. (4.131)
for the Bessel process SDE Eq. (4.136) with α = −1. Furthermore, if we assume D/γ → 0, the
variance for α = −1, as stated in Eq. (4.131) approaches the small noise solution from below
until both assume the form Dτ

2 . Taken together this indicates that in the limit of small noise,
characterized by the CV , all relevant features of σ2

L(τ) and CL(τ, τ ′), are capture within an
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4. The mathematical theory of target state alignment

expansion up to order D. To further test this for general α < 0 we compare numerical solutions
of Eq. (4.136) with our analytic small noise expressions for mean Eq. (4.165) and variance
Eq. (4.166). Results for α = −0.5 and α = −2 are displayed in Fig. 4.11 and compared to the
case α = −1. All considered, we conclude that L(τ) and σ2

L(τ), as stated in Eq. (4.165) and
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Figure 4.11: The small noise expansion is a very good approximation of its underlying
TSA-SDE. Comparison between a numerical evaluation of Eq. (4.136) (circles) and its approximation
as analytic small noise expansion up to order D1 (lines) as given in Eq. (4.165) and Eq. (4.166). Shown
are mean (Left) and variance (Right) for the cases α = −1/2 (orange), α = −1 (red) and α = −2 (black).
All other parameters are chosen identical with γ = 1 and D = 0.2.

Eq. (4.166), are sufficient to reconstruct f(L) and D for general α < 0 and in the limit of small
noise.

The two-time covariance function CL(τ, τ ′) is highly informative for force reconstruction. If
enough sample paths are available (O(100) − O(1000)), the covariance stated in Eq. (4.167) is
suitable to uniquely infer both the general form of the forward force f(L) and the noise level.

The fraction CL(τ, τ ′)/(σL(τ)σL(τ)′) represents the two time correlation function corrL(τ, τ ′).
With its sole dependence on α, corrL(τ, τ ′) uniquely fixes the general form of the force law, ir-
respective of the reconstructed γ and the noise level D. To check for the quality of Eq. (4.168),
we compare in Fig. 4.12 the case α = −1 to its analytical counterpart obtained from Eq. (4.131)
and Eq. (4.132). Using the same parameters as already in Fig. 4.10 we observe in Fig. 4.12
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Figure 4.12: The small noise approximation of the correlation function is an excellent
approximation of the exact dynamics. Shown is the small noise correlation function as given by
Eq. (4.168) for the case α = −1 (Left) and its deviations from the known exact correlation function of
the Bessel process (Right) directly obtainable from Eq. (4.131) and Eq. (4.132).

(Right) a maximal deviation of 2% for large correlation times, and even smaller deviations for
shorter correlation times.
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4.6. Small L and weak noise approximation – Force and Noise driven TSA dynamics

Interestingly, the 2d representation of corrL(τ, τ ′) as stated in Eq. (4.168) and displayed for
the cases α = −0.5 and α = −2 in Fig. 4.13, shows an easy to identify signature. Due to the sole
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Figure 4.13: Exemplary correlation functions obtained from the analytic small noise ex-
pression as stated in Eq. (4.168). Shown are the cases α = −1/2 (Left) and α = −2 (Right). The two
remaining parameters are chosen identical with γ = 1 and D = 0.2. For both we observe characteristic
straight equi-value lines as demanded by Eq. (4.168).

dependence of Eq. (4.168) on the ratio of τ and τ ′ the 2d correlation function exhibits straight
level lines (τ ′ = const · τ). Given we are in the regime of small noise and do not observe this
straight line structure in our experimental data, we can thus directly exclude all pure forward
force laws of the form stated in Eq. (4.119) with α < 0. We further know from above that
processes with α ≥ 0 follow a force law D/L close to completion. The respective correlation
function can be calculated and is stated in Eq. (4.161). Connecting the two cases α < 0 and
α > 0 we now have a theoretical understanding of the mean, variance and two-time correlation
close to target states.

Weak noise approximation of moments for force driven TSA ensembles

Starting from Eq. (4.136), we here derive the expressions Eq. (4.165)-Eq. (4.168) for mean L(τ),
variance σ2

L(τ), covariance CL(τ, τ ′) and the correlation function corrL(τ, τ ′). The calculation is
valid in the domain α < 0, as discussed above, and in the limit of small noise. With some minor
modifications we follow the weak noise approximation approach discussed in Gardiner (chapter
6.2)55.

The derivation starts with rewriting Eq. (4.136) in the general form

dL = a(L)dτ + ε2b(L)dτ + ε dWτ (4.169)

with
√
D substituted by the expansion parameter ε. For small ε we expand

L(τ) = L0(τ) + εL1(τ) + ε2L2(τ) + ... (4.170)

around the deterministic solution L0(τ). We further assume that we can write

a(L) = a(L0 + εL1 + ε2L2 + ...) = a0(L0) + εa1(L0, L1) + ε2a2(L0, L1, L2) + ... . (4.171)

The general expression for a(L) then reads

a(L) = a

(
L0 +

∞∑
m=1

εmLm

)
=
∞∑
p=0

1

p!

dpa(L0)

dL0

 ∞∑
p=0

εmLm

p

(4.172)
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and after sorting terms we find for the first three terms

a0(L0) = a(L0) (4.173)

a1(L0, L1) = L1
da(L0)

dL0
(4.174)

a2(L0, L1, L2) = L2
da(L0)

dL0
+

1

2
L2

1

d2a(L0)

dL2
0

. (4.175)

The same procedure can be applied to b(L). Taken together the equations to lowest order in ε
are

dL0 = a(L0)dτ (4.176)

dL1 = a1(L1, L0)dτ + dWτ (4.177)

dL2 = a2(L2, L1, L0)dτ + b(L0)dτ (4.178)

The first of these equations is the deterministic equation

dL0 = γLα0dτ . (4.179)

As the process starts at the boundary at L0(0) = 0, its solution is simply given as

L0 = ((1− α)γτ)
1

1−α with α < 0 . (4.180)

The second equation Eq. (4.177) describes a generalized Ornstein-Uhlenbeck process

dL1 = k (L0(τ))L1 dτ + dWτ (4.181)

with the time-dependent drift coefficient

k (L0) =
da(L0)

dL0
= γ

dLα0
dL0

= γαLα−1
0 . (4.182)

Inserting the solution for L0(τ) we find

k(L0) = γα ((1− α)γτ)−1 . (4.183)

Employing the initial conditions L1(0) = 0, the solution of equation Eq. (4.181) reads

L1(τ) =

∫ τ

0
e
∫ τ
τ ′ k(L0(s))dsdWτ ′ =

∫ τ

0

( τ
τ ′

)− α
α−1

dWτ ′ . (4.184)

Together, Eq. (4.180) for L0(τ) and Eq. (4.184) for L1(τ) form the basis of all further calculations.
Inserting these solutions into the expansion stated in Eq. (4.170) and taking the ensemble average
we obtain expressions for mean

〈L(τ)〉 = 〈L0(τ)〉+ ε〈L1(τ)〉+ ... , (4.185)

variance

σ2
L(τ) = 〈(L(τ)− 〈L(τ)〉)2〉 = ε2〈L2

1(τ)〉+ ... (4.186)

and two-time covariance

C(τ, τ ′) = 〈(L(τ)− 〈L(τ)〉)
(
L(τ ′)− 〈L(τ ′)〉

)
〉 = ε2〈L1(τ)L1(s)〉+ ... (4.187)
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in lowest order of ε and valid for α < 0. We first evaluate these expressions to lowest order,
which for σ2

L(τ) and CL(τ, τ ′) is already at order O(D). Corrections for the mean up to order
O(D) are evaluated subsequently. Note, that the average over a single Wiener integral, such as
〈L1(τ)〉 always evaluates to zero and therefore corrections to the mean will be of order ε2.

To 0th order, the solution for the mean is equivalent to the deterministic solution Eq. (4.180).
For the variance, we have to calculate the second moment of equation Eq. (4.184), i.e.

σ2
L(τ) = D〈L2

1(τ)〉 = D

∫ τ

0

∫ τ

0

( τ
τ ′

)− α
α−1

( τ
τ ′′

)− α
α−1

dWτ ′dWτ ′′

= D

∫ τ

0

( τ
τ ′

)− 2α
α−1

dτ ′ = D
1− α
1− 3α

τ for α < 0 , (4.188)

where we replace ε2 by the original D. Note that 〈L1〉2 = 0 and thus drops out of the calculation.
Similarly, we obtain the two-time covariance function

C(τ, τ ′) = D

∫ τ

0

∫ τ ′

0

(τ
s

)− α
α−1

(
τ ′

s′

)− α
α−1

dWsdWs′

= D

∫ min(τ,τ ′)

0

(τ
s

)− α
α−1

(
τ ′

s

)− α
α−1

ds

=


D (α−1)τ

1
α−1 +2

τ
′− α
α−1

3α−1 for τ < τ ′

D (α−1)τ
′ 1
α−1 +2

τ
− α
α−1

3α−1 for τ > τ ′

D〈L2
1(τ)〉 for τ = τ ′

and α < 0 (4.189)

again in terms of D. Using the variance Eq. (4.188), we can rewrite this result in the final form
stated in Eq. (4.166). The two-time correlation function also directly follows from Eq. (4.189).
Using the definition

Corr(τ, τ ′) :=
C(τ, s)

σL(τ)σL(τ ′)
(4.190)

we obtain the final form stated in Eq. (4.168).
In a last step we calculate the first D-dependent contribution to the mean, characterizing

deviations from the deterministic solution. As contributions due to L1(τ) average out, terms of
order ε2 become important and thus the contribution −αD/L of the free energy force as stated
in Eq. (4.136). Using the series expansion of L(τ) in orders of ε as stated in Eq. (4.170), we
next evaluate the contribution of L2(τ) to the mean. This is most simply achieved by directly
evaluating an averaged Eq. (4.178). Using the specifications due to Eq. (4.175) we then obtain
a linear differential equation

d〈L2〉
dτ

=
da(L0)

dL0
〈L2〉+

1

2

d2a(L0)

dL2
0

〈L2
1〉 −

α

L0
(4.191)

with the solution

〈L2(τ)〉 =
(7α− 3)((1− α)γτ)

α
α−1

4(3α− 1)γ
for α < 0 . (4.192)

The final result Eq. (4.165) is obtained from

L(τ) = L0(τ) +D〈L2(τ)〉 . (4.193)
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Chapter 5

Testing TSA model inference and
distinction on a simple model of

cytokinesis

5.1 A model of cytokinetic ring constriction with distinct
effective force laws

To assess whether TSA ensemble analysis can distinguish different regimes of directed dynamics
we here study the exemplary process of Cytokinesis. Cytokinesis is the process of separation of
a mother cell into two daughter cells at the end of the cell cycle. For animal cells this separation
is driven by a contractile ring formed from actin filaments, myosin and associated proteins. We
used a model that describes the contraction and molecular turnover of force generating acto-
myosin bundles, i.e. an assembly of filaments and motor complexes184. Two coupled differential
equations define the model. The first describes how the balance of viscous and elastic forces
determines the ring diameter and leads to ring constriction or dilation. The viscous force is
written as −ξ−1Ṙ, where Ṙ denotes the time derivative of the ring radius and ξ an effective
friction coefficient. The elastic response of the cell upon cell deformation derives from a harmonic
energy term

E(R) =
K

2
(R−R0)2 (5.1)

with elastic modulus K > 0 and equilibrium radius R0. Combined with a term Σ for the
contractile stress, we obtain a force balance equation of the form

Ṙ = −ξ
(
∂E

∂R
+ 2πΣ

)
. (5.2)

The dynamics of the filament concentration c = N/(2πR) with N filaments is defined along
a ring of length 2πR. Without turnover the ring perimeter therefore changes with R ∝ 1/c.
Including turnover we obtain the material balance equation

ċ = kp − kdc−
Ṙ

R
c (5.3)

with filament polymerization and depolymerization rates kp and kd. The contractile stress
Σ = ANbc

2 models the active force generation of actin filaments and myosin motors. A is the
(positively defined) effective material coefficient, Nb the number of distinct filament bundles
and c, the number density of filaments per unit length along a bundle. The contractile force is
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proportional to c2 to account for the fact that actin filaments need a partner to exert forces.
Together Eq. (5.2) and Eq. (5.3) define an elementary model of cytokinetic ring constriction.

Zumdieck et. al. used parameters from independent measurements curated from the liter-
ature184. Comparing numerical solutions of the model, using these parameters with time laps
recordings of the first-division constriction dynamics of C. elegans oocytes, Zumdieck et. al. found
good agreement between model and measurement.

To allow for different stoichiometrics of the potential force generating molecules such as actin
and myosin, and to include a stochastic component, we slightly generalized this model dynamics

dL̂(t) = −
(
γλ1 (L̂(t)− L̂m) + γλ2 ĉ(t)

n
)
dt+

√
D dWt (5.4)

dĉ(t) =
(
kλon − kλoff ĉ(t)

)
dt+

dL̂(t)

L̂(t)
ĉ(t) . (5.5)

We define L̂ := R, γλ1 := Kξ, L̂m := R0, γλ2 := 2πANb, k
λ
on := kp and kλoff := kd. To allow for

single and pairwise interactions of the force generating molecules we replace the exponent of the
concentration by a parameter n := {1, 2}. In this version, the index λ := {m, c} further accounts
for the possibility to switch between two different regimes. A maintenance (m) phase where a
fixed ring perimeter is stabilized, and a constriction (c) phase where the ring diameter shrinks
until cell separation. For simplicity the switching between the two regimes m→ c is modeled as
a discrete shift in parameter space (γm1 , γ

m
2 , k

m
on, k

m
off) → (γc1, γ

c
2, k

c
on, k

c
off). Both generalizations,

stoichiometrics of myosin and stochasticity, were already suggested by the original authors184.
Below we show that this generalized model exhibits three qualitatively different biophysically

plausible regimes, which can be approximated with a single effective SDE of the form

dL̂(t) = −γeff L̂
α +
√
D dWt (5.6)

with α = 0,−1,−2. These three effective dynamics are recovered from Eq. (5.4) and Eq. (5.5),
for the biological meaningful limits of fast turnover, stalled myosin turnover, and stalled actin
turnover.

The fast turnover limit

In the limit of fast turnover (kλon � 1, kλoff � 1) and kλon/k
λ
off = const., the above model reduces

to 1d dynamics of the ring perimeter L̂ which, during the contraction phase, is driven by a
constant force γeff . In this limit ĉ(t) relaxes very fast to its equilibrium concentration kλon/k

λ
off .

The remaining SDE for the ring perimeter L̂ is

dL̂(t) = −
(
γλ1

(
L̂− L̂m

)
+ γλ2

(
kλon

kλoff

)n)
dt+

√
D dWt . (5.7)

Assuming a very “soft” cell shape and a strong constriction force we set γc1 = 0 and find an
equation of the form of Eq. (5.6). This is the force to deform the entire cell. An analytic
expression for the reverse time force close to completion can be obtained using Eq. (4.118). It
turns out that the effect of γ1 > 0 on the moments of the aligned reverse time ensemble close to
completion is manure. Only the mean changes marginally and rises slightly slower than in the
case with γ1 = 0.

Stalled turnover limits

In the limit of stalled turnover (kλon ≈ 0, kλoff ≈ 0) all force generating molecules are trapped in
the ring over the time scale of the constriction phase. We thus set kcon and kcoff to zero. The
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concentration dynamics from Eq. (5.5) and during constriction then reduces to

d(ĉ(t)L̂(t))

dt
= ˙̂c(t)L̂(t) + ĉ(t)

˙̂
L(t) = 0 , (5.8)

implying a fixed number of force generating molecules on the ring. In this limit

ĉ(t)L̂(t) = const. (5.9)

As this is maintained during constriction, the constant value is inherited from the value of this
product at the end of the maintenance phase, the switching time tsw. We can therefore replace
ĉ(t) in the perimeter dynamics Eq. (5.4), and obtain

dL̂(t) = −

(
γc1(L̂− L̂m) + γc2

(
ĉ(tsw)L̂(tsw)

L̂(t)

)n)
dt+

√
D dWt (5.10)

with ĉ(tsw) approximated by the ratio of kmon/k
m
off and

L̂(tsw) = L̂m −
γm2
γm1

ĉ(tsw) , (5.11)

where ĉ(tsw) and L̂(tsw) are the average values during the maintenance phase. For the example
displayed in chapter 3, we again assume dominance of the constriction force (γc1 = 0) during the
constriction phase. Note that, as the concentration of force generating molecules diverges, this
is a particular mild assumption here. The effective dynamics than terminates either ∝ 1/L̂ or
∝ 1/L̂2 depending on the model variants (n = 1: myosin; n = 2: actin) for the force generating
molecule.

Simulations

Sample paths for the three different constriction scenarios with constriction forces constant
(α = 0), proportional to ∝ 1/L̂ (α = −1) or ∝ 1/L̂2 (α = −2) were generated from Eq. (5.4)
and Eq. (5.5). All simulations were started from the equilibrium distribution of the maintenance
phase. After a time tsw (chosen larger than the window used for inference), the dynamics for
each sample path was switched to the constriction regime. The case corresponding to α = −1
is provided in Fig. 3.6 of chapter 3. Here we additionally display the two cases with α = 0,−2
(see Fig. 5.1). Tab.5.1 lists the parameter settings for all simulations. For integration we used

Parameters Simulation 1 (α = 0) Simulation 2 (α = −1) Simulation 3 (α = −2)

maintenance constriction maintenance constriction maintenance constriction

n 1 1 1 1 2 2
kon /µm s−1 400 2000 0.5 0 0.7 0
koff /s

−1 10 20 0.01 0 0.1 0
γ1 /s

−1 0.075 0 0.075 0 0.075 0
γ2 /µm1+n s−1 2π · 3.6 · 10−5 2π · 3.6 · 10−5 2π · 3.6 · 10−5 2π · 3.6 · 10−5 2π · 3.6 · 10−5 2π · 3.6 · 10−5

L̂m /µm 14.5 14.5 14.5 14.5 14.5 14.5
D/µm2 s−1 0.04 0.04 0.04 0.04 0.04 0.04

Table 5.1: Parameter settings used for 3 different sample path ensembles created from
Eq. (5.4) and Eq. (5.5). Simulation 2 is discussed in chapter 3.

a standard Euler scheme with time step ∆t = 0.05s.

71



5. Testing TSA model inference and distinction on a simple model of
cytokinesis

Maximum likelihood path ensemble inference

To infer the most likely constriction scenario hidden in each of the forward simulations as defined
in Table 5.1, we maximize the path likelihood of the respective ensemble after alignment and
time reversion. We implement the approach discussed in section 5.2. We infer the reverse time
force from the TSA ensemble and reconstruct the underlying forward force. We assumed the
forward force law is of power law form f(L̂) = −γL̂α. We can therefore directly read off the
forward force f(L) from the inferred reverse time force fTSA(L).

For each of the three simulations defined in Table 5.1 the inference procedure is identical.
We here discuss Simulation 2 (with true effective α = −1) shown in the chapter 3. The idea is
to treat the simulation data as black box, as experimental data would be, and determine which
forward force law f(L̂) is most suitable to describe the constriction dynamics. In principle
the maximal included lifetime of the reverse time trajectories N∆τ should be optimized as
well. Starting from very short trajectories for which contributions of the maintenance phase are
negligible, and increasing the length until distinctions from a pure ensemble become detectable,
then marks the transition from constriction to maintenance. We here, for simplicity, directly
choose N based on visual inspection of the aligned reverse time ensemble.

There are two options to find the best model. First, to simultaneously optimize for α, γeff , D.
Second to to choose one α from the three above described mechanisms, assuming it contains the
correct model, and infer the best fitting γeff , D. With the first approach we find the best model
with its maximum likelihood parameters. With the latter we find the best fitting parameters for
each of the candidates (α = 0,−1,−2). This then allows to quantitatively compare the three
different models either in terms of their maximum likelihood values or, in terms of their moments
which we each calculate from simulations of the respective reverse time SDE Eq. (4.120) using
the newly inferred maximum likelihood parameter γMAP, DMAP.

For Simulation 2 (with true effective α = −1) the results of this comparison are shown in
Fig. 3.6 of chapter 3. For the “true” case α = −1, the full terminal aligned simulation and the
inferred dynamics perfectly coincide in their moments. For α = 0,−2 they strongly deviate.
A similar observation holds for Simulation 1 and 3 shown in Fig. 5.1. For both, the correct
dynamics are recovered while the deviant models can not be matched in their statistics. In
total this shows that our maximum likelihood path ensemble inference approach for reverse
time analysis allows to reliably infer the correct underlying mechanism while rejecting deviant
models. The theory of TSA ensemble inference thus provides a reliable framework for the
inference of effective dynamics. In the following sections we will explore generalizations to this
baseline framework.

5.2 Reverse-time ensemble path inference

The reverse time TSA ensemble approach aims at the inference of the underlying forward dy-
namics from dynamics with identifiable dynamics only close to the target state. We here propose
to directly infer the reverse time force fTSA(L) from TSA sample paths using a path-ensemble-
likelihood inference scheme.

The construction idea of this likelihood inference scheme follows classical maximum likeli-
hood and Bayesian path inference approaches36,41,43,78,108,109,167. We first define the transition
probability for discrete sample paths starting at Lts at time τ = 0 and ending at τf for sim-
plicity. Sample points are taken with equal spacing ∆τ . We consider sample paths of duration
T = N∆τ . The transition probability for individual realizations of such a Markovian process
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a

b

Figure 5.1: The dynamical law leading to constriction can unambiguously be inferred
from realizations of the Zumdieck model, using path integral maximum likelihood inference
Eq. (5.15). We visually confirm the inferred underlying force law f(L̂) by numerically evaluating mean
and variance for the reverse-time dynamics under the assumption of well separated initial and final
conditions, for each of the three inferred maximum likelihood parameter sets (γαML, D

α
ML) (a): Given the

correct underlying force law is f(L̂) = −γ (α = 0), only the case α = 0 (yellow line) predicts both the
mean and variance of the Zumdieck model (blue circles). (b): Given the correct underlying force law

is f(L̂) = − γ

L̂2
(α = −2), only the case α = −2 (red line) predicts both the mean and variance of the

Zumdieck model (blue circles).

reads

P (Lf, τf |Lts, 0) =

N−1∏
i=0

P (Li+1, τi+1|Li, τi) . (5.12)

Assuming individual, statistically independent sample paths, the total likelihood of a finite size
sample nens of sample paths is the product of individual transition probabilities. Taking the
logarithm the log likelihood function is

logL =

nens∑
j=1

N−1∑
i=0

logP (L
(j)
i+1, τi+1|L(j)

i , τi) (5.13)

which can be used for maximum likelihood inference of model parameter. The exact transition
probability P (Li+1, τi+1|Li, τi) is not available analytically for most stochastic processes. A
simple approximation for P (Li+1, τi+1|Li, τi) useful for closely sampled trajectories is of Gaussian
form

P (Li+1, τi+1|Li, τi) =
1√

2πD∆τ
e−

(Li+1−Li−f
TSA(Li)∆τ)

2

2D∆τ . (5.14)
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This is equivalent to a first order stochastic simulation of an SDE in Ito interpretation, where
the change dL with respect to the deterministic force times ∆τ plus a random step with zero
mean and variance D∆τ is evaluated. The log-likelihood under the approximation of Gaussian
transition probabilities thus reads

logL =

nens∑
j=1

N−1∑
i=0

−
(
L

(j)
i+1 − L

(j)
i − fTSA(L

(j)
i )∆τ

)2

2D∆τ
− 1

2
log(2πD∆τ)

 . (5.15)

This approximation becomes exact for arbitrary small time steps, and deviations occur as the
time-steps become bigger. It is therefore recommended to check after optimization, if the resid-
ual increments after subtraction of the deterministic part are actually Gaussian. If not, more
sophisticated path inference techniques can be used44,88,124, which can cope with “almost” Gaus-
sian transition probabilities2,3 or even arbitrary step size13.

For forward power law forces of the form f(L) = −γLα, and close to the target state, the cor-
responding reverse time forces fTSA(L) = f(L) + fF (L) can be stated exactly using Eq. (4.120)
for the free energy force fF (L). Using fF (L), in the form as defined in Eq. (4.120), the log-
likelihood is not easily evaluated numerically for small L. As both Γ(ν), Γ(ν, z) and exp(z)
need to be evaluated numerically and separately, slight inconsistencies can lead to numerical
instabilities. We therefore transformed fF (L) to forms in which only one special function is
evaluated numerically. This is feasible when treating α < −1 and α > −1 separately. The full
free energy force then splits into three cases

fF (L) =


D

− 2Lα+1γ
αD+D 1F1(1;1+ 1

1+α
;− 2Lα+1γ

αD+D
)

for α > −1 + ε

2γ
L −

αD
L for − 1 + ε < α < −1− ε
−D(1+α)

− 2Lα+1γ
αD+D

U(1;1+ 1
1+α

;− 2Lα+1γ
αD+D

)
for − 1− ε < α < −1− ε .

(5.16)

In our experience this representation with ε = 0.05 worked robustly. Here 1F1(a; b; z) is the
Kummer confluent hypergeometric function, U(a; b; z) is Tricomi’s confluent hypergeometric
function. To obtain this representation we used the substitutions

Γ(a)− Γ(a, z) = a−1zae−z1 F1(1; 1 + a; z) (5.17)

which can be derived from from Abramovitz & Stegun (AS 6.5.3) and (AS 6.5.12)1, and

Γ(a, z) = zaU(1; 1 + a; z)e−z (5.18)

which follows from Abramovitz & Stegun (AS 13.1.29) and (AS 13.6.28)1. We point out that
fTSA(L(τ0)) diverges for L(τ0) = Lts. We therefore leave the target state data point out and
start the inference with the next or second next state.

The strength of the path ensemble inference formalism compared to optimizing predicted
moments such as mean and variance is that the optimization is performed with respect to the full
likelihood. No considerations about sufficient statistics or how to weigh the different moments
relative to each other in a loss function are required. By directly inferring the underlying
reverse time SDE, mean, variance etc. become predictions. The comparison between observed
and predicted moments can then be used to test the inference and accept or reject the model.
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Chapter 6

Understanding cell contact constriction
in epithelial morphogenesis through
data driven reverse-time inference

6.1 Introduction

How an unstructured agglomerate of individual cells develops into a complex organism is one of
the fundamental biological questions of our time. Research dating back as far as to the beginning
of the last century172 has uncovered conserved mechanisms that drive development and seem to
prevail in all metazoan embryos85. One of the recurrent themes is convergent extension of tis-
sue, which describes the simultaneous narrowing and lengthening of tissue during development
(Fig. 6.1a)86. It is probably the main mechanism of tissue rearrangement in embryogenesis 86.
Convergently expanding tissues are found and studied in organisms ranging from nematodes and
arthropods to vertebrates73. It is found in organ development such as the frog (Xenopus) gut27

and kidney99 and mouse palate development166. Convergent extension is of particular impor-
tance to understand body axis elongation, which describes the separation of tissue parts which
at a later stage develop into the head and tail region. It occurs exemplary in axis elongation
during Drosophila germband extension, but is also preserved in all examined chordates85.

The fundamental mechanism that drives convergent extension is (oriented) cell intercala-
tion. Two different modes of cell intercalation are observed (Fig. 6.1b). The first is based on cell
crawling. Here cells squeeze in between two previously neighboring cells using actin rich pro-
trusion that facilitate crawling supposedly combined with a weakening of cell-cell adhesion153.
The tissue thereby elongates perpendicular to the direction of cell migration. This mode of cell
intercalation has originally been discovered in Xenopus notochord formation84,86 and was later
also found in mouse neural plate elongation153,178.

The second mode of cell intercalation is mediated by acto-myosin driven junction shrinkage
between two neighboring cells and subsequent junction expansion between the two new neigh-
boring cells and perpendicular to the shrunken contact39,73,153. This process occurs either as
a neighbor exchange of four cells called a T1 transition, or with more cells involved as rosette
formation with subsequent directional resolution. (Fig. 6.1c)

While originally thought to be two distinct modes of cell rearrangement, recent findings
suggest that even in the prototype process for the crawling mode (i.e. Xenopus notochord
formation) junction shrinkage might play a role153. The same holds for the prototype of junction
shrinkage and subsequent expansion (i.e. Drosophila germband extension), where some of the
rosette forming processes seem to include as a first step a crawling mode at the basal side of the
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Figure 6.1: Modes of convergent extension. (a): Schematic depiction of convergent extending
tissue. (b): Two modes of cell intercalation that drive convergent extension. (Top): Intercalation by cell
crawling. Cells squeeze in between two previously neighboring cells thereby extending the tissue. (Bot-
tom): Cell intercalation by junction remodeling. (c): Neighbor exchange by junction remodeling. (Top):
The topological T1 transition defines the standard mode of cell intercalation by junction remodeling.
It is comprised of the three parts, junction shrinkage, resolution in a 4-vertex and subsequent junction
expansion. (Bottom): Cell intercalation by rosette formation and subsequent resolution. Shrinking junc-
tions are depicted in red, extending in blue. Scheme concepts are taken from Keller et.al. 86, Shindo153

and Kong et.al. 91.

cells73,153. Whether these findings will lead to a unified theory or are just rare events is unclear
today59.

In this work, we only focus on one mode of cell intercalation, that is convergent extension by
junction shrinkage (and subsequent expansion) in Drosophila melanoghaster. More specifically
we study the contraction phase. Contact constriction is driven by the coordinated interplay of
molecules that drive junction remodeling and molecules that ensure tissue integrity. It involves
a complicated cascade of feedback mechanisms and allows for extracellular clues to influence
modes of operation. So far we only possess a qualitative understanding of what matters for
junction shrinkage and phenomenological models that describe these processes. None of these
modeling approaches however allows to distinguish between models of seemingly similar quali-
tative behavior but completely different underlying dynamics. Unlike previous approaches that
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constructed effective biological models mainly based on biological intuition, we here aim to infer
a model that satisfies all observed statistics and allows us to make quantitative predictions. Our
goal is thus to infer the full time dependent probability of the stochastic dynamics of junction
shrinkage. Such an effective model would provide a reference point to which all bio-physically
motivated models must compare to. Instead of building a model from intuition we constrain
possible model classes by the data.

We will start our discussion with a review on the current biological knowledge about junction
shrinkage during cell intercalation in Drosophila morphogenesis. In section 6.2 we review the
two most frequently used biophysical modeling approaches of cell rearrangement, i.e. vertex and
visco-elastic modeling. The rest of this chapter introduces the data (section 6.3), our modeling
approach and the final model we find to predict the full quantitative phenotype of junction
shrinkage (section 6.4).

Early Drosophila morphogenesis

In Drosphila morphogenesis, the force driven rearrangement of epithelial tissue sets in right
after cellularization and about 3h after fertilization91,97. At this stage, the onset of gastrulation,
the nucleus of the fertilized egg has undergone 13 rounds of division leading to approximately
6000 nuclei which after cellularization by plasma membrane invagination from the surfaces of
the egg97 have formed a one layered epithelium spanning the whole football shaped embryo23.
Triggered already at fertilization by maternally positioned RNA bicoid, an ongoing cascade of
morphogenes has by then established the body plan with its anterior-posterior (AP) and dorso-
ventral (DV) axis. The at the onset of gastrulation fairly homogeneous epithelium is ready to
drastically change its shape59,80,97.

Beginning with mesoderm invagination and a few minutes later germband extension, force
driven tissue dynamics then start to drastically reshape the embryo23,91. At the same time the
tissue is further shaped by the formation of the cephalic furrow91,161 and the invagination of the
posterior midgut91,97. We here focus on the process of germband extension, which is prototypical
for convergent extension (Fig. 6.2).

During germband extension a about 18 cells wide and 60 cells long stripe of cells at the
ventral side of the embryo elongates by more than a factor of 2 in anterior-posterior direction
(AP) while shrinking in dorso-ventral direction (DV)96,163. This process of convergent extension
lasts about 2.5 h with a rapid initial extension phase of 45 min23,91.

Germband extension is driven by the two genetically separable mechanisms of cell interca-
lation and cell shape changes91. The currently emerging picture describes cell intercalation as
a local phenomenon driven by local forces79,180,181. Additionally anisotropic tissue-wide forces
induced by posterior midgut invagination are present35. In wildtype embryos these forces seem
to be dissipated by cell intercalation within the first 15 min of germband extension and thus
effectively increase the total number of AP to DV intercalation events (reviewed by Kong91).

Directed cell intercalation can be realized by topological T1 transitions12,137 or rosette for-
mation16 and subsequent directional resolution (Fig. 6.2(Middle)). During a T1 transitions four
cells exchange neighbors by junction remodeling12 (Fig. 6.2(Bottom)). This process consists of
two parts. i) First, the junction between two neighboring cells constricts untill four cells are
connected in a four vertex. ii) In a second independent process a new cell contact between the
previously not contacting cells is established by expansion91. During germband extension the
process of constriction is (almost always) observed in DV direction, while contact expansion
happens in AP direction12,137. Rosette formation and subsequent directional resolution is a con-
ceptually identical mechanism with the only difference that more than four cells are connected
into a common vertex62. We here focus on T1 transitions which predominantly occur at the very
beginning of germband extension (stage 6). Rosette formation seems to be setting in slightly
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Figure 6.2: Convergent extension of the germband via cell intercalation through junc-
tion remodeling. (Top): 2.5 fold elongation of germband. Exemplary region of cell intercalation
is schematically depicted on top of a scanning electron microscopy photomicrograph142 (modified from
Kong et.al. 91). (Middle): Three exemplary stages of tissue rearrangements via cell intercalation (provided
by Zhang et.al. 183 ). (Bottom): Cell intercalation is mediated by T1-transitions, i.e. neighbor-exchange
by “vertical”-junction shrinkage and “horizontal” junction expansion.

later (∼ stage 7), probably linked to a feedback loop of ectopic tension and associated myosin
cable formation to create linked AP junctions which subsequently jointly constrict into rosettes
16,47.

To facilitate oriented cell intercalation planar cell polarity (PCP) must be established12,16,180,181.
This implies that relevant components of the cell architecture are oriented with respect to the
AP and DV axis180. In Drosophila PCP is tightly linked to the AP patterning system which
originates from the maternal positioned RNA bicoid and, via the hierarchical order of gap,
pair rule and segment polarity genes, defines the positional information in the embryo59,80. It
is important to note however that PCP is not established via long range interactions but by
interactions of neighboring cells180,181. Recently one possible link between the AP patterning
system and PCP has been established in Drosophila126. Knockout mutants of the gap genes runt
and eve almost lose their planar polarity and show strongly reduced germband extension79,181.
These gap genes (among many other targets) regulate the Toll receptor family which in turn
is associated with PCP91. Without Toll-2,6 and 8 the enrichment of myosin II along vertical
junctions and the enrichment of Bazooka/Par along horizontal junctions is lost, which are both
known to be essential for oriented cell intercalation 91,126. The observed effects of Toll-2,6 and 8
combined knockouts is however not strong enough to convincingly demonstrate that this is the
only used pathway to ensure PCP91. While essential in other contexts of convergent extension
(cochlea extension, kidney tubule elongation), the PCP pathway does not seem to play an es-
sential role73,153. In summary, with the discovery of the importance of 3 Toll family receptors
in germband elongation, a link between AP patterning, PCP and oriented cell intercalation has
been established. This pathway is however not sufficient to explain the full extend of PCP,
demanding for further parallel mechanisms to be resolved91.

Cell contact constriction is driven by non-muscle myosin II motors12,91,181. These myosin
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II motors form complexes in a network together with F-actin fibers, which are linked to the
cell junctions via the cell adhesion molecule E-cadherin and adapter proteins such as β-catenin,
α-catenin and vinculin93 (Fig. 6.3). In an activated state (discussed below), these motors form
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Figure 6.3: Adhesion complexes link neighboring cells and are coupled to the dynam-
ics of the acto-myosin network. (a): Schematic depiction of inactive, through phosphorylation of
the regulatory light chain unfolded, and into minifilaments assembled myosin II. The details and dy-
namics of minifilament assembly, and especially of various phosphorylation mechanisms, are still under
debate93(Figure adapted from Lecuit et. al.93). (b): E-Cadherin clusters stabilize adherens junctions.
These clusters are coupled to the inner cell acto-myosin network via α and β-catenin and vinculin. The
details of the coupling mechanisms are still an active field of research21.

myosin mini-filaments with several head domains on both ends to grab on closeby actin fibres93

(Fig. 6.3a). Under ATP hydrolysis these motors then move along the actin filaments and cause
the network, and via its couplings to the cell junctions also the cell contact to constrict91. It has
been shown that planar polarized myosin II (i.e. enriched along vertical junctions) is necessary
for junction shrinkage12,16. This observation might be linked to the general observation that
myosin accumulates in regions of increased tension (leading e.g. to myosin cable formation and
subsequent rosette formation) and dissociates rapidly when the tension is released, establishing a
feedback loop for myosin recruitment47. A more recent study suggest that asymmetric pulsatile
flows of medial myosin towards these junctions promote junction shrinkage, and postulates
junctional myosin only as a stabilizing agent136. The proposed mechanism is ratchet like with
phases of pulse driven constriction and subsequent stabilization of a new equilibrium cell contact
length136. With Rab 35 there has been a recent report of an oscillatory ratchet that prevents
relaxation to the original pre-constriction length81.

While the exact mechanism of junction shrinkage is not yet fully understood, a main regu-
latory pathway that regulates the dynamics of acto-myosin networks in the context of junction
shrinkage has been established37,87. To function, i.e. to form myosin mini-filaments, myosin II
must first be activated. This activation is mediated by the kinase Rok which phosphorilates
the non-muscle myosin II regulatory light chain – a prerequisite for mini-filament formation
and thus force exertion91 (Fig. 6.4). Rok itself is activated by the GTPase Rho1 in its acti-
vated (GTP) state110,118. Rho1 in turn is regulated, depending on whether it regulates medio-
apical or junctional myosin by two different guanine nucleotide exchange factors (GEFs). While
RhoGEF2 regulates medio-apical myosin, p114 RhoGEF/Wireless regulates junctional myosin37.
Both GEFs are regulated by a G protein coupled receptor (GPCR) and their hetero trimeric
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Figure 6.4: In Drosophila embryonic ectoderm, medio-apical and junctional myosin are
regulated by two distinct pathways37. Following Ligand stimulation, GPCRs release active Gα12/13

and Gβ13F/Gγ1 which promote RhoGEF2 and p114RhoGEF signaling, respectively. The precise mech-
anism of the following activation of Rho1 is unknown. Rho1-GTP then activates the kinase Rok, which
phosphorylates the myosin regulatory light chain and thus allows for myosin minifilament formation.
Myosin minifilaments, which are a prerequisite for force-exertion, are thus recruited medio-apically and
junctional by two distinct pathways (Scheme adapted from De Las Bayonas37).

G proteins37,87. From these G proteins Gα12/13/Cta-GTP regulates RhoGEF2 and ultimately
activates the apico-medial myosin pool, while Gβ13F/Gγ1 (among other regulators) regulates
junctional myosin via p114RhoGEF/Wireless and the Rho/Rok pathway37,87. Together these
components establish an unbroken chain from the internal planar polarized acto-myosin dynam-
ics to an external triggering and modification by extracellular ligands. How and if this pathway
relates to the planar polarization of myosin 2 by the toll receptors (Toll 2,6 and 8) and thus to
the AP-patterning system via eve and runt is currently an open question37.

While the relevance of planar polarized acto-myosin dynamics for junction shrinkage is well
established, are the molecular mechanisms at the junction still poorly understood. From a con-
ceptual perspective it is clear that junctions must be remodeled to fully constrict. As E-cadherins
act as anchors that link cell interfaces to form adherens junctions, E-cadherin must simultane-
ously protect the epithelium against rupture under stress while still allowing the junctions to
be remodeled. Interestingly, these two mechanisms seem to occur on different time scales28.
As an immediate response to stress the complex of E-cadherin α-catenin-actin or E-cadherin-
vinculin-actin act as a catch bond, i.e. their lifetime increases under load28. On longer time
scales, the response of E-cadherin to stress depends on the circumstances94. Both E-cadherin
enrichment and endocytosis upon stress have been reported82. For vertical junctions during
germband elongation it seems however to be true that E-cadherin endocytosis is upregulated
mediated by Rho198, and E-cadherin clusters are downregulated by the kinase Rock94,111. In-
terestingly, recent evidence points towards a combined picture where E-cadherin fulfills a double
role. It protects against tensile (vertical to junction) stress but allows shear stress (parallel to
the junction) to dynamically remodel the tissue while dynamically preserving adhesion82.

In summary, contact remodeling during germband elongation is a highly complicated local
mechanism, based on local time changing dynamics. It incorporates junction stabilizing forces
and forces that dynamically drive contact remodeling. It incorporates feedback mechanisms,
and regulatory mechanisms on all scales. Based on planar polarized concentrations of molecules,
junction remodeling is further linked to the very onset of its morphogen gradient based patterning
system. How to disentangle all these effects and quantify their relative importance is still an
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open question. With a more and more detailed molecular understanding however it becomes
also increasingly difficult to say what is relevant and what could be a minimal model that
explains the core components. In the next section I will review how modelers have incorporated
the at the time of modeling available biological knowledge into phenomenological dynamics.
Subsequently, I will introduce a different approach where I show how starting from an ensemble
of ∼1000 contact constriction events different model classes can be excluded or respectively
selected based on data driven inference.

6.2 Biophysical models

To answer the question how cell contact constriction in epithelial tissues is possible researchers
have resorted to biophysical modeling. Typically the goal is to find a sufficient model that
explains convergent extension driven by contact constriction and expansion. In this review
section, I will mostly focus on efforts to model the constriction process.

Three different model classes have been proposed. The first uses 2d vertex modeling, where
in the default model each cell in a tissue is replaced by 6 vertices with position ri. These vertices
are linked by line elements Lij (Fig. 6.5). To calculate the dynamics of such tissue an energy
function46,74

E(ri) =
∑
α

Kα

2

(
Aα −A0

α

)2
+
∑
<i,j>

γijLij +
∑
α

Γα
2
P 2
α (6.1)

is minimized. The first term accounts for the elasticity Kα of the cell area Aα and its deviation
from its equilibrium size A0

α. The area is calculated from a functional of the vertex positions.
The sum runs over all cells α. The second term captures the line tension with strength γij . The

Aα
i

jLij
Pα

Figure 6.5: Schematic depiction of the typical components in vertex models. Lij denotes the
junction length, Pα the perimeter of a cell α, and Aα the cell area.

sum is over all junctions < i, j >. This term can be generalized to include planar polarized
tension137. The third term describes the perimeter Pα and its contractility Γα as can be induced
by an acto-myosin ring. The vertex dynamics are then given as

η
dri
dt

= − ∂

∂ri
E(ri) , (6.2)

where η is the drag coefficient.

Minimizing the energy expression Eq. (6.1) with respect to vertex position shows that within
these models the tension typically establishes an equilibrium cell contact length. To break this
static pictures and introduce T1 transitions (or Rosette formation with subsequent directional
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resolution) researchers have therefore either introduced orientation dependent line tension co-
efficients137 or introduced further terms that model medio-apical and junctional myosin con-
centrations and their assumed regulators154. In summary, vertex models have granted insights
into possible mechanisms of cell intercalation and convergent extension. Without an explosion
of parameter dimensionality, they do however not offer an easily accessible way to study the
complicated, heavily regulated mechanisms that actually occur during junction shrinkage (and
subsequent contact expansion). Even in their most complicated forms, with dozens of tunable
parameters, these models are not designed to capture very general properties of real tissue,
i.e. contact fluctuations and the heterogeneity of equilibrium cell contact lengths. To under-
stand what details matter for junction shrinkage, a more local approach is suitable and reviewed
below.

The second model class describes the tissue as a visco-elastic medium and models the con-
stricting cell contact as independent collective coordinate L. These effective models start from
the assumption that the change of the cell contact length with time

µl
dL

dt
= T − T (m) (6.3)

is proportional to the tension T exerted by the neighboring cells and the increased tension Tm
due to myosin accumulation along the cell contact15. µl denotes the drag coefficient. Depending
on the model assumptions researchers have included a further term proportional to the change in
the tension dT (m)

dt to incorporate myosin pulsatility32, or a term proportional to the cell contact
length T (L) to model elastic restraints of the contact itself. The full equation reads

µl
dL

dt
= −T (L)− T (m)− µm

dT (m)

dt
, (6.4)

where we included the static terms into T (L). Let’s consider the different contributions to the
model separately. Ignoring the myosin (m) dependent terms for the moment the resulting terms
are known as the Kelvin-Voigt model125. In its simplest form T (L) can be approximated as a
spring with T (L) = kT (L− L0) and equilibrium length L0. Upon sudden external stress appli-
cation and later release such a model relaxes back to its equilibrium length. On the other hand,
only studying the myosin dependent terms, we end up with the Maxwell dash-pot model125. For
simplicity and as an example, we could assume a linear relation between tension and myosin.
In this model stress application then leads to an irreversible change in the contact length.

The third model class describes the tissue as an active material112,120,131. These models
allow to infer global and local shear stresses and include cell rearrangements and deformation.
However, in their coarse grained view they do not provide the here needed means to study
junction remodeling as a locally driven and regulated process.

Depending on whether the elastic or viscous property of tissue should be emphasized, all
three models have been used to model cellular dynamics32,40,112. Especially Clement et. al. 32

have shown that a model based on only the myosin dependent terms in Eq. (6.4) is sufficient to
fit trajectory data based on myosin concentration and its derivative. With several free fitting
parameters per trajectory, such a model however only demonstrates that certain components of
the model should not be neglected. I here aim for a different question. I want to show which
components of an effective model are necessary and sufficient to explain the observed cell contact
constriction dynamics. The next section therefore establishes the framework to rule out certain
model classes and demonstrate, how to find essential components to such an effective model of
contact constriction.
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6.3 From modeling to inference – a paradigm shift

The exact biophysical mechanisms that drive PCP contact constriction are extremely compli-
cated. They involve a plethora of proteins that have been shown to be essential in the process
(see section 6.1). It involves tension exerted by the surrounding tissue, contact remodeling and
mechano-chemical feedback loops. Using biophysical modeling and especially vertex simulations,
progress has been made to understand how in principle tissue can be rearranged to yield conver-
gent extension. To study the constricting cell contact as an independent process, visco-elastic
modeling, using the cell contact length as a collective coordinate, has been established success-
fully. Both approaches however only allow to give plausibility arguments that certain cellular
mechanisms might evolve according to the principles assumed in the model. It does not allow to
distinguish between effective models with similar qualitative behavior, but different underlying
dynamics. To distinguish between different models it is clearly not sufficient to only study the
typical or mean behavior of the observed process – here contact constriction. Instead, I claim
in this chapter, it is necessary to infer effective models from an ensemble of time dependent
trajectories including their noisy fluctuations. A such inferred effective model would allow to
predict the time dependent probability distribution of constricting cell contacts. It would allow
to provide hard bounds on any biophysical model. If a complicated biophysical model cannot
be coarse grained to the inferred model it fails. With the rise of machine learning techniques it
is now possible to acquire and analyze such data sets and perform model prediction.

The ensemble of constricting cell contacts

Data driven model inference is based on high throughput data analysis and the acquisition of a
suitable ensemble that describes time dependent dynamics. In line with visco-elastic modeling,
I here propose to study the dynamics of constricting cell contacts as the stochastic dynamics
of a one dimensional, accessible collective variable, i.e. the junction length L. The dynamic
changes of this length represent the full process of junction shrinkage during T1 transitions
in germband elongation. To infer an effective model of junction shrinkage we start with the
experimental acquisition and definition of the ensemble of constricting cell contacts. Previous
work has mostly been based on observation of a few dozen selected cell intercalation events.
To infer the full probability distribution, or at least the time dependent mean, variance and
two-time covariance of such events during germband extensions, we need a data set of at least
one or two orders of magnitude larger. To acquire such a data set, our group has developed a
fully automatic pipeline to segment germband extension movies and extract contact lengths L of
T1 transitions (Lars Reichl,unpublished). From 65 fly embryos we obtained 958 T1 transitions
which we merge into a single time dependent ensemble.

When analyzing ensemble statistics of such a time-dependent data set of non-stationary
dynamics, it is not a priori clear what a common reference point for the independently acquired
cell-contact constriction trajectories could be. Inspecting proto typical trajectories of junction
shrinkage (Fig. 6.6), we observe that all seem to descend from very different positions of first
recordance by the algorithm. They all however have in common that they end with L = 0µm.
We here suggest to align all sample paths to this target state, i.e. the T1 point after which the
contact ceases to exist (Fig. 6.7). The thus formed ensemble can be analyzed working in reverse
time τ . All trajectories start from the same point L = 0µm at the same time τ = 0min. For
example a point at τ = 3min would be 3 min away from full constriction. The resulting ensemble
is shown in Fig. 6.8a. With well defined initial conditions at L = 0µm and τ = 0min, the thus
constructed ensemble can now be characterized with its reverse-time τ -dependent moments such
as mean and variance, and tested against different models (Fig. 6.8b,c).

Starting from the assumption, that the contact length L is indeed a meaningful collective
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Figure 6.6: Fully automated contact length reconstruction of “vertical” junction shrinkage
during T1 transitions. (Left): Schematic depiction of the acquired time dependent ensemble of ∼ 1000
T1 transitions. (Middle): “Vertical” junction shrinkage of stylized cells starting from equilibrium length
to resolution in 4-vertex target state. (Right): Four selected sample paths that represent the variety
of observed dynamics in their maintenance length, their transition dynamics, and their constriction
dynamics towards the 4-vertex target state.
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Figure 6.7: Target state alignment and time reversion allows to reconstruct forward dy-
namics of unknown onset from TSA-dynamics with well defined new “initial” conditions.
Shown are four selected sample paths in the process of alignment and time reversion. The shading of
sample paths suggests that a common dynamical constriction law irrespective of any precursor dynamics
will only be present close to the target state. The superimposed graphic indicates the process of inferring
the reverse time dynamics fTSA(L) and the subsequent reconstruction of the true forward force law f(L̂).

Infer dynamics
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Figure 6.8: Data driven model inference from an ensemble of target state aligned con-
stricting cell contacts. (a): The full TSA ensemble. (b): TSA-ensemble mean (red) and variance
(blue) with 95% bootstrap confidence intervals. (c): Kernel density estimation of the TSA-ensemble
probability distribution P (L), its projection onto the τ −L plane and the ensemble mean (red). The goal
is to infer a stochastic dynamical model and reconstruct the joint probability distribution P (L(τ), L(τ ′)).

variable, it should be possible to define stochastic dynamics that are capable to reproduce all
properties of the experimentally acquired ensemble of contact constriction. In forward time t,
and at least close to the alignment point, the ensemble should be in a mode of constriction and
a Langevin equation of the from

dL̂ = f(L̂)dt+
√
D dWt (6.5)

seems a plausible description (Fig. 6.7). f(L̂) describes a time independent effective force that
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models constriction. The second term approximates the experimentally observed stochastic
fluctuations as uncorrelated Gaussian white noise with variance D. We denote forward in time
sample paths as L̂. With the inclusion of stochastic fluctuations, Eq. (6.5) goes beyond the
classic deterministic visco-elastic modeling discussed in section 6.2 and opens the path for an
ensemble based inference scheme. Written in forward time, these dynamics are however ill
defined as the onset of constriction can not easily be read of from the experimental data (cf.
Fig. 6.7).

To relate these stochastic dynamics to the acquired TSA ensemble of constricting cell con-
tacts, we rewrite Eq. (6.5) as a reverse time TSA-SDE

dL = fTSA(L)dτ +
√
D dWτ (6.6)

whose original derivation, stated in chapter 4, was driven by precisely this inference problem.
Under the approximation of well separated initial and final junction length, the reverse time
force is defined as

fTSA(L) = f(L) +D
∂

∂L
log

(∫ L

0
dL′ e−

∫ L′ 2f(L′′)
D

dL′′
)

(6.7)

(see chapter 3 and 4 for a detailed derivation). To distinguish between stochastic forward and
reverse time dynamics, reverse time sample paths are written as L. With this analytic expression
for the reverse time force, we are now in a position to analyze the experimentally obtained TSA
junction collapse ensemble in reverse time and extract the effective force f(L̂) of the forward
process, irrespective of the unknown onset of the dynamics.

Quantifying measurement noise in TSA ensembles

The aggregation of an ensemble from individually recorded junction collapse events allows to
separate the measurement noise from the intrinsic fluctuations of the system. I apply three
different techniques to separate the measurement noise from intrinsic fluctuations. For all three
we assume that the observed junction length Lk at time τk = k∆τ with k ∈ [0, N ] is given by

Lk = Ltrue
k + εk . (6.8)

N is the total number of reverse time steps and εk is an additive measurement noise. For
simplicity, we assume the measurement noise εk to be a zero mean 〈εk〉 = 0 random gaussian
variable with 〈εjεk〉 = (σ2

N )jδjk. Here (σ2
N )j denotes the noise variance at time τj .

The first method to separate the measurement noise from the true dynamics of L(τ) is based
on the observation that both mean and variance of the true TSA ensemble are zero at τ = 0min.
With the variance of Lk separable into

Var[Lk] = Var[Ltrue
k + εk] = Var[Ltrue

k ] + Var[εk] + 2Cov[Ltrue
k , εk] (6.9)

and under the assumption of independence of measurement noise and junction length (Cov[Ltrue
k , εk] =

0), we can directly read off (σ2
N )0 from the extrapolated intersection of the observed variance

with the y-axis at time τ = 0min. At the intersection and by construction of the TSA ensemble
σtrue
L (0) = 0µm2. We find (σ2

N )0 = 0.049µm2.
The second independent method to determine the noise variance Var[εk], is based on the

observation that the off-diagonal elements of the two-time ensemble covariance

Cov[Lj , Lk] = Cov[Ltrue
k , Ltrue

j ] forj 6= k (6.10)

are measurement error free under the above assumption of uncorrelated measurement noise. The
“true” variance can be determined for each time τk extrapolating Var[Ltrue

k ] = Cov[Ltrue
k , Ltrue

k ]
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Figure 6.9: The measurement error close to the target state (σ2
N )0 can be read off from the

to τ = 0min extrapolated ensemble variance. We first smooth the calculated experimental variance
with the Savitzky Golay filter and subsequently linearly extrapolate the obtained function to τ = 0 min.
By construction σtrue

L (0) = 0µm2 at the target state. The measurement error can thus be read off from
the intersection with the y-axis. We find (σ2

N )0 = 0.049µm2.

from the non-diagonal covariance terms. By subtraction of the measured variance and the
extrapolation, we obtain an estimate for the time τ dependent measurement error (Fig. 6.10).
With this method we find (σ2

N )0 = 0.043µm2 which coincides nicely with the estimate obtained
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Figure 6.10: The time dependency of the measurement error can be estimated from the
difference of the variance and the covariance extrapolated to its diagonal. (Left): Three
representative cuts through the covariance with one time τ kept constant. Black lines are obtained using
the Savitzky Golay filter and subsequently extrapolated to τlag = 0 min. (Right): The difference between
Var[Lk] and the extrapolated covariance value yields an estimate of the measurement error. Fitting the
first 7min with σ2

N (τ) = a exp(−bτ) + c we find a = 0.023µm2, b = 0.882min−1, c = 0.020µm2.

from the to τ = 0 min extrapolated variance.

The third method is well known in the field of single particle tracking11. This approach is
based on the simple observation, that the first off-diagonal term of the increment covariance of
a diffusion process with uncorrelated intrinsic and additive Gaussian measurement noise yields
Cov[∆Lk,∆Lk−1] = −(σ2

N )k. Up to first order this approach is also valid for Langevin dynamics
of the form Eq. (6.6). The theoretic increment covariance is

Cov[∆Lj ,∆Lk] =


D∆τ + 2σ2

N for j = k

−(σ2
N )max(j,k) for j = k ± 1

0 otherwise .

+ O(∆τσ2
N ,∆τ

2, σ4
N ) (6.11)

Calculating the experimental increment covariance we find relevant non-zero contributions only
for the diagonal and first off-diagonal term. All other off-diagonals fluctuate around zero
(Fig. 6.11a). We confirm this observation calculating the auto-covariance of the increments,
which is approximately zero for lags larger ∆τ (Fig. 6.11b,c). With no long-range correlations
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Figure 6.11: The measurement noise is estimated from the first off-diagonal of the in-
crement covariance. (a): The increment covariance with zoom on the diagonal shows that only
the diagonal and the first off-diagonal have relevant non-zero contributions. (b): The increment auto-
covariance with lag-time τlag confirms that only the diagonal (positive center peak) and the first off-
diagonal (negative peaks) have relevant non-zero contributions. (c): An exponential fit a exp(−bτ) + c
with a = 0.020µm2, b = 0.506min−1, c = 0.022µm2 yields an estimate for the with time τ changing
measurement noise σ2

N (τ).

detectable in the increment covariance the assumption of uncorrelated intrinsic and measurement
noise is justified.

The estimated measurement noise σ2
N (0) = 0.042µm2 is largest close to the target state,

where it matches the one obtained by variance and covariance extrapolation. Within approxi-
mately 5min, it then decays to its equilibrium value σ2

N (∞) = 0.022µm2. With known σ2
N (τ)

and with help of Eq. (6.11) one can estimate D∆τ . For reference we here state the obtained
value at τ = 8min. We find D∆τ = 0.021µm2 and, using ∆τ = 5sec, the estimated intrinsic
noise D = 0.25µm2/min. Below we will infer D from the data.

Comparing the intrinsic noise variance and the measurement noise, we find them to be of the
same order. A model for the measurement noise must therefore be included into any analysis
of the ensemble dynamics. We note that, when not evaluated at a certain time τ or as an
average, D increases slightly towards the target state. Whether this is due to a change in the
dynamics or a change in the fluctuations, can not be resolved without further knowledge about
the underlying dynamics obtained by model inference.

In the following, we base all estimates on the measurement error defined in the third method,
i.e. the increment covariance. In the final inferred model we further use the thus obtained
measurement error variance σ2

N (τ) to additively add measurement noise to simulated trajectories
Ltrue(τ). We draw the measurement error of the junction length from the Rice distribution

P (L|Ltrue) =
L

σ2
e−

(
L2+Ltrue2

)
2 σ2 I0

(
LLtrue

σ2

)
, (6.12)

which can be obtained assuming additive Gaussian measurement noise with standard deviation
σ for each vertex position. I0 (z) denotes the Bessel function of the first kind with zero order.
We note that Eq. (6.12) becomes Gaussian for almost all used junction lengths. Using the
Rice distribution to correct simulated sample paths instead of a Gaussian, thus only prevents
artificially introduced negative sample path lengths for trajectories close to the target state.
It ensures a non-zero y-axis intersection of the simulated and measurement noise corrected
variance, and slightly adds to the mean value in the last couple of steps before the target state.
We therefore refrain from iteratively matching the variance of Eq. (6.12) with the experimental
variance and simply set σ2 = σ2

N .
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6.4 Models of increasing complexity

Models of increasing complexity allow us to find the most simple model that is capable of
reproducing all relevant summary statistics. In the following sections we stepwise increase the
complexity of the assumed model. For each model we determine whether it is in principle
capable to reproduce the experimental TSA ensemble. We assume measurement noise of the
form reconstructed by the increment covariance method, which decays in reverse time following
the fit in Fig. 6.11.

Rejecting the null hypothesis of junction collapse by random fluctuations

The most simple conceivable effective model of junction shrinkage are random fluctuations that
eventually lead to contact collapse. Although biologically highly implausible, our model selection
approach must be able to rule out such a model purely based on the time-dependent statistics of
the experimentally obtained ensemble. We start from the observation, that target state aligned
random walk trajectories would follow a reverse time SDE of the form

dL =
D

L
dτ +

√
D dWτ , (6.13)

assuming well separated initial and final conditions. Eq. (6.13) can be obtained from Eq. (6.6)
with f(L) = 0. In the literature this process is known as Bessel process and can be solved
exactly (see chapter 4 for details). Surprisingly both the time dependent mean of Eq. (6.13)

L(τ) =

√
8Dτ

π
, (6.14)

with its square root like dependence on τ , and the variance

σ2
L(τ) =

(3π − 8)Dτ

π
, (6.15)

which increases linearly in τ , seem to be proportional to mean and variance obtained from the
experiment. To reject this hypothesis we fit the mean Eq. (6.14) of the TSA random walk to
the mean of the data. Comparing only the last 3 min before junction collapse, we find good
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Figure 6.12: The null hypothesis of junction collapse by random fluctuations can only be
rejected when statistics up to the two-time covariance are considered. (a): A least square
fit of the theoretical TSA-random walk mean Eq. (6.14) (RW) to the first 3 min of the experimental
mean (EXP) yields Drw = 0.87µm2/min. (b): Using the inferred Drw to predict the ensemble variance,
we find good agreement with the measurement noise corrected experimental variance in the first 3 min.
(c): Comparing the experimental and TSA-random walk covariance, we find them strongly disagreeing
in their lines of equi-covariance. The experimental covariance shows perpendicular equi-covariance lines,
the random walk a wedge.

agreement. The inferred diffusion constant Drw = 0.87µm2/min is used to predict the variance
of the experimental data using Eq. (6.15). We obtain the puzzling result that the variance of
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the data is well predicted by the inferred diffusion constant Drw. A one parameter pure noise
model perfectly fits the mean and variance of a biological process which is known to be strongly
directional.

Comparing the above estimated diffusion constant D, with the here inferred Drw, first doubts
are appropriate. To resolve this puzzling predictive power of the random walk model, I compare
the two-time covariance of both TSA-random walk and experiment (see Fig. 6.12c) and find
strong disagreement. While lines of constant covariance are perfectly perpendicular in the
experimental data, indicating a constant non decaying covariance when evaluated in reverse
time, they form a wedge in the analytically obtained covariance expression Eq. (4.160) of the
TSA-random walk.

This finding has strong implications for the quantitative analysis of contact constriction.
With only a small number of junction collapses at hand it is not possible to reject the null
hypothesis of junction remodeling as a random event. It further leads to a wrong estimate of
the diffusion constant. Only when enough data is available to calculate the two-time covariance
the null hypothesis can be rejected. With this in mind we increase the model complexity to also
include an effective deterministic force component f(L).

A model of power law like effective constriction dynamics

In this section we ask whether the full quantitative phenotype of contact constriction, comprised
of mean variance and two-time covariance can in principle be explained by a deterministic
effective force law f(L) plus random fluctuations and measurement noise. We start with the
inference of the most likely reverse time dynamics under the assumption of a power law like
effective force law

f(L) = −γLα . (6.16)

To first order and close to the target state this approximation should hold for any one dimensional
continuous effective force law. The study of power laws will therefore (to first order) also inform
about the principal applicability of a single one dimensional potential for the distribution of
junction shrinkage. For the inference I use a path maximum likelihood scheme that includes
Gaussian measurement noise with variance σ2

N
43,109,167. I extend this approach to an ensemble

of trajectories of the same number of increments N where each trajectory contributes with the
same weight to the log-likelihood function (see chapter 5 for details). The used log-likelihood
function reads

logL =

nens∑
j=1

N−1∑
i=0

−
(
L

(j)
i+1 − L

(j)
i − fTSA(L

(j)
i )∆τ

)2

2D∆τ + 4σ2
N

− 1

2
log
(
2π
(
D∆τ + 2σ2

N

)) . (6.17)

The inner sum runs over all N increments of a trajectory, the outer over all trajectories nens.
The used reverse time TSA-force

fTSA(L) = −γLα +
(Dα+D)

(
− 2γ
Dα+D

) 1
α+1

e
2γLα+1

Dα+D

Θ(α+ 1)Γ
(

1
α+1

)
− Γ

(
1

α+1 ,−
2Lα+1γ
αD+D

) (6.18)

can be obtained for all power law exponents α from Eq. (6.7) using Eq. (6.16) (for details see
chapter 3 and 4). Γ(z) is the gamma-function, Γ (ν, z) the upper incomplete gamma function
and Θ(ν) the Heaviside step function. The connecting case for α = −1 is the Bessel process
with reverse time TSA force fTSA(L) = γ+D

L . For numerical stability we use the form stated in
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Eq. (5.16). Maximum Likelihood parameters valid for the last 4 min before reaching the target
state are obtained using nested sampling20,48,49,50,157. For a brief introduction to the method
see section 6.5. We find αML = −0.64, γML = 0.70µm1−α/min and DML = 0.33µm2/min.
The inferred D is expectedly similar to the one obtained from the estimates of the increment
variance in section 6.3. Simulating the reverse time dynamics with respect to the inferred
parameter and subtracting the estimated measurement noise from the experimental variance,
we find experiment and theory to disagree in both mean and variance (Fig. 6.13(Left)).
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Figure 6.13: Maximum likelihood reverse time ensemble inference shows that power laws of
the form Eq. (6.16) are not suitable to describe junction constriction dynamics. (Left): Both
mean (red) and variance (blue) of the experiment and reverse time simulations of the maximum likelihood
force law with αML = −0.64 ± 0.02, γML = 0.70 ± 0.03µm1−α/min and DML = 0.33 ± 0.01µm2/min
disagree. The precision of the obtained values is stated in one standard deviation to both sides. All curves
based on trajectory averages are shown with 95 % bootstrap intervals. In this plot we additionally show
that the small noise theory (dotted) almost perfectly coincides with the reverse time simulation. (Right):
The normalized relative change of the log-likelihood indicates that, although positive and negative α-
values in the range [−2, 2] were allowed, only negative values are selected. For the inference the last 4min
before the target state were used.

To study whether power law models for the constriction dynamics can in general be rejected
for all α and irrespective of the inferred maximum likelihood αML, we resort to an analytical
approach. We first expand Eq. (6.18) for small L and under the assumption of weak noise (see
chapter 4). A subsequent small noise moment expansion55 yields for the mean

L(τ) = ((1− α)γτ)
1

1−α +D
(7α− 3)((1− α)γτ)

α
α−1

4(3α− 1)γ
+O(D3/2) , (6.19)

and for the variance

σ2
L(τ) = D

1− α
1− 3α

τ +O(D2) . (6.20)

For details see chapter 4. For the inferred parameter values, we find almost perfect agreement
with the mean and variance of the exact reverse time simulation (Fig. 6.13(Right)).

The most obvious statistic, that neither the noise driven nor the power law approach was
capable to explain, is the experimentally observed two-time covariance with its straight equi-
covariance lines CL(τ, τ ′) ≈ min(σ2

L(τ), σ2
L(τ ′)) (see Fig. 6.14(Left)). For α = αML, the small

noise covariance, valid for α < 0,

CL(τ, τ ′) =


(
τ
τ ′

) α
α−1 σ2

L(τ) +O(D2) for τ < τ ′(
τ ′

τ

) α
α−1

σ2
L(τ ′) +O(D2) for τ > τ ′

σ2
L(τ) +O(D2) for τ = τ ′

(6.21)
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clearly differs from the experimentally observed (see Fig. 6.14). For the derivation see chapter
4. In general, for any α < 0, the covariance Eq. (6.21) decays for τ > τ ′ and does not preserve
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Figure 6.14: The two-time covariance comparison of experiment (WT), reverse time sim-
ulation (SIM) and small noise (SN) covariance, using maximum likelihood parameters
αML = −0.64, γML = 0.70µm1−α/min and DML = 0.33µm2/min, exemplary shows, that power
laws of the form Eq. (6.16) are genuinely not capable of reproducing the statistics of the
experiment. While experiment and power law dynamics strongly differ in their lines of equi-covariance,
do the simulation and its small noise approximation agree.

the constant value σ2
L(τ ′) observed in the experimental covariance. The limit α → 0, where

the condition of a non decaying covariance seems fulfilled, is not included in the validity of the
approximation. For α approaching 0, the stated covariance is only valid further away from the
target state (see chapter 4). More important however, for α close to zero, these cases can be
ruled out as there the small noise mean Eq. (6.19) becomes almost linear in contradiction to the
observed experimental mean (Fig.6.13).

Most cases with α > 0 can be ruled out by the convex shape of the deterministic solution and
thus of their mean. Only fully fluctuation (i.e. D) dominated cases, which can be approximated
by Eq. (6.13), could show a square root like behavior of the mean Eq. (6.14) (see chapter
3). These cases are however ruled out by their wedge-like shape of their covariance shown in
Fig. 6.14(Middle,Right). For a more detailed discussion of the two regimes of α see chapter 3
and 4.

In summary, using both evidence from stochastic inference and small noise theory, pure
power law constriction dynamics can be ruled out. In the next sections, I will discuss biologically
possible scenarios that are in principle capable of generating the observed two-time covariance.

Relaxing assumptions of the power law model

The failure of the power law model to explain the experimental data allows to plausibly re-
ject any constriction mechanism that assumes a single effective potential plus white noise as a
sufficient model for contact constriction. In this section, we study whether one of the implicit
and simplifying assumptions underlying the Langevin equation Eq. (6.6) leads to the failure of
the power law dynamics to reproduce all observed statistics. We study three modifications to
Eq. (6.6). (i) Correlated or multiplicative noise, (ii) heterogeneity in the realizations of the force
law, (iii) the importance of the forward initial conditions.

Adding correlated or multiplicative noise

The first possibility to induce a non-decaying covariance are correlations in the noise, e.g. induced
by elastic interactions with neighboring cells and junctions. From the Mori-Zwanzig projection
formalism, it is known that projecting a high dimensional system (such as the complex epithelial
tissue) onto a set of effective coordinates (one junction) causes correlations in the noise if the
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time scales of the fluctuations are not separated from the time scale of the dynamics115,117,185.
From the increment analysis discussed above we know however that no prevailing correlations
are present in the increments. We therefore rule out correlations in the noise as cause for the
non-decaying covariance.

Projecting a high dimensional system onto a low dimensional representation can further
justify to generalize the diffusion constant D as multiplicative noise term D(L). Given the time
scales of the low dimensional dynamics (here one junction) are well separated from the residual
changes of the system, i.e. occur on a longer time scale, the diffusion with D in L-direction
might effectively slow down and (with some technical restrictions) a multiplicative noise terms
of the form

D(L) ≈ D

1 + ( d
dLσ(L⊥)L)2

(6.22)

occurs.9 Here σ(L⊥)L denotes the standard deviation of orthogonal fluctuations in L⊥-direction
averaged at position L. An increasing variance in the orthogonal dynamics thus leads to less ef-
fective fluctuations in junction collapse direction. Guided by pure sterical considerations we next
assume that with a shorter contact length also the space of possible perpendicular fluctuations
decreases. Assuming a roughly linear dependency of σ(L⊥)L on L, D(L) will therefore either
slightly increase or decrease with L. Simplifying again, we approximate the effective diffusion
as a power law

D(L) = DLβ (6.23)

with β either slightly positive or negative.
From the theory of TSA ensembles extended to multiplicative noise we know that the expres-

sions for multiplicative noise in forward and reverse time are identical D(L̂) = D(L) (see chapter
7 for details). Using again a small L weak noise expansion, now extended to multiplicative noise,
we can next rule out multiplicative noise of the form Eq. (6.23). We start from the observation,
that the variance of the experiment is linear in τ , close to the target state (Fig. 6.12b). In the
small L and weak noise limit of TSA dynamics with powerlaw like multiplicative noise, we find
however, that noise driven dynamics show a variance

σ2
L(τ) ∼ (Dτ)

1
1−β/2 (6.24)

for α ≥ β and β < 2, and force driven dynamics a variance

σ2
L(τ) =

D

γ

((1− α)γτ)
1−α+β

1−α

1− 3α+ β
(6.25)

for α < β and α < 0. Both expressions become non-linear in τ for β 6= 0. We therefore rule
out multiplicative noise as a relevant contribution to the experimentally observed dynamics (see
chapter 7 for a detailed derivation and visualization).

Heterogeneity in the force law realizations

When studying an ensemble of different realizations of the same biological dynamics, differences
in the observed dynamics are most likely not only due to intrinsic random fluctuations but
also due to different realizations of the machinery at work. For example, different amounts of
e.g. actin, myosin or E-cadherin molecules are aggregated into a single machinery that leads to
constriction. While the form of the effective force law should be the same for all events, is the
constricting strength γ probably different for each realization. Using again the small L weak
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noise limit of TSA dynamics, now extended to heterogeneous dynamics, we find, that mainly
the covariance changes under the influence of heterogeneity. We find

CL(τ, τ ′) =
(
〈γ

2
1−α 〉 − 〈γ

1
1−α 〉2

)
(1− α)

2
1−α (ττ ′)

1
1−α

+ Chom
L (τ, τ ′)

+D
(

1− 〈γ
1

1−α 〉P (γ)〈γ
α
α−1
−1〉P (γ)

) (α− 1)(7α− 3)

4− 12α

(
τ

1
1−α τ ′

α
α−1 + τ ′

1
1−α τ

α
α−1

)
,

(6.26)

where Chom
L (τ, τ ′) denotes the homogeneous contribution already stated in Eq. (6.21). 〈·〉P (γ)

denotes the ensemble average with respect to P (γ). In chapter 7 we show that the effect of the
two additional terms leads to a broadening of the covariance and that, for short durations, effec-
tively perpendicular equi-covariance lines can be achieved. Preserving a perpendicular structure
for more than 8 min, and into a regime where constriction has not yet started, as observed in
the experimental covariance (Fig. 6.10(Left)), is however not possible with this approach. On
these grounds, we rule out heterogeneity of this kind as the sole reason for the experimentally
obtained covariance. The seeked mechanism must be heterogeneous, but also be preserved both
in the constriction and maintenance regime. A sole heterogeneous power law is not sufficient as
an explanation.

The influence of forward initial conditions

In this section we want to evaluate how different initial conditions influence the reconstructed
ensemble statistics. From the theory of TSA dynamics in chapter 3 and 4 we know that in the
very vicinity of the target state the influence of the initial conditions is marginal. Further away
the free energy force fF (L) Eq. (3.6) however changes with changing initial conditions.

Inspecting the ensemble of experimental trajectories in Fig. 6.6 it is clear that no initial
conditions can be defined. Instead, moving backwards in time the trajectories eventually seem to
approach an equilibrium regime with constant mean and variance. To be precise, each junction
seems to assume its own equilibrium length. The full reverse time dynamics are therefore
comprised of a constriction part, followed by a transition regime and subsequently a regime of
maintained junction length.

In its current form the TSA theory does not provide the means to include such explicit time
dependent changes in the effective force law. To nevertheless assess the influence of forward
initial conditions on TSA dynamics we compare simulations of the same dynamics, once in
forward time including initial conditions and once in reverse time assuming initial conditions at
infinity. The forward dynamics are

dL̂ =

{
−γOU

(
L̂− µj

)
dt+

√
D dWt for t < Tsw

−γL̂αdt+
√
D dWt otherwise ,

(6.27)

where we chose Tsw large enough to ensure that all such synthesized trajectories are at least
as long as the maximal sample path duration in the experimental ensemble. As a proxy for
the equilibrium cell contact length µj , the initial conditions are drawn from the instantaneous
position of the experimentally obtained TSA ensemble at time τ = 8min (Fig. 6.15). This
equals roughly the time where the TSA ensemble mean and variance seem to have reached its
equilibrium value.

The transition probability of the initializing equilibrium Ornstein-Uhlenbeck process with
Gaussian measurement noise can be calculated analytically71. One obtains for the corresponding
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log-likelihood function71

logL =

nens∑
j=1

N−1∑
i=0

−
(
L̂

(j)
i+1 − E[L̂

(j)
i+1|L̂

(j)
i ]
)2

2 Var[L̂
(j)
i+1|L̂

(j)
i ]

− 1

2
log
(

2πVar[L̂
(j)
i+1|L̂

(j)
i ]
) , (6.28)

with conditional moments

E[L̂
(j)
i+1|L̂

(j)
i ] =

L̂
(j)
i D + 2γOUµjσ

2
N

D + 2γOUσ2
N

e−γOU∆t + µj
(
1− e−γOU∆t

)
, (6.29)

Var[L̂
(j)
i+1|L̂

(j)
i ] =

Dσ2
N

D + 2γOUσ2
N

e−2γOU∆t +
D

2γOU

(
1− e−2γOU∆t

)
+ σ2

N . (6.30)

For reference, in the limit γOU → 0, we recover the diagonal of the increment covariance
Eq. (6.11) used to estimate the measurement noise.

Equating the experimental estimated increment variance var[dLτ ] (Fig. 6.15(Left)) with the
OU variance with measurement error stated in Eq. (6.30) ( averaged over all sample paths)
a good estimate for γOU can be obtained. We evaluate the equation at τ = 8min, and with
vardL(8min) = 0.064µm2, σ2

N (8min) = 0.022µm2, D = DML = 0.33µm2/min and ∆τ = 5sec,
we find γOU = 0.88min−1. With this, all parameters are determined and we can evaluate the
influence of forward initial conditions on reverse time TSA ensemble statistics.
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Figure 6.15: A simple estimate of the maintenance dynamics is obtained from the increment
variance and the junction length statistics at 8min. The increment variance with exponential fit
vardL(τ) = a exp(−bτ) + c (Left), and the distribution of instantaneous sample path positions at 8 min
(Right), together with the noise estimation shown in Fig. 6.11, are used to approximate the equilibrium
dynamics before constriction as a harmonic potential (Eq. (6.27)). We find a = 0.070µm2, b = 0.521min−1

and c = 0.064µm2 and thus vardL(8min) = 0.064µm2.

As expected, the ensemble statistics of the TSA forward and in reverse time simulated dy-
namics coincide close to the target state (Fig. 6.16). After approximately 4 min, mean and
variance, of dynamics with and without specified initial conditions, start to diverge. The same
holds true for the two-time covariance. Close to the target state both approaches indistinguish-
ably show the wedge like structure of a covariance which decays with increasing τ and τ > τ ′.
For later times τ however, the covariance, which includes fluctuations around an equilibrium
contact length, starts to show the signature of the experimental covariance. We will use this
observation as a guidance for the following considerations.

Explicitly time dependent and heterogeneous dynamics

Combining the effect of heterogeneous maintenance dynamics with power law constriction dy-
namics in the previous section, has revealed two properties of such systems. (i) Heterogeneous
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Figure 6.16: Compared to pure reverse time power law dynamics, combining power law
constriction dynamics with equilibrium dynamics and a hard switch starts to change the
observed ensemble statistics at τ & 4 min. (Left): The mean of the reverse time simulation (RT)
with forward initial conditions at +∞ starts to deviate from the experimental (EXP) mean at τ ≈ 4 min.
Parameters used for the power law are again αML = −0.64, γML = 0.70min−1 and DML = 0.33µm2/min.
Using a forward equilibrium simulation with the estimated γOU = 0.88min−1 and a hard switch into the
same power law, as it underlies the reverse time dynamics, leads to a very good prediction of the mean.
(Right): As already expected from Fig. 6.15, the variance of both the forward and reverse time approach
do not coincide with the experimental observation. The deviation in the variance of the forward and
reverse time approach at τ ≈ 4 min indicate the time where the forward initial conditions start to change
the statistics.

dynamics are capable to reproduce the experimentally observed covariance. (ii) In the current
construction, the influence of these dynamics is however limited to times τ & 4 min.

Combining these two findings we reason that the heterogeneity, induced by the different
equilibrium cell contact lengths, must be “transported” into the constriction regime, while pre-
serving its heterogeneity. The most parameter saving approach to realize this idea is therefore
to assume, that not a position dependent force, but a to first order purely time dependent force
drives constriction. In this picture each cell contact fluctuates around an equilibrium length
which gradually changes over time. The assumed effective Langevin equation reads

dL̂ = −γ
(
L̂− µj(t)

)
dt+

√
D dWt . (6.31)

To mimic the increased speed of junction collapse observed in the ensemble mean, we model the
time dependent change as

µj(t) = µj

(
1− e

t−tjµ
∆ts

)
, (6.32)

where ∆ts provides the time scale and tjµ the time where µi(t) reaches the target state. In reverse
time these parameters are denoted as ∆τs and τ jµ. For simulations we set tjµ = Tsw. In reverse
time, tjµ becomes an inference parameter that reveals, whether the target state was reached by
force or diffusion.

Inferring explicit time dependent dynamics

The reverse time TSA inference of an ensemble with time dependent force law is a currently
unsolved problem. Researchers trying to solve this problem are confronted with the observation
that after target state alignment, each sample path has experienced a different force law at the
same space time point (L, τ). A single, well defined TSA-force can not any longer be obtained.

With reverse time inference prevented by the supposedly explicit time dependence of the
problem, we resort to the biased forward in time inference of the dynamics. We use the path
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Figure 6.17: The comparison of experimental (Exp), reverse-time (RD) and forward simu-
lated dynamics (FWD), with respect to their two-time covariance at different times, shows,
that heterogeneity, due to a distribution of equilibrium cell contact lengths, is capable to
reproduce perpendicular equi-covariance lines. The upper row shows the covariance for the first 4
min, the lower for the first 14 min. While the reverse time simulation (Middle) is unchanged over time,
we find almost perpendicular equi-covariance lines for the late time forward simulation. In comparison
to the experimental covariance (Bottom Left) they do however occur at too late times τ .

ensemble inference algorithm described in section 6.4 Eq. (6.28)-Eq. (6.30), with µ replaced
by Eq. (6.32). In general, using forward in time inference for targeted processes, the used
parameter inference is biased. Selecting forward trajectories, based on any other criterion than
being from the same fixed time interval and with identical lifetimes, introduces pseudo forces
into the observed ensemble. Different positions are sampled with statistics unlike the ones given
by the forward dynamics. It is this effect that is characterized exactly in the reverse time TSA
ensemble and ignored in the forward approach (see chapter 3 and 4).

Lets consider the problem in its most simple form. We assume that an ensemble of trajecto-
ries originates at the same position and time (L̂0, t0). Until the fastest trajectory hits the target
state all trajectories are represented with the same weight in the ensemble used for inference.
As time evolves, the typical lifetime, a not yet terminated trajectory in the ensemble has when
it reaches a certain position, increases. The apparent force needed to reach the target state is
decreased. In the limit of t→∞ it appears as if no force at all is necessary. With all trajectories
eventually reaching the target state this effect is strongest in the vicinity of the target state,
where now not only the fastest but all trajectories contribute to the inferred apparent force at
this position. Using a forward inference scheme therefore adds a convex bias to the true force.
For example, a power law force ∼ L̂α would be inferred as ∼ L̂α+|ε|.

The only dynamics where these problems do not occur are equilibrium dynamics. Here,
forward and reverse time dynamics are identical and the temporal start and endpoint are irrel-
evant. Importantly, if the change in the equilibrium position is slow enough, the suggested time
dependent model Eq. (6.31) is precisely such an equilibrium process with quasi statically chang-
ing equilibrium position. Independent of the initial equilibrium distribution and the direction
of time, it is then always the same process with a shift in its reference position.

Studying these dynamics as an ensemble with target state, will nevertheless introduce a
small “convexifying” bias, as some trajectories live longer than others. This bias will however
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only effect the inferred dynamics of the mean position, which is solely responsible for the shift
towards the target state and thus for the bias. We therefore expect only ∆ts, which defines
the speed of the change in the reference position, to be slightly biased. Following the above
reasoning, the true value will be marginally smaller than the inferred.

Inferring heterogeneous dynamics

The inference of dynamics, with each trajectory starting from its own equilibrium length, adds
another level of complexity to the inference scheme. With µj and tjµ each trajectory of the model
Eq. (6.31) has its own “local” parameters to be inferred, additional to the “global” ensemble
parameter γ, D and ∆ts. We approximate this high dimensional inference problem by always
keeping the local parameter at the maximum likelihood value (µj

∗, tjµ
∗
), with respect to the

current sample point in the global parameter space spanned by γ,D and ∆ts. The log-likelihood
function from Eq. (6.28) then reads

logL =

nens∑
j

logLj(γ,D,∆ts|µ∗j , tjµ
∗
) . (6.33)

The inference proceeds in two steps. (i) The inference algorithms, here nested sampling20,48,49,50,157

(and section 6.5), proposes a data point in the global parameter space and subsequently (ii) a
second optimizer, here Nelder-Mead, finds for each local log-likelihood logLj the maximizing

local parameters (µj
∗, tjµ

∗
). The obtained summed logL value is used for the next update of the

global parameters γ, D and ∆ts.

The maximum likelihood model

Constriction, modeled as an elastic process with time changing equilibrium position Eq. (6.31),
allows to reproduce all observed summary statistics. We find γML = 0.83min−1, DML =
0.30µm2/min and ∆tsML = 2.45min, using the approximated inference scheme laid out above in
this section. The ensemble statistics are produced with forward simulations, using the inferred
global maximum likelihood parameters and the respective local inferred values µj in combina-
tion with the measurement noise model defined in Eq. (6.12). The sample paths lifetimes are
adapted to the lifetimes of the experimental ensemble.

Both mean and variance coincide with the experimental ones over the full available time
span (Fig. 6.18). Only close to the target state we find slight deviations in the mean. With only
the single parameter ∆ts available to effectively tune the slope this is not surprising. A more
detailed model, although facing the danger of overfitting, would need to either incorporate a sec-
ond time scale, or a slightly position dependent force. Furthermore, the elastic model with time
changing equilibrium position is the first so far discussed model that is capable of generating
a non-decaying covariance, i.e. perpendicular lines of equi-covariance close to the target state
(Fig. 6.19(Bottom,Left)). This covariance structure is preserved over the full lifetime of the
TSA ensemble (Fig. 6.19(Bottom,Middle-Right)). Interestingly, after about 8min, the experi-
mental covariance loses its particular structure, indicating that the clear ordering in equilibrium
positions is disrupted and the modeling assumptions break down Fig. 6.19(Top).

The inferred model is further confirmed by the increment auto-covariance of the inferred
and simulated increments (Fig. 6.20). In these increment statistics we find perfect agreement of
simulation and experiment, indicating that both measurement and intrinsic noise are captured
correctly. The increment auto-covariance of the inferred increments is only marginally different
from the other two (Fig. 6.20). The small difference for τlag > ∆τ however indicates that the
inferred forces are not perfectly subtracted from the increments but with a systematic bias.
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Figure 6.18: The ratchet like model of an elastic process with time changing equilibrium
position Eq. (6.31) predicts the mean and variance over a time span of 14 min. The simulation
(FWD-TD) is performed in forward time with parameters γML = 0.83 ± 0.01min−1, DML = 0.30 ±
0.01µm2/min and ∆τsML = 2.45±0.03min. The precision of the obtained values is stated in one standard
deviation to both sides. Both ensembles consist of 958 trajectories. After target state alignment τ -
dependent measurement noise according to Eq. (6.12) is added. Each simulated trajectory is adjusted
in its length to match its partner in the experimental data. (Left): Simulated and experimental mean
coincide well over the full evaluated time span. The deviation close to the target state is due to the
limited flexibility of the exponential force law to match the exact shape of the observed mean. (Right):
Simulated variance and mean coincide over the whole time span. 95 % bootstrap confidence intervals
are shown for both mean and variance. Notably only the last 8min until the target state is reached were
used in the inference to predict the full 14min.
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Figure 6.19: The two-time covariance of experiment and the ratchet like time dependent
elastic process Eq. (6.31) agree well in their shape up to τ = 8min. At later times a new
dynamical regime seems to be present which can not be traced to the finite length of the sample paths
which is incorporated in the model.

This bias creates a detectable non-decaying auto-covariance of the residual increments. As
above already observed for the mean, this bias can be attributed to the lack of flexibility in the
assumed model. The almost not detectability of this bias however also indicates, that the model
is a very good approximation to the true underlying dynamics.

For completeness, we also display the histogram of inferred equilibrium cell-contact lengths
before constriction and the distribution of times τ iµ where the equilibrium length equals the target
state (Fig. 6.21). We find P (µ) to be a broadly distributed skewed distribution. Whether this is
just a fingerprint of with a certain rate intercalating cells, or even to facilitate intercalation, has
to be resolved in the future. The distribution P (τµ) scatters around zero, where zero is the noise

98



6.4. Models of increasing complexity

2 1 0 1 2

lag / min

0.00

0.05

a
co

v
d
Ld
L
0 (

la
g
)/

m
2

EXP

INF

FWD-TD

Figure 6.20: Measurement noise (lower peaks) and random fluctuations (included in center
peak) are captured exactly by the model. The increment auto-covariance shows that experiment
(EXP) and simulation of the ratchet like explicitly time dependent model with measurement noise (FWD-
TD) coincide almost perfectly. The additionally shown auto-covariance of the increments slightly deviates,
indicating that the strong simplification of a single time scale for the time dependent change of the
equilibrium position introduces a slight but systematic bias.

free solution (Fig. 6.21). The joint distribution P (τµ, µ) can then be used as a health check for
the model (Fig. 6.21). For most sample paths the inferred values are only slightly correlated,
indicating that most sample paths are well described by the model. Only some trajectories,
with small µi and large negative values τ iµ, indicate where the assumption of one time scale for
the junction shrinkage of all cell contacts is too restrictive.
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Figure 6.21: The joint scatter plot of the inferred equilibrium cell contact length µi and
the time τ iµ, when µ(τ) reaches the target state, confirms the model as a good description

of the data. Most τ iµ are centered around zero. Sample paths which originate from a small equilibrium

cell contact length µi sometimes select a clearly negative τ iµ. These “outliers” indicate the limitations of
the model, which describes the change in the equilibrium position with just one global parameter ∆τs.
In this plot we ignore three τ iµ values, which the inference algorithm shifts towards its lower negative
limit. As already suggested by the ensemble length statistics at τ = 8min in Fig. 6.15, the distribution
of equilibrium cell contact lengths µi is skewed and broadly distributed.

With the here used approach, the dynamical force law that leads to constriction can be
inferred for each individually observed shrinking junction. In Fig. 6.22, we show a representation
of this effective model for three experimentally obtained sample paths, which coincide in the
inferred µi and τ iµ, but are otherwise completely independent realizations. All three nicely follow
the inferred time dependent potential.
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Figure 6.22: The reconstructed potential of trajectories with similar inferred equilibrium
cell contact length represents a good effective description of the dynamics. For the plot we
chose 3 trajectories with µj equal to the ensemble mean at 8 min. For graphical reasons the potential is
truncated at higher values. Here U(L) denotes the integrated force term including all parameters and is
thus in units µm2s−1.

The biological interpretation

With a spring-like behavior on short time scales and viscous behavior on longer time scales the
inferred model confirms the observed time scale separation in tissue28. In this effective model
γ is independent of time τ and realization. The inferred value for γML = 0.83min−1 can be
interpreted as the inverse time scale of the spring. In the visco-elastic context dissipation thus
occurs on a time scale of 1.2min. This value is in line with a similar estimate obtained by
junction stretching experiments with optical tweezers8,32.

The viscous contribution is modeled as an explicitly time dependent force that transports
the equilibrium cell contact length towards the target state. To fulfill the ensemble statistics
and in particular the mean, it is necessary that the equilibrium position µj(t) changes with
increasing speed, here heuristically modeled as one minus an exponential. The necessity of a
with time increased speed of junction shrinkage is in line with the observed feedback loop of
myosin recruitment upon tension47.

The time scale ∆τsML is with 2.45 min larger than the typical duration of myosin pulses dur-
ing constriction which are estimated to last about 80-100s32. Phases of pulse driven shrinkage
and subsequent incomplete relaxation are not incorporated in this effective dynamics approach.
Nevertheless, if the effective change of the equilibrium position would be oscillatory, a fingerprint
of this behavior should be detectable in the residual increments after subtracting the inferred
deterministic force f(L̂, t, µj , Ti) defined by Eq. (6.31) and Eq. (6.32) for each trajectory. Inter-
estingly, neither the increment covariance, nor the residual increment covariance shows signs of
oscillatory behavior not captured by the drift term (Fig. 6.20). The not detectability of residual
oscillations might have several causes. They could be buried in the measurement noise, which,
with our choice of resolution, is probably higher than in the original report136. It could however
also be a selection bias in the original report136 and depend on which contacts are chosen at
which time at which position in the intercalating germband. Concluding, it could imply that
although present, myosin pulses only matter in their average effect and in combination with
the full ratchet like machinery which leads to monotonous shrinkage of the equilibrium cell con-
tact length. It will be interesting to compare the temporal dynamics of molecules involved in
the ratchet mechanism81 with the pulsatile dynamics. One could then check whether a com-
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plete suppression of pulses by a ratchet mechanism is possible, or whether the oscillations could
dissipate undetected in the noisy fluctuations around the equilibrium length.

The here inferred dynamics are thus truly effective dynamics, which integrate, e.g. myosin
driven junction shrinkage and remodeling, e.g. by E-cadherin endocytosis, into a single effective
force Eq. (6.31), Eq. (6.32). The inferred, explicitly time dependent force is thus a baseline to
which any more detailed junction remodeling model must compare to. Based on our current
knowledge of the biological details of junction shrinkage (see section 6.1), one plausible assump-
tion would be to assume that junction remodeling happens with a constant rate independent
of τ . The increased speed could then be fully attributed to myosin recruitment upon junction
shrinkage. The inferred, with time changing ”equilibrium“ position µi(t) from Eq. (6.32), should
then be a strong predictor of the average time dependent myosin concentration upon junction
shrinkage.

Outlook: Myosin dynamics

Acto-myosin dynamics are the basis of force exertion in cells93. Actin fibers provide the scaffold
and myosin, bundled in mini filaments and attached to different fibers, exerts pulling forces93.
To go beyond the here inferred effective model of junction shrinkage, we need to understand
how the inferred time dependence of junction remodeling is linked to the acto-myosin machinery
and its regulations.

The understanding of myosin driven junction remodeling has grown steadily. During germband
extension, mediated by cell intercalation, myosin is enriched along “vertical” junctions12,16.
More recently, pulsed flows of medio-apical myosin towards junctions with subsequent junction
shrinkage, were suggested as mechanism of junction collapse. In this model, junction shrinkage
is followed by a ratchet like mechanism, which prevents the junctions to relax back to their
initial configuration. The details of this mechanism is currently an active and debated field
of research32,81. Furthermore, junction shrinkage has been linked to several mechano-chemical
feedback loops47,94,98,111.

The here inferred effective model of junction shrinkage allows to make progress in deciphering
the relative importance of these three mechanisms, i.e. myosin enrichment and the importance
of pulsatility, the ratchet like mechanism, feedback loops and regulation. While the proposed
mechanisms for the ratchet must be compatible with the observed dynamical change in the equi-
librium position, could the increased speed of the reference junction shrinkage also be a marker
for a feedback mechanism. I here only discuss the analysis for myosin but analog considerations
hold for bio-chemical reporters that are linked to ratchet like dynamics and feedback loops.

With the TSA path ensemble approach, simultaneous recordings of the constricting contact
and the junctional myosin dynamics can easily be incorporated in the inference scheme. In the
most simple version of this approach myosin and its changes in local concentration are treated
to linearly cause changes in the equilibrium position and the noisy fluctuations. The measured
myosin dynamics then replace µi(t) and D in the model Eq. (6.31). This approach conceptually
follows Clement et. al. 32, however with an important difference. While Clement et. al. 32 study
this problem only on the individual sample path level, is the here introduced TSA ensemble
approach capable of testing predictions on the ensemble level. In our approach, if such myosin
driven dynamics are not capable of approximating the observed ensemble statistics, it can be
rejected.

The second approach assumes the inferred explicit time dependent model Eq. (6.31) as
ground truth. It uses the result of the maximum likelihood path ensemble inference scheme to
split each trajectory in its deterministic drift and noisy contributions. In its simplest form this
is done by subtracting the for each time step inferred force from the respective increment ∆Li.
The residual force and noise increments can then be correlated with myosin and the change in
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myosin concentration. From the analysis in section 6.3 we know that the residual fluctuations are
uncorrelated. Only the effective deterministic dynamics matter for constriction. Nevertheless,
correlating the residual increments with myosin and its derivative provides valuable insights into
the question what causes the observed junction length fluctuations. Correlating myosin with
the inferred incremental force then provides information about the dynamical mechanism of
junction shrinkage.

On an ensemble level the average myosin concentration can further be correlated with the
averaged dynamics of the equilibrium position µi(t). A strong correlation would emphasize the
importance of average effects such as myosin enrichment along “vertical” junctions.

To test these ideas my collaborator simultaneously recorded both junctional and myosin
dynamics. When we started to explore the joint measurement, we realized that the so far for
all experiments used junction marker GFP-Spider16,90, in combination with a myosin marker106,
led to an alignment error. The apparent junctions, characterized by myosin enrichment, and the
junctions represented by GFP-Spider were offset to each other. We reasoned that this is due
to GFP-Spider labeling the whole plasma membrane, while the myosin dynamics occur mostly
apically. Switching to E-cad-GFP123 as a marker cured this problem.

Interestingly, this change in the z-axis representation of the junction-length dynamics, i.e. the
measurement depth below the tissue surface, lead to a detectable change in the dynamics of
the ensemble mean. Compared to the junction dynamics marked with GFP-Spider, junction
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Figure 6.23: Junctional dynamics are dependent on the z-level and and on the total
junctional myosin concentration. (Left): Comparing junctional dynamics derived from E-cad GFP
(apical) and Spider-GFP (wide z-range, comparably more basal) we find different dynamical behavior.
While the apical dynamics change with constant rate (red), do the more basal / average dynamics (blue)
show a square root like behavior. Interestingly, apical dynamics seem to lead and are only followed by the
more basal dynamics. A future study based on z-stack scans, similar to a recent report170, will hopefully
shed light on this question. (Right): Myosin fluorescence intensities in arbitrary units normalized by the
junction length to yield concentrations. We find a mild increase in the average concentration with no
onset time detectable. Whether this result stands under improved experimental conditions (see section
6.5) remains to be checked. Black lines indicate individual samples of the experiment with junctions
marked by E-cad-GFP.

shrinkage seems to occur with almost constant rate. Furthermore, junctions represented by a
more apical marker (E-cad-GFP) seem at the same time and on average to be shorter than when
represented more basal. This would motivate a model where junctions constrict first apically
while more basal parts follow subsequently. The finding is in line with a recent report on different
dynamics at different z-levels170. Interestingly, not all junctions seem to follow the same scheme
and only a fraction of maximally 60% of the junctions constrict first apically, with the basal
movements lagging behind170.

In preliminary results we find that the change in junction length anti-correlates with the total
myosin intensity (Fig. 6.24(Left)) and its derivative (Fig. 6.24(Right)). Intensities are normalized
by the junction length and thus represent the myosin concentration. With measurement artifacts
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Figure 6.24: The incremental change of the junction length anti-correlates with both the
myosin concentration and its derivative. (Left): Junction shrinkage seems to predate the increase
in the myosin concentration confirming previous reports136. (Right): The incremental change of both
junction and myosin are anti-correlated at lag zero. Whether this is a measurement artifact or can be
used to explain the intrinsic junction fluctuations with fluctuations in the myosin concentration remains
to be answered in a more detailed study. In both plots, the red line indicates the average over all pairwise
correlations, the black line individual realizations.

larger and of equal size as the signal, the reported intensity changes have to be interpreted with
care (see section 6.5 for the data cleaning).

We find that the change in junctional myosin intensity seems to follow the change in the junc-
tion length, confirming previous reports of a delay of 9s136. This would support the hypothesis
that junctional myosin only has a stabilizing role, while apico-medial pulses drive constriction136.
With the here used temporal resolution of 12s a more detailed analysis is elusive. We further-
more find the incremental change of the junctional myosin concentration to be anti-correlated
with the incremental junction length change. The observed lag is zero. Whether this is an
artifact or an indicator that the intrinsic stochasticity observed in the TSA ensemble dynamics
is due to changes in the myosin concentration will be answered in future experiments.

Unfortunately, with the currently available experimental setup, we are not able to provide
truly reliable values for the myosin dynamics to test the above suggested inference strategies.
The found importance of the measurement depth for epithelial tissue dynamics however provides
interesting evidence for a recent shift in the perception of the importance of the third dimension
of epithelial tissue dynamics. It will be interesting to explore the effective TSA dynamics
approach for the full tissue depth, starting in slices from apical to basal. Combining these slices
should provide us with a better understanding of the steric movements of intercalating cells and
possibly provide evidence for the recently reported importance of basal dynamics.

6.5 Methods

Inference

Throughout this text maximum likelihood inference was performed within the framework of
nested sampling20,48,49,50,157. In general, nested sampling allows not only to obtain maximum
likelihood values but the full posterior distribution

P (Θ|D,M) =
P (D|Θ,M)P (Θ|M)

P (D|M)
, (6.34)

or, assuming a flat prior P (Θ|M) = const., the full likelihood P (D|Θ,M). Here Θ is defined as
the parameter vector, D the data vector and M the model. With the full likelihood distribution
available, we can characterize the precision of the inference in terms of its mean and variance.
As the mean value, within the stated precision, coincides in all here discussed cases with the
maximum likelihood value, only the standard deviation is stated.
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Designed for Bayesian model comparison, nested sampling calculates the evidence of a model,
i.e. the probability P (D|M) of the data D given the model M . Within the Bayesian framework
it is obtained from the prior P (Θ) weighted integral

P (D|M) =

∫
P (D|Θ,M)P (Θ)dΘ (6.35)

over the likelihood P (D|Θ,M). To obtain the true quantity of interest, that is the probability
of the model given the data, one applies Bayes law and finds

P (M |D) =
P (D|M)P (M)

P (D)
. (6.36)

While this quantity itself is not accessible, the ratio of two model probabilities, the so called
Bayes factor

K =
P (D|M1)P (M1)

P (D|M2)P (M2)
(6.37)

can be calculated from the ratio of two evidences times their model prior probability. For
practical applications one assumes equal prior probability of the models.

For the nested sampling inference scheme the integral Eq. (6.35) is evaluated numerically
via sampling. To avoid problems of convergence to the global maximum, the here used version
of nested sampling multinest20,48,49 relies on an ensemble of life points, i.e. a vector of points
in parameter space sorted by their likelihood20. The prior defines which parameter values can
be drawn. In each sampling step the likelihood list is updated and a more likely value added
while the least likely value in the list is removed. The algorithm thus scans, beginning from the
least likely cases, different layers of the likelihood until a convergence criterion is reached.20,48.
The fully evaluated evidence then allows for model comparison.

Unfortunately the above discussed models of power law constriction and visco-elastic shrink-
age are designed for different time windows of the data set. The power law model suggest a
mechanism close to the target state, the visco-elastic model refers to the full time window includ-
ing the original equilibrium regime. The obtained evidence values are thus not comparable. Any
future modification or proposed extension to the viso-elastic model can however be compared
to this approach. No further modifications to the here suggested framework are necessary.

Experiments

All experiments were performed in the lab of Jörg Großhans by Deqing Kong with experimental
protocols stated in his PhD thesis90. Junction lengths were extracted with a fully automated
pipeline written in the group of Fred Wolf by Lars Reichl (currently unpublished) based on
ilastik160 and EDGE56. For the experiment with combined myosin and junctional dynamics
recordings (section 6.4), Matthias Häring used a combination of machine learning for segmenta-
tion64 and ImageJ144,145 for vertex reconstruction. We then reconstructed the myosin intensity
along the junction using a 1.6µm wide rectangle up to but not including the vertex position.
Based on the obtained raw data, consisting of junction length and junctional myosin intensity
time series, I performed correction and analysis steps. The image cleaning is shown in Fig. 6.25.
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Figure 6.25: Schematic representation of the data cleaning procedure to obtain myosin
intensities. (Left): A raw image of the myosin intensity. (Top): Average image intensities are used to
correct for bleaching (and oscillations introduced by the setup) by normalization. (Middle): Horizontal
ripples in the intensities are inferred in their amplitude and subtracted from the data. The respective
frequency and an average over all data is shown. (Bottom): A with time changing illumination halo is
fitted by an ellipse and corrected for by normalization. (Right): A fully corrected sample frame.
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Chapter 7

Generalizations of the theory of target
state alignment

7.1 Heterogeneity in the realizations of the strength γ of the
force law

To approximate biological processes with a single force law is always an idealization. We here
relax this assumption to allow different realizations in the strength of the force law for individual
trajectories while keeping the form of the force law fixed. For the above used example of power
law forces f(L̂) = −γL̂α this implies that for each sample path realization, γ is drawn from a
distribution P (γ). To incorporate this form of heterogeneity we include a dependency on γ into
the definition of the homogeneous TSA density, multiply by P (γ) and integrate over all possible
γ. The resulting ensemble captures the full heterogeneity. To infer the most likely realization of
γ for each sample path we can use our path ensemble inference scheme, with the only difference
that γ must now be optimized for each samplepath and not any longer on the ensemble level.

While difficult to observe on the single trajectory level, heterogeneity is clearly visible on the
ensemble level when studying the moments and cumulants of the dynamics. We here denote the
normalized ensemble distribution of the heterogeneous ensemble as RN (L, τ ; γ), and the normal-
ized and in γ homogeneous contributions as RN (L, τ |γ). As all moments for the homogeneous
dynamics

〈Ln(τ)〉RN (L,τ |γ) =

∫
RN (L, τ |γ)LndL (7.1)

are linear with respect to the ensemble distribution RN (L, τ |γ), the moments for the heteroge-
nous distribution

〈Ln(τ)〉RN (L,τ ;γ) =

∫ ∫
RN (L, τ ; γ)LndLdγ =

∫
P (γ)

(∫
RN (L, τ |γ)LndL

)
dγ

= 〈〈Ln(τ)〉RN (L,τ |γ)〉P (γ) (7.2)

can simply be obtained by integration of 〈Ln(τ)〉RN (L,τ |γ) with respect to P (γ). In the next
section we use this approach to generalize the small noise moments of homogeneous dynamics
to heterogeneous dynamics.

The small noise expansion for heterogeneous dynamics with α < 0

We here discuss the effects of heterogeneity on moments for the exemplary and analytically
tractable case of the small noise expansion of power law force f(L) = −γLα with α < 0. This

107



7. Generalizations of the theory of target state alignment

case of force driven TSA dynamics is particularly simple as we already know the moments for
the homogeneous case (section 4.6).

Using Eq. (7.2) the moment expansion stated in section 4.6 above generalizes to

L(τ) = 〈〈L(τ)〉RN (L,τ |γ)〉P (γ) = 〈〈L0(τ)〉RN (L,τ |γ)〉P (γ) +D〈〈L2(τ)〉RN (L,τ |γ)〉P (γ) + . . . (7.3)

for the mean and

σ2
L(τ) = 〈〈

(
L(τ)− 〈〈L(τ)〉RN (L,τ |γ)〉P (γ)

)2
〉RN (L,τ |γ)〉P (γ)

= 〈〈
(
L0(τ)− 〈〈L0(τ)〉RN (L,τ |γ)〉P (γ)

)2
〉RN (L,τ |γ)〉P (γ)

+D〈〈L1(τ)2〉RN (L,τ |γ)〉P (γ)

+ 2D
(
〈〈L0(τ)L2(τ)〉RN (L,τ |γ)〉P (γ) − 〈〈L0(τ)〉RN (L,τ |γ)〉P (γ)〈〈L2(τ)〉RN (L,τ |γ)〉P (γ)

)
. . . ,

(7.4)

for the variance, where we used the expansion of L(τ) in small orders of
√
D stated in section

4.6. While for the mean, all displayed terms occur already in the homogeneous case and are only
averaged with respect to γ, are the two not L1(τ) dependent terms in the variance genuinely
new and due to the introduced heterogeneity in γ. With L0(τ) defined as the deterministic
solution of the homogeneous case, the average with respect to RN (L, τ |γ) can be neglected and
the variance simplifies to

= 〈
(
L0(τ)− 〈L0(τ)〉P (γ)

)2〉P (γ)

+D〈〈L1(τ)2〉RN (L,τ |γ)〉P (γ)

+ 2
(
〈L0(τ)〈L2(τ)〉RN (L,τ |γ)〉P (γ) − 〈L0(τ)〉P (γ)〈〈L2(τ)〉RN (L,τ |γ)〉P (γ)

)
. . . . (7.5)

For the covariance the same considerations apply and we find

C(τ, τ ′) = 〈〈
(
L(τ)− 〈〈L(τ)〉RN (L,τ |γ)〉P (γ)

)(
L(τ ′)− 〈〈L(τ ′)〉RN (L,τ ′|γ)〉P (γ)

)
〉RN (L,τ ;L,τ ′|γ)〉P (γ)

= 〈
(
L0(τ)− 〈L0(τ)〉P (γ)

) (
L0(τ ′)− 〈L0(τ ′)〉P (γ)

)
〉P (γ)

+D〈〈L1(τ)L1(τ ′)〉RN (L,τ ;L,τ ′|γ)〉P (γ)

+D
(
〈L0(τ)〈L2(τ ′)〉RN (L,τ ′|γ)〉P (γ) − 〈L0(τ)〉P (γ)〈〈L2(τ ′)〉RN (L,τ ′|γ)〉P (γ)

)
+D

(
〈L0(τ ′)〈L2(τ)〉RN (L,τ |γ)〉P (γ) − 〈L0(τ ′)〉P (γ)〈〈L2(τ)〉RN (L,τ |γ)〉P (γ)

)
+ . . . (7.6)

for the two-time covariance. With L0(τ), 〈L2
1(τ)〉RN (L,τ |γ), 〈L1(τ)L1(τ ′)〉RN (L,τ |γ) and 〈L2(τ)〉RN (L,τ |γ)

already derived in section 4.6 and stated in Eq. (4.180), Eq. (4.192), Eq. (4.188) and Eq. (4.189),
the heterogeneous moments can easily be calculated. We find for the mean

L(τ) = 〈γ
1

1−α 〉P (γ) ((1− α)τ)
1

1−α + 〈γ−
1

1−α 〉P (γ)D
(7α− 3)((1− α)τ)

α
α−1

4(3α− 1)
. (7.7)

The mean of the homogeneous and of heterogeneous dynamics are thus indistinguishable in
their form. The only difference is, that for the heterogeneous case the γ-dependency has to be
averaged with respect to the distribution of γ.

Unlike for the mean, the small noise variance not only changes in its parameter values but
also in its function. The heterogeneity in the deterministic contribution to the dynamics adds
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two extra variance terms

σ2
L(τ) =

(
〈γ

2
1−α 〉P (γ) − 〈γ

1
1−α 〉2P (γ)

)
((1− α)τ)

2
1−α

+D
1− α
1− 3α

τ

+ 2D
(

1− 〈γ
1

1−α 〉P (γ)〈γ
α
α−1
−1〉P (γ)

) (α− 1)(7α− 3)τ

4− 12α
, (7.8)

where only the O(D) term in the second line is already known from the homogeneous case. The

new D-independent term in the first line is proportional to the variance of γ
1

1−α and the squared
zero-order mean of the ensemble. The new contribution of O(D), stated in the third line, is
linear in τ and increases with increasing heterogeneity. The combined impact of heterogeneity
on mean and variance is shown in Fig. 7.1.
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Figure 7.1: Heterogeneity in the sample path realizations increases the variance. Comparison
of forward (circles) and small noise (lines) TSA expression for dynamics with f(L) = − γ

L and γ randomly
drawn from a fixed interval for each sample path realization. Chosen are γ ∈ [0.5, 1.5], γ ∈ [0.5, 2.5] and
for comparison γ = 1.0. Shown are the mean (Left) and variance (Right) for all three cases. The
mean changes depending on the mean of the chosen interval. The variance increases with increasing
heterogeneity. The statistics of the forward dynamics are based on 20000 trajectories that start at
L̂0 = 20. The analytic expression for the mean and variance are stated in Eq. (7.7) and Eq. (7.8). The
diffusion constant is chosen as D = 0.2.

The observed covariance however is most telling about the degree of heterogeneity in the
dynamics as it allows for visually very different equi-covariance lines which can not be obtained
in the homogeneous case by any parameter combination. Evaluating the contribution to the
covariance, which is due to the heterogeneity in the force law, we find

CL(τ, τ ′) =
(
〈γ

2
1−α 〉 − 〈γ

1
1−α 〉2

)
(1− α)

2
1−α (ττ ′)

1
1−α

+ Chom
L (τ, τ ′)

+D
(

1− 〈γ
1

1−α 〉P (γ)〈γ
α
α−1
−1〉P (γ)

) (α− 1)(7α− 3)

4− 12α

(
τ

1
1−α τ ′

α
α−1 + τ ′

1
1−α τ

α
α−1

)
,

(7.9)

where Chom
L (τ, τ ′) is defined in Eq. (4.189) and for clarity marked with the flag “hom”. The

observed effects conceptually generalize to arbitrary force laws. The broadening effect on the
two-time covariance, i.e. the slower decay of the covariance in reverse time, is shown in Fig. 7.2.

7.2 Generalization to multiplicative noise

In the previous sections we have discussed the stochastic dynamics of processes with a fixed
diffusion constant D. In this section we generalize our results to also include multiplicative noise.
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Figure 7.2: Heterogeneity in the sample path realizations leaves a characteristic fingerprint
in the two-time covariance due to a change in the lines of equal covariance. Comparison of
forward (FWD) and small noise (SN) TSA expression for dynamics with f(L) = − γ

L and γ randomly
drawn from a fixed interval for each sample path realization. Chosen are γ ∈ [0.5, 1.5], γ ∈ [0.5, 2.5]
and for comparison γ = 1.0. Shown are the two-time covariance for all three cases. The statistics of the
forward dynamics are based on 20000 trajectories that start at L̂0 = 20. The analytic expression for the
small noise covariance is stated in Eq. (7.9). The used diffusion constant is D = 0.2.

For such a process the diffusion “constant” D(L̂) is a twice differentiable function dependent on
the current position L̂. We start our discussion with an adaptation of both the forward

∂

∂t
P (L̂, t|L̂0, t0) = − ∂

∂L̂
f(L̂)P (L̂, t|L̂0, t0) +

1

2

∂2

∂L̂2
D(L̂)P (L̂, t|L̂0, t0) (7.10)

and backward Fokker-Planck equation

∂

∂t
P (L̂f , tf |L̂, t) = −f(L̂)

∂

∂L̂
P (L̂f , tf |L̂, t)−

1

2
D(L̂)

∂2

∂L̂2
P (L̂f , tf |L̂, t) (7.11)

to multiplicative noise. We here chose the Ito interpretation to define these two Fokker-Planck
equations. For the forward Fokker-Planck equation this implies that the diffusion “constant”
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D(L̂) is taken inside of the second derivative, for the backward Fokker-Planck equation it is eval-
uated outside of the derivative. For a thorough discussion which interpretation should be chosen
under different experimental conditions and how to transform between different interpretations
we refer to van Kampen169 and Sokolov158. Throughout this text we use the Ito-interpretation
where the stochastic forcing is always evaluated at the onset of each time increment55. The
following sections are organized in accordance with the derivation without multiplicative noise.
We start with the derivation of the theory, discuss analytical examples and generalize the small
noise theory to include both multiplicative noise and heterogeneity.

The reverse time Fokker-Planck equation with multiplicative noise

The time reversal of stochastic dynamics with multiplicative noise can be derived following the
exact same derivation scheme as laid out in section 4.2. We here only highlight how including
D(L̂) modifies some of the terms. We start with the evolution equation of the joint probability
distribution P (L̂, t, L̂f , tf ) Eq. (4.13) adapted to multiplicative noise

−
∂P (L̂, t, L̂f , tf )

∂t
= P (L̂, t)

[
f(L̂)

∂

∂L̂
P (L̂f , tf |L̂, t) +

1

2
D(L̂)

∂2

∂L̂2
P (L̂f , tf |L̂, t)

]
+ P (L̂f , tf |L̂, t)

[
∂

∂L̂
f(L̂)P (L̂, t)− 1

2

∂2

∂L̂2
D(L̂)P (L̂, t)

]
. (7.12)

Evaluating products, we observe that P (L̂, t) is linked to D(L̂) in the diffusion term. The
derivation of the reverse time Fokker-Planck equation can therefore be carried on analog to
section 4.2 with the original diffusion constant D set to one and P (L̂, t) in all formerly D
dependent terms replaced by D(L̂)P (L̂, t). Using this replacement we can directly rewrite
Eq. (4.19) as

−
∂P (L̂, t, L̂f , tf )

∂t
=

∂

∂L̂

[
f(L̂)P (L̂, t, L̂f , tf )− P (L̂f , tf |L̂, t)

∂

∂L̂
D(L̂)P (L̂, t)

]
+

1

2

∂2

∂L̂2
D(L̂)P (L̂, t, L̂f , tf ) . (7.13)

Note that the diffusion “constant” D(L̂) here surfaces inside the second derivative with re-
spect to L̂, as the respective joint probability distribution P (L̂, t, L̂f , tf ) is obtained from the

product of P (L̂f , tf |L̂, t) and P (L̂, t). Using this product again to rewrite the guiding term

− P (L̂f , tf |L̂, t) ∂

∂L̂
D(L̂)P (L̂, t), we arrive at

−
∂P (L̂, t, L̂f , tf )

∂t
=

∂

∂L̂

[(
f(L̂)− 1

P (L̂, t)

∂D(L̂)P (L̂, t)

∂L̂

)
P (L̂, t, L̂f , tf )

]

+
1

2

∂2

∂L̂2
D(L̂)P (L̂, t, L̂f , tf ) . (7.14)

Extending the guiding term both in numerator and denominator with D(L̂) we arrive at a

guiding force of the familiar logarithmic form −D(L̂) ∂

∂L̂
log
(
D(L̂)P (L̂, t)

)
. We observe that

D(L̂) is now additionally included inside of the logarithm.

From here on all further derivation steps do not involve D(L̂) and we can follow the trodden
path of section 4.2 to arrive at the final reverse time Fokker-Planck equation with multiplicative
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noise

∂

∂τ
P (L, τ |Lf , τf , L0, τ0) =

=
∂

∂L

[(
f(L)−D(L)

∂

∂L
log
(
D(L)P fw(L, T − τ |Lf , 0)

))
P (L, τ |Lf , τf , L0, τ0)

]
+

1

2

∂2

∂L2
D(L)P (L, τ |Lf , τf , L0, τ0) , (7.15)

where we again used T = tf − t0 and τ = tf − t with τ0 set to zero. We note that, although the
direction of time switched from t to reverse time τ , the resulting Fokker-Planck equation must
be interpreted in the Ito sense.

The TSA dynamics with multiplicative noise

Starting from the reverse time Fokker-Planck equation Eq. (4.10), the derivation of the full TSA
ensemble dynamics in section 4.2 involved three crucial steps. First, averaging sub-ensembles –
defined by the reverse time Fokker-Planck adapted to target states analog to section 7.2 – with
respect to the hitting time distribution. Second, taking the time derivative with respect to t over
exactly this ensemble. Third, averaging with respect to the forward initial conditions. Clearly
all these operations do not affect the multiplicative noise term D(L̂). Analog to the extension of
the reverse time Fokker-Planck equation to multiplicative noise in section 7.2, we can therefore
keep D(L̂) directly attached to P (L̂, t|L̂0, t0). The term D(L̂) thus shows up on the very same
positions as in the reverse time Fokker-Planck equation, that is inside of the second derivative
of the diffusion term, and both inside and outside of the logarithm of the guiding force. Our
first intermediate result in the derivation of the TSA dynamics in section 4.2 Eq. (4.65) can
therefore be generalized to

∂

∂t
R
L̂ts

(L̂, t; tf ) = ρ
L̂ts

(tf |L̂, t)P in(L̂)

− ∂

∂L̂

[
f(L̂)−D(L̂)

∂

∂L̂
log

(
D(L̂)

∫ ∞
L̂ts

dL̂0P
in(L̂0)

∫ t

−∞
dt0P (L̂, t|L̂0, t0)

)]
R
L̂ts

(L̂, t; tf )

− 1

2

∂2

∂L̂2
D(L̂)R

L̂ts
(L̂, t; tf ) . (7.16)

As for the above derivation of the TSA dynamics with constant D, we next seek a more
accessible expression for the double integral over the solution of the forward FPE with absorbing
boundary conditions, inside of the logarithm in Eq. (7.16). Already in section 4.2 Eq. (4.66),
we termed this expression times a normalization factor λ, Q(L̂) and showed that it follows the
forward Fokker-Planck equation with the time evolution replaced by the source term −λP in(L̂)
Eq. (4.71). Analog to the above consideration that neither the integral over t0 or L̂0 act on
D(L̂), the defining ODE for Q(L̂), given multiplicative noise, then reads

−λP in(L̂) = − ∂

∂L̂

(
f(L̂)Q(L̂)

)
+

1

2

∂2

∂L̂2
D(L̂)Q(L̂)

Q(L̂ts) = 0. (7.17)

The normalization factor λ = 1
2
∂
∂LD(L̂ts)Q(L̂ts) is obtained by integration over the full interval

[L̂ts,∞] with
∫∞
L̂ts

P in(L̂′)dL̂′ = 1. Solved in a different context, the solution of Eq. (7.17) is

known182. Integrating over the interval L̂ts to L̂ analogous to Eq. (4.74) one arrives at

− f(L̂)Q(L̂) +
1

2

∂

∂L̂
D(L̂)Q(L̂) = λ

(
1−

∫ L̂

L̂ts

P in(L̂′)dL̂′

)
. (7.18)
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Combining the terms on the left hand side into one expression then yields

1

2
e

∫ L̂ 2f(L̂′)
D(L̂′)

dL̂′ ∂

∂L̂

(
D(L̂)Q(L̂)e

−
∫ L̂ 2f(L̂′)

D(L̂′)
dL̂′
)

= λ

(
1−

∫ L̂

L̂ts

P in(L̂′)dL̂′

)
. (7.19)

Again integrating from L̂ts to L̂ and solving for Q(L̂) yields the final seeked expression

Q(L̂) =
2λ

D(L̂)
e

∫ L̂ 2f(L̂′)
D(L̂′)

dL̂′
∫ L̂

L̂ts

dL̂′ e
−
∫ L̂′ 2f(L̂′′)

D(L̂′′)
dL̂′′

(
1−

∫ L̂′

L̂ts

P in(L̂′′)dL̂′′

)
. (7.20)

The free energy force then reads

D(L̂)
∂

∂L̂
logD(L̂)Q(L̂) = 2f(L̂) +D(L̂) log

(∫ L̂

L̂ts

dL̂′ e
−
∫ L̂′ 2f(L̂′′)

D(L̂′′)
dL̂′′

(
1−

∫ L̂′

L̂ts

P in(L̂′′)dL̂′′

))
,

(7.21)

where, importantly, the D(L̂) terms inside the logarithm have canceled.
Substituting this free energy force in Eq. (7.16) directly leads to the reverse time TSA

Fokker-Planck equation with multiplicative noise

∂

∂τ
RLts(L, τ ; τ0) = −P in(L)ρLts(τ |L)

− ∂

∂L

([
f(L) +D(L)

∂

∂L
log

(∫ L

Lts

dL′ e
−
∫ L′ 2f(L′′)

D(L′′) dL
′′
(

1−
∫ L′

Lts

P in(L′′)dL′′

))]
RLts(L, τ ; τ0)

)

+
1

2

∂2

∂L2
D(L)RLts(L, τ ; τ0) (7.22)

rewritten in reverse time. We observe that the resulting equation is identical to Eq. (4.45) when
D is replaced by D(L). Note, that the resulting ensemble is not normalized but decays with
a rate proportional to the hitting time ρLts(τ |L), in line with the construction idea of TSA
ensembles. The extension of the normalized ensemble for multiplicative, which is useful to e.g.
determine moments from simulations, follows analogously using the steps laid out in section 4.3.

In the next step we associate the reverse time TSA Fokker-Planck equation with a Langevin
equation. With the diffusion “constant” D(L) inside of the second derivative and the forces
inside of the first derivative, Eq. (7.22) is clearly of Ito-Form. The corresponding Langevin
equation thus reads

dL(τ) =

(
f(L) +D(L)

∂

∂L
log

(∫ L

Lts

dL′ e
−
∫ L′ 2f(L′′)

D(L′′) dL
′′
(

1−
∫ L′

Lts

P in(L′′)dL′′

)))
dτ

+
√
D(L) dWτ (7.23)

The killing measure is unaffected by the change to multiplicative noise and thus stays the same
as in Eq. (4.53).

Exactly solvable reverse time TSA dynamics with multiplicative noise

The exact solution of the reverse time TSA Fokker-Planck equation with multiplicative noise is
obtainable only for a few cases. We her exemplary study the case

dL̂(t) = −γ dt+
√
DL̂ dWt . (7.24)
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where the SDE is interpreted in Ito sense. For simplicity we choose δ-initial conditions at
L̂0 = Lf . The TSA reverse time SDE to be solved then reads

dL(τ) =

{
(γ +D) dτ +

√
DL dWτ for L < Lf

−γ dτ +
√
DL dWτ for L > Lf ,

(7.25)

and is directly obtained from the definition of the reverse time TSA SDE with multiplicative
noise Eq. (7.23).

To construct a solution for Eq. (7.25) we can either follow the receipts described in section
4.4, or exploit that Eq. (7.24) is equivalent to a bessel process Eq. (4.95), as can be seen using
Ito’s lemma Eq. (4.4). Under this lemma one can show that a SDE of the form of the Bessel-
process

dx(t) = −γ
x
dt+

√
DdWt (7.26)

transforms to

dy(t) = (−2γ +D) dt+
√

4Dy dWt (7.27)

using a variable transformation of the form y = x2. Substituting D = D̃
4 and γ = γ̃

2 + D̃
8 , we

arrive at Eq. (7.24) with the “∼” removed from display for notational unity. Knowing the correct
variable transformation and parameter substitutions we can directly transform the solution of
the TSA Bessel process as stated in Eq. (4.115) into the solution of Eq. (7.25) and find

R0(L, τ ;Lf ) =


4
γ+D
D (Dτ)−

2(γ+D)
D e−

2L
Dτ L

2γ
D

+1

Γ
(

2(D+γ)
D

) L ≤ Lf

4
γ+D
D (Dτ)−

2(γ+D)
D e−

2L
Dτ L

2γ
D

+1

f

Γ
(

2(D+γ)
D

) L ≥ Lf .
(7.28)

Note, that we additionally transformed Lf using the transformation from x to y. We validate
Eq. (7.28) by substitution into the to Eq. (7.25) corresponding reverse time Fokker-Planck for
L > Lf and L < Lf respectively. To check whether Eq. (7.28) decays with a rate equal to the
forward hitting time we calculated it from the cumulative of Eq. (7.28) and compare it to the
hitting time distribution

ρ0(τ |Lf ) =
Lf4

γ
D e−

2Lf
Dτ

(
Dτ
Lf

)− 2γ
D

γτ2Γ
(

2γ
D

) (7.29)

of the forward Bessel process. The latter is obtained from Eq. (4.96) using the same transfor-
mations and substitutions as for Eq. (7.28), and the definition of the hitting time distribution
Eq. (4.26).

To confirm the validity of both the reverse time TSA-SDE with multiplicative noise and the
solution of aboves TSA-dynamics, we calculate the mean

L(τ) =
D2τ2

(
Γ
(

2γ
D + 3

)
− Γ

(
2γ
D + 3,

2Lf
Dτ

))
+ Lf2

2γ
D

+1e−
2Lf
Dτ (Dτ + 2Lf )

(
Dτ
Lf

)− 2γ
D

2τ(2γ +D)
(

Γ
(

2γ
D + 1

)
− Γ

(
2γ
D + 1,

2Lf
Dτ

)) (7.30)
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and variance

σ2
L(τ) =

D3τ3
(
Γ
(

2γ
D + 4

)
− Γ

(
2γ
D + 4,

2Lf
Dτ

))
+ Lf4

γ+D
D e−

2Lf
Dτ

(
D2τ2 + 2DτLf + 2L2

f

)(
Dτ
Lf

)− 2γ
D

4τ(2γ +D)
(
Γ
(

2γ
D + 1

)
− Γ

(
2γ
D + 1,

2Lf
Dτ

))
− L(τ)2 (7.31)

with respect to Eq. (7.28) after normalization. In Fig. 7.3, we compare this mean and variance
to the ones of the forward dynamics after target state alignment, and a numerical evaluation of
the Fokker-Planck associated with Eq. (7.25). Given sufficiently many forward trajectories for
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Figure 7.3: The TSA FPE and SDE also with multiplicative noise exactly describe the target
state aligned ensemble. (a): Exemplary forward and reverse time trajectories. (b): Comparison of
the forward (blue), analytic (red) and approximate reverse time dynamics (green) for f(L) = −γ and
D(L) = DL. Shown are the mean and variance of all three cases. The statistics of the forward dynamics
are shown twice based on 1000 and 10000 trajectories to demonstrate sampling errors due to finite
numbers. 95% bootstrap confidence intervals are shown for the cases involving sampling. Results were
obtained with γ = 1,D = 0.2 and L̂0 = Lf = 2.

convergence in the mean and variance we find perfect agreement.

In general, care must be taken when using Ito’s lemma to construct equivalent reverse time
TSA dynamics from known expressions. First, the hitting time distribution of the forward
problem must be recalculated with respect to the transformed forward transition probability
P fw(L̂, t). And second, using arbitrary initial distributions P in(L), it is important to clarify in
which variable space the initial distribution is defined and whether we need to transform it to
the new coordinates.

The TSA-dynamics close to the target state for multiplicative noise

The dynamics both spatially and temporally close to the target state can be deduced from
Eq. (7.23) with the same arguments as given in section 4.5. Assuming well separated initial
and final conditions, the dependency on the initial conditions in Eq. 7.23 can be neglected. The
initial condition dependent term H(L) defined in Eq. (4.51) can be set to one and the killing
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measure k(L, τ) to zero. We arrive at

dL(τ) =

(
f(L) +D(L)

∂

∂L
log

(∫ L

Lts

dL′ e
−
∫ L′ 2f(L′′)

D(L′′) dL
′′
))

dτ +
√
D(L) dWτ , (7.32)

which is formally equivalent to Eq. (4.118) with all diffusion constants D substituted by the
L-dependent term D(L). Analog to section 4.5, we call

fF (L) = D(L)
∂

∂L
log

(∫ L

Lts

dL′ e
−
∫ L′ 2f(L′′)

D(L′′) dL
′′
)

(7.33)

a free energy force. To form a better understanding of how these TSA-dynamics differ from
their forward counterpart, we study the exemplary case of power law like dynamics both in the
force

f(L) = −γLα (7.34)

and diffusion term

D(L) = DLβ (7.35)

with γ,D > 0 and α, β ∈ R. We observe, that, when evaluating the fraction 2f(L)
D(L) = 2Lα−β

D

in the free energy force of Eq. (7.32), we end up with a formally equivalent (α → α − β)
logarithmic term as the one evaluated in section 4.5 for constant D. The free energy force with
respect to power law like multiplicative noise can therefore be deduced from the constant D case
Eq. (4.129), which, for distinguishability, we here call fF0 (L,α). The mapping is then defined as

fF (L) = LβfF0 (L,α− β) . (7.36)

The term Lβ corrects for the now explicitly L dependent diffusion constant D(L) in front of the
logarithm of the guiding force. Stated explicitly we find

fF (L) = Lβ
D(α− β + 1)

(
− 2γ
D(α−β+1)

) 1
α−β+1

e
2γLα−β+1

D(α−β+1)

Θ(α− β + 1)Γ
(

1
α−β+1

)
− Γ

(
1

α−β+1 ,−
2Lα−β+1γ
D(α−β+1)

) α− β 6= −1 . (7.37)

The case α− β = 1 can be obtained using the same mapping as above, or simply by evaluating
Eq. (7.32). We find

dL(τ) = (γ +D)Lαdτ +
√
DLα+1 dWτ α− β = −1 . (7.38)

for the corresponding TSA SDE.
Concluding, the simplicity of the transformation, from a constant D to a multiplicative noise

term D(L) for power law like dynamics, allows us to also generalize the ensemble likelihood
inference scheme discussed in section 5.2. The diffusion constant in the Gaussians is simply
replaced by its multiplicative version and the used versions of the free energy forces are simply
multiplied by Lβ with all α replaced by α− β according to the above substitution. We further
note that Eq. (7.37) also allows us to calculate the exact analytical free energy force for one-
component chemical Langevin equations (α = β)58, which are often used when the noise is
proportional to the reaction under study. For more complicated reaction dynamics the free
energy force can be obtained numerically or in some cases, such as simple production and
degradation of one species, also analytically.
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Comparing the completion dynamics close to the target state and extended
to multiplicative noise to the full TSA-dynamics

To study the quality of the TSA approximation for multiplicative noise we refer to the most
simple case, i.e. Eq. (7.38) with α < 1. For these values of α we can again exploit Ito’s lemma
Eq. (4.4) and transform the reverse time TSA version of the Bessel process with well separated

initial and final conditions Eq. (4.121) into Eq. (7.38). We use the substitution Lnew = L
2

1−α
old ,

and replace Dold = (1−α)2

4 Dnew and γold = 1−α
2 γnew + Dnew

8 (1−α2). Note that for α > 1 the used
target state at Lts would change its position from zero to infinity under the given transformation,
leaving results unintuitive to interpret.

In the next step we use this transformation starting from Eq. (4.121) to solve Eq. (7.38) for
α < 1 and with target state Lts = 0. For the density we find

R(L, τ) = −
(α− 1)2

2γ−αD+2D
D−αD

(
(α− 1)2Dτ

) 2γ+D
(α−1)D

−1
L−α+ 2γ

D
+1e
− 2L1−α

(α−1)2Dτ

Γ
(
−αD+2D+2γ

D−Dα

) α < 1 , (7.39)

leaving us with well defined mean

L(τ) =
2

1
α−1 (1− α)−

2
α−1 Γ

(
−αD+3D+2γ

D−Dα

)
Γ
(
−αD+2D+2γ

D−Dα

) (Dτ)
1

1−α α < 1 , (7.40)

and variance

σ2
L(τ) =

4
1

α−1 (1− α)−
4

α−1

(
Γ
(
−αD+2D+2γ

D−Dα

)
Γ
(
−αD+4D+2γ

D−Dα

)
− Γ

(
−αD+3D+2γ

D−Dα

)2
)

Γ
(
−αD+2D+2γ

D−Dα

)2 (Dτ)−
2

α−1

(7.41)

for α < 1. Despite the complicated prefactors, the dependency on τ is simple. In Fig. 7.3 we
compare the case α = 0 to the aligned and time reverse forward dynamics and the exact solution
for mean and variance stated in Eq. (7.40) and Eq. (7.41).

The small L expansion for multiplicative noise TSA dynamics close to the
target state

With the substitution formula for free energy forces Eq. (7.36) valid for power law noise and
forces, the generalization of the small L reverse time TSA dynamics Eq. (4.135) and Eq. (4.136)
to multiplicative noise is straightforward. Starting from the respective approximate small L free
energy forces Eq. (4.143) and Eq. (4.147) we find

dL(τ) =

(
DLβ−1 − γ α− β

α− β + 2
Lα
)
dτ +

√
DLβ dWτ for α ≥ β , (7.42)

and

dL(τ) =
(
γLα −D(α− β)Lβ−1

)
dτ +

√
DLβ dWτ for α < β . (7.43)

As for the case of constant D, the dynamics of Eq. (7.42) with α ≥ β are dominated by the
noise dependent term DLβ−1, which for constant D simplifies to the from above well known
D
L . The exact form of the force f(L) and the assumed exponent α are thus irrelevant. The
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dynamics close to the target state behave as if only noisy fluctuations lead to absorption at the
target. Formally neglecting the next order term, i.e. setting γ = 0 in Eq. (7.42), we end up
with a special case of the dynamics stated in Eq. (7.38)(γ = 0, α = β − 1). Noise driven TSA
dynamics are therefore well described by the analytic solution of Eq. (7.38)(γ = 0, α = β − 1).
We can use the obtained expressions for mean Eq. (7.40) and variance Eq. (7.41) given β < 2,
and with γ = 0 and α = β − 1.

For α < β − 1, and for 0 < α − β < 1 given sufficiently small noise strength D, the TSA
dynamics Eq. (7.43) follow the sign inverted forward force law f(L) plus a strictly positive
contribution due to the noise. While in the noise driven case Eq. (7.42), the residual force due
to target state alignment is given as DLβ−1, this contribution is modified in the force driven
case by a factor α − β. Below, we calculate the small noise mean, variance and covariance for
the force driven TSA dynamics. We then generalize the results to also include heterogeneity in
γ.

Moments for the noise driven TSA dynamics with multiplicative noise

For α ≥ β, the dynamics close to the target state are noise dominated, as we read off from
Eq. (7.42). From above, or simply by inserting f(L) = 0 into the defining equation of the free
energy force Eq. (7.33), we know that the respective TSA SDE therefore evaluates to

dL(τ) = DLβ−1dτ +
√
DLβ dWτ for α ≥ β . (7.44)

The solution of Eq. (7.44) with β < 2 is a special case of Eq. (7.38). With γ = 0 and α = β− 1,
we find for mean

L(τ) =
2
β−1
β−2 (2− β)

− 2
β−2 Γ

(
− 2
β−2

)
Γ
(

1
2−β

) (Dτ)
1

2−β (7.45)

and variance

σ2
L(τ) =

(2− β)
− 4
β−2

(
3 4

1
β−2 Γ

(
1

2−β

)
Γ
(
− 3
β−2

)
− 4

β−1
β−2 Γ

(
− 2
β−2

)2
)

Γ
(

1
2−β

)2 (Dτ)
1

1−β/2 . (7.46)

Despite their lengthy prefactors both mean and variance show a very simple dependency on τ .
For β = 0, both terms simplify to the case of constant D, with a square-root dependence of the
mean Eq. (4.158) and a linear dependence on τ for the variance Eq. (4.159). Three exemplary
cases are shown in Fig. 7.4. For values β > 0, i.e. with vanishing noise at the target state and
an increasing contribution further away, the variance becomes a convex function. For β < 0 the
noise starts to diverge close to the target and the variance becomes concave. The very same
trends can be observed for the mean with the turning point from concave to convex at β = 1.

Moments for the force driven TSA dynamics with multiplicative noise

The analysis of the force driven dynamics close to the target state including multiplicative noise is
closely related to the discussion with constant noise D. With the constant noise dynamics simply
scaled by Lβ all previous conclusions can be generalized. For α < β− 1 and for −1 < α− β < 0
under the additional constraint of small D the dynamics close to the target state are therefore
force driven. Analog to section 4.6 this motivates to try a small noise expansion around the
deterministic solution to obtain analytic expressions for mean, variance and covariance. For the
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Figure 7.4: TSA ensembles with dominant multiplicative noise are distinguishable in their
mean and variance. Comparison of forward (circles) and exact (lines) multiplicative noise driven TSA
dynamics with f(L) = 0 and D(L) = DLβ with β = −1, 0, 1. Shown are the mean (Left) and variance
(Right) for all three cases. The statistics of the forward dynamics are based on 20000 trajectories that

start at L̂0 = 20, to effectively get rid of the initial conditions. The exact analytic expression of reverse
time TSA mean and variance are taken from Eq. (7.45) and Eq. (7.46). Curves were obtained with γ = 1
and D = 0.2.

following stated results, which we derive in this section below, we only considered the case α < 0,
analog to the discussion in section 4.6 for constant D. This is partially motivated by consistency,
partial by the insight that for α > 0 no general expression can be derived. Considering for
example the case α = 3 – as already discussed in Gardiner55 – we do not expect the OU process
(α = 1) which is foundational to the small noise expansion to be a good approximation for a
cubic potential. For a more detailed discussion on the problem of α > 0 see Gardiner55.

Comparing the small noise moments with and without multiplicative noise, we find the mean

L(τ) = ((1− α)γt)
1

1−α +
D

γ

(
7α2 − α(8β + 3) + 2β(β + 1)

)
((1− α)γτ)

α−β
α−1

2(2α− β)(3α− β − 1)
(7.47)

expectedly unchanged in its zero-order deterministic contribution but with a generalized version
of its order-D contribution. Keeping in mind that α < 0 holds, the slope of the variance

σ2
L(τ) =

D

γ

((1− α)γτ)
1−α+β

1−α

1− 3α+ β
(7.48)

is – as in the noise driven case – determined by β. For β > 0 the variance becomes convex, for
β < 0 it is concave and for β = 0 it is linear. Three cases exemplary depicting this behavior
are shown in Fig. 7.5. Together with the finding from section 7.2, that the variance in the

noise driven case increases with τ
1

1−β/2 , this is an important result for practical applications.
Experimental TSA ensembles with a priori unknown homogeneous dynamical laws seem to be
characterizable by their variance close to the target state. Given we find a linear variance, we
can safely assume β = 0. For a convex variance β should be positive and negative for a concave
variance.

The two-time covariance with multiplicative noise is just a straightforward generalization of
the constant D case discussed in section 4.6. We find

C(τ, τ ′) =


D ((1−α)γτ ′)

− α
α−1 ((1−α)γτ)

−2α+β+1
1−α

γ(1−3α+β) for τ < τ ′

D ((1−α)γτ)
− α
α−1 ((1−α)γτ ′)

−2α+β+1
1−α

γ(1−3α+β) for τ > τ ′

σ2
L(τ) for τ = τ ′ .

(7.49)

For three different β values the covariance is shown in Fig. 7.6. Importantly, while the covariance
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Figure 7.5: Force dominated TSA dynamics with multiplicative noise are distinguishable in
their variance. Comparison of forward (circles) and small noise (lines) TSA expression for dynamics
with f(L) = − γ

L and multiplicative noise D(L) = DLβ with β = 0, 0.5,−0.5. Shown are the mean (Left)
and variance (Right) for all three cases. In the mean the influence of β is marginal. In the variance β > 0
leads to an up sloping, β < 0 to a down sloping, and β = 0 to a linear variance. The statistics of the
forward dynamics are based on 20000 trajectories that start at L̂0 = 20. The analytic expressions for the
mean and variance are stated in Eq. (7.47) and Eq. (7.48). The used parameters are γ = 1 and D = 0.2.

depends on its scaling parameters D and γ, the two time correlation function

Corr(τ, τ ′) =


(
τ
τ ′

)−3α+β+1
2−2α for τ < τ ′(

τ ′

τ

)−3α+β+1
2−2α

for τ > τ ′

1 for τ = τ ′

(7.50)

is scale free and solely depends on the power law exponents α and β, and the ratio of τ and
τ ′. For the here valid parameter regimes α < 0 and α < β we therefore find the multiplicative
noise case to be indistinguishable from the case with constant D i.e. β = 0, assuming we only
consider the correlation function. While at first sight seemingly disadvantageous for an inference
scheme, this finding allows to distinguish heterogeneous dynamics from homogeneous dynamics,
also in the case of multiplicative noise. With the same argument as for the constant D case
homogeneous dynamics with α < 0 can always be rejected when the straight equi-correlation
lines in a 2d correlation plot are not preserved.

The derivation of small noise moments for force driven TSA dynamics with
multiplicative noise

The derivation of the small noise moments given multiplicative noise closely follows the special
case with constant D discussed in section 4.6. We again follow the approach discussed in
Gardiner55.

We start our derivation with a rewritten version of Eq. (7.43)

dL = a(L)dτ + ε2b(L)dτ + ε c(L)dWτ , (7.51)

with
√
D substituted by the order parameter ε. We then use the already above stated ε expansion

of L(τ) and a(L) (Eq. (4.170)-Eq. (4.175)). Following the same expansion scheme for b(L) and
c(L) we arrive at an ordered set of SDEs

dL0 = a(L0)dτ (7.52)

dL1 = a1(L1, L0)dτ + c(L0)dWτ (7.53)

dL2 = a2(L2, L1, L0)dτ + b(L0)dτ + c(L1, L0)dWτ , (7.54)

which we truncate after the second contributing order to the full solution L(τ). The zeroth
order term is clearly unchanged by adding multiplicative noise. Its solution, the zeroth order
contribution to the mean, is thus identical to Eq. (4.180).
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7.2. Generalization to multiplicative noise

Figure 7.6: The two-time covariance for force driven dynamics with multiplicative noise
can be predicted from a small noise expression. Comparison of the forward (FWD) and reverse
time TSA small noise (SN) covariance for f(L) = − γ

L and multiplicative noise D(L) = DLβ , with
β = 0, 0.5,−0.5. The statistics of the forward dynamics are based on 20000 trajectories that start at
L̂0 = 20. The small noise covariance is stated in Eq. (7.49). The used parameters are γ = 1 and D = 0.2.

We next evaluate the first order equation Eq. (7.53), which, compared to Eq. (4.177), is only
changed in the noise. It describes an Ornstein-Uhlenbeck process

dL1 = L1k (L0(τ)) dτ + c(L0(τ))dWτ (7.55)

with time dependent noise

c(L0(τ)) = L
β
2
0 = ((1− α)γτ)

β
2−2α , (7.56)

where we used the explicit solution for L0 stated in Eq. (4.180). The formal solution to Eq. (7.55)
then reads

L1(τ) =

∫ τ

0
c(L0(τ ′))e

∫ τ
τ ′ k(L0(s))dsdWτ ′ , (7.57)
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or explicitly written

=

∫ τ

0

(
(1− α)γτ ′

) β
2−2α

( τ
τ ′

)− α
α−1

dWτ ′ , (7.58)

with k(L0(s)) taken from Eq. (4.183) and c(L0(τ ′)) from Eq. (7.56). As above and for simplicity,
we assume the target state at L(0) = 0 and thus L1(0) = 0.

We next generalize L1 to include the noise dependent c(L0(τ)) term. Using the definition in
Eq. (4.186), the variance evaluates to

σ2
L(τ) = D〈L2

1(τ)〉 = D

∫ τ

0

(
(1− α)γτ ′

) β
1−α

( τ
τ ′

)− 2α
α−1

dτ ′ =
D

γ

((1− α)γτ)
1−α+β

1−α

1− 3α+ β
for α < 0 .

(7.59)
Similar to the variance, the two time covariance is built from the product of two L1(τ) terms.

Evaluating these terms we find for the covariance

C(τ, τ ′) = D〈L1(τ)L1(τ ′)〉 = D

∫ min(τ,τ ′)

0
((1− α)γs)

β
1−α

(τ
s

)− α
α−1

(
τ ′

s

)− α
α−1

ds

=
D

γ


((1−α)γτ ′)

− α
α−1 ((1−α)γτ)

1−2α+β
1−α

1−3α+β for τ < τ ′

((1−α)γτ)
− α
α−1 ((1−α)τ ′)

1−2α+β
1−α

1−3α+β for τ > τ ′

((1−α)γτ)
1−α+β

1−α

1−3α+β for τ = τ ′ .

and α < 0 (7.60)

In the last step we solve the averaged SDE of the second order contribution to L(τ) Eq. (7.54)
to obtain the order D contribution to the mean. As in section 4.6, it is a linear ODE

d〈L2〉
dτ

=
da(L0)

dL0
〈L2〉+

1

2

d2a(L0)

dL2
0

〈L2
1〉 − (α− β)Lβ−1

0 , (7.61)

with the last term slightly modified, compared to Eq. (4.192), to match the extension to multi-
plicative noise. Solving this ODE we find

〈L2(τ)〉 =

(
7α2 − α(8β + 3) + 2β(β + 1)

)
((1− α)γτ)

α−β
α−1

2γ(2α− β)(3α− β − 1)
for α < 0 . (7.62)

The sought final result stated in Eq. (7.47) is obtained by adding the found D-order result to
the zero-th order contribution stated in Eq. (4.180).

Combining heterogeneity and multiplicative noise for force driven dynamics

The small noise moments of force driven TSA dynamics with multiplicative noise generalize to
heterogeneous dynamics (i.e. with variations between trajectories in the γ-parameter) in exactly
the same way as those with constant D. For the mean

L(τ) = 〈γ
1

1−α 〉 ((1− α)τ)
1

1−α + 〈γ
1−β
α−1 〉D

(
7α2 − α(8β + 3) + 2β(β + 1)

)
((1− α)τ)

α−β
α−1

2(2α− β)(3α− β − 1)
(7.63)

we again exploit Eq. (7.3), which tells us to average over the homogeneous mean Eq. (4.165)
with respect to the distribution P (γ).

For the variance we find three terms up to order D. The first is the variance of the determin-
istic contribution to the dynamics due to varying realizations of γ already stated in Eq. (7.8).
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7.3. Ensemble equivalence of forward and reverse time ensembles

The second is obtained by averaging over the homogeneous variance component in the multi-
plicative case Eq. (7.48) with respect to γ. The third couples the zeroth order to the order D
term and is different from zero only in the heterogeneous case. Together we find

σ2
L(τ) =

(
〈γ

2
1−α 〉 − 〈γ

1
1−α 〉2

)
((1− α)τ)

2
1−α + 〈γ

β
1−α 〉D (1− α)((1− α)τ)

β
1−α

1− 3α+ β
τ

+
(
〈γ

β
1−α 〉 − 〈γ

1
1−α 〉〈γ

1−β
α−1 〉

)
D

(
7α2 − α(8β + 3) + 2β(β + 1)

)
((1− α)τ)1− β

α−1

(2α− β)(3α− β − 1)
. (7.64)

The small noise covariance

Chet
L (τ, τ ′) =

(
〈γ

2
1−α 〉 − 〈γ

1
1−α 〉2

)
(1− α)

2
1−α (ττ ′)

1
1−α

+ 〈γ
β

1−α 〉D


((1−α)τ ′)

− α
α−1 ((1−α)τ)

1−2α+β
1−α

1−3α+β for τ < τ ′

((1−α)τ)
− α
α−1 ((1−α)τ ′)

1−2α+β
1−α

1−3α+β for τ > τ ′

((1−α)τ)
1−α+β

1−α

1−3α+β for τ = τ ′

+
(
〈γ

β
1−α 〉 − 〈γ

1
1−α 〉〈γ

1−β
α−1 〉

)
D

(
7α2 − α(8β + 3) + 2β(β + 1)

)
(1− α)1− β

α−1

2(2α− β)(3α− β − 1)
×

×
(
τ

1
1−α τ ′

α−β
α−1 + τ ′

1
1−α τ

α−β
α−1

)
(7.65)

similarly combines the extension to heterogeneity stated in Eq. (7.9) with the extension to
multiplicative noise Eq. (7.49).

7.3 Ensemble equivalence of forward and reverse time
ensembles

We here discuss the forward in time partners to the dynamics so far exclusively studied in reverse
time. We then show that the generated ensembles are indistinguishable and that the dynamics
derive from the same starting point.

Analyzing an ensemble of sample paths in forward or reverse time clearly does not change
the ensemble itself. What changes are the dynamical equations that are capable to reproduce
the data. This observation is best illustrated for a bridge process which does not start or end at
a boundary. In forward time a bridge process is largely unconstrained close to its delta-initial
conditions and evolves mostly according to the dynamical law of the unconstrained process. It
is however strongly confined close to its target state where the entropy of the system must be
reduced to reach a single state. For the reverse-time bridge it is exactly opposite. It first evolves
mostly freely according to the sign inverted force law and is then strongly constrained to reach
the forward initial conditions. In mathematical terms the forward bridge is defined as104

dL̂(t) =

(
f(L̂) +D(L̂)

∂

∂L̂
log
(
P (L̂f , tf |L̂, t)

))
dt+

√
D(L̂) dWt , (7.66)

or written as Fokker-Planck equation

∂P (L̂, t|L̂f , tf , L̂0, t0)

∂t
=− ∂

∂L̂

[(
f(L̂) +D(L̂)

∂

∂L̂
logP (L̂f , tf |L̂, t)

)
P (L̂, t|L̂f , tf , L̂0, t0)

]
+

1

2

∂2

∂L̂2
D(L̂)P (L̂, t|L̂f , tf , L̂0, t0) . (7.67)
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Comparing these expressions to the reverse time bridge with multiplicative noise stated in
Eq. (7.15), we find that both display the same diffusion term and have to be interpreted in
Ito sense. They differ however in their drift term. While f(L) is expectedly only sign inverted,
we find a different expression for the guiding force. For the forward dynamics the guiding
force depends on the solution of the backward Fokker-Planck with its conditioning on its final
condition. For the reverse time case we use the solution of the forward Fokker-Planck with its
dependence on the forward initial condition. Furthermore, the reverse dynamics features a D(L)
both inside and outside the logarithm, while in the forward bridge the D(L) only occurs outside
of the logarithm. While conceptually obvious, to the best of our knowledge, this link between
forward and reverse time Langevin bridges has not formally been established. In this section we
show that forward and reverse time dynamics are different but describe the same ensemble.

The idea of ensemble equivalence also extends to dynamics which end at a target state which
is an absorbing boundary. Majumdar and Orland104 suggested to derive such a dynamics by
taking the limit of Eq. (7.67) with respect to L̂f → L̂ts, to obtain

∂P (L̂, t|L̂ts, tf , L̂0, t0)

∂t
=− ∂

∂L̂

[(
f(L̂) +D(L̂) lim

L̂f→L̂ts

∂

∂L̂
logP (L̂f , tf |L̂, t)

)
P (L̂, t|L̂ts, tf , L̂0, t0)

]

+
1

2

∂2

∂L̂2
D(L̂)P (L̂, t|L̂ts, tf , L̂0, t0) . (7.68)

This approach however suffers under the limitation that the guiding force must first be evaluated
with respect to an arbitrary L̂f 6= L̂ts, with the limit taken subsequently. Note, that taking

the limit inside the logarithm is wrong and would lead to limLf→0 P (L̂f , tf |L̂, t) = 0, using the
definition of absorbing boundary conditions.

Along the lines of our previous derivation however a different approach is possible where
P (L̂f , tf |L̂, t) is replaced by the hitting time distribution ρ

L̂ts
(tf |L, t) during the construction

of the respective Fokker-Planck bridge as done in section 4.2. The Fokker-Planck bridge with
target state at an absorbing boundary reads

∂R
L̂ts

(L̂, t|, tf , L̂0, t0)

∂t
=− ∂

∂L̂

[(
f(L̂) +D(L̂)

∂

∂L̂
log ρ

L̂ts
(tf |L̂, t)

)
R
L̂ts

(L̂, t|tf , L̂0, t0)

]
+

1

2

∂2

∂L̂2
D(L̂)R

L̂ts
(L̂, t|tf , L̂0, t0) . (7.69)

Below in this section we show that the dynamics of Eq. (7.68) and Eq. (7.69) are indeed equivalent
using a l’Hospital like argument. This equivalence also holds by the same argument when
constructing explicit solutions for forward bridges. The limit approach however breaks down
when constructing the non-normalized bridges used in the construction of TSA ensembles in
section 4.2. Here, the product transition probabilities with absorbing boundary conditions
P (L̂f , tf |L̂, t)P (L̂, t|L̂0, t0), on which the derivation is based, would evaluate to zero for all
times.

The generalization of ensemble equivalence of forward and reverse time ensembles to TSA
ensembles therefore follows the construction approach laid out in section 4.2. Inspecting the
resulting equation

∂

∂t
R
L̂ts

(L̂, t; tf ; L̂0) = P in(L̂)ρ
L̂ts

(tf |L̂, t)

− ∂

∂L̂

([
f(L̂) +D(L̂)

∂

∂L̂
log ρ

L̂ts
(tf |L̂, t)

]
R
L̂ts

(L̂, t; tf ; L̂0)

)
+

1

2

∂2

∂L̂2
D(L̂)R

L̂ts
(L̂, t; tf ; L̂0) ,

(7.70)
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which we will derive below in this section, we find that it is formally equivalent to a forward
bridge with source term equivalent in its strength to the sink of the reverse time TSA dynamics.
While mathematically consistent, this form of the TSA dynamics is less powerful than its reverse
time version when used for data inference or synthesization close to the target state. First of
all and most obvious when synthesizing data, the process starts infinitely far away from the
target state with probability mass zero. To reach the target state in finite time, already here
an approximation is necessary. We suggest to choose the minimal simulation time tf − t0 such
that, given the amount of planned sample paths nens, on average no sample path yet exists at t0.
This value can be determined from the over space and time integrated source, i.e. the integrated
sample path “production” rate. We start simulations where on average no sample path has yet
been produced. Second, the guiding term is – unlike for the reverse time case – explicitly time
dependent. With only very few dynamics known where ρ

L̂ts
(tf |L̂, t) can be stated explicitly,

the power of Eq. (7.70) probably lies more in its conceptual appeal than as a starting point for
forward inference schemes.

Derivation of ensemble equivalence of forward and reverse time bridges

The derivation of both the forward and reverse time bridge process starts from the same joint
conditional probability P (L̂, t; L̂f , tf |L̂0, t0) already used in section 4.2 and section 7.2 for mul-
tiplicative noise. For readability we again ignore the dependency on the initial conditions. The
two derivations then start to deviate in the choice of how to apply the chain rule for the second
time on the D-dependent terms Eq. (4.15). We here start our derivation from a restatement of
the decisive term

1

2

∂

∂L̂

(
D(L̂)P (L̂, t)

∂

∂L̂
P (L̂f , tf |L̂, t)− P (L̂f , tf |L̂, t)

∂

∂L̂
D(L̂)P (L̂, t)

)
= (7.71)

generalized to include multiplicative noise (i.e. with D(L) attached to P (L̂, t) according to
section 7.2). Unlike in the derivation for the reverse time bridge, we now apply the product rule
to the second term and find

=
1

2

∂

∂L̂

(
D(L̂)P (L̂, t)

∂

∂L̂
P (L̂f , tf |L̂, t)−

∂

∂L̂

(
D(L̂)P (L̂, t)P (L̂f , tf |L̂, t)

)
+ D(L̂)P (L̂, t)

∂

∂L̂
P (L̂f , tf |L̂, t)

)
. (7.72)

Summing identical terms and combining P (L̂f , tf |L̂, t) and P (L̂, t) then yields

=
∂

∂L̂

(
D(L̂)P (L̂, t)

∂

∂L̂
P (L̂f , tf |L̂, t)

)
− 1

2

∂2

∂L̂2

(
D(L̂)P (L̂, t)P (L̂f , tf |L̂, t)

)
. (7.73)

Keeping the collection of all f(L) dependent terms unchanged compared to the derivation of
the reverse time bridge, we end up with the evolution equation

−
∂P (L̂, t, L̂f , tf )

∂t
=

∂

∂L̂

[
f(L̂)P (L̂, t, L̂f , tf ) + D(L̂)P (L̂, t)

∂

∂L̂
P (L̂f , tf |L̂, t)

]
− 1

2

∂2

∂L̂2
D(L̂)P (L̂, t, L̂f , tf ) . (7.74)

Compared to Eq. (7.13), which states the corresponding version of the reverse time bridge,
the terms in the guiding term (including its sign) have changed position with respect to the
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derivative. The diffusion term comes with a minus sign in front of it. Extending the guiding
term both in numerator and denominator with P (L̂f , tf |L̂, t) and combining P (L̂f , tf |L̂, t) with

P (L̂, t), we end up with

−
∂P (L̂, t, L̂f , tf )

∂t
=

∂

∂L̂

[(
f(L̂) +

D(L̂)

P (L̂f , tf |L̂, t)
∂P (L̂f , tf |L̂, t)

∂L̂

)
P (L̂, t, L̂f , tf )

]

− 1

2

∂2

∂L̂2
D(L̂)P (L̂, t, L̂f , tf ) . (7.75)

Rewriting the guiding force in its well known logarithmic form we end up with the final bridge
dynamic

−
∂P (L̂, t, L̂f , tf )

∂t
=

∂

∂L̂

[(
f(L̂) +D(L̂)

∂

∂L̂
logP (L̂f , tf |L̂, t)

)
P (L̂, t, L̂f , tf )

]
− 1

2

∂2

∂L̂2
D(L̂)P (L̂, t, L̂f , tf ) , (7.76)

which is stated in Eq. (7.67) in its more familiar form multiplied by minus one. There the
dependence on (L0, t0) is explicitly stated and the whole term is normalized by P (L̂f , tf |L̂0, t0).

Taking the target state limit for the final state of bridge processes

In a recent paper, Majumdar and Orland implicitly assume that bridges processes with target
states can be obtained from the limit L̂f → L̂ts applied to the guiding force of bridge processes
Eq. (7.68), which do not end at the target state104. Interestingly, this seemingly contradicts
our result from section 4.2, where we have shown that the guiding force must be evaluated
with respect to the hitting time if the process ends at a target state. We here show that both
formulations

∂

∂L̂
log ρ

L̂ts
(tf |L̂, t) = lim

L̂f→L̂ts

∂

∂L̂
logP (L̂f , tf |L̂, t) (7.77)

are equivalent using the rule of l’Hospital. For cases where both ρ
L̂ts

(tf |L̂, t) and P (L̂f , tf |L̂, t)
are known this identity can easily be checked. For example, for the random walk case with
ρ
L̂ts

(tf |L̂, t) defined in Eq. (4.90), the solution of the left hand side can directly be read off, and

we find the same result as stated in Majumdar and Orland104. Furthermore, with the guiding
forces equivalent in the limit L̂f → L̂ts, also the respective bridges as defined in section 4.2 are
equivalent in this limit and

P (L̂, t|L̂0, t0)ρ
L̂ts

(tf |L̂, t)

ρ
L̂ts

(tf |L̂0, t0)
= lim

L̂f→L̂ts

P (L̂, t|L̂0, t0)P (L̂f , tf |L̂, t)
P (L̂f , tf |L̂0, t0)

(7.78)

must hold.
The derivation of both statements starts with the observation, that the hitting time, using

its definition Eq. (4.26), can be rewritten as

ρ
L̂ts

(tf |L̂, t) = −
∫ ∞
L̂ts

dL̂f
∂

∂tf
P (L̂f , tf |L̂, t) =

1

2
lim

L̂f→L̂ts

∂

∂L̂f
D(L̂f )P (L̂f , tf |L̂, t) . (7.79)

The second identity relates the hitting time distribution to the flux through the absorbing
boundary assuming a natural boundary at∞. It is obtained by substituting the forward Fokker-
Planck equation into the first identity, and carrying out the integration. Performing the limit
L̂f → L̂ts is equivalent to evaluating the resulting flux at the absorbing boundary L̂ts.
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Now, we start the derivation from the left hand side of Eq. (7.77), evaluate the logarithm

∂

∂L̂
log ρ

L̂ts
(tf |L̂, t) =

∂

∂L̂
ρ
L̂ts

(tf |L̂, t)

ρ
L̂ts

(tf |L̂, t)
(7.80)

and substitute ρ
L̂ts

(tf |L̂, t) by the flux through the boundary Eq. (7.79)

=
lim

L̂f→L̂ts

∂

∂L̂

∂

∂L̂f
D(L̂f )P (L̂f , tf |L̂, t)

lim
L̂f→L̂ts

∂

∂L̂f
D(L̂f )P (L̂f , tf |L̂, t)

. (7.81)

Taking the limit outside of the fraction and applying the rule of l’Hospital with respect to the
L̂f derivate, yields

= lim
L̂f→L̂ts

∂

∂L̂
D(L̂f )P (L̂f , tf |L̂, t)

D(L̂f )P (L̂f , tf |L̂, t)
. (7.82)

We are now allowed to cancel the diffusion terms D(L̂f ) and obtain

= lim
L̂f→L̂ts

∂

∂L̂
P (L̂f , tf |L̂, t)

P (L̂f , tf |L̂, t)
, (7.83)

which simplifies to the seeked expression for the guiding force

= lim
L̂f→L̂ts

∂

∂L̂
logP (L̂f , tf |L̂, t) . (7.84)

Using exactly the same argument, but leaving out the derivative with respect to L̂ and substi-
tuting ρ

L̂ts
(tf |L̂, t) by ρ

L̂ts
(tf |L̂0, t0) in the denominator of Eq. (7.80), the ensemble equivalence

Eq. (7.78) follows directly.
This correspondence Eq. (7.78) however also shows that the TSA ensemble, which is decaying

with reverse time τ , can only be correctly described with our approach, as it is based on the
non-normalized product P (L̂, t|L̂0, t0)P (L̂f , tf |L̂, t), which is zero when absorbing boundary
conditions are assumed. The case of Majumdar and Orland is therefore only a special case and
not suitable to e.g. directly calculate TSA ensembles from its definition Eq. (4.43).

7.4 Insights on meander processes

A stochastic process which up to a time tf does not reach its starting point is called a meander
process. A simple way to construct such a process is to simulate many random walks and take
only those which have not returned to their starting point up to time tf .

A different way to construct such a process was introduced by Majumdar and Orland104.
The authors claim the dynamics of such a process can be constructed from the forward bridge
equation Eq. (7.66). The transition probability P (L̂f , tf |L̂, t) inside the guiding term is the
solution of the backward Fokker-Planck equation Eq. (4.6) with absorbing boundary conditions
Eq. (4.25). According to Majumdar and Orland104 the meander process

dL̂(t) =

(
f(L̂(t)) +D

∂

∂L̂
log

(∫ ∞
0

dL̂fP (L̂f , tf |L̂, t)
))

dt+
√
D dWt (7.85)
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is obtained by integrating over P (L̂f , tf |L̂, t) inside the logarithm and with respect to the end-

point L̂f of the dynamics of a single bridge. In this section, we show that Majumdars con-
struction of meander processes104 can thoroughly be derived from our novel understanding of
targeted bridge processes.

Different to Majumdar’s construction, and learning from our perspective on constructing
ensembles from bridge processes, the meander process is given as a weighted ensemble of sub-
processes

P (L̂, t|L̂0, t0, tf ) =

∫ ∞
0

dL̂fW (L̂f )P (L̂, t|L̂0, t0, L̂f , tf ) (7.86)

i.e. the average over bridge processes with respect to

W (L̂f ) =
P (L̂f , tf |L̂0, t0)∫∞

0 dL̂fP (L̂f , tf |L̂0, t0)
, (7.87)

which is the probability mass preserved distribution of final positions that can be reached with a
meander ( and which can be calculated from the forward Fokker-Planck using absorbing bound-
ary conditions and subsequent normalization). The derivation provided below follows analog to
the derivation of the TSA ensemble in section 4.2. In a final step, where both approaches are
again equivalent, the limit that takes the initial condition to the absorbing boundary L̂0 → L̂abs

is taken. Due to the normalization in the construction of the bridge process with respect to
P (L̂f , tf |L̂0, t0) it is ensured that the limit exists (see section 7.3 for a similar argument.) We
show the derivation below in this section. For full generality we directly state the derivation
with multiplicative noise. For Eq. (7.85) this simply implies to replace D with D(L̂).

Derivation of the meander process from sub-ensembles

We start our derivation of the meander process by taking the time-derivative on both sides of
Eq. (7.86). We obtain

∂

∂t
P (L̂, t|L̂0, t0, tf ) =

∫ ∞
0

dL̂fW (L̂f )
∂

∂t
P (L̂, t|L̂0, t0, L̂f , tf ) (7.88)

Replacing the forward bridge P (L̂, t|L̂0, t0, L̂f , tf ) by its definition Eq. (4.8) we arrive at

=

∫ ∞
0

dL̂fW (L̂f )
∂

∂t

(
P (L̂f , tf |L̂, t)P (L̂, t|L̂0, t0)

P (L̂f , tf |L̂0, t0)

)
. (7.89)

We use the definition of the weight W (L̂f ) Eq. (7.87) and cancel terms to find

=
1∫∞

0 dL̂fP (L̂f , tf |L̂0, t0)

∫ ∞
0

dL̂f
∂

∂t

(
P (L̂f , tf |L̂, t)P (L̂, t|L̂0, t0)

)
.

(7.90)

We continue our derivation only with the integral expression∫ ∞
0
dL̂f

∂

∂t

(
P (L̂f , tf |L̂, t)P (L̂t, t|L̂0, t0)

)
(7.91)

and multiply with its normalization 1∫∞
0 dL̂fP (L̂f ,tf |L̂0,t0)

at the very end of the derivation. The

solution to the integrand in terms of drift and diffusion terms is known from recapitulating the
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derivation of the forward bridge process in section 7.3. We use the result stated in Eq. (7.74)
and integrate over L̂f to arrive at∫ ∞

0
dL̂f

∂

∂t

(
P (L̂f , tf |L̂, t)P (L̂t, t|L̂0, t0)

)
=

=
∂

∂L̂

[
−f(L̂)

∫ ∞
0

dL̂fP (L̂, t, L̂f , tf |L̂0, t0)−D(L̂) P (L̂, t|L̂0, t0)
∂

∂L̂

∫ ∞
0

dL̂fP (L̂f , tf |L̂, t)
]

+
D

2

∂2

∂L̂2

∫ ∞
0

dL̂fP (L̂, t, L̂f , tf |L̂0, t0) . (7.92)

In the next step we transform the second term of the drift into a guiding force. To do this we
multiply P (L̂, t|L̂0, t0) by

∫∞
0 dL̂fP (L̂f , tf |L̂, t) both in numerator and denominator. Rewritten

as a logarithmic term we obtain

=
∂

∂L̂

[
−f(L̂)

∫ ∞
0

dL̂fP (L̂, t, L̂f , tf |L̂0, t0)

−D(L̂)

∫ ∞
0

dL̂fP (L̂, t, L̂f , tf |L̂0, t0)
∂

∂L̂
log

∫ ∞
0

dL̂fP (L̂f , tf |L̂, t)
]

+
1

2

∂2

∂L̂2
D(L̂)

∫ ∞
0

dL̂fP (L̂, t, L̂f , tf |L̂0, t0) . (7.93)

To conclude the derivation of the equivalence of averaged bridges and a construction of meander
processes based on the integration of the guiding probability distribution, we divide by the
normalization

∫∞
0 dL̂fP (L̂f , tf |L̂0, t0) and obtain the seeked Fokker-Planck equation

∂

∂t
P (L̂, t|L̂0, t0, tf ) = − ∂

∂L̂

[(
f(L̂) +D(L̂)

∂

∂L̂
log

∫ ∞
0

dL̂fP (L̂f , tf |L̂, t)
)
P (L̂, t|L̂0, t0, tf )

]
+

1

2

∂2

∂L̂2
D(L̂)P (L̂, t|L̂0, t0, tf ) , (7.94)

which is equivalent to the Langevin expression (7.85) known from Majumdar and Orland104.
The existence of the limit which brings the initial condition to the boundary L̂0 → L̂abs is
ensured by the normalization of the bridge.
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Chapter 8

Conclusion

In this work I derive a consistent mathematical theory that allows to infer biological dynamics
in reverse time starting from a target state. I apply this data driven approach to Drosophila
embryogenesis to infer an effective model of cell contact constriction during germband exten-
sion mediated by cell intercalation. Target state alignment creates spurious forces. The TSA
ensemble theory allows to separate these forces from the true underlying biological dynamics.

Different from previous work, the here derived theory of target state aligned ensembles al-
lows to predict summary statistics of non-linear, non-equilibrium dynamics without reference to
probably unknown initial conditions. Applied to Drosophila germband extension this statistical
approach establishes a visco-elastic model of junction shrinkage.

The TSA framework is an exact mathematical description of sample path alignment to
a target state. Using sample paths of finite length and working in reverse time the initial
conditions eventually matter. I show how the influence of forward initial conditions on TSA
ensemble statistics can be systematically assessed.

In a controlled approximation I derive the reverse time SDE valid for well separated initial
and final conditions. The obtained result allows to formulate a reverse time path ensemble
inference scheme and to recover forward dynamics close to a target state from reverse time
trajectories. For forward power laws I derive the exact reverse time forces to be used in the
inference. I use this result to derive the universal behavior of force and noise dominated dynamics
close to the target state. Expressions for mean, variance and two-time covariance are stated. I
demonstrate the excellent quality of this approach for a toy model of cytokinetic ring constriction.

With the theory at hand a large class of biological processes can now be analyzed. The
TSA approach allows to infer effective dynamics from experimentally obtained target state
aligned sample paths. The derived analytical moments provide a heuristic approach to judge
whether or not tested models are capable of generating the experimentally observed statistics.
For example, in the here studied case of germband extension, we find that the experimentally
observed two-time covariance of cell contact length, can under no circumstances be generated
by a homogeneous, time independent model.

The approach to rule out whole model classes based on their ensemble statistics can be
extended to models with multiplicative noise. I show that heterogeneity in the realizations
of individual sample paths leaves a detectable finger print in the covariance. The last source
of insecurity is the measurement noise. I show that TSA ensemble statistics can be used to
statistically separate it from the data.

Combining theoretical reasoning based on ensemble statistics and model inference I char-
acterize a visco-elastic model as the most simple effective dynamic to reproduce all accessible
statistics of junction shrinkage in the experiment. In this model elastic fluctuations around an
equilibrium cell contact length on short timescales are combined with a time dependent change
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of the equilibrium length on long timescales. Using a path ensemble inference technique, I can
simultaneously predict the initial equilibrium cell contact length, and the global parameters such
as the timescale of elastic contact fluctuations and the noise strength. I can further access the
quality of the model for each individual sample path and characterize where the model is over
simplistic.

Data driven model inference of the effective dynamics of junction shrinkage is only one step
towards a full understanding of this complex process. Future work will combine the ensemble
approach with recordings of the junction length at different z-values, i.e. measurements at
different depths below the tissue surface. Deriving different effective models for different z-levels
should eventually provide us with a model of the three dimensional dynamics of cell intercalation.
It will be of further interest to simultaneously record the junction length with the dynamics of
for the constriction relevant molecules such as myosin, of regulatory molecules such as Rho
and Rok, of molecules involved in junction remodeling such as E-cadherin and of molecules
assumed to act as a ratchet such as Rab 35. The TSA ensemble inference approach provides
the framework to step by step include more details in the model and monitor their impact on
the predicted ensemble statistics.

The core unit of all derivations in this text are bridge processes, i.e. a stochastic dynamic
with point initial and final conditions. As a by-product of the TSA derivation I show that
although bridge processes describe the same ensemble in forward and reverse time, they differ
in their generating dynamics. I further show that meander processes, i.e. stochastic processes
which at least up to a time t do not return to their initial conditions, can be accumulated from
an ensemble average over bridge processes.

In summary, with additional insights in several directions, the TSA ensemble approach pro-
vides a versatile tool for the analysis of directional dynamics. It provides the means to study
biological dynamics as ensembles but avoids perturbing the system under study through the
introduction of artificial initial conditions. It provides the natural framework to study dynamics
close to target states.
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[146] T Schötz, RA Neher, and U Gerland. “Target search on a dynamic DNA molecule”. In:
Physical Review E 84 (2011), p. 051911.

[147] Z Schuss. Brownian dynamics at boundaries and interfaces. Springer, 2015.

[148] U Seifert. “Entropy production along a stochastic trajectory and an integral fluctuation
theorem”. In: Physical review letters 95 (2005), p. 040602.

[149] U Seifert. “Stochastic thermodynamics, fluctuation theorems and molecular machines”.
In: Reports on progress in physics 75 (2012), p. 126001.

140



Bibliography

[150] K Sekimoto. “Langevin equation and thermodynamics”. In: Progress of Theoretical Physics
Supplement 130 (1998), pp. 17–27.

[151] H Shen et al. “Single particle tracking: from theory to biophysical applications”. In:
Chemical Reviews 117 (2017), pp. 7331–7376.

[152] T Shimozawa et al. “Improving spinning disk confocal microscopy by preventing pinhole
cross-talk for intravital imaging”. In: Proceedings of the National Academy of Sciences
110 (2013), pp. 3399–3404.

[153] A Shindo. “Models of convergent extension during morphogenesis”. In: Wiley Interdisci-
plinary Reviews: Developmental Biology 7 (2018), e293.

[154] LC Siang, R Fernandez-Gonzalez, and JJ Feng. “Modeling cell intercalation during
Drosophila germband extension”. In: Physical biology 15 (2018), p. 066008.

[155] H Siedentopf and R Zsigmondy. “Uber sichtbarmachung und größenbestimmung ultra-
mikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser”. In: Annalen
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