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SUMMARY 

According to the World Health Organization (2019), more than one million 

sexually transmitted infections (STIs) are acquired every day worldwide in the human 

population. These infections can have serious reproductive health consequences 

(e.g., infertility or mother-to-child transmission), and in nonhuman mammalian 

populations, are important selection agents that shape the evolution of immune 

defences. As such, individuals are expected to favour healthy mates instead of 

diseased ones. 

The relation between pathogens and fitness consequences in nonhuman 

primates has been the subject of numerous research efforts focusing on 

social and reproductive behaviour. My dissertation sets out to add a piece to the 

puzzle of the complex relation between hosts and pathogens by testing whether 

conspicuous disease cues prompt avoidance behaviour towards diseased 

individuals. Specifically, I studied the sexual behaviour of a large population 

(approximately 170 individuals) of wild olive baboons (Papio anubis), at Lake 

Manyara National Park (LMNP), in East Africa, Tanzania. Here, nonhuman 

primates (NHPs) are infected by Treponema pallidum (TP), a bacterium known to 

cause conspicuous genital ulcerations in both males and females. Since genital 

ulcerations are mainly found in sexually mature individuals, it is likely to be sexually 

transmitted. TP also affects humans, and it is responsible for different diseases 

such as syphilis, bejel and yaws. Interestingly, nonhuman primate TP strains, are 

most closely related with human yaws (a disease mainly causing facial lesions), 

than to syphilis (known to cause genital ulcerations). This, together with the 

geographic overlap of the distribution of human yaws and simian TP infection in 

Sub-Saharan Africa, could indicate that NHPs may function as a natural reservoir for 

human T. pallidum.  

The results of my study showed that genital ulcers have a major impact at a 

pre-copulatory level by influencing female mate choice. The likelihood of copulation 

decreased if the male mating partner had visible signs of TP infection (i.e. genital 

ulcers). Similarly, there was a decrease in the likelihood of copulation when 

females were infected (regardless of the genital health status of the male), which 
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hints towards potential pain avoidance. No evidence has been found for male mate 

choice,  but individuals exhibiting genital ulcers, performed less pelvic thrusts than 

non-ulcerated individuals. This most likely results in reproductive 

fitness consequences, as ejaculation can be compromised if not enough pelvic 

thrusts are performed. To understand whether the impact of TP-associated genital 

ulcerations is only restricted to the pre-copulatory level, I extended the same 

analyses to the female post-copulatory behaviours. I investigated whether genital 

ulcers would alter the frequency of female copulation calls, post-copulatory 

withdraw (i.e. darting) and the occurrence of post-copulatory grooming. The post-

copulatory behaviour of females was not altered in relation to visible signs of 

disease, which means TP does play role on a pre-copulatory level but not at a post-

copulatory level.

This dissertation sheds light on behavioural avoidance in wild NHPs in relation 

to STIs and contributes to a better understanding of host-pathogen interactions 

and pathogen-avoidance.  Additionally, it adds important data on baboon 

mating behaviour which is essential for comparative analyses. The close 

genetic relationship of simian and human TP strains, and the growing habitat 

encroachment of the human-NHP interface, supports the call for a more 

multidisciplinary approach linking humans and wildlife when investigating the 

impact of shared pathogens like Treponema pallidum. 
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GENERAL INTRODUCTION 

1. Sociality and healthy in nonhuman primates  

The effects of sociality on health and reproduction have long been recognized 

in humans (House et al. 1988; Uchino 2009; Holt-Lunstad et al. 2010). Similarly, in 

other animals including nonhuman primates (NHPs), social relationships or social 

bonds, have been also linked to enhanced longevity and reproduction (e.g., Silk et al. 

2003, 2009, 2010; Cameron et al. 2009; Stanton & Mann 2012; Schülke et al. 2010; 

Kulik et al. 2012; Archie et al. 2014). Nonhuman primates, as many other social 

animals, live in groups that vary greatly (e.g. size, social organization) within and 

between species and populations. Group-living has been considered as one of the 

major transitions in evolution (Smith & Szathmary 1995), but it comes along with 

particular costs. Among them, increased feeding competition (Schülke & Ostner 

2012), increased likelihood of pathogen transmission (Freeland 1976) and increased 

susceptibility to disease; as the bigger the groups, the greater is the infection risk 

(Altizer et al. 2003; Patterson & Ruckstuh 2013). Host-pathogen relationships are 

complex and dynamic (Irvine 2006; Knowles et al. 2013; Lello et al. 2004) and health 

parameters of wild nonhuman primates are poorly known (Nunn & Altizer 2006; 

Huffman & Chapman 2009). Thus, investigating the link between sociality and health 

enables a better understanding of the underlying processes of disease transmission 

in nonhuman primates. At the same time, this is of considerable relevance for human 

health, when considering zoonosis and emerging infectious diseases (Gillespie et al. 

2008; Jones et al. 2008). 

 

1.2. Behavioural immunity & pathogen avoidance strategies  

Infectious diseases have posed a threat to survival and reproduction (i.e. 

fitness) of organisms throughout time. As a consequence, organisms evolved a 

complex immune system to detect pathogens and mobilize defences against 

infectious agents. But triggering such responses has considerable energetic costs 

(Colditz 2008), and thus, an additional set of mechanisms that serves as a first line of 

defence against pathogens can be employed - the so called “behavioural immune 

system” (Schaller 2011, Tybur & O’Brien 2014). Behaviour plays a major role in 
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modulating the exposure to pathogens. For instance, disgust is elicited by olfactory, 

visual and/or gustatory stimuli that are associated with infectious diseases and almost 

certainly evolved as a defence against pathogens (Curtis et al. 2011). 

Pathogen avoidance strategies have been reviewed extensively elsewhere 

(Hart 1990, 1992, 1994, 2011; Curtis & Biran 2001; Curtis 2014; Curtis et al. 2011). 

Examples of pathogen avoidance include corpse removal from the nest in social 

insects (Diez et al. 2014), localized defecation sites in fish (Nicholson & Sikkel 2018), 

anointing behaviour in birds (Bush & Clayton 2018), avoidance of sick conspecifics in 

rodents (Boillat et al. 2015), grazing on non-faecal contaminated patches in 

ungulates and marsupials (Ezenwa 2004, Coulson et al. 2018) and avoidance of 

faecal contaminated items (Curtis 2014; Sarabian & MacIntosh 2015; Amoroso et al. 

2017; Weinstein et al. 2018). For most social animals, the first set of preventive 

measures in order to avoid disease transmission is how an individual´s health status 

is perceived by its conspecifics. For example, Caribbean spiny lobsters (Panulirus 

argus), refuse sharing dens with lobsters infected with the lethal PaV1 virus 

(Behringer et al. 2006). Other strategies of pathogen avoidance may include the 

alternation of sleeping and foraging sites in yellow baboons (Papio cynocephalus: 

Hausfater & Meade 1982) and white-cheeked mangabeys (Cercocebus albigena: 

Freeland 1980), or the use of specific defecation sites (red howler monkeys, Alouatta 

seniculus: Gilbert 1997; lemurs, Lepilemur sp., Hapalemur griseus: Irwin et al. 2004). 

Individuals might also avoid direct contact with conspecifics which are likely to 

transmit pathogens (Curtis 2014). Mice for instance, display a preference for non-

parasitized mating partners (Ehman & Scott 2002), and mandrills (Mandrillus sphinx), 

avoid grooming individuals that carry high levels of oro-feacally transmitted protozoa 

(Poirotte et al. 2017).  

Some pathogens are capable of altering and control specific aspects of their 

host’s behaviour to enhance the frequency of encounters among suitable hosts, and 

consequently increase the rate of transmission (Holmes & Bethel 1972). An example 

of this “adaptive host manipulation hypothesis” is the “fatal attraction” observed in 

hosts carrying the protozoon Toxoplasma gondii. Infected individuals are known to 

increase exposure to predators and infected males become sexually more attractive 

to healthy females (Dass et al. 2011; Adamo 2013; Poirotte et al. 2016). In insects, 
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the sexually transmitted bacterium Wolbachia, uses different strategies to ensure 

vertical transmission through the manipulation of the host reproductive system 

(Saridaki & Bourtzis 2010). Strategies such as feminization, parthenogenesis, male 

killing, and sperm–egg incompatibility are used to increase the frequency of infected 

females in a population (Saridaki & Bourtzis 2010). Additionally, sperm from an 

infected male does not result in offspring unless the female is infected with the same 

strain of Wolbachia (Werren et al. 2008). Dourine, a sexually transmitted 

trypanosome of horses, is also thought to increase sexual activity of infected stallions 

(Thrall et al. 1997), and the bovine genital campylobacteriosis, potentially increases 

the duration of oestrus in cattle (Roberts, 1979) thereby enhancing the likelihood of 

potential matings. 

The type of response to disease cues depends on several factors. Among 

them, are the ecology of the species (i.e. type of environment, Behringer et al. 2018, 

Sarabian et al. 2018), the species’ individual characteristics (i.e. age, sex and life-

history stage), the mechanisms of infection (i.e. means by which the pathogen infects 

its host), virulence, incidence and pathogen load. Thus, depending of the factors 

involved in the host-pathogen interaction, there are cases where the benefits of 

avoidance are outweighed by the costs, and avoidance of sick conspecifics is 

inexistent. In banded mongooses infected with tuberculosis, clinically diseased 

individuals showed a significantly smaller proportion of time active and lower 

reciprocation of allogrooming, but still, no evidence was found for behavioural 

avoidance of sick group members (Fairbanks et al. 2015). Reaction towards sick 

conspecifics may vary even within the same species. In house finches, individuals 

preferred diseased feeding partners due to reduced feeding competition (Bouwman 

& Hawley 2010), but in another experiment, house finches spent less time in 

proximity with conspecifics showing disease symptoms (Zylberberg et al. 2012). 

Therefore, it is important to avoid generalizations in relation to pathogen avoidance, 

since the host’s behavioural outcome seems to be intertwined to a wide array of 

factors leading to different responses.  
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1.2.1. Impact of infection on mating behaviour 

Sexual interactions pose the highest infectious disease risk of any social 

behaviour due to the involvement of physical contact (i.e. skin and genitals) and 

exposure to multiple body fluids (e.g. saliva, semen, vaginal fluids, blood), all of which 

can contain pathogens (Curtis & Biran 2001). Given the high risk, infection avoidance 

and choice of pathogen-free partners are expected even if the mechanisms of mate 

choice are costly to implement (Pomiankowski 1987). However, these costs of 

infection avoidance via mate choice have to be counter-balanced by benefits, such 

as increased reproductive success and offspring with better survival (Iwasa et al. 

1991). The assessment of the health status of potential mating partners appears to 

be a major force driving the evolution of behaviours associated with mate choice 

(Antonovics et al. 2011). At a pre-copulatory level, some bird species are known to 

perform cloacal inspection of their partners before mating (Sheldon 1993), and in 

mammals, genital inspection is an important step in assessing sexual receptivity 

(Dixson 1998), but it may also serve to identify infection (Antonovics et al. 2011). 

Genital self-grooming has been linked to a reduction of the risk of sexually transmitted 

infections (STI) in male rats (Hart et al. 1987), and in humans, post-copulatory 

urination is thought to reduce STI risk (Hooper et al. 1978; Donovan 2000). However, 

in a meta-analysis including several nonhuman primate species, no support was 

found for pre or post-copulatory behavioural counterstrategies (e.g. genital inspection 

prior to copulation, post-copulatory genital self-grooming or post-copulatory 

urination) related to risk factors for STI transmission (Nunn 2003).  

In numerous species, males infected with directly transmitted parasites (e.g. 

bacteria, nematodes, protozoan, and viruses) are less preferred as mating partners 

by their conspecific females (Beltran-Bech & Richard 2014). Similarly, female rock 

doves (Columba livia) prefer to mate with louse-free males (Clayton 1990). However, 

when the costs of infection avoidance via mate choice are not offset by the benefits, 

avoidance of infected conspecifics might not be observed (Beltran-Bech & Richard 

2014; Aguilar et al. 2008; Henderson et al. 1995; Ilmonen et al. 2009; Klein et al. 

1999). 
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1.3. Sexually Transmitted Infections (STIs)  

Sexually transmitted infections are mediated by a variety of pathogens, 

including viruses, bacteria, fungi, and protozoa, which cause a diverse array of 

clinical symptoms. STIs have several characteristics that distinguish them from other 

diseases. First, they tend to be slow developing diseases which normally cause 

sterility rather than mortality. Second, they may yield few or minor cues of infection 

(e.g. HIV, chlamydia and papillomavirus), thus limiting information that can be used 

by mate choosers to avoid mating with infected individuals. As a by-product, cryptic 

infections may also tend to be of relatively low virulence. Additionally, STIs are known 

to be persistent in the host, a trait that is useful to enable pathogen transmission in 

subsequent mating seasons and to enhance the likelihood of being carried with the 

host if it colonizes a new area or migrates into a new population (Antonovics et al. 

2011). 

 STIs can be grouped into infections that produce genital lesions (e.g., herpes 

simplex viruses, Treponema pallidum, Haemophilus ducreyi, Klebsiella granulomatis) 

and those, which can be sexually transmitted, but which do not generally produce 

genital lesions (e.g. human immunodeficiency virus [HIV], simian immunodeficiency 

virus [SIV], human T-lymphotropic virus, cytomegalovirus, [HPV], Human 

papillomavirus infection). The presence of STIs in the human society needs no 

introduction. Accounts date back to the 15th century, when an epidemic disease 

appeared in Europe provoking incurable sores throughout the body in both women 

and men. What we know today as syphilis, was previously denominated by a variety 

of names including the ‘Great Pox’, ‘French Disease’ and ‘Spanish Disease’ mainly 

due to the war time period in which the disease appeared (Quétel 1990; Oriel 1994; 

Arrizabalaga et al. 1997; Cartwright & Biddis 2000; Meyer et al. 2002). Likewise, 

gonorrhoea, another STI that has afflicted humans for centuries, has ancient 

references in Chinese and Hebrew writings (Jones & Lopez 2013). Despite these 

early records, STIs are far from being a disease from the past. According to the WHO 

2019, more than one million STIs are acquired everyday worldwide. The total number 

of distinct sexually transmitted or transmissible pathogens in humans now exceeds 

35 (Holmes et al. 2008). From those, eight have the greatest incidence of illness 
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among humans. Four of them are currently curable: syphilis, gonorrhoea, chlamydia 

and trichomoniasis. The other four are viral infections and are incurable: hepatitis B, 

herpes, HIV, and HPV, but can be mitigated or modulated through treatment (WHO 

2019). 

 

1.3.1. The bacterium Treponema pallidum 

Treponemes are gram-negative bacteria belonging to the family 

Spirochaetaceae within the order Spirochaetales. This family comprises several 

important human diseases (e.g., syphilis, Lyme disease, and relapsing fever), animal 

pathogens, as well as symbionts. Several symbiotic (i.e. mutualists) treponemes 

species have been identified in the digestive tract of cattle, termites and in the human 

gut microbiota of the Hadza hunther-gatherers (Lukehart 2008, Schnorr et al. 2014). 

These organisms appear to be important for host nutrition by increasing the ability to 

digest food items with high fibre content. A second family, Leptospiraceae, includes 

the agents of leptospirosis; a proposed third family, Brachyspiraceae, includes 

several species associated with gastrointestinal illnesses in humans and other 

mammals (Lukehart 2008). All members of the order Spirochaetales are 

characterized by their spiral shape, corkscrew motility, and the existence of 

periplasmic flagella known as endoflagella (Lukehart 2008). The three 

morphologically identical subspecies of Treponema pallidum (TP) are subsp. pallidum 

(causing syphilis in humans), subsp. pertenue (causing yaws), and subsp. 

endemicum (causing bejel). T. carateum is a closely related organism causing 

infections responsible for a nowadays rare disease called ‘pinta’ (Meheus & Ndowa 

2008). Further, these three treponemes subspecies cannot be distinguished 

serologically. 

Many pathogenic treponemes are uncultivable and slow-growing 

microorganisms (Radolf et al. 2016), making them difficult to study. The bacterium TP 

is an obligate pathogen which thrives in moist regions of the body of its host and will 

survive and reproduce in environments with little oxygen, being killed by heat, 

dehydration, and sunlight (Jones & Lopez 2013). In contrast to other spirochetes or 

other gram-negative bacteria, the outer membrane of TP lacks lipopolysaccharide 
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(Hardy & Levin 1983, Fraser et al. 1998) and it has a deficiency of integral membrane 

proteins (Radolf et al. 1989; Walker et al. 1989). It was suggested that the surface of 

the bacterium is covered by a mucopolysaccharide “slime layer” (Christiansen 1963, 

Fitzgerald & Johnson 1979) or by host-derived proteins (Alderete & Baseman 1979), 

thus blocking the binding of specific antibodies to surface antigens. This relative 

antigenic inertness of the T. pallidum surface led to the coining of the term “stealth 

pathogen” (Radolf 1994). 

 

 

1.3.2. Treponema pallidum in humans 

Syphilis (caused by TP subsp. pallidum), has been recognized as a sexually 

transmitted infection for at least five centuries (Dennie 1962). In most cases, 

infections are acquired through sexual contact with an actively infected partner. The 

treponemes enter the host tissue through mucosal surfaces or microscopic skin 

abrasions. Syphilis manifests itself in three main stages: primary, secondary and 

tertiary. Transmission requires exposure to the moist mucosal or cutaneous ulcers of 

primary or secondary syphilis. Genital ulcers, known as hard chancre, are the most 

common manifestation of primary syphilis which becomes clinically apparent within 

3–4 weeks following infection (Salazar et al. 2002). These primary ulcers have a clear 

base, without exudate and are painless, an important feature contributing to the 

successful spread of this disease. In the absence of treatment, syphilitic chancres 

heal spontaneously within 3–6 weeks where the patient enters into a period of latency 

and no infection can be transmitted (Sparling et al. 2006). Within a few weeks or 

months a systemic illness develops, characterized by low-grade fever, malaise, sore 

throat, headache, adenopathy, and cutaneous or mucosal rash. The development of 

secondary lesions is a result of the haematogenous and lymphatic dissemination of 

TP (Sparling et al. 2006). Subsequently, these symptoms disappear after a few 

weeks, and the individual progresses to the latency stage after an average of about 

15 weeks. After this stage, if untreated, patients could progress to the tertiary stage 

(gummatous, cardio- and/or neurosyphilitic) which appeared in approximately 30% of 

infected persons in the preantibiotic era (Lukehart 2008), but nowadays this stage is 

rarely observed, due to advances in medical treatment. Moreover, syphilis can be 
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transmitted vertically to the foetus via transplacental invasion or amniotic fluid 

infection leading to congenital syphilis (Wendel et al. 1991).  

Yaws (caused by TP subsp. pertenue), as opposed to syphilis, is a non-

venereal disease that is transmitted by direct skin contact through open lesions, bites 

and excoriations. Yet, as in syphilis, the clinical manifestations of yaws are divided 

into early (including primary and secondary lesions) and late stage disease 

(Engelkens et al. 1991). Yaws occurs primarily in warm, humid, tropical areas of 

Africa, Asia, Latin America and some Pacific islands and it is usually contracted 

during childhood (Meheus & Ndowa 2008; WHO 2019). An initial lesion (mother 

yaws) develops at the point of entry of the pathogen and it produces a lesion exudate 

rich in treponemes which is highly infectious. Secondary lesions are characterized by 

large, raised papillomas and papules from which exudation of highly infectious lesions 

is a feature. Early lesions on the palms and soles include hyperkeratotic or squamous 

macular lesions, which may be combined with a papilloma. If such papillomas 

develop on the soles of the feet, walking becomes very painful. The late stage of 

disease develops in about 10% of patients circa 5–10 years after the initial infection. 

Treponemes are microscopically scanty or absent in late lesions. Late lesions may 

affect the skin and subcutaneous tissues, including the skin of the palms and soles, 

the mucosae, and the bones and joints (Meheus & Ndowa 2008).  

Bejel (caused by TP subsp. endemicum), also known as endemic syphilis, is 

essentially a disease of hot, dry countries and was until recently considered as a non-

venereal disease where transmission occurred only via infectious lesions on the skin 

and mucous membranes, often through the use of common feeding utensils (Meheus 

& Ndowa 2008). However, recently sexual transmission of bejel has been reported as 

well, along with the presence of genital ulcers (Noda et al. 2018). Similarly to syphilis 

and yaws, it is divided in early and late stage of infection but primary lesions are rarely 

seen and tend to favour moist areas of the body such as mouth corners and armpit. 

In a late stage severe destruction of the skin, bones and cartilage may occur 

especially in the nose and palate (gangosa).  
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1.3.3. Treponema pallidum in animal populations 

Treponemal infections have been recognized in different nonhuman species. 

Treponema paraluisleporidarum ecovar Cuniculus and Treponema 

paraluisleporidarum ecovar Lepus are natural venereal infections of rabbits and 

hares, respectively (Šmajs et al. 2018). The critically endangered Australian Gilbert’s 

potoroo (Potorous gilbertii) harbours a treponemal infection causing a green 

discharge on the male’s genitalia (Vaughan et al. 2009, Vaughan-Higgins et al. 2011; 

Hallmaier-Wacker et al. 2019). In nonhuman primates, large numbers of infected 

individuals with Treponema pallidum (e.g., baboons [Papio sp.], green monkeys 

[Chlorocebus sp.] or guenons [Cercopithecus sp.], red colobus [Piliocolobus sp.], 

and chimpanzees [Pan trogoldytes]) have been reported in West Africa (Fribourg-

Blanc et al. 1963; Fribourg-Blanc & Mollaret 1969). Clinical symptoms (when present 

at all) were usually described as small keratotic lesions and ulcers on the muzzle, 

eyelids and armpits (Baylet et al. 1971a, b; Fribourg-Blanc & Mollaret 1969; Fribourg-

Blanc & Siboulet 1972). However, yaws-like orofacial and limb lesions or ulcerative 

anogenital skin lesions are also reported from NHPs in West Africa (Knauf et al. 

2018). Similarly, in Central Africa, extensive facial lesions are the most common 

clinical symptoms in great apes resembling symptoms seen in humans affected by 

yaws (Lovell et al. 2000; Levrero et al. 2007). 

In East Africa, genital lesions were observed in olive baboons (Papio anubis) in 

Gombe Stream National Park in Western Tanzania. Wallis & Lee (1999) suspected 

that TP was the agent causing this genital disease in the baboons. Later, similar 

genital lesions were found in olive baboons in Lake Manyara National Park (Mlengeya 

2004). Harper et al. (2012) and Knauf et al. (2012) were able to confirm that a TP 

subsp. pertenue-like organism (TPE) was causing the disease. Clinical manifestations 

of TPE infection in NHPs range from asymptomatic to severe skin ulcerations, mainly 

affecting the face or genitalia (Harper & Knauf 2013). The high frequency of observed 

genital ulcerations in sexually mature individuals suggests that the pathogen is 

sexually transmitted (Mlengueya 2014; Knauf et al. 2012; Knauf et al. 2018). NHPs in 

other parts of Tanzania such as yellow baboons (Papio cynocephalus), blue monkeys 

(Cercopithecus mitis) and vervet monkeys (Chlorocebus pygerythrus) are also 
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infected with the same bacterium (Chuma et al. 2018). Interestingly, in Tanzania, in 

contrast to the great apes of Central Africa, clinical symptoms appear mainly in the 

ano-genital region, resembling more a syphilis-like infection, although facial lesions 

also occur (Chuma et al. 2018). 

 

 

1.3.4. The link between human & nonhuman treponemes 

 

Treponemes, causing yaws, bejel and syphilis are pathogens of global 

importance for human and animal health (Šmajs et al. 2018). Genetically, the strains 

infecting baboons in West and East Africa are closely related to TP pertenue, which 

causes yaws in humans (Harper et al. 2008, Harper et al. 2012, Knauf et al. 2018). A 

first indication of potential cross-species infection is the obvious spatial overlap of 

areas of NHP infection in sub-Saharan Africa with areas where yaws is common in 

humans (Knauf et al. 2013). Additionally, in an ethical questionable study, a strain 

isolated from a baboon in Guinea (the Fribourg-Blanc simian strain, Fribourg-Blanc et 

al. 1966) caused sustainable infection in humans after experimental inoculation 

(Smith et al. 1971). A major source of zoonotic infection might be the processing and 

the consumption of bush meat by humans as TPE is mainly transmitted through direct 

contact with the exudate of infectious lesions (Richard et al. 2017). An alternative 

route of infection of TP by flies as vectors has been proposed (Kumm & Turner 1936; 

Satchell & Harrison 1953). In a recent study, DNA of TP was actually found on 

necrophagous flies (Chrysomya putoria and Musca sorbens) in areas of high 

prevalence of the disease in NHPs of Lake Manyara National Park (Knauf et al. 

2016). However, the risk of acquiring treponemal infection through fly vectors was 

not examined in this study. Despite being theoretically possible for NHPs (and 

humans) to acquire the infection through flies, direct mucosa contact (i.e. sexual 

contact) should be considered the most likely way of transmission at an intraspecific 

level. Since Tanzania is among the 76 countries with a known history of human yaws 

(despite the lack of recent epidemiologic data, Marks 2016), studies on the spatial 

distribution of NHP infection with T. pallidum and genetic characterization of simian 

strains, are crucial for identifying whether NHPs might be acting as possible disease 

reservoirs for human infection (Hallmaier-Wacker et al. 2017).  
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1.4. Mating systems in nonhuman primates and its relation to STIs 

Social and mating behaviour are major determinants of close contact among 

individuals within populations, and thus constitute major pathways for disease 

transmission. In NHPs various mating systems can be found (i) monogamy, where 

males and females typically mate with only one member of the opposite sex and have 

roughly equal variances in reproductive success (MacKinnon & MacKinnon 1980; 

Robinson et al. 1987; Rutberg 1983; Sommer & Reichard 2000); (ii) polyandry, in 

which one female mates with several males and each male mates only with that 

female (Garber 1997; Goldizen 1987; Tardif & Garber 1994); (iii) different forms of 

polygyny (i.e spatial polygyny, Charles-Dominique 1977; scramble-competition 

polygyny, Kappeler, 1997; female defense polygyny, Gerloff et al. 1999;) and (iv) 

polygynandry, where both sexes typically mate with several partners (Bercovitch 

1989; Brockman & Whitten 1996; Altmann et al. 1997).  

Other aspects of disease manifestation (e.g., effects on host fertility vs. 

mortality) and host mating systems (monogamy vs. promiscuity) might influence 

disease transmission patterns. Sexually transmitted infections are considered 

frequency dependent, in contrary to other diseases like measles which are density-

dependent, where host contact rate varies linearly with density (Earn et al., 2000). In 

the first, the transmission is constant, as it is not dependent on the density but rather 

on the mean number of sexual partners per host and its associated variance (Smith & 

Dobson 1992; Lockhart et al. 1996; Thrall et al. 1997, 2000).  

Since infection risk differs among species and covaries with different host 

features such as social and mating systems, an increased risk of infectious diseases 

should be accompanied by a greater immune defence (Harvey et al. 1991). In 

mammals, quantitative measures of immune defence include spleen size (Larson 

1985), and numbers of circulating leukocytes (Bennett & Hawkey 1988). In primates, 

spleen mass does not seem to be a useful predictor of disease risk and it appears not 

to be related to increased promiscuity (Nunn 2002b). However, higher leukocyte 

counts have been found to be more prevalent in promiscuous than monogamous 

NHPs (Nunn et al. 2000, Nunn 2002a; Andersson et al. 2004). Lastly, promiscuous 

species show faster evolving immune genes (for the subset of genes that interact 
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closely with pathogens) which was hypothesized to be an adaptive response to 

sexually transmitted infections (Wlasiuk & Nachman 2010).  

 

 

1.5. Study aims and approach 

The overall aim of this study is to provide a detailed analysis of the mating 

behaviour of a group of olive baboons (Papio anubis) afflicted with a putative sexually 

transmitted infection (Treponema pallidum). Specifically, I want to test whether genital 

ulcerations have an impact at the (i) pre-copulatory level more precisely on whether 

mating avoidance occurs and thus leading to mate choice (Chapter 2) and on the (ii) 

post-copulatory level, specifically the behaviours following a mating event (Chapter 

3). The mating behaviour of wild baboons was first described and analysed in detail in 

Altmann & Altmann (1970) and Hausfater (1975). However, the following decades 

focused more on the study of the social systems, and despite early accounts on 

baboon sexual behaviour and behavioural changes of males and females in relation 

to menstrual cycling (e.g. Rowell 1967, 1969a,b; Saayman 1970; Hausfater 1975), 

recent quantitative reports on sexual behaviour and copulatory patterns are scarce. 

In chapter 2 and chapter 3 I aimed to fill this gap. 

The unique constellation of a large population combined with a high TPE-

infection associated with genital ulcerations provides an exceptional opportunity to 

test the impact of STIs on the mating behaviour of a group of a wild nonhuman 

primate and to get a better insight of the complex interaction between host-pathogen 

in wild populations.  

 

1.5.1. Study site 

This study was conducted at Lake Manyara National Park (LMNP) located in 

Northern Tanzania, during two field seasons (April-December 2015 and 2016). I was 

based inside the park at the Endala Research Camp. LMNP is a small protected area 

(approx. 580 km2) with almost 220 km2 of lake coverage and it is characterized by 

different ecosystems such as the ground water forest, acacia woodland, mixed 

woodland and rift escarpment (Snelson 1986). It also contains a wide diversity of 

large mammals like the African elephant (Loxodonta africana), African buffalo 
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(Syncerus caffer), Masai giraffe (Giraffa camelopardalis tippelskirchii), hippopotamus 

(Hippopotamus amphibious), lion (Panthera leo), leopard (Panthera pardus) and 

spotted hyena (Crocuta crocuta) (Snelson 1986). Additionally it is home to five 

primate species: lesser bushbaby (Galago senegalensis), large-eared greater galago 

(Otolemur crassicaudatus), vervet monkey (Chlorocebus pygerythrus), blue monkey 

(Cercopithecus mitis) and olive baboon (Papio anubis). In 2016 we conducted a 

survey and estimated that approximately 5,200 olive baboons live in the park 

(excluding the recently added area of 250 km2 from the Marang forest), making 

LMNP one of the parks with the highest baboon densities in East Africa. 

 

1.5.2. Study species 

The radiation of modern baboons (genus Papio) began about 2 million years 

ago (Zinner et al. 2013). Currently six phylogenetic species are recognised: 

hamadryas (P. hamadryas), Guinea (P. papio), Kinda (P. kindae), yellow (P. 

cynocephalus), chacma (P. ursinus) and olive baboon (P. anubis). The last four 

species are characterized by their multi-male multi-female social organization, 

promiscuous mating and male-biased dispersal (Packer 1975; Smuts 1985; Melnick 

& Pearl 1987; Swedell 2011). In contrast, hamadryas and Guinea baboons are 

characterized by their multi-level society consisting of one-male units, clans and 

gangs. Their mating system is classified as polygyn-monandric and with female-

biased dispersal (Kummer 1968; Schreier & Swedell 2009; Boese 1973, 1975; Galat-

Luong et al. 2006; Kopp et al. 2015; Goffe et al. 2016, Fischer et al. 2017).  

Olive baboons have been extensively studied with regard to their ecology, 

social behaviour and reproduction (e.g. Rowell 1967; Packer 1980; Bercovitch 1983, 

1987, 1988, 1989; Strum 1983, 1991; Higham et al. 2008; Walz 2016, Silk et al. 

2018; Städele et al. 2019). Olive baboon females (as females of other Papio species) 

exhibit typical oestrogen dependent ano-genital sexual swellings around the time of 

ovulation. During this period, females also show an increased proceptive behaviour 

(i.e. presenting the genital area to the male, Rowel 1967). Both, conspicuous 

swellings and proceptive behaviour attracts males and most copulations happen 

during the peak swelling period (Hausfater 1975; Saayman 1970, Gesquiere et al. 
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2007). Also males and females establish consortships during this period, which 

involve close spatial association between the female and the consorting male, and 

mating monopolization by the male (Seyfarth 1978; Packer 1979; Bercovitch 1985; 

Smuts 1985).  

Before starting the data collection I had to habituate the study group to human 

presence using daily follows on foot. This process lasted approximately four months. 

To enhance group location, licensed wildlife veterinarians placed radio-collared on 

three adult females (Advanced Telemetry Systems, ATS), Inc. (Isanti, MN, USA). Our 

olive baboon study group is the largest studied to date, with approximately 170 

individuals (including at least 35 adult males and 53 adult females). I conducted focal 

follows (Altmann 1974) from dawn to dusk on cycling (oestrous) subadult and adult 

females and prioritized following females in their peak oestrus (denoted by maximal 

tumescence of the anogenital area and bright pink colour, Zinner et al. 2004) to 

maximize the number of mating events observed. 

 

1.5.3. Assessing age and genital health status of the group 

In my study, I focused on reproductively active individuals, i.e. adult and 

subadults of both sexes. Age categories used followed Rowell (1969b). Adult males 

were identified by their large body size and fully developed secondary sexual traits 

(e.g., large shoulder mane, elongated canines). Subadult males were larger than 

females but lacked secondary sexual characteristics. Adult females were identified as 

individuals that have reached full body size, whereas subadult females were smaller 

and lacked elongated nipples (i.e. nulliparous but already cycling). 

In order to assess the genital heath status (GHS) of the group, all adults and 

subadults were assigned a category of either “ulcerated” or “non-ulcerated” (as in 

Knauf et al. 2012). I also categorized immature individuals when possible but these 

were not used for the analysis. Genital ulcerations could be observed ranging from 

small lesions to a progressive scarification of the anogenital tissue leading to a severe 

mutilated vagina and anus in females, while males could display a substantial to 

complete loss of the penis. Ulcerated individuals were observed in most baboon 

groups in the national park, and thus were not restricted to any specific areas.  
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ABSTRACT 

In nonhuman primates pathogens are known to exert a profound and 

pervasive cost on various aspects of their sociality and reproduction. In olive baboons 

(Papio anubis) at Lake Manyara National Park, genital skin ulcers caused by 

Treponema pallidum subsp. pertenue lead to mating avoidance in females and 

altered mating patterns at a pre-copulatory and copulatory level. Beyond this level, 

sexual behavior comprises also post-copulatory interactions among the sexual 

partners. To investigate whether the presence of genital skin ulcers has an impact at 

the post-copulatory level, we analyzed 517 copulation events of 32 cycling females 

and 29 males. The occurrence of post-copulatory behaviors (i.e., copulation calls, 

darting [female rapid withdraw from the male] and post-copulatory grooming) was not 

altered by the presence of genital skin ulcerations. Similarly to other baboon 

populations, females of our group were more likely to utter copulation calls after 

ejaculatory copulation. The likelihood of darting was higher after ejaculatory 

copulations and with the presence of copulation calls. Post-copulatory grooming was 

rarely observed but when it occurred, males groomed females for longer periods 

when females uttered copulation calls during, or preceding mating. Our results 

indicate that despite the presence of conspicuous genital skin ulcers, the post-

copulatory behavior was not affected by the genital health status of the dyad. This 

suggests that infection cues play a major role before and during mating but do not 

affect post-copulatory behavior. 

 

Keywords: sexually-transmitted infection, genital skin ulcers, copulation call, darting, 

post-copulatory grooming, diseases 
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1 INTRODUCTION 

Mating is intrinsically associated with sexual selection, which occurs through 

competition over mates or mate choice (Darwin, 1871; Anderson, 1994). Mate 

choice might confer both direct and indirect fitness benefits to the choosy individual. 

Such benefits might be a higher level of parental care or the accumulation of “good 

genes” in the offspring (Andersson, 1994, Kokko et al., 2003). One important fitness 

criterion in the mating context is the health status of the potential partner. Thus, 

individuals should choose healthy partners, since mating with a sick individual may 

not only have negative effects on the offspring (i.e. a poor health status can be an 

indication of a poor immune system which would then passed on to the offspring), but 

also on the health of the choosy individual itself, if the disease can be transmitted 

(Hillgarth, 1996; Martinez-Padilla et al., 2012). The latter becomes particularly 

obvious if the disease is sexually transmitted. A poor health status can alter both the 

individual´s attractiveness as a sexual partner, and its competitive ability and 

performance in the mating context (Beltran-Bech et al., 2014). This is particularly true 

when courtship and mating are energetically demanding phases (Key & Ross 1999). 

In some primate species, males follow females for hours and days, maintain 

close proximity, increase their grooming bouts and try to monopolize mating (e.g., 

Smuts, 1987; Dixson, 2013). Such an investment comes along with time and energy 

costs, which diseased males might not be able to cover. Likewise, females might not 

engage with males during copulation, e.g., not showing proceptive and receptive 

behavior, not permit subsequent matings or not showing interest in post-copulatory 

grooming. 

In baboons, copulations are usually defined by male mounting with intromission 

and pelvic thrusts upon the female, which can culminate with ejaculation (Saayman, 

1970, Ransom, 1981). Yet, the number of mounts and pelvic thrusts per mount may 

vary. An ejaculatory mount is usually identified by an ejaculation pause, where the 

male remains rigid upon the female for a few seconds (Saayman, 1970). During or 

after copulation, females might utter copulation calls which are typically low-

frequency rhythmic vocalizations (Bouquet et al., 2018). In addition, female baboons 

often exhibit a characteristic post-coital sprint over several meters away from the 
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male, a post-copulatory withdraw-behavior that is known as ‘darting’ (Hall & DeVore 

1965; Saayman, 1970; Ransom, 1981; Smuts, 1985; Bercovitch, 1995; Collins, 

1981; O’Connell & Cowlishaw 1995). Finally, pairs may engage in post-copulatory 

grooming (PCG), which can be initiated either by the male or the female (Saayman, 

1970). 

At Lake Manyara National Park (LMNP), olive baboons (Papio anubis) are 

infected with a putative sexually transmitted infection caused by the bacterium 

Treponema pallidum subsp. pertenue (TPE, Knauf et al., 2012, 2018; Harper et al., 

2012; Chuma et al., 2016). Clinical symptoms are characterized by genital skin 

ulcers (in the following referred to as genital ulcers), a moderate to severe ulceration 

of the anogenital skin in both males and females (Figure 1). Progressive scarification 

of the tissue can lead to a permanently open state of the vagina and anus in females; 

while in males it cause phimosis or loss of the corpus penis (Knauf et al., 2012). At 

LMNP, genital ulcers in baboons have been linked with mating avoidance by females 

and altered copulatory patterns by males, i.e., ulcerated individuals exhibit fewer 

pelvic thrusts (Paciência et al., 2019). Since TPE infection has been associated with 

pre-copulatory mate choice, we aimed to investigate whether the post-copulatory 

behavior is altered by the genital health status (i.e. presence of genital ulcers) of the 

mating pairs. 
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FIGURE 1 Genital skin ulcerations caused by Treponema pallidum subsp. pertenue in an 

adult female (top) and a subadult male (bottom) olive baboon at Lake Manyara National Park, 

Tanzania. 
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2 MATERIALS AND METHODS 

This research adhered to the rules and regulations of the Tanzanian and German 

laws. The Animal Welfare and Ethics Committee of the German Primate Center 

approved the entire study. 

 

2.1 Study site and subjects 

Fieldwork was conducted at LMNP, Northern Tanzania, during two field seasons 

(April to December) in 2015 and 2016. Our baboon group was habituated during four 

months before the data collection phase of the study to facilitate behavioral 

observations from a distance of fewer than five meters. 

The group consisted of approximately 170 individuals, of which 53 were adult 

and subadult females, 35 adult and subadult males and more than 70 immature 

individuals. In our analyses, we included 32 cycling females and their 29 male 

partners which could all be individually identified. The genital health status (GHS) was 

visually assessed and all adult and subadult individuals were classified as either 

genitally “ulcerated” or “non-ulcerated” using macroscopic visual cues (Knauf et al., 

2012). Genital ulcerations could range from small-medium ulcers to a severe 

mutilation of the outer genitalia (Figure 1). 

 

2.2 Behavioral data 

We conducted full-day focal follows (Altmann, 1974) from dawn to dusk on 32 cycling 

females. To maximize the number of observed mating events, we focused on females 

in their peak estrus, denoted by maximal tumescence and bright pink color of their 

anogenital skin (Zinner et al., 2004). We collected 597 hours of observation data, 

with an average of 16.40 ± 10.02 hours (mean ± SD, range 1.50 – 39.00 hours) per 

focal female. We collected data on the number of mating events, type of copulation, 

and the presence of copulation calls, darting behavior and PCG (Table 1). Behavioral 

data were recorded in the field on a hand-held Samsung Galaxy using Pendragon 

5.1.2 software (Pendragon Software Corporation, USA). 
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TABLE 1 Definition of variables 

 Definition 

Copulation/mating event 
male mounting an estrous female and performing pelvic thrusts (with 

intromission*) and with or without ejaculation 

Type of copulation 

ejaculatory or non-ejaculatory: indicated by visible fresh sperm on the 

male’s penis or by the sperm plug on the female’s genitalia after 

copulation 

Pelvic thrusts 
number of male pelvic thrusts during copulation 

 

Copulation call context-specific calls female utter during, or at the end of a copulation 

Darting 
rapid withdraw in which a female can run away several meters from 

the male after copulation 

Post-copulatory 

grooming (PCG) 

male/female grooms the mating partner 15 seconds after copulation 

occurred 

*Except for severely ulcerated males that lack the corpus penis as intromission cannot occur 

 

 

2.3 Statistical analysis 

We run generalized linear mixed models (GLMM, Baayen, 2008) to examine the post-

copulatory behavior of our baboon population. All models were performed in R v3.4.4 

(R Core Team 2018) with the lme4 package v 1.1-15 (Bates et al., 2015) and 

collinearity of the variables was checked using the package car (Fox & Weisberg 

2011). Maximum likelihood ratio tests were used to test the full model with fixed 

factors against the null model (Faraway, 2006). Since interactions between the fixed 

predictors did not significantly improve any model fit, we excluded them from all 

models for parsimony and a more reliable interpretation of the main effects. In all 

models, female, male and pair identities were included as random factors. 

 

2.5 Model description 

Model 1: Copulation calls 

The first model analyzed whether the occurrence of copulation calls was affected by 

the male or female GHS, the type of copulation, or the number of pelvic thrusts. The 

response variable was the presence or absence of copulation calls per mating event 

(1/0) with a binomial error structure and a logit link function.  
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Model 2: Darting behavior 

With the second model, we examined whether post-copulatory darting was affected 

by the male or female GHS, type of copulation and the occurrence of copulation calls. 

The response variable was the presence or absence of darting per mating event (1/0) 

with a binomial error structure and a logit link function. 

 

Model 3: Occurrence of post-copulatory grooming (PCG) 

With the third model we investigated whether the occurrence of PCG is affected by 

the GHS of the male and female, respectively, presence of copulation calls and the 

type of copulation. Here the response variable was the presence or absence of PCG 

per mating event (1/0) with a binomial error structure and a logit link function.  

 

Model 4: Duration post-copulatory grooming (PCG) 

With this model, we examined whether the duration of PCG (in seconds) was affected 

by the presence of copulation calls and the type of copulation. Here we generated 

two GLMMs; one model for PCG performed by males (PCG-M) and another for PCG 

performed by females (PCG-F). Each model assumed that the duration of PCG 

depended on the presence of copulation calls and type of copulation. Both models 

were fitted using the glmmADMB package (Fournier et al., 2012) with a negative 

binomial error structure and a logit link function. 

 

 

3 RESULTS 

The prevalence of ‘genital ulcerated’ individuals in our study group (determined 

visually) remained relatively stable throughout the 18-months study period. Only three 

adult females and three adult males switched from ‘non-ulcerated’ to ‘ulcerated’ 

between field seasons. Therefore, at the end of the study, 44% (N=23) of the 53 adult 

and subadult females and 47% (N=17) of the 35 adult and subadult males displayed 

genital ulcers (Figure 1). Genital ulcers were observed in 40% (N=32) of the females 

participating in sexual interactions and in 53% (N=35) of the males. In total, we have 

observed 517 copulations among 32 females and 29 males. Evidence for ejaculation 
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was found in 31.5% (N=163) of the copulations. Females uttered copulation calls in 

25.5% (N=132), darting occurred in 41.7% (N=216) and PCG in 27.2% (N=141). 

The frequency of copulations calls and darting differed slightly between ejaculatory to 

non-ejaculatory copulations (Figure 2). But the likelihood of uttering copulation calls 

increased with ejaculatory mating (p<0.001, Table 2). Males who lacked the corpus 

penis were observed ejaculating towards the ground or against their legs as there 

was no way to direct the sperm into the female´s genital tract. Nevertheless, two 

females in our study group uttered copulation calls even when mating with males 

lacking the corpus penis, where intromission was not observed (i.e., males solely 

performed pelvic thrusts). 

 

 

 

 

 

 

 

FIGURE 2 Frequency of copulation calls and darting after ejaculatory copulations (top; n = 

163) and non-ejaculatory copulations (bottom; n = 354). Total number of copulations = 517. 
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TABLE 2 Copulation call model. Binary GLMM evaluating if the likelihood of uttering a 

copulation call is affected by the male and female genital health status (GHS), the number of 

pelvic thrusts and the type of copulation. Estimates, standard errors (SE), z-values, and 2.5% 

and 97.5% confidence intervals (CI) are shown for fixed effects. Intercept with a reference 

category for ulcerated individuals and ejaculatory events. 

 

Term Estimate SE CI lower CI upper z value P 

Intercept -3.725 0.830 -5.639 -2.245 -4.490 - 

Male GHS 0.057 0.803 -1.518 1.758 0.071 0.944 

Female GHS 1.482 0.945 -0.347 3.553 1.569 0.117 

Type of copulation 2.800 0.430 2.005 3.706 5.759 <0.001 

 

 

Darting was observed in 80% (N=131) of the copulations with ejaculation, in contrast 

to only 24% (N=85) of the non-ejaculatory copulations. Darting was also more 

frequent when females uttered copulation calls (94%, N= 81). These observations 

were corroborated by our second model. The likelihood of darting was higher when 

females gave copulation calls and when the male ejaculated (p<0.001, Table 3). 

Darting never led to the termination of a consortship as males kept track of the 

females, even if the female covered distances of more than 10 meters. Moreover, 

consort take-overs were rarely observed in our group (n=7 over the 18-months study 

period). 

 

 

TABLE 3 Post-copulatory darting model. Binomial GLMM evaluating if the likelihood of darting 

is influenced by the male and female genital health status (GHS), presence of copulation calls 

and type of copulation. Estimates, standard errors (SE), z-values, and 2.5% and 97.5% 

confidence intervals (CI) are shown for fixed effects. Intercept with reference category for 

ulcerated individuals, presence of copulation calls and ejaculatory events. 

 

Term Estimate SE CI lower CI upper z value P 

Intercept -1.468 0.503 -2.537 -0.497 -2.919 - 

Male GHS -0.525 0.621 -1.714 0.770 -0.844 0.118 

Female GHS 0.883 0.565 -0.242 2.092 1.563 0.398 

Copulation call 2.408 0.480 1.502 3.402 5.017 <0.001 

Type of copulation 2.500 0.380 1.781 3.277 6.586 <0.001 
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In most cases (72.8%, N= 376), no PCG occurred. When it occurred, males initiated 

PCG more often than females regardless of the type of copulation (Table 4). The 

occurrence of PCG was neither affected by the occurrence of copulation calls nor by 

the type of copulation (Table 5). However, the duration of PCG performed by males 

was longer when females uttered copulation calls (p=0.019). No effect was found for 

PCG initiated by females (Table 6). 

 

TABLE 4 Frequency of post-copulatory grooming (PCG) initiation in relation to copulation 

type (number of cases in parentheses). 

 

 Copulations  

(512)* 

Ejaculatory  

30.6 % (159) 

Non-ejaculatory  

68.2 (353) 

No PCG 72.7% (376) 77.3 % (123) 71.46% (253) 

Male initiated 17.7% (92) 15 % (24) 19.2 % (68) 

Female initiated 8.5% (44) 4.5 % (12) 9 % (32) 
*Five copulations excluded from the total (n= 517) as PCG could not be assessed properly  

 

 

TABLE 5 Post-copulatory grooming (PCG)-presence model. Binomial GLMM evaluating if the 

likelihood of PCG is affected by the male and female genital health status (GHS), presence of 

copulation calls and type of copulation. Estimates, standard errors (SE), z-values, and 2.5% 

and 97.5% confidence intervals (CI) are shown for fixed effects. Intercept with reference 

category for ulcerated individuals, presence of copulation calls and ejaculatory events. 

 

Term Estimate SE CI lower CI upper z value P 

Intercept -1.278 0.257 -1.819 -0.770 -4.978 - 

Male GHS 0.520 0.307 -0.125 1.130 1.695 0.090 

Female GHS 0.017 0.377 -0.828 0.681 -0.045 0.964 

Copulation call -0.070 0.319 -0.707 0.561 -0.220 0.826 

Type of copulation -0.178 0.278 -0.739 0.362 -0.641 0.521 
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TABLE 6 PCG duration model. GLMMs evaluating if the duration of PCG is affected by the 

presence of copulation calls and type of copulation. Estimates, standard errors (SE), z-

values, and 2.5% and 97.5% confidence intervals (CI) are shown for fixed effects. PCG 

performed by males and females is shown in PCG-M and PCG-F respectively. Intercept with 

reference category for ulcerated individuals, presence of copulation calls and ejaculatory 

events (GHS = genital health status). 

 

Term Estimate SE CI lower CI upper z value P 

 PCG-M 

Intercept 5.213 0.185 4.851 5.575 28.24 - 

Male GHS 0.106 0.191 -0.268 0.480 0.555 0.579 

Female GHS -0.197 0.180 -0.550 0.156 -1.091 0.275 

Copulation call 0.472 0.201 0.078 0.864 2.352 0.019 

Type of copulation 0.029 0.198 -0.359 0.417 0.147 0.883 

 PCG-F 

Intercept 5.229 0.229 4.780 5.677 22.84 - 

Male GHS 0.337 0.327 -0.304 0.978 1.029 0.304 

Female GHS -0.124 0.331 -0.773 0.525 -0.375 0.708 

Copulation call -0.147 0.456 -0.485 0.780 0.456 0.648 

Type of copulation 0.164 0.588 -0.381 0.709 0.588 0.556 

 

 

4 DISCUSSION 

The impact of sexually transmitted infections on the mating behavior of nonhuman 

primates is still poorly understood. Our data from the LMNP baboons suggest that 

genital ulcers have an impact on female mate choice and male mating performance 

(Paciência et al., 2019), whereas the post-copulatory behavior seems to remain 

unaffected by the presence of genital ulcers. 

Female olive baboons at LMNP produce copulation calls less often than other 

baboon species (yellow baboons: 80%, Collins, 1981; 96.9%, Semple, 1998; chacma 

baboons: 83%, Saayman, 1970; O’Connell & Cowlishaw 1994; Guinea baboons: 

39%, Boese, 1973; olive baboons: 19%, Ransom, 1981; 62%, Bercovitch. 1985, 

25% this study; but not hamadryas baboons: 18%, Swedell & Saunders 2006; 26.1% 

Nitsch et al., 2011). Moreover, female olive baboons at LMNP uttered copulation 

calls more likely when mating was followed by ejaculation. Similar findings were 

observed in previous studies, where copulation calls occurred more frequently, or 
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had a longer duration after ejaculatory copulations (Saayman, 1970; Deputte & 

Goustard 1980; Collins, 1981; Todt et al., 1995; O’Connell & Cowlishaw 1994; Walz, 

2016, but see Semple et al., 2002). Copulation calls have been suggested to 

constitute a mechanism to incite male-male competition in chacma baboons 

(O’Connell & Cowlishaw 1994; Crockford et al., 2007). In olive baboons, however, 

due to the long-term consortships (i.e. during the estrous periods) and even 

“friendships” (i.e., outside the estrus period (Smuts, 1985)), it was proposed that 

copulation calls function to reassure consortship formation and/or continuation with 

mating partners (Walz, 2016). According to the female choice hypothesis, calls can 

be directed to the current partner to encourage mate-guarding or to continue 

copulating (Todt et al., 1995). This can lead to a reduction of the likelihood of 

copulating with other partners and an increase in paternity certainty in males 

preferred by the female (Maestripieri & Roney 2005).  

The occurrence and frequency of darting behavior is highly variable among olive 

baboons (25%, Ransom, 1981; 92%, Bercovitch, 1985; 76%, Walz, 2016, 41.7%, 

this study) as well as in chacma baboons (78%, Hall, 1962; 75%, Hall & DeVore 

1965; 86–89%, Saayman, 1970; 78%, O’Connell & Cowlishaw 1995). In our study 

group, females darted more often after an ejaculatory mating and when the female 

uttered copulation calls. Similar observations were reported in another population of 

olive baboons, where females darted longer distances after ejaculatory copulations 

(Walz, 2016). While darting distance in chacma baboons was not affected by the 

occurrence of ejaculation, it was positively correlated with the duration of copulation 

calls (O’Connell & Cowlishaw 1995). In olive baboons, females have been described 

to run immediately after the copulation from the mating male towards another male 

(Hall & DeVore 1965), leading to consort take-overs (Smuts, 1985). Such behavior 

was not observed at LMNP as the darting female was usually followed by the 

consorting male, and consort take-overs were seldom observed. This might be due to 

the long term bonds observed between males and females in estrus, as females 

would frequently mate with the same male during different cycling periods (Paciência 

et al., 2019). 

The function of post-copulatory grooming (PCG) is still unclear. Males might use 

PCG to prevent females from mating with other males and reduce sperm competition 
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(Berenstain & Wade 1983; Kuester & Paul 1992; Nurnberg et al., 1994; Sonnweber 

et al., 2015). On the other hand, females might employ PCG as a means to either 

stimulate or avoid mating with the same male (Slob et al., 1986; Bancroft, 2005; 

Gumert, 2007) or decrease the risk of harassment by males (Smuts, 1985). 

Quantitative studies on PCG in baboons are scarce. In olive baboons, PCG presence 

has been related to the quality of the social bonds between the mating partners 

(Smuts, 1985). Yet, in chacma baboons, it is more frequently performed by females 

than males, except for females in their “swollen phase”, (i.e. maximum turgescent 

phase), where the grooming frequency by the male partners is higher (Saayman, 

1970). In Barbary macaques, where PCG has been studied extensively, this behavior 

is known to occur in half of the mating events (Taub, 1980; Small 1990; Kuester & 

Paul 1992; Sonnweber et al., 2015). In this species, males are more likely to groom 

females after ejaculatory copulations, while females groom more often males after 

non-ejaculatory events (Sonnweber et al., 2015). This stands in contrast to our data 

from olive baboons at LMNP, where PCG did not take place in the majority of the 

cases and was neither affected by the type of copulation nor the presence of 

copulation calls. However, PCG duration performed by males was affected by female 

copulation calls irrespective of the type of copulation. Because copulation calls give 

hints to all males in the group that copulation just occurred, it might lead to male-

male competition, and thus, males might be willing to increase their grooming bouts 

to prevent females from searching subsequent copulations with other males, which 

could aid in reducing sperm competition. 

The clear comprehension of the possible functions of post-copulatory behaviors 

in nonhuman primates is still missing. In order to fill this gap, it is essential to collect 

and share quantitative data on sexual behavior and mating patterns of nonhuman 

primates. This is particularly important when group living species are affected by a 

sexually transmitted infection that has an impact on both sociality and reproduction 

leading to altered group dynamics. 
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CHAPTER 4: GENERAL DISCUSSION 

4.1. Pre-copulatory behaviour 

Reports on pathogens causing STIs in the wild are rare and mainly confined to 

arthropods with no indication of mating avoidance towards diseased partners 

(milkweed leaf beetles [Abbot & Dill 2011]; two-spot ladybirds [Webberley et al. 

2002]; decorated crickets [Luong & Kaya 2005]). In my thesis, I first addressed 

whether disease cues such as the presence of genital ulcerations, affect the pre-

copulatory behaviour, more specifically if there is an impact on the mating decisions 

of both males and female olive baboons and their copulatory patterns. Mate choice 

for mate quality is widely accepted as a mechanism by which individuals can 

maximize their fitness and/or offspring quality (Darwin 1871; Andersson 1994; Paul 

2002; Dillen et al. 2010; Peretti & Cordobon-Aguilar 2007). I found evidence of 

mating avoidance by females in situations where the mating partner displayed genital 

ulcerations. In addition, the likelihood of copulation also decreased for ulcerated 

females, giving hints to potential pain avoidance. 

Contrary to females, males did not avoid mating irrespective of their own or 

their partner’s sexual genital health status. This, however, does not mean that males 

are not able to identify disease cues shown by females. Quite often, at a pre-

copulatory level, male baboons perform a visual, tactual and olfactory inspection of 

the perineal region of the females (Saayman 1970). In our group, when males 

inspected sick females, it was often the case that individuals would in addition to 

smell, inspect in detail the genital ulcers of the female, by touching or plucking 

necrotic tissue from the ulcers. Interestingly, after this thorough inspection, males 

often cleaned their hand on the ground, rubbing the fingers on the sand. This “hand-

cleaning behaviour” was never observed when males touched the perianal area of 

non-ulcerated females.  

A pre-requisite for a successful copulation is the presence of ejaculation, but 

mating does not always lead to ejaculation (Dixson 1998, Nitsch et al. 2011). This 

could also be the case in ulcerated males, as they performed fewer pelvic thrusts in 

comparison to non-ulcerated, which might lead to a decreased number of ejaculatory 

copulations. 
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In my study group, adult males initiated more often sexual mounts than did 

their female partners, as is the case in chacma baboons (Saayman 1970). However, 

mounting initiations by females were rarely avoided by males, while attempts by 

males evoked a variety of responses from females. This stands in contrast with 

Saayman (1970), where female chacma baboons seldom rejected mating attempts 

from males. Females from my group were observed rejecting male mounting 

attempts either by running away or sitting down. Cases where male harassment 

resulted in mating were rarely observed. It has been suggested that in mammals, 

rejection of mating partners by females might be too costly due to a highly male 

biased operational sex ratio or the risk of harassment, due to males’ larger body sizes 

(Clutton-Brock & Parker 1995; Eberle & Kappeler 2004). Repeated male aggression 

(i.e. coercion) has been linked to mating benefits in chacma baboons (Baniel et al. 

2017). However, in olive baboons, males are characterized by a higher tolerance with 

low rates of aggression towards females (Bercovitch 1995; Walz 2016) and females 

are able to reject mating attempts by males (Ransom 1981; Smuts 1985; Stumpf & 

Boesch 2005; Bailey et al. 2015, Chapter 2). This is in accordance with my study, as 

agonism towards cycling females or coercive mating was seldom observed. In cases 

where the male displayed solely mild threats (staring, eyebrow rising, short chases), 

only very few cases escalated into physical aggression (i.e. biting and injury infliction). 

Additionally, in my study, females often counter attacked male harassment by 

chasing the male back, either alone or with the support of other females as observed 

in other species such as the Guinea baboons (Goffe et al. 2016). 

 

4.2. Infection avoidance at a copulatory level 

Animals (including humans) evolved means and mechanisms to detect 

potential pathogen threats via tactile, olfactory and visual cues indicating pathogen 

presence (Guilford & Dawkins 1991, Oaten et al. 2009, Kavaliers et al. 2004, Tybur 

et al. 2009). This ability to recognize and avoid individuals in situations presenting 

actual/potential pathogen threats is crucial for host defence and pathogen avoidance. 

Therefore, the assessment of the health status of potential sexual partners is crucial 

to mitigate potential disease impacts. In my study group, with exception of one 
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anecdotal event, post-copulatory counterstrategies, such as male genital self-

grooming or urination were not observed, which is in accordance with Nunn (2003), 

where a metanalysis revealed no support for behavioural counterstrategies to STIs in 

different NHPs. 

In many species, females actively choose their mates, despite the potential 

costs of being choosy (Andersson 1994). The higher prevalence of STIs in females 

(NHPs: Nunn & Altizer 2004 and Koalas [Phascolarctos cinereus] Jackson et al. 

1999) indicates that females are exposed to a higher pathogen load than males. 

Although studies demonstrated some cases of male mate choice (Edward & 

Chapman 2011; Lawrence 1986) or even mutual mate choice (Lihoreau et al. 2008), 

across species, disease risk avoidance is more female biased (Beltran-Bech & 

Richard 2014). In group-living species, females may choose smaller social groups 

despite increased predation risks (Côté & Poulin 1995) as living in a larger social 

group might increase the risk of disease transmission (Freeland 1976; Loehle 1995). 

In a recent study, it was found that disease avoidance due to an infectious skin 

disease might drive the dispersal decisions of female western lowland gorillas (Gorilla 

gorilla gorilla), as adult females avoided breeding groups with a high prevalence of 

this skin disease (Baudouin et al. 2019). In humans, women also respond more 

sensitively to disease threats (e.g. potentially contaminated objects, body fluids, 

genital ulcerations) than males (Haidt et al. 1994; Fessler & Navarette 2003; Curtis et 

al. 2004). Additionally, aversion to diseased individuals has been proposed to shape 

many aspects of the human sociality, such as sexual attitudes and xenophobia 

(Schaller et al. 2015). Therefore, the intricate host-pathogen relation have not only 

driven the evolution of defence mechanisms (see chapter 1.2) but also potentially 

influenced the evolution of the human social systems. This shared “disgust pattern” 

among humans and NHPs, seems to be an outcome of the female’s enhanced 

evolutionary role in protecting themselves (and potential offspring) due to fitness 

costs associated with gestation, lactation and infant rearing.  
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4.3 Post-copulatory behaviour 

To gain some deeper insight into the impact of genital health status on the 

mating behaviour of my study group, I investigated whether the presence of genital 

ulcers had an effect on the post-copulatory behaviour. Females due to their higher 

costs of reproduction should be particularly choosy with respect to conspicuous signs 

of disease. Thus, behavioural avoidance should not only be observed at a pre-

copulatory level, but also at a post-copulatory level. Females should decrease the 

likelihood of their proceptive behavior, such as uttering copulation calls, perform 

darting and post-copulatory grooming, as these behaviours have been linked to an 

increase of subsequent matings in baboons (O’Connell & Cowlishaw 1994; Walz 

2016). Increasing the likelihood of mating events, would be translated in our group, to 

an increased pathogen exposure for females, and therefore, higher disease 

transmission. However, despite this fact, my results show that at a post-copulatory 

level, female olive baboons did not show any behavioural modifications in relation to 

conspicuous genital ulcers (Chapter 3). The post-copulatory behaviour such as 

copulation calls and darting behaviour fell within the range reported for other baboon 

populations (e.g. Hall & DeVore 1965; Saayman 1970, Collins 1981; Ransom 1981; 

Smuts 1985; Bercovitch 1995; Bouquet et al. 2018, Chapter 3). In comparison with 

other nonhuman primate populations, only the occurrence and duration of post-

copulatory grooming (PCG) seem to differ. In baboons there is a scarcity of studies 

on post-copulatory grooming, but in Barbary macaques, PCG occurs in half of the 

mating events (Taub 1980; Small 1990; Kuester and Paul 1992; Sonnweber et al. 

2015). This contrasts to the results of my study, as baboons did not perform PCG in 

the majority of cases. However, when PCG occurred, males did groom females for a 

longer period of time after females uttered copulation calls. Taking into account my 

results, it seems that in my group, individuals might use the post-copulatory 

behaviour as a mean to strengthen the bonds with the mating partners (see Chapter 

3), and that diseases do not play a major role after mating as observed before 

mating. Importantly, the detailed quantitative description of the behaviours that 

characterize the post-copulatory phase provides important comparative data and 

adds variability to the existent records on baboon sexual patterns. 
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4.2. STIs a selection pressure for monogamy?  

Sexually transmitted infections are ubiquitous in animal populations with more 

than 200 sexually transmitted pathogens among 27 orders of hosts being known 

(Lockhart et al. 1996). In NHPs, STIs appear to be more frequent in promiscuous 

species (Nunn & Altizer 2006) and more prevalent amongst adult females (Nunn & 

Altizer 2004). Transmission of sexual infections relies heavily on the number of sexual 

partners and mating frequency (Thrall et al. 1997, 2000). Therefore, in the presence 

of an STI, a monogamous mating strategy can be advantageous if infection risk can 

be reduced by this strategy. However, there are reproductive fitness consequences 

by doing so, since by limiting the number of potential mates an individual might miss 

out on reproductive opportunities.  

STIs have been hypothesized as a key driving force for the emergence of 

monogamy in animal populations (Sheldon 1993; Loehle 1995; Lockhart et al. 1996; 

Lombardo 1998; Poiani & Wilks 2000) and in humans (Immerman 1986; Immerman & 

Mackey 1997, Bauch & McElreath 2016). Other factors leading to social monogamy 

such as infanticide risk (if females concentrate paternity towards a protective male), 

and the spatial and temporal distribution of oestrous females (low vs high population 

density in a group) have been explored, (Lukas & Clutton-Brock 2013; Opie et al. 

2013). Whether STIs fostered the evolution of monogamy, is debatable. Several 

authors tried to investigate this relation by using modelling based on data of both 

human and nonhuman populations. Such simulations are generally based on 

variables such as (i) disease prevalence, (ii) transmission rates, (iii) disease virulence, 

(iv) associated fitness costs (e.g. sterility, mortality), (v) types of mating structure 

(e.g. monogamy, harem polygyny), (vi) presence of mating seasons and (vii) 

presence of disease cues (i.e. conspicuousness). Thrall et al. (1997) presented one 

of the first formal models where STIs have been found to reduce promiscuity, 

although the model outcome revealed that strict monogamy was not expected to 

evolve either. Other models provided similar results (Graves & Duvall 1995; Thrall et 

al. 2000; Kokko et al. 2002; Ashby & Gupta 2013). McLeod & Day (2014) reported 

that monogamy is more likely to evolve in case pathogens cause mortality rather than 

sterility, while promiscuity should be more advantageous in cases where transmission 
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rates are either high or low (in opposition to intermediate). The same authors 

reported that cryptic STIs causing host mortality are more conducive to the evolution 

of serial monogamy (contrary to Loehle 1995). Other authors reported that STIs 

could even lead to a coexistence of monogamy and promiscuity in the same 

population (Kokko et al. 2002; Boots & Knell 2002). In more recent modelling 

approaches, it was shown that accounting for infection avoidance (a parameter that 

was not included in previous models), significantly alters host population dynamics, 

and that promiscuity rather than monogamy may be promoted in denser host 

populations (Theuer & Berec 2018).  

At Lake Manyara National Park, the unique combination of high TPE infection 

(Knauf et al. 2012, Chuma et al. 2018) with the relatively low degree of female 

promiscuity in my study group (see chapter 2) turns it into an ideal scenario to test 

some of the model predictions mentioned above. Whether TPE acted as an 

evolutionary force towards a reduction of female promiscuity in my study group is 

unknown, but on the long-run, by combining both behavioural and epidemiological 

data, one could contribute to fill in the blanks of this complex system of STIs and the 

evolution of mating systems. 

 

4.3. One Health approach  

Around 61% of all human pathogens and 75% of emerging infectious diseases 

are of zoonotic origin (Taylor et al. 2001). The recognition of the shared susceptibility 

of humans and animals to many pathogens has led to the concept of the 

multidisciplinary approach of One Health (Horby et al. 2014). The events that result in 

the successful species cross–over are frequently not well described and understood, 

but it is often triggered by changes in ecological or biological systems (Wilcox & 

Colwell 2005). Among others, such changes include (i) altered contact patterns 

between wild and domestic animals (e.g. Nipah virus, Horby et al. 2014), (ii) direct 

contact between humans and wild animals, e.g. bush meat has been implicated in 

the spill over of monkey pox, Nipah and Ebola virus (Brashares et al. 2011) and (iii) 

changes in species abundance (e.g. Hantavirus outbreaks in the Southwestern U.S. 



56 
 

have been attributed to fluctuations in the abundance of infected rodents, Horby et al. 

2014).  

Additionally, knowledge of a community’s social system and contact structure 

can provide critical information for predicting infectious disease outbreaks (e.g. Nunn 

et al. 2008; Drewe 2010; Griffin & Nunn 2012, Rushmore et al. 2013). The contact 

structure of a population depends greatly on the specie’s ecology, which drives social 

interactions, animal movement patterns, migration, dispersal, social systems and 

territoriality (Wey et al. 2008, Krause et al. 2007, Craft 2015). Therefore, creating 

realistic epidemiological models together with real-time data (e.g. Hamede et al. 

2012, Rushmore et al. 2013) is essential for developing strategies to reduce the risk 

and impact of infectious diseases. This will enable to design better approaches (i.e. 

pathogen modelling) to prevent or create control measures (e.g., treatment, 

vaccination) for potential pathogen spill-overs. This is of major importance for 

example in situations of endangered wild populations that experienced disease 

outbreaks (e.g. Ebola and respiratory viruses in wild great apes) making infectious 

disease a major threat to their survival (Caillaud et al. 2006; Ryan & Walsh 2011). An 

important aspect in studying disease transmission is the role of the environment in 

pathogen transmission and the mechanisms that permit pathogens to be maintained 

in reservoirs (Brown et al. 2013). As an example, the non-reproducing Leptospira 

spirochetes can persist for several months in soils in the absence of a mammalian 

host (Bharti et al. 2003). Moreover, knowledge of the biology of the pathogen is 

essential to properly define a sequence and functional similarity threshold for a 

particular reservoir system as well as getting proofs of feasible transmission routes 

(Hallmaier-Wacker et al. 2017). In addition, one should be careful when creating 

disease models with the intent to generalize at a large scale. This is because each 

host species and groups within the same species have a particular set of 

characteristics (e.g. mating and social systems, dispersal patterns, lifespan etc.) that 

will influence the outcome of the model, and thus, influence the strategies applied at 

a broad scale (i.e. conservation efforts, treatment options).  

Because Treponema pallidum is shared both by humans and NHPs 

understanding the social/sexual contacts and disease pathways on wild NHP 

populations might aid on developing efficient pathogen control strategies, and in the 
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long-run, help understanding the relationship between human and nonhuman 

treponemes. The high prevalence of nonhuman primate infection in areas of tropical 

Africa where yaws is common in humans suggests that cross-species infection may 

occur (Knauf et al. 2013). Therefore, to be able to eradicate any kind of disease, all 

host species and potential reservoirs should be taken into account in the One Health 

triad linking humans, environment and humans.  

5. CONCLUSION & FUTURE DIRECTIONS

I investigated the mating behaviour of a wild olive baboon population infected 

by Treponema pallidum (TP). At the pre-copulatory level, I found evidence that genital 

ulcers caused by TP induce behavioural changes in both females and males in the 

form of mate avoidance by females and altered mating patterns in males, 

respectively. In addition, despite the large group size of my study group, females had 

a surprisingly low number of male mating partners (i.e. low promiscuity), in particular 

when taking the large number of available male mating partners into account. At a 

post-copulatory level, there was no effect of the genital health status on the 

individual’s behaviour. The post-copulatory behaviour of the olive baboons at LMNP 

did not differ largely from the behaviour of other baboon populations. And diseases 

do not seem to play a major role after copulating in contrast to what was found before 

copulation. Descriptive data on the mating behaviour of wild baboon populations has 

been missing from recent studies. My work addresses this gap and increases the 

diversity of data on baboon behaviour in different contexts. Finally, behavioural 

studies that involve Treponemes are of great importance to devise strategies for the 

safeguard of both humans and wildlife populations, as these bacteria affect not only 

humans, but a large number of nonhuman primate species across the African 

continent.  
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