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Abstract

The exploration of light-matter interaction has inspired some of the most essential theories
and applications in fundamental science and technology. Cutting-edge research, such as
ultrafast time-resolved and super-resolution experiments, relies on the in-depth knowledge
of the interaction of photons and electrons. In these research fields, the controlled guiding,
concentration, and conversion of electromagnetic energy are the central requirements of any
technological advance.

This thesis explores the remarkable properties of nanotips featuring waveguiding, field
enhancement, and energy localization of electromagnetic surface waves which arise from col-
lective electron oscillations — called surface plasmons (SPs). Nanotips are key components in
ultrafast time-resolved electron-beam and scanning probe techniques. However, a complete
physical picture of the complex SP evolution is not yet established.

Here, we provide detailed contributions to the understanding of surface plasmons in metal
nanotips studied in three experiments. In particular, we analyze the SP mode propagation
along the tip shaft and its behavior when approaching the tip end by means of electron
energy loss spectroscopy (EELS). EELS allows for spatially and spectrally resolved SP mea-
surements. We find characteristic standing wave patterns in the SP maps and implement
a semianalytical model that identifies SP back-reflection from the apex as the main reason
for the observed standing waves. Our analysis reveals a reflection efficiency of nearly 100%
for sufficiently small opening angles.

In a subsequent experiment, we exploit the near-field enhancement of SPs to investigate
nonlinear photoelectron emission from gold tips. The SP modes are excited via direct apex
illumination or via grating couplers milled into the shaft several tens of micrometers away
from the tip end. We demonstrate efficient remote multiphoton photoemission driven by
grating-coupled plasmons by inserting the tips into a field emitter assembly enabling the
control of the active emission sites along the tip structure.

The final experiment explores the excitation of photoelectrons in a sub-nanometer gap be-
tween a gold tip and a flat metal substrate. For this purpose, the challenging combination of
scanning tunneling microscopy with pulsed femtosecond-laser excitation is realized. Based
on a one-dimensional transport model, electrons in the tip are found to absorb energy from
the enhanced SP near-field in the gap. This results in a non-equilibrium charge distribution
with electrons populating high-energy states and transferring to the sample. We use the

locality of the photocurrent for a sophisticated imaging mode with nanometer precision.






Zusammenfassung

Die Erforschung von Licht-Materie-Wechselwirkung hat viele grundlegende Theorien und
Anwendung in der Forschung und Technologie inspiriert. Aktuelle Forschungsprojekte, wie
z.B. ultraschnelle zeit- und superaufgeloste Bildgebungsverfahren, sind auf tiefgreifendes
Wissen iiber die Wechselwirkung von Photonen und Elektronen angewiesen. In diesen
Forschungsfeldern ist der gezielte Transport, die Konzentration und die Umwandlung von
elektromagnetischer Energie eine zentrale Voraussetzung fiir technologischen Fortschritt.

Diese Arbeit befasst sich mit den aufsergewohnlichen Eigenschaften von Nanospitzen,
die Wellenleitung, Feldverstarkung und Energielokalisierung von elektromagnetischen Ober-
flaichenwellen erlauben. Diese Wellen entstehen durch kollektive Elektronenschwingungen in
der Oberfliche und werden Oberflichenplasmonen (OP) genannt. Nanospitzen sind Schliis-
selkomponenten in Experimenten, die auf gepulsten Elektronenstrahlen und Rastersonden
basieren. Trotz dieser breiten Anwendung ist bisher noch kein vollsténdiges physikalisches
Versténdnis des komplexen Verhaltens von Oberflaichenplasmonen etabliert.

Diese Arbeit bietet detaillierte Beitrdge zum Verstdndnis von Oberflichenplasmonen in
metallischen Nanospitzen anhand von drei Experimenten. Im Genauen analysieren wir die
Ausbreitung von OP entlang des Spitzenschafts und das Verhalten bei Anndherung ans
Spitzenende mithilfe von Elektronenenergieverlust-Spektroskopie (EELS). EELS erlaubt die
spektral und raumlich aufgeloste Messung von OP. Wir messen charakteristische, stehende
Wellenmuster und nutzen ein semi-analytisches Modell zur Beschreibung der Ausbreitung
von OP. Dadurch kénnen wir zeigen, dass die Plasmonen am Spitzenende mit nahezu 100%
Effizienz reflektiert werden.

In einem anschliefenden Experiment verwenden wir die Nahfeldverstdarkung von OP um
nichtlineare Elektronenemission von Goldspitzen zu untersuchen. Plasmonen werden ent-
weder durch direkte Beleuchtung des Spitzenendes oder mittels Gitterkopplern angeregt, die
einige zehn Mikrometer vom Spitzenende in die Oberfliche graviert sind. Wir demonstrieren
eine effiziente Elektronenquelle basierend auf Plasmonen, die am Gitter angeregt werden.
Dazu werden die Spitzen in einen Feldemitter eingebaut, der die Kontrolle iiber die aktiven
Emissionsorte entlang der Spitzenstruktur erlaubt.

Das letzte Experiment untersucht die Anregung von Photoelektronen in der (Sub)-Nano-
meter breiten Liicke zwischen einer Goldspitze und einer flachen Metalloberflache. Zu diesem
Zweck wird die experimentell herausfordernde Kombination eines gepulsten Femtosekunden-
lasers mit einem Rastertunnelmikroskop realisiert. Basierend auf einem eindimensionalen
Transportmodell, wird gezeigt, dass die Elektronen in der Spitze Energie vom verstiarkten
Nahfeld in der Liicke zwischen Spitze und Probe absorbieren. Dies fithrt zu einem Nicht-
gleichgewicht der Elektronenpopulation: Elektronen besetzen hochenergetische Zustédnde
und transferieren in die Probe. Wir nutzen die Lokalisierung des Photoelektronenstroms fiir

einen Bildgebungsmodus mit Nanometer-Genauigkeit.
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CHAPTER 1

Introduction

Light-matter phenomena rank among the most prominent research objects in natural sci-
ence including the photoelectric effect in physics [1, 2|, supernovas in astronomy [3|, photo-
catalysis in chemistry [4], as well as photosynthesis and vitamin D formation in biology [5, 6].
Modern research in solid state physics, surface science, and nanotechnology are inconceivable
without analytical methods based on the interaction of matter with electromagnetic radi-
ation (light), such as laser, photoemission, or X-ray spectroscopy, ultrafast! time-resolved
imaging, and X-ray crystallography. In the mentioned techniques and processes, light pro-
vides the key functionalities of a flexible energy source and a fast information carrier that
excites matter and can be used to analyze the involved interaction mechanisms and dynam-
ics |7, §].

Yet, there are plenty of open questions to explore in both fundamental science and tech-
nology. For example, effects in quantum optics may be utilized for quantum information
processing |9, 10] and sample dynamics can be observed on a femtosecond timescale, which
might be extended to the attosecond regime by next-generation pulse sources [11, 12|. Super-
resolution techniques allow to optically excite and investigate substances beyond the diffrac-
tion limit [13, 14] and strongly enhanced electromagnetic fields can drive highly nonlinear
phenomena, like high-harmonic generation (HHG) [15, 16]. An essential aspect in many
of these techniques is the capability of a controlled waveguiding of light including the con-
centration of electromagnetic energy and the comprehensive knowledge of its conversion

pathways into other types of matter excitations (e.g., electron-hole pairs or phonons).

l«Ultrafast” refers to the time interval ~ 107*® — 107'? 5 including the attosecond (1as = 107 '%s), fem-
tosecond (1 fs = 107*® s), and picosecond (1 ps = 1072 s) range.



Strongly linked to these endeavors is the rapidly developing field of nanoplasmonics
[17, 18], launched by advances in nanofabrication techniques and broadband radiation
sources |19, 20]. In nanoplasmonics, light interacts with electrons in the surface of a nano-
structure (mostly made of metals) with typical dimensions ranging from the nanometer
(1nm = 1072 m) to micrometer (1 um = 107 m) scale. Plasmonic nanostructures feature
a spatial concentration of optical waves beyond the diffraction limit [21, 22]. Specifically,
the coherent coupling of light to collectively oscillating electrons results in characteristic
electromagnetic wave modes, which are bound to the interface between the object and its
environment (e.g., vacuum) [23|. Such a mode is called surface plasma wave or surface plas-
mon (SP) — referring to the analogue free charge motion in a plasma [24]. The remarkable
property of this interaction is the capability to guide and enhance an SP near-field that is
accompanied by a concentration of its electromagnetic energy to nanoscale volumes [17, 22].

The main objectives of nanoplasmonics are the understanding of the spatiotemporal evolu-
tion of SPs on their intrinsic length (nano- to micrometers) and time (femto- to picoseconds)
scales as well as the development of nanostructure designs that have customized functionali-
ties including SP excitation, SP waveguiding, and sub-wavelength light confinement [25-29].
As a consequence of the persistent miniaturization process, highly nonlinear and quantum
effects play a growing role in these objectives [16, 30-33].

In this context, a metallic cone structure with an apex of a few nanometer in radius (nano-
tip) features an essential and multifunctional model system. In the tip structure, two basic
manifestations of SP modes exist — both are accompanied by a strong near-field enhance-
ment and energy concentration at the tip end (hotspot). On the one hand, the shaft is an
effective waveguide for a propagating SP mode that is gradually confined when approaching
the apex (nanofocusing), whereas, on the other hand, the nanometric apex provides a direct
localized plasmon mode [34-36].

Although the excitation, evolution and relaxation of surface plasmons in nanostructures —
and particular in nanotips — have been investigated and applied for several years, a compre-
hensive and in-depth understanding of the underlying physical processes has yet not been
established. Experimental and theoretical challenges arise, for instance, from the complexity
of SP dynamics (rapid dephasing/decay, many-body and multiscale description), and the

inherent sensitivity on the specific (atomistic) structure and its environment [31, 37, 38|.

This thesis advances the knowledge of surface plasmon excitations in cone-like nano-
structures by investigating gold nanotips regarding three relevant aspects. Initially, we
analyze and explain waveguiding (nanofocusing) of surface plasmons propagating towards
the tip end. Subsequently, the process of nonlinear electron emission from the apex by inter-
action with nanofocused SPs is investigated. And finally, we explore the plasmon-mediated

electron transport in a nanometric tunnel gap between a tip and a flat sample surface.

2 Chapter 1 Introduction



Light-matter
interactions in nanotips

Propagating
fs-laser pulse \%\ _»N‘M\«_, surface paslmon
Electron @ - Detection

4=
L~1-10 nm

hotspot

Fig. 1.1: Sketches of the three implemented experiments based on surface plasmon (SP) waveguid-
ing/nanofocusing and localization/hotspot. (a) Mapping of SP modes resulting from the waveguiding prop-
erties of a gold nanotip. (b) Demonstration of an effective electron gun remotely driven by SPs that are
launched with a grating coupler. (c) Near-field-driven photocurrents in the tunnel gap of a scanning tun-
neling microscope. The quantity L denotes the typical length scale on which the respective experiment in
operating.

Figure 1.1 schematically illustrates the three conceptually different experiments operated
on length scales covering a range from less than a nanometer to several tens of micrometer.
The first aspect we address is the capability of metal tips to waveguide and localize surface
plasmons. SP nanofocusing has been exploited in novel types of scanning probe techniques,
such as ultrafast apertureless near-field scanning optical microscopy (A-NSOM) [39, 40]
and tip-enhanced Raman spectroscopy (TERS) [41, 42]. A-NSOM features optical, super-
resolved imaging of surfaces on a < 10 nm length scale [43-46], whereas TERS can provide
spectral fingerprints of single molecules by detecting frequency shifts in the emission spectra
[47-49]. Moreover, nanofocusing improves the achievable magnification and time resolution
in femtosecond point-projection microscopy (fs-PPM) [50-52]. However, the spatial mode
distribution and the SP propagation behavior at the apex are yet not understood.

In our experiment, we use an transmission electron microscope (TEM) to excite and
spatially map SPs in free-standing gold nanotips on a ~ 10 nm — 1 pm scale (see the char-
acteristic length scale L in Fig. 1.1(a)). The simultaneous detection of electron energy loss
spectra (EELS) in combination with finite-element and semianalytical modeling explains the
complex superposition of different SP modes. Most importantly, we find the SPs reaching

the apex to be back-reflected with a nearly 100% efficiency.

The second aspect of this work comprises photoelectrons emitted by plasmons. In the
quickly developing field of electron-beam instruments, the release of ultrashort electron
pulses from tip apexes by fs-laser transients allows for an observation of electron and lat-

tice dynamics on a femtosecond to picosecond timescale in ultrafast transmission electron



microscopy (UTEM) [53, 54], ultrafast low-energy electron diffraction (ULEED) [55, 56],
and fs-PPM [52|. Propagating and nanofocusing SPs may provide an efficient electron gun
featuring new degrees of freedom by electron wave front tailoring [12].

We investigate SP-driven multiphoton photoemission from gold nanotips induced by grat-
ing couplers several ten micrometers away from the apex (see L in Fig. 1.1(b)). The struc-
tures are inserted into a modified field emitter assembly fully compatible with state-of-the-art
UTEMs. This allows for a precise emission site-selectivity and control of the lateral beam
spread. Grating-coupled SPs demonstrate a higher electron yield compared to direct apex

llumination.

In our final experiment, we apply the nanometric field localization at the apex of a nanotip
in a scanning tunneling microscope (STM). STM features sub-nanometer resolved surface
mapping and spectroscopy, as well as controlled manipulation of individual atomistic species
[57-59]. The ultimate combination of STM with a pulsed laser beam focused into the tunnel
gap provides ultrafast time-resolved STM and nonlinear excitation setups (fs-STM) [60-62].
However, thermal instabilities due to tip expansion have prevented a regular application of
fs-STM as they require elaborated and expensive illumination schemes [60, 63, 64].

We establish thermally stable STM operation under fs-laser illumination of the gap be-
tween a gold nanotip and a metal surface. The optical excitation results in the generation
of photoelectrons with a specific dependency on the tip-sample distance (see Fig. 1.1(c)).
We use an electron transport and coupled dipole model to explain the mechanisms involved
in the photocurrent and identify different parameters controlling the photo-driven trans-
fer. Importantly, the roles of surface plasmons excited in the tunnel gap and higher-energy
electron channels are clarified. Topographies with nanometer precision evidence that the

photoelectrons can be used in a reliable STM mapping mode.
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Outline

Chapter 2 discusses the key concepts of light-matter interactions relevant in this thesis. The
two general types of a localized and a propagating SP mode are exemplary outlined by a
spherical particle and a flat interface including their capability to localize and enhance the
plasmon near-field (sec. 2.1). In addition, a general picture of the two mechanisms to excite
propagating surface plasmons (fast electrons and grating couplers) used in this thesis is pre-
sented. Subsequently, SP relaxation processes (sec. 2.2) and photo-driven electron emission
based on a Sommerfeld model (sec. 2.3) are outlined. The chapter is concluded by a brief
summary of the nanostructure preparation applied to fabricate the used tips (sec. 2.4).

In chap. 3, plasmon propagation along nanotip surfaces is analyzed. We start with a
comprehensive introduction to SP waveguiding and nanofocusing with metal tips (sec. 3.1).
The basics of EELS instrumentation used to map SP propagation are briefly described as
well (sec. 3.2). The main experimental and theoretical results on the basis of the EELS
measurements are discussed in sec. 3.3 representing our study published in Ref. |65] with
the title “Real-space imaging of nanotip plasmons using electron energy loss spectroscopy”.
The chapter is concluded in sec. 3.4 by a comparative discussion of related literature in the
light of our semianalytical model published in Ref. [66].

Chapter 4 presents the feasibility of an electron gun assembly that is driven by nanofocus-
ing surface plasmons. The first section 4.1 provides a description of the setup established to
measure photoelectron emission. Subsequently, we demonstrate the effective photoemission
from gold nanotips controlled via electrostatic fields in sec. 4.2 and published in Ref. [67]
with the title “An ultrafast nanotip electron gun triggered by grating-coupled surface plas-
mons”.

In chap. 5, the realization of fs-STM is presented and laser-mediated electron transport
in the tunnel contact is discussed. We start with two general processes that govern the
currents emerging in an STM combined with fs-illumination, namely the formation of a
plasmon near-field in the gap (sec. 5.1) and quantum tunneling transport (sec. 5.2). Both
physical pictures are applied in sec. 5.3 to identify photocurrent channels and their trans-
fer mechanisms. Our results have been published in Ref. [68] with the title “Controlling
photocurrent channels in scanning tunneling microscopy”. The final section 5.4 presents
technical information on the challenging combination of a fs-laser source with an STM.

Finally, this thesis is concluded in chap. 6 with a summary of the major results found
in our experiments and analysis. Relevant aspects from the literature with respect to the
presented studies are discussed as well. Additionally, potential experimental schemes that

may provide further insights are outlined.

The section Author contributions on page 117 lists the specific author’s contributions to

the three peer-reviewed publications reprinted in the secs. 3.3, 4.2, and 5.3.






CHAPTER 2

Light-matter interaction in metal

nanostructures

Photons or electrons incident on a substance (e.g., solid or molecule) provide an immensely

broad range of possible excitation pathways depending on their initial energy, momentum,

and — in the case of photons — polarization state [7, 8, 69, 70]. This substantial complexity

of optical interactions is further increased when considering nanostructures (i.e., objects

with micro- or nanometer dimensions), since they exhibit fascinating phenomena enabled by

their nanoscale geometry [24, 71-73|. Figure 2.1 presents a brief summary of fundamental

excitations that can be driven in a nanostructure, which result in different scattering or

emission channels.

Excitations
Electrons Photons

Localized SP Propagating SP

o—>®
£ ElectronI Ereien

ole e
N re
Sl Substrate
Elastic scattering
Luminescence Nonlinear @ Electron
photons emlssmn
Energy loss

Scattering/emission channels

Fig. 2.1: Schematic illustration of the most funda-
mental excitations of a nanostructure. Incident elec-
trons or photons can transfer energy and momentum
via a rich variety of pathways to the constituents
of the material (electrons and ions) and its quasi-
particles (holes, phonons, plasmons, etc.). In ex-
perimental solid state physics, the resulting scatter-
ing and emission channels, e.g., elastically scattered
photons, luminescence, nonlinear photon generation,
electron emission, or electron energy loss are the ob-
servables carrying the fingerprint of the respective
interaction. In this thesis, we focus on localized and
propagating surface plasmons (SPs).



A general classification of the diverse physical interactions can be made using the number
of involved particles in the material (single-particle vs. collective excitations), the degree
of coherence between the incident field and the polarization induced in the material, the
locality of the excitation, the involved energy levels (valence vs. core electron excitations),

and the relevant (quasi)-particles (e.g., electrons, holes, plasmons, phonons, spins) [69, 74].

This thesis focuses on the collective oscillation of conduction band electrons in the near-
infrared to visible wavelength regime (~ 0.5 —3eV) and its nonlinear scattering mecha-
nisms. Specifically, light-driven electron emission (transport) from metal tip nanostructures
and energy loss through electron-metal interactions are the essential phenomena discussed
here. The interaction of the photons and the electrons with the sample is fully described
in the framework of the macroscopic Maxwell equations: A space-time-dependent incident
field E(r,t) induces a polarization in the specimen P(r,¢) including the fields of the collec-
tive electron oscillations. Typically, the calculations are done in frequency-space, where the
polarization P(r,w) x e(w)E(r,w) directly follows from the complex-valued dielectric func-
tion (permittivity) e(w) that incorporates the optical response of the material® [24, 73, 74].
Explicit analytical solutions only exist for simple structures, e.g., spheres, planar surfaces or
cylinders; most of the nanostructures must be treated by semi-analytical or numerical ap-
proaches [72]. Quantum effects must be included in the optical response for nanostructures
with characteristic length scales < 1 nm [71]. Although a strict quantum theoretical treat-
ment is beyond the scope of this thesis, we make some important adaptions, for example, by
using the Sommerfeld theory that models a metal as an electron gas confined to the struc-
ture volume with a state population given by an occupation function. In thermodynamical

equilibrium, this is the Fermi-Dirac distribution [8, 75].

2.1 Collective electron oscillations: plasmon modes

Electromagnetic fields or charged particles can interact with metals or doped semiconductors
by displacing the conduction electrons (electron gas) out of their equilibrium positions. This
may result in a collective oscillatory motion of the electrons (plasma oscillation). Plasmonic
modes exist in two general classes of longitudinal bulk oscillations and transversal surface
plasma (SP) oscillations |38, 69, 73]. The first obey a nearly flat dispersion relation w = w,
with the plasma frequency wy, (~ 9 eV for gold) and can only be excited by charge particle
impact [69]. On the contrary, SP oscillations are excitable by light and exist as transverse
surface waves at interfaces of two environments (materials) with one having a negative and
the other one having a positive permittivity for a given frequency (e.g., near-infrared to
visible energies for gold-vacuum interfaces). They exhibit a coherent coupling to a surface

bound electromagnetic wave giving rise to a field enhancement and a field confinement effect

! An equivalent formalism is given by the current density J with the complex frequency-dependent conduc-
tivity [69, 73]. We assume isotropic materials, in which the dielectric function is a scalar.
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(see below). For sufficiently small samples (nanoparticles), SP oscillations can be localized
and in the case of extended structures the modes may propagate along the interface 24, 76].
Both types play an important role in this work and are discussed in the following sec. 2.1.1
and sec. 2.1.2.

In the framework of quantum mechanics, the field of a plasma oscillation is quantized
providing the formalism of the bosonic quasi-particle plasmon [31]. The mutual interplay of
a surface plasmon and a light field bound to the interface is called a polariton?. However, in
order to distinguish the two manifestations of a localized and propagating plasmonic mode,
we use localized surface plasmons (LSP) and surface plasmon polaritons (SPP), respectively
[76-78]. In this quantum picture, a single photon of energy fw is annihilated in the light
field and a bosonic plasmon polariton of the same energy is created in the plasma field [31].
Although, we apply the classical Maxwell equations with a local dielectric function to include
the material’s optical properties we use the “plasmon” terms (LSP and SPP) throughout this

thesis.

2.1.1 Localized surface plasmons of a spherical tip apex

Nanotips that are exposed to an electromagnetic field exhibits the remarkable properties of
field enhancement and field localization owing to the surface plasmon excitations in the apex.
In the following, we learn about these basic concepts by modeling the apex as a spherical
nanoparticle of radius Rp, as illustrated in Fig. 2.2(a). The sphere has the frequency-
dependent permittivity e;(w) and is surrounded by a dielectric medium with a constant
permittivity 4 [73]. For simplicity, we assume an incoming plane wave Eg(t) polarized
in the z-direction. The free electrons of the particle (conduction band electrons), follow
Eo(t) and the negatively charged carriers are separated from the positively charged lattice
ions, i.e., the polarization P(t) is induced into the sphere. This results in a surface charge
density o(t) which is accompanied by a restoring force. In frequency-space, a resonance
characteristic depending on the structure size and optical material properties is found. The
interplay of the time-varying charge separation and its accompanying electromagnetic near-
field is the localized surface plasmon® (LSP) polariton [73, 79-81].

Within the quasi-static Rayleigh approximation (tip radius Ry is much smaller than the
light wavelength A = 27¢/w) the field is assumed to be spatially constant across the particle
and oscillates in time, Egexp(—iwt). Solving the Laplace equation (E = —V -V (r)) with
Legendre polynomials, the potential V (r) is found. It leads to the field [73]

3nn-p)—p 1

Eout )= E —iwt En Y =E —iwt
(r,) o€ + Ept(r, ) 0€ + Ircoey 5

(2.1)

2There exist different forms of polaritons, classified according to their underlying matter excitation (e.g.,
phonon-, plasmon-, or exciton-polaritons) [69].
3In the literature, it is also named LSP resonance (LSPR) to emphasize the resonant character.
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outside the particle (radial distance r = |r| and unit vector n = r/r in the direction of r).

E°" is the superposition of the incident light field (first term) and the near-field of a dipole

E.¢ located at the particle center (second term). The dipole moment p(t) = epeqga,Ege™ %,
is proportional to Eg with the polarizability
Et — &4
o = 4TRE 2.2
¥ Tst + 2¢4 (2:2)

An LSP is linked to the near-field enhancement F' = |E°%|/|Eg| > 1 for a small denominator
in Eq. 2.2 (&, = —2¢4), also known as the Frohlich condition [73]. Figure 2.2(b) presents
the calculated enhancement F' in the xz-plane for a gold sphere in vacuum with a radius
of 10 nm and illumination with A = 800 nm (fw = 1.55eV). Two regions of enhanced field
strength (F' > 1, green to red) close to the surface are observable. The distinct direction of
the field pattern (along the vertical axis) is governed by the light polarization. Figure 2.2(c)
shows the line profile of F' along the central vertical dotted line in (b). This simple example
represents the main concept of plasmonic hotspots: The field enhancement (F =~ 3.3 in the
example) at the particle’s surface and the localization (measured by the full-width at half-
maximum of F', here: 6 nm). Hence, the field is strongly confined to a sub-wavelength scale
of the order of Ryp.

(a) (b) () 3
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Fig. 2.2: Tip apex modeled as a sphere and the resulting LSP field distribution. (a) Schematic illustration of
a tip apex approximated by a sphere of radius Ry and permittivity £:(w) embedded in a dielectric medium
(e4). A homogenous field, Eg exp(—iwt), oscillating with w and magnitude Eq causes a time-varying surface
charge distribution o(¢) giving rise to a polarization with dipole moment p. This leads to the near-field En¢
of the LSP that is calculated for a vacuum environment (¢4 = 1) with the permittivity of gold (e; ~ —24+1%)
taken from Ref. [82] at A = 800 nm (1.55 eV). (b) Field enhancement F = |E°"*|/|Eo| of a gold sphere with
Rr = 10 nm mapped in the zz-plane and calculated with Eq. 2.1. (c) Profile of the field enhancement
normal to the sphere surface along the dashed line in (b). The maximum enhancement of F' ~ 3.3 is found
at the sphere surface with a near-field decay to zero (F' = 1) after ~ 25 nm. (d) The wavelength dependency
of F evaluated at its maximum. A distinct resonance is found at 530 nm with F' ~ 4.6, whereas for the
majority of the displayed wavelength range F' > 3 applies.

The analysis of Eq. 2.1 and Eq. 2.2 reveals a general rule for the existence of enhanced
near-fields. The Frohlich condition requires a negative permittivity (¢4 < 0) that compen-
sates the positive g4 of the surrounding dielectric. Besides, the imaginary component must

be as small as possible (Im(g;) < 1) to maximize the field enhancement. In other words,
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the damping of electromagnetic modes because of absorption in the material must be small
[80]. This leads to a resonant characteristic due to the wavelength dependency of e;(w), as
presented in Fig. 2.2(d). Both requirements are sufficiently fulfilled in the near-infrared and
visible wavelength regime for, e.g., copper, gold and silver [83]. Note that Eq. 2.1 describes
only the near-field of the oscillating dipole; from a strict calculation the total field can be
derived and the prominent dipolar electromagnetic radiation follows [84]. We briefly discuss
absorption in the material and radiation to the far-field as limiting factors of the lifetime

and field enhancement of excited plasmons in sec. 2.2.

The applied quasi-static approximation stays valid for nanoparticles under illumination
with visible light up to sizes of ~ 100 nm [73], which includes apex radii between 10 nm and
20 nm relevant in our experiments. Generally, the resonance structure and field enhance-
ment sensitively depends on the specific geometry and material [85]. On the theoretical
side, more sophisticated tip models have been studied that include retardation effects and
modifications of the resonance structure for elongated spheroids [80, 85-87] based on Mie
theory [88]. Besides, there is a variety of studies based on (semi)-analytical and numerical
methods that explore the field distribution and resonance behavior of realistic tip structures
by varying material, excitation scheme and geometry parameters [87, 89-101]. Thereby, field
enhancement factors on the order of 10 < F' < 100 are commonly found exceeding the values
of the sphere dipole model because of a geometry induced charge accumulation at the tip’s
end [91, 100, 102|. Experimental investigations on gold tips, however, have demonstrated
field enhancements between 4 and 14 that are ranging at the lower boundary of the theoret-
ical approaches [67, 103—106|. Here, F' is determined from linear and nonlinear photon and
electron emission measurements under similar excitation conditions. Most importantly, F
is maximized for p-polarized excitation fields (polarization along the tip’s symmetry axis),

while s-polarization strongly suppresses the enhancement [85, 90, 91, 103, 104].

2.1.2 Propagating surface plasmons of planar interfaces

In the case of spatially extended structures, it is possible to excite propagating plasmon
excitations [25, 76]. Figure 2.3(a) exemplarily illustrates such a mode for a planar interface
between a metal and a dielectric semi-infinite half space. The collective oscillation of the
surface charge density o(t) couples to an electromagnetic near-field in the dielectric and in
the metal. This mutual interaction of photons with plasmons results in a mode bound to
and propagating along the interface — this is the surface plasmon polariton (SPP) [24, 25,
72]. The associated field distribution obeys a transverse-magnetic (TM) mode with finite
electric and magnetic field components (E,, E,, H,) « exp(igr — ¢;2) in the tip (j = t) and

vacuum (j = d). A straight forward calculation based on the tangential continuity condition
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at the interface (cf. Ref. [73]) provides the SPP dispersion relation,

aw) == (w(j’ldd and  g;(w) = i\/ (£) e - atw)? (2.3)
with the SPP wavenumber ¢(w) along the surface and the field’s evanescent decay into the
tip (Ltip = 1/|2¢¢]) and into the vacuum (Lyac = 1/]2¢q|). SPP excitation is found for
real wavenumbers under the condition Re(e;) < €4 (agreeing with the Frohlich condition in
the last section), which leads to values g(w) > w/c in the relevant energy regime 1eV <
hw < 3eV. Consequently, there is no simultaneous energy and momentum conservation
between freely propagating light with wave vectors |k| = k = w/c and SPP modes at a
planar interface. Figure 2.3(b) demonstrates this fact by comparing the real part of the
SPP dispersion hw(q) (solid red line) calculated with Eq. 2.3 for a Drude metal and the
dispersion of light in vacuum for grazing incidence hw = ck (dotted line). For all energies,
the SPP dispersion is on the right side of the light line and special techniques delivering
additional momentum Ak must be applied for the purpose of SPP excitation® (inset in
Fig. 2.3(b)) |24, 73].

(@) <9 spp 9, . (b)
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Fig. 2.3: Surface plasmon polaritons (SPPs) at planar interfaces. (a) A schematic illustration of the field
distribution Ey¢ of an SPP and the associated surface charge density o (green areas) for the interface between
a metal and dielectric with permittivities ; and €4, respectively. The surface wave propagates bound to
the interface in +z-direction with respect to a complex dispersion relation +¢(w) and decays evanescently
inside (L¢ip = 1/]2¢¢|) and outside (Lvac = 1/]2ga|) the metal. (b) SPP dispersion relation (solid red line)
for a Drude metal (£(w) = €00 — wi/w?) with w, = 9eV and oo = 9.8 [80] calculated with Eq. 2.3. There
is no intersect with the light line (dashed line). Hence, a far-field with an in-plane momentum component
k| = |k|sin® (|k| = w/c) can only couple to SPPs if an additional momentum Ak is provided to fulfill energy
and momentum conservation, g = kj + Ak (inset).

In order to realize SPP launching different implementations have been developed to fulfill
the phase matching condition, g(w) = (w/c¢) sin @ + Ak, among which are prism geometries
[107, 108], scanning probes [109, 110], and topological protrusions (surface defects) [24, 111,
112]. In our experiments, we use fast electrons and periodic surface structures (grating

couplers) to launch SPPs.

4A light wave vector k under an angle of incidence 0 < 6 < 90° does not change this situation, since the
in-plane wave vector component, k| = (w/c)siné, is smaller than w/c for all values of 6.
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2.1.3 SPP excitation via charged particles

The field of nanoplasmonics strongly benefits from the possibility of electromagnetic mode
(in particular SPP) excitation in matter by fast electrons transmitting through or closely
passing the sample under investigation [74, 113-118]. In their pioneering works Ritchie [119],
Powell et al. [120], and Stern et al. [121] identified the excitation of volume and surface
plasmon resonances (~ 10 eV) to be responsible for the found electron energy loss (EEL) AE
when the electrons transmit through thin metallic films. Modern EEL spectroscopy (EELS)
experiments are performed in transmission electron microscopes with ~ 10 meV spectral
resolution [116] and are operated in a scanning mode (STEM) allowing to spatially map

plasmon mode distributions in the mid-infrared domain with nanometer precision [122].

From the sample’s viewpoint, the electron moving with a velocity v is accompanied by
a time varying evanescent field E® (r,t) which induces a polarization E™ in the material.
Under certain conditions (discussed below), this electron-matter interaction leads to the
excitation of electromagnetic modes of the electron gas including SPPs. Thus, the field E¢
associated with the electron can be considered as a light source with an energy-momentum
relation fw(k.). The spectral components E¢ (r,w) determine the energy levels accessible
for this excitation mechanism. Specifically, the spectral amplitude and width of E¢ scale
with v — demanding electron kinetic energies of a few tens of keV for investigations of
plasmons in the eV regime [117].

Considering energy-momentum conservation, the transfer of energy Aiw and momentum k.

from E® to an electromagnetic mode (induced polarization) reduces the electron energy E,

to (Ee—hw) = \/]pe — hke|?c? + mec?t, with m, being the rest mass and p, the momentum of
the electron [123]. Since we deal with relative low energy and momentum transfers compared
to E. and pe, we can use the non-recoil approximation (NRA) (E. > hw =~ hclk|) leading

to the linear dispersion relation |74, 123]
w =k v = keve cos(o).

Here ¢ denotes the angle between k., and v. Figure 2.4(a) shows the dispersion of the
electron associated field w = keve (|ke|] = ke, |v] = ve) for ¢ = 0° as a green line and
transferable energies with 0° < ¢ < 90° are represented by the gray shaded area. When the
electron encounters a metallic interface a coupling to surface plasmon polaritons is possible
due to energy-momentum conservation, as demonstrated by the overlapping section of the
schematic SPP dispersion ¢(w) (red line in Fig. 2.4(a)) with w = kev |74]. The intersection
given by ¢q(w¢) = wi/ve = ke defines the energy threshold fw; below which coupling to the
plasmonic modes is prevented because of momentum mismatch.

Essentially, the accessible energy range and the spatial mapping capability of the sam-
ple’s electromagnetic modes depend on the spectral composition and spatial extent of E¢

[117]. Figure 2.4(b) presents the electric components ES and E¢ calculated in cylindri-
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cal coordinates by treating the electron as a point charge propagating along a line trajec-
tory in z-direction (kinetic energy eU = 200 keV) [124]. The field is given at the position
(z,7) = (0,10 nm) (solid black and red line), where both field components are temporally
located within 0.05 fs to 0.1 fs representing an ultrashort burst of radiation at the reference
point. The field components act differently on a probe charge positioned at r: the force
linked to ES (black line) points in one direction for the entire transient, while the force
in z-direction (red line) changes its sign at ¢ = 0. Moreover, the r-component has a four
times higher peak field strength. Increasing the radial distance r to 40 nm raises the pulse
duration by a factor of four and decreases the maximal amplitude by a factor of 16, as shown
by the second transient (dashed lines in Fig. 2.4(b)).

The evanescent character of E¢ | i.e., the spatial confinement to the source, is presented
in Fig. 2.4(c) as the time-integrated total intensity oc [dt(|ES |? + |ES |?). The reduction
by six orders of magnitude over a distance change from » = 1 nm to » = 100 nm from the
electron demonstrates the field localization to the electron trajectory®. This property is
crucial to the capability of SPP mode mapping with nanometer precision, since the swift
electron acts as an effective local probe [117]. The spectral content (Fourier transform) of
the transient field (inset of Fig. 2.4(c)) is exemplary shown for » = 10 nm (solid line) as the
energy spectrum of the total intensity normalized to its maximum. The broad energy range
(~ 20 eV at half-maximum) allows for the excitation of modes with resonance energies in

the extreme ultraviolet domain.
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Fig. 2.4: Fast electrons as a light source for SPP excitation. (a) Schematic illustration of the dispersion
relation of the electron associated field (green line) compared to light in vacuum (black line) and SPP
dispersion (red line). The electron can excite electromagnetic modes by momentum and energy conservation
above a certain threshold g(w¢). (b) The electric field of an electron with 200 keV kinetic energy given by the
radial (black lines) and longitudinal (red lines) components. Presented are the transients for two positions
r = 10 nm (solid lines) and r = 40 nm (dashed lines) with respect to the electron position (cf. inset). (c)
The time-integrated total intensity oc [ dt(|Ef |*+ |ES |?) as a function of radial distance r demonstrates
the electron’s local probe properties. An intensity decay by a factor of ~ 100 in the range » = 10 nm to
r = 40 nm is observed. This is accompanied by a decrease of the spectral components of the fields: The

bandwidth of the energy spectra normalized to their maxima (inset) decrease from 20 eV to 5 eV (measured
by the half-value).

5For r — 0, the intensity diverges due to the point-like character of the charge carrier. This singularity is
removed in a proper quantum description based on a self-energy formalism [74, 124].
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Despite the fact that we have not yet introduced a real sample to the description, the
consideration of the energy-momentum relation and the time-varying field of a swift electron
passing a probe charge conveys an instructive picture of the interaction of the electrons and
electromagnetic modes. In conclusion, high-velocity point charges provide a broadband,
ultrashort and local light source ideal to investigate electromagnetic modes with a dispersion

relation outside the dispersion of light in vacuum.

2.1.4 SPP excitation via grating couplers

A periodic arrangement of surface defects with sub-wavelength dimensions can provide ad-
ditional momentum Ak to overcome the momentum mismatch between far-field light and
SPPs (cf. inset Fig. 2.3(b)) [111]. In our experiment, we use grating couplers (GCs) of
several slits milled into the tip shaft by a focused ion beam (FIB) (see Fig. 2.8(b)). Light
with the wave vector k illuminates a grating of periodicity p, under an angle of incidence
0, as schematically illustrated in Fig. 2.5(a).

Fig. 2.5: SPP excitation via a grating coupler (GC).
(a) (b)Aw (a) Far-field light with wave vector k illuminates a

E : w/csin & wlc GC with grating periodicity py under an angle of in-

/_| G g(w) cidence # with respect to the surface normal. The

K : G field E is polarized in the plane of incidence (p-
i

polarization). Resonant SPP coupling occurs for a
phase matching condition (cf. Eq. 2.4) which re-

»  quires an equality between the SPP dispersion g(w)
K. :
(red arrow) and the sum of the scattering vector
(©) vG = v27/py (green arrow) and the in-plane com-
ponent k| = w/csinf of the incident light (black
= 620 £  arrow). (b) Schematic SPP dispersion relation (red
o, L. line) and light lines for grazing incidence (6 = 90°,
_g %) black line) and 0° < 6 < 90° (gray line). Depending
> < on the angle of incidence, momentum conservation
(<) 827 @ L . . . .
5 [ is given for different energies/frequencies (illustrated
0 g by the first diffraction order with green arrows). (c)
Plot of w(#) calculated with the phase matching con-
1240 dition (Eq. 2.4) for an SPP dispersion of a flat gold

surface (Eq. 2.3) and the diffraction orders v = +1
and v = £2. The parameter range of our experiment
is indicated by the the dashed area.
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The GC causes the light incident on the structure to be scattered into different diffraction
orders given by the integer v and grating vector G = 2m/p, (green arrow). An excita-
tion of SPP waves occurs if the light field E has a polarization component perpendicular
to the grating grooves (p-polarization) and if the phase matching condition (momentum

conservation),

2
g(w) = ky(w) + G = % sin 0 -+ upi (2.4)
g

is fulfilled [23, 24, 125]. Here, k| = |k[sinf = w/csinf is the in-plane component of the
incident light wave vector. Figure 2.5(b) illustrates this relation with a schematic SPP

dispersion (red line) for the scenarios of grazing incidence (0 = 90°) (black line) and
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0° < 6 < 90° (gray line). Using Eq. 2.4, we find the parameters § and v to excite an
SPP mode® for a given frequency w and a grating period Dy-

Figure 2.5(c) shows the phase matching condition of Eq. 2.4 (in the form w(6)) for the
SPP dispersion of a semi-infinite interface for the v = +1 and v = £2 diffraction orders.
Here, ¢(w) is calculated with Eq. 2.3 and the gold permittivity taken from Ref. [82]. Our
experiment (chap. 4) is restricted to an angle of incidence close to perpendicular to the
tip surface (# ~ 0°) with an excitation spectrum centered at 780 nm nm with ~ 120 nm
spectral bandwidth (leading to an angle and energy region indicated by the dashed area
in Fig. 2.5(c)). We roughly adjusted the grating periodicity to provide an sufficient SPP

coupling for the v = +1 resonance’.

2.2 Relaxation mechanisms of surface plasmon excitations

Once a polarization including SP modes is induced, it relaxes over time either by radia-
tie or non-radiative decay mechanisms. This limits the surface plasmon lifetime 7, and
the achievable field enhancement [81, 130-132]. LSPs and SPPs are mostly affected by in-
trinsic non-radiative electron-hole pair, electron-electron, and electron-phonon excitations
(non-radiative damping rate 7y,). These are incorporated in the dielectric function of the
material (ynr < Im(e)) leading to the finite LSP resonance width observed in Fig. 2.2(d)
and a spatially limited SPP propagation (cf. Fig. 3.3 in sec. 3.1) [80]. The SP decay mech-
anisms evolve on different time scales and the non-equilibrium dynamics can be viewed as a
scattering cascade that is schematically shown in Fig. 2.6 [133]. On a timescale of < 100 fs
the absorption of (multiple) photons from the SP field generates electron-hole pairs (Landau
damping) resulting in a non-thermalized electron distribution [134]. If the number of ab-
sorbed photon energy quanta is sufficiently large multiphoton photoemission can occur (see
below). During the subsequent 100 fs to 1 ps, electron-electron interactions (Auger transi-
tions) lead to a quasi-equilibrated (hot electron) distribution characterized by an effective
electron temperature T,. This cools down on a 1 — 10 ps timescale by electron-phonon cou-
pling (Ohmic loss), that is much slower because of the higher inertia of crystal ions [133].
A two-temperature model assigning separate thermal conductivities and heat capacities to
the electron and to the phonon system has been developed to treat the heat transfer [135].
Applying this formalism to pump-probe experiments on tungsten tips demonstrated electron
peak temperatures of T, ~ 2000 K (for pulse energies in the mJ regime) [136]. Finally, on
the timescale of tens of picoseconds to several tens of nanoseconds, diffusion transports the
heat into the bulk material [133].

In addition to these intrinsic damping mechanisms, also crystal imperfections (e.g., grain

SVarying the angle of incidence 6 in spectrally resolved transmission or reflection measurements allows to
map the SPP dispersion relation over a wide range of g(w) [112, 126, 127].

"Similar experimental schemes with gratings on gold tips have demonstrated effective acceptance band-
widths (wavelength spectrum that is coupled by the GC) of ~ 60 — 100 nm [45, 128, 129].
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boundaries), scattering at the structure surface, non-locality of the dielectric function, and

quantum size effects can modify the damping rates |71, 134, 137, 138].

g, Thermal g, Non-thermal ¢, Hot electron g, Thermal
s N N ¥y
electrons
B EF- ‘_‘*_—a..-___.;,:: - EF- — e = =-
7’ e : n 1o i
Population > Population — Population ‘ > Population ‘
0fs 1-100 fs 0.1-1 ps >10 ps L
Surface plasmon  Electron-hole Electron-electron Electron-phonon Time
excitation pair excitation scattering scattering

Fig. 2.6: Population dynamics followed by photon absorption. At time zero a light field with photon ener-
gies of fiw, e.g., an SP near-field, couples to the electronic system in thermodynamical equilibrium (with
temperature Tp). On a timescale of ~ 100 fs, single electrons absorb (multiple) photon energies (red arrows)
which generates a highly non-thermal occupation of electron-hole pairs. Subsequently, the excited system
evolves in a time of ~ 100 fs-1 ps into a hot electron distribution by electron-electron scattering (black ar-
rows). The resulting population is associated with an effective temperature T, > Tp. This is followed by
the coupling to the phonon system on a timescale of 2 10 ps ending in an equilibrated state with a slightly
higher temperature 7 > Tp. Finally, diffusion leads to dissipation (not shown). Adapted from Ref. [133].

SPPs at flat interfaces are bound modes, thus they do not decay through radiative pro-
cesses [73|. On the contrary, LSPs of spherical particles emit photons to the far-field via
dipole radiation with a cross-section proportional to R%, while the intrinsic absorption cross-
section scales with R% [80, 81, 85]. Because of this different dependencies, radiation plays
a minor role for LSP decay of nanoparticles with Ry < 20 nm [139]. However, linear and
nonlinear photon emission carries the fingerprints of the underlying relaxation pathways and
is the central part of many spectroscopic and time-resolved optical experiments and applica-
tions. For example, interferometry experiments with the second harmonic generation from
gold tip apexes have demonstrated an apex LSP lifetime of 75, ~ 20 fs — basically, limited

by the above mentioned intrinsic damping mechanisms [140].

2.3 Light-driven electron emission

Complementary to photon-based analytical methods, optically driven electron emission from
a sample is a powerful tool, which can provide fundamental insights into the electronic band
structure and charge carrier dynamics in many different materials. Prominent experimen-
tal techniques making use of this are ultrafast angle-resolved photoemission spectroscopy
(ARPES [141, 142]) and photoemission electron microscopy (PEEM [143-145]). Further-
more, electron pulses emitted through fs-laser excitation are used in gun assemblies in ul-
trafast electron microscopy (UTEM [54, 146, 147], fs-PPM |51, 52|) and ultrafast diffraction
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experiments (ULEED [55, 56, 148]). This allows for time-resolved measurements in the
femtosecond to picosecond-regime. In these examples, plasmonic near-fields generated at

nanostructures play a crucial role, as they enhance and confine the electron current.

We discuss the basic concepts of electron transfer from a solid to vacuum based on the
Sommerfeld model for metals (an electron gas moving in a one-dimensional potential well)
[75, 149|. In thermodynamical equilibrium, the electrons populate the states with energies
E up to the Fermi edge® Er. This situation in schematically illustrated in the left panel of
Fig. 2.7(a) (gray shaded area of the population f). At the sample surface the charge carri-
ers face a potential barrier of an energy Fy,. > EF preventing the electrons from emitting
into the vacuum. In other words, the electrons at Er must gain at least the work function
® = Ey.c — EF to be released from the material. The potential transition from the solid to
the vacuum can be approximated by an image potential (solid black line in the right panel
of Fig. 2.7) originating from the self-induced polarization of an electron outside the sample
that is described by the Coulomb interaction Vipg o< —e? /4z of the electron with its in-
duced image in the sample [84]. Two general strategies come into mind how a charge carrier
can emit from the material (excluding a change of ®). Either the electron is energetically
elevated to states with E > Fy, (Figs. 2.7(a-c)) or the barrier “trapping” the electron is
modified in such a way that the tunneling probability to the vacuum is significantly increased
(Fig. 2.7(d)).

2.3.1 Multiphoton photoemission

The linear surface photoelectric effect is an important example of the former scenario that
bases on the energy change of electrons — presented in Fig. 2.7(a). Here, an electron absorbs
a photon energy hw > ® exceeding the work function and is transferred to the vacuum.
The mechanism was discovered by Hertz in 1887 [1] and explained by Einstein in 1905 [2].
According to these groundbreaking studies, the absorption process involves a single light
quantum determining the final kinetic energy of the electron hw — ® and the light intensity
I, only determines the amount of emitted electrons (the current I). In particular, photons
with fiw < & are not able to release electrons to the vacuum. As a matter of fact, this
statement is restricted to surfaces that are exposed to small photon densities (linear optics).

For increased intensities, nonlinear optics must be applied. Here, an electron can absorb
several photons, each of which has an energy smaller than the work function. However,
the total energy of n absorbed photons may exceed the barrier (nfiw > @) leading to
multiphoton photoemission (MPPE) (Fig. 2.7(b)). This process involves n— 1 real or virtual
intermediate states that the electron traverses and the specific pathway depends on the
actual band structure of the material [150-153]. In general, this mechanism requires intense

light fields in order to provide n photons to be absorbed in a sufficiently small period of

8We assume a temperature Tp much smaller compared to the Fermi temperature that attains values of
several 10* K in metals [8].
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time. Hence, the invention of the laser — seven decades after Hertz experiments on linear
photoemission — was necessary to demonstrate two-photon absorption for the first time in
1961 [154]. Nowadays, ultrashort laser pulses and field enhancing nanostructures are utilized
to drive highly nonlinear absorption processes [30, 149, 155].

Static heating or a transient elevation of the electron temperature is another way of
electron transfer over the barrier (Fig. 2.7(c)). Here, the high-energy tail of an electron
distribution following from the Fermi-Dirac distribution f(E) = (exp[(E—Er)/kpT.]+1)7!
exceeds Fyae (Boltzmann constant kp) [8]. In the case of static heating, this is called
thermionic emission and it requires electron temperatures T, of the order of a few thousands
of Kelvin. Thus, only high-melting point materials (e.g., tungsten) can be used in hot-

cathode guns in electron microscopy [156].

(a) AE (b) AE (C) AE (d) AE

hw
P T.>>T, R

Linear f Multiphoton zf Thermionic  zf (Optical) field  z
photoemission photoemission emission emission

quiver
motion
————— )

Fig. 2.7: Schematic illustration of electron transport pathways from a metal to the vacuum. The electron
gas populates states in the metal represented by the Fermi-Dirac distribution f(E) (gray shaded areas) for a
temperature Ty < Tr (Fermi temperature T is of the order of 10* K). An image potential (Vimg oc —e?/4z)
modifies the energy landscape outside the metal (black line). (a) Energy of a single photon absorbed by an
electron (purple arrow) leads to electron emission (green arrow) if its energy fiw exceeds the work function
® = Eyac — Er (linear photoemission). (b) For sufficiently high field intensities, the electron can absorb
the energy of several photon quanta (red arrows) leading to multiphoton photoemission even if hw < ®.
(¢) A high-energy tail of a distribution with T, > Ty provides electrons (zoom-in) with energies exceeding
the vacuum barrier (thermionic emission). Such a population can be generated by static heating or a by
transient hot electrons. The Schottky effect reduces the work function to an effective value ®.g by applying
a positive potential to the counter electrode (blue line). (d) A field E (either static or oscillating) normal to
the surface reduces the barrier height and causes a finite width of the vacuum barrier at the energy of the
electrons (lower red line) leading to quantum tunneling (dashed green line). Potentially, E is enhanced by a
factor F' > 1 at the nanostructure. In the case of an intense oscillating near-field F'E the barrier periodically
increases and decreases in the time range [to,t1 = to + 1/2w]| separated by one half-cycle (red shaded area).
As a result, electrons can perform quiver motion in the field once they are released.

A phenomenological model that describes both linear photoemission and thermionic emis-
sion including the light intensity and temperature dependency was firstly formulated by
Fowler [157] and DuBridge [158] in the early 1930s. The resulting formalism can be general-
ized to arbitrary nonlinearities delivering partial current densities I,, which compose to the
total electron flux Iiota = Y, In [159-162]. I,, is a function of the material properties in-
cluding the electron escape probability, the number of electrons that absorbed the energy of

n photons and the number of available electrons (see Appendix 7.1 for a brief summary of the
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equations). Note that the generalized Fowler-DuBridge theory includes also the Richardson
equation for thermionic emission (n = 0) and thermally assisted MPPE [162]. The current
density I,, of the order n scales with the light intensity I, o< |E|* and thus with the laser
power P according to a power law, I,, o |E|?" oc P". Most importantly, this effect can be

strongly increased by plasmonic near-fields enhancing E by the enhancement factor F":
I, < |FE|*™ o« P™. (2.5)

From this relation we expect an integer slope n in a double logarithmic representation
(log I,, < nlog P) for a pure n-photon process and it highlights the importance of the
enhancing effect of plasmonic near-fields on the nonlinear photocurrent yield (o< F2") [163,
164]. Moreover, Eq. 2.5 allows for a calculation of the near-field enhancement factor present
in a photoemission process, as it is used in chap. 4.

In general, the total current density Iiota emitted from metal tip apexes under laser
illumination can involve a mixture of different mechanisms (e.g., different orders of photon
absorption or photon-assisted strong-field emission) depending on the laser pulse duration,
the pulse energy and the applied static bias voltage [104-106, 136, 163-172|. Furthermore,
different initial electron states may contribute to Iiota1; an aspect of particular importance
for gold tips, as the d-band of gold provides a significant increase of the density of states
for energies approximately 2.2 eV below the Fermi edge [173, 174]. Finally, because of the
ultrafast laser illumination, non-equilibrium populations and their relaxation contributes
with time-dependent pathways to Liota [104, 171, 175]. All of this may result in non-integer
photon orders when extracted using Eq. 2.5 [105, 152, 161, 163].

2.3.2 Strong-field photoemission and the Keldysh parameter

Figure 2.7(d) shows a scenario in which electronic states £ < FEy,c outside the sample
become accessible due to a change of the potential. For instance, applying a static negative
voltage to the material with respect to a counter-electrode forms a finite barrier wall with
a maximum height smaller than F,,.. In a quantum mechanical picture, the wave function
of the electron decays exponentially but is unequal to zero inside the barrier and hence the
charge has a finite probability to tunnel through the wall. This is used, for example, in field
emission guns for electron microscopy [156]. Nordheim and Fowler derived the exponential
current density relation Iioia o |E|? exp(®3/2/|E|), for a static triangular potential resulting
from the field component E normal to the metal surface [176]. In addition, the effective
barrier height calculated with ®eg = ® — y/e3|E|/4meg reduces the necessary temperature
for thermionic emission (cf. Fig. 2.7(c)) if sufficiently high electrostatic fields are applied
(Schottky emitter) [156, 164].

Static field emission has an optical analogue called strong-field photoemission, in which
the potential modification leading to tunneling is provided by the electromagnetic field.

The necessarily high field amplitudes can be provided, e.g., by tip apexes illuminated with
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intense laser pulses [105, 136, 163, 165, 166, 172, 177-180]. For one half-cycle a finite barrier
is generated and hence “opens” the tunnel channel, whereas the next half-cycle suppresses

electron transfer by increasing the potential wall (cf. red shaded area in Fig. 2.7(d)).

In general, multiphoton and strong-field photoemission may contribute to an optically
driven photocurrent. The relative contributions of both are determined from the Keldysh

parameter [181]
d

TK = ﬁ’
which distinguishes the photoemission (yx > 1) from the strong-field regime (yx < 1).
The ponderomotive potential Up = €2|E|? /4m.w? quantifies the average energy that a free
charge carrier gains if it quivers in the linearly polarized sinusoidal electric field E normal to
the surface. Essentially, decreasing the field’s frequency w or increasing the field’s intensity
I, o< |E|? raises the strong-field contribution to the total photocurrent [164].

Laser amplification systems in combination with field enhancing nanostructures have been
used to explore the transition from MPPE to strong-field photoemission for a free standing
tungsten tip [105] and a platinum-gold STM junction [182]. The experiments found peak
intensities of ~ 10 TW /cm? (corresponding to |E| = 10 V/nm) for Keldysh parameters of
1 to 2. However, our experiments are operated with laser oscillators (no amplification) well

above the transition (yx 2 10), thus strong-field processes play no role in our analysis.

2.4 Fabrication of plasmonic nanostructures

The central subjects of all presented experiments (chap. 3 to chap. 5) are gold nanotips;
its fabrication can be regarded as a three-step procedure. Firstly, polycrystalline gold wires
(250 um in diameter) are annealed for 8 — 12 h in vacuum (base pressure 10=7 — 10~® mbar)
with temperatures of 650 °C to 800 °C. This increases the size of the crystal grains and pro-
vides quasi-monocrystalline apex segments after etching [45]. Scanning electron microscope
(SEM) images and diffraction measurements in TEM evidence grains of several tens of mi-
crometer in size.

Secondly, the wires are electrochemically etched in 37% hydrochloric acid with a Platinum-
Iridium (PtlIr) counter electrode surrounding the gold anode (Fig. 2.8(a)) [183]. The etching
rate at the interface of gold, air, and solution is increased compared to the deeper immersed
part of the gold wire which forms a tapered meniscus region [184]. We apply the voltage
in a two-step program. Pre-etching (~ 100 s) is performed with a direct current (DC) volt-
age of 2V lying significantly over the redox potentials of the involved reactions that range
from 0.93 V to 1.15V [185]. This process creates a pronounced meniscus (Fig. 2.8(a)). Af-
terwards, a short period (5 — 10s) of alternating (AC) voltages of 4 — 5V square waves
detaches the lower wire part leading to the apex formation. It is crucial that after the de-

tachment the applied voltage is immediately switched off in order to prevent a blunting of
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the apex due to further etching. Apex radii of the order of ~ 10 nm are achievable with this
method (Fig. 2.8(b)). The high voltage etching significantly increases the surface smooth-
ness. Subsequently, the nanostructure quality including the surface roughness, grain size,
opening angle, and apex radius is examined with SEM imaging (Figs. 2.8(b-d)).

In the final fabrication step, focused ion beam (FIB) milling is used to either cut and
transfer 30 — 60 um long apex segments to a TEM Cu wire grid used in the experiments
presented in chap. 3 (Fig. 2.8(d)) or to mill a grating coupler into the shaft surface which is
explored in chap. 4 (Fig. 2.8(b)). The tips utilized in the STM measurements (chap. 5) are
inserted into tip holders after the second fabrication step (Fig. 2.8(c)).

TEM grid

Fig. 2.8: Fabrication of gold nanotip structures. (a) Schematic illustration of the electrochemical etching
process of a gold (Au) wire anode surrounded by the Platinum Iridium (Ptlr) counter electrode in 37%
hydrochloric acid (HCl). A meniscus in the air-gold-acid interface develops during the etching process
resulting in the detachment of the immersed wire part. This provides nanotips with apex radii of the
order of ~ 10 nm and sufficiently smooth surfaces. (b) Example of a gold taper with Ry = 13 nm (inset)
equipped with a grating coupler milled with a focused ion beam (FIB) into the surface 90 pm away from
the apex. The grating consists of 12 slits with a periodicity of 780 nm and a depth of 200 nm (zoom-in).
(¢) Our STM experiment requires tip working lengths of 2 + 0.2 mm and specialized tip holders allowing an
in-situ exchange in the STM measurement head. SEM imaging is used to ensure the correct length and tip
integrity before the holder is inserted into the UHV transfer chamber. (d) For the STEM-EELS experiment
tip sections of ~ 30 — 60 pm length are detached by FIB milling from the gold wires and transferred with
the FIB probe onto conventional TEM copper grids.
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CHAPTER 3

Surface plasmon polaritons on nanotip

surfaces

Surface plasmon polariton (SPP) modes are evanescent, bound
excitations existing at spatially extended metal-dielectric inter-
faces, as we have discussed in sec. 2.1. In contrast to localized
surface plasmons (LSPs), SPPs travel along the interfaces [24, 73].
The conversion of SPPs into confined modes provide a convenient
local excitation scheme by spatially separating the SPP generation

from the interaction region [35, 128, 186-188]. A nanotip realizes

such an interconversion in which the plasmon mode propagating
along the shaft surface is gradually transformed into a localized
excitation at the apex (see sketch in Fig. 3.1) [128, 188, 189|. This

nanofocusing process — initially introduced by Babadjanyan et al.

Fig. 3.1: Sketch of the ex-

periment.

[190] and Stockman [191] — is accompanied by an enhancement of the electromagnetic field
and a localization of the energy into nanoscale dimensions [35]. On the theoretical side,
different aspects of nanofocusing has been investigated such as field enhancement [192-197],
non-locality [198, 199], non-adiabaticity [200] and SPP wave packet evolution [201, 202].
Experimentally, nanofocusing has been utilized in (time-resolved) apertureless near-field
scanning optical microscopy (A-NSOM) [39, 40, 45, 46, 188, 203-207|, tip-enhanced Raman
spectroscopy (TERS) [41, 42, 188, 208, 209], and in point-projection microscopy (PPM)
[50-52, 210] as light and electron sources. Despite this variety of studies, the exact SPP

propagation properties of nanotips are yet not completely understood.
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In this chapter, we investigate SPP waveguiding occurring in gold nanotip structures that
are relevant in the mentioned experimental applications. The following sec. 3.1 describes
the key concept of nanofocusing along metallic tips including their electromagnetic mode
distribution, surface confinement and their gradual change along the tapering structure as a
function of the tip’s local radius R(x). Subsequently, a brief concept of electron energy loss
spectroscopy (EELS) in a transmission electron microscope (TEM) is presented in sec. 3.2,
as we apply it to analyze the SPP mode propagation on gold tapers in real-space. The
experimental findings and analysis has been published in Ref. [65] with the title “Real-space
imaging of nanotip plasmons using electron energy loss spectroscopy” and is reprinted in
sec. 3.3. Importantly, a semianalytical model (Ref. [66]) is used that fully captures the
involved physical mechanisms resulting in the measured electron energy loss. Section 3.4
provides a complementary, recapitulating description of this model and a discussion of re-

lated studies, that — in a sense — deviate from our interpretation.

3.1 Waveguiding with metal nanotips

In general, the SPP waveguiding properties including the propagation length, localization
and lifetime are essentially governed by the dispersion relation ¢(w). It is derived by solving
the Maxwell equations for the electric and magnetic field E and H, respectively, with conti-
nuity conditions of the tangential components of E and H at the metal-dielectric interface
[73]. We model a tip as a cone with a spherical apex, as schematically illustrated in the
top panel of Fig. 3.2. The radius R(z) depends on the two parameters apex radius Rr and
opening angle ar. An adequate theoretical description — known as adiabatic nanofocusing —
can be found by approximating the tip structure with thin cylinders with slowly decreasing
radii R;(x;) which are stacked up to resemble the tip (bottom panel in Fig. 3.2) [191, 211].

Fig. 3.2: Model and approximation of a metal tip. — Model
The tip’s radius R(zx) is the surface of a cone with B Iq;/-f ~~~~~~~~ N
an opening angle of ar truncated by a spherical apex x| [TTTT]

with radius Rr and R(0) = 0 (black curve). Nanofo- Ri(x,) Approximation

cusing and electron energy loss is calculated for the
tip modeled as a stack of thin cylinders at position
x; with radius R; in such a way that R;(x;) = R(x).

The electromagnetic eigenmodes (the fields E and H) of a cylinder of radius R in cylin-

drical coordinates r = (r, ¢, x) are determined by the scalar function

Fijm(r,¢,7) = fim(qjr) - exp (imp + iqr — iwt) (3.1)

for the inside (j = t) and outside (j = d) of the cylinder [212, 213]. Here, the z-component

of the wave vector (propagation constant) and the azimuthal mode order are denoted with
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q and the integer m, respectively. The radial field distribution is governed by f;(g;r) that
is mainly determined from Bessel J,, and Henkel HV(,P functions of the order m. Since we
are interested in the surface bound (non-radiative) eigenmodes of the cylinder, the waves

must not propagate radially and the radial wave vector components

w w

G = — (E)th —¢> and o qg= (;)Qfd - ¢ (3.2)

must be imaginary. This follows from momentum conservation (qj2 +¢* = £;k?*) with the free
space wavenumber k = w/c. The dispersion relation ¢(w) we are looking for is calculated by a
transcendental equation derived from the continuity condition at the cylindrical surface (see
Appendix 7.2). In particular, combinations of ¢,z and w that fulfill Eq. 7.1 for a given az-
imuthal mode number m and a cylinder radius R provide the SPP dispersion [189, 212, 213|.

In direct comparison to the dispersion of freely propagating electromagnetic waves
(w = ck) surface bound SPP modes are found to have a wavenumber larger at a given
energy, as found in sec. 2.1. Figure 3.3(a) shows the real part of the dispersion relation
Re(q) of the fundamental mode (m = 0) for gold cylinders of different radii (R = 30 nm to
R = o0, solid lines, increasing with gray arrow) and for energies in the near-infrared to the
visible range' calculated with Eq. 7.1. We observe an increasing wave vector with decreas-
ing radii, i.e., the SPP wavelength As,, = 27/Re(q) decreases for smaller tip radii. This
wavelength compression is one of the remarkable properties of nanofocusing (see below).
Since the radial field extension (Eq. 3.2) decreases simultaneously this leads to a stronger
confinement. For radii in the micrometer regime, the curves match to the dispersion relation
of the planar interface given by Eq. 2.3 (solid black line in Fig. 3.3(a)) [73].

The oscillating electrons in the metal are strongly affected by scattering events (damping)
[132, 133]. Quantitatively, the SPP intensity is reduced by a factor of e~! for a propagation
distance of Lepp, = 1/|2 Im(q)| (Fig. 3.3(b)) [73]. For a broad energy bandwidth Lgp, has
values of several tens to a few hundreds of micrometer. If the energy of the SPP mode
reaches the d-band edge of gold 2 2.2 eV interband transitions drastically reduce Lgp, down
to the sub-micrometer domain, thus causing inefficient SPP waveguiding for these energies
[134]. Moreover, the propagation length is increased for larger cylinder radii (gray arrow in
Fig. 3.3(b)).

Up to now we have concentrated on the dispersion of the fundamental mode (m = 0).
The physical meaning of m is illustrated by the insets of Figs. 3.3(c) and (d) as the differ-
ent associated transverse field distributions. The fundamental mode is constant along the
azimuthal direction ¢ and its polarization points in a direction normal to the surface (radial
direction r). Higher-order field distributions exhibit a number of 2-m nodes resulting in

multipolar fields, for instance, in a dipole-, quadrupole-, or hexapole-like distribution for

!This is the energy range relevant for our discussion; details on an extended energy scale can be found,
e.g., in Refs. [24, 73].
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m = +1, m = £2, or m = £3 with the sign governing the direction of rotation (213, 214].
The high-order dispersions show also a different quantitative behavior, since the modes only
exist for energies exceeding a certain cut-off relation ¢(w.) that depends on the cylinder
radius and mode number (cf. black dots in (c¢) and (d)) [213, 215]. ¢(w.) increases with
increasing mode order (for a constant radius).

Effectively, for a given mode m and energy Aw this results in a cut-off radius R, below
which the mode cannot exist anymore. Importantly, the taper acts as a mode filter: Only the
m = 0 mode propagates without a cut-off all along a tapered nanostructure and converges
into nanometric volumes at the apex [65, 66, 191, 216, 217]. However, higher-order modes
can be excited for radii R > R, and their mode superposition forms a complex interference
pattern in energy loss measurements [65, 218, 219], as we demonstrate in secs. 3.3. These
modes are gradually converted to radiative modes if they approach the respective cut-off
radius [110, 217, 218|.

Now we can investigate the central properties of nanofocusing by following the idea of
stacked cylinders with decreasing radii to approximate a nanotip (see Fig. 3.2) for the
excitation energy’ hw = 1.55eV. The local radius R(x) of the metal tip continuously
decreases with a rate of R© = dR/dx which is assumed to be small [191] (limits are dis-
cussed below). As we have seen, this leads to a gradual compression of the SPP wavelength
Aspp (increasing g(w)): For radii 10nm < R < 100 nm, Agpp reduces from ~ 730 nm to
~ 270 nm (Fig. 3.3(e)). This has three striking consequences. Firstly, the field localizations
Lip = 1/]2¢4| and Lyae = 1/|2qq4| are connected to ¢ (and thus Agpp) via Eq. 3.2. With
decreasing Aspp also Liip and Ly, in the tip and the vacuum are reduced down to 10 nm and
20 nm at R = 10 nm, respectively (Fig. 3.3(f)). Hence, the field localization at the tip apex
is of the order of the apex radius corresponding to a confinement far below the diffraction
limit of far-field light [189]. This reflects our findings for LSPs in sec. 2.1. Secondly, the
SPP waves become slower approaching the tip end, because the group v, = |dw/dg| and
phase velocity v, = |w/q| drastically decrease from a value close to the speed of light ¢ down
to a few percentage of ¢ (Fig. 3.3(g)) [191]. Thirdly, a strong field enhancement and optical
energy confinement is present for adequate small radii [35].

Typically, the theoretical studies on this subject and on the demonstration of wavelength
compression and field enhancement rely on very small structure dimensions (R ~ 1nm,
ar < 5°) (e.g., in Refs. [191, 199]), which are hard to achieve by experimental schemes.
This is also accompanied by rather unrealistic field enhancement factors F' reaching several
hundreds. However, these studies give valuable insights into the general mechanism and

provide a versatile toolbox for the calculation of tip structures used in sec. 3.3.

2This energy corresponds to 800 nm that is the central wavelength of the widely used Titanium:Sapphire
laser oscillator (A typical bandwidth is indicated in Fig. 3.3(a) by the red shaded area).

26 Chapter 3 Surface plasmon polaritons on nanotip surfaces



a I I L/
25 (@)
. Ak
;‘ 2 B 0'.
2, y P
3
£ 15¢
>
sy
@ R =30 nm
Lﬁ T R =50 nm
R =100 nm
05¢ R =270 nm
Flat surface (R=)
5 10 15 3?0 1 25 107" 10° 10’ 10° 10°
SPP wavenumber Re(q) [10™ nm™ ] SPP Propagation length LSpp [um]
3
55| (¢) R=300 nm R 107} (e)hw=1.55 eV
Sr . 1
qm:3(wc)o —
— P £
% 2 I qm:Z(wc). .S.
—_— * Q
g &
< 15} {1
P m=+3
w s
05 I qmi‘\(wc) ‘ - ’
. . IS
S L.
55| (d) R=75nm qmzz(txiil 3
3 2|
3
ey 15 - _ _ _ 4
> m=0 m=+1 m=+2
L%) 1 .qm:W(wc) G‘\(p A ca‘, i g
05 N Yl
m=0 i = i i
5 10 15 20 25 101 102 103
SPP wavenumber Re(q) [10‘3 nm'1] Cylinder radius R [nm]

Fig. 3.3: Nanofocusing SPP propagation on a gold tip. (a) The dispersion relations Re(g(w)) for the cylinder
radii 30 nm, 50 nm, 100 nm, and 270 nm (blue to purple lines). With increasing radius (gray arrow) the wave
vector decreases and finally converges to the flat interface SPP dispersion (solid black line). A momentum
mismatch Ak (black arrow) between far-field light (dotted black line) and SPPs prevents a direct coupling.
The energy range of 1.55+0.1eV provided by typical Titanium:Sapphire laser oscillators (used in the
experiments presented in chap. 4) is indicated by the red shaded area. (b) With increasing radius R (gray
arrow) SPPs are less damped and exhibit an increasing propagation length Lspp, = 1/]2 Im(g)| (same radii
as in (a)). (c,d) Higher-order mode dispersion for the cylinder radius R = 300 nm (c¢) and R = 75 nm (d)
(m = 0 to m = %3 are indicated and correspond to the blue to purple line). A cut-off relation g¢m(w.)
prevents SPPs for w < w. (black dots) at the free light dispersion (dotted line). Only the fundamental
mode (blue line) does not have a cut-off radius and exists for R — 0. The insets schematically present
the cross-sectional electromagnetic field and surface charge distribution as a function of azimuthal (¢) and
radial (r) position (not to scale). (e-g) For hw = 1.55 eV, nanofocusing exhibits a strong influence on SPP
propagation for R < 100 nm. The wavelength Aspp reduces from 730 nm to 270 nm at R = 10 nm (e), while
the propagation length Lepp is suppressed to < 1 um (dashed line in (f)). Importantly, the intensity is
strongly localized to dimensions of the order of the tip radius (Lvac = 130 nm to 20 nm) in the vacuum (solid
line) accompanied by a slight confinement (Lt = 13 nm to 10 nm) in the metal (dotted line). The phase
(vp) and group velocity (vg) decrease to 30% and 20% of the speed of light at R = 10 nm, respectively.
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The applicability of the presented approximation has a major limit which concerns the
slow tapering rate R’ of the tip. We assume an adiabatic change of the SPP wavelength over
a propagated distance of Agpp. In this case, the mode does not “feel” the tapering change
and gradually adjusts itself to the smaller radius [35]. From an eikonal approximation the

condition of this adiabaticity can be expressed by the adiabatic parameter [191],

/d(qil)
dR

Saa(z) = R <1 (3.3)

Numerical studies demonstrated that the limit can be estimated to d,q(x) < 0.85 [36, 200,
220]. Consequently, this restricts the tip opening angle to a critical value below which adi-
abatic nanofocusing occurs (< 25° for visible light and gold tips) [220].

Adiabatic nanofocusing predicts an asymptotic stopping of an SPP approaching the singu-
larity (R = 0) at the tip end due to the decreasing group and phase velocity (cf. Fig. 3.3(g))
[191]. However, real tips are truncated by a curved apex leading to a breakdown of the
adiabatic condition at some point. This is accompanied by coupling to radiating far-field
modes, by absorptive losses and by SPP mode reflection [65, 66, 128, 200, 219]. Thereby,

the achievable field enhancement and confinement are limited.

3.2 Experimental setup: electron energy loss measurement

This section briefly explains the instrumentation® of STEM-EELS; the technical specifica-
tions of the instrument used in the experiment are found in sec. 3.3.6 'Electron energy-loss
spectroscopy instrumentation’. A sketch of the setup is illustrated in Fig. 3.4(a). Electrons
generated in a field emitter gun are fed into an electrostatic monochromator (omega-type)
and accelerated to the desired operation energy. A magnetic lens system guides the charge
carriers through a unit that corrects for spherical aberrations (Cs-corrector) and also pro-
vides the lateral raster scanning of the beam in the zy-plane. The corrected and energy
filtered beam is focused onto the sample plane in which the electron-matter interaction
takes place. Subsequently, the scattered electrons are collected by either a high-angle an-
nular dark-field (HAADF) detector or by an energy loss spectrometer. This combination
provides simultaneously geometrical (by the HAADF) and spectral (by the EELS) infor-
mation as a function of beam position (ze,y.). This allows for the correlation of a specific
energy loss with the morphology of the sample.

An example of an HAADF image of a gold tip is presented in Fig. 3.4(b). The energy
loss spectrum at the position marked by the green dot is plotted in Fig. 3.4(c). It is cen-
tered at the zero-loss peak (ZLP) representing the electrons undergone elastic scattering or
very small interactions. The quantity determining the energy resolution is the width of the
ZLP (130 meV in (c)). Electron-matter interaction (back-action of induced electromagnetic

modes) is present as oscillating signatures in the loss spectra for energies beyond the ZLP

3A comprehensive description of the TEM used in our experiment can be found in Ref. [221].
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overlap (inset). Although a factor of 1073 — 10~ smaller than the ZLP maximum, the

SPP signal is clearly distinguishable compared to a reference spectrum (black line) recorded
without any electron-sample interaction.

(a) (b)
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Fig. 3.4: STEM-EELS experiment. (a) Schematic illustration of the setup used in our experiments. (b)

HAADF image of a gold tip. (c¢) Example of a typical loss spectrum (green line) measured at a position

close to the tip surface (green dot in (b)). The distribution of the dominating zero-loss peak (ZLP) gives

the energy resolution of 130 meV at full-width at half-maximum. (Inset) Electron-matter interaction causes

pronounced signal features in the energy loss range of 2 0.5 eV (green line) that are clearly distinguishable
from the reference spectrum recorded at a remote position from the sample (black line).
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Abstract We report the spatial mapping of surface plasmons on conical gold nanotips
by electron energy-loss spectroscopy. We observe standing wave patterns resulting
from reflections of the fundamental surface plasmon mode at the nanotip apex. The
experimental results are in very good agreement with numerical calculations using the
discontinuous Galerkin time domain method and analytical computations based on a

cylindrical mode expansion.

3.3.1 Introduction

Metallic nanostructures can capture propagating optical waves and confine the electromag-
netic energy in nanometric volumes by the excitation of surface plasmons [73]. The associ-
ated enhancement of the local light intensity is of great interest for nanoscale spectroscopy
and locally amplified light matter interactions [22, 30, 31]. These features have been essen-
tial for the development of plasmonics, enabling nanostructure-based light control |21, 25,
35, 37].

A prototypical structure combining both localized and delocalized plasmonic excitations
and their interconversion is the conical metallic nanotip. It features an intense optical
hot spot, which may be directly generated by focusing far-field radiation onto the apex.
The corresponding near-field excitation has enabled various applications in imaging and
spectroscopy, including tip-enhanced Raman scattering [222], apertureless near-field optical
microscopy (A-NSOM) [183, 223|, and ultrafast photoemission [170, 172|. Particularly effi-
cient optical coupling into the apex excitation can be achieved with geometrically converg-
ing bound surface plasmon polariton (SPP) modes traveling towards the apex, a process
commonly referred to as nanofocusing [35, 190, 191]. On conical tips, nanofocusing was
demonstrated using grating coupling [128|, with subsequent applications in A-NSOM [45,
188, 203, 204]. In order to fully harness the capabilities of this scheme, detailed knowledge
of the spatial and spectral distribution of the plasmonic near-field is of upmost importance.
Moreover, relevant questions involve fundamental and higher-order SPP mode dispersions
on conical nanotips [224], as well as the precise breakdown of the adiabatic approximation,
the role of SPP reflection near the apex [200], and the influence of these phenomena on
achievable local field enhancements.

Interestingly, although the local hot spot at the apex has been employed in numerous ex-
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periments, the actual propagating SPP modes responsible for nanofocusing on conical tapers
have so far not been imaged in real space. Employing inelastic electron scattering processes,
cathodoluminescence spectroscopy [225-227| and electron energy loss spectroscopy (EELS)
[113, 228-233| as well as photon-induced near-field electron microscopy (PINEM) [146, 234]
have been very successful in mapping photonic modes in nanostructures with high spatial
and spectral resolutions. EELS resolves the spontaneous energy loss arising from swift elec-
trons passing through or nearby a structure, and interacting with the self-induced electric
field (see Fig. 3.5(a)) [74, 119, 235].

Here, we report the spatial mapping of surface plasmons on conical gold nanotips using
EELS. We observe the formation of standing wave patterns in the loss distribution, which is
shown to be formed by SPP reflection in the apex region. The experimental EELS maps are
in very good agreement with numerical calculations using the discontinuous Galerkin time
domain (DGTD) method and analytical computations based on a cylindrical mode expan-
sion. Among the processes that govern the achievable field enhancement in nanofocusing,
such as local absorption and far-field scattering, we demonstrate that the SPP reflection at

the apex plays a major role.

3.3.2 Experiments

The measurements were carried out on gold nanotips fabricated by electrochemical etching
of thermally annealed 0.25 mm diameter wires in hydrochloric acid, similar to a method
reported in Refs. [45, 183]. For each tip, a 30 um long section of the resulting conical
structure was separated from the wire by focused ion beam etching, followed by a transfer
to a standard transmission electron microscopy (TEM) grid (50 pm mesh size). Inspection of
the prepared tips by scanning electron microscopy yields full opening angles between 9° and
20° and radii of curvature of 10 — 30 nm. To spectrally and spatially map surface plasmon
propagation on the nanotips, we use EELS in combination with scanning TEM at 200 keV
electron energy, achieving an energy resolution of 0.13eV. For details see Supplemental
material 3.3.6 ’Electron energy-loss spectroscopy instrumentation’.

In the experiments, an electron-beam is raster scanned normal to the cone axis over an
area of several pm? in the apex region of the tip, recording EEL spectra at every position
(see Fig. 3.5(b),(c)). Figure 3.5(d)-(k) displays EEL maps for selected loss energies for a tip
with an opening angle of 14° and 13 nm radius of curvature of the apex (see Fig. 3.5(b)). At
all energies, we observe a pronounced maximum near the apex and clear spatial oscillations
along the cone, with a decreasing period for higher loss energies. Fig. 3.6(a) depicts energy-
and position-dependent lineouts through the spectral data, recorded parallel to the edge of
the cone. This representation illustrates the continuous energy-dependent shift and period-
shortening of the observed oscillations. In particular, it is evident that the first maximum
shifts towards the apex for energies below 1eV and remains localized at this position for

higher energies.
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Fig. 3.5: (a) Illustration of swift electron (trajectory
r. with velocity ve in z-direction) interacting with
the self-induced field at a nanoscale tip. Scale bar:
500 nm. The color-coded image represents the abso-
lute value of the self-induced field for a specific time
delay obtained by DGTD simulations described in
the main text (see also Supplemental material 3.3.6
’Computation of the loss probability’ and movie in 0 5 1. 0 1. 5
Supplemental material) (b) High-angle annular dark- Energy loss [eV]
field TEM image of the raster scanned area. Scale
bar: 200 nm. Apex radius: 13 nm, opening angle:

14°. (c) Exemplary electron energy loss (EEL) prob-
ability spectra at positions indicated in (b). (d-k)
Normalized EEL maps for energies between 0.41 eV
and 1.24 eV. A gray mask covers the opaque tip area.
Positions of maximal and minimal loss signals along
the tip edge are indicated by red and white trian-
gles, respectively. Increasing the energy loss leads to
a shift of the nodes and antinodes towards the apex.
Color scale is normalized to the maximum value in
each panel.

0 mmmmn i 1
EEL prob. [arb. units]

3.3.3 Numerical calculations

Spatial oscillations in the local EEL intensity are well-known from finite structures exhibiting
a discrete set of resonant modes governed by geometrical boundary conditions [113, 229-
232]. At nanowires of constant diameter, surface plasmon reflections at terminations were
recently reported [233]. It is not obvious, however, in what way such concepts translate
to a conical nanofocusing geometry, which involves adiabatic wave compression and axially
varying propagation constants within a set of azimuthal modes. To theoretically analyze
this scenario, we conducted two types of calculations yielding insight into the energy loss
mechanisms and the near-field modes involved. As we will show below, the observations
primarily arise from reflection of the fundamental azimuthal mode of the SPP at the apex,
leading to standing wave interference. The first set of simulations was conducted using the
Discontinuous Galerkin Time Domain (DGTD) method [236, 237]. It allows for a solution
of Maxwell’s equations in the time domain for arbitrary geometries. Specifically, the DGTD
method allows us to compute the polarization induced in the nanostructure by a traversing
classical, relativistic electron. The back-action of the induced field on the electron is then
responsible for the loss process [74, 119]. The details of the method and its application to
EELS are outlined in Supplemental material 3.3.6 'Computation of the loss probability’.
The gold tip is modeled as a cone with opening angle 14°, finite length of 15 um and apex
radius of 20 nm. The permittivity of gold is modeled as a linear combination of one Drude
and three Lorentz poles (see Supplemental material 3.3.6 *Solution of Maxwell’s equations’).

Fourth-order elements with element sizes down to 1.5 nm near the tip apex were employed.
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Fig. 3.6: (a) Energy- and position-dependent loss
probability distribution evaluated along the lower tip
edge (see Fig. 3.5). = = 0 corresponds to the apex

position. (b) Corresponding simulation using the

from the apex, for an electron traversing the DGTD method and the geometry of the experiment.

Red and white lines indicate positions of local max-

tip at the position ., = 950 nm. At the time

ima and minima, respectively, in the experiments.
t = 0 (time of closest distance between elec-

The color scale is normalized to the maximum.

tron and surface), two SPP wave packets are

generated, propagating towards (left) and away from (right) the apex (see arrows). The
former is reflected at the apex and reaches the original excitation position z. at a time
t ~ 9fs. The SPP reflection observed in Fig. 3.7 also manifests itself in a retarded action
on the electron, which causes the spectral and spatial oscillations found (cf. Fig. 3.6). (The
Supplemental material presents a movie of the induced time-dependent, three-dimensional
intensity distribution.) We note that, at the position of the electron (treated as a point par-
ticle), the SPP reflection is not directly evident in the time-dependent induced electric field:
Within the time span between the excitation and the back-reflection to the excitation point,
the electron leaves the near-field region. However, in the standard treatment of EELS [74],
the temporal Fourier components of the induced field along the entire line trajectory enters
in the loss probability (see Supplemental material 3.3.6 ’Computation of the loss probabil-
ity’). Thus, despite a purely classical treatment, one may consider the delocalization of the

quasimonoenergetic electron along its trajectory to be implicitly included in the description.
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3.3.4 Semianalytical model

In order to connect our observations to the nanofocusing phenomenon, it is very instructive
to study the influence of individual bound SPP modes propagating along the tip on the EEL
intensity. To this end, we developed a fully retarded semianalytical model to calculate the
loss probability distribution for a given position along the cone surface (see also Supplemen-
tal material 3.3.6 "The semianalytical model’). The model locally approximates the cone
as a straight cylinder of the same radius and accounts for SPP propagation on the tapered
structure in an adiabatic picture [190, 191]. The self-induced field responsible for the EEL
signal [74] can be expanded in a series of cylindrical vector harmonics [238]. Some of these
correspond to surface bound SPP modes, which are characterized by a propagation constant
(on-axis wave vector) ¢ and azimuthal mode index m. The fundamental azimuthal mode is
labeled with m = 0, and positive (negative) indices denote modes that are rotating parallel
(antiparallel) relative to the traversing electron.

Figures 3.8(a) and (c) display the computed excitation probabilities (and therefore EEL
probabilities) of different SPP modes as a function of probe position (solid lines), derived
using the local cone diameter. The fundamental mode has no cut-off, as discussed be-
fore [216], and can therefore be excited at any distance from the apex, with a close to
exponential decay probability towards larger radii. In contrast, the higher-order modes
each exhibit a cut-off at particular cone radii. Coupling to the negative index azimuthal
modes is strongly suppressed (exemplarily shown for the m = —1 mode in Fig. 3.8(a),(c),
orange lines), which can be understood by considering the angular momentum mismatch
between these modes and the external field created by the electron. SPP reflections are
incorporated in the model by coupling to both left- and right-propagating modes, with a
locally varying relative phase that is derived from an action integral (adiabatic approxi-
mation) containing propagation to the reflection point and back. The resulting interfer-
ence pattern for the fundamental mode (reflection at the apex) is plotted as a dashed line
in Fig. 3.8(a),(c), and Fig. 3.8(b),(d) compares the predicted cumulative EEL probabil-
ity for all modes (solid lines) to experimental traces (circles) from a second tip (opening

angle 11°, tip radius 17 nm; cf. high-angle annular dark-field TEM image, EEL maps,
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and lineout plot in Fig. 3.9 in Supplemental material 3.3.6 ’Experimental results on a sec-

ond nanotip’). Very good agreement between experiment and model is already found by

including the apex reflection of only the fun-
damental mode. Furthermore, a moderate
wavelength compression near the apex [190,
We note that ex-

treme wavelength compression is not ex-

191] is reproduced.

pected for the given energies and cone di-
ameters, and pronounced SPP reflection is
the only discernible consequence of the apex-
related breakdown of the adiabatic approx-
imation. Possible cut-off-related reflections
of higher-order modes may contribute to the
dephasing of the modulations observed at
larger distances, but are insignificant near
the tip end (up to 2 um at energies below
1eV), and can also be suppressed by cou-
pling to the far-field.

3.3.5 Summary

In conclusion, we have demonstrated the real
space imaging of surface plasmon polaritons
on gold nanotips using EELS. The exper-
imental findings are in quantitative agree-
ment with results from DGTD simulations
The results
highlight the importance of apex reflections

and analytical computations.

of the fundamental azimuthal SPP mode,
with direct consequences for future plas-

monic nanofocusing applications.
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Fig. 3.8: Semi-logarithmic plots of the experimen-
tal and calculated loss probabilities for energies of
0.51eV and 0.85eV as a function of probe posi-

tion. (a,c) Solid lines: loss probabilities of individual
modes (radius of curvature: 17 nm, opening angle:
11°). Dashed line: Apex reflection of the fundamen-
tal mode leads to an oscillating loss probability. (b,d)
Experimental trace (circles) and model computations

(solid lines), summing over azimuthal modes.
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3.3.6 Supplemental material

Electron energy-loss spectroscopy instrumentation

The experimental work was carried out using a Zeiss Libra200 MC Cs-STEM CRISP (Cor-
rected Illumination Scanning Probe) operated at 200 kV. The instrument is equipped with

a monochromated Schottky-type field-emission cathode (MC-FEG), and a double hexapole-

design corrector for spherical aberrations of the illumination system (Cg-corrector). Both

components, the monochromator and the Cg-corrector, are manufactured by CEOS GmbH.
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Fig. 3.9: (a) High-angle annular dark-field TEM im-
Scale bar: 500 nm.
11°. (b), (¢)
EEL maps for 1.01 eV and 0.62 eV loss energy. A gray

age of the raster-scanned area.
Apex radius: 17 nm, opening angle:
mask covers the opaque tip area. The color scale is
normalized to the maximum value in each panel. (d)
Energy- and position-dependent loss probability dis-
tribution evaluated along the upper tip edge. * = 0

corresponds to the tip position.

For EELS experiments an in-column Omega-
type energy filter, fully corrected for sec-
ond order aberrations, is integrated into
the microscope column [239]. The spec-
tra are recorded using a Gatan Ultra-
Scan 2k x 2k CCD camera with an ac-
quisition time for each spectrum of 15ms
and a dispersion of the spectrometer of
0.016 eV /channel. The energy resolution,
which is defined by the full-width-at-half-
maximum of the spectrum’s zero-loss peak,
varies from 0.098 eV to 0.163 eV, depending
on the spatial position on the scan area. In
the present STEM-EELS experiments, the
electron-beam raster-scans over the sample
with a step width of 6 nm.At each step on
the 1.95 um x 0.79 um scan area, an energy-
loss spectrum is recorded. For data post-
processing, every spectrum is normalized to
Sub-

sequently, the first moment of the zero-loss

its total number of electron counts.

peak is centered to 0 eV for each spectrum.
For presenting the EEL-maps, the zero-loss
peak, determined from a reference measure-

ment, is subtracted from the spectra.

Experimental results on a second nanotip

Figure 3.9(a) shows a high-angle annular
dark-field TEM image of a second gold nano-
tip. The nanotip has an opening angle of

11° and a radius of curvature of the apex of
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17nm. Figure 3.9(b),(c) show two exemplary EEL maps. Also on this nanotip, standing
wave patterns can clearly be identified. In Fig. 3.9(d), lineouts of the electron energy-loss
probability are depicted as a function of energy and position. From lower to higher energies,

one observes a shift and period-shortening of the oscillations.

Computation of the loss probability

The probability that an electron loses the energy Aiw when passing a target particle is given
by [74]:

(w) = % / dt Re (e*@'wtv.Eind (r(t),w)) (3.4)

where e is the unit charge, and E™¢ (r(¢),w) is the Fourier component of the electric field
induced by the electron evaluated at the electron’s position. Therefore, the computation of
the Electron Energy Loss Probability (EELP) reduces to computing the induced field, i.e.,
the total field minus the incident field. Usually the momentum transfer to the electron is
neglected, such that it travels along a straight-line trajectory with constant velocity. This
assumption, known as the non-recoil approximation (NRA), allows for an analytic evaluation

of the incident field caused by the electron. The field is given by

e d(t)
E (I‘, t) = i )
T (@) + (172 () -v)?)
H (r,t) = :7 < E(r,1),

with d(t) = re(t) —r and v = 1/4/1 — v2/c2. We choose the electron to travel in z direction.
Within the NRA, the electron trajectory is then given by re(t) = (ze, ye, vet). This allows

us to rewrite Eq. 3.4 as

_ ¢ —iwz /ve pind
Nw) = g /dz Re (e E’} (a:e,ye,z,w)) : (3.5)

Having an analytic expression for the incident field at hand allows us to use a pure scattered
field formalism [240] to directly solve for the induced field required in Eq. 3.5. Note that,
as we are going to solve in the time domain, we need to compute the Fourier component of
the induced field required in Eq. 3.5. Therefore, we record E™ (x, y., 2,t) for all z on the

trajectory and perform a Fourier transform before evaluating the EELP (Eq. 3.5).

Solution of Maxwell’s equations

We solve the full vectorial Maxwell equations for the induced field using the Discontinuous
Galerkin Time Domain method [236]. We model the experimental gold tip as a cone with
an opening angle of 14°. The computational domain is truncated to a 21 um x 8 pm x 8 um
cuboid with Perfectly Matched Layers (PMLs) of 500 nm thickness at the outer boundaries
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to prevent spurious reflections. In lack of a possibility to terminate the metallic cone in
PMLs, we assume it to have a finite height of h = 15 um, which is smaller than the 30 um
tips used in the experiment. We thus expect to observe reflections that stem from the base.

As detailed below, these reflections can be identified and neglected in the postprocessing.

Fig. 3.10: Cross-section of the tetrahedral mesh used
in the simulations. The tip is modeled as a cone
(vellow) in vacuum (blue). The domain is equipped
with perfectly matched layers on the outer bound-
aries (red).

A cross-section of the tetrahedral mesh is shown in Figure 3.10 with the metallic cone
(yellow) in vacuum (blue) and the PMLs (red). The element size reduces to 1.5 nm around
the apex, which has a round-off radius of 20 nm. As the induced field features high field
gradients, we reduce the element size to 30 nm in the proximity of the electron trajectory
to achieve a decent representation of the field. The permittivity of gold is approximated by

a Drude Lorentz model of the form

2 2
w Aerw
D i Z L
w

w(w~+ivp) 2

e(w) = oo - 7 —iyw —w?

L

With the parameters® stated in Tab. 3.1 we obtain a reasonable approximation of the data
for gold measured by Johnson and Christy [82] over a wide range of frequencies. As already
mentioned above, we expect reflections from the base of the finite cone. Figure 3.11 shows
the induced field’s z-component as a function of time along the electron’s trajectory. x. and
ye are kept fixed at z. = 950 nm and y. = 150 nm. These are the raw data that we use to
compute the EELP according to Eq. 3.5. At time ¢t = 0 fs the electron is closest to the cone
surface. After 50 fs the induced field has decayed by orders of magnitude. After another
50 fs we observe the reflections from the base. As these are temporally well separated from
the primary fields, they can be neglected, recovering the field observed at an open tip. We

found a height of h = 15 um to be sufficiently large for all electron positions considered in

this work.
Pole €00 OF A wp or wy (x10Prads™) p or yp (x10%s71)
Drude 6.39885 13.7211 0.115749
Lorentz 1.50879 4.41669 1.54401
Lorentz  1.01997 5.56004 1.82738
Lorentz  0.79923 6.71928 1.78720

Tab. 3.1: Permittivity data used in the simulation.

4For clarity, the quantity symbols given in the headline of the table have been changed compared to the
original publication.
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Fig. 3.11: The logarithm of the induced electric field’s z component along the electron trajectory as a function
of time. See text for details.

The semianalytical model

The electron energy loss have been also analyzed within a fully retarded analytical model.
This model relies on expanding the induced field E™(r, w) associated with the polarized

conical metal structure in an infinite sum of independent vector harmonics:

Emd I‘ w Z / dq aqm qm + aquqm) (36)

m=—0oQ

where agm, Ggm denote the expansion coefficients and Mgy, Ny, are the vector cylindrical
harmonics with m and ¢ being the azimuthal number and the propagation constant along
the cone. The expansion coefficients and the vector harmonics are analytically expressed in
the Bessel and Hankel functions of the first kind [241] using the T-matrix formalism for a
straight cylinder [86] and some elements of the adiabatic approaches [190, 191, 211]|. Within
this formalism the energy loss probability is obtained analytically by substitution of Eq. 3.6
in Eq. 3.4. A detailed description of the analytical formalism is currently in preparation for

a separate publication®.

SRef. [66].
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3.4 Origin of plasmonic mode structure: a comparative

literature analysis

In sec. 3.3.4, we have outlined a semianalytical model (published in Ref. |[66]) that calculates
the energy loss probability by including the fundamental SPP mode (m = 0) reflected at
the apex position and higher-order modes (m > 0). The total calculated loss probability
I'P(w) agrees very well with the experimental data (see Fig. 3.8). Figure 3.12 schemati-
cally summarizes the fundamental concept of this interpretation including the excitation of
different modes and reflection causing the electron energy loss.

In this section, we address relevant information from the literature that seemingly deviate
from our interpretation and which has provoked a comprehensive debate of the propagation
of SPPs along nanotips. Specifically, Talebi et al. used EELS to measure plasmon maps of
gold nanotips [218]. Their measurements have revealed SP maps that can be interpreted
to be caused only by higher-order modes — without any fundamental mode reflection (cf.
Ref. [218]). In order to unravel this difference, we recapitulate the relevant aspects of the

semianalytical model in the following.

Fundamental yei?e :E

Fig. 3.12: Schematic illustration of mode excitation
and electron energy loss at metal nanotips. A swift
electron (kinetic energy E) polarizes the nanotip in-
cluding the launching of SPPs. The fundamental az-
imuthal mode m = 0 (red) approaches the apex and
is reflected with respect to a complex reflection co-
efficient A,. The superposition of the fundamental,
reflected and higher-order modes acts on the electron
resulting in the energy loss AFE.

=0
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The electric field that accompanies the fast electron is able to locally polarize the tip
structure (cf. sec. 2.1.3). Essentially, the resulting induced field E™? can be described by
cylindrical vector harmonics determined by the propagation constant ¢(w) and azimuthal
mode order m (cf. Eq. 3.6). We calculate the propagation constant with the adiabatic
nanofocusing model and local radius R(z) described in sec. 3.1. Thus, E™? becomes a func-
tion of the electron-beam position (ze,ye), electron velocity v., tip opening angle ar and
apex radius Ry. The surface bound waves with ¢ > k (SPPs) propagate in the +a-direction
from the electron trajectory at position x. (red arrows in Fig. 3.12). In general, higher-order
azimuthal modes may be excited and propagate if the local radius exceeds the respective
cut-off value R(xz) > R.. However, only the fundamental mode m = 0 reaches the apex
from which it is reflected due to the breakdown of the adiabatic condition (blue arrow in
Fig. 3.12) [200]. We assume that the higher-order modes are coupled to the far-field once
R(z) reduces to R, (cf. sec. 3.1). Eventually, the complex superposition of all fields (funda-
mental, reflected, and higher-order) acts back on the electron leading to the loss of kinetic

energy measured in the experiment |66, 74].
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Mathematically, the loss probability I',,(w) of individual modes is calculated straightfor-
ward with Eq. 3.6 inserted into Eq. 3.4. In order to consider the reflection, we incorporate

a superposition of forward and backward propagating waves in the induced field [66],
Eind | oc e7esep(@me) 4 A eiPsep(0) (3.7)

The complex valued reflection coefficient |A,|e“?" captures the reduction of the mode am-
plitude |A,| and includes an effective reflection point by a phase shift ¢, [233]. Moreover,
the SPP waves accumulate a phase while propagating from x5 to x; along the shaft, which
is considered by @spp(x1,22) = f;;l dz gm—o(x) with the fundamental propagation constant

Gm=0(z). We find the total loss probability by summing over all contributions:
PP (W) = 37 Ton(w) + AT (), (38)
m

where AT'},,—o(w) is computed by inserting Eq. 3.7 into Eq. 3.4 [66].

For the tips analyzed in sec. 3.3, we have determined the reflection coefficient to be close
to unity. Thus, the SPP waves are back propagating from the very tip end with nearly 100%
efficiency leading to the standing wave pattern observed in Fig. 3.5 and Fig. 3.9.

(a) Cone radius [nm] (b) Cone radius [nm]
4 53 96 140 184 228 271 4 191 369 553

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5
Electron position X, [um] Electron position X, [um]

Fig. 3.13: Electron energy loss probability TP for gold tips with an apex radius of 10 nm and opening
angles of 10° (a) and 40° (b) calculated for an energy of iw = 1.0eV and a reflection coefficient A, = 1.
An oscillating signature in the total electron energy loss probability (EELP, represented by the black line)
originates mainly from the reflected fundamental mode (solid and dashed blue lines) for the low-angle tip,
but changes to a higher-mode dominated EELP (green to purple: m = 1 — 4) for high opening angles.

This fundamentally changes if the tip geometry is modified. In particular, the tip opening
angle ar has an impact on the induced field via its dependency on the local radius R(x), as
mentioned above. Figure 3.13 presents I'''P (calculated via Eq. 3.8) for two different opening
angles of ar = 10° (a) and ar = 40° (b) (energy fww = 1.0 €V, tip radius Ry = 10 nm).
The oscillatory feature of the total EELP (black solid lines) is distinctly pronounced in (a),

whereas it is strongly attenuated in (b). Here, the total loss due to higher-order modes
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(green to purple solid lines) superimpose with the reflection contribution (blue dashed line)
and dominate the total loss of kinetic energy. Furthermore, I'Y'P renders only small modula-
tions for higher opening angles. Notably, this geometry dependency explains the differences
in the interpretations given in this work and in Ref. [218]. We used nanotips with opening
angles ranging from 11° to 14° providing a distinct reflection of the fundamental mode,
whereas Talebi et al. used tips with opening angles of 19° and 49° in which reflection is

strongly damped and the EELP is dominated by the local mode distribution.

In two follow-up studies Guo et al. (Refs. [217, 219]) investigated the transition from
low- to high-opening angles by means of EELS and cathodoluminescence (CL) confirming
the generalized interpretation of a superposition, as we have presented here. Most interest-
ingly, they experimentally identified the breakdown of the adiabatic nanofocusing condition
(Eq. 3.3) as the reason for the strong decrease of the reflection amplitude for larger opening
angles: The fundamental mode radiates to the far-field, thus no electromagnetic energy is
transported in a reflection process away from the apex [217]. Furthermore, higher-order
modes are found to strongly couple to the far-field if the local radius R(x) reaches the cut-
off radius R. — confirming the assumption made above. In conclusion, nanotips with small
opening angles most efficiently waveguide SPPs and exhibit the smallest leakage radiation
in the apex region. Furthermore, energy dissipation (heat) in the apex region is expected

to be reduced for these tips.
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CHAPTER 4

Photoemission from nanotips driven by

grating-coupled surface plasmons

Metal nanotips are widely used as point-like emitters in
electron-beam setups, such as electron microscope and diffraction
experiments [156]. Lately, these fields benefit from the possibil-
ity of releasing electron bunches on the fs- and ps-timescale by
illuminating a tip with intense laser pulses, thus facilitating time-
resolved imaging and diffraction measurements [52, 54, 55, 147,
242-250]. The present chapter discusses an electron gun remotely
driven by surface plasmon polaritons applicable in electron-beam
instruments. In order to excite propagating SPPs a diffraction
grating is milled into the tip surface by a focused ion beam a few

tens of micrometer apart from the apex (cf. sec. 2.1.4 for the

Fig. 4.1: Sketch of the ex-

periment.

excitation mechanism). Subsequently, the SPPs are nanofocused into the apex region (cf.

sec. 3.1) where the emission occurs due to the enhanced near-field (see sketch in Fig. 4.1).

To provide a precise control of the emission site and lateral spatial spread of the emerging

electron-beam, we inserted the gold tips into a modified field emitter assembly allowing for

the manipulation of the electrostatic environment (sec. 4.1). Our experimental findings and

analysis have been published in Ref. [67] with the title “An ultrafast nanotip electron gun

triggered by grating-coupled surface plasmons” and are reprinted in sec. 4.2.
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4.1 Experimental setup: site-specific photocurrent detection

As a part of the measurements discussed in the following section, an experimental setup in-
cluding automated data acquisition and analysis has been established. Figure 4.2 illustrates

the central aspects of the setup’.
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Fig. 4.2: Experiment of SPP-driven photoemission from gold nanotips. (a) Schematic illustration of the
experimental setup established for the measurements. Femtosecond-pulses are guided on a gold tip with
grating coupler (zoom-in in (I)) resulting in photoemission. The electron distribution is recorded with a
micro channel plate (MCP) detector and camera. A typical example is shown in the inset in (II). A modified
field emitter gun is used to control the electrostatic environment of the gold tips. The photodiode records
the transmitted intensity (cf. shadow image in (c)). Experimental details are found in the text. Used
abbreviations: silver mirror (M), dispersion compensating mirror (DM), half-wave plate (HWP), 90°-off-
axis parabolic mirror (PM), concave mirror (CM), plano-convex lens (PCL), charge-coupled device (CCD),
grating coupler (GC), micro channel plate (MCP), and ultrahigh vacuum (UHV). (b) Broadband laser
output spectrum centered around 780 nm with a width of ~ 120 nm. (c¢) Shadow image of the tip (gray
scale) recorded as a function of zy-focal position overlaid with the simultaneously measured electron count
rate (color-coded data, logarithmic scale). This allows for a clear correlation of both signal features to the
apex and grating, respectively (same data as presented in Fig. 4.5).

Ultrashort pulses with a bandwidth of ~ 120 nm are generated with a Titanium:Sapphire
mode-locked laser oscillator operating at 78 MHz repetition rate (Figs. 4.2(a) and (b)). Since
the photoemission yield depends critically on the pulse duration, we compensate the disper-
sion due to propagation in air and through optical components by using a pair of chirped

mirrors (a pulse duration of 20 fs at the tip apex is estimated). The beam polarization

'For the sake of readability some information overlap with the brief description given in Ref. [67] (sec. 4.2).

44 Chapter 4 Photoemission from nanotips driven by grating-coupled surface plasmons



and the laser mean power are adjusted with a half-wave plate followed by a broadband
film polarizer. Unless otherwise stated, the polarization is chosen to be p-polarized, which
corresponds to an electric field oscillating parallel to the tip’s symmetry axis — a zoom-in of
the tip area can be seen in the inset (I) of Fig. 4.2(a). The half-wave plate is mounted to a
remote rotation stage allowing for computer controlled measurements as a function of laser
power or polarization angle. In order to reduce the final spot size to a minimum of 12 pm in
diameter, the original beam width is expanded by a factor of five with an off-axis parabolic
and a concave reflection mirror. The focusing plano-convex lens (focal length: 100 mm) is
mounted on a motorized 3D-translation stage, providing automated focal raster scans (as
presented in Fig. 4.2(c) and Figs. 4.5(b) and (c)).

The laser is focused into a home-built ultrahigh vacuum (UHV) chamber equipped with
four access ports (Fig. 4.2(a)): A viewport for laser beam in-coupling, an imaging micro
channel plate (MCP) with phosphorus screen and camera, a photodiode in beam direction,
and a gold tip integrated in a field emission gun. Electrons emitted from the nanostructure
propagate to the MCP and cause an electron cascade. These electrons generate an image on
the phosphorus screen that is recorded by the camera connected to the computer. A typical
pattern is shown in the inset (II) of Fig. 4.2(a). Each recorded point-like spot is identified
as a single electron impact event. The algorithm used to count the electron events in a
dataset is briefly discussed below. During the experiments, the transmitted laser intensity
is measured by a photodiode. When the focus is raster scanned across the tip area the
transmitted laser intensity is reduced due to the shading by the structure. By overlaying
the resulting shadow image with the position-dependent electron yield, we can identify the
different emission sites (Fig. 4.2(c)). In particular, a clear assignment of the electron emis-

sion pattern to the apex and the grating is possible.

For counting the electrons distributed in the recorded images (cf. inset (II) of Fig. 4.2(a))
a computer based routine is used. The algorithm corrects the images for dead pixels and
the background signal according to a reference measurement. Subsequently, an image filter
with adjustable threshold value is applied that elevates the signal-to-noise ratio. Finally,
the remaining light spots which have a certain pixel width given by a second threshold are
counted. This ensures that only real and distinctly isolated events are detected. However,
for high laser fluences and thus for dense electron distributions the algorithm is not capable
to isolate the single events. Under this condition, the routine switches to an intensity inte-
gration to determine the electron count rate. The conversion factor — how much intensity

corresponds to one electron — is determined via a reference measurement.

The key element of the experiment is the gun assembly, since it allows to control the active
emission sites along the tip by manipulating the electrostatic environment of the nanostruc-
ture. Gold tips with a grating coupler are integrated in a modified TEM field emitter (main
components are indicated in Fig. 4.3(a) and the left panel of (e)). An optical microscope is

used during the delicate installation of the tip in the suppressor ((b) and (c)). Subsequently,
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the integrity and centricity are checked with scanning electron microscopy imaging (d).

The suppressor and the tip electrostatic potentials are adjusted by computer controlled
high voltage supplies (throughout the experiments, the extractor electrode is grounded,
Uext = 0V). We can precisely control the photoemission along the tip axis by varying the
static fields in the emitter assembly. To discuss this mechanism, we deploy a simple model
in which the suppressor, the apex, and the extractor electrodes are represented by parallel
capacitor plates (Fig. 4.3(e), cf. also Ref. [251]). In this framework, we can distinguish an
electrostatic field extracting charge carriers from the tip towards the detector and a field
that suppresses the charge carriers back into the nanostructure (two different field scenarios
are illustrated in Figs. 4.4(b) and (c)).

Jt//' (b) Side view Wo
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Gun geometry U

Capacitor model

TP —— to
Fig. 4.3: Electron gun assembly for emission control. (a) Photograph of the modified TEM field emitter
with the suppressor unit and extractor electrode. A concentric 3 mm aperture (not visible) allows for the
electron transmission through the extractor. (b,c) Optical micrographs of the side (b) and top view (c) of
the suppressor unit during the tip installation. In order to thread in the 250 pm gold tip into the 400 pm
suppressor aperture a centering device was used. (d) Scanning electron micrograph demonstrating the tip
integrity after the tip installation. (e) Schematic of the geometry of the field emitter (left panel) and plate
capacitor model (right panel) with the respective applied voltages.

The applied voltages determine the field-reversal point, which is the transition from extrac-
tion to suppression of photo emitted electrons. It can be characterized by the dimensionless
parameter I' [252], i.e., the ratio of the virtual forces Fy, and Fy acting on electrons emitted
from the tip (gray shaded area in the right panel of Fig. 4.3(e)):

& (Utip - Usup)dse

F = = s
F se (Uext - Usup)dsa

where dg and dg, are the distances indicated in (e). According to the value of I, we
distinguish three domains. For values of I' < 1 the field reversal-point is shifted along the
tip axis and photoelectrons between its position and the apex are extracted (Fye > Fya). At
I'" = 1 the emission site is restricted to the tip end and for I' > 1 photoelectron emission is

completely suppressed (Fye < Fga).
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4.2 An ultrafast nanotip electron gun triggered by

grating-coupled surface plasmons

Benjamin Schréder, Murat Sivis, Reiner Bormann, Sascha Schifer, and Claus Ropers
Applied Physics Letters 107 (2015), 2311052
DOI: 10.1063/1.4937121

Abstract We demonstrate multiphoton photoelectron emission from gold nanotips
induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a
grating coupler. The tip is integrated into an electron gun assembly, which facilitates
control over the spatial emission sites and allows us to disentangle direct grating emis-
sion from plasmon-triggered apex emission. The nanoscale source size of this electron
gun concept enables highly coherent electron pulses with applications in ultrafast elec-

tron imaging and diffraction.

The field of plasmonics has established a wide range of approaches to cast a free electron
gas in designed geometries for a controlled collection, guiding and concentration of light on
the nanoscale |21, 22, 25, 37, 73]. As a prominent example, nanofocusing harnesses both
the waveguiding and sub-wavelength localization capabilities of plasmonic excitations, by
converging propagating surface plasmon polaritons (SPPs) on tapered conical structures in
an intense near-field at the cone apex [35, 36, 41, 45, 65, 110, 128, 129, 183, 188, 190, 191,
203, 204, 208]. This optical hot spot locally drives multiple linear and nonlinear processes
[110, 128, 129, 203|, which have given rise to applications in near-field scanning optical
microscopy (NSOM) and spectroscopy [36, 41, 45, 188, 203, 204, 208|. Grating-coupling
has proven as a very efficient means to launch surface plasmons on metal nanotips [128],
and it allows for a spatial separation of the in-coupling location from the plasmonic focus.
Initially designed to reduce background signals in NSOM and to avoid direct sample excita-
tion, the scheme is particularly suited for inducing highly nonlinear optical processes, such
as multiphoton photoemission [104, 163]. Localized photoelectron emission from a nanoscale
apex [104-106, 163, 165-172, 177, 253, 254] is of great importance for future developments
in the field of time-resolved electron imaging and diffraction [248, 255-262]. First applica-
tions have utilized the unique beam properties of tip-based photoelectron sources [263, 264]
in ultrafast transmission electron microscopy (UTEM) [146], ultrafast low-energy electron
diffraction (ULEED) [55] and femtosecond point-projection microscopy (fs-PPM) [249, 265],
with a recent PPM implementation based on plasmonic nanofocusing [50]. Whereas lens-
less imaging approaches make use of nanoscale source sizes, the full capabilities of coherent
electron pulses, including nanoscale probing and phase contrast imaging, can be most effi-

ciently harnessed in a UTEM setting. Thus, it is highly desirable to combine a plasmonic

2Reprinted from Appl. Phys. Lett. 107, 231105 (2015), with the permission of AIP Publishing.
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nanofocusing source with a gun environment compatible with electron microscopy.

Here, we demonstrate multiphoton photoemission from the apex of a gold nanotip driven
by resonant femtosecond excitation of surface plasmons in a grating coupler on the tip shaft.
The emitter is integrated in a modified field emission gun allowing for a detailed character-
ization and control of the active emission sites. In this setup, by tailoring the electrostatic
field around the tip, electron emission from the apex, grating and shaft can clearly be dis-
tinguished. The ultrafast electron source developed here will be applicable in a variety of

time-resolved electron imaging approaches.

In the experiments (schematic of the setup shown in Fig. 4.4), optical excitation is pro-
vided by a mode-locked Ti:Sapphire laser oscillator (center wavelength 800 nm, pulse du-
ration 10 fs, repetition rate 78 MHz). The laser beam is focused onto the gold nanotip
(spot diameter of 12 pm) by a plano-convex lens mounted on a three-dimensional transla-
tion stage. The power and polarization of the laser beam are controlled by a \/2-waveplate
and a broadband polarizer. Sharp gold tips are fabricated by electrochemical etching of
thermally annealed gold wires (0.25 mm diameter) in hydrochloric acid (for a detailed de-
scription of the fabrication process, see, e.g., Refs. [41] and [45]). To facilitate efficient
SPP excitation, a resonant grating structure is milled into the shaft by focused ion beam
etching. The grating is placed 45 um from the apex, allowing for a separate excitation of
both regions. Figure 4.5(a) displays a scanning electron micrograph of one of the measured
gold tips with an apex radius of curvature of 22 nm and a grating periodicity of 800 nm. The
nanostructured tip is built into a field emission gun comprising a suppressor and extractor
unit installed in an ultrahigh vacuum chamber (operating pressure in the 10~ mbar range).
Distributions of emitted electrons are recorded by an imaging micro channel plate (MCP)

detector and a charge-coupled device (CCD) camera.

We have observed grating-induced multiphoton photoemission from multiple nanostruc-
tured tips. Both the high nonlinearity of the emission (a four-photon process is expected
from the excitation wavelength and the gold work function [104]) as well as the polarization
dependence of the grating coupler are evident from a measurement of the photocurrent as a
function of waveplate angle o/2 (Fig. 4.4(d)). We find maximum emission for p-polarization
(electric field perpendicular to grooves), in agreement with recent observations [50], and the
shape of the polar plot exhibits an effective nonlinearity in intensity of n = 3.4 (red line
corresponds to a cos®™(a + ¢) dependence with ¢ = 4°). A more direct measurement of the
effective nonlinearity of the emission process will be presented below.

Recording electron emission patterns yields information about the total current generated
by optical excitation at the focal position. The present structure is designed to produce elec-
tron emission in the apex region, which is substantially removed from the optical excitation
position at the grating. In order to distinguish direct photoemission at the focal position
from plasmon-mediated emission, we manipulate the electrostatic environment of the field

emitter geometry. As we will demonstrate, this allows for the suppression of emission di-
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rectly from the grating while retaining apex emission induced by grating-coupled surface

plasmons.

a)
fs-laser

3D translation
stage with lens

CCD MCP

Fig. 4.4: Schematic of the experimental setup. (a)
The excitation laser is focused onto the nanostruc-
ture by a plano-convex lens (focal length: 100 mm)
mounted on a translation stage. Emitted electrons
are detected by an MCP and CCD camera. The gold
tip is inserted into a suppressor-extractor-geometry
allowing for separate tuning of the static potentials of
the tip (Utip), suppressor (Usyp) and extractor (Uext)
electrodes. (b) Schematic field line distribution for a
voltage setting resulting in electron extraction from
the entire tip (blue lines). (c¢) A more negative sup-
pression voltage prevents emission (red lines) from
the grating and shaft. Any electron emission ob-
served under these conditions, e.g., upon grating ex-
citation, must stem from regions close to the apex.
(d) Electron rate (s™!') as a function of polarization
angle a upon grating illumination (average power:
14.5 mW, waveplate is rotated between 0° and 180°).
(dse = 1.44 mm and ds, = 0.29 mm, distance between
MCP and tip apex: 36 mm, MCP diameter: 26 mm,
extractor aperture diameter: 3 mm)
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Specifically, for given tip (Uiip) and extractor (Uet) voltages, the suppressor voltage (Usyp)
defines a point along the tip axis, at which the electric field changes its sign. On the left side
(towards the apex) of this field-reversal point or cut-off position, electrons are effectively
extracted, whereas emission is suppressed towards the shaft (compare Figs. 4.4(b) and (c)).
By variation of the suppressor voltage, the field-reversal point can be continuously shifted
across the grating and shaft. Note that the static extraction fields always remained below
the onset of field emission (finite element simulations yielded fields of 0.1 — 0.4 V/nm).

Figures 4.5(b) and (c) show color-coded maps of the electron count rate as a function of
the laser focus position in the xy-plane (same area as shown in Fig. 4.5(a)), obtained by
raster scanning the lens position. Here, Fig. 4.5(c) corresponds to a voltage setting with
suppression of direct emission from the grating (cut-off point between apex and grating),
whereas grating emission is permitted in Fig. 4.5(b) (cut-off point on the right of the grating).
In both measurements, two clear positions of enhanced electron count rates are recorded,
corresponding to an excitation either on the apex or on the grating. Illumination on smooth
parts of the shaft results in smaller rates with a I'-dependent spatial distribution.

The precise location of the field-reversal point is identified by measuring line scans in the
xy-plane (dashed line in Fig. 4.5(c)) for a range of suppressor voltages, as demonstrated in

Fig. 4.6. In this figure, the variation of the suppressor voltage (vertical scale) is represented
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by using a dimensionless parameter I, defined as [252]

(Utip - Usup) dse

I = iy
(Uext - Usup) dsa

Here, dg, and dge are the distances from the apex and extractor to the suppressor, respectively
(cf. Fig. 4.4(c)). Complete suppression of photoelectrons from the tip is given for a I" value
on the order of unity (field-reversal point crosses the apex) with a precise value depending
on the specific geometry. For decreasing I', the field cut-off is shifted from the apex towards
the suppressor, widening the region where photoelectrons can be extracted. Figure 4.6(b)
shows a I'-dependent map of line scans exhibiting various features, which are assigned to

particular emission regions in the schematic shown in Fig. 4.6(a).

45 ym 10 pm

—

Fig. 4.5: (a) Scanning electron micrograph of the tip
including the nanofabricated grating (12 grooves,
200 nm width, 500 nm depth). Insets: (left) apex
region (scale bar: 100 nm), (right) closeup of the
grating region (scale bar: 2 um). (b,c) Color-coded |INERE
maps of the detected electron count rate (logarith-
mic scale) as a function of the focal position in
the xy-plane, obtained by raster scanning the lens
(polarization parallel to tip axis (a = 0), average
laser power: 17mW). (b) A suppressor voltage of grating
Usup = —460V (I' = 0.64) allows for electron emis-
sion from the apex, shaft and grating regions (com-
pare Fig. 4.4(b)). (c) A more negative suppression
voltage (Usup = —475V,T' = 0.78) leads to a cut-off
position between the apex and grating, as indicated
by the white vertical line. The measurement shown

in Fig. 4.6(b) is recorded along the white dashed line cut-off position
in (c). Scale bar: 10 um. Throughout all measure-  p——————— A
ments, the tip and extractor voltages are kept con- 3 10 100 1000

-1
stant at Usip = —400 V and Uext = 0V, respectively. electron count rate [s”]

The photoemission map reveals three prominent contributions: Two vertical lines with
the excitation positioned at the apex and the grating, respectively, and a diagonal stripe
extending throughout the shaft and grating regions. The signal from direct apex excitation
is nearly constant as a function of I'. For I'; = 0.83, the field-reversal point reaches the
apex position (z = 0) and suppresses the emission. Consistently, a linear trend of the upper
edge of the diagonal shaft feature is observed: It marks the I'-dependent shift of the cut-off
position xcy(I'), which jointly terminates with the apex signal, i.e., xcut(I'g) = 0. Most
importantly, upon grating excitation (vertical line on the right), electrons are also detected
up to values of I' = I',, although direct photoemission from the grating region is suppressed
for I > 0.7, the value at which the cut-off position reaches the grating. We can therefore
conclude that grating illumination results in electron emission from the apex, mediated by

resonant SPP excitation.
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Fig. 4.6: (a) Schematic assignment of features in position- and I'-dependent electron emission (see experimen-
tal data in (b)) to specific regions of emission. (b) Color-coded map of the electron count rate (logarithmic
scale, integrated over detector area, average laser power: 17 mW) as a function of I' and focal spot posi-
tion (scan line: cf. Fig. 4.5(c)). Vertical lines correspond to excitation on the apex (z = 0) and grating
(z = 50 um). The I'-dependent shift of the cut-off position on the shaft causes the diagonal stripe. Direct
emission from positions to the right of the cut-off line (see zcut(I") in (a)) is suppressed. The observation
of strong emission for grating excitation and at large I" (up to apex suppression at I's) thus demonstrates
that these electrons are emitted at the apex. (c) Recorded electron image for I' ~ I', exhibiting a focused
spot (diameter 0.7 mm (full-width-half-maximum), scale bar: 5 mm). (d) For 0.55 < T'" < 0.7, the pattern is
composed of a largely uniform distribution from the apex, and shaft/grating electrons forming an arc-shape
(bottom right). The electron images correspond to planes perpendicular to the tip axis. From this view-
ing direction, the grating is located on the right. (e) Nonlinear power-dependence of the electron current.
Approximately 10° electrons/s are detected at an incident power of 78 mW. An effective nonlinearity of 4.7
(red line) is observed.

Besides the selection of possible emission regions, it should be noted that I' also has a pro-
nounced effect on the trajectories of emitted electrons. In particular, for increasing I'-values,
the electrostatic field close to the apex acts as a focusing lens, which can be demonstrated
by considering the spatial emission patterns for different conditions. Figures 4.6(c) and
(d) display recorded images under grating excitation and for I" values below (d) and near
(c) the apex cut-off T, (see arrows in Fig. 4.6(b)). In Fig. 4.6(d), two contributions are
found, namely an arc-shaped distribution of electrons directly emitted from the grating and
a largely uniform distribution from apex electrons. Increasing I' towards I', reduces the
radius of the arc feature until it vanishes (near I' = 0.7). Upon approaching T'y, also the
apex contribution is focused to a narrow spot (see Fig. 4.6(c)). The present setup is not able
to quantitatively determine beam parameters such as brightness and emittance [252]. These
quantities will be subject to investigation in the tip-based ultrafast transmission electron
microscope we recently developed [146]. (The Supplemental material® provides a movie of

the spatial electron patterns for grating illumination, recorded as a function of I'.) The

3See Supplemental material at http://dx.doi.org/10.1063/1.4937121 for a movie of the electron distributions
upon grating illumination, recorded as a function of I'.
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focusing action of the suppressor additionally causes the lower edge of the diagonal stripe
feature. Specifically, for a given emission position, a certain focusing and thus a threshold
value of I' is required to collect the electrons by the finite solid angle of detection. Be-
low this threshold, electron paths are cropped by the MCP aperture. For completeness, in
Fig. 4.6(b), we label those I' values at which the two-dimensional scans in Figs. 4.5(b) and
(c) are recorded.

As photoemission currents from the tip end are generated for both direct apex illumination
and grating illumination (currents denoted by I, and I, respectively), it is interesting to
consider the relative electron yields Iy /I,y for these two forms of excitation. In all our exper-
iments, we obtained substantially higher emission upon grating excitation. At the conditions
from Fig. 4.5, which were chosen to show both direct apex emission and grating-mediated
emission, about 20 times more electrons from the apex are emitted upon grating illumina-
tion, similar to recent results [50]. However, it should be noted that the specific focusing
conditions, including wavefront tilt and curvature, strongly influence the mode overlap and
thereby the specific relative emission yield. For optimized grating coupling, we achieved a
ratio of I /I,,=150. This enhancement clearly results from superior mode-matching be-
tween the far-field radiation and the extended grating [266], as compared to direct apex
excitation, and it may be used to estimate the resulting local intensities in both scenarios.
To this end, we first have to determine the effective nonlinearity of the photoemission pro-
cess. Figure 4.6(e) shows in a double-logarithmic plot the photocurrent from the apex as a
function of laser power incident on the grating. A current of I, ~ 10° electrons/s is obtained
for a power of P = 78 mW, and the current scales with an effective nonlinearity n = 4.7,
ie., Iy oc P™ (solid red line), close to the expected value of 4. Thus, the field strength
obtained at the apex for grating illumination exceeds that for direct illumination by a factor
(150)1/2" ~ 1.7 (a value of 1.32 was given in Ref. [50]). Employing the emission current
from the smooth shaft as a reference, field enhancement factors (defined as local apex field
strength over incident field strength) for both excitation conditions can be estimated, and we
find apex field enhancements of 6.4 and 3.8 for grating and direct illumination, respectively.
In order to derive a normalized quantum efficiency of the nonlinear photoemission process
from the measurements, we describe the total emitted charge as Q = A7(s,1,)", where A
is the apex area, 7 is the pulse duration at the apex (estimated to about 20 fs on the apex,
influenced by some resonance narrowing [128] and minor SPP group-velocity dispersion [45,
224]), 1, is the local intensity, and s, is a coefficient containing the quantum efficiency of
the multiphoton process at the measured effective nonlinearity n. Using this relation and
the experimental parameters, we obtain a value* of s, = 2.3 x 1071° (A/nmz)l/n cm? /W for
n=4.7.

In conclusion, we demonstrated site-sensitive multiphoton photoemission from a sharp

“We obtain similar values of s, = 2.7 x 107'% (A/am2)"/"em®*/w with n = 4.5 and s, = 2.8 x

10718 (A/nrn2)1/n em?/yw with n = 5 for the data reported in Refs. [50] and [105], respectively, although
this may not be expected for Ref. [50] given the very different photon energies used.
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gold nanotip equipped with a resonant grating structure. In the experiments, the tip was
integrated into an extractor-suppressor-type gun assembly, which is fully compatible with
existing transmission electron microscope geometries and allows for manipulating the elec-
trostatic environment of the tip. In this way, a confinement of the photoemission to a
very small apex region and a complete suppression of electron emission from the grating
is achieved. Concerning future applications of the presented source concept in ultrafast
electron microscopy and diffraction, this control over both the transversal beam properties
and the local extraction fields will be highly beneficial, e.g., by electron-beam collimation
and by alleviating space charge problems from non-localized shaft emission. More generally,
we believe that the photoemission induced by tailored plasmonic fields presents a powerful
new degree of freedom to shape complex electronic wavefronts with well-defined linear and

angular momentum distributions.

We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) (SFB-
1073, projects A5 & C4). We thank Karin Ahlborn for help in tip fabrication.
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CHAPTER 5

Photoelectron transfer in an STM tunnel

contact

A nanotip located at a (sub)-nanometer distance to a
sample surface (tip-sample contact) represents a widely ap-
plicable model system that comprises scanning tunneling
and atomic force microscopy (STM and AFM) including
their diverse atom-level imaging and spectroscopy modes
[267]. The combination of these scanning probe techniques

with a (pulsed) laser excitation may join atomic resolution

with light-based schemes (e.g., pump-probe approaches and
nonlinear responses), thus consolidating to a powerful tool-
box containing current, field and photon excitations. In- Fig. 5.1: Sketch of the experiment.
deed, several promising approaches have been addressed,
such as time-resolved modes of STM and AFM operating far beyond the electronic band-
width of these systems [60-62, 268-270], apertureless near-field scanning optical microscopy
(A-NSOM) (43, 44, 102, 183, 271, 272], or tip enhanced Raman spectroscopy (TERS) [47—
49|. In this context, laser-driven plasmonic near-fields present in a metal-metal junction play
an outstanding role due to their ability to strongly concentrate and enhance the light in the
gap region between the tip and the sample (see sketch in Fig. 5.1) [33, 273, 274|. Hence,
an optical excitation of isolated features on the substrate surfaces and the investigation of
their dynamics and nonlinear energy pathways (for example, multiphoton absorption) may

be possible [29, 30, 275].
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In this chapter, we analyze nonlinear electron transport channels opened by fs-laser illumi-
nation of the nanometric tunnel contact in an STM. Specifically, the exceptional precision
of the gap width (tip-sample distance) provided by the STM allows to measure current-
distance dependencies (I(z) curves) which reveal characteristic photocurrents driven by the
near-field and distinctly depending on the specific potential barrier in the tunnel gap. In
the following section, we start with a classical description of a coupled dipole model (CDM)
that provides a general picture of the surface plasmon mode formed in the STM contact
region. In particular, the gap width dependency of the near-field and its lateral locality is
discussed. We also address the limits of the classical CDM when approaching gap distances
on a nanometer scale as present in the STM. Subsequently, an electron transport model
based on the Bardeen tunnel theory is introduced that explicitly includes the electron wave
functions (sec. 5.2). Both — the CDM and the Bardeen model — are used in sec. 5.3 to
disentangle the different (near-field-driven) contributions to the measured I(z) curves and
to provide insights into the underlying physical mechanisms. The results have been pub-
lished in Ref. [68] with the title “Controlling photocurrent channels in scanning tunneling
microscopy”. The final section 5.4 presents valuable aspects of the technically challenging

realization of the combination of an STM with a fs-laser.

5.1 Plasmonic near-field coupling in a tip-sample gap

The near-field of a tip interferes with the optical response of the sample forming a plasmonic
gap mode with a pronounced dependency on the tip-sample distance zg,, and tip apex radius
Ry [276]. A commonly applied approximation bases on a simple coupled dipole model.
Figure 5.2(a) schematically shows the CDM applied to a tip-sample system.

The light excites an oscillating dipole moment p; in the tip apex approximated as a sphere,
which in turn generates a polarization in the semi-infinite material represented by the image
dipole moment of the sample, ps = (5 — €4)/(es + €4)Pt = Bspt- The back action on the
tip results in the total near-field given by the superposition of the incident and dipolar fields
[72, 277|. Referring to sec. 2.1, we stay in the quasi-static approximation (tip radius Rp
and tip-sample distance zg,p are small compared to the excitation wavelength A\ = 2mc/w)
and use an excitation wave polarized in the z’-direction, Egexp(—iwt). The superposition
of both — the external and the image field at the position of the sphere center — leads to the
total dipole moment of the tip-sample system, p(t) = goeqallEgexp(—iwt), expressed by
the effective polarizability [278],

off B awﬁs -1
alt = ay(1+ Bs) <1 167T(RT+2gap)3) . (5.1)

The polarizability of a sphere «, is given by Eq. 2.2. Dipole near-fields Eflf and EZ; of the

tip and the spherical image charge in the sample calculated with Eq. 5.1 superimpose to the
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total field for 2’ > 0 [72],
E°"(r,t) = Ege ™' 4 EL(r,t) + BsES(r, ). (5.2)

Using the CDM for a gold particle with a radius Ry = 10 nm in front of a copper surface

(A = 800 nm) shows a monotonically increasing field enhancement,

in the gap region with a decreasing tip-sample distance zga, (Fig. 5.2(c)). For a very close
proximity, the field at the apex (solid red line) and at the sample surface (dashed red line)
are the same (F ~ 12.7), whereas larger gap distances lead to much higher fields at the apex
(F ~ 6.1) compared to the surface (F' ~ 2.3).
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Fig. 5.2: Coupled dipole model (CDM). (a) Schematic illustration of a tip apex () modeled as a sphere of
radius Ry in proximity to a flat sample surface (¢5) (gap distance zgap, dielectric environment (g4)). The
illumination with a plane wave Eq polarized in the z’-direction induces a dipole p¢ in the tip which in turn
induces an image dipole in the sample ps. A near-field Eys follows from the back action of ps on the tip
(details in the text). (b) Field enhancement maps F' = |E®"*|/|Eo| calculated with the CDM for zga, = 1 nm
(top panel) and zgap = 5 nm (bottom panel) demonstrate a strongly increased field in the gap region for the
smaller tip-sample distance. (c) F as a function of gap width for the two z'z’-locations (0,0) (dashed red
line) and (0, zgap) (solid red line). The inset illustrates these positions and the change of the gap width by
retracting the sphere. (d) Field enhancement for the constant gap widths of 1 nm and 5 nm along the dashed
and solid black lines in (b), respectively. The lateral confinement is indicated as the spread at full-width at
half-maximum. Dielectric functions of gold (Au) and Copper (Cu) are taken from Ref. [82] at A = 800 nm
(1.55€eV) (eq = 1).

Furthermore, the tip-sample interaction has a striking impact on the field localization in
the gap region (Figs. 5.2(b,d)). The lateral spread of the field along the 2/-axis in the gap
center (indicated by the black lines in (b)) decreases from 18 nm (2gap, = 5nm) to 12 nm
(2gap = 1 nm) full-width at half-maximum. This is accompanied by an intensity localization
proportional to /Ry - Zgap [279] and enables a lateral resolution of < 10 nm in A-NSOM

experiments [43-46|. Similar to the Frohlich equation in sec. 2.1, a resonance condition can

5.1 Plasmonic near-field coupling in a tip-sample gap 57



be derived for the coupled system as a function of the gap width demonstrating a red-shift
when the sphere approaches to the surface [280, 281]. In comparison to a single sphere
(cf. Figs. 2.2(b) and (c) in sec. 2.1), we can conclude that the field enhancement and field

localization are higher in the gap region for coupling dipoles.

There is a wide range of theoretical studies exploring more realistic tip-substrate systems
compared to the CDM (e.g., Refs. [89, 92, 96, 277, 280, 282-287]). Most importantly,
the algebraic relation for the near-field as a function of the tip-sample distance and the
apex radius found with the CDM (Eq. 5.1 and Eq. 5.2) is also demonstrated with finite-
element nanotip-substrate simulations |96, 285, 287]. However, according to these classical
calculations F' can reach a number of several hundred for gap widths in the nanometer range
[96]. In fact, the near-field is infinitely enhanced when zg,, converges to zero; this unrealistic

situation is prevented by considering quantum effects for small values of zgap.

Quantum effects in nanometric tip-sample gaps

Gap dimensions in the (sub)-nanometer regime are affected by the quantum nature of the
conduction electrons [288, 289|. Specifically, this limits the field enhancement for gap dis-
tances approaching zero [290]. The probability density of the electrons at the transition
from matter to vacuum does not vanish abruptly, rather it decays exponentially into the
vacuum — the so-called spill-out [288]. A wave function overlap of both electrodes in the gap
causes electron transport due to finite quantum tunneling probabilities, hence reducing the
screening surface charge distribution. This effect strongly suppresses the near-field enhance-
ment and modifies the resonance structure in comparison to the classical prediction. For a
pair of spheres in close proximity (dimer), Esteban et al. performed ab-initio calculations
with time-dependent density functional theory and developed a semi-classical quantum cor-
rected model [291]: Both approaches derive the formation of charge transfer plasmon (CTP)
modes with different resonance frequencies and widths compared to the classical CDM. Im-
portantly, the near-field enhancement factor has a global maximum limited to F' ~ 100 at
gap distances of a few Angstrom [291]. Experimental evidence of the correct prediction of
the CTPs has been found in the Refs. [114, 292, 293].

The prototypical system of two approaching nanostructures provides valuable, qualitative
insights for the tip-surface system important in this chapter. In the following section, we dis-
cuss an alternative approach to the CTP based on the modified Bardeen theory for electron
tunneling in an STM. Although it relies on a static formalism, this allows us to determine
an effective electron population that results in the charge transfer driven by multiphoton

absorption from the plasmonic near-field in the tunnel contact.

58 Chapter 5 Photoelectron transfer in an STM tunnel contact



5.2 Electron transport in a tunnel contact

Single electron transport essentially depends on the potential energy landscape V (r) in which
the electron is moving, as schematically shown in Fig. 5.3(a). Regions where the electron
energy E is smaller than the wall (hatched area) are considered as potential barriers and a
transfer is prohibited in a classical picture. In the quantum description, however, the wave
nature of the charge carrier represented by the wave function ¥(r,t¢) allows for tunneling
through this barrier. In other words, the electron is scattered by the barrier with specific
probabilities of being transmitted or back scattered (reflected) [294].

In STM, the transmission probability T' for an electron to transfer through the vacuum
gap of width zgap, is controlled by the potential difference between both electrodes (tip and
sample), i.e., the bias voltage Up. Generally, direct analytical solutions are not available and
approximations have to be developed. One prominent theoretical treatment of the quantum
mechanical problem of an STM contact is provided by the modified Bardeen perturbation
model that calculates the tunnel current I(2gap, Ug) [295]. We restrict the treatment to the

one-dimensional case!.
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Fig. 5.3: Electron transfer through a potential barrier and Bardeen approach for tunneling. (a) An electron
(e™) represented by a wave function ¥(r,¢) with energy E moves in the energy landscape V' (r). Once the
electron approaches a potential barrier (V(r) > FE, hatched area) it is either reflected at the barrier or
transmitted through the barrier (tunneling). The transfer probability is a function of V(r) and E. (b) For
a tunnel junction in an STM, this concept can be quantitatively treated in the Bardeen approach in which
the system is divided by the surface S into the two subsystems tip and sample that are characterized by
the potentials V*(2’) and V*(2’). The electronic states in the tip ¥’ and sample ¥® are occupied up to the
the Fermi edges Er,r and Er s (horizontal lines). A current (black arrow) can only exist for electrons from
occupied to unoccupied states (dashed horizontal lines).
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Electronic transport through a tunnel junction is described as the change of the initial
state W;(2/,t) in one electrode (tip) to the final state W¢(2’,¢) in another electrode (sample).
This is presented in the scheme in Fig. 5.3(b). Both are identified by their eigenvalues E;
and Ey and the transport is governed by the transfer rate w;r oc 7' (number of electrons
per time). In order to calculate w;¢ and thus the total current, Bardeen splits the complete
electrode-gap-electrode composite into two subsystems: the tip-gap and gap-sample system

separated by a barrier surface S. The solutions of the stationary Schrédinger equation of

'A detailed discussion including the generalization to the three-dimensional case can be found in Ref. [296]
or Ref. [267].
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the isolated subsystems with potentials V! and V* deliver wave functions ¥* and ¥*, which
exponentially decay into the gap (schematic wave functions in Fig. 5.3(b)) [296].

A coupling of the electrodes is established by adiabatically introducing the sample in the
presence of the tip by means of a time-dependent perturbation theory ansatz leading to a

variant of Fermi’s golden rule [267],
2m
wif = f|Mif‘25(Ef - E). (5.3)

The Dirac delta distribution 6(Ey — E;) ensures elastic scattering from the initial into the
final state (energy conservation). Essentially, the transfer rate depends on the transition
matrix element M; ¢, which can be expressed as the overlapping wave functions U* and V*0?
(see Appendix 7.3 for further information). In principle, the current I is calculated from
Eq. 5.3 by summing over all initial-final state combinations, I oc Y7, ¢ [M;z|*0(Ey—E;) [267].

The elements M; depend on the energy eigenvalues and potential, thus allowing for a more
practical representation provided by an energy integration (|M;¢|> = (|M(E)|dE)? = T(E)).
In this case, the discrete states W' and ¥® are viewed as a continuous distribution given by
the product of the density of states p?(FE) and the electron occupation f7(E) in the tip
(j = t) and the sample (j = s). p/ denotes the number of available electronic states in an
energy interval [E, E + dE], whereas f7 and (1 — f7) determine the population of occupied
and unoccupied states, respectively. The total current,

+oo
dE (f'— f%) - p'o" - T(E), (5.4)

—00

_ 4re

I =
h

is derived by including a factor of two due to the two-fold spin degeneracy of the electrons

and by considering the current in both directions (tip—sample, sample—tip) [267].

In thermodynamical equilibrium, the Fermi function f7/(E) = (exp [(E*Efw)/kBTj] + 1)_1,
governs the occupation with respect to the Fermi energy (E},) and temperature 77. However,
laser transients illuminating the tunnel gap may cause a non-equilibrium electron population
(cf. sec. 2.2). In this scenario, the current in Eq. 5.4 might be modified because of the
excitation of the electron gas (changed occupations f* and f%).

In the following section, we use Eq. 5.4 to analyze the measured I(z) curves (z ~ Zgap).
Therefore the transmission probability T is calculated for a specific barrier potential V' (2') in
the STM gap. We use a one-dimensional scattering approach inserted into the Schrédinger
equation that is numerically solved with the Numerov method [297, 298|. The Appendix 7.4
provides the technical details of this approach including the Numerov method itself and the

computation of T'.
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5.3 Controlling photocurrent channels in scanning tunneling

microscopy
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Abstract We investigate photocurrents driven by femtosecond laser excitation of a
(sub)-nanometer tunnel junction in an ultrahigh vacuum low-temperature scanning
tunneling microscope (STM). The optically driven charge transfer is revealed by tip
retraction curves showing a current contribution for exceptionally large tip-sample dis-
tances, evidencing a strongly reduced effective barrier height for photoexcited electrons
at higher energies. Our measurements demonstrate that the magnitude of the photo-
induced electron transport can be controlled by the laser power as well as the applied
bias voltage. In contrast, the decay constant of the photocurrent is only weakly affected
by these parameters. Stable STM operation with photoelectrons is demonstrated by
acquiring constant current topographies. An effective non-equilibrium electron distri-
bution as a consequence of multiphoton absorption is deduced by the analysis of the

photocurrent using a one-dimensional potential barrier model.

5.3.1 Introduction

The combination of ultrafast laser pulses with scanning tunneling microscopy (STM) prom-
ises advancements in surface science by connecting sub-nanometer resolution with light-
driven dynamics [60-62, 275, 299]|. Various optically induced phenomena have been investi-
gated on an atomic level, such as surface photochemical reactions [300-307], photo-induced
molecular motion [269, 308-312|, charging of individual molecules, defects, dopants and
nanostructures [270, 313-318], and tip-enhanced Raman scattering by nanostructures and
single molecules [47, 48, 281, 319-321]. Time-resolved STM operation gains particular at-
tention in the form of pump-probe excitation of dynamical processes, which can reach the
femtosecond (fs) domain [182, 268-270, 303, 314-316, 322-326].

Light emission from the tunnel gap is exploited to investigate inelastic electron transport
across the tip sample contact, such as the radiative decay of localized plasmons [327-331],
mapping of molecular orbitals [332], as well as time-resolved and time-correlated electrolumi-
nescence [333-335|. The inverse process—exciting the tunnel junction by photons—involves
several experimental complications. Particularly, the temperature modulation accompanied
by pulsed illumination results in junction instabilities, often obscuring the signals or pre-
venting atomic resolution, as investigated in |60, 336]. Recent technological developments,

including the application of THz transients [269, 322|, shaken pulse-pair excitation (SPPX)
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[337, 338], two-color SPPX [64, 339], two-pulse picking [315, 316] and cross-polarized dou-
ble beat methods [340, 341] have led to a reliable laser coupling to STM. Further near-field
schemes, such as plasmonic nanofocusing, have the potential to further enhance the coupling
to the tunneling gap [41, 45, 65, 67, 128].

Alongside this instrumental progress, a detailed understanding of the properties of a tun-
nel contact during and after fs-laser illumination remains of interest, involving linear and
nonlinear absorption mechanisms, transient modifications of the local field distribution, and
the diverse pathways of excited charge carriers. Specifically, the energetic distribution of
the tunneling electrons due to the optical excitation and the roles of different photocurrent
channels is of particular relevance.

In this work, we study the generation of photocurrents by fs-laser pulses in an ultrahigh
vacuum (UHV) low temperature STM. The light-driven electron transport manifests itself
in modified current-distance dependencies characterized by a much larger decay length com-
pared to regular tunneling. While the magnitude of the photocurrent can be controlled
by the incident laser power and the bias voltage, its decay length is largely unaffected by
these parameters. Thus, the size of the tunneling gap can be used to vary the ratio of
regular tunneling to optically driven electron transfer which allows for stable laser based
constant-current imaging of a Cu(100) surface. The observed decay lengths of the pho-
tocurrent cannot be directly attributed to the spatially dependent field enhancement of a
plasmonic gap mode. In order to identify the mechanism underlying of these enhanced pho-
tocurrents, we performed simulations based on a one-dimensional transport model and an
effective electron occupation. From these simulations, we identify the major contribution to
the photocurrent with transfer channels for hot electrons with energies near the potential

barrier maximum.

5.3.2 Methods

The experiments were performed with a home-built UHV low-temperature STM at a base
pressure of 5- 10~ mbar and a base temperature of 80 K. Depending on the chosen band-
width of the measurement electronics and the stability of the tip-sample contact, a current
resolution of 50 — 200 fA is achieved in our setup. The bias voltage Up is applied to the
sample while the tip is virtually connected to ground via the current amplifier. Electrochem-
ically etched gold tips and a Cu(100) crystal have been utilized as the probe and surface
material, respectively (Fig. 5.4(a)).

A mode-locked Ti:Sapphire laser oscillator with a center wavelength of 785 nm and 80 MHz
repetition rate is used for optical excitation. Pulse duration and focus diameter in the STM
chamber are estimated to 70 fs and 18 pm full-width at half-maximum (FWHM) (see Supple-
mental material 5.3.9 'Interferometric autocorrelation’). The light polarization was chosen
to be aligned along the tip’s symmetry axis (unless otherwise stated). An overlap of the

tunnel contact and the laser focus is achieved by a plano-convex lens (focal length: 200 mm)
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mounted outside the STM chamber on a 3D-translation stage (see focal raster scan in the left
inset of Fig. 5.4(c)). The optical table and floating STM platform are mechanically decou-
pled; relative movements of the focus to the tunnel gap are compensated by an active beam
stabilization system. Experimental details are found in the Supplemental material 5.3.9
"Methods’.

5.3.3 Experiments

The fundamental ability of resolving single atoms in STM is based on the exponential decay
of the tunnel current I upon retracting the tip by the displacement z from the sample.
For our system — without illumination — a standard I(z) curve is plotted in Fig. 5.4(b)
(black line)? showing a slope of 0.8 decades per Angstrém, corresponding to an apparent
barrier height (ABH) of 3.2eV for the tunneling electrons (for a definition of the ABH
see Supplemental material 5.3.9 "Apparent barrier height’). With a setpoint current of
Isp = 500 pA, the tunnel current drops below a noise level upon retracting the tip by
~ 0.5 nm.

A striking change of the retraction curves is observed when the junction is illuminated
with fs-laser pulses (Fig. 5.4(b), red to yellow lines). Whereas the current closely follows the
(unilluminated) reference at small distances, illumination of the gap greatly enhances the
current for increasing displacements. For these larger displacements, the curves again decay
as a single exponential. Increasing the laser power to 4.3 mW the photo-driven contribution
raises to the 100 fA level up to a distance of 2.3 nm.

We describe the distance-dependent current as the sum of a regular tunneling contribution

and a photocurrent, fitting the expression
Liotal (20 + 2) = Isp - exp(—2kicz) + Lpe - exp(—2Kpc2)

to the experimental data, where zq is the tip-sample distance at which the setpoint is reached
without laser illumination. We extract the photo-driven current fraction (I,c/Isp), regular
tunnel current ABH ®&;. = hQ/-i?C /2me and photocurrent ABH &, = h%{%c /2m, from the
obtained decay constants (m. is the electron mass).

For the regular tunneling contribution, we find the ABH to be independent of the applied
laser power; the value of &, ~ 3.2eV agrees well with that of the reference curve. In
contrast, the ABH of the photo-induced current is ®,. ~ 0.2 eV. Interestingly, it also shows
no dependency on the laser power. The 16 fold reduction of the ABH is an indication of
tunneling electrons excited to higher energy levels, close to the vacuum edge. The fraction

of the photocurrent prefactors Ip./Isp changes from < 1% for the lowest to 60% for the

2Note that throughout this paper, the given displacements z are relative to a starting point 20(Up =
2V, Isp), i.e., the initial tip-sample distance, defined by the bias voltage Ug (set to 2 V) and the set
point current Isp without laser illumination. Usually, zo attains values between 0.7 nm and 0.9 nm for
typical tunnel parameters [296]. Additionally, zo must be modified by Az(Ug, P) when changing the
bias voltage or laser power (see Supplemental material 5.3.9 'Start point correction’).
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highest measured laser power. Due to the additional photocurrent, for laser illumination,
the setpoint is established at an offset distance Az(P) > 0 from zp, determined from the
condition Iiota1(z0+Az(P)) = Igp (see Supplemental material 5.3.9 "Start point correction’).

Note that these offsets are of minor magnitude.

Fig. 5.4: (a) Schematic illustration of the experimen-
tal setup. A gold tip and Cu(100) surface are used
as probe and sample, respectively. The p-polarized
laser field (Eo) propagating with the wave vector k
is focused onto the tunnel contact (see photo). Gen-
erally, the measured current is a function of gap
width, bias voltage and laser power (indicated in
the zoom-in). Laser illumination leads to an en-
hanced near-field Ens in the tunnel junction. (b)
Current-distance dependencies without (black dots)
and with gap illumination (increasing power from red
to yellow dots: 1.0, 1.3, 1.8, 2.5, 3.3 and 4.3 mW)
(logarithmic scale). The inset schematically demon-
strates the measurement: Starting from the setpoint
of 500 pA reached at zo + Az(P), the tip is re-
tracted while measuring the current. (c) Double-
logarithmic plot of the current as a function of aver- 102
age laser power for different tip displacements (0.03,
0.3, 0.5, and 0.9nm (yellow to blue)). The effec-
tive nonlinearities n resulting from linear fits (solid
lines) are indicated near the curves. For comparison,
the current-power dependency of the tip retracted oLl
~ 1 pm from the surface is plotted in purple. (Right Tip displacement z [nm]
inset) Nonlinearity as a function of tip displacement. 0 0.5 1
For z > 0.5 nm the nonlinear order attains a nearly I |

constant value of ~ 2.5. (Left inset) Focal raster

scan across the tunnel gap for a tip displacement
of 0.9nm (scale bar: 5pm) demonstrating a more
strongly confined photocurrent (~ 20 pm?) than the
focus spot size (~ 250 um?).

"Y’
1) I ' Cu(100)

_
=)

Current [pA]

0 0.5 1 1.5 2 25

—
o
~
-
o
(3]

Current [pA]

“;;mﬁm}mﬂmi;
'

1 2 4 6 10 18
Laser power [mW]

The high stability of our setup allows for an investigation of the nonlinearity of the
photocurrent (Fig. 5.4(c)). As reference, we measured the photo-emitted current for the
retracted tip (~ 1 um distance to the sample). Laser-driven electron currents from free-
standing gold tips previously revealed multiphoton photoemission (MPPE) processes |50, 51,
67,104, 105, 167]. This is described by a generalized Fowler-DuBridge theory connecting the
current with the average laser power P by a power law, I ~ P™ [161]. The effective nonlinear
order n is a measure of the number of photons per electron involved in the photoemission
process. We observe a nonlinearity of 3.9 (purple dots), close to the expected value for an
Au tip with a work function of ~ 5 eV. For different tips, we find values of n between 3.5 and

4.5, consistent with earlier results for free-standing tips [67, 104, 105]. For the tip-sample
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contact, the nonlinear order is greatly suppressed: n attains a constant value of ~ 2.5 for all
displacements z > 0.5 nm (right inset in Fig. 5.4(c)), which is in accordance with a previous
result [182]. Importantly, this nonlinearity indicates lower-order emission processes for the
photon-driven current contribution compared to the free-standing tip. For z < 0.5 nm
(green and yellow line), the found values are further reduced by the additional regular
tunneling, which starts to dominate upon approaching the setpoint. Hence, this reduction
in nonlinearity is not linked to a change of the electron transfer process. Interferometric
autocorrelation measurements of the photocurrents emitted from a free-standing tip and in
the tunnel contact confirmed the general trend of a reduced nonlinear order for the gap
illumination (see Supplemental material 5.3.9 ’Interferometric autocorrelation’).

The reduced barrier involved in the photo-induced electron transfer suggests a further
investigation of the photocurrent dependency on the barrier shape and height, which can be
adjusted by the bias voltage (Fig. 5.5(a)).
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Fig. 5.5: (a) Measured current-distance dependencies I(z) for different bias voltages from 2V to 8 V (black
dots) under constant gap illumination with 3.4 mW power and a setpoint current of 100 pA. The curves
are plotted on a semi-logarithmic scale and are vertically shifted for clarity (data points below the noise
level of 200 fA are excluded). Horizontally, the curves are shifted due to start distance changes zg + Az(Ug)
upon ramping the bias voltage according to a separate Az(Up) measurement (top inset and Supplemental
material 5.3.9 ’Start point correction’). Solid lines are the simulation results based on a one-dimensional
potential model (details in the text). Upon changing the bias voltage, different field emission resonances
become accessible by the electrons, as demonstrated by peaks occurring in the derivative of the Az(Ug)
dependency (bottom inset). (b) Modeled potential barriers for 2V (iii, iv) and 8 V (i, ii) at gap widths
indicated in (a). The major current channels are indicated by the red arrows with different magnitudes
(arrow length is not to scale). Color shaded areas assign to the relevant barrier. The Fermi energy levels of
the tip and sample are given as horizontal lines on the left and right side of the potential barrier.

While the data at a low bias voltage (Up < 5 V) can be described by the above-mentioned
bi-exponential behavior, additional features are observed for Ug > 5 V. These are attributed
to field emission resonances (FER), also evident as peaks in the d(Az)/dUp spectrum [342—
345] (bottom inset of Fig. 5.5(a)) (details are found in the Supplemental material 5.3.9 "Field
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emission resonances’). For measurements in the interval from 2 V to 8 V, we extract regular
tunneling ABHs ranging from 3.0 eV down to 0.5 eV, respectively. These values match to
the found @y, without illumination (a comparison of dark versus illuminated data is given
in Fig. 5.11 in the Supplemental material). Interestingly, the determined ABHs of the pho-
tocurrents do not exhibit such a trend, with values weakly varying around a few to a few
tens of meV.

The transition to the negative bias voltages regime (—1V < Up < 0V) reveals positive,
photo-driven currents (Fig. 5.12 in the Supplemental material): Although the negative set-
point results in a negative regular tunneling (from the sample to the tip) for very small
displacements, we find optically driven electron transfer reverse to the static electric field
(from the tip to the sample) for larger tip displacements. Note that for Ug < —1V the

positive photocurrent is compensated by negative photo-driven currents from the surface.

5.3.4 Laser-driven STM

Controlling the photocurrent fraction Ip./Isp allows for a transition from regular to photon
based imaging. To investigate the impact of surface features on the photocurrent and on
topographic information, we measured constant-current topographies of a Cu(100) surface
covered with 0.1-0.2 monolayers of Ge clusters (Fig. 5.6). By controlling the setpoint cur-
rent and laser illumination,we can change the ratio Iy./Isp (Fig. 5.6(d)). Interestingly, both
measurements with laser excitation for I,./Isp = 8% (b) and I,./Isp = 98% (c) resolve all
features present in the reference topography without illumination (a) (there is a small ther-
mally induced drift). Some blurring in (c) is attributed to the increased tip-sample distance
(broader transfer function of the tip). Figure 5.6(e) demonstrates for all three scenarios
(standard tunneling, I,./Isp = 8%, and Ipc/Isp = 98%) a quantitative agreement of the
topographic heights of the Cu step edge and the Ge clusters.

We note that multiple sequentially measured topographies with and without laser illumi-
nation show no indication of a tip- or laser-induced surface modification.We can therefore
rule out previously observed changes in surface morphology [346], induced by thermal tip

expansion and penetration into the surface [60, 347, 348|.

5.3.5 Modeling

In the following, we address the mechanism underlying the observed current-distance char-
acteristics I(z) for the optically excited tunnel junction. Generally, the electron transport is
determined by two major quantities. Firstly, the charge carrier has a transfer probability T'
to transmit from one electrode to the other. Specifically, T is determined by the potential
barrier formed between both electrodes. Hence, it is a function of the electron energy F, the
gap width zg,, ~ 2z and the bias voltage Ug. Secondly, the number of transmitting charge
carriers is given by the initial occupied and by the final empty states. In an elastic process,

this number is a function of the occupation distribution and density of states of the tip and
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sample at the energy E [296].

Under fs-laser excitation both the transmission probability and the electron population
can be transiently changed due to photon absorption or local field modifications. However,
for moderate excitation intensities (perturbative regime), we can exclude strong-field effects
on the potential landscape determining the transmission probability (see discussion) [105,
182]. Therefore, the impact of the laser excitation on the electron population can be modeled

by an effective time-averaged occupation function feg [104, 171].
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Fig. 5.6: (a)—(c) Constant-current topographies of the Cu(100) surface with Ge clusters (white regions)
including a Cu step edge (located on the left) for different excitation conditions and setpoint currents
(U = 2V). The colored lines represent the line profiles plotted in (e). Note that the topography section
of (a) is slightly shifted compared to (b) and (c) due to thermal drift. (a) Reference topography with
Isp = 100 pA without laser excitation. (b), (c) topographies measured with laser excitation (P = 0.4 mW)
for a setpoint current of 100 pA (b) and 3 pA (c). The latter current is composed by > 98% of laser-driven
electrons (compare the associated I(z) curve (red dots) in (d) with the dark reference curve (blue dots)).
The chosen setpoint used in (c) and the respective tip displacement are indicated by the black line as a
guide to the eye. (e) Line sections along the lines indicated in (a), (b), and (c) for the three conditions
of Isp = 100 pA without laser (blue), Isp = 100 pA with light excitation (red), and Isp = 3 pA with light
excitation (orange). The lines are vertically shifted by 0.1 nm for clarity. Evidently, the matching of the
three profiles, including the Cu step edge and Ge clusters, demonstrate the conformity of standard and
laser-driven topographic imaging in our experiment.

Based on the Bardeen model for tunneling, we calculate the current I by an energy (F)
integral over the product of the electron occupation fes and the transmission probability T'
[296]:

o
I(z,Up,Eys) ~ / dE feg(E,Eu(2))-T(E,2,Up), (5.5)
0

assuming a constant density of states for the tip and the sample. The temperature of the
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sample is set to 0 K, hence, the electron occupation is unity up to the Fermi level on the
sample side. Importantly, the electron population in the tip feg is given by the absorption
of photons from the enhanced near-field E¢ in the tunnel gap (see zoom-in in Fig. 5.4(a)),
which depends on the laser power, the tip-sample geometry and the dielectric response of
the materials. Especially, for gold nanostructures excited with near-infrared light, we expect
a strong enhancement of Ey¢ due to a local surface plasmon (gap plasmon) [206, 281, 328,
349]. Explicitly, both the occupation feg and transmission T are functions of the tip-sample
distance zgap ~ 2, which is given by the tip displacement z in the experiment.

We first consider the possibility of the local field Ef(z) responsible for the measured
photocurrent spatial decay. Since the plasmonic enhancement is a function of the system’s
geometry and the dielectric properties of the materials, a strong modification of E,¢ is ex-
pected when sharp features on the surface or different materials are present in the gap [45,
203, 204, 206, 341]. This should lead to different topographic heights when imaging the
surface with photo-driven electrons compared to the regular tunneling. Yet, we find the
same topographic profiles for both cases (see Fig. 5.6(c)).

Moreover, given the experimental geometry, the very short decay lengths render the gap
plasmon z-dependency an unlikely explanation. Specifically, the expected field-distance de-
pendency of the signal can be estimated by a coupled dipole approximation, with the tip
apex modeled as a sphere (see Supplemental material 5.3.9 "Near-field enhancement’) [277].
The associated electric field component in the z/-direction Ey is given by an algebraic rela-
tion Eng ~ (2gap + R7)~3 with the tip radius Ry and gap width Zgap ~ 2 [281]. Estimating
the distance dependency of a current driven by a nonlinear process I(z) ~ |Epn(2)|*" for
different tip radii and n = 2.5 (Fig. 5.14 in the Supplemental material), the observed decay
lengths in our experiment could only be achieved for unrealistically small tip radii (< 5 nm).
However, such radii would lead to a strong deviation from an exponential law, in contrast to
our experimental findings. We estimate a signal reduction by a factor of up to ~ 11 in the
experimentally relevant regime of 0.7 — 3.2 nm for a tip radius providing a nearly exponen-
tial decay of the near-field (the actual reduction factor is expected to be even lower, since
plasmon-driven tunneling reduces the field enhancement for very low distances [138, 281]).
In contrast, we find reduction factors of up to 10* in the related distance regime in our exper-
iment (see Fig. 5.4(c)). Interestingly, a current-distance dependency measured for increased
laser powers (~ 35 mW) strongly deviates from the low-power experiments (Fig. 5.15 in the
Supplemental material). The setpoint current is purely laser-driven. Therefore, the tip-
sample distance must be considerably larger®. In this case, it deviates from an exponential
law with a decay length much larger compared to the curves in Fig. 5.4(b) and Fig. 5.5(a),
and the current converges to a finite value of 0.4 pA at the distance of 10 nm. A tip radius
of R = 28 nm and a nonlinear order of n = 4.4 is extracted from a fit of the coupled dipole

model to the data in Fig. 5.15. We attribute these results to a four-photon process dom-

3 A precise start distance cannot be given, since no reference in the form of a transition starting from regular
tunneling is present in the data.
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inating the intermediate distance regime with a current decay governed by E¢(z). Thus,
another mechanism must be responsible for the observed decay length scale for the short
distance regime and the near-field enhancement is assumed to be constant in the model
discussed below. Consequently, the effective occupation distribution has only an explicit
energy dependency, whereas the near-field enters as a parameter given by the laser power
(fert (B, Enf) = fp(E)).

We find the z-dependency of the transmission probability T(E, z,Up) to explain the ob-
served photocurrent spatial decay. We calculate T' with a one-dimensional representation
of the potential landscape including image potentials for both electrodes (Fig. 5.7(a) and
panels (i)—(iv) in Fig. 5.5(b)). Field emission resonances and their spectral change due to
the Stark shift is covered by the model as well. For this potential, we numerically solve the
Schrodinger equation with the Numerov method (see schematic wave function in Fig. 5.7(a))
and extract the transmission probability from the found scattering parameters [297, 350].
A detailed description is found in the Supplemental material 5.3.9 *Transport model’. From
Eq. 5.5 the current with its tip-sample distance and bias voltage dependency is simulated

as a function of the excited electron population fp(E),
I(z,Up) = C/ dE fp(E)-T(E,z Up), (5.6)
0

with a scaling constant C. fp(E) is modeled as a parameterized sum over N Fermi—Dirac
distributions of different magnitudes A;, energy intervals E; and energy widths AE; [104,
171]:

fp(E) = ZV;AJ/ <exp [E - (ZUgj+ Ej)} + 1> :

whereas the tunnel current reveals the general distribution of electrons, it is not necessarily
sensitive to the exact locations of the intervals E;. Thus, for simplicity, we set the energy
intervals of fp(E) to multiples of the photon energy E; = j-hw above the Fermi energy,
with integer j and hw = 1.55 eV. We find that one unexcited (5 = 0) and two higher-energy
contributions (j = 1,2) are fully sufficient to describe the data.

We note that there is no one-to-one correspondence between the energy intervals and
the respective one- or two-photon absorption process. Specifically, the observed nonlinear
order of 2.5 indicates that other factors, including lower-lying initial states and energy
redistribution by thermalization, significantly affect the resulting carrier distribution. The
parameters adjusted are the amplitudes A; and A relative to Ag (set to unity), the energy
widths AF; and AF,, and the scaling constant C. The broadening AFEy = 7meV is set to

correspond to the base temperature of 80 K.

5.3 Controlling photocurrent channels in scanning tunneling microscopy 69



5.3.6 Simulation results

The simulations yield a general agreement with the respective experimental curves demon-
strating the broad applicability of the model (lines in Fig. 5.5(a) and 5.8(a)). One rep-
resentative result is presented in Fig. 5.7(c) along with the respective occupation function
in Fig. 5.7(b). Each individual current channel (black lines and colored areas) exhibits an
almost ideal exponential decay over all displacements and justifies the previously applied
multi-exponential fits. As found before, the short- and long-distance ranges are dominated
to nearly 100% by the regular and high-energy contributions (I3), respectively. The first
photocurrent channel (I7) contributes only in a narrow transition region with a few percent
of the total current (Fig. 5.7(d)).
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Fig. 5.7: (a) Schematic illustration of the one-dimensional potential barrier model used to calculate the
electronic transmission probability. The triangular potential due to the bias voltage and the difference
between the work functions (dashed black line) is superimposed with the image potentials of tip and sample
resulting in the total potential (black solid line). A schematic electron wave function is plotted as the blue
line. (b) The three-component electron occupation distribution associated with the simulation result shown
in (¢). (c) Experimental I(z) curve (black dots), together with the sum of the three channels (red solid line).
The colored areas beneath the curves assign the energy domains of the occupation in (b) to the resulting
current in (c). (d) Current fraction at each tip displacement for the three channels. (e) Representations
of the energetic composition of the current for three currents (100 pA, 10 pA and 1 pA columns) and for
three bias voltages (2V, 4V and 8 V, rows). The corresponding displacements are indicated in the bottom
right corners. Colors refer to the particular energy channel the electron is transferring from (as in (b)—(d)).
Barrier potential maxima are indicated by the dashed black lines. The numbers specify the partial current
in units of electrons per laser pulse for the first and second photocurrent channel. The integration along the
energy axis gives the total current for a given distance and bias voltage. The energy axis is given relative to
the bias voltage, i.e., the Fermi level in the tip.

We identify the electron energy regions from which the current channels are originating by

calculating the product I'p(E) = Cfp(E)-T(E), i.e., the integrand of Eq. 5.6 (Fig. 5.7(e)).

Several conclusions can be drawn: (1) While I5 is the dominant photo-driven current for
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all bias voltages, the relative fraction I;/I> becomes more substantial at higher bias volt-
ages. (2) The higher-energy contributions are always close to the potential barrier maximum
(extracted from the simulation and indicated by dashed lines in Fig. 5.7(e)), which is con-
sistent with the fitted ABH of a few tens of meV. However, there is always a significant
above-barrier fraction (up to 80% (0.8 pA) for the 2V case). (3) The energy bandwidth
(FWHM) of the channels is of the order of 0.5 eV and 0.8 — 1.5 eV for regular tunneling and
photocurrent, respectively. (4) Field emission and scattering resonances enforce the appear-
ance of a modulated contour evident by multiple peaks and shoulders around the potential
barrier maxima for larger distances and higher bias voltages (compare, e.g., 4 V and 8 V for
1 pA).

Analyzing the current composition as a function of laser power® (Fig. 5.8(b)) shows that
I, has a significant contribution for lower laser powers. The average charge transferred per
channel can be increased up to a few tens of electrons per laser pulse by increasing the

incident power (indicated as numbers in Figs. 5.7(e) and 5.8(b)).
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“Note that here we use constant displacements instead of constant currents (as in Fig. 5.7(e)). The z-
shift corrections Az are of minor magnitude and, therefore, currents at a constant tip displacement are
comparable.
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5.3.7 Discussion

The results presented in this paper, specifically the determination of the effective electron
distributions, yield insights into the transport mechanism responsible for photocurrents in
STM under fs-laser illumination. The main experimental features are reproduced, and the
findings suggest multiphoton absorption processes leading to the population of higher-energy
electron states (hot electrons) close to the potential barrier maximum. Open questions in-
volve the possible participation of higher-order photon absorption, the role of lower-energy
initial states (d-band), and transfer rate modifications due to quantum coupling of electronic
states (quenching of radiative resonances).

As former studies demonstrated, thermally induced tip expansion due to the pulsed il-
lumination have been a major issue for combining STM and fs-laser excitation, since they
can obscure the electronic signal by the oscillatory altering of the gap width by a certain
amount of dzexp(t) and its strong impact on the exponential tunnel current [60]. The tip
expansion can result in a mechanical tip-sample contact, which causes instabilities and tip
and sample structuring [346]. However, for the low laser fluences used in this experiment, we
can neglect any contact formation (as demonstrated in Fig. 5.6). The magnitude of §zexp(t)
can be estimated from theoretical and experimental studies, which demonstrate monoton-
ically decreasing values for high repetition rates® [347, 348]. In addition, by assuming an
exponential current-distance relation I(z,t) ~ exp(—2k[z + 0zexp(t)]) we see that for the

measured time-averaged signal,
< I(z,t) >1=< exp(—2K0Zexp(t)) >t 1(2) = Cexpl(2),

only a modification of the amplitude by a constant factor cexp =~ 1 is present (assuming
dzexp(t) independent of z). Hence, an oscillatory tip expansion dzexp(t) cannot explain the
found reduced ABH.

We conducted several validation experiments that exclude a strong thermal impact on
the observed current distance dependencies. First of all, the negative bias measurements
(Fig. 5.12 in the Supplemental material) show a strong rectification effect, i.e., even for neg-
ative setpoint currents (electron transfer to the tip) we find a positive current contribution
(electron transfer to the sample) when retracting the tip out of the regular tunneling regime.
Secondly, we do not find any signal for laser s-polarization. Finally, the signal is confined
to an area that is a factor of 5-6 smaller than the focal spot size (demonstrated by the
focal scan in the left inset of Fig. 5.4(c)). This is a strong indication of the nonlinearity of
the photo-driven current and contradicts a thermal expansion effect which, in contrast, is

expected to be governed by linear absorption.

SMost of the presented data was measured with laser average powers between 1 mW and 10 mW. The
resulting fluences are several magnitudes below the contact formation threshold given in [346]. Moreover,
the amplitude of the oscillating tip expansion is expected to be in the sub—Angstri)'m regime as estimated
from theoretical and experimental studies [347, 348].
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Our experiments have been operated in the perturbative regime with low-order nonlin-
ear transitions. By contrast, strong-field effects are expected to play a major role for laser
powers increased by about a factor of 10 compared to those in our experiments [105, 182].
Performing STM measurements under such conditions, laser power-dependent ABHs have
been observed [341]. In the limit of much lower intensities, continuous-wave illumination
may change the transfer mechanism to plasmon-assisted resonant tunneling, as recently
demonstrated by FER shifts of one photon energy [351]. We do not observe such shifts,
presumably due to a broader electron energy distribution and the smaller photo-driven con-
tribution to the total current (see Fig. 5.13 in the Supplemental material).

Both the experimental and theoretical approach can be further extended. On the one
hand, pump-probe schemes have the potential to give access to the temporal evolution of the
electron distribution [153]. On the other hand, additional modeling, including the distance-
dependent plasmonic field, electronic band structures, the three-dimensional transient field
distribution as well as the relaxation dynamics (Landau damping, electron—electron and
electron-phonon scattering) promise further information on the specific electronic pathways
under fs illumination [133, 352].

5.3.8 Conclusion

In conclusion, we demonstrated photo-driven electron transfer through the tunnel junction
of a scanning tunneling microscope. Under gap illumination, this current is evident by tip
retraction curves with additional contributions distinguished by a strongly reduced apparent
barrier height leading to a long decaying current compared to regular tunneling. The analy-
sis of power-dependent measurements suggests a multiphoton absorption mechanism where
the electrons are excited to levels a few 100 of meV around the potential barrier maximum.
Neither the laser power nor the bias voltage strongly affects the ABH in the measured range.
The electron excitation to the high energies is provided by the plasmonically enhanced field,
albeit its distance dependency does not explain the observed decay length scales. Simu-
lations based on a one-dimensional potential barrier model and a time-averaged effective
electron occupation are able to reproduce the central features of the current-distance depen-
dencies. By this, we identify the involved energy domains from which the transfer channels
are established and find a high-energy distribution in the vicinity of the potential barrier
maximum to be the dominant contribution. Prospectively, this could provide an ultrafast
excitation procedure with high-energy electrons in a nearly field-free environment, e.g., to

disentangle field- and particle-driven chemical reactions of molecules.
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5.3.9 Supplemental material
Methods

Experimental setup Figure 5.9 illustrates the experimental setup. A Titanium-Sapphire
laser oscillator (Coherent Vitara T-HP) provides laser pulses with 80 MHz repetition rate.
The laser spectrum has a center wavelength of 785 nm and a bandwidth of 60 nm (see
spectrum in the inset). A pair of a remotely rotatable half-wave plate and a film polarizer
is used to set the laser polarization and average power. The polarization is chosen to be p-
polarized (aligned along the tip’s symmetry axis), unless otherwise stated. The beam width
is increased by a factor of five with a telescope arrangement resulting in a focus diameter
of 18 um in the STM after passing a plano-convex lens (focal length: 200 mm). A precise
positioning and raster scanning of the focus is achieved by remotely moving the focusing
lens with a 3D-translation stage.

An active beam stabilization system consisting of a beam position detector on the STM
platform and a piezo actuated mirror on the optical table is implemented to prevent pointing
caused by the relative movement between both table and platform. Optionally a Michelson-
type interferometer can be inserted into the beam line by replacing the central mirror with
a 90° turned beam splitter (dashed section in Fig. 5.9). With this we estimated the pulse
duration to be 70fs in the STM chamber from autocorrelation traces (see Supplemental

material. 5.3.9 "Interferometric autocorrelation’).
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Fig. 5.9: Schematic illustration of the experimental setup. M: mirror, CM: central mirror, BS: beam splitter,
HWP: half-wave plate, PCL: plano-convex lens, BPD: beam position detector, CCD: charge-coupled device.
The inset shows the laser output spectrum.

We used a home-built UHV scanning tunneling microscope with 5-10~' mbar of base
pressure for the experiments. The system is cooled with liquid nitrogen down to 80 K.
Currents are converted to voltage signals by an /-V-converter (1 V/nA) with a bandwidth

of 1 kHz. Hence, the STM feedback control is not affected by the 80 MHz modulation of the
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laser oscillator and only a time averaged signal is recorded. The bias voltage is connected
to the sample, while the tip is grounded. Viewports allow for an optical access for the laser

illumination and the monitoring of the tip and focus position via a CCD camera (Fig. 5.4(a)).

Tip and sample preparation Gold wires (250 um in diameter) are annealed in vacuum
with 750 °C for several hours. This increases the mean grain size and leads to quasi-single-
crystalline apex sections for the final tips. Afterwards a tapered end is achieved by elec-
trochemical etching with 37% hydrochloric acid and subsequently the tips are cleaned with
iso-2-propanol and distilled water. Shape and surface quality as well as apex radii are checked
by scanning electron microscopy (details, e.g., in Refs. [45, 183]). Moderate annealing at
150 °C for 72 h is conducted to clean the tip surface in the UHV during a preparation cham-
ber bake-out. Cu(100) treatment comprises multiple cycles of argon ion sputtering (700 V)
and annealing (350 °C—400 °C) of single crystals. Finally, 0.1-0.2 monolayers of germanium

have been evaporated by electron-beam evaporation.

Apparent barrier height

In general, the work function of a material is the central quantity defining the potential
barrier for an electron that transfers from the cathode to the anode. For sub-nanometer
gaps between both electrodes this barrier is strongly modified in its shape and height. In
this case, the characteristic quantity of electron transport is the apparent barrier height

(ABH) which is a measure of the effective potential:

A2 /dInl)\?
Sapn(z) = ( = > ,

~ 8me dz

where m, is the electron mass [296]. For an exponential current representation
(I(2) ~ exp(—2kz)) the ABH simplifies to ® gy = #*#*/2m. with the decay constant .

Start point correction

In conventional STM, the absolute tip-sample distance zg is determined by the parameters
bias voltage Up and setpoint current Igp. In our experiments, the start point is also a
function of the laser power P, since the photo-driven signal has a pronounced tip-sample
distance dependency. We take this circumstance into account by introducing a distance
Az > 0. Qualitatively, for a given distance, the current increases when increasing Ug or P
and, in conclusion, the tip has to be retracted by Az from the sample in order to keep the
setpoint current constant.

In our experiments, we did power Ip(z) and voltage Irr,(z) dependent measurements
for given setpoint currents and corrected the data sets by extracting Az(P) from the bi-

exponential fits and by using a separate Az(Up) measurement for the power- and bias
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voltage-dependent measurements, respectively (Fig. 5.4(b) and 5.5(a)). While a minor cor-
rection of 0.05 nm is determined for the highest laser power compared to the lowest one,

Az = 1.2nm is found for a voltage change from 2V to 8 V (see top inset of Fig. 5.5(a)).

Interferometric autocorrelation

We measured interferometric autocorrelation traces for the two scenarios of a free-standing
tip (~ 1 um tip-sample distance) and for tunnel contact (Fig. 5.10(a) and (b)) by utiliz-
ing double pulses with a variable delay provided by a Michelson-type interferometer (see
Fig. 5.9). Both interferometer arms have the same laser average power and are collinearly
interfering at the apex or at the tunnel junction. In order to measure only the photo-driven
current, the tip is retracted at each delay step by 0.7 nm with respect to the setpoint (no
regular tunneling) and the photocurrent is recorded. I(z) curves demonstrate for a maxi-
mal pulse overlap and without a pulse overlap that the photocurrent is finite and regular
tunneling is dominant providing a quasi-constant reference distance zg at each delay step
(see inset in Fig. 5.10(b)). As in the power-dependent measurement in Fig. 5.4, the setpoint

distance z only varies in a sub-Angstrom regime for different delays.
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Fig. 5.10: Interferometric autocorrelation traces of the photo-induced current for the two scenarios of a free-
standing tip (a) and a tip in tunnel contact (b). (a) The tip is retracted by roughly 1 um from the surface.
The two pulses are collinearly superimposed on the tip apex. From this autocorrelation the pulse length is
estimated to be ~ 70 fs FWHM.(b) For each delay the STM feedback control is switched off and the tip is
retracted by 0.7 nm to insure a pure optical signal as evident by tip displacement measurements for none
and maximal pulse overlap (inset).

From the traces we found peak-to-background ratios (PBR) of ~ 68 and ~ 31 for the
free-standing tip and for tunnel contact, respectively, which indicates the high nonlinearity
n of both situations: under ideal experimental conditions the PBR is equal to 22"~!. This

implies an effective nonlinearity of n = 3.54 for the free-standing tip and n = 2.97 for the
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tunnel contact. These values are within the variations, which we observed in the power-

dependent measurements and support that we have a lower nonlinear order in the tunnel

contact compared to a free-standing tip. The value of n = 3 for the tunnel contact might

be somewhat overestimated due to thermal tip expansion changes induced by the intensity

oscillations in the interfering pulses.

Bias voltage-dependent measurements
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Fig. 5.11: Comparison of current-distance dependen-
cies with (dots) and without (crosses) illumination
of the tunnel junction for six different bias volt-
ages. In the former case the average laser power
is P = 3.4mW (same data as in Fig. 5.5(a)). The
y-axis has a logarithmic scale. For clarity the curves
are shifted vertically and only data points exceeding
the noise level are plotted. For simplicity, no dis-
placement correction due to different start points is
applied.

Fig. 5.12: Tip-distance dependencies for positive and
negative bias voltages ranging from —2.2'V to 2.2 V.
The data were measured with laser excitation (P =
8.4mW) and a setpoint current of 500 pA. Impor-
tantly, I(z) curves for negative bias voltages show
a pronounced positive current regime (shaded ar-
eas) evidencing electron transport from the tip to
the sample, despite the negative setpoint. This rec-
tification effect is clearly observable for bias voltages
down to —1 V. At some point, a negative photocur-
rent contribution originating from the sample surface
conceals the positive current from the tip resulting
in a negative net photocurrent. For visibility, only a
segment of the actual measured range is shown (no
displacement correction is applied).
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Field emission resonances

A well-known phenomenon for large bias voltages Up is the contribution of image states
in front of the surface of a conducting sample to the tunneling current [342, 343, 345,
353] (see Az(Up) spectra in Fig. 5.5(a) and Fig. 5.13). These field emission resonances
(FER) are characterized by an increased conductivity for the bias voltage matching the
FER energy [298|. Considering a V-shaped potential landscape, such as an image potential,
the corresponding electronic states exhibit a hydrogen-like energy spectrum [354]. STM
studies found a modification of the image potential energies due to the Stark shift caused
by the static electric field between tip and sample [342, 344].
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Fig. 5.13: (a) Tip retraction, i.e., start position

change, as a function of bias voltage in the range of
2.0 — 8.6 V with (solid red line) and without (dashed
black line) optical excitation of the tunnel junction.
The current was kept constant at 100 pA. (b) The
derivative with respect to the bias voltage of the
curves in (a). Image potential states are evident by
the three peaks at 5.0V, 6.9V and 8.0V. Appar- . . . . . .
ently, the fs-laser pulses do not have a strong impact 2 3 4 5 6 7 8
on the curves, especially, the position and shape of Bias Voltage [V]

the field emission resonances are unaffected.
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The FER appear at bias voltages of 5.0V, 6.6 V, and 7.7V, as evident from the peaks
in the d(Az(Ug))/dUp spectrum (bottom inset of Fig. 5.5(a)). The increased conductivity
at the resonances causes slight deviations from the typical exponential form in the regular
tunneling regime (e.g., 6.8 V and 8.0 V in Fig. 5.5(a)). The potential sensitivity of the FER
spectrum (and as a consequence the dependency from the tip-sample distance) qualitatively

explains the curve shape deviations.

Near-field enhancement

The electromagnetic field enhancement of a tip-sample system illuminated with a plane
wave Fy propagating in z/-direction and polarized along the z’-direction (inset of Fig. 5.14)
can be modeled with a sphere of radius Ry representing the tip apex in front of a surface.
The electromagnetic response of the sphere is described by a dipole moment. This, in
turn, induces its image dipole in the sample from which an effective dipole moment can be
calculated [277|. The superposition of both dipolar fields with the incident plane wave gives
the total field distribution [72]. Evaluating the field at the tip apex (2’ = 0, 2’ = zgap)
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delivers an algebraic relation for the z’-component of the total field E.¢ ~ (2gap + RT)_3

[281]. Figure 5.14 presents the tip-sample distance dependency calculated with the coupled

dipole model (CDM) for a nonlinear process (~ |Ey¢|*") of the order of n = 2.5 and tip radii

between 5 nm and 100 nm.
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Fig. 5.14: Distance dependency of the plasmonic
field enhancement (gap plasmon) (Ens/Eo)*™ calcu-
lated with a coupled dipole approximation for tip
radii between 5nm and 100 nm. Dielectric func-
tions for the gold tip (¢¢) and copper sample (es)
for a wavelength of 785 nm have been taken from
[82]. Note that we incorporated the nonlinear order
of n = 2.5 extracted from the experimental data.
The numbers indicate the reduction factor between
0.7nm and 3.2 nm, which is the experimentally in-
vestigated interval.

Fig. 5.15: Current-distance dependency (black dots)
for higher-power gap illumination (34.3 mW). The
observed current decay length is much longer com-
pared to the low-power measurements in Figs. 5.4
and 5.5. At large displacements the current con-
verges to an effective constant value of 0.4 pA. Im-
portantly, there is no regular tunneling at the set-
point value. The coupled dipole model (CDM) fits a
nonlinear order of n = 4.4 + 0.2 and a tip radius of
28 + 2 nm (red line).

For the calculation of the transmission probability 71", a one-dimensional barrier model, com-

posed of the three regions (tip, gap and sample) is used (Fig. 5.7(a) and Fig. 5.16). The tip

and sample are assumed to be field free, i.e., constant potentials of Uy 7+ eUp and Uy g for

the tip and sample (Up,j is the inner potential), respectively. The total potential V' (z’) inside

the gap is the result of the superposition of the image potentials for both tip and sample, and

the linear potential drop due to the bias voltage and the work function differences. Effective

surface positions for the tip and sample are applied to fulfill continuous boundary conditions

at 2/ = 0 and 2’ = zgap [298, 355]. Within a scattering approach, the Schrédinger equation

is solved numerically by the Numerov method with the usual assumption of continuously

differentiable wave function transitions [297, 298|. From the complex wave function ampli-
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tudes the transmission probability is calculated [350]. A schematic illustration of the real
part of a wave function is given in Fig. 5.7(a): regions with E > V(z’) (tip and sample) are
characterized by an oscillatory waveform while the wave function inside the gap (E < V (2'))
decays exponentially.

Both, tip and sample material, are assumed to have a constant local density of states.

The sample temperature is set to 0 K.

Fig. 5.16: Scheme of the one-dimensional potential
barrier model used for the calculation of the electron
transmission probability. The complex amplitudes of
the incoming Ay, reflected Ar and transmitted Ar
wave function are illustrated as black arrows. The
applied values for the work functions and inner po-
tentials of tip and sample are listed in Tab. 5.1.

Name Symbol  Value
Sample work function dg 4.5eV
Sample inner potential Uo,s —7.0eV
Tip work function b 5.1eV
Tip inner potential Uor —9.2¢eV
Sample Fermi energy Ers 0eV

Tab. 5.1: The material parameters used for the transmission probability simulation.

The optimization procedure of the free parameters in the effective occupation function was
implemented in Matlab. In advance, the absolute gap width zg was fitted for a representative
data set and has been fixed for all following simulation iterations. In addition, a slight offset
of the order of a few tens to a few hundreds of meV was added to the energy intervals E; in
order to match the actual work function of the tip. We found that the energy widths AE;
and AFs — corresponding to the temperature of the two photo-driven contributions to the
effective occupation distribution — attain values of several tens to a few hundreds of meV,
which is equivalent to 1000 — 2000 K. These high values are necessary to somewhat flatten

out the effects of scattering and field emission resonances.
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5.4 Challenges of the combination of a fs-laser with an

ultrahigh vacuum STM

The central technical development of this work was the successful combination of an ultra-
high vacuum (UHV) low-temperature STM with a pulsed fs-laser source. In the following,
we focus on the challenges which occurred during the setup development and the applied
solutions. The major objective is the prevention of laser focus motion relative to the tunnel
junction and the simultaneous isolation of the STM from mechanical vibrations within the
bandwidth of the measurement electronics (1 kHz). Air pressure variations and floor move-
ments are responsible for such vibrations [267]. Additionally, temperature fluctuations and

laser beam misalignment cause focus displacements [356].

Beam line (top view)

Bellows with
Viton inserts

Pump .)
1

Beam
splitter

BPD

Spring
suspension

dfeed

Outer tank

i Laser
beam Inner tank L
with nitrogen

with nitrogen

Feedback

Laser beam

Viewport for laser
in-coupling

UHV
U
-STM head

Counterweights

Optic
cantilever

«—Pneumatic isolaters — ——-

Fig. 5.17: Sketch of the STM experiment. Only the parts important to the focus stabilization are indicated.
The sectional drawing of the STM shows the two-chamber cryostat consisting of the heat-shielding outer
tank and the inner tank with the attached STM measurement head. Both are cooled with liquid nitrogen
in our experiments. We setup several optimization procedures in order to achieve simultaneous vibration
isolation and spatial stability of the focus with respect to the STM junction (see text). The inset presents a
simplified illustration of the beam line on the optic cantilever. A beam splitter branches the incoming laser
beam into a feedback arm and an STM (measurement) arm. The former is stabilized by a beam position
detector (BPD) that feedbacks the beam displacement to a piezo actuated mirror on the optic table (not
shown). In order to achieve STM-focus stabilization the beam splitter-BPD distance deeq and the beam
splitter-STM dstm distance must be identical.

Figure 5.17 presents a schematic illustration of our setup. The standard damping tech-
nique is the utilization of pneumatic vibration isolators carrying the STM platform (also
used in our experiment). A second damping stage is provided by a two-chamber design

for cryogenic cooling: The inner tank is thermally shielded by the outer one, thus cooling
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of the inner chamber by helium is possible. The measurement head is attached to the in-
ner tank that is suspended with steel springs to the outer tank and additionally damped
by elastomer (Viton) inserts. This strongly suppresses the vibrational power transferred
to the measurement system over a broad spectrum. The residual low-amplitude coupling,
especially in the sub-Hz regime, does normally not affect the STM performance and atomic
resolution is routinely achieved using this damping technique in combination with cryogenic
cooling of the apparatus [267|. However, when a laser focus of micrometer-size needs to be
steadily positioned on the STM junction even micrometer movements on a second to minute
timescale can have a strong impact.

Since we cannot establish a rigid mechanical connection of the laser table to the STM
head without significantly corrupting the STM performance, we followed two strategies to
combine vibration damping with a sufficient beam focus stability. On the one hand, we
reduced the residual inner tank movement to a minimum level by optimizing the mechanical
isolator system. On the other hand, we compensate the relative motion between the laser
beam and STM platform by setting up an active focus stabilization system. The mechanical

optimization consists of three steps (Fig. 5.17):
1. Balancing the system’s center of mass with counterweights increases the damping.

2. The pneumatic isolators are operated with compressed nitrogen from gas bottles (the

in-house compressed air system is perturbed by pressure fluctuations).

3. Seething of the fluid nitrogen in the cryogenic tanks is suppressed by solidifying the

fluid. This is done by reducing the vapor pressure.

Stabilizing the focus is achieved by splitting the beam line on the optic cantilever into two
branches (inset in Fig. 5.17 and Fig. 5.9). A beam position detector placed in one of the arms
monitors lateral focus displacements with respect to a setpoint position. These deviations
are compensated by a feedback controlled piezo-actuated mirror placed on the optical table.
This system stabilizes the focus at the position of the feedback detector. Consequently, we
achieve a simultaneous stabilization of the STM beam if the optical pathways of the feed-
back and STM arm are identical (dsgm ~ dfeed)-

The impact of the mechanical and beam line optimization is measured by a second beam
position detector placed in the measurement beam arm on the STM platform, which moni-
tors the horizontal and vertical focus position. In Fig. 5.18 the focus position is plotted as
a function of time, before (a,c) and after (b,d) the stabilization measures were taken. In
general, the traces (black curves) measured before the optimization had been implemented
exhibit noise on a (sub)-second timescale with peak-to-peak values of the order of the focus
diameter (~ 20 pm) (left panels). Furthermore, a shift of the mean position of the laser
(red lines) on a minute timescale is observed resulting in a displacement of 15 um in the
vertical direction after 60 min. We find a striking reduction of the focus deviations due to

the implemented optimization for both the fast and slow motion (see (b) and (d)). The noise
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— measured as the standard deviation calculated from the curves corrected for the long-time
trend (red shaded area in Fig. 5.18) — is reduced by a factor of ~ 3 — 4 to a minimum®
of 1 um. The almost linear trend lines correspond to a shift of ~ 3 pm (horizontal) and

~ 6 um (vertical) after 210 min.
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Fig. 5.18: Time traces of the laser focus position measured with a beam position detector placed in the STM
beam arm at the same focal distance as the STM center (cf. inset in Fig. 5.17). (a,c) Temporal evolution
before the stabilization measures were realized. The beam deviation in the horizontal (a) and vertical
direction (c) is dominated by noise of the order of 20 pm measured peak-to-peak. Additionally, an erratic
trend (red solid lines) on a minute timescale demonstrates the focus displacement reaching 15 pm after one
hour. The standard deviation (corrected for the trend line) is of the order of 3 — 4 um (red shaded area).
(b,d) Temporal evolution after the stabilization measures were realized. In comparison to (a,c), the noise as
well as the long-term shift is strongly reduced by the optimization (same y-scale as in (a,c)) measured for
3.5h. The noise is of the order of ~ 1 um and the almost linear trend (red line) corresponds to a change
rate of 15 — 20 nm per minute. The sampling rate was 0.5 Hz and 1 Hz for (a,c) and (b,d), respectively.

Deviating optical pathways of the feedback and STM laser arm, non-ideal beam align-
ment, different optic elements, and temperature fluctuations are inevitable and might be
responsible for the residual focus shift (right panels Fig. 5.18). Presumably, it may be pre-
vented by implementing a second pair of beam position detector and piezo-actuated mirror,
hence this would adjust not only for one position (the focus) but for the entire beam line.
Moreover, we can only actively compensate for the relative movement of the STM platform
and the outer chamber; there is a not quantifiable motion of the measurement head attached
to the inner tank. As we demonstrated in sec. 5.3, this does not prevent stable and reli-
able measurements. However, during the experiments we noticed a slow shift of the beam
relative to the tunnel junction that might be attributed to the vaporizing of the nitrogen
and the accompanied lifting of the inner tank. Thus, a readjustment of the beam position
was necessary each 20 min to 30 min. This lifting reaches several millimeters over the entire
standing time of the cryo-setup (approximately 72 h) requiring a careful check before start-
ing the measurements. The Appendix 7.5 provides a description of a setup that is designed

to circumvent this problem.

5These values are close to the resolution of the beam position detector specified to be 0.75 um by the
manufacturer (Thorlabs PDP90A).
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CHAPTER 6

Conclusion and outlook

Controlled guiding, concentration, and conversion of electromagnetic energy in nanoscale
metal structures are central objectives in the field of nanoplasmonics. Nanostructures fea-
ture different electromagnetic wave modes linked to the collective oscillation of the electron
gas among which surface plasma oscillations represent an outstanding class. These surface
modes are present, for example, at metal-vacuum interfaces, as the two general types of
localized and propagating surface plasmon polaritons (LSPs and SPPs) (cf. sec. 2.1). A
conical metal tip with a nanometric apex (nanotip) represents an exceptionally multifunc-
tional plasmonic nanostructure, since both wave manifestations — LSP and SPP — can exist
in the apex and in the shaft. Although these tips are used in many scanning probe and
electron-beam instruments as light and electron sources, a complete physical understanding
of the LSP and SPP mode evolution has yet not been developed. In this thesis, we inves-
tigated gold nanotips in three experimental studies (chaps. 3, 4, and 5) in order to achieve
deeper insights into the mechanisms of surface plasmon excitation, propagation, and the

nonlinear conversion to photo-driven currents.

SPP propagation along gold nanotips. SPPs propagating along nanostructure interfaces
represent an important mechanism of electromagnetic waveguiding: the structures can be
used to transfer, distribute, and concentrate the electromagnetic energy associated with the
mode that is bound to the interface [186, 187, 357]. Many applications in nanoplasmonics
rely on the customization of sample designs to manipulate the SPP. Hence, this permits to
control the energy flux and the energy transfer into other forms [22, 37|. A metallic nano-
tip provides SPPs gradually transforming (nanofocusing) into nanoscale confinement at the
apex (cf. sec. 3.1) [35, 36, 190, 191].
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In the first study presented in chap. 3, we investigated the SPP waveguiding properties of
free-standing gold tips with small opening angles (~ 10 — 15°) in a transmission electron mi-
croscope (TEM) by measuring electron energy loss spectra (EELS) of the electrons closely
traversing the nanostructure. The transient electromagnetic field of the tightly focused
electron-beam represents a locale probe at the sample position that induces a polarization
in the material acting back on the electron which results in a loss of kinetic energy (cf.
sec. 2.1.3). Thus, SPP modes can be imaged as a function of space (electron-beam position)
and frequency (energy loss). We observed distinct standing wave patterns with characteris-
tic wavelengths depending on the energy loss.

An analytical model has been developed in Ref. [66], which describes the observed en-
ergy loss profiles along the tip surface by including several SPP azimuthal mode orders m
representing different cross-sectional field distributions (cf. Fig. 3.3). Most importantly, we
found the fundamental wave with m = 0 (field is constant in the azimuthal direction) to
be reflected at the tip truncation leading to the pronounced standing wave pattern. More-
over, the resulting reflection coefficient (i.e., the complex-valued amplitude modifier of the
reflected mode) is close to unity. In other words, the SPP is reflected with a nearly 100%
efficiency implying a low energy dissipation (generation of heat) in the nanometric apex re-
gion. Notably, higher-order modes only contribute with a weakly modulated loss probability
to the measured signal somewhat distant from the tip end (cf. Fig. 3.8 and Fig. 3.13).

The relative contributions to the total energy loss due to the fundamental, reflected and
higher-order modes critically depend on the tip opening angle, as we have pointed out in
sec. 3.4 (cf. also Refs. [66, 219]). Larger opening angles cause radiation to the far-field once
the fundamental SPP mode approaches the apex in a process of a breakdown of the adiabatic
condition (cf. Eq. 3.3). Hence, the mode energy is not transferred to a back-propagating
wave. In contrast, higher-order modes are found to be coupled to the far-field independent
of the tip opening angle [217].

These insights may permit designs of metal tip nanostructures for specialized purposes.
For example, focused ion beam milling can be used to reduce radiation leakage from the
apex by reducing the tip opening angle or to manipulate the SPP dispersion and associated

emission spectra by specialized resonator or coupling designs [232, 358, 359].

SPP-driven electron gun for electron-beam experiments. Ultrafast electron emitters
are used to probe charge and lattice dynamics in time-resolved electron microscopy and
diffraction schemes. Here, electron pulses of fs- to ps-duration are released from the emitter
cathode by ultrashort laser transients |52, 53, 55|. Point-like sources, such as metal tips
with apex radii of the order of a few nanometer, are ideal for this purpose because electron
pulses emitted from the tip end can provide a high degree of transversal and longitudinal

coherence when directly illuminating the tip apex [147, 210].

In the second experiment (chap. 4), we investigated multiphoton photoemission from the

tip apex that is driven via SPP wave packets coupled to the tip surface and we compared
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this with direct apex excitation. In both cases each electron absorbs the energy of four
photons (each ~ 1.5eV) from the plasmon near-field and overcomes the vacuum barrier (cf.
sec. 2.3). The photo-emitted current and its projected emission profile is recorded by a micro
channel plate (MCP) detector. A grating coupler milled into the taper surface at a distance
of a few tens of micrometer away from the apex launches the SPP modes. We inserted the
nanostructure into a modified field emission gun, which allows us to precisely control the
electrostatic environment of the tip and hence to manipulate the trajectories of the emitted
electrons. Most importantly, we can suppress emission from the tip shaft (e.g., the grating
coupler) apart from the apex. As a matter of fact, the efficiency of the SPP-driven operation
mode is distinctly higher compared to the direct apex illumination (x150 electron yield for
grating optimized conditions), as has also been found in the Refs. [50, 51, 180].

Besides the better over-all coupling efficiency, SPP-driven electron guns have the ad-
vantage of a strongly reduced background illumination, since the diffraction limited laser
focus spot is tens of micrometer away from the apex. This is vital in experimental setups
in which the electron emitter needs to be placed in close proximity to a sample, such as
point-projection microscopy (PPM). In PPM, a point-like source is placed in a micrometer
distance to the sample. Emitted charges project an image of the sample with a magnification
depending on the emitter-sample-distance onto a two-dimensional detector (analogue to the
MCP in our experiment) [360]. Recently, PPM was combined with ultrafast electron emis-
sion from tips providing a spatiotemporal resolution on the 10 nm and 100 fs scales [247, 249,
361]. The time resolution is limited because of dispersive pulse broadening suffered over the
comparatively large tip-sample distances of 2 10 um required to avoid sample illumination
by the diffraction limited focus spot placed on the tip apex [51]. The implementation of
SPP-based apex near-fields circumvents this requirement by a remote release of charges via
grating couplers [50-52, 210]. This allows significantly smaller tip-sample distances: Using a
distance of ~ 3 wm measurements with doped InP nanowires and Au nano-resonators have
demonstrated a time resolution of ~ 10 fs (with a magnification of x3-10%) [51, 52].

SPP-driven electron sources potentially improve the spatiotemporal properties of experi-
mental schemes based on low-energy electron transmission [210], such as ultrafast PPM and
low-energy electron diffraction probing the electron and lattice dynamics of two-dimensional
materials [55, 249|. In addition, electron microscopy and diffraction may benefit from the
better coupling efficiency. For a given electron yield, less laser intensity is required and
higher laser pulse repetition rates are possible; reducing the measurement acquisition time
[210]. An SPP-based electron gun may also be used to customize the SPP wave packets in
order to tailor the electron wavefront [12, 129, 146, 266, 362].

Photocurrents in a tunnel junction. As a very important aspect, nanotips provide a local
hotspot of a high field enhancement and electromagnetic energy concentration in tip-gap-
substrate systems (cf. sec. 5.1). These hotspots have been implemented very successfully

in tip-enhanced Raman spectroscopy (TERS) leading to a strong increase of the signal-to-
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background ratio [47, 48, 321, 363, in apertureless near-field scanning optical microscopy
(A-NSOM) in which the field localization results in an in-plane resolution of < 10 nm [43—
46], and in scanning tunneling microscopy (STM) [327-331]. In STM, the LSP decay is
accompanied by an increased local emission of luminescence from the tip-sample contact.
Recent STM studies based on the laser excitation of the contact region also demonstrated

a strong increase in photochemical reaction rates due to the near-fields [304, 306, 307].

In chap. 5, we explored the prototypical model system of a metal tip in close proximity to
a flat metal sample, as it is present in many of the mentioned applications. The illumina-
tion of the tip-sample junction with a fs-laser leads to a near-field-driven photocurrent Ip,..
We are able to distinguish I, from the regular tunnel current by its distinctly longer decay
length (x4 —8) in current-distance measurements (I(z) curves) covering absolute gap widths
(2gap ~ 2) from ~ 0.7nm to ~ 5nm. By adjusting the tip-sample distance, bias voltage
and laser power the control of the relative contribution of the photo-driven compared to the
regular tunnel current is possible. We analyzed the current decay by means of a coupled
dipole model in order to approximate the apex LSP coupling with the sample (cf. sec. 5.1).
The resulting near-field (gap mode) exhibits a monotonic reduction with increasing gap
width. However, the calculated decay fits neither qualitatively to the exponential curve nor
quantitatively to the reduction values found in the measurements. Instead, we can explain
the photocurrent decay by the gradual change of the potential barrier between the tip and
the sample upon increasing the gap width from ~ 0.7 nm to a few nanometers: A transport
model basing on electron transfer through the barrier including the image potentials of the
system provides the transfer probability T'(E, zgap) (cf. sec. 5.2). Applied to the experi-
mental data, it allows to extract an effective, time averaged electron distribution feg(E).
On this basis, we find electron states around the potential barrier maximum as the most
contributing channels to the observed photocurrent.

As we have outlined by Fig. 5.15, the photocurrent decay is dominated by the plasmonic
near-field reduction when retracting the tip to distances of the order of 10 nm. Very re-
cently, this has been shown and systematically investigated in Ref. [364] by studying the
electron transfer between two opposing tips under fs-laser illumination. In this experi-
ment (8 nm < zgap < 20 nm), electron emission is given by photoemission over the barrier.
Whereas in our experiment (2ga, < 5nm) the current is dominated by regular tunneling
from the Fermi edge and by transfer of electrons that are optically excited to the vicinity
of the barrier mazimum (including also a transfer over the barrier). Hence, for nano-gap
systems, the current composition and its decay with increasing gap width shows a trans-
formation from being governed by the reduction of the transfer probability towards being
governed by the reduction of the plasmonic near-field.

As we demonstrated in Figs. 5.6(c) and (e), nonlinear photocurrents are able to resolve
topographic features with nanometer resolution. The lateral (in-plane) extension of the near-

field has recently been investigated by plasmon-driven photochemical reactions in Refs. [304,
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306, 307, 365]. The number of molecular interactions was found to drop to zero for lateral
distances 2 5 nm from the apex, hence confirming the strong field localization. Furthermore,
the process depends linearly on the laser intensity [306]. In contrast, nonlinear processes
such as the transfer of electrons which absorbed two photons [314] may significantly increase
the locality of surface photochemistry in STM. Different experimental approaches, for exam-
ple, tip-enhanced Raman spectroscopy [47, 48, 309, 321, 366, 367] and scanning tunneling
luminescence [310, 311, 332, 333, 368, 369] have already demonstrated single molecule sen-
sitivity on diverse molecule-substrate systems exposed to apex LSPs provided either by

junction illumination (TERS) or by inelastic electron tunneling (luminescence).

The effective population distribution feg(FE) extracted in our analysis gives valuable in-
sights into the electron excitation mechanism and indicates that multiphoton absorption
from the plasmonic near-field followed by electronic relaxation processes (cf. sec. 2.2) are
responsible for the photocurrent. Experimental strategies relying on temporal and spec-
troscopic schemes potentially give further information of the dynamical interactions of the
electrons, on the one hand, and the electromagnetic near-field, on the other hand.

Electron population dynamics can be investigated by double-pulse experiments [150, 173,
370, 371]. Our setup can be extended in such a way that it provides I(z,t4) data sets for
different pulse delays t4 (cf. Fig. 5.10). In combination with the presented transport model
this might be used to extract electron distributions f(FE,t;) as a function of time.

In scanning tunneling spectroscopy (STS) the local density of states of the sample is
probed in the form of differential conductance (dI/dUp(Ug)) spectra as a function of the
bias voltage Up [296]. By exploiting STS in a comparative way (fs-illumination vs. unillu-
minated reference measurements), we may address the question of which electronic states
are populated in the sample once the optically excited electrons have transferred.

Additionally, the implementation of an optical spectrometer analyzing the light emitted
from the tunnel junction could be used to measure electroluminescence (electron in-photon
out processes) [372] and photoluminescence spectra Siym(w) (photon in-photon out pro-
cesses) |281]. These are related to the localized surface plasmon resonance in the gap and
may be used to compare photon emission induced by inelastic electron tunneling and plas-
mon radiation processes [373, 374|. Ultimately, from Sjym(w,tq) measurements it is possible

to retrieve the near-field time structure Ey¢(t) including its plasmonic lifetime [140].

STS and time-resolved STM mapping require a spatial overlap of the laser focus and the
STM junction that is temporally stable for at least several hours. This might be provided by
a sophisticated focus stabilization approach in which a beam position detector is attached
to the inner tank of the STM. Thus, the residual motion of the measurement head with
respect to the laser focus could be compensated (cf. sec. 5.4). Moreover, the application of
a two-laser configuration — consisting of a measurement and position tracking beam line —
may give additional flexibility to the setup. The Appendix 7.5 presents some details and a

schematically illustration of this proposal.
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Perspective of a local excitation microscope

The physical and chemical processes involved in the excitation of an atomistic species ad-
sorbed on a surface (e.g., atom or molecule) exhibit a strong dependency on its atom-scale
environment (e.g., step edges, vacancies, or neighboring atoms) [57, 58, 375]. This site-
specificity demands imaging and spectroscopy approaches that can investigate and manip-
ulate surface mechanisms (and their dynamics) on a single-atom or single-molecule level
[58, 59]. A local excitation microscopy scheme involving complementary electron, field, and
photon interactions may contribute to a profound picture of chemical reactions evolving on

substrate surfaces.

In the field of scanning tunneling and atomic force microscopy, striking developments
enabled researcher to explore different aspects of site-specificity such as imaging of in-
tramolecular bonds [376-381] and electroluminescence [309-311, 332, 333, 368, 369, 382] on
a sub-molecular level, interactions between spins and single atom magnets [383-392], and
controlled manipulation of molecules including surface chemical reactions [57, 58, 393-396].
Prevalently, these experiments rely on electrons (tunnel current) and electrostatic fields (bias
voltage) to drive the mechanisms under investigation. However, photons (electromagnetic
fields) have also been added to the toolbox of scanning probe microscopy and spectroscopy.
Specifically, Raman scattering [47, 48, 320, 321, 366|, photochemistry (isomerization, tau-
tomerization, dissociation, and desorption) [304-307, 365, 366, 397] and fs-dynamics [269,
303| of single molecules have been investigated by illuminating the tip-sample contact with
(pulsed) laser light. These inspiring studies demonstrate the exploration of local surface
phenomena on an atomic (and partially on a femtosecond) scale. The realization of a fs-
laser-STM combination (fs-STM), as we have demonstrated in chap. 5, is yet not routinely
operated due to experimental challenges involving thermal instabilities and parasitic effects

(e.g., substrate excitation or background signals) [61, 62].

Nanofocusing (cf. chaps. 3 and 4) might render a significant step towards a versatile
fs-STM setup. Here, the electromagnetic energy of grating coupled SPPs is highly concen-
trated at the apex without directly illuminating the tip-sample contact, as schematically
illustrated in Fig. 6.1. Near-fields driven by a pulsed laser could allow to study reversible,
optically driven mechanisms in a double-pulse approach (cf. Refs. [269, 303|) and to nonlin-
early excite molecules (e.g., by frequency mixing or hot electrons [133, 398, 399]). Similar
approaches have already been implemented in TERS [36, 41, 208, 209], A-NSOM [45, 46,
203-207], and time-resolved A-NSOM |[39, 40].

This nanofocusing setup provides several advantageous features: (1) Grating coupled-
SPPs exhibit a broadband coupling efficiency reaching from the visible to the near-infrared
energy scale [35, 45, 128|. This facilitates SPP pulses of a few femtoseconds arriving at the
apex [45, 50-52, 129, stronger enhanced fields compared to direct illumination [41, 50, 51,
67], and spatiotemporal tailoring of the SPP wave package [129, 266, 362|. Consequently,
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this may allow for ultrafast time-resolved measurements and lowers the necessary incident
laser power required to drive (reversible and nonlinear) processes like, for example, charging
[270, 314], molecular vibrations [303] or photodissociation [365, 375]. (2) An SPP propaga-
tion length of several tens of micrometers is possible with quasi-single crystalline gold tapers
(cf. sec. 4.2) [45]. Hence, background signals because of far-field scattering are strongly re-
duced by the spatial separation of the SPP excitation from the gap region [204]. (3) The
tip acts as an effective SPP mode filter: Only the fundamental (azimuthally constant) mode
with a well-defined polarization reaches the apex (cf. sec. 3.3) [203, 400]. (4) For sufficiently
small opening angles, the SPP mode reflection at the apex dominates other processes such
as local absorption or far-field radiation (cf. sec. 3.4) [65, 217, 219]. This might reduce

thermal instabilities due to energy dissipation in the nanometric apex region.

Lg
\Wer ,OU/ses -
Grating
coupler

\
=
——

Nanofocusing
surface
plasmons

Fig. 6.1: A local excitation microscope for the investigation of individual molecules. Surface plasmons are
launched via far-field illumination of a grating coupler several tens of micrometer away from the excitation
region at the apex-sample contact. The propagating surface plasmons are nanofocused to a localized near-
field (inset). This may allow to excite single molecules.

In addition, the experimental scope might be extended by modifying the nanotip to spe-
cific functionalities. The gold nanotips used in our studies have the advantage to be inert
under atmosphere and sustain their clean surface. However, other materials can provide
surface plasmons with ultraviolet energies, whereas plasmonic mode propagation in gold
is suppressed by d-band transitions for energies 2 2.2 eV [134|. Aluminum and silver tips
with grating couplers [205, 209] exhibit a spectrum extending the excitation energies to
~ 3 — 4 eV which is an important range in surface photochemistry [399, 401]. Tungsten tips
(providing a high mechanical durability) have also be equipped with a grating for surface
plasmons in the mid-infrared region [210] that might be used to excite vibrational modes in
molecules [57]. Furthermore, the functionalization of the tip (i.e., the adsorption of a foreign
atom or molecule at the apex) can give sensitivity to physical or chemical processes which

are not addressable in conventional STM and AFM. Specifically, magnetic spin-interactions
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with atoms and chemical bonds of molecules can be studied by functionalized tips in scan-
ning probe experiments [376, 377, 383, 385].

In this context, the present thesis represents a crucial step forward by establishing the
combination of a fs-STM with plasmonic gold tips and by providing key insights into rele-
vant physical processes evolving in tip nanostructures. The fs-laser excitation of the STM
tunnel contact and the accomplishment of challenges regarding thermal and pointing in-
stabilities have been achieved. Control mechanisms governing surface plasmon waveguiding
and nanoscale concentration have been investigated in the light of linear and nonlinear in-
teractions in the tip apexes.

We expect that the localized excitation with nanofocused SPPs in a scanning tunneling
microscope can feature a significant contribution to surface photochemistry by connecting
linear and nonlinear excitation pathways involving electrons, photons, electrostatic and elec-
tromagnetic fields. This may give a comprehensive set of complementary information on the

site-specific nature of adsorbed molecules.
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CHAPTER 7

Appendix

7.1 Generalized Fowler-DuBridge theory

Light with a photon energy of Aw incident on a solid object excites the electrons in the sur-
face. Energetically elevated electrons can be emitted from a solid state surface resulting in
an electron flux Iiota. Depending on the excitation process thermionic emission (transient
or static heating of the electron gas) and photoemission (absorption of photon quanta) can
be distinguished. The first theory that included both phenomena was developed by Fowler
and DuBridge in the 1930s [157, 158]. Their theory bases on the following assumptions:
1) The electron occupation is determined by the Fermi-Dirac distribution and the electron
momentum is uniformly distributed. 2) The likelihood of an electron to absorb the energy
of a photon is independent on the initial electronic state. 3) Emission occurs if the kinetic
energy F| linked to the momentum component normal to the surface exceeds the work
function ® of the solid. 4) The absorbed energy only increases E|. 5) The number of
electrons emitted per absorbed photon quanta is proportional to the number of electrons
per unit volume whose energy F| + hw exceeds ® [162].

Originally described for linear photon absorption, the Fowler-DuBridge theory was gener-
alized to include also nonlinear absorption processes [159, 161]. In this case, the total current
Tiotal is decomposed in a sum over different components I,, each of which is associated with

a particular absorption order n:

Ly =ay [7(1- Rw)Iw]nT2ACA <

nhw — ®
m‘) )

kT
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with the material parameter a,, determining the electron emission probability, the Richard-
son constant A, the light intensity I, the surface reflectivity R,,, and the electron tempera-
ture T,. For n = 0 the equation renders the Richardson description for thermionic emission.
The term T2AcA (%) governs the number of available electrons that absorbed the

energy nhw (according to no. 5 of the assumptions stated above) with the function [162]
nhw — ¢ oo nhw — ¢
AR (1 Ly (M2 ).
() = [ o (e o= (577 ])
7.2 SPP dispersion relation for cylindrical structures

The electromagnetic eigenmodes of a cylinder of radius R are derived by solving the Maxwell
equations in cylindrical coordinates for the inside (described by the permittivity &;(w), non-
magnetic material) and outside (¢4 = 1 for vacuum) of the structure. In general, the electric
and magnetic field components, (E,, E,, E;) and (H,, H,, H;), are determined by a set of
Bessel J,,, and Henkel H,, functions via the scalar function in Eq. 3.1, the mode order m
and the wave vector component ¢ in the z-direction. The tangential components of the
electric and magnetic field must be continuous in the cylinder surface (r = R) providing a

transcendental equation [212, 213],

w? (%Jm(ast) - 5deé%><xd>) ( 8, I () 5de$><$¢>>

Et —&d
c2 -TtJm(mt) «TdHr(rp (fEd) xtJm(xt) deé%) (LUd)
1 1)\?
2 2
d t

with z; = ¢; R and d,; = 9/ox; denoting to the partial derivative with respect to z; for the

(7.1)

inside (j = t) and outside of the structure (j = d). The radial wave vector components g;
are given by Eq. 3.2. We applied a numerical root-finding algorithm to solve Eq. 7.1 for a
given mode order m, cylinder radius R and energy Aw in the complex plane. This yields the
complex dispersion relation g,,r(w) for the surface bound eigenmodes of the cylinder. The

permittivity data for gold from Ref. [82] is used for this calculation.

7.3 Transition matrix elements 1/;; for elastic tunneling

Bardeen used the time-dependent Schrédinger equation to derive a integral calculation
for the transition matrix elements that determine the electron transfer rate from the ini-
tial state in the tip to the final state in the sample (cf. Eq. 5.3) [295]. Therefore, he
applied the wave functions of the tip W!(z/,t) = +!(2’)exp (—iFE;t/h) and the sample
Uo(2',t) = ¢5(2") exp (—iLyt/h) in a perturbation approach. In particular, he found that

only the values of 9! and ¥} in the separation plane S = (@',y, 2" = zeep) (indicated as the
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dashed line in Fig. 5.3(b)) govern the matrix elements,

R? 0 - — 0
My = Aty ()50 — ) 5

 2me. 0z

Zsep

Here, 1! and 1/;; are the complex conjugations of ¢! and ¥}, respectively [267].

7.4 Numerov method and transmission probability

We apply a one-dimensional elastic scattering approach to the problem presented in Fig. 5.16
(for the sake of readability some of the following information overlaps with sec. 5.3.9 "Trans-
port model’). The potential is composed of three regions. The tip and sample are assumed
to be field-free (the materials used in our investigation are metals) corresponding to constant
potentials V¢ and V#, while the gap is characterized by a complex potential shape V9(z')
(see below).

The electronic wave function is represented by monochromatic components
V(2 t) = (2 exp(—iwt) oscillating at a frequency of w = E/h. These must solve the

stationary Schrodinger equation,

2 92
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V(&) | (=) = Ev (), (7.2)

for each component. We assume 9(z') to be composed of a superposition of an incoming
Y = Arexp(ik'z’) and a partially reflected plane wave g = Agexp(—ik'z’) on the tip
side, and a partially transmitted plane wave on the sample side ¥y = Apexp(ik®z’) (cf.
black arrows Fig. 5.16). By inserting the plane wave functions into Eq. 7.2, we find the
wave vectors k! = \/2m./h2(E — V1) and k® = \/2m./h2(E — V5), which depend on the
electron energy E and the (constant) potentials V! and V* on the tip and on the sample side.

Most importantly, the solution 14 for the gap region has to be calculated by determining
the three complex-valued scattering amplitudes Ay, Ar and A with appropriate boundary
conditions [294].

Due to the infinitely delocalized plane waves, normalization is not applicable to the wave
function and it does not contribute to the solubility of the problem. Instead, we manually set
A7 to unity and determine the values of A; and Ap relative to Ay without loss of generality.
This approach reduces the core problem to the determination of v,. Its computation is
performed with the Numerov method, which is applicable to the Schrodinger equation if at
least two initial values are known [297, 298]. This condition is satisfied by the knowledge
of the partial solution in the sample region ¥p. The coordinate axis is discretized into

= 2 + jAZ' equidistant sampling points (start point z(, step width Az’ and integer j).
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Therewith, the Numerov method gives wave function values v; at the jth sampling point,

A2 5A 22 Az
<1 + 12@-) ;=2 <1 - 12@1) i1 — (1 + 12’%2) Y-z, (7.3)

with the wave vector k; at the position 27. The full solution of the wave function ¥(z’) is
found for a given electron energy E by the iterative calculation of Eq. 7.3 in the gap region

with continuously differentiable boundary conditions at 2’ = 0 and 2’ = zgap, [350].

The quantum mechanical electron transport is expressed by the (probability) current

density [294],
hoo|- 0
J = ¥() ]

2ime

V() — 9| (.4

By inserting the calculated wave function ¥(2’) in Eq. 7.4, we find J to be composed of
an incoming J; = hk'/m.|A7|?, a reflected Jg = hk'/m¢|Ag|? and a transmitted flux
Jr = hk®/me|Ar|?. The ratios Jr/Jr and Jg/.J; provide the transmission 7" and reflection
Rp, probabilities [294, 402],

_E|AT|Q k1
- kt |AI|2 - kt |AI‘2

_ |AgP?

T = )
|Az|?

and RR (75)
respectively. We implemented this calculation in a Matlab routine that loops over a set of
electron energy, gap width and bias voltage. This results in transmission probability data
cube T'(E, Zgap, UR).

The total potential V(2') inserted into Eq. 7.2 is composed as follows. We set V! and
V# to the inner potential values Uy and Uy g, i.e., the minimum energy a charge carrier
from the electron gas can have in the respective material (cf. Tab. 5.1) [403]. The inner
potentials determine the possible energy range of which the current can be composed. Thus,
Uo,r and Up,s must attain appropriate high absolute values. However, we found that the
specific value has no significant impact on the results, as was also stated in Ref. [298]. The
energy scale is given relative to the Fermi energy of the sample set to EFr g = 0 resulting in
Err = eUp for the Fermi energy of the tip (cf. Fig. 5.16).

For the gap potential V9(z'), we assume a homogenous field distribution due to the bias
voltage and work function difference between the tip and the sample. This leads to a poten-
tial Viias(2') = eUp(1 — 2/ /zgap) and Vig(2') = @7 — (P — @g)z'/zgap of triangular shape
(cf. dashed line in Fig. 5.16). An additional contribution is given by the image potential
Viing and Vij .0 An electron inside the gap polarizes the material and self-interacts with
this induced polarization. Physically, the electric field of the electron induces a screening
surface charge distribution in the electrodes that can be regarded as attractive Coulomb

forces (oc €2/2"?) between the electron and its positive image charge in the bulk (Fig. 7.1)
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[84]. In summary, we apply the total potential [404],

Vt=Uyr 2 <0

V() = QVI(Z') = Viias + Viur + Vil + Visg 0 < 2’ < 2gap

img

Ve = UO,S 2 > Zgap

with

' Oy — O 2 1 1
Vg(z/):eUB (1— z ) —+ (q)T_TSZ/> — © < 7 t+ />
Zgap Zgap 16meg \ 2/ — 2" zgap +2° — 2

to calculate the transmission probability (Eq. 7.5). 2! and 2% are introduced as numerically

determined effective surface positions in order to prevent singularities owing to the image
) VI(Z') = Epg [298,

355]. Typical values of 2! and z* are between 0.01 nm and 0.02 nm. The work functions of

potentials with the condition lim,, o+ V9(2') = Ep7 and lim, , —
ga

the tip ®7 and the sample ®g are given in Tab. 5.1.

Fig. 7.1: Image potentials of an electron present in
the STM junction. The electron polarizes both the
tip and the sample material (solid field lines). The
resulting surface charge distribution can be regarded
as image potentials Vil (2') ox €°/2" and Vif(2) o
e?/(2gap — #') due to Coulomb interaction.

7.5 Novel beam stabilization scheme

In chap. 5 we described the successful combination of a home-built STM with a fs-laser
illuminating of the tip-sample contact. We learned about the critical role of the motion of
the focus relative to the tunnel junction; a particular challenge consisted in the minimization
of this displacement and we are able to stabilize the focus-junction overlap on a 30 min basis
(cf. sec. 5.4). After this time period a slight rearrangement of the focus position relative to
the tunnel junction is necessary.

Ideally, beam pointing stability is given for several hours, thus facilitating comprehensive
spectroscopy mapping experiments under consistent illumination conditions. We identified
the residual movement of the inner tank as a severe limiting factor. The presently applied
active beam stabilization is not able to monitor and compensate this shifting.

Here, we propose a modified setup in which the beam position detector (BPD) is attached
to the bottom part of the measurement head. In this case, the BPD monitors the motion
of the inner tank including the tip and sample, as it is illustrated in Fig. 7.2. The piezo-
actuated mirror outside the STM compensates for the shift that is measured very close to
the tunnel junction.

Furthermore, a two-laser setup consisting of a pulsed measurement beam (red in Fig. 7.2)
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and a continuous-wave tracking beam (green in Fig. 7.2) might improve the flexibility and
the handling of the setup. Specifically, the tracking laser light is not affected by intentional
changes performed on the measurement laser (e.g., polarization, power, or repetition rate
modifications). Both lines collinearly propagating through the setup are decoupled in front
of the STM viewport, e.g., by means of different polarizations and a polarizing beam splitter,

and guided to the tip and BPD, respectively.

Optical table

(top view)

Optical(platfc_)rm (STM) ST™M

side view)

Fs-laser (red)

Motorized
CW-laser (green) lens

—>

Polarizing

beam splitter
Piezo
actuated
mirror

Feedback
electronic

Fig. 7.2: Proposal for a beam stabilization that compensates for the motion of the tip and sample relative
to the laser focus. A beam position detector (BPD) is directly attached to the measurement head which
is mechanically decoupled from the STM platform. Hence, the focus-junction overlap can be sustained by
a piezo actuated mirror controlled by the BPD output. The utilization of a measurement laser (red) and
beam tracking laser (green) may give additional flexibility to the system. They are collinearly aligned and
decoupled directly in front of the STM viewport.
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