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Preface

A general rule of thumb in imaging is that the resolution of a light microscope depends
linearly on the full width at half maximum (FWHM) of its point spread function (psf).
In the present work we carefully define a statistical model of resolution by introducing a
notion of discernability based on statistical testing whether one or two objects with the
same total intensity are present. We consider four common ways of modeling photons
detected in a microscopy experiment: as binomial, Poisson, variance stabilized Gaussian
(VSG) or homogeneous Gaussian (HG) independent random variables. We show that
under the binomial, Poisson and VSG photon models the resolution indeed depends
linearly on the FWHM. However, under the HG model, the resolution depends on the
FWHM to the power of 5/4. Thus, at least for microscopy the HG model is too simple
and in most experiments the Poisson or the VSG model is preferred, since they are
easier to tackle than the binomial model, yet still capture the dependence on the FWHM
correctly.

The rest of this work is arranged as follows:

• In Chapter 1 we provide a short introduction to modern microscopy (so-called
nanoscopy or super-resolution) together with a concise history of resolution
criteria that are still in use.

• In Chapter 2 we specify our modeling and give a statistical definition of resolution.
We also state our main theorem on asymptotic statistical resolution and present its
experimental implications.

• In Chapter 3 we compare our results to others’, most notably, to Helstrom’s more
general quantum optical approach (Helstrom, 1973) that shows the limitations
of our modeling, and to Acuña and Horowitz’s (Acuña and Horowitz, 1997)
demonstrating the applicability of our modeling to telescopes.

• Chapter 4 is devoted to assess the finite sample validity of the asymptotic theory.
Reassuringly, even with low number of photons and coarse detector discretization,
the slopes of the simulation fits can be approximated well by the theoretical ones.
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For larger number of photons and finer discretization, the asymptotic formulas
become good approximations to simulations.

• We split the proofs into two chapters: proofs that we think are necessary in the
first reading are presented in Chapter 5 and the rest of the proofs in Appendix A.

• Finally, in Chapter 6 we discuss our results in a broader context and indicate
possible future research directions.

With the exception of multiple dimensions, the vast majority of this thesis results
out of a collaborative research effort among Prof. Axel Munk, Dr. Frank Werner and I
(Kulaitis et al., 2020).
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CHAPTER 1

Introduction

1.1 Lens optics and diffraction

According to geometrical optics, an ideal light microscope would be able to distinguish
two points in space being arbitrarily close. However, in 1873 Abbe formulated (Abbe,
1873) what later became known as the Abbe diffraction limit (Figure 1.1C), namely, that
two points can be resolved only if their distance d in space is at least

d =
λ

2 NA
, (1.1)

where λ is the wavelength of incoming light and NA is the numerical aperture of the
microscope. The numerical aperture is equal to the product of the refractive index of
the medium (1 for vacuum, ≈ 1 for air) and the sine of one-half of the angle of the cone
of light that can enter the microscope. Abbe argued in (Abbe, 1873) that diffraction and
interference of light have to be taken into account when distances in the order of the
wavelength of the illumination light are considered. See (Cremer and Masters, 2013) and
references therein for a modern summary of Abbe’s work. This paradigm has limited
light microscopy for more than a century until the advent of super-resolution microscopy
(Hell and Wichmann, 1994), see Section 1.2. For the following, it is beneficial to recall
the basic physics tailored to our needs.

Given a specimen under the microscope f , due to diffraction (and the resulting
interference) the imaging system causes a blur so that we do not simply observe an
M times magnified image of f . This blur is usually modeled by first calculating or
estimating the blur pattern of a single point – the point spread function (psf) h. For an
incoherent imaging system, e.g. a fluorescence microscope, using Huygens’s principle,
the image of the specimen then can be obtained by summing up the blurred images of
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the points constituting the sample. In other words we get a convolution

g (x) =

∫
O

h (x−Mx′) f(x′) dx′, (1.2)

where O is the space containing the specimen – the object space – and f : O → R. The
space consisting of magnified pointsMx′ is called the image space I and g : I → R is
the image of the specimen.

If the microscope was perfect and there was no blur, then the psf h would simply
correspond to a delta function δx−Mx′ , so that g(x) = f(x/M). In general, the psf h can
be computed explicitly by scalar diffraction theory. Under the assumption of circular
aperture and using the paraxial approximation (Born and Wolf, 1999; Orfanidis, 2016),
h becomes proportional to the Airy pattern (Airy, 1835) (Figure 1.1A)

h (x) ∝
∣∣∣∣2A(2π

λ

NA

M
‖x‖2

)∣∣∣∣2 , (1.3)

where λ is the illumination wavelength and || · ||2 is the Euclidean norm. The function
A in (1.3) is given by A(u) = J1(u)/u, where J1 is the Bessel function of the first kind.

Independently of Abbe, Lord Rayleigh formulated in 1879 a resolution criterion for
spectroscopes (Strutt, 1879). Applied to microscopes Rayleigh’s criterion reads that
two point sources at x1 and x2 having equal intensity can just be resolved if the central
maximum of the first psf centered at x1 coincides with the first minimum of the second
psf. The first zero of the Bessel function J1 is at x ≈ 3.8317 and hence x/2π ≈ 0.6098.
Thus, in the case of circular aperture the Rayleigh criterion reads

d = 0.61
λ

NA
. (1.4)

Note that this is slightly more conservative than Abbe’s result. See Figure 1.1C and D
for a comparison.

The resolution criteria (1.1) and (1.4) can be understood in terms of the full
width at half maximum (FWHM) of the (effective) psf, see Figure 1.1B, where
FWHM = |x2 − x1|. More precisely, the FWHM is defined as the width of the psf
when its intensity is half of its maximal intensity. The ability to state both Abbe and
Rayleigh criteria in terms of the FWHM has lead to the common understanding that two
point sources in space can be resolved by a light microscope as soon as their distance
is larger than roughly the FWHM of the psf h. Usage of the FWHM as a resolution
criterion dates back to at least the 1927 paper by Houston (Houston, 1927) and is still
popular today (Egner et al., 2020). The FWHM criterion is particularly well-suited if the
psf is approximated by a Gaussian kernel as shown in Figure 1.1B, since this function
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does not have any local minima. Note that the approximation of the psf by a Gaussian
is very common, see e.g. (von Diezmann et al., 2017). For an Airy pattern (1.3), the
FWHM can be computed by first calculating the FWHM of A(u)2 = (J1(u)/u)2. Due
to maxu

(
A (u)2 ) = A(0)2 = 1, this is equivalent to solving J1(u) = ±u/

√
2 resulting

in the FWHM of 3.232 for A2. Hence, taking the additional scaling factors in (1.3)
into account together withMx′ = x, we get the FWHM resolution criterion in its most
common form

d = FWHM = 0.51
λ

NA
. (1.5)

Thus, the FWHM limit is almost equal to the Abbe resolution limit (1.1) and somewhat
below the Rayleigh resolution limit (1.4).

Due to their generality, the above resolution criteria are not confined to microscopes
and can also be applied to telescopes, see Section 3.4, or imaging in general. We stress
that there are many other resolution criteria, such as the recently repurposed Fourier ring
correlation criterion (Banterle et al., 2013), which will not be discussed in this thesis.

From Equations (1.1), (1.4) and (1.5) it seems that there are only two possible
ways to improve the resolution: either the wavelength has to be decreased, or the
numerical aperture increased. Since the wavelength λ is inversely proportional to the
energy, decreasing the wavelength might damage the sample, a major issue in living
cell microscopy, and hence visible light (380 nm − 760 nm) is preferred for most
applications. Concerning the second option, the numerical aperture of a modern lens
is around 1.3 − 1.5 (von Diezmann et al., 2017), and this value has not improved
substantially during the last decades. In fact, Abbe’s resolution limit has been standing
as a paradigm for more than a hundred years, limiting conventional light microscopes
to about 250 nm lateral and 500 nm axial resolution (Hell, 2007; Cremer and Masters,
2013; Heintzmann and Ficz, 2013).

1.2 From microscopy to nanoscopy

One important idea to improve on Abbe’s resolution limit is confocal microscopy
suggested by Minsky (Minsky, 1961; Pawley, 2006) in 1961. Here only a small spot of
the object is illuminated at any given time, and non-focused light is blocked by a pinhole.
Moving the pinhole over the sample (scanning) creates multiple images which are then
combined to produce the full image. Clearly, the smaller the pinhole, the more the
resolution is increased. On the other hand, a smaller pinhole decreases the overall image
intensity. Theoretically confocal microscopy increases the resolution by

√
2, see e.g.

(Egner et al., 2020) or (Hell, 2007), but due to these competing effects practical increase
is lower. Consequently, although providing some improvement, confocal microscopy on
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1

2

1 2

Figure 1.1: (A) 1D view of a 2D wave traveling through a circular aperture of width on
the same order as the wavelength. By Huygen’s principle each point on a wavefront
acts as a point source (5 points shown). Due to diffraction and interference an Airy
pattern is formed—where the light interferes constructively/destructively we get (local)
maxima/minima in the intensity pattern. If the distance between the aperture and the
screen is much larger than the wavelength, the slit acts as a point light source. (B)
Approximation of an Airy pattern centered at 1

2
(x1 +x2) by a Gaussian profile matching

the maxima with the FWHM indicated. (C)/(D) Two Airy patterns centered at x1 and
x2, distance (1.1)/(1.4) apart, and their superposition (solid red).
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its own cannot break the resolution barrier (Aspelmeier et al., 2015).
An early approach to overcome Abbe’s resolution limit relies on the fact that both

limits in Equations (1.1) and (1.4) are only valid in the far-field, i.e. when sample and
microscope are sufficiently far apart. Similarly, the regime when the sample and the
microscope are less than a wavelength apart is called near-field. In this case, the size
of the aperture and not the wavelength determines the resolution (Courjon, 2003). In
1972 Ash and Nicholls (Ash and Nicholls, 1972) went below Abbe’s diffraction limit
in the near-field. Using 3 cm wavelength they achieved a resolution of λ/60. Current
experiments are able to achieve a lateral resolution of 20 nm and a vertical resolution
of 2–5 nm (Dürig et al., 1986; Oshikane et al., 2007). Although impressive, near-field
microscopes have certain disadvantages, the most obvious being that the specimen must
be very near the microscope and hence are mostly limited to surface measurements.
Moreover, they are unsuitable for transparent objects which excludes many biological
samples.

Breaking Abbe’s diffraction limit using far-field microscopy is intimately related to
the development of photoswitchable fluorophores (Aspelmeier et al., 2015; Huang et al.,
2009) which can be switched on and off in a statistically controlled manner. After a
laser excitation they emit light of higher wavelength (less energy) than absorbed due to
rotational and vibrational losses. Exploiting this, the sample is scanned along a grid by
illuminating it with a (pulsed) excitation beam focused at the current grid point and only
the resulting fluorescence is measured. Using a dichroic beamsplitter, it is ensured that
only the fluoresced light is detected at the detector. On each grid point this procedure is
repeated for a fixed time (the pixel dwell time) t or equivalently for a fixed number of
pulses (also denoted by t). Therefore, one is able to image specific predefined structures,
instead of observing a superposition of the whole sample. This methodology lead to
the 2014 Nobel prize in Chemistry being awarded to Eric Betzig, Stefan W. Hell and
William E. Moerner “for the development of super-resolved fluorescence microscopy”
(Ehrenberg, 2014), where the term super-resolution refers to any technique, which is
able to break Abbe’s diffraction limit in the far field.

Nowadays there exist two main approaches to photoswitching:

Scanning mode Exploiting non-linearity of the response to excitation, dyes in a pre-
defined region are shut off to enhance resolution.

Stochastic mode Exploiting chemical complexity of dyes, they can be forced to emit
light at separate times making them resolvable in time.

In our mathematical treatment we will focus exclusively on the scanning mode,
which makes our modeling more transparent by forgoing time dependency. However,
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1

Imax

Imax

2

1

Imax

Imax

2

1

Imax

Imax

2

Figure 1.2: STED microscopy. Column I: Original psf (blue), Column II: Depletion psf
(red), Column III: effective psf (solid beige). The top row shows psfs in 1D, the bottom
row in 2D.

0 x1 x2 1

Imax

Imax

2

0 x1 x2 1

Imax

Imax

2

Figure 1.3: Two point sources at x1 and x2 that are difficult to distinguish with the
orginal Airy psf (left), but are easily distinguishable with narrower Airy psf after STED
(right).
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if a summation over time is applied (possibly causing a loss of information), then the
subsequent analysis could also be applied to the stochastic mode. To get the gist of these
two types of approaches to photoswitching, we now briefly describe one scanning and
one stochastic mode technique.

Arguably the state-of-the-art scanning mode super-resolution technique is Stimulated
Emission Depletion (STED) (Hell and Wichmann, 1994; Klar et al., 2000), where
the fluorescent dyes are only excited in the center of a torus shaped region and are
actively depleted inside the torus, see Figures 1.2 and 1.3. The resolution under a STED
microscope is described by a modified Abbe formula (Westphal and Hell, 2005; Hell,
2007; Reuss et al., 2010)

d =
λ

2 NA
√

1 + Imax
Isat

, (1.6)

where Imax is the maximum intensity of the depletion psf (2nd column of Figure 1.2)
and Isat is usually on the order of 1 − 10 MW/cm2. Defining λ′ = λ/

√
1 + Imax

Isat
,

or, equivalently, using (1.5) and setting FWHM′ = FWHM /
√

1 + Imax
Isat

we see that
previous resolution considerations still hold, but now we have to use an effective psf
having FWHM′ (3rd column of Figure 1.2). In principle, in STED microscopy the
resolution can be increased indefinitely by increasing Imax/Isat. In practice, resolutions
of around 2.4 nm have been achieved this way, see (Rittweger et al., 2009).

As an example of stochastic mode photoswitching, we mention Single Marker
Switching (SMS) nanoscopy in its various variants (Betzig et al., 2006; Rust et al., 2006;
Hess et al., 2006; Heilemann et al., 2008; Egner et al., 2007), see also (Staudt et al.,
2020) for a survey from a statistical perspective and (Du and Kou, 2020) for a survey
on single-molecule techniques. Here one excites only a few dyes per pulse by using
only a small illumination intensity. Hence, only single dyes which are spatially well
separated are excited in each pulse with high probability. Consequently, there is no need
to distinguish between two or more point sources, and thus from this point of view the
resolution is arbitrarily small. However, the actual limitation is given by the localization
accuracy when estimating the position of each fluorophore by the center of the observed
psf (without any need for deconvolution). This can be understood from a statistical
point of view as estimating the mean µ of a distribution by its empirical mean. Let
N be the random number of photons observed in a small region of space and denote
by X1, ..., XN their spatial positions. Note that N depends on the illumination time
t > 0, which can be chosen in the experimental setup, and E [N ] ∼ t (in our model to be
introduced below, we in fact have E [N ] = t, see Section 2.1). Then in two dimensions
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0 10 20 30 40 50

Figure 1.4: Illustration of localization error in SMS microscopy (1.8). Here the psf
h is the Airy pattern (1.3). The beige dots mark the center of the Airy distribution
(0.5, 0.5) and the black dots the empirical means. The black circles correspond to the
90% confidence circles under the CLT (1.7).
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the CLT yields

√
N

(
1

N

N∑
i=1

Xi − µ

)
→D N2 (0,Σ) as t→∞, a.s. (1.7)

with a covariance matrix Σ given in terms of the psf h. Thus, neglecting the background
and pixelation noise, the position of the sample’s center can be estimated as the average
of the fluorophore centers leading to the localization error

d ∼ 1√
E [N ]

, (1.8)

see (Thompson et al., 2002). This can be made more precise in terms of confidence
circles for the true position of the dye as shown in Figure 1.4. Note that although (1.8)
suggests that the resolution can be increased indefinitely, in practice the number of
observable photons is limited due to the dyes suffering from photodamage which causes
them to bleach and hence to lose the ability to fluoresce.

Comparing any of the FWHM based criteria (1.1), (1.4), (1.5) to (1.8) reveals a gap
in the general understanding of resolution and localization accuracy, namely, that both
the experimental setup and the statistical error should play a role in the actual resolution
of a microscope. In any real world experiment, noise plays a central role in the actual
ability to distinguish two point sources, and thus the noise level (e.g. the observed
number of photons) should also play a role in Equations (1.1) and (1.4). This becomes
more severe as the resolution increases. In addition, the effective psf should also affect
the localization accuracy in (1.8).

Given the vast applications of microscopy and rapid progress of super-resolution, a
refined understanding of fundamental principles governing resolution is of immense
importance. However, as far as we know, a mathematically rigorous treatment of
statistical resolution is still lacking. The current work aims to bridge this gap by
presenting a statistical model including both the influence of the psf and the noise, and
defining resolution rigorously in terms of statistical hypothesis testing that could also be
used to quantify localization accuracy.
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CHAPTER 2

Model and main results

2.1 Statistical model

To derive a mathematically rigorous formulation of the resolution of a (fluorescence)
microscope with psf h, we start with modeling the observations. In practice, the physical
space O is scanned bin-wise or sampled at once by a CCD camera or another detection
device. We will assume that the image space I , the space of magnified points, is a
cube [0, 1]m (typicallym = 2, 3) and that it inherits the binning from the object space,
i.e. that I consists of bins Bi, i ∈ {1, . . . , n}m, with each Bi just an m-dimensional
cube of volume (1/n)m. Scanning at a bin Bi now means to center the psf at the center
of Bi. Each bin is either illuminated t ∈ N times by a short excitation pulse (pulsed
illumination) or illuminated continuously for some time t (continuous illumination),
which we may also assume to be an integer due to time discretization (e.g. t can denote
time in pico- or nanoseconds). We denote the number of detected photons in the ith bin
by Yi ∈ N. Clearly, Yi is a random quantity, but according to the above reasoning, we
may assume that

E [Yi] = t

∫
Bi

g(x) dx, (2.1)

where g is the image of the specimen as defined in (1.2). In the following we assume
that the measurements at Bi and Bj are independent if i 6= j, which is experimentally
confirmed in many different settings, see e.g. (Aspelmeier et al., 2015; Hohage and
Werner, 2016). Consequently, we observe an m-dimensional field (Yi)i∈{1,...,n}m of
independent random variables in the mean value parametrization

Yi
indep.∼ Ft,

∫
Bi
g(x) dx, i ∈ {1, ..., n}m (2.2)

with a family of distributions Ft,θ for parameters t ∈ N, θ ∈ (0, 1). Note that although
the illumination time t enters the mean in (2.1) only as a factor, the distribution of Yi
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might be affected differently. Thus, we separate t in (2.2) from∫
Bi

g(x) dx. (2.3)

The specific choice of Ft,θ depends fundamentally on the imaging setup and on the
number of photons collected. We consider the following scenarios here:

Binomial model (B)
In case of pulsed illumination, we can think of detected photons as independent
particles. Thus, the number of photons is distributed binomially

Ft,θ = Bin (t, θ) . (2.4)

This seems to be the most accurate model for microscopy, see e.g. (Aspelmeier
et al., 2015).

Poisson model (P)
In case of continuous illumination, it follows from elementary properties of Poisson
processes that a Poisson model

Ft,θ = Poi (tθ) (2.5)

is appropriate (Munk et al., 2020). This model can also be derived from the binomial
by the law of small numbers if t is large and θ is small.

Variance stabilized Gaussian model (VSG)
Due to the central limit theorem, for sufficiently large t also normal models appear a
reasonable approximation. Following the previous reasoning, this then leads either
to N (tθ, tθ(1− θ)) or N (tθ, tθ) if we start with binomial or Poisson distribution,
respectively. Since in our asymptotic analysis we let t, n→∞ and θ = O(1/n), we
choose the simpler model N (tθ, tθ). Applying the variance stabilizing transform
f(x) = 2

√
x, we thus analyze

F2
√
t,
√
θ = N (2

√
tθ, 1). (2.6)

Homogeneous Gaussian model (HG)
The simplest model to assume in this situation is the homogeneous Gaussian model
N (µ, σ2) for some general mean µ = tθ and some constant variance σ2. In particular,
many algorithms for recovery assume this model, see e.g. (Bertero et al., 2009;
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Hohage and Werner, 2016) for further discussion. After re-normalizing the mean µ
by σ, we can w.l.o.g. set σ = 1 and consider the model

Ft,θ = N (tθ, 1). (2.7)

For a comprehensive discussion and more details on the modeling see e.g. (Munk et al.,
2020). We emphasize that the homogeneous Gaussian model is commonly used as a
proxy for “microscopy with noise” and has been investigated in many studies. We will,
however, show that it is misleading in the present context. In contrast, we will show that
the other 3 models (asymptotically) lead to the same resolution which scales linearly
with the FWHM in agreement with the experimental evidence.

Remark 2.1.1. We consider photons, but treat them as classical particles. In the case
of Poisson model, our modeling as given in (2.1) and (2.2) corresponds to the so-called
semiclassical detection model, see e.g. Chapter 9 of (Goodman, 1985). This model is
an approximation and follows from the general theory of light and matter interactions
– quantum electrodynamics (QED), see e.g. (Leonhardt, 2010) and in particular its
Appendix B.

2.2 Statistical testing problem

In the following, we will describe the resolution of a microscope with a psf h ≥ 0 as a
detection problem. We consider general psfs and provide a mathematically rigorous
(asymptotic) statistical testing theory for resolution. We test the hypothesis that there is
one point source at x′0 against the alternative that there are two point sources at x′1 and
x′2 of brightness q and (1− q), respectively, with q ∈ (0, 1). The symmetric detection
problem q = 1/2 is well-known and was considered by many authors from different
perspectives, see e.g. (den Dekker and van den Bos, 1997) for an overview of different
resolution criteria. Taking into account the previous considerations on diffraction, in
particular (1.2), and setting xi = Mx′i for i ∈ {0, 1, 2}, we define our testing problem
as

H0 : g(x) = h(x− x0) (2.8a)

against the alternative

H1 : g(x) = q h(x− x1) + (1− q)h(x− x2), (2.8b)

see Figure 2.1 for an illustration. The factors of q and 1− q in the alternative ensure
that the test function g has the same intensity under H0 and H1. We always assume that



14 Model and main results

q and x0 are fixed and known. For each particular alternative, we also assume that x1

and x2 are fixed and known as well. However, in the asymptotic analysis we will let
d = ‖x1 − x2‖ → 01.

Without loss of generality, we let

g : I = [0, 1]m → [0,+∞) (2.9)

and be normalized to have volume 1. Normalization will allow us to interpret integrals
of the form (2.3) as probabilities in the binomial model (2.4), whereas (2.9) together
with (2.8) allow us to interpret h(· − xi) as functions with domain I for i ∈ {0, 1, 2}.
We also assume that the psf h is even, so that h(· − xi) is symmetric around xi. This
is a reasonable assumption since many experimental psfs are not only even, but also
rotationally invariant, see e.g. the Airy pattern (Figures 1.4 and 1.2). Mathematically
this allows us to define the center of h as 000. Experimentalists are often interested in
resolution in any of them coordinates. Thus, in the following w.l.o.g. we will always
assume that our statistical test is used to determine the resolution in the first coordinate,
i.e. we set

d = ||x1−x2|| = |x11−x21| and x0i = x1i = x2i for i ∈ {2, 3, . . . ,m}. (2.10)

A (randomized) statistical test for this problem is ameasurablemapΦt,n,d : (Rn)m →
[0, 1], where t, n ∈ N, d ∈ R≥0 and Φt,n,d = p means that we reject the null hypothesis
with probability p. Each statistical test can make a type I error when the hypothesis is
falsely rejected with probability

EH0Φt,n,d(Y ),

and a type II error when the hypothesis is falsely accepted with probability

1− EH1Φt,n,d(Y ).

For each fixed number of random variables nm, we have a simple hypothesis (one psf)
against a simple alternative (two psfs) testing problem, when the locations x0, x1, x2

and the asymmetry parameter q are fixed, see (2.8). Thus, according to the Neyman-
Pearson lemma (Lehmann and Romano, 2005) in a given dimensionm, for a fixed one
dimensional discretization n and a fixed significance level α, the likelihood ratio test
(LRT) forH0 vsH1 is uniformly most powerful, i.e. no other statistical test can perform

1In our analysis we will couple all parameters to the illumination time t. However, for ease of
readability we omit the subscripts t, i.e. we write n = nt and d = dt throughout.
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Figure 2.1: Resolution as a statistical testing problem in one dimension. First row: On
the left hand side the hypothesis with the psf centered at x0, on the right hand side the
alternative with two psfs centered at x1 and x2, distance d < FWHM apart. Second,
third and fourth rows: The corresponding observational data generated according to the
Poisson, VSG and HG models, respectively.
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better. In our case (2.2), the LRT Φt,n,d : (Rn)m → [0, 1] takes the form

Φt,n,d(Y ) =


1 if Tn(Y ) > q∗α,t,n,d,

γ if Tn(Y ) = q∗α,t,n,d,

0 if Tn(Y ) < q∗α,t,n,d,

(2.11)

with the log likelihood ratio statistic Tt,n,d(Y ) given in terms of the probability mass
functions or densities ft,θ of Ft,θ by

Tt,n,d (Y ) = log

(∏
i∈[n]m ft,p1i∏
i∈[n]m ft,p0i

)
=
∑
i∈[n]m

log

(
ft,p1i
ft,p0i

)
. (2.12)

Here and in what follows we use the notation

∏
i∈[n]m

:=
n∏

i1=1

· · ·
n∏

im=1

,
∑
i∈[n]m

:=
n∑

i1=1

· · ·
n∑

im=1

,

and abbreviate the detection probabilities in the ith bin by

p0i :=

∫ i1/n

(i1−1)/n

· · ·
∫ im/n

(im−1)/n

h(x− x0) dx (2.13)

under the hypothesis H0 and

p1i := q

∫ i1/n

(i1−1)/n

· · ·
∫ im/n

(im−1)/n

h(x−x1) dx+(1−q)
∫ i1/n

(i1−1)/n

· · ·
∫ im/n

(im−1)/n

h(x−x2) dx

(2.14)
under the alternative H1.

Given a significance level α ∈ (0, 1), the threshold q∗α,t,n,d and the constant γ
in (2.11) have to be chosen such that EH0Φt,n,d(Y ) = PH0

(
Tt,n,d(Y ) > q∗α,t,n,d

)
+

γPH0

(
Tt,n,d(Y ) = q∗α,t,n,d

)
= α, as this ensures α to be the level (i.e. the probability of

the type I error) of the test.

In the following we adopt a minimax testing point of view. To this end, we begin by
determining which choice of x1 and x2 in (2.8) is the most difficult to detect.

Proposition 2.2.1. Consider the testing problem (2.8) in the setup (2.10) for x0 =

(1/2, . . . , 1/2). Assume that the psf h is even. Let 0 < α < 1/2 and consider the
asymptotic regime with n→∞ and d→ 0. Then for each of the four models defined in
Equation (2.4) the uniformly most powerful test Ψ∗ (and hence the LRT) for (2.8) with
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level EH0Ψ
∗(Y )→ α has asymptotically the smallest power EH1Ψ

∗(Y ) when

x01 = qx11 + (1− q)x21,

i.e. when x0 is the center of mass of the two psfs in the alternative.

The proof is provided in the appendix A.2, since it is not necessary for the first
reading.

We are now ready to define the resolution of a microscope statistically.

Definition 2.2.2 (Statistical resolution). Let (Yi)i∈{1,...,n}m be as in (2.2) and let h be
the point spread function of the microscope under investigation. Choose one of the
four models (2.4). Let 0 < α, β < 1/2, x0 ∈ (0, 1)m, t ∈ N and n ∈ N be fixed.
We define the microscope’s statistical resolution (in the first coordinate) at point x0,
asymmetry parameter q, discretization n, exposure time t, type I error α and type II error
β under the prescribed model as the unique value d ∈ (0, 1) such that the uniformly
most powerful test (and hence the LRT (2.11)) Ψ∗ for (2.8) with x1 and x2 chosen such
that d = ||x1 − x2|| = |x11 − x21|, x01 = qx11 + (1 − q)x21 and x0i = x1i = x2i for
i ∈ {2, 3, . . . ,m} has exactly level α and power 1 − β, i.e. the most powerful test
satisfies

EH0Ψ
∗(Y ) = α and EH1Ψ

∗(Y ) = 1− β.

In other words, if the distance d between the two sources x1 and x2 in (2.8) satisfies
|x11 − x21| = d, the statistical resolution is determined by the best possible test with
detection power 1− β while the error of incorrectly assigning two sources (when only
one is valid) is controlled by α. It is immediately clear that a larger value of d will
result in larger power, and a smaller value of d will result in smaller power, i.e. for
x1 and x2 with |x11 − x21| ≤ d no level α test is able to distinguish H0 and H1 with
power ≥ 1− β. Thus, the sum of errors is bounded by α + β, which is why we restrict
ourselves to the case α, β ∈

(
0, 1

2

)
. Consequently, if α = β = 1

2
, then Ψ ∼ Bin

(
1, 1

2

)
,

and hence we expect the resolution to be 0 which corresponds to the information of a
coin flip to decide between H0 and H1.

One might wonder what about the case when x1 → x2, but x1, x2 → x′0 6= x0? In
this case asymptotically as n→∞ both type I and type II errors always tend to 0. In
other words, asymptotically the problem is trivial. To see this, take any non-trivial test
that counts the photons in the interval [0, x0] and compares the corresponding counts
under the H0 and H1.

The aim of this thesis is to study the asymptotic behavior (as n, t→∞ and d→ 0)
of the statistical resolution d in the four models from Equation (2.4). We will see that the
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(asymptotic) behavior of d serves as a good proxy in finite sample situations whenever n
and t are sufficiently large and d is sufficiently small. This is investigated in simulations
presented in Chapter 4.

2.3 Main theorem

To derive the asymptotic behavior of the statistical resolution d of a given microscope,
we have to pose smoothness assumptions on its psf h depending on the employed model.
In the HG model we require the following.

Assumption 2.3.1 (HG model). Suppose that the psf h is even and non-constant.
Furthermore let h ≥ 0 and h(· − xi) ∈ C2 [0, 1]m for all i ∈ {0, 1, 2}.

The requirement that h ≥ 0 is natural in view of h being an intensity. The differentiability
condition is rather mild and clearly satisfied for the Airy pattern in (1.3) and its most
common approximation by a Gaussian.

In case of the binomial, Poisson and VSG models we need a stronger condition.

Assumption 2.3.2 (B, P and VSG models). Suppose that the psf h is even and non-
constant. Furthermore let h > 0 and h(· − xi) ∈ C4 [0, 1]m for all i ∈ {0, 1, 2}.

Note that due to compactness of [0, 1]m, Assumption 2.3.2 implies that h ≥ c > 0.

Remark 2.3.3. We emphasize that the Airy pattern in (1.3) does not satisfy h > 0.
However, in accordance with many models considered in the literature it is pertinent
to include so-called background contributions, i.e. photons arising from other sources
than the psf. Examples of such modeling include (Acuña and Horowitz, 1997) and
(von Diezmann et al., 2017), which in the notation of (2.2) would correspond to
Yi ∼ Ft

∫
Bi
g(x) dx+γ/n with a positive constant γ and g given by (2.8). If we were to

incorporate this background noise into the psf h and hence due to (1.2) into the image g,
we would obtain (2.2) with g̃ = g + γ > 0. From this point of view, the assumption
h > 0 corresponds to the natural requirement that photons can be detected everywhere.
We also note that a Gaussian psf on [0, 1]m (2.18), which is the most commonly used
approximation to the Airy pattern (see e.g. (von Diezmann et al., 2017) or Figure 1.1B,
clearly satisfies Assumption 2.3.2.

For two sequences (an)n∈N and (bn)n∈N we write an � bn, an � bn, an � bn

and an ∼ bn if limn→∞ an/bn = 1, limn→∞ an/bn = 0, limn→∞ bn/an = 0 and
limn→∞ an/bn = c for some constant c > 0, respectively. Note that, due to asymptotic
considerations, we may restrict to non-randomized tests in what follows, i.e. to set
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γ = 0 in (2.11). Recall that we consider asymptotics as d→ 0 and n, t→∞. We are
now ready to state our main result on the asymptotic behavior of d.

Theorem 2.3.4. Assume model (2.2) with fixed dimensionm and consider the testing
problem (2.8) with x0 ∈ (0, 1)m and x1, x2 ∈ (0, 1)m such that x01 = qx11 + (1− q)x21

and x0i = x1i = x2i for i ∈ {2, 3, . . . ,m}. Let 0 < α, β < 1/2 be type I and II
errors, respectively. For 0 < γ < 1 denote by qγ the γ quantile of the standard normal
distribution N (0, 1).

Binomial model
Let the distribution in (2.2) be given by Ft,θ = Bin (t, θ), the psf h satisfy the
Assumption 2.3.2 and nm = ct1/2+δ for some arbitrary constants c, δ > 0. Then
the statistical resolution d of the corresponding microscope is

d �
√

2√
q(1− q)

√
q1−β − qα

(∫
I

h′′ (x− x0)2

h (x− x0)
dx

)−1/4

t−1/4. (2.15)

Poisson model
Let the distribution in (2.2) be given by Ft,θ = Poi (tθ) and the psf h satisfy the
Assumption 2.3.2 and nm = ct1/2+δ for some arbitrary constants c, δ > 0. Then
the statistical resolution d of the corresponding microscope satisfies (2.15). If
m = 1, then the Assumption 2.3.2 suffices for (2.15) to hold, and the coupling
between t and d can be arbitrary.

Variance stabilized Gaussian model
Let the distribution in (2.2) be given by Ft,θ = N

(
2
√
tθ, 1

)
and the psf h satisfy

the Assumption 2.3.2. Then the statistical resolution d of the corresponding
microscope also satisfies (2.15).

Homogeneous Gaussian model
Let the distribution in (2.2) be given by Ft,θ = N (tθ, 1), nm = o (t2) and the psf h
satisfy the Assumption 2.3.1. Then the statistical resolution d of the corresponding
microscope is

d �
√

2√
q(1− q)

√
q1−β − qα

(∫
I

h′′(y − x0)2 dy

)−1/4

t−1/2 nm/4. (2.16)

Here and in what follows we set ′ to denote the partial derivative in the first
coordinate, i.e.

f ′(y − x0) :=
∂f(y − x0)

∂y1

(2.17)
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for f(· − x0) : C1[0, 1]m → R. We also follow this convention for higher order
derivatives.

Let us briefly comment on the techniques employed in the proof of Theorem 2.3.4.
In case of the VSG and the HG models, type I and type II errors of the LRT can be
computed explicitly provided that d ↘ 0. The formulas (2.15) and (2.16) are then
derived by straightforward approximations of integrals by sums. In case of the Poisson
and binomial models, the analysis is more difficult. In these models the LRT statistic
consists of n weighted Poisson / binomially distributed random variables of varying
intensity tending to any value in [0,+∞]. The particular values depend on the asymptotic
relation between n and t. If t = c′n2m−δ′ for some c′ > 0 and 2m > δ′ > 0, then the
sum grows not too fast and hence the LRTs satisfy CLTs (Theorems 5.3.1 and 5.3.3).

In one dimension, provided that t�
√
n log8 n, we can apply recent results from

(Ray and Schmidt-Hieber, 2018) on asymptotic equivalence in the Le Cam sense, to
prove that the Poisson model is asymptotically equivalent to the VSG model. Combining
asymptotic equivalence with the CLT, we see that (2.15) holds true asymptotically for
any coupling between t and n.

2.4 Implications for experiments

To understand the experimental implications of Theorem 2.3.4, recall that for many
microscopes the psf can be well approximated by a Gaussian kernel

h (x− x0) =
m∏
i=1

1√
2πσ2

i

exp

(
− 1

2σ2
i

(
xi −

1

2

)2
)

(2.18)

centered at 1/2 with variance σ2
i > 0, see Figure 1.1B for an illustration. In this case,

FWHMi = 2
√

2 log 2σi ≈ 2.355σi. (2.19)

To ensure that our psfs are contained in the unit interval under the alternative (2.8b),
we have chosen values of FWHMi ≤ 0.25, equivalently, σi ≤ 0.107 in the analysis
below and simulations of Chapter 4. This allows us to skip normalizing (2.18), since∫

[0,1]3
h(x − x0) dx ≈ 0.999994 and in dimensions one and two the integral is even

closer to 1. We have that

∫
I

h′′ (x− x0)2 dx =

6
√
π erf

(
1

2σ1

)
σ5

1 + e
− 1

4σ2
1 (2σ2

1 − 1)σ2
1

8
√
π 2mπm/2σ10

1

 m∏
i=2

erf
(

1
2σi

)
σi


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=
3

2m+2 πm/2
σ−5

1

m∏
i=2

σ−1
i + o

(
σ−5

1

m∏
i=2

σ−1
i

)

and

∫
I

h′′(x− x0)2

h(x− x0)
dx =

2 erf
(

1
2
√

2σ1

)
σ4

1

− e
− 1

8σ2
1 (4σ2

1 + 1)

4
√

2πσ7
1

 m∏
i=2

erf

(
1

2
√

2σi

)
= 2σ−4

1 + o
(
σ−4

1

)
,

where
erf(x) =

1√
π

∫ x

−x
e−t

2

dt = 2Φ
(√

2x
)
− 1,

and we have used Bürmann’s series

erf(x) =
√

1− e−x2 +
√

1− e−x2 2√
π

∞∑
k=1

cke
−kx2

valid for all x > 0 with ck ∈ R some constants. Thus, according to (2.16) we obtain in
the homogeneous Gaussianmodel that asymptotically the statistical resolution satisfies

d � 2m/4+1πm/8

31/4
√
q(1− q)

√
q1−β − qα

nm/4√
t
σ

5/4
1

m∏
i=2

σ
1/4
i

=
2m/4πm/8

31/427/8(log(2))5/8
√
q(1− q)

√
q1−β − qα

nm/4√
t

FWHM
5/4
1

m∏
i=2

FWHM
1/4
i

23/8(log(2))1/8
.

(2.20)

Note that this is not in agreement with the previously discussed FWHM resolution
criterion, which postulates a linear dependency of d on the FWHM1, see also (Egner
et al., 2020) or (den Dekker and van den Bos, 1997). From this point of view it becomes
evident that the homogeneous Gaussian model is too simple to capture the fine details
of actual experiments. However, in the variance stabilized Gaussian, Poisson and
binomial models we have

d � 21/4√
q(1− q)

√
q1−β − qα t−1/4σ1

=
1

25/4
√

log 2
√
q(1− q)

√
q1−β − qα t−1/4 FWHM1, (2.21)

i.e. d depends linearly on the FWHM1 in agreement with experiments and FWHM
based resolution criteria (1.1), (1.4), (1.5).
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We summarize these results in Table 2.1. We have set q = 1/2 because it is standard
in two point resolution criteria, see e.g. (van den Bos and den Dekker, 2001). From
(2.16) and (2.15) we see that this is the easiest case to distinguish, i.e. for given
parameter values the resolution is the smallest when q = 1/2. Thus, the choice q = 1/2

corresponds to the common interpretation of resolution as the smallest distance that
allows different objects to be distinguished. We have also set β = α, since in most
microscopy experiments type I and type II errors are of equal importance.

Focusing on 2D and on the FWHM1 values in the range [0.15, 0.25] with fixed
FWHM2 = 0.2, the ratio between the homogeneous Gaussian model resolution of
(2.20) and the other models’ (2.21) lies in the interval [0.195n1/4 t−1/4, 0.222n1/4 t−1/4].
Therefore, if t = n, then the other models’ resolution is approximately five times greater
than the homogeneous Gaussian. The range is wider if the discretization n is greater
than the illumination time t and vice versa.

Model
Error α = β

0.01 0.05 0.1

Homogeneous Gaussian 1D 3.08 FWHM5/4 t−1/2 n1/4 2.59 FWHM5/4 t−1/2 n1/4 2.29 FWHM5/4 t−1/2 n1/4

Homogeneous Gaussian 2D 0.68 FWHM5/4 t−1/2 n1/2 0.57 FWHM5/4 t−1/2 n1/2 0.51 FWHM5/4 t−1/2 n1/2

Homogeneous Gaussian 3D 0.15 FWHM5/4 t−1/2 n3/4 0.13 FWHM5/4 t−1/2 n3/4 0.11 FWHM5/4 t−1/2 n3/4

VSG / Poisson / Binomial 2.18 t−1/4 FWHM 1.83 t−1/4 FWHM 1.62 t−1/4 FWHM

Table 2.1: Limiting asymptotic statistical resolution as given by Theorem 2.3.4 for
the Gaussian psf (2.18). Here we have set q = 1/2, β = α, FWHM1 = FWHM
and FWHMi = 0.2 for i ∈ {2, . . . ,m}. For general expressions see Equations (2.20)
and (2.21).

Let us also comment on the dependency of the constants in (2.21) and (2.20)
on the type I error α and the type II error β. From the Table 2.1, we have that
d(α = β = 0.1)/d(α = β = 0.01) = 0.51/0.68 = 0.75 for the 2D HG and ≈ 0.74 for
the other models, i.e. depending on the acceptable errors the resolution might decrease
approximately by a quarter. More generally, if we increase α, then −qα decreases
(α < 1/2) and hence d becomes smaller. This is due to the fact that a larger value of α
implies a higher probability to falsely reject the hypothesis that there is only one object.
Similarly for β. In the limiting case α = β = 1/2, we reject with probability 1/2 the
hypothesis even though it is correct and likewise with probability 1/2 we accept the
hypothesis under the alternative. Thus, in such case our test is, as expected, equivalent
to tossing a fair coin to determine whether we have one or two psfs and hence the
resolution is perfect (with probability 1/2), i.e. d = 0. Similarly, if α = 0 or β = 0,
then the resolution is infinite, i.e. we cannot distinguish two point sources flawlessly –
the type I or the type II error must be greater than zero.
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To summarize, our results imply that when the dependency on the resolution is
important, the homogeneous Gaussian model seems to be too simple and hence other
models should be preferred. Notably, the Poisson and the VSG models already correctly
capture the dependency and are simpler than the binomial model.
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CHAPTER 3

Comparisons with previous work

3.1 Overview

Investigation of resolution in a statistical setting is not new. The HG model (and
variations) was considered in (Harris, 1964; Milanfar and Shakouri, 2002; Shahram and
Milanfar, 2004; Shahram, 2005; Shahram and Milanfar, 2006) and the Poisson model
(and variations) in (Helstrom, 1964, 1973; Acuña and Horowitz, 1997). However, with
the exception of (Acuña and Horowitz, 1997), most of these works lack mathematical
rigor, whereas (Acuña and Horowitz, 1997) instead of defining resolution statistically
suggest a redefinition in terms of the power function (3.4) and do not work out the
dependency on the FWHM, see below for more details.

Already in the 1960s, resolution has been investigated from a decision theoretic
point of view in signal processing theory. Early references include Harris (Harris,
1964) for the homogeneous Gaussian model and Helstrom (Helstrom, 1964, 1965) for
the Poisson model. In (Helstrom, 1964, 1965) Helstrom considered signals consisting
of different wavelengths varying in space, noting that using Reiffen and Sherman’s
paper (Reiffen and Sherman, 1963) on optimum demodulation for time-varying Poisson
processes one could consider a signal varying in both space and time. For ease of
understanding, we assumed that our psf intensity does not vary with time and is
monochromatic, see (1.3). Harris (Harris, 1964) only calculated the probability of a
correct decision (power) without any consideration of the level. Helstrom (Helstrom,
1964) assumed a CLT and basically obtained type I error and power expressions in the
CLT regime 5.3.1 for our Poisson model in his Equation (15). To see this, we have to
set g0 = q∗α,t,n,d := q1−α

√
VH0Tn + EH0Tn (5.36) as the threshold in Helstrom’s theory

(which is not specified there),M0(x) = p0i,M1(x) = p1i, whereM·(x) is the effective
photon count rate density at x ∈ [−1/2, 1/2]2, and change integrals in his work to sums.

In (Helstrom, 1973) Helstrom went even further than in (Helstrom, 1964) and
considered (2.8) in the context of quantum information theory, following the statistical
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paradigm originally set out by Middleton (Middleton, 1953). Among other things,
Helstrom found out that Pe, the average of type I and type II errors, converges to
1/2 exp(−t) with increasing distance d. Here t is interpreted as the average number
of photons. As expected, the bound tends to zero in the classical regime as t → ∞.
Reassuringly, the form of his combined error probability Pe becomes the same as ours
with increasing t. However, Helstrom’s results cannot be transferred to our case due
to the quantum information theoretic setting, and his proofs are not mathematically
rigorous. Notably, he found that Pe is very close to its asymptotic minimum 1/2 exp(−t)
whenever d approximately equals twice the Rayleigh criterion, which led him to define
the resolution as twice the Rayleigh limit. Much of the current research on resolution in
quantum information theory revolves around trying to design different measurement
techniques (Tsang et al., 2016a,b; Nair and Tsang, 2016; Lu et al., 2018) which would
allow to experimentally come as close as possible to the theoretical limits calculated by
Helstrom (Helstrom, 1973). Some of these measurement techniques have been already
confirmed by proof of principle experiments, see e.g. (Tham et al., 2017), others even
applied to biological imaging (Tenne et al., 2019). We emphasize that our theory is
designed to describe everyday microscopy experiments with rather many photons so that
Helstrom’s limit 1/2 exp(−t) can be safely disregarded. Even though the mathematical
treatment of quantum optics experiments is beyond the scope of this paper, we think that
it is a fruitful research direction also for statisticians (see e.g. (Yamagata et al., 2013),
where the authors have defined a quantum likelihood ratio).

We also mention contributions from the field of modern signal processing and
engineering, namely the works by Milanfar and collaborators (Milanfar and Shakouri,
2002; Shahram and Milanfar, 2004, 2006), see also (Shahram, 2005) for an overview.
These authors also investigate resolution in terms of statistical measurement errors,
and they derive a dependency of the resolution on the inverse fourth root of the so-
called measurement signal-to-noise-ratio. Note that this has some similarity with the
dependency on t in (2.15). However, even though resolution is treated as a statistical
testing problem, in all these papers a homogeneous Gaussian model (which is challenged
by our analysis) is assumed and they lack some mathematical rigor as well. The same can
be said of Terebizh (Terebizh, 1995) who suggested a statistical definition of resolution
for extended objects.

Closest to our paper is the work (Acuña and Horowitz, 1997) by Acuña and Horowitz
on telescope resolution. There, the testing problem H0 : d = 0 vs. H1 : d > 0 in a 2D
model on a line is considered. This corresponds to our Poisson model, but with explicit
constant background noise. Their main quantity of interest is p1i (2.14) considered as a
function of d. Under assumptions on p1i’s roughly corresponding to our assumptions on
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the psf h, they analyzed the likelihood ratio test in the regime where t→∞, but kept
the number of measurements (discretization) n fixed and finite. Clearly, a finite value of
n will at some point restrict the resolution to be of the order 1/n, as no information finer
than the bin-size can be obtained. Moreover, the mathematical treatment of this regime
is substantially simpler, as the LRT statistic is given by a finite sum of independent
weighted Poisson random variables, whose intensity tends to∞, and hence one obtains
a CLT trivially. Acuña and Horowitz (Acuña and Horowitz, 1997) also note that there is
a different regime with finite fixed t and n→∞, but do not treat this. All of our results
except for asymptotic equivalence also hold in this regime: See Remarks 5.1.1 and 5.2.1,
and note that the relation between t and n necessary for Theorem 5.3.1 is trivially
satisfied for constant t. The authors define resolution as the (asymptotic) power function
of the likelihood ratio test rather than as a single number, which in some sense, is close
to our Definition 2.2.2. However, we believe that it is not intuitive for practitioners to
define the resolution as a probability, since they are used to thinking of resolution as a
distance. The main result of (Acuña and Horowitz, 1997) is the calculation of this power
function in the regime t→∞, n = const, which we can reproduce asymptotically for
large n and t from our more general results (up to dimension and the explicit constant
background noise) if we keep a sum instead of the integral in (2.15), see Remark 5.2.1.
Note furthermore that the power expression of (Acuña and Horowitz, 1997) is only valid
if d = const × t−1/4 in accordance with our result (2.15). We stress that our results
give an explicit dependency on the FWHM.

Finally we mention, that the term ‘super-resolution’ is used in mathematical and
statistical communities also in a different context, see (Donoho, 1992; Morgenshtern and
Candès, 2016; Candès and Fernandez-Granda, 2013, 2014; Fernandez-Granda, 2015).
There super-resolution addresses the ways to localize signals with (un)known amplitudes
by observing their (noisy) Fourier samples, i.e. samples in the frequency domain. The
domain is always assumed to have some cut-off frequency fc corresponding to the
inverse Abbe limit in our context. In contrast, in this paper we assume that the locations
of our signals are always known, i.e. we will follow the experimentalists’ terminology.

In the next sections of this chapter we will concentrate on some of the relevant parts
of the works above and compare their results to ours in more detail.

3.2 Abbe and Rayleigh

Once the value of t has been fixed, the asymptotic statistical resolution (2.21) allows us
to compare our results to the classical resolution limits by Abbe (1.1) and Rayleigh (1.4).
Since in most microscopy experiments type I and type II errors are equally important,
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we set α = β in (2.21). Recall that the FWHM of the Airy pattern is 0.51λ/NA, and
hence both criteria can be read as c · FWHM with a constant c > 0. Consequently, we
can compute the corresponding value of α such that the right-hand side of (2.21) equals
c ·FWHM. The results are shown in Table 3.1. A possible interpretation is the following:
if t = 10, then a microscope achieves the resolution equal to the Abbe criterion with
type I and II errors being equal to 6.8%, whereas if we say that the resolution is equal to
the one given by the Rayleigh criterion (larger than Abbe), then α = β = 1.3%. The
values in Table 3.1 are rather small, but we have neglected any background noise in the
choice of our psf (2.18). Thus, we believe that in actual microscopy experiments more
photons are necessary to achieve such low type I and II errors like in Table 3.1.

Error α = β

E [N ] = t
10 20 30 40 50

Abbe criterion 6.81% 1.76% 0.494% 0.144% 0.0432%

Rayleigh criterion 1.33% 0.0857% 0.00614% 4.61 · 10−4% 3.56 · 10−5%

Table 3.1: The type I and II errors (α = β) such that Abbe or Rayleigh criterion is
fulfilled for the VSG, Poisson and binomial models for different values of the expected
number of photons t in any dimension in the symmetric q = 1/2 (2.8b) case. Here
we have assumed a Gaussian psf (2.18), and thus the expression (2.21) can be simply
inverted to calculate α.

3.3 Milanfar and coauthors’ work

As mentioned in the overview, the problem of resolution was also investigated in signal
processing and decision theory, most notably by Milanfar and collaborators (Milanfar
and Shakouri, 2002), (Shahram and Milanfar, 2004), (Shahram, 2005), (Shahram and
Milanfar, 2006). The authors considered the same statistical testing problem as we (2.8)
in one and two dimensions, but only under the HG model. According to the authors, this
model is well justified by the properties of signal detectors. The researchers defined the
resolution as the minimum detectable point separation and considered its dependence
on the so-called measured signal-to-noise-ratio (SNRm).

In our case, for even, symmetrically placed psfs under the alternative (q = 1/2 in
(2.8b)), we have in one dimension that

SNRm =
1

σ2

∥∥∥∥h+ d2h
′′

8

∥∥∥∥2

=
1

σ2

(∫ 1

0

h2 +
d4

64

∫ 1

0

(h′′)2 +
d2

4

∫ 1

0

hh′′
)
. (3.1)

Here σ2 is the variance of the homogeneous Gaussian model N (µ, σ2) (2.7) without
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renormalization (2.7), i.e. without rescaling and setting σ = 1. In this case the resolution
from Equation (2.16) becomes

d � 2
√

2
√
q1−β − qα

(∫ 1

0

h′′ (x− x0)2 dx

)−1/4

t−1/2 n1/4
√
σ. (3.2)

As usual, assuming that (3.2) holds also non-asymptotically, we can rewrite the SNRm

as

SNRm =
64 (q1−β − qα)2n

d4
∫ 1

0
(h′′)2 t2

(∫ 1

0

h2 +
d2

4

∫ 1

0

hh′′ +
d4

64

∫ 1

0

(h′′)2

)

=
(q1−β − qα)2n

t2

(
64

∫ 1

0
h2∫ 1

0
(h′′)2

d−4 + 16

∫ 1

0
hh′′∫ 1

0
(h′′)2

d−2 + 1

)
. (3.3)

Our SNRm is the same like in Equation (2.31) of (Shahram, 2005) if we require that
h = 0 or h′ = 0 at the boundaries (also assumed in (Shahram, 2005)), use integration
by parts, set n = t and interpret t as Nyquist rate.

Note that considering d as a function of SNRm is somewhat inconvenient math-
ematically, since d(SNRm) is multivalued for small values of SNRm, see Figure 3.1
(b).
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Figure 3.1: Plots of Equation (3.3). Resolution d vs SNRm in dB for a Gaussian psf
(2.18) and n = t at the Nyquist rate, i.e. d vs 10 log10(SNRm) at t = 1. Here β = 0.01
and α = 10−6.
(a) For large SNRm the d−4 term dominates

(
cf. (Shahram, 2005) Fig. 2.1, where the

psf is sin(πx)/(πx)
)
.

(b) For smaller values of SNRm the resolution d is a multivalued function of SNRm.



30 Comparisons with previous work

3.4 Acuña and Horowitz’s work

As previously mentioned, the work closest to ours is (Acuña and Horowitz, 1997). There
the authors mathematically rigorously investigated a model of resolution for telescopes
corresponding to our 2D Poisson model in the regime t→∞, d→ 0, but with constant
background noise. The main quantity of their analysis is the power function

p(t, d) = Φ

(
qα + σ0

d2
√
t

8

)
(3.4)

with t now interpreted as the telescope exposure time and σ0 a constant depending
on the optical system and discretization (Acuña and Horowitz kept n fixed and finite).
Neglecting the constant background noise and using the integration shorthand (5.1) the
constant σ0 can be written as√√√√κ

∑
i∈[n]2

(∫
i

h

)−1
(

∂2

∂
(
d
2

)2

∣∣∣∣∣
d=0

(
1

2

∫
i

h

(
· − d

2

)
+ h

(
·+ d

2

)))2

with constant κ > 0 describing the total intensity of the star in question. As usual
assuming that our asymptotic formulas are also valid for finite samples, we can rewrite
(2.15) to get the expression for power

p(t, d) = Φ

(
qα +

√∫
I

h′′(x− x0)2

h(x− x0)
dx

d2
√
t

8

)
. (3.5)

Reassuringly, the expression for σ0 coincides (up to κ) for large n with our factor√∑n
i∈[n]2

(
∫
i h
′′)2∫

i h
in 2D by the mean value theorem, i.e. we are able to reproduce the

main result of Acuña and Horowitz (1997) from ours.
(Acuña and Horowitz, 1997) plot some plausible power vs distance between the

two stars plots. It is interesting to compare them and find a value of a Gaussian
psf corresponding to their astronomy-experiment-inspired values (mostly Hubble’s
telescope), even though Acuña and Horowitz stated that the psf of the Hubble space
telescope is clearly non-Gaussian, see Figure 3.2.
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Figure 3.2: Reproduction of Figure 6 from (Acuña and Horowitz, 1997). The plots
show the power dependence on d′ = d/Rlimit (3.4) for an ideal Hubble space telescope.
Here Rlimit stands for the Rayleigh limit. The total instensity is κ = 2.82× 10−6 and
the level α = 0.05. For the ideal Hubble space telescope with obscuration (dashed
beige line) the optical parameters are σ0(γ = 0.01) = 0.0224µm−2s−1/2 and σ0(γ =
0.1) = 0.0071µm−2s−1/2, and Rlimit = 7.2468µm. Here γ is the constant background
noise parameter. For the ideal Hubble space telescope without obscuration (thick blue
line) σ0(γ = 0.01) = 0.0304µm−2s−1/2 and σ0(γ = 0.1) = 0.0096µm−2s−1/2, and
Rlimit = 8.052µm. See also (Schroeder, 1987) Chapter 10 for more details on the
experimental setup.
The corresponding plots according to our theory (3.5) with the Gaussian psf (2.18)
have FWHMs in range from ≈ 0.03 ((c) without obscuration) to ≈ 0.18 ((b) with
obscuration). Due to (1.4) and (1.5) we used the ratio FWHM = 51Rlimit/61 when
converting between different length scales.
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3.5 Helstrom’s work

The previous two sections have shown that our work agrees well with the previous works
on the subject. However, the comparison in this section shows our theory’s expected
limitations, when the number of detected photons is very low.

In a series of papers Helstrom considered our testing problem (2.8) with q = 1/2 in
the Poisson model as well as related ones at the level of rigor of theoretical physics. His
earlier work is well summarized in his book (Helstrom, 1968). Later, Helstrom went
even further and solved many of the same problems using quantum information theory,
which resulted in another book (Helstrom, 1976).

Most of Helstrom’s works treat problems in Bayesian and Neyman-Pearson way
with the latter corresponding to our analysis. One important quantity in Helstrom’s
results, when treated the Neyman-Pearson way, is the average of type I and II errors

Pe =
1

2
type I error +

1

2
type II error . (3.6)

As mentioned in Section 3.1, his classical treatment got basically our results in a model
corresponding to our Poisson model (Helstrom, 1964). However, in (Helstrom, 1973)
the researcher found out that the Pe for the quantum theoretical Poisson model (2.8)
converges to around exp(−t)/2 with t interpreted as the average of detected photons.
The convergence is oscillatory around exp(−t)/2 with the limit reached first when the
distance between the two points in the alternative is approximately 2 Rayleigh distances,
leading Helstrom to define 2 Rayleigh distances as the resolution for this problem. In
our case, if the model is Poisson, binomial or VSG and as usual assuming that the
asymptotic relations are valid also for finite quantities (see Chapter 4 for validity of this
claim), the Pe is

Pe = 1− Φ

(√∫
I

h′′(x− x0)

h(x− x0)
dx

d2
√
t

16

)
. (3.7)

In particular, for a fixed t it tends to 1/2 as d→ 0 just like in (Helstrom, 1973), but it
tends to zero as d→∞ for all t ∈ N.

In Figure 3.3 we have plotted our Pe together with Helstrom’s. In part (a) of the
figure (t = 1, . . . , 5), we can clearly see the difference, however, as expected by the
correspondence principal, the difference diminishes as the number of photons t increases
in the sense that it becomes significantly harder to distinguish the form of our Pe from
Helstrom’s already when t = 20 Figure 3.3 (b). The only noticeable difference that
persists is that for a given distance d, Helstrom’s average error seems to be significantly
lower than ours. This is to be expected as Helstorm’s Pe is achieved by a quantum
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mechanically optimal measurement strategy, which has not been achieved experimentally
so far, see modern works on quantum information (Tsang et al., 2016a), (Tsang et al.,
2016b), (Nair and Tsang, 2016), (Lu et al., 2018), (Tenne et al., 2019).

To produce the above plot of d vs Pe from Helstrom’s results is difficult, since
the expression for Pe is an infinite series (Equation (39) of (Helstrom, 1973)) and we
are not aware of a closed form solution, nor does the author provide any information
about the series convergence. To circumvent this problem, we have simply summed a
finite number of terms from the series, ending when the final result stopped changing
significantly. It seems that one has to take more and more terms as t increases and
hence the duration of the above procedure increases as well. Therefore, the quantum
theoretical solution is not all-encompassing and our model seems to be easier applicable
to modern microscopy.

We note in passing that in a related problem of one point source at x1 vs another at
x2 by the same reasoning Helstrom was lead to define resolution as equal to the Rayleigh
distance, see Chapter VII, Section 6 of (Helstrom, 1976). This problem seems to be
more relevant to the Stochastic mode microscopy, see Section 1.2.
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Figure 3.3: Comparison of the average error probabilities Pe vs d′ = d/Rlimit. Here
Rlimit stands for the Rayleigh limit (3.6). Due to (1.4) and (1.5) we have used the ratio
FWHM = 51Rlimit/61 when converting between different length scales. Dotted lines
are the Helstrom’s quantummechanical Pe’s for the Poisson model with circular aperture
(Airy psf) (Helstrom, 1973). Solid lines are the VSG, Poisson and binomial Pe’s (3.7)
for a Gaussian psf (2.18). Each line is indexed by the mean number of detected photons.
(a) Each of the Helstrom’s Pe’s converges to exp(−t)/2 as d→∞. This value is first
reached at d ≈ 2Rlimit and as d continues to grow, Pe oscillates around exp(−t)/2 with
diminishing oscillations. (b) As t increases, the form of Helstrom’s Pe plot becomes
indistinguishable from the VSG, Poisson and binomial Pe form (3.7).
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CHAPTER 4

Simulations

To investigate the finite sample validity of our asymptotic theory, we performed
simulations with all 4 different models defined in Section 2.1 in one, two and three
dimensions. We checked the dependence of the (asymptotic) resolution d on the
illumination time t, FWHM and discretization n. We then applied linear log-log fits.
The slopes of the fits are close to the theoretical slopes already at small values of n and
t, especially in one dimension (Table 4.1). As t and n increase, the theoretical formulas
become good approximations of the simulation fits in one dimension (2nd column of
Figure 4.1).

In all simulations we have used the Gaussian psf (2.18), set level α = 0.1 and have
tried to get the type II error to be in the range β ∈ [0.95α, 1.05α). For simplicity, we
only describe the one dimensional (m = 1) simulation d vs FWHM from Figure 4.1
(a) in detail, others were conducted similarly. We set the level to be α = 0.1, the
discretization n = 20, the illumination time t = 20 and d = FWHM as the starting
distance between the peaks in the alternative (2.8b). Then for 10 000 times we generated
n independent random variables following the corresponding model (2.2) under the
alternative. Afterwards we calculated the type II error and used the bisection method to
advance d until the type II error became between 0.95α and 1.05α (aiming for β = α).
We performed the test for the FWHM range 0.15, 0.16, . . . , 0.25. We also chose to cap
our simulations at 20 steps per single FWHM value to avoid excessively long runtimes
or getting trapped at parameter values, where the algorithm does not converge (usually
due to the resolution d being too large to fit both psfs under the alternative fully inside
the unit interval, see Figure 2.1). The runtime of this simulation is of the order of

O(20 · nm · reps ·# FWHM) (4.1)

with reps = 10 000 and # FWHM = 11. Note that the dependence of the runtime on
the dimensionm is exponential.
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4.1 One dimension

1D simulation fits have slopes approximately equal to the ones calculated with the
asymptotical theory already at t = n = 20 (Table 4.1). As t and n increase, the
asymptotical theory approximates the simulation fits really well (2nd column of
Figure 4.1 and Figure 4.2). Moreover, the asymmetry parameter q (2.8b) seems to have
the same effect already for finite t, n and d as predicted asymptotically (2.16), (2.15) –
the values of d in the subfigures of Figure 4.2 with q = 1/5 are around 25% larger than
in the respective subfigures of Figure 4.1 with q = 1/2.

4.1.1 Symmetric q = 1/2 case

Model
d(FWHM)sim d(t)sim d(n)sim

d(FWHM)th d(t)th d(n)th

HG
1.23 FWHM1.26 1.17 t−0.665 0.0502n0.368

1.08 FWHM5/4 0.647 t−1/2 0.0685n1/4

Binomial 0.828 FWHM0.911 0.474 t−0.306 0.188n−0.00777

Poisson 0.879 FWHM0.979 0.519 t−0.352 0.177n0.00274

VSG 0.873 FWHM0.975 0.495 t−0.336 0.183n−0.00464

0.765 FWHM 0.323 t−1/4 0.153

Table 4.1: Comparison of the theoretical formulas fromTable 2.1 to the fits of simulations.
The entries in d(FWHM)sim correspond to the fits of simulated data points in Figure 4.1
(a), in d(t)sim to Figure 4.1 (c) and in d(n)sim to Figure 4.1 (e).
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Figure 4.1: Log-log plots of 1D simulations assessing the finite sample validity of the
asymptotic relations d = 2.29 t−1/2n1/4 FWHM5/4 (Table 2.1 first row, third column)
for the homogeneous Gaussian model and d = 1.62 t−1/4 FWHM (Table 2.1 fourth
row, third column) for the VSG, poisson and binomial models, see (2.2). The slopes of
theoretical formulas are close to the slopes of fits already at low values of illumination
time t and discretization n (left column, see also Table 4.1). As t and n increase, the
theoretical formulas become reasonable approximations of the simulation fits (right
column).
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4.1.2 Asymmetric q = 1/5 case
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Figure 4.2: Log-log plots of 1D simulations assessing the finite sample validity of
the asymptotic relations d = 2.86 t−1/2n1/4 FWHM5/4 for the homogeneous Gaussian
model and d = 2.03 t−1/4 FWHM for the VSG, poisson and binomial models with
the asymmetry parameter set to q = 1/5 in the alternative (2.8b). According to the
Theorem 2.3.4 the resolution of the q = 1/5 case with respect to the symmetric case
q = 1/2 (Figure 4.1) is larger by 25% and this is confirmed by simulations as well.
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4.2 Two and three dimensions

We focus only on the symmetric case q = 1/2 in higher dimensions. To make the
runtime (4.1) shorter, we have set reps = 1000 in higher dimensions. This does not
impact the accuracy significantly (not shown).

The simulations in two and three dimensions are similar to the ones in 1D (Sec-
tion 4.1): already at low parameter values t = n = 20 the slopes of the simulation fits
coincide with the theoretical ones as shown in Figure 4.3 (a) and (b), and as t and n
increase all simulations converge to our asymptotic theoretical results (Figure 4.3 (c), (d),
(e) and (f)). The discrepancy for the HG model in Figure 4.3 (e) and (f) arises because
our HG theory is only valid if n = o(t) in 2D by Theorem 2.3.4. The relationship
between the resolution d and other parameters holds also as expected, see Figure 4.4.

The only significant difference to 1D is in the HG model. Inm dimensions it holds
that d ∼ FWHM

5/4
1

∏m
i=2 FWHM

1/4
i , whereas for other models d ∼ FWHM1. By

choosing directions in which FWHM is varied or kept constant, we can achieve many
different combinations. We chose to plot the most representative ones:

• d ∼ FWHM
5/4
1 ifFWHMi = const. for all i ∈ {2, . . . ,m} as shown in Figure 4.3

Column I for 2D and Figure 4.5 (a) for 3D,

• d ∼ FWHM3/2 if FWHM1 = FWHM2 = FWHM as shown in Figure 4.3
Column II for 2D,

• d ∼ FWHM7/4 if FWHM1 = FWHM2 = FWHM3 = FWHM as shown in
Figure 4.5 (d) for 3D,

• d ∼ FWHM
1/4
j for some j ∈ {2, . . . ,m} and FWHMi = const. for all i 6= j as

shown in Figure 4.4 (c) for 2D, and Figure 4.5 (b) and (c) for 3D.
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Figure 4.3: Log-log plots of 2D simulations investigating the dependence of resolution
d on FWHM: Column I looks at d vs FWHM1 with FWHM2 = 0.2 (constant)
and Column II at d vs FWHM1 = FWHM2. For the HG model we assessed if
d = 2.54 FWHM

5/4
1 FWHM

1/4
2 n1/2t−1/2 (2.20) holds and for the other models if

d = 1.62 t−1/4 FWHM1 (2.21) holds. In all models, the theory becomes a good
approximation of the simulations as t and n increase. The higher discrepancy between
the theory and simulations for the HG model in plots (a), (b), (e) and (f) is due to (2.20)
being valid only if n = o(t) by Theorem 2.3.4.
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Figure 4.4: Log-log plots of 2D simulations investigating the dependence of res-
olution d on secondary parameters. For the HG model we assessed if d =

2.54 FWHM
5/4
1 FWHM

1/4
2 n1/2t−1/2 (2.20) holds and for the other models if d =

1.62 t−1/4 FWHM1 (2.21) holds.
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Figure 4.5: Log-log plots of 3D simulations investigating the dependence on FWHM.
For the HG model we assessed if d = 2.81 FWHM

5/4
1 FWHM

1/4
2 FWHM

1/4
3 n3/4t−1/2

(2.20) holds and for the other models if d = 1.62 t−1/4 FWHM1 (2.21) holds. Plot (a)
shows what happens if only FWHM1 is varied and others are kept constant, (b) if only
FWHM2, (c) if only FWHM3 and (d) if all three are varied and set equal to each other.



CHAPTER 5

Proof of the main theorem

In this chapter we will prove Theorem 2.3.4. We will do this separately for the four
models defined in Section 2.1. We start with the homogeneous and variance stabilized
Gaussian models because the proofs of the binomial and Poisson models rely on them.
In both Gaussian models the proofs follow by direct calculation.

In contrast, in binomial and Poisson models the proofs are more involved. If
nm = ct1/2+δ for some arbitrary constants c, δ > 0, we prove CLTs. In one dimension,
provided that t�

√
n log8 n, we can also find the statistical resolution d for the Poisson

model using asymptotic equivalence. Since n = ct1/2+δ is equivalent to c′n2−δ′ = t for
some c′ > 0 and 2 > δ′ > 0, we thus find statistical resolution for all couplings of t and
n in the one dimensional Poisson model.

Before we start, let us introduce some notation. For f(· − x0) ∈ L1[0, 1]m functions
we define the integral operators

∫
i
,
∫
I
: L1[0, 1]m → R as

∫
i

f :=

∫ i1/n

(i1−1)/n

· · ·
∫ im/n

(im−1)/n

f(x− x0) dx and
∫
I

f :=

∫
I

f(x− x0) dx.

(5.1)
Here, as before, we let I = [0, 1]m. Mostly we will use this notation for the psf h and its
derivatives. Note that p0i =

∫
i
h.

5.1 Homogeneous Gaussian model

Proof of Theorem 2.3.4 for the HG model. As Ft,θ = N (tθ, 1), the LRT statistic in
(2.12) becomes

Tt,n,d (Y ) = log

(
ϕ (Y | H1)

ϕ (Y | H0)

)
=

1

2

∑
i∈[n]m

(
t2p2

0i − t2p2
1i + 2Yit (p1i − p0i)

)
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with ϕ the density of a standard normal variate. The corresponding likelihood ratio test
(2.11) is given by

Φt,n,d (Y ) :=

1 if Tt,n,d (Y ) > q∗α,t,n,d,

0 otherwise,
(5.2)

where q∗α,t,n,d =
√

2µt,n,dq1−α − µt,n,d with q1−α the 1− α quantile of N (0, 1) and

µt,n,d =
t2

2

∑
i∈[n]m

(p1i − p0i)
2 . (5.3)

For ease of readability, we write only the dependence on n in the following.

It holds that
under H0 : Tn (Y ) ∼ N (−µn, 2µn) , (5.4a)

under H1 : Tn (Y ) ∼ N (µn, 2µn) . (5.4b)

We calculate

PH0 (reject) = PH0

(
Tn (Y ) > q∗α,n

)
= P

(
−µn +

√
2µnW > q∗α,n

)
= 1− P

(
W ≤

q∗α,n + µn√
2µn

)
= α,

whereW ∼ N (0, 1). Thus, the test is indeed a level α test.

We want the type II error to be equal to β. Thus, we require

β = PH1 (accept) = PH1

(
Tn (Y ) ≤ q∗α,n

)
= P

(
µn +

√
2µnW ≤ q∗α,n

)
= P

(
W ≤ q1−α −

√
2µn

)
, (5.5)

where againW ∼ N (0, 1). This implies that

µn = (q1−α − qβ)2/2 = (q1−β − qα)2/2, (5.6)

since q1−γ = −qγ for quantiles of N (0, 1). By definition of µn we have

µn =
t2

2

∑
i∈[n]m

(p1i − p0i)
2 =

t2

2

∑
i∈[n]m

(∫
i

∆

)2

, (5.7)

where
∆(x− x0) := qh(x− x1) + (1− q)h(x− x2)− h(x− x0) (5.8)



5.1. Homogeneous Gaussian model 45

is the difference between the psfs under H1 and H0. Since h ∈ C2[0, 1]m and

d = ||x1 − x2|| = |x11 − x21|, (5.9)

we have

h(x− xi) =
k∑
j=0

∂j1h(x− x0)

j!
(x01 − xi1)k + o

(
(x01 − xi1)k

)
, (5.10)

where ∂1f(y − x0) = ∂f(y − x0)/∂y1. Assume w.l.o.g. that x21 ≥ x11 so that
d = x21−x11. Note that for x01 = qx11 + (1− q)x21, it holds that x01−x11 = (1− q)d
and x01 − x21 = −qd. Hence, for d→ 0 we have

∆(x− x0) = qh(x− x1) + (1− q)h(x− x2)− h(x− x0)

= q
k∑
j=0

∂j1h(x− x0)

j!
(x01 − x11)j + (1− q)

k∑
j=0

∂j1h(x− x0)

j!
(x01 − x21)j

− h(x− x0) + o
(
(x01 − x11)k + (x01 − x21)k

)
(5.11)

=
k∑
j=2

∂j1h(x− x0)

j!

(
q((1− q)d)j + (−1)j(1− q)(qd)j

)
+ o

(
dk
)
.

(5.12)

Thus, setting k = 2 and using the notation

h′′(y − x0) =
∂2h(y − x0)

∂y2
1

(5.13)

as before (2.17), we get

µn =
t2

2

∑
i∈[n]m

(p1i − p0i)
2 =

t2

2

∑
i∈[n]m

(∫
i

∆

)2

=
t2

2

∑
i∈[n]m

(
q(1− q)

2
d2

∫
i

h′′ + o

(
d2

nm

))2

=
t2

2

∑
i∈[n]m

(
q2(1− q)2

4
d4

(∫
i

h′′
)2

+ o

(
d4

n2m

))

=
t2

2

∑
i∈[n]m

q2(1− q)2

4
d4

(∫
i

h′′
)2

+ o

(
t2d4

nm

)
(5.14)

=
q2(1− q)2

8

t2d4

nm

∫
I

(h′′)
2

+ o

(
t2d4

nm

)
, (5.15)
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applying Lemma A.1.1 from the Appendix. Rearranging (5.15) for d and using (5.6) we
get the desired relation (2.16). Since we need d→ 0 for the above to hold, we have to
require that nm = o(t2).

Remark 5.1.1. As long as asymptotically

µt,n,d =
(q1−β − qα)2

2

and d↘ 0, the above proof still holds. Thus, using (5.14) for finite n we get

d �
√

2√
q(1− q)

√
q1−β − qα

∑
i∈[n]m

(∫
i

h′′
)2
−1/4

t−1/2.

If d 6→ 0, i.e. if nm = o(t2) does not hold, then we can find the corresponding
resolution d numerically using the bisection method from

(q1−β − qα)2

t2
=
∑
i∈[n]m

(∫
i

∆

)2

(5.16)

and Equations (5.8) and (5.9). To derive (5.16), combine different expressions for µn
from Equations (5.6) and (5.7). Another method is to use simulations, see Chapter 4.

5.2 Variance stabilized Gaussian model

Let F2
√
t,
√
θ = N (2

√
tθ, 1), i.e.

Yi
indep.∼ N

2

(
t

∫ i/n

(i−1)/n

g(x− x0) dx

)1/2

, 1

 . (5.17)

Then the log-likelihood function is

Tt,n,d (Y ) = log

(
ϕ (Y | H1)

ϕ (Y | H0)

)
=
∑
i∈[n]m

[
2t (p0i − p1i) + 2Yi

√
t (
√
p1i −

√
p0i)
]

with pi defined in Equations (2.13) and (2.14). We define the corresponding likelihood
ratio test as in (5.2), but this time we set q∗α,t,n,d =

√
2νt,n,dq1−α − νt,n,d with

νt,n,d = 2t
∑
i∈[n]m

(
√
p1i −

√
p0i)

2 .
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Proof. The proof is similar to the proof of the homogeneous Gaussian model in
Section 5.1. We skip the indices t and d in what follows.

We have underH0 : Tn (Y ) ∼ N (−νn, 2νn) and underH1 : Tn (Y ) ∼ N (νn, 2νn).
We calculate

PH0 (reject) = PH0

(
Tn (Y ) > q∗α,n

)
= P

(
−νn +

√
2νnW > q∗α,n

)
= 1− P

(
W ≤

q∗α,n + νn√
2νn

)
= α,

where as previouslyW ∼ N (0, 1). Thus, the test is indeed a level α test.

We want the type II error to be equal to β. Thus, we require

β = PH1 (accept) = PH1

(
Tn (Y ) ≤ q∗α,n

)
= P

(
νn +

√
2νnW ≤

√
2νnq1−α − νn

)
= P

(
W ≤ q1−α −

√
2νn
)
.

This implies that
νn = (q1−α − qβ)2/2 = (q1−β − qα)2/2, (5.18)

since q1−γ = −qγ for quantiles of N (0, 1). On the other hand, by definition of νn we
have

νn = 2t
∑
i∈[n]m

(
√
p1i −

√
p0i)

2 . (5.19)

Using the Taylor series expansion (5.10) as d→ 0 we get

(
√
p1i −

√
p0i)

2 =

(√∫
i

h+
q(1− q)d2

2

∫
i

h′′ + o

(
d2

nm

)
−

√∫
i

h

)2

=

(√∫
i

h

√
1 +

q(1− q) d2

2

∫
i
h′′∫
i
h

+ o (d2)−

√∫
i

h

)2

(5.20)

=

q(1− q) d2

4

∫
i
h′′√∫
i
h

+ o

(
d2

nm/2

)2

=
q2(1− q)2 d4

16

(
∫
i
h′′)2∫
i
h

+ o

(
d4

nm

)
,

where as before the acute accent ′ denotes the partial derivative with respect to the first
coordinate (5.13). Thus,

νn = 2t
∑
i∈[n]m

(
q2(1− q)2 d4

16

(
∫
i
h′′)2∫
i
h

+ o

(
d4

nm

))
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=
q2(1− q)2 td4

8

∫
I

(h′′)2

h
+ o

(
td4
)

(5.21)

as n→∞ by LemmaA.1.1 with f(x) = h′′(x−x0) and g(x) = h(x−x0). Rearranging
the last equation for d together with (5.18) gives (2.15), as required.

Remark 5.2.1. Just like in the homogeneous Gaussian model (Remark 5.1.1), we can
keep n finite in the above proof, provided that the resolution satisfies

d �
√

2√
q(1− q)

√
q1−β − qα

∑
i∈[n]m

(∫
i
h′′
)2∫

i
h

−1/4

t−1/2.

5.3 Poisson and binomial models

5.3.1 Analysis in the central limit theorem regime

5.3.1.1 Poisson model

Here we have (recall (2.2))
Ft,θ = Poi(tθ),

or more explicitly
Yi

indep.∼ Poi(λi) with λi = t

∫
i

g. (5.22)

The likelihood ratio statistic for (2.8) under the model (5.22) is

Tt,n,d(Y ) = log

 ∏
i∈[n]m

e−(λ1i−λ0i)
(
λ1i

λ0i

)Yi =
∑
i∈[n]m

Yi log

(
λ1i

λ0i

)
. (5.23)

We have

E [Tt,n,d] =
∑
i∈[n]m

log

(
λ1i

λ0i

)
λi and V [Tt,n,d] =

∑
i∈[n]m

log

(
λ1i

λ0i

)2

λi.

Here λ1i = tp1i and λ0i = tp0i.

Theorem 5.3.1 (CLT for Poisson LRT). Assume the point spread function h satisfies
Assumption 2.3.2 and that nm = ct1/2+δ for some arbitrary constants c, δ > 0. Then a
CLT holds for Tn(Y ) under the hypothesis (2.8a) and the alternative (2.8b) as t, n→∞
and d→ 0, i.e.

Tt,n,d − E [Tt,n,d]√
V [Tt,n,d]

D→ N (0, 1)
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as t, n→∞ and d→ 0.

Proof of Theorem 5.3.1. We apply the Lindeberg-Feller CLT for triangular arrays (see
(Billingsley, 1986)). For ease of readability, we skip indices t and d, and only give the
full proof in the symmetric q = 1/2 case in what follows. See the end of the proof
(5.34) for the outline of the general q ∈ (0, 1) case.

Let
Xni = aiYi,

so that
Tn(Y ) =

∑
i∈[n]m

Xni,

where as before
Yi

indep.∼ Poi(λi) and ai := log

(
λ1i

λ0i

)
. (5.24)

Note that λ·i and ai depend on n as well. We also set µni = E [Xni], σ2
ni = V [Xni] and

let τ 2
n =

∑n
i=1 σ

2
ni. We need to show that σ2

ni <∞ and that for all ε > 0 we have

Ln(ε) =
1

τ 2
n

∑
i∈[n]m

∫
(x− µni)2 1{|x−µni|>ετn}dPXni (x)→ 0 as n→∞.

We use the Taylor approximation log(1 + yi) =
∑2

k=0(−1)k/(k+ 1)yk+1
i + o (y3

i ) with

yi =
λ1i

λ0i

− 1 =
λ1i − λ0i

λ0i

=

∫
i
∆∫
i
h

=
1

8

∫
i
h′′∫
i
h
d2 +

1

384

∫
i
h′′′′∫
i
h
d4 + o

(
d4
)
, (5.25)

where we have used Equation (5.11) for ∆(x− x0) with k = 4 and q = 1/2. Under the
hypothesis H0 it holds

µni = EH0Xni = aiEH0Yi = aiλ0i = ait

∫
i

h = log(1 + yi)t

∫
i

h

=
td2

8

∫
i

h′′ + td4

(
− 1

128

(
∫
i
h′′)2∫
i
h

+
1

384

∫
i

h′′′′
)

+O

(
td6

nm

)
,

νn =
∑
i∈[n]m

µni = EH0Tn(Y ) = t
∑
i∈[n]m

ai

∫
i

h

=
td2

8

∫
I

h′′ + td4

(
− 1

128
ρn +

1

384

∫
I

h′′′′
)

+O
(
td6
)
,

σ2
ni = VH0Xni = a2

i VH0Yi = a2
iλ0i = t log(1 + yi)

2

∫
i

h =
td4

64

(
∫
i
h′′)2∫
i
h

+O

(
td6

nm

)
,

τ 2
n =

∑
i∈[n]m

σ2
ni = VH0Tn(Y ) = t

∑
i∈[n]m

a2
i

∫
i

h = t
∑
i∈[n]m

log(1 + yi)
2

∫
i

h
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=
td4

64
ρn +O(td6)

with

ρn :=
∑
i∈[n]m

(∫ i1/n
(i1−1)/n

. . .
∫ im/n

(im−1)/n
h′′(x− x0) dx

)2

∫ i1/n
(i1−1)/n

. . .
∫ im/n

(im−1)/n
h(x− x0) dx

. (5.26)

Clearly, it holds that σ2
ni <∞. Applying Lemma A.1.1 with f(x) = h′′(x− x0) and

g(x) = h(x− x0) we see that

ρn =

∫
I

h′′(x− x0)2

h(x− x0)
dx+ o(1) <∞

and hence
τ 2
n =

td4

64

∫
I

h′′(x− x0)2

h(x− x0)
dx+O(td6).

We consider

Ln(ε) =
1

τ 2
n

∑
i∈[n]m

∑
k∈aiN0

|k−µni|>ετn

(k − µni)2 PH0 (Xni = k)

=
1

τ 2
n

∑
i∈[n]m

∑
l∈N0

|ail−µni|>ετn

(ail − µni)2 PH0 (Yi = l) . (5.27)

Note that if ai = 0, then |ail − µni| = 0. If ai 6= 0, then the condition |ail − µni| > ετn

on l is equivalent to l ∈ Dε,i, where Dε,i is the set consisting of all l ∈ N0 satisfying
l > ε

√
t

√∑
i∈[n]m a

2
i

∫
i
h

|ai|
+ t

∫
i

h

l < −ε
√
t

√∑
i∈[n]m a

2
i

∫
i
h

|ai|
+ t

∫
i

h.

(5.28)

It holds that

ai = log(1 + yi) = yi +O(y2
i ) =

∫
i
h′′∫
i
h

d2

8
+ o

(
d2
)
,

∑
i∈[n]m

a2
i

∫
i

h =
∑
i∈[n]m

(
y2
i +O(y3

i )
) ∫

i

h =
∑
i∈[n]m

(
∫
i
h′′)2∫
i
h

d4

64
+ o

(
d4
)

(5.29)

and thus

R := min
j∈[n]m

√∑
i∈[n]m a

2
i

∫
i
h

|aj|
= O(1). (5.30)
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Hence, the domain Dε,i is a subset of those indices l ∈ N0 that satisfyε
√
tR + t

nm
q < l <∞

0 ≤ l < −ε
√
tR + t

nm
q̄,

(5.31)

where
q = min

x∈I
h(x− x0) and q̄ = max

x∈I
h(x− x0) <∞, (5.32)

since h(· − x0) ∈ C4[0, 1]m.

For nm = ct1/2+δ there are no l’s satisfying the second inequality of (5.31) for
sufficiently large t. W.l.o.g. we set c = 1 in what follows. Setting l0 = d

√
t(εR+ t−δq)e

it holds that

Ln(ε) ≤ 1

τ 2
n

∑
i∈[n]m

∞∑
l=l0

a2
i

(
l − t

∫
i

h

)2

e−λi0
λli0
l!

=
t2

τ 2
n

∑
i∈[n]m

a2
i

∞∑
l=l0

(
1

t
−
∫
i
h

l

)2

e−λi0
λli0l

(l − 1)!
. (5.33)

Moreover, (
1

t
−
∫
i
h

l

)2

≤ 1

t2
− 2

q

tlnm
+

q̄2

l2n2m
= o(1).

Note that (5.29) also implies that∑
i∈[n]m

a2
i = O(nmd4).

Thus, we have that

Ln(ε) ≤ C ′
t2

τ 2
n

∑
i∈[n]m

a2
i

∞∑
l=l0

e−λi0
λli0l

(l − 1)!
≤ Cnmt

∞∑
l=l0

l

(l − 1)!

(
t

nm
q̄

)l
= Ct3/2+δ

∞∑
l=l0

l

(l − 1)!

(
t

nm
q̄

)l
,

for some constants C,C ′ > 0.

Consider

∞∑
l=a

(t1/2−δ q̄)l

l!
=

(
t1/2−δ q̄

)a
a!

(
1 +

∞∑
l=a+1

(t1/2−δ q̄)l

l!

a!

(t1/2−δ q̄)a

)
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=

(
t1/2−δ q̄

)a
a!

(
1 +

t1/2−δ q̄

a+ 1
+

(t1/2−δ q̄)2

(a+ 1)(a+ 2)
+ . . .

)
.

Setting a = d
√
t(ε + t−δ)e, second and further terms in the brackets are of the order

t−δkε−k and so we get

1 +
∞∑
k=1

(
ε−1t−δ

)k
=

1

1− ε−1t−δ
= O(1),

as t→∞. Using Stirling’s approximation

log k! = k log k − k +O(log k)

we have that(
t1/2−δ

)a
a!

=
exp

(
a log(t1/2−δ)

)
exp(a log a− a+O(log a))

= exp
(
a
(
log t1/2−δ − log a+ 1

)
+O(log a)

)
= exp

(√
t(ε+ t−δ)

(
− log(tδε+ 1) + 1 +O(1)

))
= O

(
(tδε+ 1)−

√
t(ε+t−δ)

)
.

In our case the terms are of the form

t1−2δ q̄2

∞∑
k=a

(t1/2−δ q̄)k

k!

k + 2

k + 1
,

with a =
⌈
ε
√
tR + t1/2−δq

⌉
− 2 ∼

(
d
√
t(ε+ t−δ)e

)
and (k + 2)/(k + 1) → 1 as

t→∞. Thus, the above considerations apply and all together we get

Ln(ε) ≤ O
(
t3/2+δ(tδε+ 1)−

√
t(ε+t−δ))

)
→ 0 as t, n→∞, d→ 0.

Under the hypothesis H1 we have

µni = EH1Xni = aiλ1i = ai(1 + yi)λ0i

=
td2

8

∫
i

h′′ + td4

(
1

128

(
∫
i
h′′)2∫
i
h

+
1

384

∫
i

h′′′′
)

+O

(
td6

nm

)
,

νn =
∑
i∈[n]m

µni = EH1Tn(Y ) =
∑
i∈[n]m

ai(1 + yi)λ0i

=
td2

8

∫
I

h′′ + td4

(
1

128
ρn +

1

384

∫
I

h′′′′
)

+O
(
td6
)
,

σ2
ni = VH1Xni = a2

iλ1i = a2
i (1 + yi)λ0i =

td4

64

(
∫
i
h′′)2∫
i
h

+O

(
td6

nm

)
,
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τ 2
n =

∑
i∈[n]m

σni = VH1Tn(Y ) =
∑
i∈[n]m

a2
i (1 + yi)λ0i =

td4

64
ρn +O

(
td6
)

and hence similar considerations prove Lindeberg’s condition in this case.
In the general case with the asymmetry parameter q ∈ (0, 1), Equation (5.25)

becomes

yi =
λ1i

λ0i

− 1 =
λ1i − λ0i

λ0i

=

∫
i
∆∫
i
h

=
q(1− q)

2

∫
i
h′′∫
i
h
d2 +

q(1− q)(1− 2q)

6

∫
i
h′′′∫
i
h
d3

+
q(1− q)((1− q)2 − q(1− 2q))

24

∫
i
h′′′′∫
i
h
d4 + o

(
d4
)

(5.34)

and the following terms EH0Tn,VH0Tn,EH1Tn andVH1Tn change accordingly. We skip
these expressions due to their length and because they are not particularly insightful.
Since the asymmetric factor q ∈ (0, 1) does not change the asymptotic behavior, it is
clear that the CLTs under H0 and H1 hold just like in the symmetrically placed q = 1/2

case.

Remark 5.3.2. Due to
σ2
ni

τ 2
n

→ 0

for all i ∈ {1, . . . , n}, Lindeberg’s condition is necessary for the CLTs above to hold,
see e.g. (Petrov, 1975) or (Billingsley, 1986).

Now we can analyze the Poisson LRT

Φt,n,d(Y ) :=

1 if Tt,n,d(Y ) > q∗α,t,n,d,

0 otherwise,
(5.35)

in the CLT regime above. Here

q∗α,t,n,d := q1−α
√
VH0Tt,n,d + EH0Tt,n,d (5.36)

with the 1− α quantile q1−α of N (0, 1).

Proof of Theorem 2.3.4 Poisson model in the CLT regime. As usual, we skip the in-
dices of t and d.

We want to find such q∗α,n that

PH0 (reject) = PH0

(
Tn (Y ) > q∗α,n

)
= α (5.37)
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and
PH1 (accept) = PH1

(
Tn (Y ) ≤ q∗α,n

)
= β (5.38)

hold. If we take q∗α,n :=
√

VH0Tnq1−α +EH0Tn, then by the CLT 5.3.1, Equation (5.37)
holds asymptotically, i.e. for sufficiently large t, n and sufficiently small d, (5.37) holds
exactly with some q̃∗α,n = q∗α,n + o(1). Similarly, by the CLT 5.3.1 under H1 we get
Equation (5.38) with q∗α,n :=

√
VH1Tnqβ + EH1Tn. For the quantile to be well-defined,

we need to figure out when√
VH1Tnqβ + EH1Tn =

√
VH0Tnq1−α + EH0Tn + o(1).

Using previous calculations it holds that

EH1Tn − EH0Tn =
∑
i∈[n]m

yi log(1 + yi)λ0i =
∑
i∈[n]m

λ0i

(
y2
i +O(y3

i )
)

(5.39)

and √
VH0Tn =

√∑
i∈[n]m

λ0i (y2
i +O(y3

i )) =
√

VH1Tn. (5.40)

Thus, the quantile is well-defined if

q1−α
√

VH0Tn − qβ
√

VH1Tn = EH1Tn − EH0Tn + o(1)⇐⇒ (5.41)√∑
i∈[n]m

λ0i (y2
i +O(y3

i )) = q1−α − qβ ⇐⇒ (5.42)

q(1− q)
√
td2

2

√∫
I

h′′(x− x0)2

h(x− x0)
dx+ o(d4) = q1−α − qβ = q1−β − qα. (5.43)

Solving for d, we get the desired resolution relation (2.15).

5.3.1.2 Binomial model

In the binomial model we have

Ft,x = Bin(t, x)

or more explicitly
Yi

indep.∼ Bin(t, pi) (5.44)
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where pi are defined in Equations (2.13) and (2.14), and the rest of the setup is the same
as in the Poisson model. The likelihood ratio statistic is

log

(
ϕ(Y |H1;Yi)

ϕ(Y |H0;Yi)

)
= log

(∏n
i=1

(
t
Yi

)
pYi1i (1− p1i)

t−Yi∏n
i=1

(
t
Yi

)
pYi0i (1− p0i)t−Yi

)

=
n∑
i=1

Yi log

(
p1i

p0i

)
+

n∑
i=1

(t− Yi) log

(
1− p1i

1− p0i

)
=

n∑
i=1

Yi log

(
p1i(1− p0i)

p0i(1− p1i)

)
+

n∑
i=1

t log

(
1− p1i

1− p0i

)
,

where the last term is deterministic so we set

Tt,n,d(Y ) =
n∑
i=1

Yi log

(
p1i(1− p0i)

p0i(1− p1i)

)
(5.45)

as our test statistic.
Similarly as before, we define the LRT as in (5.2) and set

q∗α,t,n,d := q1−α
√
VH0Tt,n,d + EH0Tt,n,d. (5.46)

Here q1−α is the 1− α quantile of the standard normal distribution.

Theorem 5.3.3 (CLT for binomial LRT). Assume a psf h satisfies Assumption 2.3.2
and that nm = ct1/2+δ for some arbitrary constants c, δ > 0. Then a CLT holds for
Tt,n,d(Y ) in the hypothesis and alternative as t, n→∞ and d→ 0, i.e.

Tt,n,d − E [Tt,n,d]√
V [Tt,n,d]

D→ N (0, 1).

The proof is similar to the Poisson model CLT proof and thus is postponed to
Appendix A.3.

The rest of the proof of Theorem 2.3.4 for the binomial model in the CLT regime
follows the same lines as the Poisson proof starting with Equation (5.37) and is therefore
omitted.

5.3.2 1DPoissonmodel analysis in the asymptotic equivalence regime

We complete the Theorem 2.3.4 Poisson model proof by showing that it is asymptotically
equivalent to the VSG model provided that t�

√
n log8 n.

We briefly recall the theory of asymptotic equivalence developed by Le Cam (Le
Cam, 1986), (Le Cam and Yang, 2000). We mostly follow the presentation of (Grama
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and Nussbaum, 2002). In our context we consider a statistical experiment—a set

E = (X,X , {Pθ : θ ∈ Θ}),

where (X,X ) is a measurable space with the parameter set Θ ⊂ R, a possibly
unbounded interval, and Pθ is an absolutely continuous probability measure with
respect to some dominating σ-finite measure µ. Consider a second, possibly easier to
tackle, experiment G = (Y,Y , {Qθ : θ ∈ Θ}) over the same parameter space Θ. Let
further (D,D) be a measurable space of possible decisions. Then the set of Markov
kernels κ : (X,X ) → (D,D) is the set of randomized decision procedures for the
experiment E . We denote it by Π(E). We let L(D,D) to be the set of all loss functions
L : Θ × D → [0,∞) such that 0 ≤ L(θ, z) ≤ 1 for all θ ∈ Θ and z ∈ D. Given a
decision procedure κ ∈ Π(E), the true value θ ∈ Θ and a loss function L ∈ L(D,D),
the risk is

R(E , κ, L, θ) =

∫
X

∫
D

L(θ, z)κ(x, dz)Pθ(dx).

We define the deficiency as

δ(E ,G) := sup sup
L∈L(D,D)

inf
κ1∈Π(E)

sup
κ2∈Π(G)

sup
θ∈Θ
|R(E , κ1, L, θ)−R(G, κ2, L, θ)|

with the first supremum ranging over all possible decision spaces (D,D). Since
deficiency is asymmetric, we define the Le Cam (pseudo) distance as

∆(E ,G) := max{δ(E ,G), δ(G, E)}.

Definition 5.3.4. Two sequences of statistical experiments En and Gn, n ∈ N, are
asymptotically equivalent if

∆(En,Gn)→ 0.

We can summarize the implications of the above definition for our analysis in the
following proposition.

Proposition 5.3.5. Let En1 and En2 , n ∈ N, be two sequences of statistical experiments
that are asymptotically equivalent, and let Ψn

1 and Ψn
2 be the corresponding optimal

tests. Then we have

EH0Ψ
n
1 → α and EH1Ψ

n
1 → 1−β ⇐⇒ EH0Ψ

n
2 → α and EH1Ψ

n
2 → 1−β,

i.e. the type I error of Ψn
1 converges to α and the type II error to β if and only if the

type I error of Ψn
2 converges to α and type II error to β. Thus, an asymptotic resolution
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sequence in the sense of Definition 2.2.2 for the first sequence of experiments will also
be an asymptotic resolution for the second sequence.

The above proposition allows us to transfer the VSG result to the Poisson model in
the asymptotic equivalence regime:

Corollary 5.3.6. Let 0 < α, β < 1/2 be type I and II errors, respectively. Assume that
√
n log8 n = o (t) and Assumption 2.3.2 are valid. Then Theorem 2.3.4 (a) holds.

Proof. Our VSG model can be viewed as a Gaussian model

Yi
indep.∼ N

(
2
√
fn(i/n), 1

)
with

fn(x) = t

∫ x

x−1/n

g(y) dy (5.47)

for x ∈ [1/n, 1]. According to Example 4.2 of (Grama and Nussbaum, 2002), a sequence
of n Poisson observations

Xi
indep.∼ Poi (f(i/n))

is asymptotically equivalent to the above Gaussian model with some fixed function
f : [0, 1]→ R provided that f is bounded c1 ≤ f(x) ≤ c2 by some absolute constants
c1, c2 > 0 and it is Hölder with exponent β > 1/2. This result was extended in Theorem
4 of (Ray and Schmidt-Hieber, 2018) to include functions f which are not bounded
away from zero: functions f = fn that may depend on n ∈ N, satisfy

inf
x
fn(x)� n−β/(β+1) log8 n (5.48)

and fn are Hölder with 1/2 < β ≤ 1. Thus, we only need to extend our fn’s to
functions on [0, 1] and prove that they satisfy the assumptions of Theorem 4 of (Ray and
Schmidt-Hieber, 2018) to complete the proof.

As a first step, extend the image function g to a function on C2[−1/n, 1] such that

n−1/2 log8+δ n ≤ t

∫ 0

−1/n

g(y) dy ≤ t, (5.49)

for some δ > 0. Then we can extend fn’s in (5.47) to fn : [0, 1]→ R.
We have that fn ≤ t since

∫ 1

0
g = 1 and g > 0, and fn ∈ C3[0, 1] since g ∈

C2[−1/n, 1]. Hence, fn is Hölder with β = 1. Due to the psf h being fixed, our testing
problem (2.8) and Assumption 2.3.2, for all x ∈ [1/n, 1] it holds that∫ x

x−1/n

g(y) dy ≥
minx∈[0,1] g(x)

n
.
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Due to the continuity of g and compactness of [0, 1], minx∈[0,1] g(x) ≥ c for some
constant c > 0. Thus,

inf
x∈[0,1]

fn = inf
x∈[0,1]

t

∫ x

x−1/n

g (y) dy ≥ min

{
c
t

n
, n−1/2 log8+δ n

}
� n−

1
2 log8 (n) ,

by (5.49), and hence our assumption
√
n log8 n = o(t) implies (5.48). Therefore, in

this case the Poisson model is equivalent to the VSG model for which Theorem 2.3.4 (a)
holds by the above proof.



CHAPTER 6

Discussion and future work

The present thesis investigated the classical two point resolution problem in a statistical
setting. As far as we know, this is the first work providing a mathematically rigorous
proof that for even psfs asymptotically the resolution depends linearly on the FWHM
for the binomial, Poisson and variance stabilized Gaussian models in any dimension
m, subject to the illumination time t and discretization n satisfying nm = ct1/2+δ for
arbitrary constants c, δ > 0. Moreover, we showed that for the 1D Poisson model the
relationship between t and n can be arbitrary, as long as t, n→∞ and d→ 0.

Another important finding is that for the homogeneous Gaussian model the resolution
asymptotically depends on the FWHM to the power of 5/4. Furthermore, unlike in
the other models, in the higher dimensional HG model the resolution also depends on
the FWHM, perpendicular to the line connecting the two psfs in the alternative, to the
power of 1/4. These observations show that either the HG model is too simple for
describing resolution, or that these distinctions could be used to determine if the given
experimental setup is fundamentally different from the ones usually encountered in
microscopy, where the resolution depends linearly on the FWHM.

We have also provided full proofs showing that the most difficult statistical testing
problem is when the psfs are put in such a way that the psf under the hypothesis is
centered at the center of mass of the two psfs under the alternative, and that the testing
problem with the symmetric placement of the psfs under the alternative is the easiest.

Finally, in simulations we have addressed our results’ applicability to finite samples.
In one, two and three dimensions the simulated resolution seems to be approximated
really well by our theory at t and n values that seem plausible for modern experiments.

Just like any other research endeavor, the present one raises many questions that
require future work. Here we list some of them:

• Are the Poisson and binomial CLTs 5.3.1 and 5.3.3 also valid for other combinations
of t and n? Due to Remark 5.3.2, the CLTs are only valid if and only if the
respective Lindeberg’s conditions hold.
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• Can the results of (Ray and Schmidt-Hieber, 2018) on the 1D Poisson intensity
estimation be extended to higher dimensional Poisson experiments? Would these
results be valid at least in the whole complement of the CLT validity domain,
thereby proving (2.15) for any relationship between t and n, just like in 1D?
Similarly, what are the respective results for the binomial experiments?

• Throughout the thesis we have assumed that the psf is even and time invariant, the
locations of the centers of the psfs are known and that the asymmetry parameter q
from (2.8) is also known. Experimentally this is not always the case and thus it
would be interesting to relax some or all of these assumptions.

• In Section 3.5 we showed that our results do not agree with Helstrom’s quantum
optical results (Helstrom, 1973) at low number of photons. This is expected, since
Helstrom’s solution is optimal from the point of view of quantum information
theory. It would be interesting to see if it is possible to prove Helstrom’s results
rigorously, but this might fall into the general problem of putting quantum field
theory on rigorous mathematical footing (Jaffe and Witten, 2000), but see e.g.
(Yamagata et al., 2013), where the authors define a quantum log-likelihood ratio.

• Modern super-resolution imaging is truly remarkable – the researchers are able
to measure distances of the order of tens of nanometers very accurately using
the so-called DNA origami nanorulers (Raab et al., 2018). We hope that such
experiments could confirm our theoretical findings.
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Other proofs

A.1 An integral approximation

The following lemma is used throughout to prove the main theorems.

Lemma A.1.1. Let f : [0, 1]m → R and g : [0, 1]→ R>0 be two absolutely continuous
functions. Then

∑
i∈[n]m

(∫
Bi
f(x) dx

)2∫
Bi
g(x) dx

n→∞−−−→
∫
I

f(x)2

g(x)
dx <∞,

where Bi =
[
i1−1
n
, i1
n

]
× . . .×

[
im−1
n
, im
n

]
.

Proof. Note that f(x)2/g(x) is absolutely continuous, and thus Riemann integrable.
Using the mean value theorem we get

∑
i∈[n]m

(∫
Bi
f(x) dx

)2∫
Bi
g(x) dx

=
1

nm

∑
i∈[n]m

f(ξ′i)
2

g(ξi)
=

1

nm

∑
i∈[n]m

(f(ξ′i)− f(ξi) + f(ξi))
2

g(ξi)

=
1

nm

∑
i∈[n]m

(f(ξ′i)− f(ξi))
2 + 2(f(ξ′i)− f(ξi))f(ξi) + f(ξi)

2

g(ξi)

with ξi, ξ′i ∈ Bi. Now by continuity of f it holds for all i ∈ [n]m that

|f(ξi)− f(ξ′i)| ≤ max
x∈Bi

f(x)−min
x∈Bi

f(x)→ 0,

as n→∞. Thus, by Riemann integrability

∑
i∈[n]m

(∫
Bi
f(x) dx

)2∫
Bi
g(x) dx

=
1

nm

∑
i∈[n]m

f(ξi)
2

g(ξi)
+ o(1)→

∫
I

f(x)2

g(x)
dx,
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as n→∞.

A.2 Which alternative is the most difficult

Proof of Proposition 2.2.1. As usual, we skip indices t and d in the proof.
We first prove the theorem for the homogeneous Gaussian model (2.7). Let

λ := |x01 − (qx11 + (1− q)x21)| , (A.1)

i.e. unlike in the previous proofs x01 is not necessarily equal to qx11 + (1− q)x21. Using
this notation, (5.11) can be written as

∆(x− x0) = λh′(x− x0) +
h′′(x− x0)

2
(λ2 + (1− q)qd2) +O(higher order terms).

(A.2)
Thus, µn as defined in (5.3) is equal to

µn =
t2

2

∑
i∈[n]m

(∫
i

∆

)2

=
t2

2

∑
i∈[n]m

(
λ

∫
i

h′ +

∫
i
h′′

2
(λ2 + (1− q)qd2) +O(higher order terms)

)2

=
t2

2n

(
λ4

4

∫
I

(h′′)2 +
q(1− q)d2λ2

2

∫
I

(h′′)2 +
q2(1− q)2d4

4

∫
I

(h′′)2 + λ2

∫
I

(h′)2

+
(
λ2 + (1− q)qd2

)
λ

∫
I

h′′h′ +O (higher order terms)

)
,

where in the last step we have used Lemma A.1.1. Since h is even,
∫
I
h′h′′ = 0.

Considering µn as a function of λ, we find its minimum at λ = 0 + O(d2). Since by
(5.4) under H0 : Tn (Y ) ∼ N (−µn, 2µn) and under H1 : Tn (Y ) ∼ N (µn, 2µn), the
testing problem becomes the most difficult when µn is minimal. Thus, we see that the
case x01 = qx11 + (1− q)x21 is indeed the most difficult to distinguish.

The proof in the variance stabilized Gaussian model (2.6) follows the same lines
and is therefore omitted.

For Poisson and binomial models we have two cases to consider. In one dimension,
whenever the asymptotic equivalence holds, the proposition follows from the variance
stabilized Gaussian model. In contrast, the CLT holds in all dimensions, provided that
nm = ct1/2+δ for some arbitrary constants c, δ > 0. We go over the main steps of the
statistical resolution proof in the CLT regime and show that they still hold. Just like in



A.2. Which alternative is the most difficult 63

the models above, we show that the center of mass placement, i.e. λ = 0 (A.1), is the
most difficult. We only consider the Poisson model; the proof for the binomial model is
similar.

The proof of the CLT clearly holds as before, but with more terms in the Taylor
expansions. The only tricky step is to make sure that (cf. (5.30))

R := min
j∈[n]m

√∑
i∈[n]m a

2
i

∫
i
h

|aj|

is finite. Using (A.2) we have (cf. (5.25))

yi =
λ1i − λ0i

λ0i

=

∫
i
∆∫
i
h

=

∫
i
h′∫
i
h
λ+

1

2

∫
i
h′′∫
i
h

(
λ2 + (1− q)qd2

)
+o
(
λ2
)
+o
(
d2
)
, (A.3)

ai = log

(
λ1i

λ0i

)
= log(1+yi) = yi+O

(
y2
i

)
=

∫
i
h′∫
i
h
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(1− q)qd2

2
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i
h′′∫
i
h

+O
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λ2
)
+o
(
d2
)
,

√√√√∑
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a2
i

∫
i

h =
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log(1 + yi)2

∫
i
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(y2
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(
(
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i
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∫
i
h′
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i
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i
h

(1− q)qλ d2 +
(1− q)2q2

4

(
∫
i
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i
h

d4

)

+O
(
λ3
)

+ o
(
d4
)

+ o
(
λd2
)}1/2

and thus
R = O(1),

as before. The rest of the CLT proof follows same lines as before (Theorem 5.3.1) and
is therefore omitted.

The calculation of the statistical resolution in Poisson and binomial models essentially
boils down to Equation (5.42) stated here once more for convenience

q1−α
√

VH0Tn − qβ
√

VH1Tn = EH1Tn − EH0Tn + o(1)⇐⇒√∑
i∈[n]m

λ0i (y2
i +O(y3

i )) = q1−α − qβ = q1−β − qα.
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Thus, using the general expression for yi (A.3) the above is equivalent to

t

(
λ2

∫
I

(h′)2

h
+

(1− q)2q2d4

4

∫
I

(h′′)2

h
+ λ

(
(1− q)qd2 + λ2

)∫
I

h′h′′

h

+ o
(
λ3
)

+ o
(
d2λ
)

+ o
(
d4
))

= (q1−β − qα)2.

If the psf h is even, then h′ is odd and h′′ is even. Hence,∫
I

h′h′′

h
= 0

and thus the left hand side considered as a function of λ attains its minimum at λ = 0.
This implies that for given values of α, t and d, the power 1− β is the smallest when
λ = 0, i.e. x0 = qx1 + (1− q)x2, is the most difficult alternative.

A.3 Proof of the binomial CLT

Proof of Theorem 5.3.3. For ease of readability, we skip indices t and d in what follows.
Just like in the Poisson case, we will give full details for the symmetric q = 1/2 problem
and only outline the general q ∈ (0, 1) proof at the end.

Recall that by (5.45) the test statistic in the binomial model is

Tn(Y ) =
∑
i∈[n]m

(
log

(
p1i

p0i

)
+ log

(
1− p0i

1− p1i

))
Yi =

∑
i∈[n]m

(ai − āi)Yi

where as before
Yi

indep.∼ Bin(t, pi).

We use the Taylor series log(1 + yi) =
∑2

k=0(−1)k/(k + 1)yk+1
i + o(y3

i ) for each
term separately. Because the weight ai is the same as in the Poisson case (5.24), the
expression for yi is also the same (5.25) and ai � yi ∼ d2. For the second weight āi we
use the log expansion with

yi = −
∫
i
h′′

8(1−
∫
i
h)
d2 −

∫
i
h′′′′

384(1−
∫
i
h)
d4 + o

(
d4

nm

)
. (A.4)

Thus, asymptotically ai � āi as n → ∞ and w.l.o.g. we can consider T̃n(Y ) =∑
i∈[n]m aiYi =

∑
i∈[n]m Xni with Xni := aiYi.
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This leads to

µni = EH0Xni = aiEH0Yi = aitp0i = ait

∫
i

h = log(1 + yi)t

∫
i

h

=
td2

8

∫
i

h′′ + td4

(
− 1

128

(
∫
i
h′′)2∫
i
h

+
1

384

∫
i

h′′′′
)

+O

(
td6

nm

)
,

νn =
∑
i∈[n]m

µni = EH0T̃n(Y ) = t
∑
i∈[n]m

ai

∫
i

h

=
td2

8

∫
I

h′′ + td4

(
− 1

128
ρn +

1

384

∫
I

h′′′′
)

+O
(
td6
)
,

σ2
ni = VH0Xni = a2

i VH0Yi = a2
i tp0i(1− p0i) =

td4

64

(
∫
i
h′′)2∫
i
h

+O

(
td4

n2m

)
+O

(
td6

nm

)
,

τ 2
n =

∑
i∈[n]m

σ2
ni = VH0T̃n(Y ) = t

∑
i∈[n]m

a2
i

∫
i

h

(
1−

∫
i

h

)

=
td4

64
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(
td4

nm

)
+O(td6),

where ρn was defined in (5.26). Applying Lemma A.1.1 with f(x) = h′′(x− x0) and
g(x) = h(x− x0) we get

ρn =

∫
I

h′′(x− x0)2

h(x− x0)
dx+ o(1)

and
τ 2
n =

td4

64

∫
I

h′′(x− x0)2

h(x− x0)
dx+ o(td4). (A.5)

Note that this also implies that ∑
i∈[n]m

a2
i = O(nmd4). (A.6)

Let

Dε,i =

l ∈ N0

∣∣∣∣∣∣ 0 ≤ l ≤ t, |ail − aitp0i| > ε

√∑
i∈[n]m

a2
i tp0i(1− p0i)

 .

Just as in the Poisson proof (Remark 5.3.2), Lindeberg’s condition is necessary here as
well. Let

q = min
x∈I

h(x− x0) and q̄ = max
x∈I

h(x− x0). (A.7)
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We have
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where C > 0 is some constant and we have used (A.5), (A.6) and that(
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for all i ∈ [n]m, independent of n. Using (A.6), it holds that
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(A.9)

Let c, δ > 0. For nm = ct1/2+δ and t sufficiently large there are no l’s satisfying the
second inequality. Thus,

Ln(ε) ≤ Cnmt
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(
t

l

)
l2
( q̄

nm

)l (
1− q

nm

)t−l
. (A.10)

W.l.o.g we set c = 1 in what follows. Consider
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(A.11)
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Each term in the sum of (A.11) is of the form(
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hence Lindeberg’s condition holds just like for H0.

For the general q ∈ (0, 1) case, note that we write the LR test statistic as

Tn(Y ) =
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where Yi
indep.∼ Bin(t, pi). Now for the first coefficient we use the Taylor series ai =
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log(1 + yi) with yi given in (5.34). For the second, we get

yi = −q(1− q)
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)
which is a generalization of (A.4). Therefore, just like in the q = 1/2 proof, ai � āi

and thus it suffices to consider the test statistic

T̃n(Y ) =
∑
i∈[n]m

aiYi.

Clearly, the CLTs under H0 and H1 still hold, just like in the symmetrically placed
q = 1/2 case.
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2009 Brandos atestatas, Žvėryno gimnazĳa, Vilnius, Lithuania.

Publications and Preprints

[1] G. Kulaitis, A. Munk and F. Werner. What is resolution? A statistical
minimax testing perspective on super-resolutionmicroscopy. Submitted.
arXiv:2005.07450.

Conference Talks

2019 European Meeting of Statisticians, Palermo, Italy.

2018 Meeting of YoungMathematicians of Lithuania, Vilnius, Lithuania.

2018 International Vilnius Conference on Probability Theory and
Mathematical Statistics, Vilnius, Lithuania.

mailto:gytis.kulaitis@mathematik.uni-goettingen.de
https://arxiv.org/abs/2005.07450

	Introduction
	Lens optics and diffraction
	From microscopy to nanoscopy

	Model and main results
	Statistical model
	Statistical testing problem
	Main theorem
	Implications for experiments

	Comparisons with previous work
	Overview
	Abbe and Rayleigh
	Milanfar and coauthors' work
	Acuña and Horowitz's work
	Helstrom's work

	Simulations
	One dimension
	Symmetric q=1/2 case
	Asymmetric q = 1/5 case

	Two and three dimensions

	Proof of the main theorem
	Homogeneous Gaussian model
	Variance stabilized Gaussian model
	Poisson and binomial models
	Analysis in the central limit theorem regime
	1D Poisson model analysis in the asymptotic equivalence regime


	Discussion and future work
	Other proofs
	An integral approximation
	Which alternative is the most difficult
	Proof of the binomial CLT

	Bibliography

