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Vino a quemar el bosque, a incendiar las entrañas de la tierra, vino a sembrar 

un saco de fréjoles y a dejarnos una herencia helada: la eternidad del hambre. 

Rozó con fuego el alto nivel de los mañíos, el baluarte del roble, la ciudad del 

raulí, la rumorosa colmena de los ulmos, y ahora desde las raíces quemadas, se 

va la tierra, nada la defiende, bruscos socavones, heridas que ya nada ni nadie 

puede borrar del suelo: asesinada fue la tierra mía, quemada fue la copa, 

originaria. 

 

Oda a la erosión en la Provincia de Malleco (1956).  
Pablo Neruda. Nobel prize for Literature, 1971  

En montañas me crié 
con tres docenas alzadas. 
Parece que nunca, nunca, 
aunque me escuche la marcha, 
las perdí, ni cuando es día 
ni cuando es noche estrellada, 
y aunque me vea en las fuentes 
la cabellera nevada, 
las dejé ni me dejaron 
como a hija trascordada. 
 

Y aunque me digan el mote 
de ausente y de renegada, 
me las tuve y me las tengo 
todavía, todavía, 
y me sigue su mirada. 

 
Montañas Mías. Poema de Chile (1967) 
Gabriela Mistral. Nobel Prize for Literature 1945. 
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Summary 

Northern Patagonia in Argentina (40°S) offers a great opportunity to analyse the influence of 

volcanic ash deposition and fire on the vegetation composition. Here, three lakes located 

strategically along the forest-steppe ecotone within the Lanín National Park (LNP) were analysed 

with the aim to reconstruct past vegetation and fire history. Additionally, given the presence of 

tephra layers, it was possible to assess the impact of ash deposition on the vegetation composition. 

The results indicate that ash deposition did not trigger significant changes on the local vegetation 

nearby Lake Bruja (3600 cal. yr BP), Avutarda (2700 cal. yr BP), and Vizcacha (11700 cal. yr BP). 

However, it was observed a slight decrease in the percentage of Poaceae pollen. Overall, the results 

obtained from Lake Vizcacha suggest that during the Early Holocene, the vegetation nearby the 

Lácar basin was characterized by an open Nothofagus forest with a diverse shrub and herbaceous 

stratum associated to warm and dry climatic conditions. The Mid-Holocene featured a closed 

Nothofagus forest concomitant with more humid climatic conditions, and the presence of a small 

population of Austrocedrus chilensis. Finally, the Late Holocene on the three records indicates stable 

forest conditions, associated with the establishment of the modern rain winter/summer drought 

climatic regime in the region. Past fire regimes were reconstructed applying the analysis of macro 

charcoal particles (≥ 125µm) in the cores Bruja and Vizcacha. For the Early Holocene, the results 

suggest moderate local fires, likely due to the dry and warm climatic conditions inferred for this 

period. The Mid-Holocene was characterized by a shift from low-moderate fires to fires of high 

magnitude. Long fire return intervals (FRI) resulted in the accumulation of biomass that given the 

proper climatic and ignition conditions, resulted in the severe fires detected for the Mid-Holocene. 

The Late Holocene featured low severity fires in both records, however, the last 2000 years show 

differences in the fire activity documented on Bruja and Vizcacha, probably attributed to 

vegetational dissimilarities. The redundancy analysis indicated a nonsignificant effect of fire on the 

local vegetation composition documented in Bruja. Nevertheless, this analysis showed a positive 

correlation between FRI and Austrocedrus chilensis, suggesting the persistence of this conifer during 

long periods without fires. The anthropogenic signal was detected in the last 200 years but their 

impact on the vegetation was almost negligible, except for the decline in Nothofagus obliqua-type, 

associated with the timber activities developed during the 1800s. Moreover, the establishment of 

the modern climate during the last 3000 years may be responsible for the expansion of the 

Nothofagus obliqua-type forest within the Lácar basin, being one of the main findings of this work. 
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Preface 

North Patagonia Argentina (40°S,71°W) is a region that offers the opportunity to asses the impact 

on the vegetation of some of the main disturbance agents in the world: fire and volcanism. Since 

this region also comprises the forest-steppe transition, the influence of anthropogenic forces on the 

ecosystem and landscape process can be evaluated (Kitzberger, 2012; Risser, 1993). Here, covering 

a narrow band of forest at the eastern Andean slopes is located the Lanín National Park (LNP), which 

encompasses the main population of Nothofagus obliqua and Nothofagus alpina in Argentina 

(Sabatier et al., 2011). Both species have been largely studied for silvicultural strategies. 

Nevertheless, little is known about their past dynamic in this region.  

The main objective of the present work is to reconstruct the past vegetation history near the Lácar 

basin and to analyse the possible influence of volcanism and fire on the vegetation at long-term 

scale. In order to achieve this purpose, I present the results obtained from three lake sediment cores 

collected in the southernmost limit of the Lanín National Park in the Province Neuquén. The overall 

aims are 1) to describe the changes in vegetation composition during the Holocene near the forest-

steppe ecotone in northern Patagonia, 2) to analyse the variation of the populations of Nothofagus 

alpina and Nothofagus obliqua through the Holocene, and 3) to assess the influence of fire, volcanic 

ash deposition, and human impact, on the vegetation composition.  

This monography is structured as follows: 

Chapter 1 gives an introduction to the region of northern Patagonia, Argentina with regard to its 

climate and vegetation, especially of the Lanín National Park area. Additionally, special attention is 

given to both Nothofagus obliqua and Nothofagus alpina analysing their ecology and current 

investigations in Chapter 2. Chapter 3 discusses the influence of natural disturbance processes on 

the vegetation composition with a focus on volcanic ash deposition and fire. Chapter 4 describes 

briefly the palaeoecological and palynological approach. 

The analyses carried out on the three sediment cores are presented in two different chapters: 

Chapter 5 shows the results and discusses the findings regarding ash deposition, fire and the Late 

Holocene vegetation history of Nothofagus obliqua and Nothofagus alpina from Lake Bruja and Lake 

Avutarda, whereas Chapter 6 presents the results from Lake Vizcacha with emphasis on the 

vegetation changes during the last 11000 years and the influence of ash deposition and fire regimes. 

The Holocene vegetation history of Nothofagus alpina and Nothofagus obliqua is discussed as well. 
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Chapter 7 is a review of palynological records available in public data repositories as well as in the 

literature regarding the presence of Nothofagus obliqua pollen type. Finally, Chapter 8 synthesizes 

the main research outcomes and conclusions of this work. Full pollen diagrams and photographs of 

the pollen and non-pollen palynomorphs found during this research can be observed in the 

Appendices. 
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Chapter 1: Introduction 

1.1 The Lanín National Park 

The LNP is located south of the Province Neuquén, along the eastern slopes of the Andes Cordillera 

(Figure 1a, b, and c). Its northern limit is approximately at Lake Ñorquinco (39° 10´S) while the 

southern limit is at 40°40´S close to the Lake Filo Hua Hum. The Park got its name from the Lanín 

volcano (39°38´S; summit 3418 m) whose last known eruption was at 560 CE (Global Volcanism 

Program, Smithsonian Institution. Web page visited in 2019). In 1937 the area was declared a natural 

protected area and in 1945 it was declared as National Park (Administración de Parques Nacionales, 

2012). 

 

 

Figure 1. (a) Map with the location of the Province Neuquén in Argentina. (b) Province Neuquén and the Lanín National 
Park highlighted in green. (c) Close-up of the Lanín National Park with its lakes. (d) Topographic map and isohyets indicating 
the annual precipitation in the region taken from Lamy et al. (2010); yellow rectangle shows the location of the Lanín 
National Park.  

 

The LNP is located on ancient volcanic rocks, mainly characterized by basaltic plateau and given its 

proximity to the Andes Cordillera, pebble fans occur as a consequence of the tectonic uplift (Iriondo, 

1989). The topography in this region was affected by the advance and retreat of ice-sheet caps that 
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covered broad areas in Patagonia during the Last Glacial Maximum (hereinafter LGM; Hulton et al., 

2002). The presence of moraines, cirques, glacial lineation, and other glacial geomorphology 

features account for the influence of the ice cover on the landscape (Glasser et al., 2008; Coronato 

et al., 2004). The lakes located in the Park have a glacial origin as well with an elongated-shape 

oriented west-east (Figure 1c, Diaz et al., 2000; Iriondo, 1989). Some of these lakes are surrounded 

by hills with dense Nothofagus forest and are located at high elevation (> 800 m a.s.l.) except for 

the Lake Lácar (640 m a.s.l.). 

1.2 Climate 

The climate in Patagonia is largely influenced by the presence of the Andes Cordillera which acts as 

a wall for the tropospheric flow (Garreaud et al., 2008). This mountain intercepts the equatorial belt 

of low pressure, the subtropical area of high pressure and the extratropical westerlies (Garreaud, 

2009). Variation in the latitudinal position and intensity of the westerly winds of the southern 

hemisphere have been proposed as drivers of the changes on the deep-ocean circulation and 

atmospheric CO2 (Rojas et al., 2009). The orographic effect produced by the Andes Cordillera is 

responsible for the sharp precipitation gradient in Patagonia (Viale et al., 2019).  

Humid air masses formed in the Pacific Ocean are transported by westerly winds towards the Andes 

Cordillera which is located perpendicular to the horizontal direction of these wind system (Viale and 

Nuñez 2011; Figure 2). The presence of this natural barrier forces an uplift of these air masses, 

enhances condensation, the formation of clouds, and triggers precipitation on the windward slope 

(Garreaud et al., 2013). 

 

 

Figure 2. Schematic 
representation of the 
orographic effect in the 
Andes Chile-Argentina 



10 
 

The origin of orographic clouds is explained by an adiabatic process on the unsaturated air parcel 

embedded in the flow (Barros and Lettenmaier, 2004) which turns into cold air with the altitude. 

Once it is above the cloud level the air parcel becomes saturated and promotes condensation, and 

therefore precipitation. The air parcel moves downward (east) and becomes warm adiabatically, 

leading to evaporation and less precipitation on leeward slopes (i.e. rain shadow effect; Barros and 

Lettenmaier 2004; Viale, 2010; see Figure 2). According to Viale et al. (2019), the differences in mean 

annual precipitation between windward (west) and leeward (east) slope of the Andes Cordillera at 

40°‒42°S are ~2400 mm and < 600 mm respectively (Figure 3). 

 

Figure 3. Transect of annual precipitation across the Andes at 40° - 42° S from Viale et al. (2019). 

One important aspect that influences the climate in southern South America is El Niño/Southern 

Oscillation (ENSO) phenomenon, being a key factor in the climate variability in the region. The ENSO 

is the result of the interaction between the ocean and the atmosphere that occurs across its core 

region in the tropical-subtropical Pacific to Indian Ocean basin (Allan, 2000). This irregular 

phenomenon (2‒7 years periodicity; Garreaud, 2009) has two different phases: El Niño and La Niña. 

Garreaud (2009) states the following patterns associated with El Niño episodes: 1) below average 

rainfall over tropical South America, 2) above average precipitation over subtropical South America, 

and 3) warmer than normal air temperature at tropical and subtropical latitudes. During La Niña 

episodes, inverse conditions predominate. Analysing the influence of El Niño events on the 

variability of Andean river flows, Compagnucci and Araneo (2007) established that the streamflow 

of Northern Patagonia rivers has a direct relationship with the sea surface temperature anomalies 

related to El Niño events. In addition, interannual variability on Argentinean rivers related to ENSO 

episodes indicates streamflow below normal during La Niña (cold phase) and normal or above 

average streamflow during El Niño (warm phase). 

Regarding the climate of the LNP, Administración de Parques Nacionales (2012) established that the 

climate in general is temperate-humid with major precipitation during the winter season (May-
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August). Mean annual precipitation fluctuates between 3000 and 700 mm and the average 

temperature during winter is 4.1°C and 20°C during summer. 

1.3 The three dominant vegetation of Northwestern Patagonia 

Primarily, the drastic change in precipitation drives the current vegetation in the region. Dense 

forest occurs in areas with high precipitation (1500‒2500 mm). Shrublands or intermediate areas 

occur with average precipitation between 1000–1500 mm. Areas bordering the steppe present a 

precipitation regime of 600 mm (Kitzberger, 2012; Paruelo et al., 1998; Viale and Garreaud, 2015). 

This west-east variation in precipitation triggers the presence of the forest-steppe ecotone 

characteristics of Patagonia (Figure 4). Kitzberger (2012) provided a complete overview about the 

forest-steppe ecotone of northern Patagonia, highlighting the abiotic and biotic feature 

characteristics of this transition and describing the forest-steppe transition as a dynamic region and 

as a place where global change consequences will earlier become most evident. 
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Figure 4. Different landscapes in northern Patagonia: a) Nothofagus forest in Neuquén; b) outlook from Mario “Moro” 
Paschetta viewpoint in the LNP; c) slope with isolated individuals of Austrocedrus chilensis within the steppe.  

 

The changes in precipitation together with the topography determine the vegetation across west-

east Andes. On the western slope of the Andes (Chilean territory, ~39°S), annual precipitation 

fluctuates between 1200 and 1600 mm and mean annual temperatures vary between 10° and 13°C 

(Luebert and Pliscoff, 2017). Different vegetation communities can be distinguished here (from west 

to east, based on Luebert and Pliscoff, 2017): Deciduous Temperate Forest of Nothofagus obliqua – 
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Laurelia sempervirens (0‒600 m a.s.l.); Andean Temperate Deciduous Forest with Nothofagus alpina 

- Dasyphyllum diacanthoides (300‒900 m a.s.l.); Andean Temperate Deciduous Forest with 

Nothofagus alpina - Nothofagus dombeyi (700‒1300 m a.s.l.); Andean Temperate Deciduous Forest 

of Nothofagus pumilio - Araucaria araucana (600‒1400 m a.s.l.); Andean Temperate Deciduous 

Forest of Nothofagus pumilio - Azara alpina (1400‒1800 m a.s.l.); Andean Temperate Resinous 

Forest of Araucaria araucana - Nothofagus dombeyi (1200‒1600 m a.s.l.); Andean Temperate ow-

scrubland of Discaria chacaye - Berberis empetrifolia (1600‒2300 m a.s.l.); and the Andean 

Temperate low-scrubland of Adesmia longipes - Senecio bipontinii (1300‒2500 m a.s.l.). 

On leeward slopes of the Andes (Argentinian territory), the forest is characterized by several 

Nothofagus species. For example, the evergreen Nothofagus dombeyi occurs between 500 and 1100 

m a.s.l. whereas the deciduous Nothofagus pumilio grow between 1100‒1600 m a.s.l. Nothofagus 

obliqua and Nothofagus alpina (deciduous trees) codominate with N. dombeyi (see Sabatier et al., 

2011 and next chapters for more details). On bottom valleys, on rocky and xeric slopes the 

deciduous southern beech species Nothofagus antarctica occurs as a tall tree or as a shrub according 

to the environmental conditions (Donoso 2013; Veblen et al., 1996). The Nothofagus forest may also 

occur with some conifers like Araucaria araucana, Austrocedrus chilensis, and Fitzroya cupressoides 

(Donoso 2013; Veblen et al., 1995). The understory is dominated mainly by the bamboo Chusquea 

culeou (Pearson et al., 1994). 

As the precipitation decreases towards the east, Austrocedrus chilensis and Nothofagus antarctica 

become dominant. Maytenus boaria, Lomatia hirsuta, Schinus patagonicus, Embothrium coccineum, 

and other species are part of this landscape. At the boundary with the steppe, isolated individuals 

of Austrocedrus chilensis occur (Villalba and Veblen, 1997). Within the steppe, bunchgrasses of Stipa 

speciosa, Festuca pallescens, and cushion shrubs of Mulinum spinosum occur.  

1.4 The vegetation in the Lanín National Park 

According to Administración de Parques Nacionales (2012), the vegetation in the LNP is subdivided 

into two phytogeographic provinces: Altoandina (High Andean) and Subantárctica (Subantarctic). 

The High Andean and the Subantarctic province are phytogeographic regions defined by Cabrera 

(1971), who stated that the High Andean Province in Neuquén corresponds to those sites above 

1600 m a.s.l. characterized by species belonging to the genus Poa, Festuca, Deyeuxia, Deschampsia, 

and Cortaderia. The author separated the Subantarctic region into four different districts: 1) 

Araucaria araucana; 2) Deciduous forest; 3) Valdivian and 4) Magellanic. Among these, the first 
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three districts with its corresponding vegetation assemblages are present in the LNP. In the next 

paragraphs, I will briefly mention the features of each district. 

The Araucaria araucana district is located from 37°51’S to 40°01’S (northern limit of LNP is 39°08’S). 

Here, Araucaria araucana occurs between 900–1800 m a.s.l. and is codominant with Nothofagus 

pumilio at high elevations. The shrub layer is characterized by Chusquea culeou, Berberis 

microphylla, Gaultheria mucronata, Maytenus disticha, Ribes magellanicum, Escallonia virgata, 

Nardophyllum, among others. The herbaceous stratum is composed by Lathyrus magellanicus, 

Adenocaulon chilense, Acaena pinnatifida, Cortaderia and Chloraea alpina. 

The Deciduous district, as its name indicates, is composed of deciduous species such as Nothofagus 

pumilio and Nothofagus antarctica. The conifer Austrocedrus chilensis appears as an important 

component in this region, especially at north and east aspects (driest sites). Nothofagus antarctica 

occurs at low and humid sites, while Nothofagus pumilio forms the treeline (~1800 m elevation). 

However, under extreme environmental conditions (e.g. low temperatures, strong winds) both N. 

antarctica and N. pumilio adopt a “krummholz” structure (Donoso, 2013; Veblen et al., 1996). Other 

species present in this district are Lomatia hirsuta, Schinus patagonicus, Maytenus boaria, Azara 

microphylla, Aristotelia chilensis, Fabiana imbricata, Gaultheria mucronata, Berberis darwinii and 

Berberis microphylla. Additionally, this district comprises of two important deciduous trees: 

Nothofagus alpina and Nothofagus obliqua, whose ecology will be discussed in Chapter 2. 

Finally, the Valdivian district is a restricted area in Argentina, located at the border to Chile in the 

Provinces of Neuquén, Rio Negro and Chubut. The precipitation in this zone is abundant (> 2000 

mm), a characteristic that makes the development of Nothofagus dombeyi forest possible. This 

species is also present in the LNP on slopes with western aspect and around rivers. Other species 

present in this district are Eucryphia cordifolia, Gevuina avellana, Persea lingue, Weinmannia 

trichosperma, Rhaphithamnus, Drimys winteri, Embothrium coccineum, Chusquea sp and 

Misodendrum sp. 

A floristic census done by Conticello et al. (1996) close to Lake Lácar basin indicated that Nothofagus 

dombeyi, Nothofagus antarctica, Nothofagus obliqua and Nothofagus alpina are the most important 

arboreal components around this basin. The understory is primarily composed of Chusquea culeou, 

Maytenus chubutensis, Berberis darwinii, Embothrium coccineum, Lomatia hirsuta, Ribes 

magellanicum and Gaultheria poeppigii. Among herbs Osmorhiza chilensis, Holcus lanatus, Acaena 

ovalifolia, Alstroemeria aurea and Blechnum dominate. 
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Chapter 2: Ecology and current investigations on Nothofagus alpina 

and Nothofagus obliqua.  

2.1 General overview of the ecology of Nothofagus alpina 

Nothofagus alpina is a deciduous southern beech species, characteristic of the Chilean and 

Argentinean forest. Geographically their distribution differs at both sides of the Andes Cordillera, 

reaching the largest latitudinal distribution gradient in Chile, and a more restricted area of 

distribution in Argentina (see Figure 5; Sabatier et al., 2011). This characteristic explains the 

pronounced clinal variation in their morphological features (Donoso et al., 2004). N. alpina is a wind-

pollinated tree, a semi-shade tolerant species, and a monoecious tree (Riveros et al., 1995) that can 

grow up to 35‒40 m tall and reach a diameter of even 3 m (Donoso, 2013). The species exhibits a 

rapid growth rate and due to the quality of its wood, it has been the focus of timber extraction 

(Marchelli and Gallo, 1999). Overexploitation and the need for timber production triggered the 

development of silvicultural strategies in order to promote sustainable management of this species 

(Echeverría and Lara, 2004).  

 

 

Figure 5. Schematic distribution of 
Nothofagus alpina in Chile and Argentina 
based on Donoso (2013) and Sabatier et al. 
(2011) respectively. Notice that the grey 
shaded is just representing the distribution 
and it is not a representation of the 
populations size. The blue line indicates the 
limit of the country.  
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Given its wide latitudinal distribution (Chilean populations), N. alpina occurs in different climates, 

and precipitation is a key variable for the development of the species. Therefore, N. alpina does not 

develop under climate conditions characterized by severe dry summers and extreme temperatures 

(Donoso et al., 1993). Veblen et al. (1996) indicated that in the range of N. alpina in southern Chile 

and southwestern Argentina the precipitation varies between 1500 to 4000 mm and in most sites, 

the dry season is at least 3 months. In its northern distribution in Chile, N. alpina is located between 

700 and 1000 m a.s.l. and occurs between 400 and 1200 m a.s.l. towards the south. On the other 

hand, in Argentina N. alpina occurs in valleys and lakes longitudinally oriented with respect to the 

Andes. Here, the populations are located between 800 and 1000 m a.s.l. Nevertheless, the species 

may also occur at 650 m a.s.l. on humid and shade slopes, i.e. south-east oriented (Donoso, 2013).  

N. alpina can occur in association with several species according to the environmental conditions 

and topography. For example, N. alpina occurs together with Nothofagus obliqua, N. glauca, 

Aextoxicon punctatum, Persea lingue, Gevuina avellana and Jovellana punctata in the Coastal 

Cordillera in Chile (Donoso, 2013). Towards the south, in the Nahuelbuta Cordillera (Chile) N. alpina 

occurs with Laurelia sempervirens, Gevuina avellana, Persea lingue, N. obliqua, Lomatia dentata, 

and Aextoxicon punctatum (Donoso, 2013). Within the Andes Cordillera, at elevations < 500 m a.s.l. 

N. alpina is limited by N. obliqua and is replaced by N. pumilio at altitudes > 1100 m a.s.l. 

Nevertheless, in both cases these Nothofagus species can occur simultaneously (Donoso, 2013). In 

Argentina, N. alpina occurs together with N. obliqua between 600 and 800 m a.s.l. and with N. 

dombeyi at the highest elevations (Veblen et al., 1996).  

Most of the investigation related to the ecology and dynamics of N. alpina are focused on its timber 

potential, and therefore from a silvicultural management perspective. Despite this, these works 

allow a better understanding of the natural regeneration of this deciduous tree. According to 

Weinberger and Ramirez (1999), in many areas where N. alpina populations were exploited, new 

individuals developed by a stump-root system (stump-resprouting). Weinberg and Ramirez (2001) 

also analysed the natural regeneration of N. obliqua, N. dombeyi, and N. alpina in south-central 

Chile concluding that N. alpina grows under low relative luminosity, reduced evaporation, and 

moderate temperatures. However, prolongate frost periods diminish its development. Not less 

important is the fact that the regeneration of several Nothofagus species depends on altitude, 

topography, and arboreal cover (Weinberger and Ramirez, 1999). 
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2.2 General overview of the ecology of Nothofagus obliqua 

Nothofagus obliqua, as well as N. alpina, is a deciduous tree and a wind-pollinated species. Its 

distribution is wider in Chile, while in Argentina it is narrower and more restricted to five lake basins 

and a river margin (Azpilicueta et al., 2014; Sabatier et al., 2011). Interesting is the fact that N. 

obliqua occurs in sympatry with N. alpina and hybridization is common between both species 

(Donoso et al., 1990; Marchelli and Gallo, 2004). This characteristic has been one of the many 

focusses in genetic studies and it will be discussed in the next paragraph.  

In Chile, N. obliqua occurs between 30°30’ to 41°S, and in Argentina the populations are divided into 

two different locations. One is located at 36°49’S, 71°04’W and 1500 m a.s.l. (around Lagunas de 

Epulauquen; Azpilicueta et al., 2014). The second population is located approximately between 39° 

and 40°S around four lake basins: east of Lake Aluminé, Lake Ñorquinco, Lake Quillén, and Lake 

Lácar. At 39°30´S the easternmost population of N. obliqua is located nearby Aluminé river (39°S, 

70°W) (Sabatier et al., 2011). In the Chilean Andes, this species occurs between 1000 and 2000 m 

a.s.l. further north and close to the sea level to 500 m a.s.l. In the Coastal Cordillera it is present 

between 700 and 2000 m a.s.l. in its northernmost limit (Donoso, 2013). In Argentina, N. obliqua 

occurs between 650 and 800 m a.s.l. (Sabatier et al., 2011). Here, the mean annual precipitation is 

2500 mm nearby the Andes, and 750 mm towards the easternmost distribution limit of the species 

(Sabatier et al., 2011). In Chile, N. obliqua occurs in a wide range of mean annual precipitation. 

However, the minimum annual precipitation, where the species can grow is > 500 mm (Donoso, 

2013). N. obliqua is considered as one of the most thermophilous Nothofagus species, persisting 

long dry periods and high temperatures (Donoso, 2013). 
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In general, N. obliqua occurs within different vegetation communities since it has a wide latitudinal 

distribution, especially in Chile. Therefore, it occurs together with Maytenus boaria, Cryptocaria 

alba, Quillaja Saponaria and Lithraea caustica in its northern distribution (Donoso, 2013). Towards 

the south, N. obliqua occurs together with Persea lingue, Laurelia sempervirens, Aextoxicon 

punctatum, Eucryphia cordifolia and Nothofagus dombeyi (Donoso, 2013).  

Regarding its dynamics, N. obliqua is considered as a pioneer species after soil disturbance since it 

is a shade-intolerant species (Salas et al., 2006; Veblen et al., 1996). Nevertheless, Salas et al. (2006) 

indicate that N. obliqua cannot regenerate under a dense canopy and little exposed bare mineral 

soil and is usually replaced by very-shade-tolerant species. A work developed by Dezzotti et al. 

(2004) focusing on the analysis of the effect of induced-forest gaps in the regeneration of N. alpina, 

Figure 6. Distribution of Nothofagus obliqua 

in Chile and Argentina (in green) modified 

from Azpilicueta et al. (2016). Blue areas 

represent lakes and rivers. 



22 
 

N. obliqua, and N. dombeyi concluded that all the species analysed established simultaneously 

within the gaps, N. obliqua being the second species more successful after N. alpina. On the other 

hand, Weinberger and Ramirez (2001) indicated that N. obliqua can tolerate night temperatures 

close to the freezing point.  

2.3 Summary of the palynological records with Nothofagus alpina-Nothofagus 

obliqua presence in southern South America 

Despite the numerous studies regarding the ecology and silvicultural management, only few studies 

focus on the past vegetation history of N. alpina and N. obliqua, especially in palynological and fossil 

records. Moreover, open access to this data (i.e. pollen counts) is even more limited in public 

repositories. The scattered and fragmented population of both deciduous trees in Chile and 

particularly in Argentina may account for the scarce presence of the Nothofagus obliqua pollen type 

in palynological records from southern South America. An important feature, and somehow a 

disadvantage, is the fact that both N. alpina and N. obliqua exhibit a similar pollen morphology 

which makes them undistinguishable from each other (Markgraf et al., 2002). As a result, most of 

the pollen diagrams indicate them as Nothofagus obliqua-type.  

One of the first palynological records that show the presence of this pollen type is the Tagua Tagua 

record in central Chile (34°30'S, 71°10'W), established by Heusser (1983). This record expands > 

45000 years (radiocarbon years) and since the beginning N. obliqua-type was present with an 

approximate percentage of < 10. At around 14000 years ago, this pollen type decreases abruptly, 

and its presence is barely noticeable since then. This record basically suggests a completely different 

vegetation in the region, where N. obliqua was more abundant than nowadays. At present, the 

species that form the N. obliqua pollen type at this latitude (Nothofagus obliqua and N. glauca) are 

only present in a small population close to Tagua Tagua. In Argentina, Markgraf (1987) published a 

pollen record from Lagunas de Epulauquen, located within the northern limit of the subantarctic 

Nothofagus forest (36°51´S; 71°02´W). Here, the N. obliqua-type is present since the beginning of 

the record around 10000 radiocarbon years, with a percentage of < 4 until around 7000 radiocarbon 

years. From 7000 to present, this record shows an abundance of approximately 10% with several 

fluctuations. 

In a posterior re-evaluation of this site Markgraf et al. (2009) achieved to capture the last 17000 cal. 

yr BP and N. obliqua pollen type was scarcely present between 17000 and 6000 cal. yr BP. From 
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6000 cal. yr BP to present, the percentage of this pollen type increase and ranged between 5 to 10%. 

The environmental interpretation obtained from this record suggests that the presence of N. obliqua 

and other plant taxa indicates a shift to present-day winter rain/summer drought conditions at 

around 5300 cal. yr BP (Markgraf et al., 2009). The records analysed by Heusser (1983), Markgraf 

(1987) and Markgraf et al. (2009) accounted for the past vegetation history of Nothofagus obliqua 

within their northernmost known distribution in Chile and in Argentina.  

Located further west from Lagunas de Epulauquen (Argentina), Heusser et al. (2006a) presented a 

continuous record of temperate South American vegetation and climate offshore of the city of 

Concepcion, Chile (36°13’S;73°40´W). This record comprises the last 140000 cal. yr BP with N. 

obliqua pollen type present since the beginning of the record. The authors show a rise in the 

percentage of this pollen type from around 5 to 15% during the Marine Isotope Stage 5 (MIS5). A 

second rise in the percentage of N. obliqua-type occurs in MIS1 (~10%) together with an increase in 

the percentage of Podocarpus andina and Filicinae fern. This assemblage is interpreted as a mark 

for the deglacial transition. This marine record indicates a rise of N. obliqua (Lowland Forest) after 

the LGM with maximum percentage values during the Holocene. The presence of N. obliqua pollen 

type was also detected in a marine sediment core collected from the Pacific Ocean at 

41°00´S;74°26´W. The record comprises the last ~50000 years ago. Here, an expansion of the 

Lowland Deciduous Beech Forest (N. obliqua) is accelerated in the Holocene (Heusser et al., 2006b). 

The authors infer that changes in vegetation reflect changes in temperature and precipitation. 

A bit further south of the records mentioned, the Purén-Lumaco Valley record from Abarzúa et al. 

(2014) (38°S) indicates the scarce presence of N. obliqua-type from the beginning of the record 

(26000 cal. yr BP). A rise in the abundance of N. obliqua-type occurs during the Early/Mid-Holocene 

(11000‒4000 cal. yr BP). The authors suggest that the occurrence of N. obliqua-type at 11000 

indicates the end of the glacial period since this taxon is a warm-temperate indicator.  

Another record located in the southernmost Chilean distribution of N. obliqua and N. alpina in the 

Vicente Perez Rosales National Park (41°S; Villagrán, 1980) accounts for the presence of N. obliqua 

pollen type since the beginning of La Cumbre record, approximately 6800 years ago (20%). 

Afterward, the percentage of N. obliqua-type reaches its maximum value of 30% and declines 

gradually with the last peak of 7% at 2855±80 years. Subsequently, N. obliqua-type disappears from 

the record. Regarding climatic interpretation suggested by the author, the Nothofagus obliqua 

pollen type represents warm and dry conditions.  
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Recently, Moreno et al. (2018) published a palynological record from Lake Pichilaguna (41°S) 

showing the vegetation changes during the last 25000 years in the Lake District region in Chile. This 

record is also located within the southernmost latitudinal limit of N. obliqua and N. alpina 

populations in Chile. The results indicate traces of N. obliqua-type during the LGM until its visual 

disappearance from the record between 13000‒10000 years ago. The Holocene is characterized by 

a slight rise in the percentage of this pollen type with its maximum percentages at 2000 cal. yr BP 

(Late Holocene). In this study, N. obliqua characterizes the Lowland Deciduous Southern Beech 

Forest present in the Longitudinal Valley in the region around 41°S in Chile. The authors suggest that 

the persistence of this pollen type during the Holocene may indicate the establishment of the 

Lowland Deciduous Forest north of Lake Pichilaguna while their southern limit remains stable 

through the Holocene.  

 

To summarize, some of the records discussed in this section account for the presence of N. obliqua 

pollen type even before the LGM. However, their expansion started during the Holocene in most of 

the records and its maximum percentages occurred during the Late Holocene. Except for La Cumbre 

record from Villagrán (1980), which shows a maximum percentage of this pollen type around 6000 

years ago while disappearing from the record at around 2000 years ago. However, the palynological 

Figure 7. Map with the location of some of the 

records discussed in this chapter. 
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record by Markgraf et al. (2009) comprises the vegetation history of the last 17000 with N. obliqua-

type present since then. The later expansion of N. obliqua at 6000 years ago, is interpreted as the 

establishment of the current climatic conditions in the region. So far, this is the only palynological 

record located within a main population of Nothofagus obliqua in Argentina. Other pollen records 

in Argentina are located in regions where N. obliqua and N. alpina do not occur at present. For 

example, studies carried out close to Bariloche city (41°S) do not indicate the presence of N. obliqua 

pollen type (Whitlock et al., 2006). However, it might occur that those record detected the presence 

of N. obliqua-type, but probably since this pollen type is long-distance transported, further 

interpretations cannot be done.  

2.4 Some examples of genetic studies on Nothofagus alpina and Nothofagus 

obliqua 

Nothofagus obliqua and N. alpina are two species of high economic value since both possess a good 

quality of timber and therefore, silvicultural management strategies are focused on the artificial and 

natural regeneration of these species with commercial purposes as well as restoration. Hence, 

domestication and genetic improvement of both species have been carried out in Argentina and 

Chile (Gallo et al., 2006). 

One important aspect analysed for geneticists is that N. alpina and N. obliqua populations occur in 

sympatry in some areas of their distribution, and hybridization among these species has been 

detected (Donoso et al., 1990; Marchelli et al., 2004). In this respect, the use of genetic analysis 

provides a valuable set of information that can be used for conservation and restoration strategies 

and the maintenance of the genetic identity of the analysed species (Azpilicueta et al., 2016).  

Genetic studies together with palynological records provide a strong support for the reconstruction 

of possible past migratory routes of some species after the Last Glacial Maximum (LGM), as well as 

the possible existence of glacial refugia in which some taxa could have survived during this period 

(Azpilicueta et al., 2016; Azpilicueta et al., 2009; Marchelli and Gallo, 2004). For example, in some 

populations of N. alpina in Argentina natural hybridization, unidirectional gene flow, and the 

possible existence of glacial refugia were assessed in order to evaluate the importance of these 

processes in establishing the distribution patterns of the genetic variation. The authors (Marchelli 

and Gallo, 2004) concluded that hybridization and glaciation shaped the distribution of the genetic 

variation in N. alpina. Moreover, the authors emphasized the lack of palynological records close to 

the areas of investigation to support the hypothesis of glacial refugia at eastern Andes’ slopes.  
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Azpilicueta et al. (2009) conducted chloroplast DNA analysis in N. obliqua populations in Chile and 

Argentina in order to determine the effect of glaciations on these populations, their similarities, and 

the phylogeography of this species. Their results suggest common haplotypes between the 

population of the longitudinal valley of Chile with Argentinean populations at approximately the 

same latitudinal distribution (40°S). The same pattern occurs in populations of N. obliqua close to 

Lagunas de Epulauquen that share haplotypes with Chilean populations at the same latitude (36°S) 

in the Andes Cordillera. An interesting fact is that the authors showed different haplotypes in two 

southern Argentinean populations of N. obliqua separated by hundred kilometres between 39°S and 

at 40°S. They argued that these differences are the result of topographic barriers between both 

populations that triggered their genetic isolation. Therefore, pollen flux among individuals might 

not have occurred here.  

There are many advances and contributions of genetic studies to the understanding of evolutionary 

patterns, adaptations, diversity and phylogeography of important taxa in southern South America 

(N. obliqua and N. alpina: Azpilicueta et al., 2009; Gallo et al., 2006; Austrocedrus chilensis: Pastorino 

and Gallo, 2001; Pastorino and Gallo, 2002; Araucaria araucana: Martin et al., 2014; Fitzroya 

cupressoides: Premoli et al., 2000). Nonetheless, despite the relevant information provided for these 

studies, palaeoecological studies can contribute, and support or discard the interpretation of 

migratory routes and refugia in non-glaciated areas during the LGM. For example, this is the case 

for the palynological record from Mallin Vaca Lauquen, close to Lagunas de Epulaquen (Markgraf et 

al., 2009). This record comprises the last 17000 cal. yr BP and has been used as a support for 

migratory routes of N. obliqua from the western Andes into Argentina (Azpilicueta et al., 2016).  
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Chapter 3: Disturbance processes in northern Patagonia 

3.1 Disturbance 

Disturbance is a wide term that has been described as an event that “causes departure from a 

normal or desired state, or a source of stochasticity” (Newman, 2019), or an abrupt event that can 

drastically change the ecosystem characteristics (Begon et al., 1996). The most accepted definition 

of disturbance is the one developed by White and Pickett (1985) who states as follows: “A 

disturbance is any relatively discrete event in time that disrupts the ecosystem, community, or 

population structure and changes resources, substrate availability, or the physical environment”. 

Likewise, Rykiel (1985) indicates that disturbance is “a cause, a physical force, agent, or process, 

either abiotic or biotic, causing a perturbation in an ecological component or system”. In all the 

definitions, there is an event of biotic or abiotic nature that causes a change in a system. 

Additionally, the causal factor of disturbance -endogenous or exogenous- operate at different sizes, 

frequency, magnitude, predictability and timing of impact (Attiwill, 1994).  

How the ecosystem responds to any disturbance agent may depend on the state of the community 

prior to the disturbance (White and Pickett, 1985). The predisposition of the ecosystem to 

disturbance, the disturbance mechanism, and magnitude will determine the kind of impact. 

Moreover, some disturbance agents may increase the predisposition of the ecosystem to another 

disturbance. For example, a severe drought in a forest can delete some individuals, this increase 

fuel availability and make the forest more susceptible to fire.  

Related to the effects of a certain disturbance process, the vegetation features play an important 

role in determining the survival or death of an individual or community.  This is the case of Araucaria 

araucana whose thick bark makes it resistant to surface fires (González et al., 2010; Veblen et al., 

1995). Another example of how the features of a given species can determine its resistance to a 

specific disturbance agent, is the root systems in Nothofagus dombeyi versus Austrocedrus chilensis, 

where the first one is shallow-rooted species that makes it more susceptible to windthrow while A. 

chilensis is relatively wind-firm (Veblen and Lorenz, 1987).  

3.2. Disturbance agents in Patagonia  

Patagonia offers a wide possibility to analyse the impact of several disturbance regimes and the 

behaviour of plant communities. Areas close to the Andes Cordillera are more susceptible to 

volcanic eruptions or ash deposition (Veblen et al., 1977), although given the strong westerly winds 
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most of the ashes travel hundreds of kilometres also affecting the vegetation in steppe areas in 

eastern Patagonia by coverage (Gaitan et al., 2011) affecting vegetation. Dense Nothofagus forest 

provides the opportunity to analyse succession after the creation of forest opening produced by 

windthrow or another disturbance agent (Veblen et al., 1980; Gutierrez et al., 2004). The forest-

steppe ecotone has been used as a natural laboratory to assess how the vegetation responds to fire 

and grazing (Sottile et al., 2015). 

Depending on several factors (topography, elevation, climate) some disturbance agents are more 

important in terms of the impact they have on the vegetation. However, the scale of disturbance, 

either fine-scale or coarse-scale have different ecological roles in shaping the vegetation (Kitzberger, 

2012). In addition, human-induced disturbance (grazing, pollution, land clearing) makes vegetation 

more susceptible to natural disturbance such as fire, storms, and volcanic eruptions. In the following 

subchapters, I will describe and synthesize the main disturbance agents in Patagonia with a special 

focus on the effect and role of volcanic ash deposition and fire on the vegetation composition and 

dynamics through some examples described in literature. 

3.3. Volcanism and vegetation responses in Patagonia 

The catastrophic consequences of volcanism have been reported and described by eyewitnesses. 

Darwin on his trip on board of The Beagle to the region of southern Chile, described his impressions 

regarding the volcanic activity: “… at the same hour when the whole country around Concepción 

was permanently elevated, a train of volcanoes situated in the Andes, in front of Chiloé, 

instantaneously spouted out a dark column of smoke, and during the subsequent year continued in 

uncommon activity” (Darwin, 1839). 

Volcanic eruptions are a primary example of disturbance that comprise several distinct disturbances 

such as mudflow, debris avalanche, pyroclastic flow, blowdown, and ash deposition (Turner et al., 

1997). Given a distinctive disturbance, different disturbance mechanisms occur like erosion, burial, 

abrasion, heating, and impact force (Swanson and Major, 2005). The damage to a certain ecosystem 

will depend on the type of mechanism, its impact, and magnitude. A famous example of the effect 

of a volcanic eruption on the ecosystem is the destructive eruption of Mount St. Helens 

(Washington, USA) in 1980. The largest landslide ever seen, and multiple square miles of trees 

toppled are just some examples of the dramatic consequences of this massive disturbance events. 

Among the effects of this disturbance on plant communities, blown down trees, scorched trees, and 

abrasion can be mentioned (Turner et al., 1997). The effects on the vegetation were related to the 
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morpho-physiology of the plants, as well as with the location and topography where the 

communities were located with respect to the volcano. Moreover, the persistence of the vegetation 

after disturbance determined the biological legacies. Both “living and death species are important 

in the development of the posteruption ecosystems” as well as the timing of the disturbance 

affected biological responses at scales of time, season, and stage of succession (Crisafulli and Dale, 

2018) 

In Patagonia, given the presence of several active volcanoes along the Andes Cordillera (Fontijn et 

al., 2014) it is possible to study how disturbance by volcanic eruption contributes to the forest 

dynamic in this region. Veblen et al. (1977) assessed the impact of volcanism in the succession of 

the upper forest limit in south-central Chile. The authors conclude that catastrophic volcanism 

depressed the timberline to an average of 100 to 300 m, affecting the vegetation. Nevertheless, 

they identified the resistance of Nothofagus antarctica to scoria deposition and avalanche damage 

due to its capacity to produce adventitious roots from the branches. Here, regenerative strategies 

determined the success of some species after disturbance. 
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Swanson et al. (2013) analysed the consequences of the last eruption of the Chaitén volcano on the 

surrounding vegetation. They could distinguish several types of disturbance as well as differences in 

ecological responses to those disturbances. For example, within the blast zone (tree removal), the 

heat was moderate, abrasion and impact force were very high, and canopy loading was precluded. 

However, air fall tephra (fine tephra) had no effect in terms of heat, abrasion, and impact force, but 

canopy loading was high (Swanson et al., 2013).  

Figure 8. Map of the southern border 

between Chile and Argentina and the 

location of volcanos along the Andes 

Cordillera from Fontijn et al. (2014).  



33 
 

  

The eruption of the Cordón Caulle volcanic complex in 2011 deposited up to 50 cm of tephra, given 

an opportunity to study disturbance effects at different tephra thickness scenarios on the 

vegetation. Once again, pre-eruption vegetation conditions and environmental factors somehow 

determine the ecosystem´s responses during and after disturbance (Swanson et al., 2016). This is 

the case of tree-mortality differences between Nothofagus dombeyi and Nothofagus pumilio after 

tephra deposition. During the initial phases of the eruption (June-September, austral winter), N. 

pumilio trees were leafless and they experienced less mortality in comparison to the evergreen N. 

dombeyi, being the first species covered by 35 cm of tephra while the second species received just 

10‒25 cm of tephra. Swanson et al. (2016) concluded as follows: “tree species, age and season of 

eruption influence forest response along the gradient of tephra deposit thickness”. 

Despite the destructive impact of volcanic eruptions on the vegetation documented in several 

investigations, some plant taxa are able to persist this type of disturbance. The development of 

adventitious roots is a common example of plant regeneration strategies. Positive plant response 

to volcanic ash deposition was presented by Magnin et al. (2017). They assessed the impact on the 

length and radial growth of Nothofagus pumilio trees before and after tephra deposition. 

Interestingly, the length growth of N. pumilio trees increases significantly after the eruption in 

comparison to those trees of the same species located in greater distance to the volcano. The 

authors attribute this positive response probably as a result of an increase in water retention in the 

soil, to the facilitation of nutrients as well as to a decrease in herbivory and competition (Magnin et 

al., 2017).  

Figure 9. Consequences of the Chaiten 

eruption taken from Swanson et al. 

(2013) (Photo by J. Jones, January 

2010). 
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The effect of the Cordon Caulle volcanic complex eruption did not only affect areas tens of 

kilometres far from the source but also affected several Argentinean regions that were covered by 

ash fall transported by the westerlies. The effect of ash deposition in different climatic conditions, -

semi-arid steppe regions and temperate forest regions, along with an evaluation of the damage in 

infrastructure and agriculture, was analysed by Craig et al. (2016). Among their results, ash 

contamination of feed triggered the loss of livestock due to starvation, gastrointestinal and rumen 

blockages, and tooth abrasion. Remobilization of the ash fall deposit in steppe areas was detected 

months after the eruption. The authors emphasized the differences in the impact and damage of 

ash deposition according to the region (steppe or forest) as well as the condition of the environment 

before the ash fall deposition. In the case of steppe vegetation, a severe drought before the eruption 

have left pasture and livestock in poor conditions, and farm systems vulnerable, therefore the 

eruption maximized the losses in these regions. However, in forested areas precipitation rinsed the 

ashes from trees and facilitated the integration of ash into the soil and diminished the damage on 

the foliage (Craig et al., 2016). 

All these examples of short-term responses to volcanic disturbances agree with the important role 

of vegetation conditions before disturbance, which makes the difference in terms of the damage of 

the disturbance event. In addition, the role of biological legacies in maintaining the vegetation and 

determining the type of succession (primary or secondary according to the magnitude of the event) 

is a common conclusion among the studies.  

3.4 Fire regimes in Patagonia 

Fires are one of the most important disturbance agents recognized around the world and their effect 

on ecosystems has been the focus of short-term analysis. Dendrochronological and palaeoecological 

studies attempt to assess the past fire regimes and their influence on vegetation at centennial and 

millennial scales. The role of fire in the development of certain plant species, plant communities, 

and secondary succession has been largely documented (Sphagnum: Kuhry, 1994; Austrocedrus 

chilensis and Nothofagus dombeyi: Dezzotti, 1996; Patagonian grasslands: Dudinszky and 

Ghermandi, 2013). Given the current climatic emergency, fire episodes have become more frequent 

and their magnitude increase. Drought and a decrease in precipitation are the primary causes of 

those changes in the fire regimes, and most certainly, anthropogenic influence. Most of the fire 

episodes occur during the Austral summer (December-March) due to lightning or humans and affect 

both forest and grassland. The extension of the fire depends mostly on the amount of available fuel 
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and abiotic factors such as topography, elevation, and precipitation. For Patagonia, the dynamics 

and nature of the fire event (natural or anthropogenic) is an ongoing topic and has been analysed 

using proxies such as tree-rings, post-fire stamps, and micro- and macro charcoal particles collected 

in sediment cores. Nevertheless, satellite images and aerial photography are also used to compare 

fire regimes at decadal scales.  

 

 

 

 

 

 

Figure 10. a) Fire in a slope with A. chilensis close to San Martín de los Andes city (Neuquén-Argentina) taken from Canal 
5 Noticias (February 7th, 2018); b) Fire in the steppe nearby San Martín de los Andes, taken from Info Los Andes (2019).   

Patterns of vegetation changes related to changes in the fire regimes have been largely analysed 

along the forest-steppe ecotone in northern Patagonia. Among the effect of fire on the vegetation 

is the conversion of forest to shrublands, documented by Mermoz et al. (2005). They sought the 

relation between pre-burn vegetation types and abiotic factors analysed at a broad scale, while the 

fire occurrence and fire spread at a fine scale. The results concluded that the fire extent has its 

maximum at intermediate elevation and areas with an intermediate amount of precipitation. In 

addition, tall shrublands are more affected by fire than the mesic forest of N. pumilio and N. 

dombeyi. Nevertheless, they conclude that anthropogenic ignitions and the positive feedback of fire 

and shrubland are accelerating conversion from forest to shrubland. Kitzberger and Veblen (1999) 

quantified the changes in northern Patagonia landscape associated with fire and they found a forest 

recovery after the cessation of intentional fires. Most of the areas affected by intensive fire did not 

kill all the species and biological legacies were important in the process of forest recovery with 

species characterized for being long-lived and obligated-seed dispersal that expanded even in areas 

that previously were dominated by short-lived resprouting shrubs. 

Conversely, a shift from Nothofagus pumilio forest to fire-prone shrubland is suggested by Paritsis 

et al. (2014). Post-fire N. pumilio forest is more propense to fire than an unburned N. pumilio forest. 

Moreover, after fire the persistence of the N. pumilio forest might not be possible due to plant 

a
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communities that grow after burning of N. pumilio forest are likely to experience a rapid drying of 

dead and live fuels and therefore, are more susceptible to burning again. This will lead to the 

development of shrubland which in turn is vulnerable to fire as well. Furthermore, since the seed-

dispersal of N. pumilio is low, a possible succession from shrubland to forest would take several 

decades (Veblen et al., 1996) and likely shrubland could burn again killing juveniles of N. pumilio 

avoiding their development.  

There is no doubt that fire regimes behave differently in forest and steppe environments. Short- and 

long-term analyses of fire patterns within Nothofagus forest in northern Patagonia indicated that in 

general fires in these regions are characterized by the high intensity with vertical expansion due to 

the presence of the bamboo Chusquea, which dominates the understory in these ecosystems. This 

vertical expansion of fire reaches the canopy and can kill several individuals (crown fires). The 

frequency of fire episodes is low, probably because of the infrequent lightning strikes and of course, 

the humid conditions which might prevent the ignition (Mermoz et al., 2005). 

Nonetheless, an increase in the frequency of fires during the last century is attributed to ENSO 

activity, especially during La Niña events (drought period) (Nanavati et al., 2019) and to the more 

frequent convective storms during summer that trigger lightning strikes In addition, during the initial 

stages of the European colonization, several hectares of forest where cut-down and burned in order 

to create pasturelands, being this activity also a cause in the increase in fire frequency during the 

past 200 years. Nowadays, fire suppression is successful since most of the areas that comprise 

Nothofagus forest correspond to National Parks where fires are controlled.  

In xeric Austrocedrus forest and steppe areas, fire episodes also experienced changes in frequency 

before and after European colonization in Patagonia. Fire frequency was high before the arrival of 

European settlers due to the use of fire by indigenous populations in Patagonia with war and hunting 

purposes (Veblen and Lorenz, 1988). These arid environments were affected by surface fires as a 

result of the lower amount of horizontal and vertical fuel. Therefore, fires in these regions are of 

less magnitude in comparison with forest fires, although the frequency is high (González et al., 2014) 

Once European settlers arrived, these regions experienced a decrease in fire events. The causes of 

this decrease are attributed to the diminution of indigenous populations, as the result of 

governmental decisions in favour of the economic development and therefore, the use of steppe 

for livestock, the decrease in grass availability to ignitions and, to the active fire suppression (Veblen, 
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2014). It has been reported that these changes in the fire regime in the Patagonian ecotone allow 

the expansion of Austrocedrus populations during the twentieth century (Veblen and Lorenz, 1988).  

Overall, fire plays a key role in controlling the landscape in Patagonia, as well as contributing to the 

dynamics and succession of plant communities. The responses of vegetation to a fire event will 

depend eventually on the preconditions of the area affected, the magnitude and impact of the event 

which is related to fuel availability and flammability of the community, and the persistence of the 

vegetation after a fire (biological legacies). 
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Chapter 4: Palaeoecology and Palynology 

4.1 What is palaeoecology? General concepts 

Palaeoecology is the ecology of the past (Birks and Birks, 1980). In general, this discipline combines 

multiple source of information, such as biological, molecular and geochemical in order to study the 

relationship and interactions of organisms in all their level of associations and their environment, 

together with all the functional processes that makes possible their existence in a physical place 

(Odum and Barrett, 1971), the palaeoecology attempt to analyse and understand those interaction 

in ancient times through the use of proxies (pollen, charcoal, diatoms, phytoliths, macro remains, 

ostracods, etc); in others words: the branch of ecology that studies (the) past (of) ecological systems 

and their trends in time using fossils and other proxies (Rull, 2010). 

A general assumption among palaeoecologist is that “the present is the key to the past”. This 

concept implies Lyell´s uniformitarian principle where it is assumed that the ecological responses of 

species do not changes through their histories. Further discussion and philosophical implications 

about this topic are deeply examined by Scott (1963). Despite the still discussion about the meaning 

and theoretical implications of the term, the key goal of this discipline is to reconstruct past species 

and communities from fossil evidence and, by definition, a palaeoecological survey should have an 

ecological aim (Rull, 2010). 

4.2 Links between palaeoecology, ecology, and nature conservation 

As palaeoecology use the frame of knowledge from the ecology, there are three main key questions 

or information that palaeoecologist need from ecologist according to Huntley (1996): 1) the overall 

geographical distribution and in what plant communities the species occurs; 2) the autecological 

characteristics of the species, especially regeneration and; 3) the factors (biotic or abiotic) that 

determine the distribution of the species. Having this information, the palaeoecologist is able to 

develop an accurate and reliable interpretation from the assemblages obtained by the 

indicator/proxy used. Among the goals that the palaeoecology involves is the reconstruction of the 

past biota, past communities, past landscapes, and ecosystems, as well as past environment, which 

include the climate and human impact. All these objectives are closely linked with the topics 

addressed by an ecologist.  

One of the many applications that palaeoecology can provide to modern ecology and ecosystem 

management is in the field of nature conservations. In that respect, Birks (1996) developed this 
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matter emphasising the contributions of palaeoecology to conservationism, like the assessment of 

naturalness and fragility of ecosystems; especially the last point due to human activities and other 

biotic factors; evaluation of the conservation status of rare species, through the contribution of basic 

information and understanding of the causes of recent decline of taxa; and through the contribution 

of baseline data about past ecosystem composition and function. A recent discussion about the role 

of palaeoecology in conservation biology is addressed by Birks (2012). The author calls for a “strong 

and effective collaboration between palaeoecology and conservation” and highlights the 

contribution of palaeoecology to the temporal dimension of ecosystem services and goods and to 

the fact that this field of science has demonstrated that landscapes and biota are not static entities.  

4.3 Palynology and past vegetation reconstructions 

Palynology is the study of pollen and spores, although inside this category are included organism or 

part of an organism that falls in the spore-pollen size range, like diatoms, dinoflagellates, 

foraminifera, among others (Walker and Doyle, 1975). The pollen features, such as type of aperture, 

pollen wall architecture, pollen unit, polarity, symmetry, shape, and grain size are used in order to 

determine the taxonomical level (family, genus, species). The resistance of the pollen wall is key in 

the preservation of this grain in ancient sediment deposits (Shaw, 1970). Since a pollen grain belongs 

to some taxonomical level, palynology is useful in the field of botany, biogeography, and ecological 

research. Moreover, it has become a fundamental tool to “unravel the ecological and environmental 

trends and changes through the Quaternary” (Rull et al., 2018).  

Since plant communities respond to environmental factors, a detailed description of the lithology 

of the cores, the analysis of non-pollen palynomorphs and macro charcoal remains are necessary in 

order to reconstruct the past disturbance regimes (volcanic ash deposition and fires) and the 

environmental conditions that triggered the observed changes. This multiproxy approach allows a 

better examination and reconstruction of past vegetation and environment, and it was used in the 

investigations presented in the Chapters 5, 6, and 7. The schematic synthesis of this perspective is 

shown in Figure 11. 

 



42 
 

 

Figure 11. Schematic representation of the multiproxy approach used in this thesis. a) Schematic representation of the 
phenomena captured in small lakes (fires, local vegetation, human impact). b) Multiproxy approach conducted in the 
present work and the possible reconstructions.  

 

 

 

 

 

 

a) 

b) 
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The multiproxy approach is the main technique available for determining vegetation response to 

past terrestrial environmental change (Bennett and Willis, 2002). The general methodology used in 

palaeoecology and therefore in the present work is schematized in Figure 12. 

 

Figure 12. Schematic representation of the procedure in a palaeoecological study. Extracted from Birks and Birks (2011).   
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Abstract 

Natural disturbance processes such as volcanic eruptions, fire, and human activities are important 

vegetation drivers in north Patagonia. Here, we tested the impact of volcanic ash fall and fire on 

vegetation composition analysing two sediment records, Lake Avutarda and Lake Bruja located in 

the forest-steppe transition at 40°S. Additionally, our analysis provides the first account on the 

history of Nothofagus alpina at its eastern distribution limits. Our results comprise the last 3000 

years, indicating the persistence of the vegetation despite evident volcanic activity documented by 

numerous tephra layers in both records. Eleven fire episodes were identified, while redundancy 

analysis indicates a non-significant influence of fire activity on the vegetation. The population 

increase of Nothofagus alpina represents the most important change in vegetation composition in 

the last three millennia. We speculate that the presumed change in climate, which lead to the 

expansion of Austrocedrus chilensis south of the study area, also caused the increase of Nothofagus 

alpina populations in the region. 

Key words: Late Holocene, ash, fire, human activities, Nothofagus alpina. 

5.1 Introduction 

The eastern side of the Patagonian Andes is characterized by a remarkable vegetation gradient, with 

a sharp transition from the forest to the steppe. The modern geographic position of the ecotone is 

largely determined by effective moisture and follows the decrease in precipitation from west-to-

east (Garreaud, 2009), which in turn is determined by the orographic effect of the Andes Cordillera 

and the prevailing westerly winds. The exact position of the ecotone may depend on the latitudinal 

position and strength of the Southern Westerlies (Villalba et al., 2003). Nevertheless, natural 

disturbances such as fires and volcanic eruptions are frequent in this region and may play an 

important role in controlling the vegetation composition as well (Kitzberger, 2012; Veblen et al., 

1992). 

Many characteristics of the vegetation, including richness, dominance, and structure are under the 

influence of disturbance events (Pickett and White, 1985; Theurillat and Guisan, 2001). The strength 

or frequency of some disturbance processes depend on the mean state of other abiotic components 

(Baker, 1995; Turner et al., 1998). For example, the severity and frequency of fire varies with 

changes in precipitation and temperature (Dale et al., 2001; Jolly et al., 2015; Veblen et al., 2000). 
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Additionally, human activities represent additional disturbance factors, such as logging, animal 

pasture and through the introduction of new species. 

In addition to climate and disturbance regimes controlling vegetation history, the initial distribution 

of plants at the end of the last glaciation play an important role in explaining postglacial vegetation 

change. The survival of plants on both sides of the Andes Cordillera has been proposed by 

palynological and genetics studies, for some important tree taxa in the region (Heusser, 1983; 

Marchelli and Gallo, 2006; Markgraf et al., 2009; Paredes, 2003; Pastorino and Gallo, 2002; Premoli 

et al., 2000; Villagrán, 1991). Nothofagus alpina has been largely investigated in genetic studies 

(Donoso et al., 1990; Marchelli and Gallo, 2004), while palaeoecological studies have hitherto not 

addressed its history along its eastern distribution limit, especially at 40°S, where Nothofagus alpina 

as well as Nothofagus obliqua (same pollen type) have their largest abundance (Sabatier et al., 

2011). 

These deciduous southern beech species occur at both sides of the Andes Cordillera. The latitudinal 

range of Nothofagus alpina in Chile extends from 35°13´S until 40°22´S and its Argentinean 

distribution comprises a latitudinal range from 39°25´S to 40°35´S. The geographical distribution of 

Nothofagus obliqua is wider extending in Chile from 30°30´S to 41°S and, on the eastern side of the 

Andes, its distribution ranges from 36°50´S to 40°15´S. In general, both species growth under a 

humid-temperate climate, where winter precipitation plays an important role in the development 

and persistence of these species during the following summer (Donoso, 2013). 

Based on these settings and previous research in the region we address the following questions: 1) 

What changes did the vegetation experience at 40°S during the last 3000 years? 2) Did natural and 

anthropogenic disturbances processes strongly influence vegetation composition through time? 3) 

What is the history of Nothofagus alpina in Northern Patagonia? To answer these questions, we 

investigated the sediments of two small lakes positioned in the transition of the forest-steppe 

ecotone, south of Lake Lácar in the Neuquén Province, Argentina. The area is currently largely 

affected by the deposition of volcanic ash, lightning and resulting fires, and human activities. Our 

study sites are located within the Lanín National Park, home to the main populations of Nothofagus 

alpina and Nothofagus obliqua on the eastern side of the Andes. 
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5.2 Modern environmental setting 

The study sites are located in north Patagonia Argentina at 40°S, on the eastern flank of the Andes 

Cordillera, in the southwestern part of the Neuquén Province. The western flanks of the Andes 

receive precipitation in excess of 3000 mm a year, which drops within 100 km to below 200 mm per 

year. The air masses discharge most of the humidity on the way up the mountains on the western 

slopes of the Andes. Dry air descends on the eastern slopes undergoing adiabatic heating: due to 

the difference between wet and dry lapse rates the descending air is warmer. In the valleys, 

precipitation is generally less than 800 mm (Garreaud et al., 2013). Maximum precipitation occurs 

in the winter season (June-August). To the east, the climate is drier and with regular frost periods 

and warmer summer temperatures (Fernández-Long and Müller, 2006). In the study area, the 

average precipitation varies between 2100 and 1700 mm per year. The average temperatures are 

4.1 °C in winter and 20.1 °C in summer (Administración de Parques Nacionales, 2012). 

The vegetation in the region responds to the sharp precipitation gradient and topography. A 

vegetation transition from rain forest to open woodland and to steppe on the eastern flanks 

characterize this gradient. The rainforest elements Podocarpus nubigenus, Saxegothaea conspicua, 

Drimys winteri are present in the westernmost areas. (Donoso, 2013). The transition zone between 

rain forest and the steppe is dominated by an open woodland of Nothofagus antarctica with 

Austrocedrus chilensis and Maytenus boaria together with shrub species of Berberis, Discaria, and 

Escallonia. The steppe is mainly characterized by shrubs belonging to the family Asteraceae, 

Chenopodiaceae, and to the genus Mulinum and herbs of Poaceae, Senecio, Acaena, and Phacelia.  

The forest is dominated by several southern beech species of the genus Nothofagus. Their 

distribution in the landscape is determined by effective moisture, elevation, and soil. Five species of 

Nothofagus are present in the region, of which Nothofagus alpina and Nothofagus obliqua are 

restricted to some lake basins in their Argentinean distribution. Large and dense mixed forests of 

these two species develop around Lake Lácar (Sabatier et al., 2011) while in other overlapping areas 

of their distribution the two species occur as monospecific forests. Within those mixed forests 

however, the species abundance differs with altitude. Nothofagus obliqua dominates the forests 

between 650 and 800 m a.s.l., while Nothofagus alpina becomes dominant at 950 m a.s.l., occurring 

up to 1350 m a.s.l. Nothofagus alpina grows under an annual precipitation average between 1800 

and 2800 mm year-1 and Nothofagus obliqua occurs with a precipitation average between 950 and 

2300 mm year-1 (Sabatier et al., 2011). Nothofagus alpina extends its south range of distribution in 
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Argentina to 40°35’S, while Nothofagus obliqua reaches its southern limit of distribution at 40°14’S, 

south of the Lake Lácar basin. In Argentina, Nothofagus alpina is more than twice as abundant as 

Nothofagus obliqua. 

The other three Nothofagus species have a wider distribution in Argentina as well in Chile. 

Nothofagus pumilio is a deciduous tree widely distributed along the Andes in Argentina and Chile 

(Donoso, 2013), defining the upper tree limit at high altitudes (Cuevas, 2000). Different 

morphological forms occur according to the altitude and environmental conditions, with some 

individuals growing as shrubby krummholz form at the highest elevations and others growing as 

trees up to 20 m tall (Young and Leon, 2007). Nothofagus dombeyi dominates slopes in the western 

parts in an elevation belt below Nothofagus pumilio, where the mean annual precipitation 

fluctuates between 1000 and 2800 mm. Nothofagus antarctica, possesses the greatest ecological 

amplitude among the South American Nothofagus species (Donoso, 2013) and adopts different 

morphotypes according to the environment in which it develops (Premoli, 1991; Ramírez and 

Figueroa, 1987). In our study site, this species is forming monospecific woodland and mixed patches 

of open vegetation towards the dry end of the precipitation gradient. 

The study sites are located within the Lanín National Park in Neuquén Province, Argentina (Figure 

13c). Lake Bruja (40°14' S; 71°30'W; 1060 m a.s.l.; Figure 13b), is situated on the northeast slope of 

Cerro Escondido. It has a basin of about 1.6 hectares. It is located in a wide valley, which is used for 

summer pasture of cows, and horses that roam in the forest around the lake. The immediate 

surroundings of the lake consist of a closed mixed forest of Nothofagus dombeyi and Nothofagus 

alpina with few individuals of Nothofagus antarctica growing at the lake shore, while a mosaic of 

Nothofagus antarctica and patches of open grassland characterize the lower slopes and valley 

bottom. A dense population of bamboo Chusquea culeou characterizes the understory. 

Austrocedrus chilensis is present within the valley on slopes with northerly aspects. At Lake Bruja 

precipitation is about 2100 mm year-1. 

Lake Avutarda (40°23'S; 71°25'W; 1610 m a.s.l.; Figure 13a) is located 30 km south of San Martin de 

Los Andes, east of Cerro Ezpeleta. It is situated at the treeline of Nothofagus pumilio. Nothofagus 

alpina occurs on the western slopes up to about 1350 m a.s.l. It is a shallow lake of 0.75 hectares, 

with a depth of 1.5 m at the time of sampling. Shrubs and herbs such as Asteraceae, 

Caryophyllaceae, Iridaceae, Poaceae, Ranunculaceae, Valeriana, Geranium, Acaena, Brassicaceae, 

Gaultheria, Senecio and Quinchamalium occur around the lake. Krummholz forms of Nothofagus 
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pumilio grow at the eastern side of the lake, while a forest of erect Nothofagus pumilio trees is found 

to the west. At Lake Avutarda precipitation is about 1700 mm year-1. 

 

Figure 13. Location of the study sites: (a) Lake Avutarda and (b) Lake Bruja photographs; (c) position of the study sites (red 
stars), and the actual modern distribution of Nothofagus alpina, Nothofagus obliqua and Austrocedrus chilensis on the 
Argentinean side around Lake Lácar basin based on Sabatier et al. (2011); Administración de Parques Nacionales (2012); 
and Dezzotti and Sancholuz (1991). Notice that the studied lakes are small (Avutarda 0.75 and Bruja 1.6 hectares), and 
therefore not distinguishable on the map. 

 

5.3 Material and Methods 

The sediment-water interface at both lakes was collected using a gravity sampler, recovering 17 cm 

and 11 cm for Lake Bruja and Lake Avutarda, respectively. Further one-meter long core sections 

were obtained using a square rod Livingstone sampler (Wright, 1967). A 140 cm long core was 

obtained from Lake Bruja and a sediment sequence of 116 cm length was recovered from Lake 

Avutarda. Cores were described visually using the Munsell Soil Colour Chart. Loss on ignition was 

carried out at 550 °C (Heiri et al., 2001) from the same sample depth used for pollen analysis. 

Samples of 0.5 cm3 were taken for pollen analysis at 2 cm intervals, along both cores avoiding tephra 

layers. In addition, contiguous pollen sampling was conducted before and after major tephra layers 
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in order to analyse the effect of ash deposition on the vegetation. Pollen processing followed the 

methodology outlined by Bennett and Willis (2001), excluding sieving. Identification was carried out 

using the reference collection from the Department of Palynology and Climate Dynamics of the 

University of Göttingen together with reference literature by Heusser (1971) and Markgraf and 

D’Antoni (1978). A tracer of Lycopodium was added to each sample to calculate pollen 

concentration. A minimum of 500 pollen grains was counted at 40× magnification. Terrestrial pollen 

percentages were based on the sum of trees, shrubs, and herbs. Cyperaceae pollen grains were not 

included in the sum of aquatic taxa since these plants grow at the margin of the lakes.  

In the absence of macrofossils, four bulk sediment samples per lake were radiocarbon dated. The 

age-depth models were constructed based on these dates (Table 1) and pollen stratigraphical 

control points using Clam 2.2 (Blaauw, 2010) with SHCal13.14C calibration curve (Reimer et al., 

2013). Linear interpolation was applied, without considering the width of tephra layers with a 

thickness > 1 cm. 

 

Table 1. Radiocarbon ages for the cores Avutarda and Bruja based on bulk sediment. Control points based on first pollen 
appearance: CPa marks the establishment of Pinus plantations. CPb arrival of first European settlers indicated by Rumex 
acetosella. 
 

Depth (cm) Uncalibrated 

age 

Calibrated 

age (cal. yr 

BP) 

Calibrated ages ranges at 

95% confidence intervals 

(yr min/yr max 

[probability (%)] 

Control 

point 

Laboratory code 

Lake Avutarda      

150.5‒151  -30 -49/-11 [95] 1970±20 CPa 

153.5‒154  71 21/118 [95] 1880±10 CPb 

167.5‒168 1229±25 1103 993/1017 [7] 

1054/1179 [87.9] 

 UBA-19650 

200.5‒201 1944±26 1846 1747/1772 [9.8] 

1789/1791 [0.4] 

1801/2086 [84.7] 

 UBA-19652 

219.5‒220 2088±28 2007 1930/1979 [27.3] 

1981/2086 [67.6] 

 UBA-19654 

263‒263.5 2708±50 2792 2720/2879 [94.8] 

2914/2915 [0.2] 

 UBA-19656 

Lake Bruja      

685.5‒686  -30 -49/-11 [95] 1970±20 CPa 

687.5‒688   70 31/108 [95] 1880±10 CPb 
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715‒715.5 837±41 709 670/752 [94.2] 

758/760 [0.8] 

 UBA-21609 

747‒747.5 1761±45 1721 1537/1722 [95]  UBA-21610 

792.5‒793 1963±35 1867 1748/1772 [5.7] 

1788/1791 [0.4] 

1800/1933 [84] 

1963/1992 [4.8] 

 UBA-21611 

836‒836.5 3359±33 3543  3455/3636 [95]  UBA-21612 

 

Pollen diagrams were constructed using C2 (Juggins, 2003). Constrained cluster analysis was 

performed with Tilia 2.0 (Grimm, 1993) using incremental sum of squares on the chord distance 

matrix. Principal component analysis (PCA) was conducted to explore directional changes and 

compare the two sites. The analysis was carried out on the covariance matrix of the taxon-combined 

percentage data. We conducted a redundancy analysis (RDA) examining possible relationships 

between changes in the vegetation composition and tephra deposition as well as fire episodes. The 

distance of each sample to the prior tephra layer and tephra thickness are the variables considered 

to evaluate whether tephra deposition had an effect on the vegetation. Fire frequency and fire 

magnitude are the variables used to investigate if the fire regime had influenced the vegetation. All 

ordinations were performed using CANOCO 5.0 (Ter Braak and Šmilauer, 2012) with square root 

transformed percentage data. For visual comparison, samples from both lakes were assigned to the 

clusters corresponding to the numerical zonation of each record. Palynological richness (E(Tn)) 

(Birks and Line, 1992) was estimated using ‘vegan’ package version 2.4.4 (Oksanen et al., 2017) with 

R (R Development Core Team, 2017). 

Macro charcoal analysis was carried out based on 1 cm3 sediment contiguously sampled at a 1 cm 

interval following the methodology outlined by Stevenson and Haberle (2005), avoiding tephra 

layers. The material was sieved at 125µm and counted under a stereomicroscope. The results were 

analysed using CharAnalysis (Higuera et al., 2009). This analysis was carried out for Lake Bruja, due 

to its position within a major forest of Nothofagus species. 
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5.4 Results 

5.4.1 Chronology, Lithology, and Loss on Ignition 

The age-depth models for the cores from Avutarda and Bruja indicate basal ages of 2800 and 3600 

cal. yr BP, respectively (Figure 14a and b). To constrain the age model for the youngest samples, we 

added two control points. A date of 1880 ± 20 was added for the arrival of the first European settlers 

to the area (Kitzberger, 2012; Veblen and Lorenz, 1988), indicated by the onset of the Rumex 

acetosella curve in the diagram. A second date was used to mark the onset of Pinus plantations in 

the region (1970 ± 10) (Rehfeldt and Gallo, 2001; Schlichter and Laclau, 1998). 

 

Table 2. Sediment description of cores Avutarda and Bruja. 

Depth (cm) Age cal. yr BP Sediment characteristics 

Lake Avutarda   

150‒145.5 Present Clay. LOI between 5 and 22%. 

181‒150 1150-Present Alternate gyttja/black-basaltic ash layers. LOI between 2 and 12%.  

191‒181 ~1550 Grey-pumice-rich segment. 

236‒191 2300‒1550 Alternate clayey-gyttja/black-basaltic ash layers. LOI between 1 and 

20%. Minimum LOI % between 213-203 cm. 

253‒236 ~2300 Thick grey-pumiceous segment.  

265‒253 2800‒2300 Reddish gyttja with three fine bands of basaltic ash. LOI between 4 and 

14% 

Lake Bruja   

700‒683.5 Present Clay. LOI between 2 and 32%. 

772-700 1800-Present Series of thick clayey-gyttja and basaltic ash layers with varied thickness. 

LOI between 1 and 22%.  

795‒772 2200‒1800 Various layers of clayey-gyttja and narrow layers of basaltic ash. LOI 

between 1 and 14%. 

812‒795 ~2200 Two thick bands of basaltic ash with an incursion of a clayey-gyttja layer.  

835‒812 3300‒2200 Alternate laminations of clayey-gyttja, basaltic ash, and gyttja. LOI 

between 1 and 36% 

840‒835 3600‒3300 Light clayey-gyttja and basaltic ash segment.  
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The sedimentation rate of both cores fluctuates between 0.1 to 0.8 mm yr-1. In the last 100 years, 

Avutarda shows the fastest sedimentation rates (2 mm yr-1), while the fastest sedimentation rates 

at Bruja (2 mm yr-1) occurred around 3500 cal. yr BP. The sediments from both lakes show 

alternations between gyttja and basaltic-ash layers throughout the record (Table 2, Figure 14). In 

addition, the core from Avutarda contains a thick pumiceous-ash segment between 253 and 236 cm 

depth. Tephra layers recorded in both cores > 1 cm thick consist entirely of volcanic material. Not 

organic or minerogenic material mixed with the volcanic glass is observed. It can therefore be 

assumed that inwash of allochthonous material into the lake during or following the volcanic 

eruptions must have been low. Consequently, tephra layers represent a particular volcanic event 

and their thickness gives an idea of the magnitude of the eruption. Although both sites are situated 

15 km apart, the tephra layers in both cores could not be matched visually (Figure 14) 
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Figure 14. Lithology and age-depth model of (a) Avutarda, and (b) lithology, macrocharcoal (particles/cm2), and age-depth model of Bruja. Notice adjusted depth in Y axis in age-
depth model.  



56 
 

5.4.2 Avutarda and Bruja pollen record and Fire History of Lake Bruja 

Changes in pollen composition were summarized for both Avutarda and Bruja in Table 3 and scarce 

pollen types (up to 3 pollen grains per sample) are presented in Table 4. The constraint cluster 

analysis indicated three distinct groups for both sites and the diagrams were subdivided into three 

zones accordingly (Figure 15). The different Nothofagus species occurring in the region can only be 

separated into two distinct pollen types: Nothofagus dombeyi-type corresponding to Nothofagus 

antarctica, Nothofagus pumilio and Nothofagus dombeyi and Nothofagus obliqua-type produced by 

Nothofagus alpina and Nothofagus obliqua. At both sites, pollen of Nothofagus obliqua-type is 

mostly attributed to Nothofagus alpina. This pollen type is large and heavy, with short distance 

pollen dispersal (< 35 m, Marchelli et al., 2012), and therefore has a restricted pollen source area. 

Nothofagus alpina occurs today around Lake Bruja and ca. 250 m downslope on the western side of 

Lake Avutarda (1610 m a.s.l.), between ca. 800 and 1350 m a.s.l. These tree populations of 

Nothofagus alpina may have largely contributed to the total pollen of Nothofagus obliqua-type 

recorded at Avutarda, due to upslope pollen transport by the prevailing westerly winds. Pollen input 

of Nothofagus obliqua into the lake basins is of regional origin (sensu Prentice, 1985), and therefore 

contributing in a small proportion to the pollen records. The southern distribution limit of 

Nothofagus obliqua occurs ca. 5 km north/north-east of Lake Bruja and 20 km north of Lake 

Avutarda. In addition, both sites are above the modern altitudinal optimum of Nothofagus obliqua 

in the region, making it unlikely the tree occurred in the proximity of the lakes during the last 3000 

years. Cupressaceae pollen is attributed largely to Austrocedrus chilensis, although individual grains 

may come from the rainforest taxa Fitzroya cupressoides or Pilgerodendron uviferum via long-

distance transport. 

The location of the lakes determines the type of pollen signal captured. Bruja, situated on the 

mountain slope at 1060 m a.s.l. within a dense forest, is documenting mainly changes in the local 

vegetation, reflected by the high percentage of Nothofagus dombeyi-type corresponding to the 

dominance of Nothofagus dombeyi occurring around the lake, Nothofagus pumilio above 1150 m 

a.s.l. and few individuals of Nothofagus antarctica growing at the lake shore as well as downslope 

in the valley. Lake Avutarda is located at the tree line (1610 m a.s.l.), where the persistent westerlies 

bring extra local components. Therefore, pollen from extra local origin is stronger represented 

including Podocarpus nubigenus, Saxegothaea conspicua, Weinmannia trichosperma, and 

Eucryphia/Caldcluvia. 
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Zone Age cal. yr BP Pollen zone characteristics Interpretations 

Avutarda    

Avu-3 100-Present Presence of human landuse indicator taxa:  Rumex acetosella, Plantago 
lanceolata and Pinus (in that order of appearance); reduction in the percentage 
of Poaceae, Ranunculus, Asteraceae subf. Asteroideae and Nothofagus dombeyi-
type. Palynological richness = 20‒28 taxa. 

Forest clearing and animal husbandry close to the 
lake. 

Avu-2 1200‒100 Gradual increase in the percentage of Nothofagus obliqua-type (2.7 %, peak 
around 500 cal. yr BP), as well as an increase in the percentage of rainforest taxa, 
and a decrease in Hydrangea and Misodendrum. Asteraceae subf. Asteroideae 
remains high as the prior zone. Palynological richness = 14‒26 taxa. 

Increase of downslope population abundance of 
Nothofagus alpina. 

Avu-1 

 

 

 

2800‒1200 Decline of Nothofagus dombeyi-type and increase of Poaceae between 2500 and 
2000 cal. yr BP. First encounter of Nothofagus obliqua-type pollen at 2300 cal. yr 
BP. Asteraceae subf. Asteroideae shows its highest percentage (3.7%). Epiphytic 
taxa show a continuous presence (~1 %). Ranunculus shows the maximum 
percentage (4.8%), followed by Gunnera (2.6%). The end of this zone is 
characterized by an increase of Nothofagus dombeyi-type and a decrease of 
Poaceae percentage. Palynological richness = 16‒27 taxa. 

Local and regional decrease of Nothofagus 
pumilio. Expansion of herbs and grasses.   

Bruja    

Bru-3 88-Present Appearance of Rumex acetosella, Plantago lanceolata and Pinus. Reduction in the 
percentage of Nothofagus dombeyi-type with a slight increase of Poaceae 
percentage. Palynological richness = 18‒25 taxa. 

Use of natural open areas for grazing. Short-scale 
timber activities.  

Bru-2 1200‒88 Slight reduction in the percentage of Nothofagus dombeyi-type and 
Cupressaceae and increase in the percentage of Nothofagus obliqua-type. Slight 
decrease in the percentage of Misodendrum, Asteraceae subf. Asteroideae and 
Poaceae. The end of this zone is marked by the appearance of the human 
introduced taxa Rumex acetosella. Palynological richness = 10‒17 taxa. 

Closed forest. Reduction of the diversity of 
herbaceous taxa. Local increase of Nothofagus 
alpina populations occurring around the lake. 

Bru-1 3600‒1200 Frequent occurrence of Cupressaceae and Misodendrum. Rise of Nothofagus 
obliqua-type at 2200 cal. yr BP (10.9%). Presence of rain forest element 
decreasing at 2700 cal. yr BP. Continuous presence of Isoëtes (0.7%) and its later 
disappearance from the record at 1600 cal. yr BP. Abundance of Poaceae, 
Asteraceae subf. Asteroideae and Chenopodiaceae. Presence of steppe elements 
(e.g. Azara, Maytenus, Discaria) lower than 7%. Palynological richness = 12‒23 
taxa. 

Open forest. Codominance of Nothofagus and 
grass. High diversity in the herbaceous stratum 

Table 3. Vegetation history of Avutarda and Bruja records. 
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Table 4. Rare pollen types (up to 3 pollen grains per sample) at Lakes Avutarda and Bruja (not shown in the pollen 
diagrams).  

 

   Avutarda   Bruja  

Age (cal. yr BP) 0‒100 100‒200 1200‒800 0‒88 88‒1200 1200‒3600 

Taxa/Pollen zones Avu-3 Avu-2 Avu-1 Bru-3 Bru-2 Bru-1 

Araucaria araucana             *  

Alnus acuminata    *    *    *       *    *    

Lomatia hirsuta  *         *             *  *       *  

Drimys winteri   *       * *  *  

Maytenus             *         *  * *      * *    

Embothrium coccineum         *     

Ribes           *       *    

Aster. subf. Cichorioideae *   *     *      *   

Nassauvia         *  * 

Quinchamalium        *  

Valeriana                   *   *  

Viviania           *                    *            

Ranunculus                        *  

Berberis                       *    

Azorella                 * 

Armeria          *        

Verbenaceae                 * 

Iridaceae  *         *      

Adesmia    *    

Rubiaceae     *      *             *    

Mulinum         *              

Polygonaceae       *                            *    *    

Escallonia *          *       *      *         *                 * *      * 

Unknown     *       * *         * *              *            *          * 

Isoëtes       *  *                         

Hymenophyllum            *    

Polypodium feuillei     *         *  

Anthoceros/Phaoceros      * 

Litorella/Plantago   *    

*Represents a pollen grain unit found per zone. 
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The accumulation of macroscopic charcoal in the sediments of Bruja is low with an average of 0.65 

particles cm-2 yr-1. Most of the charcoal counted correspond to grass (> 80% in all the samples 

counted). Nevertheless, distinct peaks are visible and the signal-to-noise index (SNI) of 4.6 indicates 

a consistently good separation of the signal from background noise (Kelly et al., 2011). Eleven fire 

episodes were detected during the last 3600 years. Fire frequency was high between 2000 and 1600 

cal. yr BP and 1000 and 500 cal. yr BP with a maximum of four episodes/500 years during the former 

period.  

High fire magnitude indicates large or intensive fires (Whitlock et al., 2006). In Bruja, these episodes 

took place between 2000 and 500 cal. yr BP. Highest peak magnitudes were registered between 

1700 and 600 cal. yr BP. Fire-free intervals, with at least 400 years between fire events were 

observed along the record. Time between fire events was shorter between 2000 and 800 cal. yr BP, 

with an interval of 100 to 200 years. 

 

5.4.3 PCA and RDA 

For both records the PCA analyses show that the composition of samples was relatively stable 

through time with the first PCA-axis explaining only 23% and 17% of the variance for Avutarda and 

Bruja, respectively. The grouping obtained in the constrained cluster analysis was not reproduced 

by the PCA. In Avutarda the PCA only separates the samples from the youngest pollen zone, while 

no clear grouping of samples was obtained for Bruja. The first axis in the PCA for Avutarda separates 

the samples according to their proportion of Ranunculus, Caryophyllaceae and Poaceae versus Pinus 

and Rumex acetosella and Plantago lanceolata (Figure 16a). Therefore, it may be considered that 

the first component represents a land use gradient that increases from left to right. It is interesting 

to note that Poaceae are not associated with the human impact indicator taxa, suggesting that the 

area around Lake Avutarda was not intensively used for agrarian and pastoral activities. The second 

axis explaining 12% of the variance separated the samples according to the proportion of 

Nothofagus dombeyi-type versus Nothofagus obliqua-type. 
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Figure 15. Percentage pollen diagram from (a) Avutarda record and percentage pollen diagram and macrocharcoal results from (b) Bruja, including pollen 

sums. Outline curve represent 10× exaggeration for minor taxa. 
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The first PCA axis in Bruja separated the 

samples according to their percentage of 

Poaceae and Misodendrum versus 

Nothofagus dombeyi-type. The second axis 

explained 16% of the variance and split the 

samples according to their proportion of 

Cupressaceae and Asteraceae subf. 

Asteroideae versus human indicator taxa 

(Figure 16b). The sample arrangement on 

the PCA shows two main vegetation phases 

through time. The first phase (lower two 

quadrants corresponding to 3600 and 1100 

cal. yr BP), with samples characterized by 

steppe taxa; and a second phase (upper two 

quadrants corresponding to the last 1100 

years) characterized by Nothofagus obliqua-

type. 

Submitting both records to the same PCA 

analysis revealed a clear separation between 

both sites (Figure 16c) with the first axis 

explaining 68% of the variance. The first axis 

is representing the environmental gradient 

between the two sites, which is a 

combination of the altitudinal difference 

and the precipitation gradient. 

 

Figure 16. Species/sample scores of the PCA of pollen 
percentage data of (a) Lake Avutarda and (b) Lake 
Bruja. Grouping by CONISS shown by different symbols 
in the PCA: rhombus= zone 1; squares= zone 2; and 
circles= zone 3. (c) Combined ordination of Lake Bruja 
(squares) and Lake Avutarda (circles). 
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On the right side, the samples from Lake Avutarda were characterized by Asteraceae subf. 

Asteroideae, Poaceae and Ranunculus, which is in accord with the high elevation position of this 

lake, at the treeline of Nothofagus pumilio. On the other hand, samples from Lake Bruja (left side, 

squares) were characterized mainly by Nothfagus obliqua-type and some rain forest elements such 

as Weinmannia trichosperma and Drimys winteri (not shown here). The second axis explained 5% of 

the variance, and separates the samples according to the presence of human indicator taxa such as 

Rumex acetosella, Plantago lanceolata and Pinus. These species are present in the youngest samples 

(on top) and they have a negative correlation with Poaceae and a positive correlation with 

Nothofagus dombeyi-type. The taxa arrows belonging to Avutarda quadrant indicate the extra local 

input represented in this site, which also includes Nothofagus dombeyi-type. 

 

We applied RDA analysis to the pollen data from both sites to investigate whether the deposition of 

tephra layers had any effect on the pollen composition of the next younger samples (Table 5, Figure 

17) but found no significant effect (Lake Bruja: explained variation of the distance to the tephra 

2.0%; and tephra thickness 2.1%). However, in individual cases we visually observed changes in 

pollen percentages and or a reduction in taxonomic richness in both records. The samples following 

the two thickest tephra layers in Bruja contain higher proportions of Poaceae pollen (11%) with a 

decrease in Nothofagus dombeyi pollen, while the sample with an even higher Poaceae proportion 

(14%) is not following a tephra layer. For Bruja we also tested whether changes in fire frequency 

and magnitude explain changes in pollen composition, but also here found no significant influence 

of the fire regime on the vegetation (explained variation 4.4% and 3.4% respectively).  
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Figure 17. Redundancy analysis (RDA) biplot of selected species and samples, and explanatory variables for (a, b) Lake 
Bruja and (c, d) Lake Avutarda. 
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Table 5. RDA results performed on pollen percentages of Lakes Avutarda and Bruja. 

 

Explanatory 

variables 

Explained 

variation % 

Pseudo-F p p (adj) 

Lake Avutarda     

Distance to the 

tephra 

3.4 1.4 0.096 0.192 

Tephra 

thickness 

2.0 0.8 0.704 1. 

Lake Bruja     

Fire frequency 4.4 1.7 0.474 1 

Fire magnitude 3.4 1.3 0.322 1 

Tephra 

thickness 

2.1 0.8 0.658 1 

Distance to the 

tephra 

2.0 0.8 0.832 1 

 

5.5 Discussion 

5.5.1 Vegetation history and population increase of Nothofagus alpina 

The most pronounced result of this investigation is that the vegetation was stable around Avutarda 

and Bruja over the last 3600 years, regardless of tephra depositions of up to 20 cm, fire activity, and 

presumed increase in ENSO variability (Flantua et al., 2016; Moy et al., 2002). The increase in the 

percentage of Nothofagus obliqua-type, attributed here mostly to Nothofagus alpina, appear as one 

of the most noticeable changes in our records, however, this change is gradual and most likely not 

triggered by a single disturbance event, such as a large scale fire. Documentation of the vegetation 

history of Nothofagus alpina in palynological records is limited, especially on the Argentinean side 

of the Andes, where its distribution is restricted to valleys between 39° to 40°S (see Sabatier et al., 

2011), and most of the investigations have so far focused on sites further south or north, capturing 

scarcely its presence. Thus, our records provide a first account of the Late Holocene history of 

Nothofagua alpina since the lakes are located close to the main population of this species in the 

Lake Lácar basin in the Lanín National Park. 
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Lake Bruja is surrounded by a dense forest of Nothofagus alpina and located 6 km south of Lake 

Lácar, where the largest populations of Nothofagus alpina as well as Nothofagus obliqua occur today 

(Figure 13c). The uppermost surface sample from Lake Bruja comprises 9.1% of Nothofagus obliqua-

type pollen that increased from 3.3% at the beginning of the record around 3600 years ago (Figure 

15b). Lake Avutarda, collects 1 % of Nothofagus obliqua-type pollen in the modern samples, with 

the continues pollen curve starting around 1500 cal. yr BP (Figure 15a). At Avutarda, the closest 

Nothofagus alpina population occur 250 m downslope (Figure 13c), while the closest Nothofagus 

obliqua population is found at 20 km northwest, around Lake Lácar. 

 

This Late Holocene increase of Nothofagus obliqua-type finds a parallel in the Late Holocene 

expansion of Austrocedrus chilensis to the south of the study region. Several pollen diagrams from 

the forest-steppe ecotone between 41° to 43° S document the expansion of Austrocedrus chilensis 

between 5000 and 2000 years ago (Iglesias et al., 2014). Austrocedrus chilensis is also abundant on 

the eastern end of Lake Lácar, while its pollen type is scarcely represented at Avutarda and declines 

at Bruja. In this case Cupressaceae pollen decline from an initial 3% to 1% coinciding with the 

increase of the Nothofagus obliqua-type pollen. This may suggest either a decrease of Austrocedrus 

chilensis individuals or an override-effect of the Cupressaceae pollen signal, due to the large amount 

of pollen production of the Nothofagus species (Fontana and Bennett, 2012) in comparison with 

Austrocedrus chilensis, which has a locally restricted pollen dispersal (Markgraf et al., 1981). 

 

Austrocedrus chilensis is a drought-resistant taxon. However, its growth and distribution are mainly 

depending on moisture availability and precipitation, especially during the growing season 

(Kitzberger et al., 2000; Villalba and Veblen, 1997). Where the expansion of Austrocedrus chilensis 

occurs at sites towards the steppe (e.g. Lago Mosquito, Iglesias et al., 2011) it is interpreted as a 

reaction to a more humid climate while other climatic shifts or changes in the fire regime may have 

triggered the expansion elsewhere (Iglesias et al., 2014). However, the general trend in Late 

Holocene climate change in Northern Patagonia is towards more humid conditions (Lamy et al., 

2001; Mancini et al., 2008). Causes for increased humidity during the Late Holocene may be the 

northward shift and or enhanced strength of the Southern Westerlies (Fletcher and Moreno, 2011; 

Moreno et al., 2010). At the same time the climate may also have become more variable with 

enhanced ENSO activity (Flantua et al., 2016; Montecinos and Aceituno, 2003), possibly leading to 

alternations of drought and wet years perhaps providing an opportunity for a gradual replacement 

of tree taxa though gap dynamics. Nothofagus alpina and Nothofagus obliqua occur in areas with 
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winter precipitation and dry summers (Alberdi, 1987; Conticello et al., 1996; Donoso, 2013; Ramirez 

et al., 1997), while it is most likely their requirement for growing season warmth that limits their 

distribution in the east and south. Both trees would have benefitted from increased Late Holocene 

moisture availability. 

Although our records do not provide a strong evidence related to changes in precipitation 

seasonality and ENSO variability, the population increase of Nothofagus alpina during the Late 

Holocene is consisted with interpretations of Late Holocene climate change for southern South 

America (Lamy et al., 2001; Stine and Stine, 1990).  

 

5.5.2 Disturbance history 

The lithologies of the cores from Avutarda and Bruja document a constant and significant volcanic 

activity in the region (Table 2, Figure 14a and b) and one would expect that the vegetation should 

respond to this disturbance agent. High volcanic activity is reported for the entire Holocene in 

southern South America (Fontijn et al., 2014; Naranjo and Moreno, 1991; Naranjo et al., 1993). Due 

to the westerlies, most of the ash falls on the eastern flank of the Andes Cordillera (Gaitán et al., 

2011), affecting flora and fauna (Berenstecher et al., 2017). 

 

For the last 3600 cal. yr BP captured in our records frequent volcanic activity occurred between 2300 

cal. yr BP to 900 cal. yr BP, which coincide with minor changes in the percentage and concentration 

of Nothofagus dombeyi-type. Simi et al. (2017) report volcanic activity in two records in the Aysén 

region in southwest Chile, showing a minimal variation in arboreal pollen, similar to our records. In 

both cases, these slight changes in pollen percentage are reflecting the persistence of the forest 

despite the constant disturbance processes related to volcanic activity. Montiel et al. (2016) 

analysed the impact of tephra layers on populations of Nothofagus species after the eruption of the 

Puyehue-Cordón Caulle Volcanic complex in June 2011. According to their results, based on tree-

stands and tree-ring analysis, they concluded that some trees died because of the mechanic damage 

caused by the massive ash fall (> 50 cm), and surviving trees showed no ring development after the 

event. Nevertheless, they observed a considerable regeneration of Nothofagus seedlings but they 

could not show that this effect is directly related to the ash deposition. Since the thickest tephra 

layer in our records is 30 cm, mechanic damage on the branches of Nothofagus due to the ash fall 

may not have occurred here. Nevertheless, we cannot reject the possibility that ash deposition could 

have caused some impact on the foliage, as is demonstrated in some post-volcanic event studies 

(Chaneton et al., 2014) and therefore, it could affect pollen productivity. The finding that thick 



67 
 

tephra deposits did not show significant effects on the vegetation may account for specific strategies 

of some plant species to reduce a negative effect. For example, the development of adventitious 

roots in Nothofagus antarctica (Veblen et al., 1977). González et al. (2014) reported the 

establishment of Nothofagus pumilio sprouts one year after the Hudson volcano eruption, as well 

as the surviving of understory species. Likely these strategies are the consequence of an adaptative 

response to the systematic occurrence of this disturbance process (Veblen et al., 1977). 

 

Another example of the effect on the vegetation composition after a volcanic eruption indicates 

that the chemical composition of the ash plays an important role for the establishment or the 

decline of some taxa. An increase in soil acidification due to ash deposition may facilitate the 

establishment of new species or hindering the recovery of pre-existing species (Fontana and 

Bennett, 2012). In our case, the short-term effect of ash deposition likely is not noticeable due to 

the constant influx of Nothofagus pollen into the lake. 

 

The RDA results show that the effect of tephra deposition on the vegetation in both records is 

detectable, but not statistically significant as to have caused repeatedly a noticeable change in 

vegetation composition (p value > 0.05 and explained variation < 4.5% in all the variables tested; 

Table 5, Figure 17). The slight decline in Nothofagus and the increase in shrubs and herbs after one 

of the tephra layers may have been caused by volcanic ash deposition.  In addition, during periods 

of large ash deposition, fire events started to be frequent and possibly, these two local disturbance 

agents may have caused together the observed changes on the vegetation after single events. 

Moreover, when disturbance processes (fire and ash fall) and climate act simultaneously it is quite 

difficult to identify which factor caused the observed changes on the vegetation (De Porras et al., 

2014). In the analysed records, the response in terms of increase or decrease in percentage and 

concentration (not shown) of individual taxa seems random. For example, at Avutarda percentage 

values of Nothofagus dombeyi-type pollen decrease from 83% to 70% after 18 cm of tephra. 

However, in the same record, the same taxon increases from 78% to 83% after 17 cm of tephra. In 

the case of Poaceae percentage, this random effect of ash is also observed. From 8% to 15% after 

18 cm of tephra deposition and later, after 17 cm of tephra the percentage of Poaceae decrease 

from 10% to 7%. Nevertheless, studies in Argentina as well in Chile report the importance of major 

disturbance processes in the development and dynamics of Nothofagus forests and in some cases, 

the forest as well as the understory seem to be resistant to the disturbance events (González et al., 

2014). 
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Several studies have assessed the impact of tephra deposition from different perspectives: tree-

growth (Magnin et al., 2017), soil properties (Cremona et al., 2011; Gonzalez et al., 2015), fauna 

changes (Berenstecher et al., 2017; Lallement et al., 2014), leaf-litter decomposition (Chaneton et 

al., 2014; Piazza et al., 2018), among others. However, all these investigations have evaluated the 

impact of ash deposition at a short time scale, and potential long-term effects or the lack therefore 

are not clear. Based on our data it is difficult to disentangle the several factors that are acting at the 

same time, like fire, ash deposition, and climate. Moreover, one or more of these factors could 

strengthen or weaken the individual effect they have on the vegetation structure. Even in this 

situation, the vegetation reflected in both pollen diagram seems to be stable. 

Fire plays an important role in North Patagonia, and its effect on the vegetation composition has 

been extensively studied (Dudinsky and Ghermandi, 2013; Kitzberger et al., 1997; Kitzberger and 

Veblen, 1999; Mermoz et al., 2005; Veblen et al., 1999; Whitlock et al., 2006, among others). 

Palynological and macro charcoal analysis in North Patagonia show that fire activity during the Late 

Holocene is associated with the strengthening of ENSO frequency/intensity, especially after 3000 

cal. yr BP (Iglesias and Whitlock, 2014). Assessing the influence of fire events on the vegetation 

around Bruja, it was possible to identify eight fire episodes between 3500 and 1100 cal. yr BP, among 

which just five represent large or intensive fires and fire frequency increased between 2100 and 

1100 cal. yr BP. Three fire episodes, with a frequency of 1‒2 fires every 200 years were identified 

for the second zone (Bru-2; 1100‒100 cal. yr BP). We expected a correlation between fire and 

Poaceae since most of the charcoal counted comes from grass. However, the influence of fire 

frequency on Poaceae percentages is only strong in one sample (Figure 17). The RDA results indicate 

a nonsignificant influence of fire frequency and fire magnitude on the vegetation composition. 

Overall, the explanatory variables tested in this work (fire frequency, fire magnitude, tephra 

thickness and distance to the preceding tephra) account for 13.7% of the variation. However, since 

pollen sampling was carried out contiguously only before and after major tephra layers, it is possible 

that variation on the percentage of some taxa due to fire were not detected in other sections of the 

core. Despite this, it is possible to suggest that the local fire signal captured by Lake Bruja 

corresponds to surface-fires, at low magnitude and possibly promoted by lightning. The source of 

the charcoal found in Bruja could come either from the Chusquea bamboo understory around Lake 

Bruja or the open grassland patches in the valley northeast of the lake. Nowadays farmers use this 

place for cattle and low-scale timber extraction. 
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5.5.3 Human impact 

Northern Patagonia has been under the influence of human activities since before the arrival of 

European settlers (Veblen and Lorenz, 1988), changing the vegetation and adding to the natural 

disturbance regimes. However, it is difficult to find evidence of these early land-use activities in 

pollen diagrams. The pollen diagram from Lake Bruja and Avutarda show the presence of pollen 

from the introduced plants Rumex acetosella, Plantago lanceolata and Pinus in their topmost 

samples. Based on the abundance of these pollen types, the area close to Lake Avutarda was more 

intensively used by European settlers than the area surrounding Lake Bruja. Today, Pinus plantations 

and a few farms are located 3 km north-west of Lake Avutarda.  

 

The presence of Rumex acetosella and Plantago lanceolata in pollen records from southern South 

America has been used as an indicator for livestock grazing (Iglesias et al., 2016). A common pattern 

related to the arrival of European settlers is a decline in tree pollen with an increase in grass, due to 

forest clearance for pastureland (Fletcher and Moreno, 2012; Mancini et al., 2005; Szeicz et al., 

1998). Our results do not show an increase in Poaceae pollen at the time of the rise in Rumex 

acetosella and Plantago lanceolata. The PCA for Avutarda and Bruja (Figure 16a and b) shows a 

negative correlation between the Poaceae vector and human indicators taxa. At the time of grazing 

activities, Poaceae percentages are stable or decreased, indicating that the area likely was not 

suitable for pasture. 

 

The pollen diagram from Bruja shows a decline in the percentage of Nothofagus obliqua-type, 

immediately before the appearance of the human indicator pollen type. The age model in this 

section is not well constrained, however, it may be that the first European settlers around Lake Lácar 

area conducted selective-timber activities for house-building with a preference for Nothofagus 

alpina, due to its high wood-quality (Azpilicueta and Marchelli, 2016). Lanín National Park was 

created in 1937 (Administración de Parques Nacionales, 2012) and protective measures were 

established, and timber extraction was controlled, but initially continued at low rate. The result of 

this measure may be observed in the pollen diagram from Bruja where percentages of Nothofagus 

obliqua-type increase in the last 50 years, potentially indicating the effectiveness of those measures. 

Human-set fire in north Patagonia have been widely documented, based on reports written by 

eyewitness that indigenous people used fire for hunting (Veblen et al., 1999; Veblen et al., 2003). 

Thus, anthropogenic fires are not only related to European settlers. Fire frequency in the Bruja 

record declined in the last 500 cal. yr BP and fire activity is practically null towards current times, 
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probably due to the measures adopted by the authorities in charge of the National Park. In the light 

of these results, it is possible to speculate that neither indigenous people nor European settlers have 

promoted significant changes on the vegetation composition close to Lake Bruja, as it is evidenced 

by our results. Moreover, our fire record during the last decades suggests effective fire suppression 

activities in the region. 

 

5.6 Conclusions 

During the Late Holocene, the local vegetation around both Avutarda and Bruja lakes shows minimal 

changes, indicating the stability of the vegetation during the last 3600 years at 40°S. Even though 

we documented fire and volcanic activity in the region, we do not find evidence of large-scale 

vegetation reactions to these disturbances. The population increase of Nothofagus alpina was the 

most important change in vegetation composition during the last three millennia. Here, our records 

offer a first account of the vegetation history of this southern beech species. We speculate that the 

increase in effective moisture suggested in other investigations for the expansion of Austrocedrus 

chilensis in the region also determined the development of Nothofagus alpina. Human impact in the 

last century was detected by the presence of introduced taxa. However, the detected land-use 

change has not caused a significant impact on the vegetation composition in the region, accounting 

for the effectiveness of the measures carried out by the authorities of the National Park. 
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Chapter 6 

 

11000 years of vegetation dynamics, fire regimes, and 

volcanic activity near Lake Lácar Basin, Lanín National 

Park, Province of Neuquén, Argentina.  
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Abstract 

Western northern Patagonia Argentina provides a unique opportunity to analyse changes in mesic 

Nothofagus forest and so far, little is known about the past vegetation dynamics in mid-elevation 

areas close to the eastern slope of the Andes Cordillera. Fire and volcanic ash deposition are 

important disturbance agent recognized in the region and several current studies have 

demonstrated their role in shaping the vegetation. The present work revealed 11700 cal. yr BP of 

vegetation history, fire, and volcanic activity south of the Lácar basin (40°12´S; 71°30´W; 1095 m 

a.s.l.). The results indicate a dry Early Holocene with the probable dominance of Nothofagus 

antarctica and a diverse herbaceous and shrub stratum. The rise in Austrocedrus chilensis during 

the Mid-Holocene is associated with long fire-free periods. A shift in fire frequency and fire 

magnitude resulted in the diminishing of this conifer. The Late Holocene was characterized by the 

establishment of Nothofagus alpina and Nothofagus obliqua within the Lácar basin. The redundancy 

analysis performed indicated that among the fire, and ash deposition variables, the fire return 

interval is the most important variable explaining vegetation changes. Variations in the abundance 

of Poaceae, A. chilensis, N. dombeyi-type, and N. obliqua-type characterized the changes in 

vegetation composition throughout the Holocene. Finally, the results here presented do recognize 

the major role of climatic forces in modelling the vegetation as well as in the predisposition of the 

vegetation which, somehow, determines the vegetation response to disturbance agents.   

Key words: Holocene, fire, ash deposition, Cupressaceae, Nothofagus 

6.1 Introduction 

The modern vegetation of Patagonia is the result of a combination of topography and precipitation 

gradient. Humid to hyperhumid conditions along the western slope of the Andes allows the 

presence of a dense and diverse evergreen temperate forest (Villagrán, 1991). In eastern Andes 

slopes the vegetation shift into open woodlands/shrublands whilst in more arid areas, steppe 

elements dominate (Anchorena and Cingolani, 2002; Paruelo et al., 1998). This west-east 

precipitation gradient triggers the presence of the forest-steppe ecotone (Kitzberger, 2012).  

Since the vegetation responds to this sharp change in precipitation, many studies have been 

conducted on past vegetation change in Patagonia with the aim to elucidate the changes in the 

position of the westerly flow throughout the postglacial (Iglesias et al., 2011; Moreno and Videla, 

2016; Saunders et al., 2018; Villa-Martínez and Moreno, 2007; among others). Additionally, the 

northern Patagonian region also offers the opportunity to assess how the vegetation responds to 
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natural disturbance agents, such as volcanic eruptions and fires, as well as to anthropogenic causes 

like animal husbandry, clear-cutting, and the introduction of exotic species.  

The present work attempts to understand the past vegetation dynamics in one of the most 

important centres of biological diversity in northern Patagonia Argentina: The Lake Lácar basin 

within the Lanín National Park, Province of Neuquén, Argentina (Administración de Parques 

Nacionales, 2012; Eskuche, 1999). The area is dominated by the evergreen Nothofagus dombeyi, 

the deciduous Nothofagus antarctica, and Nothofagus pumilio, and by the conifer Austrocedrus 

chilensis. All these species have been largely affected by fires, especially during the dry season and 

recent volcanic eruptions resulted in vegetation burial (González et al., 2014). In addition to the 

species already mentioned, the Lácar basin comprises one of the largest Argentinean populations 

of two deciduous southern beech species: Nothofagus alpina and Nothofagus obliqua (Sabatier et 

al., 2011).  

Given their commercial value, the populations of both species have been intensively degraded while 

efforts in restoration and conservation have triggered numerous publications on their genetic 

characterization. This, with the aim to define genetic zones with the purpose of highlight the genetic 

identity of both species and then, improve silvicultural management (Azpilicueta et al., 2016; 

Azpilicueta et al., 2014; Paredes, 2003). So far, only one palynological record discuss the Holocene 

history of Nothofagus obliqua in their northernmost Argentinean distribution (Markgraf et al., 1987 

and 2009; Lagunas de Epulauquén, 36°49´S, 71°04´W), whereas in their southern Argentinean 

distributions there are no palynological records with the presence of Nothofagus obliqua or 

Nothofagus alpina hitherto. On the other hand, in the west Andean distribution of both Nothofagus 

alpina and Nothofagus obliqua some palynological records indicate the presence of their pollen type 

(De Batist et al., 2007; Moreno et al., 2018; Villagrán, 1980).  

Here are presented the results obtained from a lake sediment-core located at 2 km south of the 

Lácar basin with the aim to (i) describe the Holocene vegetation changes; (ii) to determine the effect 

of fires and volcanic ash deposition on vegetation composition and (iii) to analyse the changes in 

Nothofagus obliqua/Nothofagus alpina during the Holocene 
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6.2 Study area 

6.2.1 Climate and topography 

The climate in the Lanín National Park (LNP) is warm-temperate with oceanic influence. Mean winter 

and summer temperatures are 4.1°C and 20.1°C respectively (Administración de Parques 

Nacionales, 2012). A west-east humid gradient characterizes this region due to the rain shadow 

effect induced by the Andes Cordillera, acting as an obstacle for the westerly flow, which bring 

humid air masses coming from the Pacific Ocean (Garreaud, 2009). The precipitation decreases from 

3000 mm per year to < 600 mm in just 50 km in a west-east gradient. This change in precipitation 

results in the sharp vegetation gradient characteristics of Patagonia.  

The territory of the LNP located within the Andes is part of a geological fault, the Liquiñe-Ofqui Fault 

Zone (LOFZ) oriented north-north-east (Diraison et al., 1998) then, part of the landscape has been 

modelled by tectonic forces. On the other hand, the LNP is located on ancient volcanic rocks, mainly 

characterized by basaltic plateaux (Iriondo, 1989). The Quaternary glaciations also have played a 

role in shaping the modern topography creating moraines and the characteristics lakes of this region 

(Coronato et al., 2004; Glasser et al., 2008). The lakes present in the LNP exhibit an elongated shape 

oriented west-east (Diaz et al., 2000). 

6.2.2 Vegetation 

The temperate forest characteristic of this region is mainly composed by southern beech species 

Nothofagus. At low and middle altitudes (~600–1000 m a.s.l.) Nothofagus dombeyi dominates, 

especially on more humid sites such as slopes with western aspect and following rivers and streams 

(Administración de Parques Nacionales, 2012). Between 650 and 800 m a.s.l., Nothofagus obliqua 

occurs on slopes with a north-east aspect. Nothofagus alpina can be found between 950 until 1150 

m a.s.l. and can form pure stands. Usually, it is present on slopes with north-west aspects (Sabatier 

et al., 2011). At highest altitudes (> 1000 m asl) Nothofagus pumilio becomes the dominating tree 

and forms the treeline. Nothofagus antarctica occurs is swampy areas as well as toward dry areas 

close to the steppe. Most of the Nothofagus species present in the study area are colonized by the 

epiphyte Misodendrum. Other epiphytes present in the study area is the fern Polypodium feuillei, 

Tristerix corymbosus (Loranthaceae), and Lepidoceras kingii (Eremolepidaceae). The evergreen liana 

Hydrangea serratifolia infest several tree species in the region (Jimenez-Castillo and Lusk, 2009). 

The understory is composed by the bamboo Chusquea, Drimys andina, Aristotelia chilensis, 
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Maytenus, Berberis, Embothrium coccineum and Lomatia hirsuta (Conticello et al., 1996). Towards 

the east, following the decrease in precipitation, Nothofagus antarctica occurs together with 

Austrocedus chilensis, Maytenus boaria, and Schinus patagonicus. However, at the border with the 

steppe, only scattered individuals of Austrocedrus chilensis occur (Veblen et al., 1995). The steppe 

is characterized by herbs and shrubs such as Poaceae, Asteraceae, Chenopodiaceae, Discaria, 

Gaultheria, Acaena, Eryngium, among others. Since part of the focus of this study is to discuss the 

past vegetation history of Nothofagus alpina and Nothofagus obliqua during the Holocene, the main 

ecological characteristics of both species are highlighted in the following.  

Nothofagus alpina is a deciduous tree. Its population size in Argentina is about twice the size of 

Nothofagus obliqua. According to Sabatier et al. (2011), this species occurs in a latitudinal range 

from 39° 21’S (northern limit; 1500 mm/year at Lake Quillén and Lake Tromen) to 40° 35’S (southern 

distribution; 2500–1000 mm/year at Lago Espejo in Nahuel Huapi National Park). N. alpina develops 

better on soils with a high organic matter content, pH > 5.2, and on soils with high phosphate 

retention (Frugoni et al., 2005). Around Lake Lácar, N. alpina occurs sporadically at low altitudes (~ 

600 m a.s.l.), however, the tree becomes abundant between 950 m a.s.l. and 1350 m a.s.l., with 

scattered occurrences until 1500 m a.s.l. where N. pumilio dominates.  

Major populations of Nothofagus obliqua occur with mean annual precipitation between 1200 and 

2300 mm/year (Sabatier et al., 2011). Around Lake Lácar, this species is present at lower elevations 

(650 to 800 m asl). A small population occurs at 36°48´S (around Lagunas de Epulauquen; 1500‒

1000 mm/year), being the northernmost limit of this species (Azpilicueta et al., 2014). According to 

Sabatier et al. (2011), the easternmost population of Nothofagus obliqua is located within the 

steeply incised valley of the Aluminé River (39°S, 70°W), with a mean precipitation of 682 mm/year 

(Azpilicueta et al., 2007). This deciduous tree is more tolerant to long-dry periods in comparison to 

Nothofagus alpina and it is capable to grow in less favourable sites (thin and rocky soils). The soils 

in which this tree occurs exhibit high organic carbon values (Satti et al., 2003) and it seems to have 

a tendency for alkaline soils (Frugoni et al., 2005)  

In their Chilean distribution, Nothofagus alpina grow on deep volcanic soils, moderately acidic 

(Donoso, 2013). Within a Mediterranean climate-type, this species occurs above 700 m and in south 

exposure areas as well on ravines. In its north distribution range, Nothofagus alpina grows between 

700 and 2000 m a.s.l. whereas towards the south, it grows between 0 and 500 m (Donoso, 2013). 

On the other hand, Nothofagus obliqua grows in the Coastal Cordillera of Chile at an elevation 

between 700 and 2000 m, reaching the highest altitude in the northern part of the Coastal cordillera. 



83 
 

Within the Andes, the populations occur between 1000 and 2000 m a.s.l. in the north part, while in 

southern Andes is present between 0 and 500 m, being replaced by other Nothofagus species at 

highest elevations. According to Di Castri and Hajek (1976), Nothofagus obliqua grows in regions 

where the mean temperature of the coldest month fluctuates between 0° and 10°C and the mean 

temperature of the warmest month varies between 10° and 20°C. In general, both species are 

important components of the Lowland Deciduous Forest and are characteristic species of the 

Mediterranean region of Chile (Donoso, 2013). 

6.2.3 Study site 

Laguna Vizcacha (40°12´S; 71°30´W; 1095 m a.s.l.; Figure 18) is located 14 km southwest of San 

Martín de los Andes (Province Neuquén). It is a small lake with a depth of 2.5 m within a larger peat 

filled depression in the saddle between the adjacent mountains (Figure 18b). Potamogeton forms a 

ring at the edges of the lake. The shrubs of Escallonia virgata and Berberis microphylla encircle the 

lake. While Sphagnum mosses occur beside the lake the rest of the wetland is dominated by 

Cyperaceae. The southern beech genus Nothofagus, characteristic of the temperate forest of South 

America, is present around lake Vizcacha with five species: Nothofagus antarctica, Nothofagus 

dombeyi, Nothofagus pumilio, and Nothofagus alpina. The understory is mainly dominated by the 

bamboo Chusquea sp and Drimys andina. 
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Figure 18. a) Map with the location of the study site referred in this study (red star), and the current distribution of 
Nothofagus alpina, Nothofagus obliqua, and Austrocedus chilensis around Lake Lácar basin based on Sabatier et al. (2011); 
Dezzotti and Sancholuz (1991); Administración de Parques Nacionales (2012). b) topography around lake Vizcacha taken 
from @Google Earth. c) photography of lake Vizcacha taken during fieldwork.  

 

6.3 Material and Methods 

A 580 cm long sediment core was retrieved from laguna Vizcacha using a modified square rood 

piston corer (Wright, 1967). The sediment-water interface was collected using a gravity corer and 

subsampled in the field as 1 cm thick slices, stored in plastic bags. The lithological description was 

based on textural characteristic and loss-on-ignition analysis (Heiri et al., 2001). Pollen samples of 

0.5 cm3 were taken at a 2 cm interval, avoiding tephra sections. Before and after major tephra layers 

the sampling was carried out at 1 cm interval. The chemical processing of the samples was 

conducted following Bennett and Willis (2001). Samples with coarse particles were sieved at 120µm.  

Nothofagus trees are high pollen producers and wind-pollinated, while low pollen producers taxa 

are mainly insect-pollinated. Therefore, a minimum of 500 pollen grains was counted to reduce the 

uncertainty in estimating the frequency of less abundant pollen types (Birks and Birks, 1980). 

Aquatic pollen and spore taxa were excluded from the main pollen sum and were calculated 

separately based on the terrestrial pollen sum. Cyperaceae pollen was included among the aquatics 

and exclude from the main pollen sum since it occurs at the edges of the lake. Pediastrum and 
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Botryococcus were counted with the aim to infer changes in the aquatic system. Non-pollen 

palynomorphs were used in order to add details at the environmental history recorded in Vizcacha 

core, with emphasis on the identification of Glomus sp, Gelasinospora, Microthyrium sp, and 

coprophilous fungal spores. Percentages were calculated based on the main pollen sum. All the 

pollen and spore identifications were based on pollen atlas (Heusser, 1971; Markgraf and D’Antoni, 

1978), as well as using reference material from the Department of Palynology and Climate Dynamics 

of the University of Göttingen. Non-pollen palynomorphs were identified aided by descriptions 

collected at http://nonpollenpalynomorphs.tsu.ru/ 

Rarefaction analysis (E(Tn)) was carried out following the methodology outlined by Birks and Line 

(1992) using the vegan package in R (Oksanen et al., 2018), to estimate the diversity from pollen 

assemblages at a temporal scale. The pollen diagram and associated constrained cluster analysis 

(CONISS) were constructed using Tilia 2.0.41 (Grimm, 2004) based on pollen percentages. A 

summary diagram with statistical results was created using C2 (Juggins, 2003). Principal Component 

Analysis (PCA) and Redundancy Analysis (RDA) were performed with CANOCO 5.0 (Ter Braak and 

Šmilauer, 2012) with square root transformation of percentage data in order to suppress the 

influence of dominant taxa. The compositional gradient as assessed by DCA is only 1.8 SD units long, 

which means that although the underlying responses may be unimodal, this dataset only shows 

shifts in abundances, best analysed with linear response models. 

The sediments contained several tephra layers and it was assessed the impact of ash deposition on 

the vegetation using two approaches. It was evaluated the distance in cm of each sample to the 

prior tephra layer assuming that the influence of the tephra deposition on the vegetation would 

decay linearly with time and secondly assuming an exponentially as exp ×–αt decay of the influence 

in time following Lotter and Birks (1993). In this work, the formula was modified in order to add the 

magnitude of the impact (volcanic eruption) using the tephra thickness (cm). Hence, × is the 

thickness value (cm) of each tephra, α is the decay coefficient (0.5 as it is suggested by the authors) 

and, t is the distance (cm) of each sample to the prior tephra layer. The results were used as an 

environmental variable in the RDA under the name of decay. 

The age model is based on smooth-spline interpolation between six radiocarbon dates, calibrated 

with SHCal13.14C (Reimer et al., 2013) using Clam 2.0 (Blaauw, 2010). Prior to the construction of 

the age model an adjusted depth was created subtracting tephra layers > 1 cm in thickness. In 

addition, two control points were used in constructing the depth to age relationship. The first (Cp1) 

correspond at the year of the coring (2017) assigned at the uppermost sample. The second control 
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point (Cp2) correspond to the rise in the percentage of Rumex acetosella (human indicator taxa), 

with an age of 1880 ± 10 (Rehfeldt and Gallo, 2001). Results and discussion indicate adjusted depths. 

Table 6. Chronological control points. 

Lab. 

code 

ID sample Material type 14C age ± Calibrated 

age 

Adjusted 

depth 

(cm) 

Assigned 

age 

 Cp 1 Core top   -67 274 2017 

 Cp 2 Rise of introduced 

weeds.  

  70 279 1880±10 

UBA 

39236 

306‒306.5cm depth Bulk sediment 630 20 622 304  

UBA 

39235 

444‒444.5 cm depth Bulk sediment 2496 27 2576 360  

Poz-

115934 

551-551.5 cm depth Bulk sediment 4580 30 5477 444.5  

UBA 

39233 

633‒333.5 cm depth Bulk sediment 7670 39 8526 507.5  

UBA 

39234 

761‒761.5 cm depth Bulk sediment 9412 36 10664 598.5  

UBA 

29235 

856‒856.5 cm depth Bulk sediment 10120 50 11716 627.5  

 

Past fire regimes were reconstructed from macro charcoal particles analysis carried out on 1 cm3 

sample-volume taken at contiguous 1 cm intervals avoiding tephra layers > 1 cm thick. The samples 

were processed according to the methodology outlined by Stevenson and Haberle (2005). Particles 

> 125µm were counted under a binocular dissecting microscope and these charred particles were 

used as an indicator of local biomass burning (Whitlock and Anderson, 2003). The resulting data 

were analysed using CharAnalysis (Higuera et al., 2009). The raw charcoal counting was transformed 

into charcoal accumulation rates (CHAR; particles cm2 yr-1). The record was interpolated to the 

median sample resolution (yr sample-1) of the record. Low-frequency CHAR (charcoal background) 
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was estimated using a robust to outliers lowess smoother method with a 1000-years window. 

Charcoal peaks were calculated as a ratio while the threshold was locally defined and noise 

distribution was determined by a Gaussian mixture model.  

6.4 Results 

6.4.1 Chronology and stratigraphy  

The age-depth model for Vizcacha lake indicate a basal age of 11716 cal. yr BP for the sequence. The 

average resolution is ~ 70 years per sample while the median age resolution between samples is 

~62 years. The sedimentation rate is 0.5 mm yr-1 at the beginning of the record (627.5 cm adjusted 

depth) shifting to 0.25 mm yr-1 until ~10700 cal. yr BP (601.5 cm adjusted depth), which correspond 

to the first peat section identified in the sediment core. Between 598.5‒575.5 cm, the 

sedimentation rate increase in comparison with the prior section (0.3‒0.4 mm yr-1), probably 

explained by the change in the sediment composition which may indicate and increase in the water 

table, as it is inferred by the gyttja deposit that characterize this section. From 573.5 cm, the 

sedimentation rate increase to 0.5 mm yr-1 until the first centimetres of the peat section at 543.5 

cm (9400 cal. yr BP). The second half of the peat section (538.5 and 507.5 cm depth ~9300‒8500 

cal. yr BP) is characterized by a decline in the sedimentation rate (0.4 to 0.2 mm yr-1). After 8500 cal. 

yr BP, the sedimentation rate decline about 0.1 mm yr-1 along the gyttja section, becoming faster 

from 4200 cal. yr BP (0.3 mm yr-1). From 500 cal. yr BP (300 cm adjusted depth) toward the top of 

the core, the sedimentation rate increases up to 0.4 mm yr-1. 
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Regarding the stratigraphy of the core, a detailed description is presented in Table 8 together with 

the results obtained from the loss on ignition analysis. In general, 26 tephra layers were identified 

as horizontal-greyish layers. Some of these layers are composed of angular particles (basalt) or 

distinguishable pumice particles up to 10 mm length. Besides tephra layers, two peat sections were 

identified, characterized by the presence of plant remains such as seeds, leaves (monocot and 

dicot), and wood-trunk pieces embedded on the core. Loss on ignition indicate high percentage (> 

80 %) of organic matter content in those sections. On the other hand, brownish-gyttja section with 

different degrees of sediment consolidation constitute more than half of the core.  

Figure 19. Age-depth model of Vizcacha 
record. Blue points represent 6 
calibrated ages on bulk sediment while 
green points represent control points.  
Grey area represents 0.95% confidence 
interval. 
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Figure 20. Lithology and loss on ignition results of Vizcacha core. Notice that loss on ignitions was conducted only on 
peat and gyttja sections excluding sediment dominated by tephra. Y axis indicates original depths.  
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Table 7. Sediment description. Depths are given relative to the water level of the lake. 

Depth (cm) Age (cal. yr BP) Sediment characteristics 

275‒375 1900‒Present Brownish gyttja section with alternated greyish layers of volcanic ash 
and 5 cm thick of a peat-muddy layer. LOI values between 1 to 50% 

376‒437 2300‒1900 Thick tephra layer composed mainly this section. Tephra particles and 
colour varies from dark to light grey. A clayey-gyttja section exhibit 
20‒30% of organic matter content. 

438‒634 8400‒2300 Thick layers of brownish gyttja separated by several tephra layers and 
a thin layer of gyttja mixed with ash. LOI indicates a variation of 5 to 
60%. 

635‒682 9700‒8400 Peat section characterized by the presence of plant remains identified 
under the stereomicroscope as Cyperaceae/Poaceae leaves, mixed 
with Sphagnum fragments, and embedded wood-trunk pieces. LOI 
results indicate 60–80% of organic matter. 

683‒715 10200‒9700 Brownish gyttja section. LOI values fluctuate between 10 to 40%  

716‒813 10700‒10200 Two major greyish tephra layers with different particles sizes (31 and 
52 cm thick) separated by a thin gyttja layer characterize this section. 

814‒856 11700‒10700 Consolidate peat deposit with by the presence of plant remains 
identified under the stereomicroscope as Cyperaceae/Poaceae 
leaves, mixed with Sphagnum fragments, and embedded wood-trunk 
pieces. LOI fluctuate between 50‒90% organic matter, separated by a 
14 cm thick of pumice ash layer. 

 

6.4.2 Pollen record 

The summary diagram (Figure 21) shows the main types of pollen, spores, and non-pollen 

palynomorphs and a short description of the main changes is provided in Table 9. Pollen assemblage 

zones were divided based on visual recognition of the major changes in the record, guided by the 

constrained cluster analysis (CONISS). The resulting CONISS dendrogram, based on terrestrial pollen 

taxa indicates that the stratigraphically constrained groups coincide with changes in stratigraphy. 

Nothofagus dombeyi-type is dominant throughout the record as the parent trees N. antarctica, N. 

dombeyi and N. pumilio are high pollen producers and dominate the forest around the lake at 

different elevations with different taxa. Most of the Cupressaceae type pollen likely originates from 

Austrocedrus chilensis, as the modern distribution of Fitzroya cupressoides and Pilgerodendron 

uviferum also producing this pollen type lies in regions hundred kilometres far to the south 

(Kitzberger et al., 2000; Rovere et al., 2002), while stands of Austrocedrus chilensis occur on north-

facing slopes within a few km of laguna Vizcacha (Administración de Parques Nacionales, 2012). 

The pollen diagram from Vizcacha documents mainly changes in the proportion of herbs and shrubs, 

while Nothofagus dombeyi-type fluctuates around 80% throughout the entire record. Zones VIZ-1 

(11700‒10700 cal. yr BP) and VIZ-2 (10700‒8500 cal. yr BP) are characterized by high percentages 

of Cyperaceae, Poaceae, and Chenopodiaceae pollen. Among non-pollen palynomorphs, 
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Conidiospore, Glomus, Microthyrium, and Gelasinospora (fire indicator fungal spore) present their 

highest values between 11700 and 8500 cal. yr BP. Non-pollen palynomorphs such as Microthyrium 

(saprotrophic on plant remains) occurred as much in peat as gyttja sections indicating plant 

degradation (van Geel, 1978) as well as wetland desiccation (Mancini, 2009). The algae Botryococcus 

and Pediastrum are scarcely present during the Early Holocene suggesting a low productive 

environment (Markgraf et al., 2009). Likewise, microcharcoal particles reach the maximum values 

during this period. 

Zone VIZ-3 (8500‒2300 cal. yr BP) is characterized by a decrease in shrub and herbaceous pollen-

types percentages, as well as an increase and later persistence of the mistletoe Misodendrum pollen 

percentage. The green-algae Botryococcus and Pediastrum increase gradually along this period. 

Cupressaceae exhibit the most noticeable percentage fluctuation in this zone. The rise in the 

percentage of Nothofagus obliqua-type defines zone VIZ-4 (2300‒300 cal. yr BP). The zone VIZ-5 is 

defined by a decrease in N. dombeyi and N. obliqua pollen type and the presence of human indicator 

taxa Rumex acetosella, Plantago lanceolata, and Pinus.  



92 
  

Figure 21. Percentage pollen, 
spores, and NPP´s diagram 
showing selected taxa from 
Vizcacha record. A 10X 
exaggeration (grey pattern) was 
used to highlight less frequent 
taxa. Micro charcoal particles 
are expressed as percentage 
based on terrestrial pollen sum. 
Notice that the lithology shown 
here is just representing the 
main changes in sediment 
composition excluding tephras. 
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Zone Age Pollen zone characteristics Interpretation 

VIZ-5 300‒Present 82% mean for N. dombeyi-type, 10% for N. obliqua–type and 1% for Cupressaceae. Shrubs 
and herbs decrease abruptly. This period is characterized by the presence of the human 
indicator taxa (in order of appearance) P. lanceolata, R. acetosella, and Pinus. Aquatic taxa 
decline in percentage, and some of them disappear from the record. Botryococcus decline and 
Pedriastrum increase in this zone. 

Human activities close the lake, 
especially timber extraction and grazing, 
wetland disturbance and perhaps 
eutrophication by cows. 

VIZ-4 2300‒300 80% mean for N. dombeyi-type. Rise in N. obliqua–type (11% since 2200 cal. yr BP) 
Cupressaceae persist with scarce abundance (<1%), with two peaks at the beginning and at 
the end of this period (1% and 3% respectively). W. trichosperma and Eucryphia are present 
in traces. Asteraceae, Discaria, Poaceae, and Fabaceae increase in 1%, 0.5%, 3%, and 0.5% 
respectively. Myriophyllum, Potamogeton, and Cyperaceae increase in 0.8%, 0.5%, and 3% 
during this period. Glomus reach 2% mean, Botryococcus 2.5% mean, and Pediastrum 18% 
mean. 

N. obliqua/N. alpina populations around 
the lake have established modern 
dominance. Increased herbaceous 
diversity, perhaps associated with a 
lowering of the lake level. 

VIZ-3 8500‒2300 85% mean for N. dombeyi-type. Cupressaceae mark the beginning of this zone with an 
increase from 3% to 15%. N. obliqua‒type occurs along this period with a mean of 2%. P. 
nubigenus and Eucryphia/Caldcluvia appear more contiguously (<1%). Misodedrum is 
abundant in this zone. Shrubs decline to 1% mean. Cyperaceae and Blechnum decline up to 
1.9% and <1% respectively. Potamogeton occurs in this zone with scarce percentage (<1%). 
Gelasinospora and Microthyrium appear in traces and disappear visually from the record. 
Glomus reaches <5%. Botryococcus and Pediastrum increase (12% and 1% mean each). 

Increase and fluctuations in A. chilensis 
populations around lake Lácar basin. 
Probable development of a mixed forest 
Nothofagus/Austrocedrus. Stable water 
table level. Wet conditions. 

VIZ-2 10700‒8500 N. dombeyi-pollen type decline up to 80% mean between 10700 and 9500 cal. yr BP 
concomitant with a rise of Poaceae (8%) and Cupressaceae (1.5%), and a general increase in 
the percentage of shrubs (2% mean) and herbs (11% mean). Decrease in the percentage of 
Cyperaceae (8% mean) and the first appearance of Myriophyllum. Between 9000 and 8500 
cal. yr BP, N. dombeyi-type increase (90% mean); Escallonia and Chenopodiaceae increase 
their percentage (1% each) while Poaceae decline abruptly to 1% but by the end of this zone 
reach 15%. Cupressaceae pollen is almost not visible during this period.  Myriophyllum 
disappears during this interval and Cyperaceae percentage increase up to 20%. Conidiospore 
percentage is the highest in this zone among the NPP´S (0.5%). Gelasinospora reach its 
maximum values in this zone (1%). 

Diverse herbaceous and shrub stratum. 
Water table fluctuation (wetland-lake 
phases). Local fires. Shifts between dry 
and wet conditions. 

VIZ-1 11700‒10700 Mean N. dombeyi-type 87%, with an abrupt decrease to 60% at 10900 cal. yr BP. First 
appearance of N. obliqua-type at 11200, with a continuous curve (<1%) 200 years later. 
Occurrence of Misodendrum around 1% and single grains of Cupressaceae pollen present. The 
shrubs Escallonia, Gaultheria, Asteraceae, and Discaria characterize this period with less than 
2%. Poaceae fluctuates between 1‒7%, with a maximum at 10700 cal. yr BP. Cyperaceae 
reaches its highest percentage (60%) being dominant among the aquatics together with 
Blechnum (1%). Microthyrium (<1% mean) and Glomus (3.5% mean) are important 
component between the NPP´S. 

Nothofagus (likely N. antarctica) 
dominating the landscape with steppe 
elements. Wetland dominated by 
Cyperaceae. Dry conditions. 

Table 8. Vegetation history of Vizcacha record. 
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6.4.3 Numerical analysis of data 

The symbols of the sample scores in the PCA biplot (Figure 22) are according their affiliation to a 

pollen zone and together with the species scores of the 20 taxa with highest variance assist in the 

interpretation of the data. The first axis of the ordination explains 28% while the second axis explains 

14%. The PCA biplot of the first and second axis shows well-separated clusters. From left to right 

quadrant, group VIZ-1 is characterized by N. dombeyi and VIZ-2 by Poaceae. Samples from both 

clusters are dominated by steppe elements such as Discaria, Chenopodiaceae, Gaultheria, and 

Asteraceae. subf. Asteroideae. VIZ-3 group is characterized by Cupressaceae, Gunnera, Eryngium 

and Faboideae undiff. VIZ-4 is characterized by Eucryphia, Misodedrum, S. conspicua, and N. obliqua, 

while the introduced taxa R. acetosella and P. lanceolata characterized VIZ-5 group. The arrows in 

the PCA pointed in the direction of the species while the length is proportional to maximum rate of 

change (ter Braak and Prentice, 2004). Therefore N. dombeyi, Poaceae, Cupressaceae, and N. 

obliqua are the most important for indicating group differences. The species scores show a negative 

correlation between N. dombeyi-type and Cupressaceae, as it is indicated by the opposite direction 

of the arrows of both taxa.  

  

Figure 22. PCA scatterplot of samples 
and selected taxa of Lake Vizcacha. 
Grouping by CONISS shown by 
different symbols in the PCA. 
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Based on the arrangement of the samples/species on the scatterplot, the first axis may be 

interpreted as a dry-to-wet gradient. Figure 23 shows the scores of PCA axis 1 showing an increase 

towards the topmost samples. This is well correlated with the percentage curve of N. obliqua-type 

along the record (see Figure 21). Likely, the inferred shift from dry to wet conditions is explaining 

somehow the direction of increment of N. obliqua during the Late Holocene. Sample scores from 

PCA axis 2 are related with the percentage of Poaceae (see Figure 21 and 23).  

 

Figure 23. Summary diagram with the main result obtained from Vizcacha record. See upper label for details. Peat sections 
are highlighted in green.  

Pollen concentration and pollen accumulation rate (PAR) exhibit their lowest values during the Early 

Holocene and beginning of the Mid-Holocene (Figure 23). This period is characterized by two peat 

sections separated by a gyttja segment. On peat sections, the pollen concentration and PAR features 

low values suggesting a fast sedimentation rate. In addition, samples taken from the peat section 

presented deteriorated pollen grain, most of them broken and barely distinguishable. This might be 

due to the lowered water table and the associated oxidation of pollen. Delcourt and Delcourt (1980) 

comparing full glacial records in south-eastern United States, indicate that periods of dry and warm 

climate conditions, coincide with desiccation of lakes and ponds, and lowering water levels in some 

lakes. These conditions allowed oxidation of the depositional environment creating less suitable 

conditions for pollen preservation. Unlike conditions were observed during warm and humid 

periods, which triggered the presence of permanent water table in lakes and pollen grains were well 

preserved. Microbial attack also has been reported as a cause of pollen degradation, especially in 

environments where the oxygen pressure and pH are high, damaging the pollen wall (Havinga, 
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1967). On the other hand, on gyttja sections PAR and pollen concentration are high; pollen 

preservation is good, and the sedimentation rate is slow in comparison with the prior period, 

presenting several oscillations since 8500 cal. yr BP. No major changes in palynological richness were 

documented in Vizcacha record. 

The redundancy analysis (RDA) was performed with the aim to assess which environmental variable 

account for the main variation in the sample composition. Figure 24 show the RDA ordination 

diagram of Vizcacha record. The environmental variables tested in this work were volcanic ash 

deposition (decay and distance) and fire (fire magnitude, fire frequency, fire return interval, and 

charcoal accumulation rate). As redundancy analysis is a canonical form of the PCA, the relationship 

between species and environmental variables can be interpreted in the same mode according to 

the length and direction of the arrows.  

 

The variables distance and decay explained less than 5 % of the variation (see Table 9). Nevertheless, 

based on the p-value the variable distance is statistically significant in explaining the variability of 

the data set in this analysis. The variable distance shows a positive correlation with Lomatia hirsuta 

and Hydrangea and is more related to samples of the transition Early-Mid Holocene (green 

Figure 24. Redundancy analysis (RDA) biplot of 
samples/species/environmental variables of 
Lake Vizcacha. The shows the 15 best fitting 
species indicated by the ordination analysis. 
Notice only the most significant variables 
according to the analysis are shown in the 
RDA.  
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rhomboids and yellow rectangle in Figure 24). The variable decay is not shown in the RDA plot since 

explain less than 1% of the variation. More insights on how tephra deposition has influenced the 

vegetation can be obtained from when evaluating the pollen concentration (Figure 25) and pollen 

percentage (Table 10). 

Table 9. Simple effect derived from the RDA 

Variable Explained % Pseudo-F p p (adjusted) 

Fire return interval 10.4 20.0 0.002 0.008 

Charcoal 

Accumulation rate 

5.9 10.8 0.002 0.008 

Distance 3.4 6.1 0.002 0.01 

Fire frequency 1.6 2.8 0.02 0.08 

Decay 0.4 0.7 0.656 1 

Fire Magnitude 0.2 0.4 0.962 1 

 

Table 10. Schematic representation by arrows of the decrease/increase in the percentage of selected taxa in the sample 
right after the occurrence of a tephra relative to the prior sample. Tephra thickness is shown in centimetres. Equal sign 
indicates no change in percentage. 

 

Age (cal. yr BP) Tephra 

thickness 

(cm) 

N. dombeyi N. obliqua Misodendrum Poaceae 

900 10     

1700 20   =  

2100 37     

7900 11     

10300 31  =   

10600 52     

11500 14  =   
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Figure 25. Pollen concentration diagram of selected taxa. On the left side of the diagram, tephra layers identified on 
Vizcacha core are represented as bars. Grey lines represent the location of the tephra. 

Overall, pollen concentration of N. obliqua-type and Cupressaceae diminish after a tephra deposit, 

independently of the thickness of the layer. Nevertheless, after the deposition of a 52 cm thick ash 

layer of around 10500 cal. yr BP, Cupressaceae exhibit an increase in their concentration. The 

concentration of Poaceae increases after the deposition of the thickest tephra layers while its 

concentration drops after the deposition of thinner layers. Misodendrum concentration diminish 

with the deposition of ash layers of 52 and 31 cm thick (10600 and 10300 cal. yr BP respectively). 

However, this pattern changes since Misodendrum show a rise in its concentration after 37 cm of 

tephra. N. dombeyi-type shows an increase in its concentration after the deposition of the major 

tephra layers.  

Among the fire variables tested, fire return interval (FRI) is the most important, explaining 10% of 

the variation. As the RDA plot shows, there is a positive correlation between FRI and Austrocedrus, 

and related with samples of the last zone VIZ-5 (300 cal. yr BP to present). In addition, the analysis 

indicates a negative correlation of FRI with steppe taxa indicators which characterize the samples 

from the Early Holocene.  
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6.4.4 Fire record 

The past fire regime recorded in the Vizcacha core is shown in Figure 26. The same zone division 

used for pollen assemblages was applied to the fire record with the purpose to compare possible 

changes in vegetation composition due to fire. Throughout the record, the signal-to-noise index 

(SNI) is > 3, indicating that the charcoal peak signal obtained from the time series analysis is well 

separated from noise (Kelly et al., 2011). Nevertheless, values < 3 occur intermittently between 

6600‒6400 cal. yr BP and 3000‒2800 cal. yr BP. 

Zone VIZ-1 (11700‒10700 cal. yr BP) indicate a low CHAR between 11700 and 11200 cal. yr BP with 

an average of 0.4 particles cm-2 year-1 and a later increment with 2.5 particles cm-2 year-1 between 

11200 and 10700 cal. yr BP. Fire frequency during the time comprises in zone VIZ-1 decrease from 

3.5 to 1.1 fires 1000 yr-1 and only 2 fire episodes detected. Zone VIZ-2 (10700‒8500 cal. yr BP) is 

characterized by a CHAR of 2.5 particles cm-2 year-1 until 10600 cal. yr BP dropping to 0.09 particles 

cm-2 year-1 until 10200 cal. yr BP. The highest values in CHAR within this zone reach 5.5 particles cm-

2 yr-1 at 10100 cal. yr BP. Afterwards, CHAR values fluctuate between 0.1 and 2.5 particles cm-2 yr-1. 

Fire frequency exhibit a gradual increase with a maximum of 4.3 fires 1000 yr-1 around 9300‒8800 

cal. yr BP. By the end of this zone, fire frequency is 3.3 fires 1000 yr-1. VIZ-2 zone comprises 7 fires 

episodes with the highest magnitude at 10200 and at 8900 cal. yr BP, concomitant with peaks in 

CHAR values. Fire return interval (years per fire, yr fire-1) in zone VIZ-2 fluctuate between 100 and 

200 yr fire-1.  
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Figure 26. Holocene fire characteristic reconstructed from Vizcacha core. Charcoal accumulation rates (CHAR), fire 
episodes, fire magnitude, fire frequency, and fire return interval and their units are indicated. Zones were defined based 
on palynological zones. 

Zone VIZ-3 (8500‒2300 cal. yr BP) is mainly characterized by low values in CHAR (0.2‒0.1 particles 

cm-2 yr-1) except for two large peaks at 6600 and 5700 cal. yr BP. Those peaks are related with fires 

of high magnitude. Fire frequency is high (4.1 fires 1000 yr-1) between 7400‒7100 cal. yr BP and 

4400‒4100 cal. yr BP, while the lowest frequency (1.1 fires 1000 yr-1) occurs between 6400‒5700 

cal. yr BP. Fire return interval vary between 100 and 300 yr fire-1. In total, 10 fire episodes were 

identified. 

Zone VIZ-4 (2300‒300 cal. yr BP) comprises CHAR values between 0 to 0.9 particles cm-1 yr-1. Fire 

frequency is lower in comparison with the prior zone with a maximum of 3.7 fires 1000 yr-1. The 

maximum magnitude in fire occurs at 1600 cal. yr BP. Four fire episodes were detected, and fire 

return interval is around 200 yr fire-1. From 300 cal. yr BP to present century, only one fire episode 

was identified. On the other hand, fire frequency increases from 3 to 4 fires 1000 yr-1 and CHAR 

values barely reach 0.5 particles cm-2 yr-1. 
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6.5 Discussion 

6.5.1 Vegetation reconstruction 

Early Holocene 

The shifts in sediment composition of the core between 11700 and 8500 cal. yr BP indicate that the 

Early Holocene was characterized by alternate wet and dry conditions. Sediment composition and 

pollen content document the persistence of a Cyperaceae dominated wetland until 10700 cal. yr BP 

(Figure 21). Given the current vegetation around Lake Vizcacha it could be that individuals of 

Nothofagus antarctica were present. Nothofagus antarctica is a species that tolerate cold and dry 

environments; and occurs also in swampy areas (Amigo and Rodríguez, 2011; Donoso, 2013). The 

development of a wetland in the basin that is currently a 2.5 m depth lake, containing almost 1 m 

of peat and tephra indicates reduced precipitation during the first 1400 years of the Holocene. 

Markgraf and Bianchi (1999) interpret the increase of grasses in sites located east of Andes between 

11000 and 10000 cal. yr BP as either an increase in temperature and or a decrease in precipitation. 

Moreover, Abarzúa (2013) and Abarzúa et al. (2014) analysing site located west Andes (39°S) infer 

that the high percentage of Nothofagus obliqua-type, Eucryphia/Caldcluvia, Weinmannia 

trichosperma and high percentage of charcoal particles suggest warm and dry climatic conditions 

during the Early Holocene. Therefore, the interpretation of a dry period between 11700 and 10700 

cal. yr BP is concomitant with other studies in the region.  

An abrupt decrease in the percentage of Cyperaceae and the appearance of Myriophyllum at 10700 

cal. yr BP suggest an increase in precipitation which allowed the development of a shallow lake that 

persisted until 9700 cal. yr BP. The shift from peat to gyttja sediment during this period support this 

interpretation (see Figure 21). In addition, a slight increase in the percentage of Cupressaceae (peak 

of 6% at 9900 cal. yr BP) might be the result of the increase in precipitation likely during the growing 

season, allowing the presence of some individuals of Austrocedrus chilensis (Iglesias et al., 2011). 

Nevertheless, the influence of fire in the establishment and dynamic of this conifer might have 

played a key role in its development. 

This humid interval is characterized also by a high percentage of Poaceae. As mentioned before, in 

west and east Andes the Early Holocene is considered as a dry and warm period. De Batist et al. 

(2008) indicate a replacement of Nothofagus dombeyi-type forest by Nothofagus obliqua-type and 

other thermophilous taxa in the Chilean Lake District region. Likely, despite the documented 
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increase in precipitation, warm conditions prevailed and may have affected Nothofagus dombeyi-

type forest, leading probably to a more open forest, triggering either the colonization of the bamboo 

Chusquea culeou in open areas within the forest or the presence of patches of grasslands at the 

mountains around Lake Vizcacha.  

The period between 9700 and 8500 cal. yr BP features a rise in the abundance of Cyperaceae and 

the disappearance of Myriophyllum and the presence of a peat section for this interval. All these 

findings suggest a decrease in precipitation and a tendency to the development of a wetland. 

However, the decrease in the water table was not similar to the first wetland stage (11700‒10700 

cal. yr BP). This because the percentage of Cyperaceae did not present the same values as those 

reported during the first dry stage (see Figure 21). Therefore, the decline in precipitation was slight 

in comparison with the period 11700‒10700 cal. yr BP.  

Mid Holocene 

A gyttja-dominate section coupled with a decline in Cyperaceae and the intermittent presence of 

Potamogeton and the green algae Botryococcus and Pediastrum characterize the period between 

8500 and 4000 cal. yr BP leading to the interpretation of a permanent shallow lake. The observed 

increment in Glomus percentage may be indicating active soil erosion processes in the catchment 

area (Musotto et al., 2012). Cook (2009) analysing Australian lakes concluded that the presence of 

Glomus suggests soil erosion in the basin as a consequence of increased rainfall delivering greater 

amounts of sediment to the lake. Likely, heavy rainfall during the Mid-Holocene triggered an influx 

of allochthonous material into Lake Vizcacha explaining the increase of Glomus. 

The percentage of Nothofagus dombeyi-type remains above the 83% mean during the entire period. 

Markgraf et al. (2002) analysed pollen records from west and east Andes at 40°S, and they observed 

a rise in the percentage of N. dombeyi-type and a decline in Eucryphia/Caldcluvia and steppe 

elements at west and east of Andes respectively. They infer a regional increase in summer 

precipitation and a decline in summer and winter temperatures during the Mid-Holocene. A similar 

pattern in observed in Vizcacha record, with low percentages in shrubs elements, a decline in 

Poaceae percentage and the stable presence of N. dombeyi-type forest.  

On the other hand, between 8500 and 8000 cal. yr BP there is a decline in the percentage of 

Nothofagus dombeyi-type and a rise in Cupressaceae. The topmost samples of Vizcacha 

documented < 1% of Cupressaceae which represent the upwind transport of pollen from 
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Austrocedrus chilensis populations located behind the mountains located at the north of Lake 

Vizcacha. The percentage of Cupressaceae documented at the beginning of the Mid-Holocene is 

15%. Comparing with other records in Argentina, Iglesias and Whitlock (2014) observed in seven 

lake sediment records (41° to 43°S) a common pattern of increase in the percentage of 

Cupressaceae during the Mid-Holocene, attributed to a regional expansion of Austrocedrus 

triggered by an increase in effective moisture. Markgraf et al. (1981) states that Austrocedrus has a 

restricted pollen dispersal therefore, percentages > 10% might indicate the presence of small 

populations of this conifer. Given all this background, it is possible to interpret that a small 

population of A. chilensis was present nearby Lake Vizcacha. 

The Mid-Holocene also documented a rise in the percentage of Misodendrum. According to Tercero-

Bucardo and Rovere (2010), the genus Misodendrum comprises 8 species that infest specifically 

Nothofagus species along their entire distribution range (33-56°S). Around Lake Vizcacha five 

species of Nothofagus occur, being Nothofagus pumilio, N. antarctica, and N. dombeyi infested 

mainly by Misodendrum punctulatum (Tercero-Bucardo and Rovere, 2010). Markgraf et al. (2002) 

based in modern pollen-rain samples (39° to 43°S) argues that high percentages of Misodendrum (> 

10%) are found in sites where the Nothofagus forest is less dense. This leads to the interpretation 

that the Nothofagus dombeyi-type forest next to Vizcacha lake was characterized by a closed canopy 

as the percentage of Misodendrum features a mean of ~2%.  

Late Holocene 

The Late Holocene has been described as a period where the current climate conditions began to 

establish in the region (Lamy et al., 2010; Markgraf et al., 2009) as well as the modern state of the 

El Niño Southern Oscillation system, implying variations in precipitation seasonality (Lamy et al., 

2001). In the Vizcacha record, at ca. 2200 cal. yr BP Nothofagus dombeyi-type percentage decline 

while the percentage of Cupressaceae and Nothofagus obliqua-type increase. This assemblage 

might be attributed to a warming pulse during the Late Holocene which triggered a decline in 

effective moisture (related to precipitation), affecting probably Nothofagus dombeyi (Echeverría et 

al., 2014). On the other hand, drought-tolerant taxa such as A. chilensis and N. obliqua/N. alpina 

likely were capable to persist during this warm phase. 

The presence of Nothofagus obliqua-type in pollen records located at the Central Valley of Chile and 

west slopes of the Andes between 39° and 40°S (Abarzúa, 2013; Abrazúa et al., 2014; de Batist et 
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al., 2008; Vargas-Ramírez et al., 2008) has been used as an indicator of warmer climatic conditions. 

A noticeable increase in the percentage of this pollen type in the Vizcacha record during the Late 

Holocene is observed which might be interpreted as the establishment of the modern population of 

both Nothofagus obliqua and Nothofagus alpina within the Lácar basin. Here, Nothofagus obliqua 

is almost present in all the slopes of the mountain oriented towards the lake (see Figure 18) but at 

low elevations (650 to 800 m a.s.l.). Nothofagus alpina is mainly located in the longitudinally 

oriented valleys between 800 and 1000 m a.s.l. (Sabatier et al., 2011). Nevertheless, it may occur 

also at 650 m a.s.l. in humid slopes i.e. south-east aspect (Donoso, 2013). Based on the position of 

Lake Vizcacha and the elevation (1095 m a.s.l.), probably Nothofagus alpina is contributing the most 

to the Nothofagus obliqua pollen type.  

The Vizcacha record also indicates high percentages of aquatic taxa such as Myriophyllum and 

Potamogeton as well peaks in Botryococcus and Pediastrum algae. These green algae have been 

used as indicator of eutrophication (Martínez et al., 2008; van Geel et al., 1980). Likely climatic 

conditions coupled with oscillation in the water table of the lake may lead to the erosion of the edge 

of the lake delivering nutrients. For the last 200 years of the record, is observed an increase in the 

percentage of Glomus sp, which suggest soil erosion. It is known that Nothofagus alpina and 

Nothofagus obliqua were extensively extracted for commercial purposes and due to those activities, 

the populations of both species diminished substantially. The pollen diagram shows a decrease in 

the percentage of Nothofagus obliqua-type which might reflect the reduction in the populations of 

both deciduous trees. Additionally, the extensive clear-cutting might have contributed to the 

erosion and eutrophication processes in Lake Vizcacha, together with animal husbandry. The 

presence of Rumex acetosella and Plantago lanceolata supports this hypothesis. 

6.5.2 Disturbance regimes and their effects on the local vegetation dynamics 

nearby Lake Vizcacha 

Several tephra layers of different thicknesses were identified in the Vizcacha core. Their presence 

along the entire core is an indicator of the constant volcanic activity in the region during the 

Holocene (Figure 20 and 27). Explosive Holocene eruptions in the segment of the Andean Central 

and Southern Volcanic Zone are documented in Naranjo and Stern (2004), Fontijn et al. (2014) and 

Naranjo et al. (2017). Given the frequent deposition of ash, one would expect some influence of ash 

deposition on the vegetation. The RDA results (Figure 24) indicate no statistically significant effect 

of ash deposition for the variable decay, which represents an exponential decrease of the influence 
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of ash deposition on vegetation composition with time. Nevertheless, according to the p-value, the 

variable distance (linear decrease of the influence of ash deposition) indicate a significant influence 

of this variable on vegetation composition (Table 9). As it is shown in Figure 24, the variable Distance 

is positively correlated with Lomatia hirsuta and Hydrangea. This relationship may indicate a gradual 

increase of both taxa after ash deposition, suggesting likely a tendency to the development of 

thickets of Lomatia after ash deposition due to the creation of small open areas within the canopy 

by the possible damage of tree branches. On the other hand, Hydrangea is a liana characteristic of 

the forest in this region (Jimenez-Castillo and Lusk, 2009) and might be an indicator of a more open 

canopy after disturbance.  

About the changes in the concentration of Nothofagus dombeyi-type (which include N. pumilio, N. 

dombeyi, and N. antarctica) after tephra deposition, the results show a random pattern suggesting 

that shifts in pollen concentration could be independent of the ash deposition. Swanson et al. (2013) 

report canopy loading by accumulated airfall tephra and partial loss of the foliage. The author also 

highlighted the fact that the features of the species (age, leave morphology, species, etc) determine 

the effects of ash accumulation on the canopy. Around Lake Vizcacha Nothofagus pumilio and 

Nothofagus antarctica are deciduous trees and perhaps, some of the volcanic eruptions could have 

occurred during the fall/winter, when both species already lost the leaves and therefore, 

accumulation of ash on the foliage is almost null. This interpretation would however not work for 

the evergreen Nothofagus dombeyi. 

 

 

Figure 27. Images taken under the stereomicroscope of the particles that composed the tephra layers described in Table 
7 between 716‒813 cm (10200-10700 cal. yr BP). See figure 20. Notice the pumice pebbles shown at the right. 

 

Certainly, the predisposition of the vegetation i.e. the previous conditions of the vegetation before 

the eruption, explain partially its response to a given disturbance agent. In addition, the climatic 

conditions (season) at the time of the eruption, the topography (valleys, slopes, hills) and the 
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morphological adaptations and regeneration strategies are variables that should be considered at 

the time of interpreting the influence of tephra fall on the vegetation.  

To sum up, the deposition of tephra layers might not have triggered substantive changes in the local 

vegetation recorded in Lake Vizcacha. Moreover, the vegetation response to ash deposition seems 

to be somehow random, probably as a result of certain conditions like the season of eruption, the 

age of the species, and their biological adaptation to disturbance. Nevertheless, a minor reduction 

in the palynological richness after the deposition of > 50 cm of tephra has been observed, as well as 

a decline in the concentration of Poaceae and Misodendrum, likely as a response to burial process, 

especially in grasses. On the other hand, millennial and/or sub-millennial climatic variations would 

be influencing primarily the changes in the local vegetation. Since volcanic eruptions are 

unpredictable (Maes et al., 2016) and independent of climatic forces, perhaps other disturbances 

agents strengthened or attenuated by climate could have played a major role on the vegetation 

dynamics.  

The presence of macro charcoal particles recovered from Vizcacha core attests to the local 

occurrence of fire. The results obtained from the time series analysis presented in Figure 26 indicate 

an Early Holocene characterized by fires of high frequency and moderate magnitude, as well as high 

CHAR values. High fire activity during the Early Holocene is also documented by Iglesias and Whitlock 

(2014) in sites located between 41° and 43°S in Argentina. High CHAR values for the early Holocene 

are also observed in the record from Mallín Pollux at 45°S (Coyhaique, Chile) interpreted as a 

consequence of higher summers than today (Markgraf et al., 2007). Here the fires were of moderate 

magnitude and high frequency. At west Andes, between 40° and 44°S fires records show high CHAR 

values during the Early Holocene, characterized by fires of high magnitude, concomitant with the 

inferred dry and warm period in the region (Moreno et al., 2018; Moreno and Videla, 2016).  

The regional peak in fire events during the Early Holocene has been attributed to the dry and warm 

conditions. The decrease in effective moisture promoted dry fuel and allowing the continuity and 

spread of fire affecting the local vegetation nearby Lake Vizcacha. Moreover, the interpretation of 

the local occurrence of fires is supported by the presence of Gelasinospora, a fungal spore that 

develops in charred organic material (van Geel and Aptroot, 2006). 

A significant decrease in the concentration of Poaceae together with a slight decline N. dombeyi-

type occur between 9700‒8700 cal. yr BP, being concomitant with a maximum peak in the fire 

frequency and low magnitude fires (Figure 30). Likely, high biomass production during the growing 
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season of the prior period (especially grasses) contributed with enough fuel to support fires affecting 

probably tall shrublands of Nothofagus antarctica, as well as the herbaceous layer. Relatively high 

CHAR values for the Early Holocene indicate moderate biomass burning (Iglesias and Whitlock, 2014; 

Whitlock et al., 2006). 

A rise in the percentage of Cupressaceae (Austrocedrus chilensis) between 10000‒9700 cal. yr BP 

occurs during periods of long fire-free intervals and low fire magnitude. The same pattern is 

observed later at the beginning of the Mid-Holocene between 8500 and 8000 cal. yr BP, parallel to 

a decline in the concentration of N. dombeyi-type and Poaceae. The RDA analysis shows a positive 

correlation between FRI (fire return interval) and Cupressaceae (Figure 24) and a statistically 

significant influence of this fire component on the variability of the data (p=0.002). The long fire-

return interval at 8500 cal. yr BP coincides with the shift from dry to wet conditions inferred by the 

change in sediment composition of the core (see Figure 21). Under this scenario, those more humid 

conditions reported at the beginning of the Mid-Holocene could have prevented vegetation ignition 

and therefore, a decline in fire events, expressed as long fire-free intervals.  

 

Figure 28. Fire record and pollen concentration of selected taxa from Lake Vizcacha. 

The abrupt decrease in the percentage of A. chilensis is associated to a shift in fire return interval 

(300 to 180 year fire-1) coupled with higher-than-before fire magnitude after 8000 cal. yr BP. 
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Subsequently, Poaceae shows a rapid increase simultaneous with variations in fire frequency (2‒4 

fires 1000 yr-1). The maximum percentage of Poaceae between 8000 and 7500 cal. yr BP is correlated 

with fires of low magnitude and short fire return interval (see Figure 28), reflecting rapid fuel 

recovery due to the vigorous resprouting of herbaceous elements (Veblen et al., 1992). Moreno 

(2000) analysing a record from the Chilean Lake District interpret the increase in Poaceae as a 

consequence of small forest gaps created by low-severity fires allowing probably the development 

and spread of bamboo of the genus Chusquea. After 7000 cal. yr BP fire magnitude enhances and 

Poaceae concentration decline, suggesting grass burning and possible also affecting forest 

understory dominated by Chusquea culeou. Mid-Holocene fire regime might be related to variations 

in summer/winter insolation and effective moisture, with cold/wet and warm/dry intervals 

associated with increased importance of ENSO variability (Moreno and Videla, 2016; Whitlock et al., 

2007).  

A slight increase in fire frequency is observed between 4000 and 2000 cal. yr BP associated with a 

gradual decrease in Cupressaceae and Poaceae concentration. The last 300 cal. yr BP indicate low 

concentration of Poaceae and N. dombeyi type whereas Cupressaceae concentration is higher than 

before (500 to 10000 grains/cm3). Veblen and Lorenz (1988) compared photographic 

documentation of the changes in Austrocedrus chilensis populations around Lake Lácar between 

1896 to 1985, and they observed a change from sparse woodland to the dense forest of A. chilensis 

as well as increased density of N. obliqua and N. dombeyi on mesic south aspect. Most of the 

changes observed in the vegetation according to the authors is attributed to past forest burning. 

During the Late Holocene N. obliqua-type (N. alpina and/or N. obliqua) became abundant 

documenting the expansion of N. alpina and/or N. obliqua populations around the Lácar basin. Both 

species possess a relatively thick bark (Donoso, 2013) and exhibit active resprouting after being cut 

or burned (Veblen et al., 1996). Individuals of N. obliqua have been observed in relatively open sites 

with evidence of fire (scars fires) indicating the ability of this taxon to survive surface fires (Veblen 

et al., 2003). In high elevation areas and south-facing slopes (like the dominant topography around 

Lake Vizcacha) Nothofagus alpina and Nothofagus dombeyi coexist. Here, usually fires are stand 

replacing (Veblen et al., 2003). 

The RDA analysis shows a positive correlation between fire magnitude and human indicator taxa 

such as Rumex acetosella, Plantago lanceolata, and Pinus (no shown here). Albeit the magnitude of 

the fires is not an important variable in explaining changes in vegetation composition, certainly the 
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slight increase in fire frequency during the last six centuries might be attributed to anthropogenic 

causes. On the other hand, the climatic conditions associated with El Niño Southern Oscillation have 

contributed to the changes in rainfall variability during the Late Holocene (De Batist et al., 2007; 

Fletcher and Moreno, 2012; Lamy et al., 2001; Montencinos and Aceituno, 2003) promoting for 

example arid conditions (La Niña events) that enhanced fire occurrence (Iglesias et al., 2012; 

Nanavati et al., 2019; Whitlock et al., 2007).  

6.6 Conclusions 

The changes in vegetation throughout the Holocene documented in Lake Vizcacha are mainly 

attributed to variations in the abundance of Poaceae, Cupressaceae, Nothofagus dombeyi-type and 

Nothofagus obliqua-type. The Early Holocene was characterized by the abundance in herbs and 

shrubs, suggesting a more open-than-today Nothofagus forest. Decrease in effective moisture due 

to a reduction in precipitation was inferred by the peat layers identified, indicating lower-than-today 

water levels which allowed the expansion of wetland taxa such as Cyperaceae. On the other hand, 

moderate values in CHAR suggest moderate fires during the Early Holocene. Fires may have affected 

tall shrubs of Nothofagus antarctica as well as the herbaceous layer during this period. Major 

changes in vegetation composition attributed to volcanic ash depositions were discarded, although 

it was observed a slight decline in the percentage and concentration of herbaceous elements after 

the depositions of tephra layers > 10 cm thick. Even so, the RDA analysis indicated no statistically 

significant influence of ash deposition on vegetation composition. 

The Mid-Holocene was marked by the presence of Austrocedrus chilensis and wetter than before 

conditions. Long fire-free periods allowed the occurrence of this conifer for around 500 years. 

Nevertheless, an increase in fire magnitude and shorter fire-free periods led to a remarkable 

diminish in Austrocedrus whilst Nothofagus become abundant. Undoubtedly, climatic forces mainly 

associated with the onset of ENSO during the Mid-Holocene might influence the fire regime. 

The last 2000 cal. yr BP are characterized by the rise in the abundance of pollen from Nothofagus 

obliqua/Nothofagus alpina, indicating the establishment of both species during the Late Holocene 

in the Lácar basin. It is inferred that the establishment of the current climatic conditions (dry 

summers and rainy winters) allowed the persistence and development of both species. Fire 

frequency was lower in comparison with the Mid-Holocene, however, fire frequency increased 

during the last six centuries and the time between fires (fire return interval) became shorter. The 
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post-fire establishment in north/east-facing slopes of the Lácar basin of Austrocedrus chilensis was 

documented in the upper zone of the pollen diagram. The extensive extraction of Nothofagus alpina 

and Nothofagus obliqua for commercial purposes that resulted in the degradation of their 

population, was detected in the pollen diagram by a decline in the percentage of Nothofagus 

obliqua-type. 

Overall, the results in this work contribute to a better understanding of the vegetation dynamics 

during the last 11700 cal. yr BP around the Lácar basin, filling an empty gap regarding palynological 

records in northern Patagonia Argentina at 40°S 71°W. This work is one of the first in showing the 

presence of Nothofagus obliqua-type nearby the Lácar basin since 11000 cal. yr BP with a major 

expansion after 3000 cal. yr BP. Additionally, this work indicates that the frequent deposition of 

volcanic ash seems not to play an important role in changing the vegetation. 
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Nothofagus obliqua pollen type in southern South 

America: A revision of palynological records and 

Postglacial history 
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Abstract 

Nothofagus obliqua and Nothofagus alpina, two southern deciduous beech species distributed in 

Chile and Argentina have been largely studied in terms of their genetic characterization for 

restoration purposes and silvicultural management programs. However, little is known about past 

changes in distribution and abundance of these trees for the time since the Last Glacial Maximum. 

This work summarizes the information contained in 30 palynological records with the presence of 

Nothofagus obliqua pollen type. The available diagrams have variable temporal cover with some 

providing information since the LGM, while others document the changes during the last 200 years. 

Taken together these diagrams indicate a major expansion of the Nothofagus obliqua-type forest 

during the Mid- and Late Holocene at both sides of the Andes. This may be the result of a 

temperature increase inferred for this period and / or the establishment of the current hydroclimate 

with moist winters and dry summers. The fragmented distribution of these trees in Argentina is 

caused by topographical, edaphic, and local climate conditions. Due to the high-quality of the wood, 

both species have been extensively used for timber production in Chile and the distribution is 

therefore much reduced. Additionally, the conversion of native forests for crop cultivation and 

animal husbandry and the introduction of exotic species such as Pinus and Eucalyptus, have resulted 

in the degradation of both deciduous species. This work shows that there is still a lack of vegetation 

reconstruction in mid-latitudes in Chile and Argentina, which might help to understand the dynamics 

of the Lowland Deciduous Forest before and after the LGM. This long term view is needed to gain a 

better understanding of the possible behaviour of both Nothofagus obliqua and Nothofagus alpina 

under a future climatic warming scenario.  

Key words: Nothofagus obliqua, Nothofagus alpina, Chile, Argentina, Postglacial history 

 

7.1 Introduction 

Today, the genus Nothofagus is distributed in the southern hemisphere in south-western Chile and 

Argentina; New Guinea, New Caledonia, New Zealand, New Britain, and south-east Australia and 

Tasmania (van Steenis, 1971), comprising 42 species of evergreen and deciduous trees (Heenan and 

Smissen, 2013). In South America, 10 Nothofagus species are recognised (Amigo and Rodríguez, 

2011; Ramirez et al., 1997), occurring over the latitudinal range from 33°S to 55°S (Donoso, 2013; 

Moreira-Muñoz, 2011). On the South America landmass, the oldest evidence of the genus was found 
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in deposits from the upper Cretaceous (Campanian, circa 83 mya in Antarctica) and in deposits from 

the Maastrichtian (circa 70 mya) (Swenson et al., 2001). 

The South American Nothofagus genus is subdivided phylogenetically into three subgenera, 

Nothofagus, Fuscospora, and Lophozonia (Hill and Read, 1991). The subgenus Nothofagus comprises 

the species Nothofagus dombeyi, N. antarctica, N. betuloides, N. pumilio, N. nitida. The subgenus 

Fuscospora comprise only the species Nothofagus alessandri, while the subgenus Lophozonia 

include the species Nothofagus glauca, N. leonii, N. alpina, and N. obliqua (Donoso, 2013; Sauquet 

et al., 2012; Veblen et al., 1996). 

Within the Nothofagus species, the morphological characteristics of their pollen grain coupled with 

DNA analysis have been a key tool in establishing phylogenetic relationship between species 

(Heenan and Smissen, 2013; Hill and Read, 1991; Fernández et al., 2016; Sauquet et al., 2012; Wang 

et al., 2000). For the South American Nothofagus (Chile and Argentina) the pollen types are 

distinguished between Nothofagus dombeyi-type (include N. dombeyi, N. antarctica, N. pumilio, N. 

betuloides, N. alessandri, and N. nitida) and Nothofagus obliqua-type (include N. alpina, N. glauca, 

and N. obliqua) (Dettmann et al., 1990; Heusser, 1971; Markgraf and D’Antoni, 1978). Since the 

Nothofagus dombeyi-type includes species with a wide latitudinal distribution, this pollen type 

appears in most palynological records in comparison with Nothofagus obliqua-type, whose species 

distribution is more restricted and fragmented (Donoso et al., 1993; Sabatier et al., 2011). 

Undoubtedly, the similarities in the pollen morphology (dombeyi and obliqua-type) make it difficult 

to distinguish one species from another (Iglesias et al., 2016; Markgraf et al., 2002). Therefore, 

inferences about which species are contributing to the pollen type are made based on the current 

distribution and ecology of the species involved. On the other hand, the differentiation of certain 

features of the pollen grain of Nothofagus dombeyi-type has contributed for example, to a more 

accurate interpretation of vegetation dynamics in the Austral Nothofagus forest (Fontana and 

Bennett, 2012). 

Many recent investigations on Nothofagus obliqua and Nothofagus alpina are focussed  in their 

genetic characterization with phylogeographical purposes (Acosta and Premoli, 2010; Azpilicueta et 

al., 2009; Marchelli et al., 1998; 2007; Paredes, 2003; Vergara et al., 2011; 2013); hybridization 

between the species (Azpilicueta et al., 2016; Donoso et al., 1990; Marchelli et al., 2004); spatial and 

growth patterns (Donoso, 1988; Donoso et al., 1993; Echeverría and Lara, 2004; Puntieri et al., 2006; 

Sabatier et al., 2011) and site index models to quantify the productivity of a determined area with 
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silvicultural purposes (Attis et al., 2005; Trincado et al., 2002). Unfortunately, few palynological 

records show the Nothofagus obliqua pollen type and yet, little is told about their postglacial history 

within their entire distribution range in southern South America. 

The purpose of the present chapter is to synthetize the postglacial dynamic of Nothofagus obliqua-

type, through the analysis of published counts on the postglacial presence and abundance of 

Nothofagus obliqua-type in Chile and Argentina. This information coupled with modern 

geographical distribution of both Nothofagus alpina and Nothofagus obliqua might help to 

understand the patterns of change in the distribution of both deciduous trees since the Last Glacial 

Maximum. 

7.2 Environmental setting 

7.2.1 Topography and climate of the study site 

The study area (Figure 29) corresponds to the region between ca. 33°‒42°S and 73°‒71°W, 

extending from the Pacific Ocean in Chile to the eastern slopes of the Argentinean Andes in 

Argentina. Towards the south, the study area comprises part of the Patagonian territory. From a 

broad perspective, the relief can be distinguished from west to east into the Coastal Cordillera of 

Chile; the Chilean Central valley; and the Andes Cordillera and foothills. Latitudinally, the climate 

along the study area varies between arid in the northernmost part of the study area, to warm 

temperate towards the south (Kottek et al., 2006). According to Luebert and Pliscoff (2017) at a 

macro scale, the bioclimate in the study area is Mediterranean between 34° and 37°S, and 

temperate between 37° and 42°S. On the eastern Andean slopes (“Precordillera Argentina”) the 

climate has been characterized as arid (32°‒35°S) and under the influence of the Pacific high-

pressure cell and the low pressure system of northwestern Argentina (Mancini et al., 2004). 

Precipitation is one of the main factors influencing the vegetation in the region. The presence of the 

Andes Cordillera alters frontal precipitation systems, producing orographic precipitation on 

windward slopes of the Andes (Chile) and the characteristic rain shadow precipitation on lee Andean 

slopes (Viale and Garreaud, 2015). On western Andes (Chile) between 34° and 37°S the precipitation 

originates mainly from fronts of migratory low pressure systems within the westerlies (Fuenzalida, 

1982; Viale and Nuñez, 2011). Here, only up to 5% of the total precipitation occurs during the 

southern summer (Marchant et al., 2007). A mean annual precipitation of 500 mm occurs in the 
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north of the study area, including the Coastal Cordillera, and Central Valley. Areas closer to the 

Andes receive an average of 1000 mm. Nevertheless, some sectors near the Andes present a mean 

annual precipitation about > 1000 mm (Luebert and Pliscoff, 2017, Quintana and Aceituno, 2012). 

Mean annual rainfall in the study area increases latitudinally (34°to 42°S) from 500 mm to 3000 mm 

(Quintana and Aceituno, 2012). Precipitation is common all year around in the southern part of the 

study area, as a consequence of the permanent influence of mid-latitude fronts. As explained earlier, 

the Andes intercept the tropospheric flow (Garreaud et al., 2008) and this has an effect on the 

amount of precipitation on the eastern slopes of the Andes. Although at south of 35°S precipitation 

is frequent throughout the year at both sides of the Andes, the mean annual precipitation is 

enhanced on western slopes and reduced on eastern slopes (Viale et al., 2019). The height of the 

Andes decreases towards the south and the presence of east-west oriented corridors within 

mountains allows the eastward penetration of humid air masses and therefore, high precipitation 

occurs on eastern Andean slopes in Argentina, around ~40°S (Quintana and Aceituno, 2012; Sabatier 

et al., 2011). The distance to the Andes explains 94% of the spatial variability of the mean annual 

precipitation on the eastern side of the Andes (Jobbágy et al., 1995). 

The temperature in the study area is largely influenced by latitude and elevation. In the region, there 

is a tendency towards a decrease in the mean annual temperature from north to south. The same 

tendency is observed for the maximum and minimum mean annual temperature (Espinoza et al., 

1979). The mean annual temperature in the Chilean part of the study area ranges between 16° and 

8°C from north to south (Luebert and Pliscoff, 2017). In the Argentinean portion of the study area, 

the mean monthly temperature of the warmest month (January) varies between 5° and 10°C, while 

the temperature of the coldest month (July) range between 0° and 4°C (Bianchi and Cravero, 2010). 

Local factors such as topography and wind affect air temperature in this region resulting in local 

deviations from these average values (Paruelo et al., 1998). 

An important phenomenon that determines the interannual variability of precipitation in the study 

area is El Niño Southern Oscillation (ENSO). This phenomenon is characterized by the fluctuations in 

temperature between the east-central Pacific Ocean and the atmosphere (Grimm and Tedeschi, 

2009; Jaksic, 1998). This phenomenon comprises two phases, a cold phase known as La Niña and a 

warm phase called El Niño. According to Montecinos and Aceituno (2003), during El Niño, there is a 

tendency of above-average precipitation in winter and late spring in Chile. The opposite pattern is 

observed during the following summer. Anomalously dry conditions during the La Niña phase in 
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winter and late spring are also documented by the authors due to a southward migration of the 

mid-latitude storm tracks. These anomalies in precipitation have consequences in the Argentinean 

Andean region. For instance, the flow of Argentinean rivers is highly linked to El Niño events. 

Campagnucci and Araneo (2007) observed that the summer flow of the Mendoza river exhibit values 

above (below) the average during El Niño (La Niña) phase. 

 

Figure 29. Map of the study area. At the right, the list of sites is displayed latitudinally (34° to 51°S). 
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7.2.2 Vegetation 

The vegetation in the study area is strongly related to precipitation, while natural disturbances and 

altitudinal and latitudinal fluctuations in temperature are considered as a secondary driver (Veblen 

et al., 1981). In Chile, the northernmost limit of the study area is characterized by sclerophyll 

vegetation (Tagua Tagua site, 34°30´S; 71°10´W). Here, Heusser (1983) describes hilltops > 500 m 

with the presence of Nothofagus obliqua and Nothofagus glauca. At the same latitude but on the 

Andean slopes, the evergreen Nothofagus dombeyi occurs together with N. obliqua, N. glauca, and 

N. alpina in sites up to 1500 m. Markgraf et al. (2009) describe the vegetation around Lagunas de 

Epulauquen, which is the northernmost Argentinean limit of the deciduous Nothofagus obliqua. The 

area is dominated by high-elevation bunchgrass belonging to the genus Festuca and shrub elements 

from the families Asteraceae and Rhamnaceae. The genera Berberis, Eryngium, and Ephedra occur 

as well in their shrub forms. At higher altitudes Nothofagus antarctica and Nothofagus pumilio 

dominate. The conifer Austrocedrus chilensis is present at low elevations and dominates dry areas 

of this region (Donoso, 1982). 
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Figure 30. Distribution of Nothofagus obliqua in Chile and Argentina (green areas), adapted from Azpilicueta et al. (2016). 
Blue areas represent lakes.  
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Figure 31. Schematic representation of the distribution of Nothofagus alpina in Chile and Argentina based on Donoso 
(2013). Notice that the grey area only represents the location of the population and not the size. 

 

The Lowland Deciduous Forest occurs also in mountain regions of the Mediterranean transition zone 

in south-central Chile. The dominant tree species correspond to the Nothofagus genus. Deciduous 

broadleaved species Nothofagus alessandrii, N. alpina, N. glauca, and N. obliqua are dominant in 

the warmer lowlands whereas N. antactica and N. pumilio occur at cold-high elevations areas 

(Ramírez et al., 1997). Other species such as Lomatia hirsuta, Aristotelia chilensis, Misodendrum 

linearifolium and Schinus montana are present (Luebert and Pliscoff, 2017). Towards the south, in 

the Andean region between 34°40’S; 70°40’O and 35°38’S; 71°06’O and in the Central Valley 

between 36°44´S; 72°03´S and 39°13’S; 72°22’O (< 1000 m a.s.l.) the vegetation is mainly dominated 

by Nothofagus obliqua, coupled with the presence of Cryptocarya alba and Peumus boldus. Among 

tree and shrub elements present in this region the following can be mentioned Aristotelia chilensis, 

Azara dentata, Chusquea quila, Lithraea caustica, Gevuina avellana, and Lapageria rosea (Luebert 

and Pliscoff, 2017). On the other hand, the forest in the Central Valley has been largely altered with 

the cultivation of exotic species such as Pinus and Eucalyptus or cleared entirely for the creation of 

open areas for crops cultivation and harvesting activities (Echeverría et al., 2006).  
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At ~38°S within the humid slopes of the Andes Cordillera appears the Valdivian evergreen forest 

dominated by Nothofagus dombeyi and conifers such as Austrocedrus chilensis, Podocarpus 

nubigenus, and Saxegothaea conspicua (Luebert and Pliscoff, 2017). The Argentinean Andean region 

between 39°S;71°W and ~41°S;71°W is dominated by several Nothofagus species. For example, 

Nothofagus antarctica occurs in valleys and at the edges of lakes. Nothofagus pumilio reaches high 

elevations areas delimiting the treeline and some isolated individuals grow in regions further east 

close to the steppe. According to Donoso et al. (2004) and Ramirez et al. (1997) Nothofagus dombeyi 

grows in humid areas with moderate low temperatures along their entire distribution in the region. 

On the other hand, Conticello et al. (1996) indicates that among trees, the most important species 

are Nothofagus dombeyi, Nothofagus antarctica, Nothofagus obliqua, and Nothofagus alpina (in 

that order of importance). Chusquea culeou is the most abundant understory element, followed by 

Maytenus chubutensis, Berberis darwinii, Embothrium coccineum, Lomatia hirsuta, Ribes 

magellanicum, and Gaultheria poeppigii. In the herbaceous stratum, the most important elements 

are Osmorhiza chilensis, Holcus lanatus, Acaena ovalifolia, Alstroemeria aurea, and Blechnum sp.  

In the study area, Nothofagus obliqua and Nothofagus alpina occurs together with some important 

conifers in the region. In Chile at ~34°45´S, Nothofagus obliqua occurs with Austrocedrus chilensis 

in humid sites as well as in south- and east-facing slopes (Veblen et al., 1995). Towards the south A. 

chilensis can form mixed forest with Nothofagus species in less extreme environments, especially 

with Nothofagus dombeyi in humid areas. Dezzotti and Sancholuz (1991) also report that this conifer 

co-occurs with Nothofagus alpina in areas with high precipitation (1600 and 2000 mm) in Argentina 

between 40°10´ and 41°45’S. Occasionally, in the Coastal Cordillera of Chile (Nahuelbuta; 37°43´S) 

Nothofagus obliqua occurs with Araucaria araucana and Nothofagus antarctica on drier east-facing 

slopes at low elevations (Donoso, 2013; Veblen et al., 1995). 
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7.3 Material and Methods 

Pollen counts from sites in the study region with the presence of Nothofagus obliqua and 

Nothofagus alpina were obtained from two databases: The Data Publisher for Earth and 

Environmental Science PANGAEA (https://www.pangaea.de/) and NEOTOMA Palaeoecology 

Database and Community (https://www.neotomadb.org/). Additionally, journals, abstracts, 

reports, thesis, and book congresses related to Argentinean and Chilean palynological investigations 

were reviewed.  

Since most of the pollen data presented on those publications were not available in open data 

repositories, the pollen diagrams were scanned and digitized to obtaining the percentage of 

Nothofagus obliqua-type using the free software WebPlotDigitizer (available at 

https://automeris.io/WebPlotDigitizer/). The records were classified into LGM (sensu Hulton et al., 

2002), Deglacial period (sensu McCulloch et al., 2000), Early Holocene, Mid-Holocene, Late 

Holocene, and present time (last 200 years). A mean percentage was calculated per site per period. 

Maps were created using QGIS software. 
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Site name Author(s) Age Coordinates Elevation (m a.s.l.) 

Tagua Tagua Heusser, 1983 > 45000 14C yr BP 34°30´S;71°10´W 200 

Mallín Vaca Lauquen Markgraf et al., 2009 16465 cal. yr BP 35°51´S;71°02´W 1567 

Veranada Vulkanpickel Schäbitz, 1989 7700 cal. yr BP 36°68´33"S;70°41´66"W 1490 

Veranada Pelan Schäbitz, 1989 10800 cal. yr BP 36°88´33"S;70°38´´33"W 1540 

Site 1234 Heusser et al., 2006 140000 years 36°13´S;73°40´W marine sediment core 

El Valle Abarzúa et al., 2014 ~26000 cal. yr BP 38°05´S;72°47'W 70 

Lago Espejo Abarzúa et al., 2013 10247 14C yr BP 39°S;72°10´W 320 

Laguna Las Ranas Abarzúa, 2013 ~19000 cal. yr BP 39°11'S;72°05°W 400 

Bajada de Rahue Markgraf et al., 1986 31000 cal. yr BP? 39°22´S;70°56´W 1000 

Rucañancu Heusser, 1984 10200±130 39°33´S;72°18´W 290 

Vizcacha Alvarez-Barra Valentina 11700 cal. yr BP 40°12´S;71°30´W 1095 

Bruja Alvarez-Barra Valentina 3600 cal. yr BP 40°14´S;71°30´W 1060 

Avutarda Alvarez-Barra Valentina 2700 cal. yr BP 40°23´S;71°25´W 1610 

Caunahue Markgraf 1991 13980±200 40°S;72°W 140 

Puyehue I  deBatist et al., 2007 17400 cal. yr BP 40°41´S;72°22´W 187 

Puyehue II Vargas-Ramirez et al., 2008 15250-16750 cal. yr BP 40°40´S;72°28´W 185 

Los Mallines Vargas-Ramirez et al., 2008 3450-4100 cal. yr BP 40°46´S;72°17´W 730 

Canal de la Puntilla Moreno, 1997 20200 cal. yr BP 40°57'09"W;72°54'18"W 120 

Padre Laguna Iglesias et al., 2012 4963 cal. yr BP 41°21´34"S;71°30´32"W 1280 

Huala Hue Iglesias et al., 2012 13180 cal. yr BP 41°30'24"S;71°30'32"W 849 

Lago Moreno Valencio et al., 1985 14500 cal. yr BP 41°05´S;71°51´W 780 

Laguna el Trébol Whitlock et al. 2006/Bianchi et al., 
1999 

15041-15313 cal. yr BP 41°S;71°W 758 

La Cumbre Villagrán, 1980 6335±70  41°04´S;71°50´W 975 

Derrumbes Villagrán, 1980 3110±105 41°09´S;72°06´W 820 

El Frutillar Villagrán, 1980 2390±70 41°08´S;73°00´W 920 

Pichilaguna Moreno et al., 2018 24532 cal. yr BP 41°15´S;73°02´W 220 

Mallín Book Markgraf, 1983 12900±400 41°20'S;71°35'W 800 

Laguna Condor Iglesias et al., 2011 17845 cal. yr BP 42°20´47.22"S;71°17´07.62"W 818 

Lago Theobald Iglesias, 2013; Iglesias and 
Whitlock, 2014; Iglesias et al., 
2014 

12200 cal. yr BP 43°48'S; 71°58'W 678 

Meseta Latorre Schäbitz, 1989 7100 cal. yr BP 51°51´66"S;72°05'W 973 

Table 11. List of the records available with the presence of Nothofagus obliqua pollen type. 
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7.4 Results 

A total of 30 records with the presence of Nothofagus obliqua-type were found (Table 11, Figure 

29) and they encompass the modern geographical distribution of Nothofagus obliqua and 

Nothofagus alpina in South America (34° to 41°S). However, sites such as Padre Laguna, Huala Hue, 

Lago Moreno, Mallín Book, Lago Theobald, and Meseta Latorre (42° to 51°S) have values < 1% in N. 

obliqua-type and can be representing long-distance transport of the pollen type from populations 

located around 40°S through westerly winds. The same interpretation can be applied to sites 

Veranada Vulkanpickel and Veranada Pelan (36°S, 70°W) and Bajada de Rahue (39°S) which likely 

might receive pollen from populations located nearby the Andes at the same latitude. 

The pollen diagrams from Tagua Tagua, Site 1234, and Bajada de Rahue recorded Nothofagus 

obliqua-type pollen between 23000 and 30000 cal. yr BP with 6.6%, 9.2%, and 0.6% respectively 

(Figure 30). Nevertheless, Tagua Tagua and Site 1234 are the oldest records (> 45000 and 140000 

cal. yr BP respectively) documenting the presence of N. obliqua pollen type since their beginnings 

with 7% in Tagua Tagua and 8.9% in Site 1234. During the Last Glacial Maximum (LGM) the 

percentage of N. obliqua-type in Tagua Tagua declined slightly while in Site 1234 was stable. The 

site El Valle, Pichilaguna, Canal de la Puntilla, and Laguna El Trébol documented for this period 

percentages > 1%, except for El Valle, which during the LGM recorded 2.8% of N. obliqua-type. The 

Deglacial period (see Figure 32) was characterized by high percentages of Nothofagus obliqua-type 

in Puyehue I and Puyehue II (40°S, 72°W; 10% and 12% respectively); in Site 1234 (9.5%) and only 

2% in Lago Moreno and Tagua Tagua. In Argentina during the postglacial, the sites Mallín Vaca 

Lauquen, Huala Hue, Laguna El Trébol, and Mallín Book present < 1% of Nothofagus obliqua pollen 

type.  
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Figure 32. Maps with the changes in the percentage of N. obliqua-type since the LGM to the last 200 years in the sites 
located at the north of the study area. Percentages are represented as coloured circles. See the label at the right-bottom 
for the period.  
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In the Early Holocene, sites located at the northernmost limit of Nothofagus in South America 

present values < 1% for N. obliqua. These low percentages are also documented in sites in the south 

(40°‒43°S) such as Vizcacha, Caunahue, Pichilaguna, Canal de la Puntilla, Huala Hue, Lago Moreno, 

Laguna El Trébol, and Lago Theobald. On the other hand, a rise in the percentage of N. obliqua-type 

occurred after 12000 cal. yr BP in sites located at mid-latitudes such as Site 1234, El Valle, Laguna 

Las Ranas, and Puyehue I and II. Based on the records, a major population of Nothofagus obliqua 

and/or Nothofagus alpina might have been located in the Coastal Cordillera and Central Valley 

between 36° and 38°S (Site 1234 and El Valle respectively); in the Central Valley at 39°S; 72°W 

(Rucañancu) as well as in the Central Valley at 40°S, 72°W (Puyehue I and II). Among all the records 

with the presence of Nothofagus obliqua during the Early Holocene, the highest percentage is 

registered in La Cumbre (16.5%) at 41°S, site located at the Andes of Chile.  

A second pulse of increasing in the percentage of Nothofagus obliqua-type occurred during the Mid-

Holocene (see Figure 33), as it is observed in El Valle, Laguna Las Ranas (38°‒39°S, Central Valley) 

and Puyehue I and II (40°S). Interestingly is the fact that for this period the site Rucañancu show a 

substantial increase in the percentage of N. obliqua-type from 11% during the Early Holocene to 

39% in the Mid-Holocene. On the other hand, the site Derrumbes (41°, 72°W) documents 64% of N. 

obliqua-type while the site La Cumbre, located 20 km at the north-east show a decrease in the 

percentage during this period.  

During the Late Holocene, some sites show a decrease in the percentage of N. obliqua pollen type, 

like Rucañancu, Puyehue I and II, La Cumbre, and Derrumbes. Other sites documented a slight 

increase in the percentage such as Tagua Tagua, Mallín Vaca Lauquen, El Valle, Laguna Las Ranas, 

and Laguna Condor. On the other hand, sites like Lago Espejo (Chile, 39°S, 72°W) and Vizcacha 

(Argentina, 40°S, 71°W) show an important increase in the percentage of N. obliqua-type during the 

Late Holocene. Finally, based on the percentage of the topmost sample of each record, during the 

last 200 years highest percentages on the pollen type are registered in sites located within areas 

where the major population of Nothofagus obliqua and Nothofagus alpina in South America 

nowadays occur. 
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Figure 33. Maps with the changes in the percentage of N. obliqua-type since the LGM to the last 200 years, indicated as 
coloured circles on the map, of the sites located in the south of the study area. See the label at the right-bottom for the 
period. The sites named on each map correspond to those that report the presence of the pollen type in the specified 
time period. Continue next page. 
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Figure 33. Continuation. 

7.5 Discussion 

Long-term changes in the distribution of Nothofagus obliqua and Nothofagus alpina are inferred 

based on 30 different sites located in Chile and Argentina. The oldest records correspond to Tagua 

Tagua, Site 1234, and Bajada de Rahue suggesting the presence of likely Nothofagus obliqua and 

Nothofagus glauca in the region of Tagua Tagua (34°S), and Nothofagus obliqua and Nothofagus 

alpina in the Site 1234 (36°S). The percentage during the LGM of N. obliqua-type is the Site 1234 

and Tagua Tagua, resemble those reported for the last hundred years in sites located between 38° 

and 40°S such as El Valle and Lago Espejo in the Central Valley of Chile, in Lake Bruja and Avutarda 

in western Patagonia Argentina, and in Puyehue I and II in the south limit of the central Valley of 

Chile. In the literature, it has been proposed that ice free areas during the LGM such as the Coastal 

Cordillera and northern regions of the Central Valley were refugia for several species (Villagrán, 

1991; Villagrán et al., 1998; Villagrán, 2000). As Tagua Tagua basin is located at the eastern edge of 

the Coastal Cordillera (34°30'S, 71°10'W; 200 m a.s.l.) it is suggested that this zone was possibly a 

refugium for populations of Nothofagus obliqua and Nothofagus glauca. Here, Heusser (1983) 

suggested that the climatic conditions that supported this vegetation were likely warmer and with 

more precipitation than today. The Site 1234 captures the pollen signal from both Coastal 

mountains and Andean foothills, and similar to Tagua Tagua it might reflect the presence as well of 

Nothofagus obliqua-type forest located in ice-free areas during the LGM, and LGM termination. 
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Azpilicueta et al. (2009) investigated the chloroplast DNA of Nothofagus obliqua populations 

covering most of the modern distribution range in Chile and Argentina. They conclude that ancestral 

haplotypes only present in populations located in the Coastal mountains support the palynological 

hypothesis of glacial refugia during the LGM in this region.  

During the Deglacial period, the percentage of N. obliqua in Tagua Tagua declined, which is parallel 

to an increase in the percentage of Nothofagus dombeyi and Podocarpus (see Heusser, 1983). The 

presence of both taxa suggests an increase in precipitation and likely lower summer temperatures 

than today (Heusser, 1983). This shift from warm and wet to cool and humid might explain the 

decline of the population in the area. Unlike Tagua Tagua, Site 1234 did not show a decline of the 

pollen type during the Deglacial period, suggesting latitudinal asynchronies that Heusser et al. 

(2006) attribute to variations in atmospheric circulation and snowline depression.  

Temperate and semi-humid climatic conditions at 40°S are inferred by the presence of N. obliqua-

type in the site Puyehue I and Puyehue II, both located at the Andes foothills during the Deglacial 

period. As the percentage of N. obliqua-type is around 11% at both sites, the regional presence of 

an abundant Lowland Deciduous Forest at this latitude is suggested. Based on the map of the 

extension of the ice-sheet during the LGM developed by Porter (1981) for the region between 39° 

and 41°S the area of the Lake Puyehue was covered by ice during the LGM. On the other hand, a 

sediment core was taken from this lake, whose bottom was dated in 17900 cal. yr BP determining 

that the lake was not in contact with glacier ice during this period. Given these constraints the 

Lowland Deciduous Forest must have rapidly colonized these areas recently released of ice. Toward 

the north, the site El Valle (38°S) documented 3% of N. obliqua-type during the Deglacial period, 

percentages similar to the modern values documented in Mallin Vaca Lauquen in Argentina (35°S). 

This site shows a moderate increase in the percentage of this pollen type in comparison with the 

LGM period, suggesting a small abundance of the Lowland Deciduous Forest associated with warmer 

and less wet climate conditions (Abarzúa et al., 2014). Sites such as Caunahue, Pichilaguna, Canal de 

la Puntilla, Huala Hue, Laguna El Trébool, and Mallín Book recorded percentages < 1% during the 

Deglacial period and it is assumed that they are capturing extra local pollen of N. obliqua-type. 

Nevertheless, the 2% documented in Lago Moreno (41°S) could reflect a small population of 

Nothofagus obliqua-type forest at southern latitudes.  

Most of the sites mentioned show a rise in the percentage of N. obliqua-type during the Early 

Holocene such as the Site 1234 (from 9.5% to 12.7%), El Valle (from 3.6% to 8%), Laguna Las Ranas 

(from 1% to 12%), and Puyehue I and II (from 11% to 14%). In the literature, in mid-latitudes (38°‒
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39°S), the Early Holocene has been characterized as a warm and dry period. This interpretation is 

based on the rise in thermophilus taxa in the region, especially along the western slopes of the 

Andes with taxa such as Eucryphia/Cladcluvia, Axtoxicon punctatum, Weinmannia trichosperma, 

and Nothofagus obliqua-type. Additionally, increased fire activity during the Early Holocene has 

been detected for this period. On the eastern Andes, the Early Holocene was characterized by 

increased fire activity within the forest-steppe ecotone associated with arid summers and moist 

winters (Iglesias et al., 2011; Whitlock et a., 2006). Most of the sites with a sharp increase in N. 

obliqua-type are located in the Central Valley and they suggest a rapid development and expansion 

from small populations of the Lowland Deciduous Forest given the warming pulse inferred for the 

Early Holocene. The opposite pattern is observed in sites further north such as Tagua Tagua which 

shows a decline in the pollen type, associated with a replacement of Lowland Deciduous Forest by 

parkland with an abundance of Chenopodiaceae, Poaceae, and Asteraceae (Heusser et al., 1983).  

Rucañancu (39°S) and La Cumbre (41°S) records start during this period and document 11% and 16% 

of N. obliqua-type respectively. The site Rucañancu has been postulated as possible centre of refugia 

for N. obliqua and N. alpina in the Central Valley (Villagrán, 1991) from where both species expanded 

northward and southward. The site La Cumbre present values of N. obliqua-type similar to those 

reported for modern populations located at 39°S near the west Andes foothills. Villagrán (1991) 

suggests that N. obliqua and N. alpina expanded toward the south along the Andes from northern 

populations, reaching a more southernmost limit than today between 9500 and 3000 cal. yr BP due 

to the warming pulse characteristic of the Early Holocene. The site La Cumbre is located at the 

border with Argentina, at ~50 km south of the modern southern limit of N. alpina in Argentina 

(Sabatier et al., 2011). The record from Vizcacha indicate percentages of < 1% of N. obliqua for the 

Early Holocene and based on the hypothesis of the south- and northward expansion of N. obliqua-

type forest along the Andes, this scarce percentage might represent long-distance transport either 

from populations located at the north in the Central Valley such as Rucañancu, or from southern 

Andean populations such as Puyehue I and II.  
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Figure 34. Summary diagram with the main records from mid-latitudes southern South America discussed in this work. 

During the Mid-Holocene, the Site 1234 indicates stable percentages of N. obliqua-type in 

comparison with the prior period suggesting the establishment of the Lowland Deciduous Forest 

likely at the Andes foothills. The records from El Valle to Lago Espejo document a slight increase in 

the percentage of the pollen type, suggesting that the climatic conditions prevailed optimal for the 

growth and establishment of N. obliqua and N. alpina. A substantial increase in the percentage of 

Nothofagus obliqua-type forest occurs in areas within the Central Valley and the Andes foothills, as 

it is documented in Lago Espejo, Las Ranas, and Rucañancu. Nevertheless, the maximum percentage 

documented for this period was found in Derrumbes with 64%. Villagrán (1980) suggests an 

altitudinal displacement of Nothofagus dombeyi-type (humid forest indicator) due to the warmer 

and drier conditions, whereas N. obliqua-type advanced along the Central Valley and Andes foothills. 

The author also emphasises the fact that this high percentage might indicate the presence of a pure 

Nothofagus obliqua-type forest. Hitherto, there is no modern analogue to compare with that 

represent this type of forest. The decline in the percentage of N. obliqua-type in the site La Cumbre, 

located at ~20 km north-east might indicate a westward displacement of the populations during this 

period, which in part could explain the increased percentage of N. obliqua-type in Derrumbes. The 

increased percentage of the pollen type in Lago Espejo, Las Ranas, and Rucañancu support the 
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hypothesis of a southward displacement of the Lowland Deciduous Forest along the Central Valley 

and the Andes.  

Despite that sites such as Rucañancu, Las Ranas, and Lago Espejo show a rise in the percentage of 

N. obliqua-type during the Early and Mid-Holocene, the site Caunahue (Heusser, 1981; 40°S;72°W; 

140 m a.s.l.) indicates values < 1.8%. Rucañancu, located at 60 km north of Caunahue documented 

39% of N. obliqua-type and the site Puyehue I and II, located 60 km south shows 17% during the 

Mid-Holocene. The site Caunahue corresponds to a south-east exposed riverbank profile which is 

surrounded by a several mountains chain associated with the Andes. This might explain the low 

percentage documented in this record. 

Disturbance has been proposed as a cause of interruption of migratory routes. For example, 

Azpilicueta et al. (2009) suggest that dissimilarities in haplotypes among southern and northern 

populations of Nothofagus obliqua in Argentina might be due to an explosion of the Lanín volcano 

during postglacial re-colonization of the species. This phenomenon might have occurred during the 

Late Holocene northward advance of the Nothofagus obliqua-type forest proposed by Villagrán 

(1991). The site Derrumbes shows a decline in the percentage of the pollen type while at the site 

Los Mallínes the pollen increases up to 3%. However, in Caunahue the pollen signal did not increase. 

Between Caunahue and the sites Los Mallínes, Puyehue I and II, and Derrumbes is the Puyehue-

Cordón Caulle Volcanic Complex, one of the most active volcanoes in south-central Chile, with more 

than 20 eruptive periods detected during the last 5000 years (Global Volcanism Program, 

Smithsonian Institution, 2019). The constant volcanic activity might have caused an impact on the 

Lowland Deciduous Forest during its advance in the Late Holocene.  

The Late Holocene has been proposed as a period where the current climatic conditions start to 

establish in the region (Lamy et al., 2010; Markgraf et al., 2009), as well as the increase ENSO activity, 

which is responsible for decadal anomalies in rainfall (Montecinos and Aceituno, 2003). Sites at 40°S 

in the eastern Andes such as Vizcacha and Bruja show a rise in the abundance of the pollen type. 

Towards the north, the site Mallín Vaca Lauquen also indicate increased percentages of N. obliqua-

type. Markgraf et al. (2009) suggest that the abundance of the pollen type responds to the 

establishment of the winter rain/summer drought climatic conditions in the area. The population of 

Nothofagus obliqua around Lagunas de Epulaquen (the located of Mallín Vaca Lauquen) has been 

extensively studied in terms of their genetic characterization (Azpilicueta et al., 2016; Azpilicueta et 

al., 2014). Their analysis supports the hypothesis of a common origin for N. obliqua population west 

and east of the Andes at this latitude (36° 49’S, 71°04’W), suggesting the convergence of migratory 
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routes in this geographical area (Azpilicueta et al., 2016). This might explain the gradual increase of 

the populations located at Lagunas de Epulauquen since the Deglacial period, by introgression from 

western populations during postglacial recolonization (Azpilicueta et al., 2009; 2014; Markgraf, 

1987). 

The last 200 years reflect the modern distribution of Nothofagus obliqua and Nothofagus alpina in 

Chile and Argentina (see Figures 30 and 31). This is the Coastal Cordillera of Chile (El Valle and Site 

1234), Lagunas de Epulauquen in Argentina (Mallín Vaca Lauquen), and the Andes of Chile and 

Argentina between 39° and 41°S. Nevertheless, although the palynological records available are 

located within the main populations of both deciduous beech species, areas towards the south in 

Chile (nearby Puyehue I and II and Pichilaguna) as well as regions in Argentina (north of Lake 

Vizcacha) hitherto has not been investigated to understand their past vegetation history to filling 

empty gaps regarding the possible presence of glacial refugia located in periglacial areas, especially 

in Argentina. 

Both, Nothofagus alpina and obliqua has been intensively used for timber extraction for the last two 

centuries (Donoso, 1988; Weinberger and Ramirez, 1999) and in general, since the arrival of the 

Spanish conquers, the original forest especially in south Chile has declining due to deliberated 

burning to prevent indigenous people hiding during battles (Gardner et al., 2006), and to create 

suitable land for crop cultivation and animal husbandry. Since 1970 the introduction of exotic 

species such as Pinus and Eucalyptus has been also an important factor in the decline of native 

forest. However, restoration of both Nothofagus alpina and Nothofagus obliqua has captured the 

attention of silvicultural management in Argentina as well in Chile. Genetic characterization and site 

indexes have been published for conservation, protection, and restoration strategies.  

7.6 Conclusions 

Combining the information from available pollen diagrams with the presence of Nothofagus 

obliqua-type in South America, the following conclusion arise: 1) a clear expansion of the N. obliqua 

type immediately after the LGM, associated with warmer conditions and the presence of new ice-

free areas where any of both species could have colonized; 2) sites located in the Central Valley of 

Chile show variable, but continues percentages of the pollen type since the Mid-Holocene, especially 

those located at 38°S; 3) the presence of the pollen type in sites located within the Argentinean 

steppe (Veranada Pelan and Vulcanpickel) and in southern latitudes as Huala Hue, Laguna El Trébol, 

Mallín Book, Lago Theobald (41° to 43°S) and Meseta Latorre (51°S) correspond to long-distance 



 

139 
 

transport of the pollen by the westerly winds system and they might not represent a local presence 

of the trees and 4) the changes observed through time indicate a very dynamic vegetation history 

of the N. obliqua-type forest, reflecting the sensitive and fast response of these deciduous trees to 

the drastic changes in climatic conditions in the region. Hitherto, this work is one of the first to 

synthetize most of the palynological records available with the presence of Nothofagus obliqua-type 

in South America. Nevertheless, this work also provides evidence about the continued  lack of 

vegetation reconstructions in mid-latitudes in Chile and Argentina, which might help to understand 

the dynamic of the Lowland Deciduous Forest before and after the LGM and therefore provide a 

better understanding of the possible behaviour of both Nothofagus obliqua and Nothofagus alpina 

under a future climatic warming scenario.  
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Chapter 8 

Synthesis of the main research outcomes and 

conclusions 

 

 

 

 

 

 

 

 

 

 

 



 

148 
 

8.1 Vegetation history 

Three lacustrine sediment cores located nearby the Lácar basin within the Lanín National Park 

(Argentina) were analysed in order to reconstruct past vegetation history (Figure 34). The oldest 

core comes from Lake Vizcacha, capturing the last 11700 cal. yr BP, while the records from the Lake 

Bruja and Lake Avutarda encompasses the last 3600 and 2700 cal. yr BP, respectively. The pollen 

diagram from Lake Vizcacha shows that vegetation composition has changed gradually as well as 

abruptly over the course of the Holocene. The Early Holocene can be separated into three 

environmental settings documented by changes in the aquatic and terrestrial pollen as well as the 

sedimentology.  

 

Figure 35. Map with the location of the study sites respect to the Lácar basin. Different colours represent the modern 

distribution of the species indicated in the legend, based on Administración de Parques Nacionales (2012); Sabatier et al. 

(2011) and Dezzotti and Sancholuz (1991).  

 

Between 11700 and 10700 cal. yr BP, there is a high percentage of pollen from Cyperaceae and 

shrub taxa. This period correspond to a compact peat section with the presence of plant remains 

identified as Cyperaceae, Poaceae, and in minor proportion Sphagnum leaves together with woody 
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trunks pieces. All these finding suggest the presence of a wetland dominated by Cyperaceae with 

shrubs most likely Nothofagus antarctica growing on the wetland. Pollen accumulation rate (PAR) 

during this period is low (< 15000 grain cm-2yr-1) and might suggest low vegetation cover around the 

site and an open Nothofagus woodland growing on the site. The low total PAR might, however, also 

be an artefact due to the bad preservation of the pollen grains and or a fast sedimentation rate not 

captured by the age model.  

Today Lake Vizcacha persist due to high precipitation in winter and moderate during the spring and 

summer season. Reduced winter precipitation could therefore be a reason for the inexistence of the 

lake between 11700 and 10700 cal. yr BP. Based on pollen records located between 39° and 43°S 

west of the Andes, Moreno et al. (2018) suggested low water levels and dry out of shallow lakes or 

lake regressive during the Early Holocene. However, the Early Holocene documented in Vizcacha 

indicated a shift to wetter conditions, as documented by the shift in sediment composition, the 

abrupt decline in Cyperaceae, and the presence of Myriophyllum after 10700 cal. yr BP. This 

indicates an interval of high precipitation during the Early Holocene, which triggered the 

development of a shallow lake flooding the Cyperaceae wetland, which explain its abrupt decline 

between 10700 and 9700 cal. yr BP and the appearance of Myriophyllum. During this humid interval, 

PAR’s oscillate between 30000 and 60000 grains cm-2yr-1, and an increase in the percentage of 

Cupressaceae pollen is observed. Hitherto there is no other pollen record available at a similar 

latitude east of the Andes indicating similar patterns. West of the Andes, the pollen record from 

Caunahue (Markgraf, 1991) at the same latitude of Vizcacha did not show the presence of 

Cupressaceae but document an increase in warm-temperate taxa especially Weinmannia 

trichosperma, interpreted to indicate decreased precipitation and warmer temperatures. This 

opposite pattern of decreased precipitation likely represents local changes and /or edaphic 

conditions.  

A renewed increase in Cyperaceae with a decline in Cupressaceae, Poaceae, the absence of 

Myriophyllum and the sediment change to peat after 9700 cal. yr BP, documents a renewed 

decrease in the water table of the lake, as a consequence of a decrease in precipitation. 

Nevertheless, the water table did not reach the same low stand as inferred for the time between 

11700 and 10700 cal. yr BP since the percentage of Cyperaceae is the half of that in the former 

period. 

From 8500 cal. yr BP onward the lithology is characterized by gyttja and the pollen record show low 

percentages of shrubs, Poaceae, and Cyperaceae, whereas Potamogeton and the green algae 
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Botryococcus increase. These findings lead to the interpretation of a Mid-Holocene, characterized 

by the presence of a permanent lake, attributed to wetter conditions than before. The continuous 

but low presence of Nothofagus obliqua-type also characterize this period. Among the most 

noticeable patterns observed in this record is the 15% of Cupressaceae pollen between 8500 and 

8000 cal. yr BP, which is concomitant with a decrease in N. dombeyi-type. In the literature, 

palynological records between 41° and 43°S also show an increase in the percentage of 

Cupressaceae during the Mid-Holocene, attributed to Austrocedrus chilensis (Iglesias and Whitlock, 

2014). The topmost samples of Vizcacha record document < 1% of Cupressaceae pollen, which is 

the signal of Austrocedrus populations located behind the mountains at the north facing slopes of 

Lake Lácar. As Austrocedrus has a restricted pollen dispersal (Markgraf et al., 1981), this high 

percentage during the Mid-Holocene might suggest the presence of a small population of this 

conifer nearby Vizcacha.  

During the Late Holocene, major changes in vegetation composition were not observed in Bruja and 

Avutarda, except for the rise in the percentage of Nothofagus obliqua-type and the decline of 

Cupressaceae, attributed to Austrocedrus chilensis during this period. In Vizcacha, this pattern is 

also observed for the Late Holocene, suggesting a regional expansion of Nothofagus obliqua-type 

populations. The timing of the rise of this pollen type is similar in Bruja and Vizcacha. Both records 

documented a rise in the percentage of N. obliqua at 2200 cal. yr BP. In Avutarda the rise occurred 

later, at 1100 cal. yr BP.  

According to Sabatier et al. (2010), the population of Nothofagus alpina around the Lácar basin 

occurs between 800 and 1150 m a.s.l., although in some sites isolated individuals have been 

observed at 1350 m a.s.l. Between 800 and 950 m, N. alpina occurs in sympatry with N. obliqua. 

Generally, N. obliqua occurs at lower elevations, between 650 and 800 m a.s.l. As Vizcacha, Bruja, 

and Avutarda are located at high elevations, it is likely that Nothofagus alpina is contributing the 

most to the N. obliqua pollen type documented on the three records.  

In order to compare the three records, a Principal Component Analysis was performed. The first and 

second axes explain 36% and 19% of the variance respectively. Figure 35 shows the samples/species 

bi-plot indicating that the samples from lake Avutarda and Bruja are located at the extremes, 

arranged on the first axis. The samples from Avutarda are dominated by steppe indicator taxa such 

as Poaceae, Discaria, and Ranunculus while the samples from lake Bruja are characterized by N. 

obliqua, Weinmannia trichosperma and Ericaceae. All these features suggest  
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Figure 36. Species/samples scores of the PCA of pollen percentage data of Avutarda, Bruja, and Vizcacha. 

 

that the first axis is representing an environmental gradient separating the samples from steppe and 

forest environments. In this gradient Bruja represents the most forested site and Avutarda the one 

in more open vegetation types, with the samples from Lake Vizcacha arranged in between. The 

second axis captures variance of Austrocedrus, N. dombeyi, Misodendrum, and Chenopodiaceae, 

which are all higher at Vizcacha separating this site along the second axis. Within the samples of 

Vizcacha a clear separation is observed between samples characterized by steppe indicator taxa 

such as Gaultheria, Discaria, and Chenopodiaceae and those samples characterized by forest 

indicators such as N. dombeyi, Misodendrum and Austrocedrus. This pattern agrees with the left-to-

right environmental gradient associated to the first axis. However, the comparison of the sites in 

the ordination documents that there are no major changes in vegetation composition throughout 

the Late Holocene in Avutarda Bruja and Vizcacha. For the last 4000 years, the three records are 

reflecting stable forest composition. 
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8.2 Postglacial history of Nothofagus obliqua-type 

One purpose of the present work was to analyse the past vegetation history of Nothofagus obliqua-

type. The three lakes analysed are located within the main population of Nothofagus obliqua and 

Nothofagus alpina (pollen type N. obliqua) in Argentina (Sabatier et al., 2011). Lake Avutarda and 

Lake Bruja document the increase of the pollen type over the Late Holocene period, while Vizcacha 

allows a long-term comparison. A visual comparison of the N. obliqua-type percentages for the three 

lakes (Figure 36) indicates an increase of the pollen type at 2200 cal. yr BP and 1100 cal. yr BP. In 

Vizcacha the first pollen grain observed dates to 11200 cal. yr BP. Later, at 7300 and at 2700 cal. yr 

BP local peaks (4.2% and 6.4%, respectively) are observed. However, the major rise started at 2200 

cal. yr BP with an increase to 11% reaching a maximum of 17% at 400 cal. yr BP. 

 

 

 

Several trees including Austrocedrus chilensis (Pastorino and Gallo, 2002) and Araucaria araucana 

(Marchelli et al., 2009) may also have survived the LGM east of the Andes, however if Nothofagus 

In most of the palynological records with the 

presence of N. obliqua-type, the pollen type is 

associated to warm and temperate climatic 

conditions (Abarzúa et al., 2014; Vargas-Ramírez et 

al., 2008). Markgraf et al. (2009) associate the rise in 

N. obliqua-type in the record from Mallín Vaca 

Lauquen (35°51´S;71°02´W, Argentina) to the 

establishment of the present day winter 

rain/summer drought regime in the Late Holocene. 

Based on 30 records with the presence of N. obliqua 

type from southern South America (Figure 37), a 

rapid expansion of the Nothofagus obliqua-type 

forest can be observed after the LGM. It has been 

proposed that N. obliqua-type forest survived in the 

South in ice-free areas during the LGM, such as the 

Coastal Cordillera and the Central Valley of Chile 

(Villagrán, 2000; Villagrán et al., 1998). 

 

Figure 37. Comparison of the percentage of N. 

obliqua-type on Lake Avutarda, Bruja, and 

Vizcacha. 
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obliqua or alpina were among them is uncertain. Based on the results obtained, the major spread 

of Nothofagus obliqua-type forest in the region between 39° and 41°S occurred between the Mid- 

and Late Holocene (see Figure 37). The major percentage of N. obliqua-type during the Mid-

Holocene come from the moor Derrumbes located within the Vicente Pérez Rosales National Park, 

Chile (41°09´S;72°06´W; Villagrán 1980) with 60% of the pollen type. The author interprets this high 

percentage as a consequence of a warm and dry climate during this period. Today, neither 

Nothofagus obliqua, nor Nothofagus alpina occur at those latitudes in south Chile and Argentina. 

Therefore, its absence during the Late Holocene has been attributed to a northward displacement 

of the populations (Villagrán, 1980; 1991).  

 

Figure 38. Map with the location of the sites analysed with the presence of Nothofagus obliqua-type. 
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High percentages were observed in sites located within the Central Valley and the Andes, such as 

Lago Espejo, Las Ranas, Rucañancu (38°S), and Vizcacha, Bruja, Puyehue I and II (40°S). Percentages 

< 1% observed since the LGM to present times in sites in the north of the study areas such as 

Veranada Pelan and Vulcanpickel, as well as in sites towards the south (from El Trébol to Lago 

Theobald in Argentina) are interpreted as a long-distance pollen signal from dense populations 

located within the Central Valley and Andes.  

Overall, the warming pulse suggested after the LGM, allowed the expansion of both Nothofagus 

obliqua and Nothofagus alpina. Since the Mid-Holocene, sites located at the Central Valley of Chile, 

especially those at 38°S (see Figure 38) indicate a variable but continue presence of the pollen type 

due to the stable warmer and temperate climatic conditions inferred for that period (Figure 38). 

Already during the Late Holocene, the modern geographical location of the population of both 

deciduous trees was somehow established in the region. Nevertheless, during the last 200 years, it 

has been reported a substantial decrease in both populations due to human activities related to 

timber extraction, the introduction of exotic species (e.g. Pinus and Eucalyptus), and crop 

cultivation. Finally, the rapid expansion of both species during the inferred warming pulses in the 

Deglacial and Mid-Holocene periods reflects the sensitive and fast response of Nothofagus obliqua 

and Nothofagus alpina to the drastic changes in climatic conditions in the region.
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Figure 39. Matrix plot with the changes in the percentage of N. obliqua-type through time in grey scale. The sites are arranged from north (top) to south (bottom). 
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8.3 Influence of ash deposition on the vegetation  

The presence of several tephra layers in the three cores documents the frequent volcanic activity in 

the region. For the last 11700 cal. yr BP the Vizcacha core includes 27 tephra layers; Bruja (3600 cal. 

yr BP) recorded 46 tephra layers; and Avutarda (2700 cal. yr BP) contains 22 tephra layers. 

Unfortunately, the tephra layers in the three cores could not be matched visually. Tephra layers > 

20 cm were found in the three cores and their deposition on the landscape around the lakes should 

have impacted the vegetation. 

Through a redundancy analysis, the influence of ash deposition on the vegetation was assessed and 

the results indicated no significant influence of ash on the vegetation. Nevertheless, the percentage 

of some herbaceous and shrub taxa along with Nothofagus dombeyi-type decrease slightly after the 

deposition of tephra > 20 cm, but this pattern seems to be random in the three cores analysed. 

Independently of the thickness of the tephra, the percentage of some taxa such as N. dombeyi, 

Poaceae, and Misodendrum did not show a decrease with the deposition of tephra > 30 cm. Likely, 

at the time of the tephra deposition other disturbance agents such a fire or climatic forces triggered 

the changes in vegetation, or they could have acted together. Therefore, it is difficult to associate 

solely with ash deposition the changes in plant communities.  

Certainly, the distance from the volcano and the tephra thickness are variables to take into account 

to assess the influence of this disturbance agent on the vegetation. For example, the vegetation 

closer to the Hudson, Chaitén, and Puyehue volcanoes (Chile) were severely affected at the time of 

the eruption, while areas hundreds of meters away were less damaged (González et al., 1996). The 

authors described a high mortality of Nothofagus antarctica and Nothofagus pumilio after the 

eruption of the Hudson volcano in 1991 due to lahar and massive ash deposition by river flooding 

affecting trees. Trees of Nothofagus pumilio located hundred kilometers away from the volcano 

were covered with up to 1 m of tephra but survived while the evergreen Nothofagus dombeyi 

showed foliage damage. The persistence of some Nothofagus species after volcanic disturbance 

might be attributed to certain biological adaptations, such as the formation of adventitious roots 

from the branches on those trees covered by a thick ash layer (Nothofagus antarctica, Veblen et al., 

1977) or by the development of a new root system at the height of the new soil surface (Nothofagus 

pumilio, Veblen et al., 1977).  

Apart from the biological adaptations that some Nothofagus species possess, the fact that the 

Nothofagus genus is a large pollen producer cannot be dismissed. Therefore, a possible local decline 
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in Nothofagus, might be compensated by the influx of extra-local Nothofagus pollen, suppressing 

an effective local decline in vegetation driven by volcanism (Henríquez et al., 2015). 

A decline in Poaceae percentage was observed, especially after the deposition of more than 20 cm 

of tephra in the lakes Bruja and Avutarda and after the deposition of more than 50 cm in the Lake 

Vizcacha, but like in the case of Nothofagus dombeyi-type the decline in the percentage of 

herbaceous taxa occurs even after the deposition of tephra of minor thicknesses. It is known that 

some understory species are capable of resprouting and cross the ash layers, such as the fern 

Lophosoria and the bamboo Chusquea (González et al., 2014). The latter is an important component 

of the understory present around Lake Bruja and Lake Vizcacha and probably the changes in the 

percentage of Poaceae pollen could be related to the dynamic of the bamboo Chusquea.  

In summary, vegetation burial by volcanic ash did not induce a statistically significant effect on the 

local vegetation nearby Lake Avutarda, Bruja, and Vizcacha. The presence of other disturbance 

agents, the timing of the eruption, climatic conditions, and biological adaptations of some species 

to burial, might explain the random changes in the percentage of some taxa observed in the three 

records. Nevertheless, the time resolution of the samples analysed (~70 yrs) might hide short-term 

vegetation responses to volcanic disturbance that are therefore unnoticeable in the pollen record. 

Modern observations regarding the effect of ash deposition on the vegetation in the region include 

canopy damage, a slow vegetative growth after disturbance, and a decline in flowering. 

8.4 Fire History 

The presence of macro charcoal particles (≥ 125µm) in Vizcacha and Bruja cores account for the local 

occurrence of fire during the full Holocene and Late Holocene respectively. The Early Holocene 

documented in Vizcacha indicate values < 2.5 pieces cm-2 yr-1, with a peak at 10200 cal. yr BP (5.5 

pieces cm-2 yr-1). In addition, the CHAR background is < 0.8 pieces cm-2 yr-1 between 11700 and 10100 

cal. yr BP with a shift to 1.1 pieces cm-2 yr-1 between 10100 and 9500 cal. yr BP. Records from west 

Andes indicate values around 2.5 pieces cm-2 yr-1 for the Early Holocene at 40°S (Jara and Moreno, 

2014) with some peaks of 5 pieces cm-2 yr-1. Whitlock et al. (2006) analysed mid-latitudes lakes in 

Argentina (41°‒42.5°S) indicating CHAR values < 2 pieces cm-2yr-1 for the Early Holocene. Based this 

comparison, moderate local fires occurred during the Early Holocene in Vizcacha. As it was inferred, 

likely the dry and warm conditions suggested for the Early Holocene contribute with enough fuel to 
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support surface fires. Nevertheless, in Vizcacha fires could have also affected shrubland inferred by 

the presence of wood charred particles during this period. 

The Mid-Holocene was characterized by a shift from low-moderate fires to fires of high magnitude. 

According to Whitlock et al. (2006) the magnitude is an indicator of the intensity or size of the fire. 

Based on this, severe fires occurred especially between 7000 and 5500 cal. yr BP. Increased fire 

activity at the beginning of the Mid-Holocene is recorded by Jara and Moreno (2014) for the time 

between 8000 and ~6700 cal. yr BP with a sharp decrease immediately after 6000 cal. yr BP. Similar 

to Vizcacha, the site El Trébol (Whitlock et al., 2006; 41°S, Argentina) documented high fire 

magnitudes between ~6500 and ~5500 cal. yr BP. Fire free intervals are longer between 7000 and 

5000 cal. yr BP (300 year fire-1), which in turn result in accumulation of biomass that given the proper 

climatic and ignition conditions, may result in severe fires. This pattern seems to explain the 

magnitudes of the fires detected during the Mid-Holocene in Vizcacha. Peaks in CHAR support this 

interpretation.  

As Bruja only documents the last 3600 cal. yr BP, Figure 39 shows a summary of the main fire 

component of both lakes for the same time period in order to analyse patterns on fire regimes. 

Between 3600 and ~2000 cal. yr BP, CHAR and CHAR background values are negligible in Bruja and 

only a small peak in fire magnitude was detected in Bruja at ~3400 cal. yr BP. On the other hand, for 

the same time period Vizcacha present low values in CHAR (< 0.8 pieces cm-2 yr-1) which suggest low 

biomass burning, therefore low severity fire. Nevertheless, as Vizcacha is located at higher elevation 

than Bruja, it cannot be dismissing the possibility that these low CHAR values in Vizcacha correspond 

partially to extra-local fire signal from fires occurring at dry slopes of the Lácar basin.  

The last 2000 years are characterized by a shift from low or negligible fire activity to moderate fires 

in Bruja, based on the substantial increase in CHAR values (2‒12 pieces cm-2yr-1) as well as in the 

increased fire frequency. Meanwhile, Vizcacha continue recording low or negligible fires (< 1 piece 

cm-2yr-1) and fire frequency decline (see Figure 40). Dissimilarities in fire signal between these two 

sites located only 4 km apart might be attributed to vegetational differences between the two sites. 

The vegetation around lake Bruja is more open, with patches of grass, and surrounded by shrubland 

of Nothofagus antarctica at lower slopes. In contrast, Lake Vizcacha is located between two 

mountains; it is surrounded by an old and closed Nothofagus forest, and next to a wetland 

dominated by Cyperaceae and Poaceae. Shrublands of Nothofagus antarctica have been defined as 

fire-prone (Veblen et al., 2008), while tall forest represents an obstacle for vertical continuity of the 
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fire due to coarser moister fuel (Mermoz et al., 2005). These facts could explain why Bruja is 

documenting severe fires in comparison with Vizcacha during the last 2000 years. 

 

Figure 40. Summary of the main fire components documented in Bruja and Vizcacha core for the last 3600 cal. yr BP. 

 

Finally, regarding the possible effect of fire on vegetation changes, the RDA results in Bruja indicated 

a nonsignificant influence of fire frequency and fire magnitude on the vegetation composition and 

the variables explained only 4.4 and 3.4 % of the variation. Nevertheless, since in this record 

contiguous pollen sampling was conducted only before and after major tephra layers it may be 

possible that the response of the vegetation to fire was not detected in other sections of the core. 

Despite this, it is possible to suggest that the local fire signal captured by Lake Bruja corresponds to 

surface- to moderate-fires, at low magnitude and possibly promoted by lightning. 

In Vizcacha, the fire return interval (FRI) showed a positive correlation with Austrocedrus chilensis 

(p=0.002). Low percentages of Austrocedrus were documented for the Early Holocene, except for 

the slight increase during the humid phase inferred between 10700 and 9700 cal. yr BP. Again, 

during the humid phase after 8500 cal. yr BP Austrocedrus reached the highest percentage (15%) 

documented for the entire period, concomitant with low fire frequency, negligible fire magnitude 

and longer-than-before FRI. Under this scenario, those more humid conditions reported at the 
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beginning of the Mid-Holocene could have prevented vegetation ignition and therefore, a decline 

in fire events, expressed as long fire-free intervals which may have benefited Austrocedrus.  

8.5 Conclusions 

To conclude, the three records analysed document a stable Nothofagus forest during the Late 

Holocene. The Vizcacha record shows a high percentage of Nothofagus dombeyi-type along the 

entire record with some fluctuations in its percentage. This might be related to changes in climatic 

conditions during the Holocene. Addittionally, variation in the percentage of shrubs and herbs may 

be related to changes in the forest canopy. On the other hand, Nothofagus obliqua-type appears in 

the Vizcacha record around 11200 cal. yr BP, but a major increase of this pollen type occurs during 

the Late Holocene suggesting the establishment of both, Nothofagus alpina and Nothofagus obliqua 

during this period. Based on the modern ecology and distribution of both species, likely Nothofagus 

alpina is contributing the most to this pollen type. Precipitation seasonality and dry summers might 

explain somehow the establishment of these deciduous southern beech species in the Late 

Holocene. On the possible influence of ash deposition on the vegetation composition, the analyses 

carried out indicate no statistically significant influence of this disturbance mechanism. 

Nevertheless, in some cases was observed a decrease in the percentage of certain taxa, especially 

herbaceous after the deposition of more than 10 cm of tephra. Regarding fires, they do not play an 

important role in the local vegetation recorded in Bruja during the Late Holocene. However, fires 

might have influenced the dynamics of Austrocedrus chilensis populations nearby lake Vizcacha, 

especially during the Mid-Holocene. Finally, anthropogenic disturbance seems to play an important 

role in the diminish in the percentage of Nothofagus-obliqua-type, especially during the last 200 

years, associated with the overexploitation of Nothofagus obliqua and Nothofagus alpina around 

the Lácar basin. However, after the creation of the Lanín National Park (1937), these activities were 

regulated, contributing to the maintenance of both deciduous trees within the basin. The decline in 

fire magnitude observed in Bruja and Vizcacha core during the last decades suggests effective fire 

suppression activities in the region. 
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Appendix 1  

Table of identified pollen, spores and NPP taxa 
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Appendix 1: Table of identified pollen, spores and NPP taxa 

Abbreviations for palynological records:  

LA: Lake Avutarda (Chapter 5)  

LB: Lake Bruja (Chapter 5)  

LV: Lake Vizcacha (Chapter 6) 

 

Pollen type Family Records 

Nothofagus dombeyi-type Nothofagaceae LA LB LV 

Nothofagus obliqua-type Nothofagaceae LA LB LV 

Saxegothaeae conspicua Podocarpaceae LA LB LV 

Podocarpus nubigenus Podocarpaceae LA LB LV 

Cupressaceae Cupressaceae LA LB LV 

Araucaria araucana Araucariaceae LB 

cf. Monimiaceae Monimiaceae LV 

Myrtaceae Myrtaceae LA LB LV 

Alnus acuminata Betulaceae LA 

Lomatia hirsuta Proteaceae LA LB LV 

Weinmannia trichosperma Cunoniaceae LA LB LV 

Eucryphia/Caldcluvia Cunoniaceae LA LB LV 

Lauraceae Lauraceae LV 

cf. Cryptocaria Lauraceae LV 

Drimys winteri Winteraceae LA LB LV 

Pseudopanax Araliaceae LV 

Lepidoceras Eremolepidaceae LV 

Hydrangea Hydrangeaceae LA LB LV 

Misodendrum Misodendraceae LA LB LV 

Loranthaceae Loranthaceae LV 

cf. Griselinia Griseliniaceae LV 

Azara Salicaceae LA LB LV 
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Maytenus Celastraceae LA LB LV 

Fuchsia Onagraceae LV 

Escallonia Escalloniaceae LB LV 

Embothrium coccineum Proteaceae LA LV 

Schinus patagonicus Anacardiaceae LA LB LV 

Philesia type Philesaceae LV 

Gaultheria Ericaceae LA LB LV 

Ribes Grossulariaceae LA LB LV 

Asteraceae subf. Asteroideae Asteraceae LA LB LV 

Asteraceae subf. Cichorioideae Asteraceae LA LB LV 

Mutisioideae undiff Asteraceae LA LB LV 

Mutisia Asteraceae LV 

Nassauvia Asteraceae LA LB LV 

Artemisia Asteraceae LV  

Senecio type Asteraceae LV 

cf. Ambrosia Asteraceae LV 

Perezia type Asteraceae LV 

Rosaceae Rosaceae LA LB LV 

Potentilla type Rosaceae LV 

Acaena Rosaceae LA LB LV 

Fragaria type Rosaceae LV 

Empetrum rubrum Ericaceae LA LB LV 

Discaria Rhamnaceae LA LB LV 

Rhamnaceae undiff Rhamnaceae LV 

Quinchamalium Schoepfiaceae LA LB LV 

Valeriana Valerianaceae LA LB LV 

Berberis Berberidaceae LA LB 

Viviania Vivianiaceae LA LB LV 

Wendtia Ledocarpaceae LV 
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Armeria marítima Plumbaginaceae LA LV 

cf. Aristotelia Elaeocarpaceae LV  

Ovidia andina Thymelaeaceae LV 

Ephedra Ephedraceae LA LB LV 

Gomphrena Amaranthaceae LV 

Alstroemeria Alstroemeriaceae LV 

Poaceae Poaceae LA LB LV 

Iridaceae Iridaceae LA LB LV 

Adesmia Fabaceae LV 

Ranunculus Ranunculaceae LA 

Malvaceae Malvaceae LV 

Chenopodiaceae Chenopodiaceae LA LB LV 

Phacelia Boraginaceae LA LB LV 

Rubiaceae Rubiaceae LA LB LV 

Faboideae undiff Fabaceae LA LB LV 

Primula Primulaceae LV 

Vicia Fabaceae LV 

Lathyrus Fabaceae LV 

Brassicaceae Brassicaceae LV 

Apiaceae Apiaceae LA LB LV 

Osmorhiza Apiaceae LV 

Eryngium type Apiaceae LV 

Mulinum Apiaceae LA LV 

Azorella Apiaceae LA LB LV 

Polygonaceae Polygonaceae LA LV 

Caryophyllaceae Caryophyllaceae LA LB LV 

Campanulaceae Campanulaceae LV 

Verbenaceae Verbenaceae LA LB LV 

Gunnera Gunneraceae LA LB LV 
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cf. Nertera Rubiaceae LV 

Litorella/Plantago Plantaginaceae LA LV 

Jaborosa type Solanaceae LV 

cf. Euphorbiaceae Euphorbiaceae LA LB LV 

Solanaceae Solanaceae LA LB LV 

cf. Convolvulaceae Convolvulaceae LA LV 

cf. Geraniaceae Geraniaceae LV 

cf. Gentianaceae Gentianaceae LV 

Rumex acetosella Polygonaceae LA LB LV 

Plantago lanceolata Plantaginaceae LA LB LV 

Pinus Pinaceae LA LB LV 

Sagittaria Alismataceae LV 

Myriophyllum Halogaraceae LV 

Isoëtes Isoëtaceae LA LB LV 

Triglochin Juncaginaceae LV 

Callitriche Plantaginaceae LV 

Potamogeton Potamogetonaceae LV 

Cyperaceae Cyperaceae LA LB LV 

Eleocharis type Cyperaceae LV 

Hydrocotyle Araliaceae LV 

Hymenophyllum Hymenophyllaceae LA LB LV 

Polypodium feuillei Polypodiaceae LA LB LV 

Lycopodium magellanicum Lycopodiaceae LV  

Blechnum Blechnaceae LV 

Polypodiaceae Polypodiaceae LA LB LV 

Lophosoria Dicksoniaceae LV  

Pteridophyte Trilete  LV 

Anthoceros/Phaoceros Anthocerotaceae LA 

Sparganium Sparganiaceae o 
Typhaceae sensu lato 

LA LB 
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NPP type Family Record 

Gelasinospora Sordariaceae LV 

Glomus Glomeraceae LV 

Microthyrium Microthyriaceae LV 

Conidiospore  LV 

cf. Podospora Lasiosphaeriaceae LV 

Cercophora Lasiosphaeriaceae LV 

cf. Delitschia Delitschiaceae LV 

Coniochaeta HdV 172 Coniochaetaceae LV 

Pithomyces Pleosporaceae LV 

Dictyosporium Dictyosporiaceae LV 

Byssiothecium  LV 

UG 1085  LV 

Rhabdocoela egg  LV 

Botryococcus Botryococcaceae LV 

Pediastrum Hydrodictyaceae LV 
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Appendix 2 

Pictures of some pollen and spores observed 

*reference collection picture 
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Appendix 3 

Full pollen diagrams Bruja, Avutarda, and Vizcacha 
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Full pollen diagram Bruja 
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Full pollen diagram Avutarda 
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Full pollen diagram Vizcacha 
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