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Abstract

In recent years, charge-density wave (CDW) systems have been studied extensively, as they pro-

vide a diverse testing field for basic concepts in electron-phonon coupling, electron correlation,

and structural phase transitions. In particular, time-resolved techniques have participated in that

process, disentangling the dynamics of the various degrees of freedoms in such complex materials.

As a recently developed pump-probe technique, ultrafast low-energy electron diffraction provides

complementary insight into the CDW-coupled structural dynamics at the surface. This cumulative

thesis covers the investigation of the incommensurate CDWs phases in layered tantalum disulfide,

employing a new miniaturized electron gun in the ULEED setup.

In a first study, the design and fabrication process of the miniaturized electron gun are described.

Finite element modeling supports the design process and provides helpful insight into the perfor-

mance of the device and estimates for voltages as well as pulse duration. Photolithography and

focused-ion-beam etching were used for building a contact support and the gun assembly, including

the nanotip emitter, lens electrodes and the shielding. The pulse duration and transverse beam

quality were extracted using the transient electric field effect at a copper grid and static diffraction

patterns, respectively.

In a second study, the structural dynamics in the incommensurate and nearly commensurate CDW

phase of tantalum disulfide were investigated employing 1 ps temporal resolution. The diffraction

intensities of main lattice spots and CDW satellites, as well as the diffuse background, indicate a

multi-step relaxation process. The comparison of different groups of diffraction spots allowed to

correct for the phonon-related reductions, yielding the CDW-associated periodic lattice distortion

(PLD). The persistent reduction of the PLD amplitude and fluence-dependent relaxation cycles

reveal a structural non-equilibrium situation exhibiting time constants exceeding typical phonon

equilibration times. This is discussed in the context of hot populations of CDW excitation modes.

Satellite spot broadening at the highest fluence points to the creation of CDW dislocation defects.
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1 | Introduction

In nature, most systems surrounding us, like the earth’s atmosphere or all forms of life, are dynamic

and therefore not in equilibrium. They exhibit energy and matter fluxes on a time and length scale

that are typical for the specific system. Many of these dynamic processes that affect our daily lives

take place within seconds, days, weeks or years. They can be grasped with our senses and we

have developed an intuitive understanding. Nevertheless, we know today that there are much faster

dynamics outside our perception, especially at the atomic level. In solids, non-equilibrium dynamics

typically occur so rapidly and in such a small volume that they are beyond our normal intuition. The

typical scales span over many orders of magnitude, ranging in time from atto- to nanoseconds and in

space from micrometers down to picometers. To access these kinds of processes, probes featuring

high spatio-temporal resolution are essential.

With the advent of femtosecond lasers, ultrafast light-triggered dynamics became possible,

and an entire new field opened up aiming to study dynamic processes in materials systems across

many disciplines, including physics, chemistry and biology. This branch of science seeks to study

not only the initial and the final state of the process, but also to observe the intermediate states

which allow insight into energy exchange, as well as reaction and transformation pathways. While

initially the probing of materials was mainly realized with ultrashort light pulses [1], later on

also ultrashort x-ray and electron pulses became available and widened the range of accessible

observables [2]. More specifically, these probes added a complementary approach and paved the

way to study non-equilibrium structural dynamics. Consequently, solids have been identified as the

host of a rich set of non-equilibrium phenomena, such as non-thermal melting [3–6], meta-stable

states [7, 8], characteristic phase excitations [9–12] or the dynamics in the creation and annihilation

of topological defects [13, 14]. Besides the scientific appeal, the discovery and skilful use of

new materials and material properties are of crucial importance and guarantee future technological

progress. A particularly interesting example is a new photo-induced non-equilibrium state that was

suggested to serve a novel kind of non-volatile all-electronic ultrafast cryo-memory device [7, 15].

In ultrafast science, a common experimental approach is to deposit a high portion of energy
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Chapter 1. Introduction

in a small sample volume by intense laser illumination and to follow the subsequent energy flow

cascading through the multiple degrees of freedom in the system by probing with a second pulse. In

order to study different kinds of dynamical properties, many ultrafast probes have been developed

in the past decades, such as ultrafast optical [16, 17] and photoemission spectroscopy [18, 19] for

accessing electronic relaxation, ultrafast implementations of x-ray [20–22] and electron diffraction

[5, 23, 24] for the analysis of structural dynamics, or time-resolved magneto-optical pump-probe

techniques for transient magnetic changes in the system [9].

The dimensionality of a materials system plays a crucial role as it controls the importance of

interaction effects, like electron correlations or the electron-phonon coupling. Consequently, highly

anisotropic structures in reduced dimensions often exhibit anomalous behavior [25], such as density

waves or superconductivity [26]. By nature, a material’s surface is two-dimensional and breaks the

translational symmetry of an ideal periodic crystal, giving rise to many surface-specific phenomena,

including altered band structures [19, 27], electronic surface states [28], surface reconstructions [29,

30] or topological states [31]. While this exemplifies the diversity of surface-specific effects, the

class of low-dimensional systems also includes interfaces, adsorbates, thin layers or self-assembled

nanostructures. Taken together, all of these systems constitute a vast playground for the study of

new intriguing phenomena in reduced dimensions.

For many decades, it has been known [32] that low-dimensional metals can be unstable to a

symmetry-lowering redistribution of charge, called charge-density wave (CDW), that is accompa-

nied by a rearrangement of electronic bands and a periodic lattice distortion [26, 33]. The associated

metal-insulator transition has a prominent role in solid state physics because it is not only relevant

for electronic devices, but also because it is driven by a complex interplay of different electronic and

structural degrees of freedom [34]. This interplay is responsible for phenomena such as strong renor-

malization in the phonon band structure (Kohn anomaly) as well as characteristic CDW fluctuation

modes in amplitude and phase [26]. In particular, phase fluctuations in displacive incommensurate

CDW systems have drawn much attention, as they were expected to ‘slide’ frictionless across the

structure, possibly promoting a superconducting state [33, 35]. In ultrafast measurements [36–

38], however, the role of phase fluctuations is still under debate, as they remain very elusive and

experimentally challenging to track.

Early studies on CDW materials include works on quasi-1D chain-like structures, such as the

Krogmann’s salt, transition-metal trichalcogenides (e.g., NbSe3, TaS3, SmTe3 [39]), transition metal

bronzes (A0.3MoO3 or K0.3MoO3 [40]) or the organic charge transfer compound TTF–TCNQ [41],

as well as quasi-2D materials, like the layered transition-metal dichalcogenides (TMDCs) (TaS2,

TiSe2) [42]. More recently, charge-density waves on semiconductor and metal surfaces emerged as
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a new class of sample systems including self-assembled atomic indium chains on Si(111) [43] or

Cu(001) [44], and bromine chains on Pt(110) [45]. In this work, we explore the structural dynamics

of the layered material tantalum disulfide (1T-TaS2), one of the most prominent quasi-2D CDW

systems that has a particularly rich phase diagram, including multiple CDW phases.

For the study of structural degrees of freedom at surfaces or thin layers, suitable diffraction

techniques have been developed for which the scattering processes mainly take place in the first or

first few layers. This mostly eliminates any parasitic signal from the bulk structure. Among these

techniques are grazing incidence x-ray, high-energy electron diffraction, and low-energy electron

diffraction (LEED). The latter stands out as one of the most frequently used structural probes in

surface science due to its high scattering efficiency, surface sensitivity, and its direct access to

the structure’s symmetry. Consequently, it would be highly beneficial to combine the strengths

of LEED with a time-resolved approach in order to gain access to ultrafast structural phenomena

in low-dimensional systems. In our group, we pursued this idea and recently developed ultrafast

low-energy electron diffraction (ULEED) in transmission [46] as well as in backscattering geometry

[14, 47–50].

The ULEED technique is based on a stroboscopic pump-probe approach in which a femtosecond

optical pulse excites the sample out of equilibrium, while a subsequent ultrashort electron pulse

probes the momentary state of the system. The entire ultrafast process can then be traced by

changing the delay between these two pulses, recording snapshots for each configuration. For

ultrafast electron techniques, a major challenge generally lies in reducing the electron pulse duration

as it determines the achievable temporal resolution. Low-energy electron pulses are particularly

susceptive to energetic broadening which complicates the realization of ultrashort pulses at the

sample plane. Therefore, great effort is exerted into the development of suitable electron sources

in order to generate electron pulses in the pico- and femtosecond regime. In the framework of

this project, a new miniaturized electron gun was developed (see also Fig. D.1) that strongly

enhanced the achievable temporal resolution by a factor of 50 (from about 50 ps to 1 ps) and allowed

ULEED to access a much broader range of ultrafast phenomena [14, 47, 49]. The first time-resolved

study using this new gun is published in Ref. [14] highlighting its superior capabilities over the

previous iteration, namely an equally high momentum resolution at significantly shorter electron

pulse durations, and revealing the important role of CDW dislocation defects in the phase-ordering

kinetics in the NC-IC transition of 1T-TaS2.

Outline The remainder of Chapter 1 covers the relevant background for the reprinted publications

in the subsequent chapters. In the beginning, a review on the theoretical framework of charge-density
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Chapter 1. Introduction

waves is given. The chapter elucidates the emergence of the Peierls state and presents the common

Peierls-Fröhlich model that in the one-dimensional case reproduces the most important features of

CDW systems, such as a renormalized phonon dispersion, a gapped electronic spectrum as well

as the charge-density modulation. The characteristic fluctuation modes of a CDW system and the

effects of large phase fluctuations are briefly discussed. In the succeeding section, the benefits of

low-energy electron scattering, the LEED technique itself and diffraction theory are introduced. The

latter includes the discussion of the scattering amplitude, the real and reciprocal lattice, the Ewald

construction in two dimensions and several detailed aspects affecting the diffracted signal. More

specifically, it is shown that diffraction is sensitive to the PLD associated with collective excitations,

defects, and thermal effects. The last section is a brief overview of the materials system 1T-TaS2
whose various CDW states, the electronic and the phonon band structure are briefly reviewed.

Since this chapter has to cover many aspects from different fields, the reader will be referred to the

appropriate literature for some details as indicated in the text.

Chapter 2 presents the development of a micron-scale ultrafast electron gun. The content of

this chapter is published as Ref. [47], "Nanotip-based photoelectron microgun for ultrafast LEED".

Here, we describe the fabrication process, present numerical studies supporting the gun performance,

and characterize the low-energy electron pulses, yielding a duration of 1.3 ps at an electron energy of

80 eV. We show first diffraction pictures of 1T-TaS2 in backscattering geometry using this electron

gun.

While Chapter 2 shows the technological advances of the electron gun design, Chapter 3 presents

a comprehensive study of the non-equilibrium dynamics in the NC- and IC phases of 1T-TaS2 using

ULEEDwith 1ps temporal resolutionwithout driving the phase transitions. The content of this paper

is published in Ref. [49], "Structural Dynamics of incommensurate Charge-Density Waves tracked

by Ultrafast Low-Energy Electron Diffraction". Here, we extract the transient mean amplitude of

the periodic lattice distortion which shows a surprisingly long-lived, non-thermal suppression. We

discuss this in the context of CDW fluctuation modes.

In Chapter 4, the key results of the two published works are summarized. Subsequently, we

discuss ways of further technological improvement and outline possible future experiments on

1T-TaS2 or related material systems that could complement and deepen our understanding of the

characteristic properties of CDW fluctuation modes.
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1.1. Theoretical Framework of Charge-Density Waves

1.1 Theoretical Framework of Charge-Density Waves

A charge-density wave (CDW) is a type of a broken-symmetry state that leads to long-range order

of the charge-density and the atomic distortion field. CDWs form preferably in low-dimensional

metals in the presence of electron-phonon interactions. Long before physical manifestations were

known, this idea was first promoted by Peierls [32] for 1d systems in which the metallic state is

unstable when coupled to phonons at low temperatures. Interestingly, Peierls himself was not aware

of the relevance for real physical systems, as he writes in his book [51]:

”This instability came to me as a complete surprise when I was tidying

material for my book [32], and it took me a considerable time to convince

myself that the argument was sound. It seemed of only academic significance,

however, since there are no strictly one-dimensional systems in nature (and if

there were, they would become disordered at any finite temperature). I therefore

did not think it worth publishing the argument, beyond a brief remark in the

book, [. . . ].”

In theory, long-range order does not emerge in strictly one- or two-dimensional systems with short-

range interaction at finite temperatures since fluctuations of the order parameter play a major role

[26, 52, 53]. Known as the Mermin-Wagner theorem [53], this statement, however, does not hold for

so-called quasi-one- or quasi-two-dimensional systems. The term ’quasi’ signifies that interactions

and couplings, such as Coulomb forces between neighboring chains, Van-der-Waals forces between

layers, or phonons are taken into account that ultimately introduce a 3d character to the material.

The original literature on the theory of charge-density waves, dating from the 1970s, treats

mostly one-dimensional systems. Since the treatment of 1d cases cover the important features, we

follow this line to understand the basic mechanism. Where possible or necessary, we widen the view

to also cover 2d or 3d systems.

1.1.1 Peierls Transition

Peierls was the first to promote that a monoatomic chain with the lattice constant a should be unstable

when a periodic lattice distortion is introduced. Following his argument [32], we assume that each

atom contributes one electron, leading to a half-filled band (Fig. 1.1 left). The band is half-filled

because there are two electrons with opposite spin states in each energy state.

In the original configuration of the 1d chain, the reciprocal lattice constant is given by a∗ = 2π/a.
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Chapter 1. Introduction

An equal displacement of every other atom introduces a new periodicity in the lattice that leads

to degenerate states at k = ±kF where kF denotes the Fermi wave vector. The removal of the

degeneracy via a weak interaction with the lattice leads to electronic gaps (see Fig. 1.1 right) and

induces a metal-insulator transition. The occupied states at ±kF are lowered while the empty states

are lifted in energy, resulting in a decrease of the total electronic energy contribution. The new

reciprocal lattice vector now reads adist∗ = π/2a = kF . This new ground state, the Peierls state,

forms if the total energy of the system, including the contribution of the static lattice distortion due

to Coulomb repulsion, is lower than in the initial state (see Section 1.1.4).

-kF

periodic
lattice

distortion

kF

k
0-π/2a π/2a-π/a π/a

E
-kF

EF

kF

k
0-π/2a π/2a-π/a π/a

E

a 2a

Figure 1.1: Original Peierls mechanism. A lattice distortion introduces a new periodicity and alters the the

electronic band structure that forms CDW gaps at the wave vectors k = ±kF .

In the literature, the nomenclature of this state sometimes leads to confusion, as the term charge-

density wave state emphasizes the static modulation of the charge density. It is important to note,

however, that a CDW is a coupled entity showing both a modulation of the charge and a periodic

lattice distortion (PLD). Although in principle, low-energy electrons can show a sensitivity to

valence electrons, the PLD of the CDW is probed by LEED in this work.

1.1.2 Static Electronic Susceptibility

For a deeper understanding of the emerging Peierls state, it is instructive to study the general

properties of the conduction electrons in a metal, based on the model of an electron gas. Specifically,

an important aspect is the response to an external potential, which changes dramatically for lower

dimensions [26].

The response of an electron gas to a weak, spatially dependent external potential φext(r) is

commonly studied in the context of linear response theory [26, 54]. The response function is

generally temperature-dependent. In this theory, the Fourier components of the induced charge
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1.1. Theoretical Framework of Charge-Density Waves

density are given by [26]

ρind(Q,T) = χ(Q,T)φ(Q). (1.1)

The function χ(Q,T) is the so-called static response or susceptibility of the system that defines how

the electron system responds to the total potential φ(Q). The total potential also includes the induced

potential that has to be taken into account in the self-consistent treatment [54]. The susceptibility

of the electron gas in d dimensions reads

χ(Q,T) =
∫

dk
2πd

f (εk ) − f (εk+Q)
εk − εk+Q

. (1.2)

Here, εk denotes the energy of a state with momentum k and f (εk ) is the Fermi function given by

f (εk,T) =
1

exp ((εk − µ)/kBT) + 1
(1.3)

with the chemical potential µ and the Boltzmann constant kB. For zero temperature, χ(Q,T) can

be analytically evaluated near the wavevector 2kF and, in the one- and two dimensional case, yield

[55–57]

χ1d (Q,T = 0) ∝ ln
(
Q + 2kF
Q − 2kF

)
(1.4)

χ2d (Q,T = 0) ∝


1 for Q < kF

1 −
√

1 − (2kF/Q)2 for Q > kF,
(1.5)

where n denotes the electron density and ~ the reduced Planck constant.

In comparison to the results of a higher-dimensional free electron gas (displayed in Fig. 1.2),

the 1d response function exhibits a drastically different behavior with a logarithmic divergence at

Q = 2kF . in Equation 1.2, the termswith a large contribution to χ are the ones obeying the condition

Q ≈ ±2kF and k ≈ ∓kF . More specifically, pairs of states, one empty and another occupied, are

connected by the same wavevector Q and differ negligibly in energy. This so-called Fermi surface

nesting leads to a diverging response function [58] and a spatially varying induced charge density

modulation according to equation 1.1 [59].

The qualitative difference of the response function for each dimensionality (Fig. 1.2b) stems

from differently shaped Fermi surface topologies (Fig. 1.2a). Hence, the efficiency of Fermi nesting

depends on the amount of Fermi surface that can be mapped onto itself by the same momentum

vector Q (see Fig. 1.2a). In 1d, the Fermi surface consists of two points resulting in a perfect nesting

and a divergence in χ, whereas for 2d and 3d, only a small fraction is connected, attenuating the

divergence in the response function. Yet, strongly anisotropic or ‘star-shaped’ Fermi surfaces (Fig.

1.2a bottom) can also yield parallel segments that allow for an instability to occur.
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Chapter 1. Introduction

1d

for temperature 
T=0

N
or

m
. r

es
po

ns
e 

fu
nc

tio
n 

χ(
Q

)
Nesting vector Q

1d

a b

2d

anisotropic
2d 2kF

-kF 0

0

0

Q

Q

Q

kF

k

0

1

2d

3d

kx

kx

ky
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Figure 1.2: Fermi surface nesting. (a) Fermi surfaces for a 1d, 2d and an anisotropic 2d case. Arrows

indicate nesting vectors that connect parallel elements on the Fermi surface. (b) Response function in 1d,

2d and 3d systems for zero temperature. Dimensionality affects the strength of the instability at Q = 2kF .

Adapted from Ref. [55].

Generally, the response function χ(Q,T) is temperature-dependent, as it is defined through the Fermi

distribution f (ε,T). Thus, a finite temperature smears the Fermi edge and attenuates the response

function χ(Q,T). In 1d, χ(2kF,T) is given by

χ(2kF,T) = −e2n(εF ) ln
(
1.14ε0
kBT

)
, (1.6)

where e is the electron charge, n(εF ) the electron density at the Fermi energy, ε0 is the dielectric

constant and kB is the Boltzmann constant. Hence, for Q → 2kF , the susceptibility diverges

logarithmically with decreasing temperature, leading to an induced charge density modulation

ρ(2kF ).

At this point, we have not explicitly specified the external potential that could drive the instability.

The Peierls picture suggests that the conduction electrons become unstable under a perturbation

caused by a periodic distortion of the lattice. This line of argument is covered in the following

sections.

1.1.3 Peierls-Fröhlich model

In the previous section, we have seen that the electron gas is unstable under the perturbation of

a periodic potential. Here, we introduce a microscopic model with an explicit electron-phonon
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1.1. Theoretical Framework of Charge-Density Waves

coupling that mimics the interaction with a lattice. Hence, this extended model also covers the

structural change of the lattice that is associated with the Peierls transition.

Electron-phonon coupling has been studied extensively, both experimentally and theoretically,

due to its ubiquity in condensed matter physics [60–62], in particular in the context of superconduc-

tivity. In the discussion of charge-density waves, a frequently encountered model is the so-called

Fröhlich Hamiltonian [33]:

H = H0 + Hel-ph. (1.7)

It consists of two parts, namely an unperturbed part H0 describing electron quasiparticles and lattice

vibrations (phonons), and the interaction Hamiltonian Hel-ph, considering a short-ranged electron-

phonon coupling. For the derivation, we refer to the Refs. [26, 55, 63]. In the formalism of second

quantization [64], the unperturbed part is given by

H0 =
∑
k

εkc+k ck +
∑
k

~ωQb+QbQ, (1.8)

where the first term describes the electron quasiparticle gas by a sum of creation and annihilation

operators ck and c+
k
, respectively, with dispersion εk and wave vector k . For simplicity, we omit the

spin and consider a single band. The second term covers the quantized harmonic vibrations of the

lattice with the corresponding bosonic ladder operators b+Q and bQ of a phonon mode with energy

ωQ and wave vector Q [65]. For convenience, only a single longitudinally polarized acoustic phonon

branch is considered. With the given notation, the interaction Hamiltonian for lowest-order coupling

(Born approximation and small displacements of atoms [66]) between electrons and phonons reads

Hel-ph =
∑
k ,Q

gk ,k′(b+−Q + bQ)c+k+Qck (1.9)

with gk ,k′ = i

√
N~

2MωQ
|k ′ − k |Vk−k′, (1.10)

where gk ,k′ is the electron-phonon coupling constant that describes the probability amplitude for

scattering an electronwithmomentum k to a statewithmomentum k ′ = k±Q under the simultaneous

absorption (emission) of a phonon with momentum Q (−Q). The quantities M , N and Vk−k′ are

the atomic mass, the atom density and the single atom potential in Fourier space, respectively.

The scattering can be visualized diagrammatically (see Fig. 1.3) and corresponds to the terms

b+
−Qck+Qck and bQc+

k+Q
ck in the interaction Hamiltonian. The lattice displacement, in terms of the

bosonic ladder operators, is given by

u(x) =
∑
Q

√
~

2N MωQ
(bQ + b+−Q)e

iQx . (1.11)

9
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Electron

Phonon

Phonon emission Phonon absorption

Figure 1.3: First order scattering processes between electrons and phonons in the Peierls-Fröhlich model.

Adapted from Ref. [67].

1.1.3.1 Kohn Anomaly

Based on the Fröhlich Hamiltonian, we investigate the impact of electron-phonon interaction on

the phonon dispersion relation. As an outcome, we will find a renormalized phonon dispersion at

Q = 2kF called Kohn anomaly. In three dimensions, the change in energy correction is relatively

small and can be calculated via second-order perturbation theory [54], whereas in quasi-one-

dimensional systems the correction to the energy can be significant resulting even in a vanishing

phonon energy (giant Kohn anomaly) and a structural phase transitionwith a frozen-inCDW-coupled

mode (see Fig. 1.4a). In the latter case, instead of low-order perturbation theory, a preferable

theoretical description is a mean-field theory that treats the phonon system in the presence of a mean

electronic density.

Following the derivation of the Kohn anomaly in Ref. [26], the essential idea is to determine

the temporal evolution for the periodic lattice distortion u(x) that leads to a simple equation of

an harmonic oscillator. This can be done by evaluating the relevant commutators of the phonon

operators bQ and b+
−Q, and leads to the following equation(

d
dt

)2
(bQ + b+Q) = −

(
ωQ +

2g2ωQ

M~
χ(Q,T)

)
(bQ + b+Q), (1.12)

where g is again the electron-phonon coupling taken to be constant and independent of k or Q. In

the derivation, the electron density nQ emerging in the coupling term was replaced by its expectation

value 〈nQ〉 (mean field) which is associated with the lattice deformation via the response function

χ. From equation 1.12, we can extract a renormalized phonon frequency

ω2
ren,Q = ω

2
Q +

2g2ωQ

M~
χ(Q,T). (1.13)

As discussed above, the one-dimensional electron gas is unstable against a perturbation with

wavevector Q = 2kF yielding a diverging susceptibility. Therefore, the phonon dispersion will

10



1.1. Theoretical Framework of Charge-Density Waves

be strongly lowered, or softened, in the vicinity of this wavevector where an optic mode starts

to condensate [68]. Inserting the temperature-dependent expression given in Equation 1.6, the

renormalized phonon frequency in 1d is then given by

ω2
ren,2kF = ω

2
2kF −

2g2n(εk )ω2kF
~

ln
(
1.14ε0
kBT

)
. (1.14)

Figure 1.4b shows the phonon dispersionω2
ren,2kF relation for various temperatures as determined by

equation 1.14. At the transition temperature Tc and in a one-dimensional system, the renormalized

phonon frequency vanishes due to a diverging response function χ, and the system undergoes a

structural phase transition, which is called Peierls transition. In higher dimensions shown in Fig.

1.4a, the dependence on χ(Q,T) is weaker and the phonon softening less prominent. For a weak

electron-phonon coupling g, the renormalized phonon frequency therefore remains finite, and no

phase transition occurs. Consequently, a Peierls state in quasi-2d materials is favored by a non-zero

electron-phonon coupling and an efficient Fermi nesting.
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Figure 1.4: Phonon softening. (a) Dimensionality dictates the strength of the Kohn anomaly. (b) Above Tc ,

phonon softening is an indicator for the Kohn anomaly. Adapted from Ref. [26]

Furthermore, below the transition temperature, zero-energy 2kF -phonons condensate in a macro-

scopic number, motivating the definition of an order parameter ∆ that is based on the expectation

value of the phonon operators. Borrowed from the theory of superfluidity [54], the expectation

values behave as complex numbers, vanish above Tc, and have a finite value below. The complex

order parameter ∆ is described by

∆ = |∆|eiϕ = g2kF

(
〈b2kF 〉 + 〈b

+
−2kF 〉

)
, (1.15)

where ∆ ∈ R denotes the amplitude and ϕ ∈ R the phase.
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Accordingly, the expectation value of the lattice displacement 〈u(x)〉 (PLD), an observable in

our experiment, takes the form

〈u(x)〉 =

√
~

2N MωQ

[(
〈b2kF 〉 + 〈b

+
−2kF 〉

)
ei2kF x + c.c

]
(1.16)

=

√
~

2N MωQ

2|∆|
g︸               ︷︷               ︸

∆u

cos(2kF x + ϕ). (1.17)

Finite values of 〈b±2kF 〉 lead to atom displacements away from their equilibrium positions and a

static PLD with a 2kF -periodicity. In other words, the presence of a PLD is a direct measure of

the CDW-order in the system. The complex nature of the order parameter will lead to characteristic

collective excitations in the system, shown below in the context of the Ginzburg-Landau theory.

1.1.3.2 Electronic Band Structure

We now switch our point of view and examine the electronic spectrum in the presence of a mean

distortion field. The Fröhlich Hamiltonian in this phonon mean-field approximation takes the form

H =
∑
k

εkc+ck +
∑
Q

~ω〈b+QbQ〉 +
∑
k ,Q

gQ〈b+−Q + bQ〉c+k+Qck . (1.18)

In the nearly-free electron approximation, the Hamiltonian can be diagonalized via a canonical

transformation [63] for the relevant 2kF -phonon modes. We omit the detailed derivation and state

the result for the electronic dispersion [26, 54]

Ek = εF + sign(k − kF )
√
~2v2

F (k − kF )2 + ∆2, (1.19)

where vF is the Fermi velocity. The dispersion Ek exhibits single-particle gaps at themodes k = ±kF
of the size 2|∆| transforming the prior metal state into an Peierls insulator if the condensate does

not contribute to the electric conductivity. Consequently, the amplitude of the order parameter can

be experimentally accessed, for example, via spectroscopic techniques measuring the band structure

of the material and identifying CDW gaps.

Moreover, the charge density ρ in the Peierls state can be determined utilizing the new ground

state wave functions yielding

ρ(x) = ρ0

[
1 +
~ω2kF
g2n(εF )

∆

~vF kF
cos(2kF x + ϕ)

]
, (1.20)

where ρ0 is the constant electron density in the metallic state. The periodic form of the charge

density motivates the name charge-density wave, already introduced above.

12



1.1. Theoretical Framework of Charge-Density Waves

Figure 1.5 shows the charge density modulation, the periodic lattice distortion and the electronic

dispersion relation, in the metallic and the Peierls state for a one-dimensional chain. For illustration

purposes, the band is half-filled which, however, represents a special case since the chain dimerizes

with a periodicity λPLD = π/kF = π/2a.

Generally, a system with two coexisting periodicities is classified as commensurate or incom-

mensurate corresponding to a rational or irrational ratio of periodicities. In this example, the two

periodicities are associated with the regular lattice of the chain and the distortion field. Hence, the

dimerized chain is commensurate while it is incommensurate for an irrational filling. In the latter

case, the total energy of the Peierls state is independent of the order parameter phase ϕ. For arbitrary

values of ϕ, the charge-density wave can adiabatically go from one energy state to another and has

the freedom to slide along the chain resulting in sliding modes of the CDW state. This notion orig-

inally stems from magnetic and compositional incommensurate structures [68] which represent a

different type of incommensurateness compared to the CDW-induced displacive character studied in

this work [69, 70]. The additional degree of freedom has important consequences for the collective

excitation spectrum as well as for the electronic transport behavior [71].
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Figure 1.5: CDW as an coupled object. (a) In the mean field of lattice modes, the electronic spectrum is

altered resulting in CDW gaps at ±kF . (b) The charge density (green) and atomic positions (black and grey

dots) are periodically modulated. Adapted from Ref. [26].
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1.1.4 Stability Criterion

A metal transforms to a Peierls insulator when its ground state lies energetically lower than the

metallic state. To this end, we compare the energy gain due to the opening of gaps in the band

structure with the energy cost necessary to distort the lattice [72]. The lattice strain energy for a

(mean) lattice distortion uQ with frequency ωQ and momentum Q is given by

∆Elat =
1
2

Mω2
Qu2

Q . (1.21)

The energy gained from the electron system is expressed by

∆Eband = −|vQ |
2χ(Q) (1.22)

with

vQ =
gQuQ

√
2MωQ

~
, (1.23)

where vQ is the effective potential, set up by the lattice distortion. The CDW ground state will be

stable if

∆Elat + ∆Eband < 0 (1.24)

for a specific phonon mode Q which leads to the criterion

4g2
Q

~ωQ
>

1
χ(Q)

. (1.25)

The Peierls state will be promoted in the vicinity of an electronic instability and for a large electron-

phonon coupling constant gQ.

A theoretical study by Johannes and Mazin [73] investigated the role of Fermi nesting in

NbSe2, TaSe2, and CeTe2 and, pointed out that only few CDW transitions are true analogues of a

Peierls instability since electronic instabilities are easily destroyed by even small deviations from

perfect nesting conditions. Consequently, the strength and the Q-dependence of the electron-phonon

coupling gQ have to be considered as an integral part in the formation of a CDW [25, 73], in particular

for quasi-2d systems in which CDW formation might not be rationalized purely by a simple Fermi

nesting mechanism [74].

The characteristics of a CDW system can be quite diverse depending on the strength of the

electron-phonon coupling. The weak coupling regime with small CDW gaps and displacements

(∆/εF � 1 and ∆u/a � 1) can be well understood in the above introduced Peierls-Fröhlich picture,

while the electronic gaps and atomic displacements are typically larger in the strong coupling limit,

and the spatial coherence length decreases due to larger fluctuations [75]. Additionally, nonlinear

terms in the electron–phonon interaction have a considerable contribution and tend to ’lock in’ the
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1.1. Theoretical Framework of Charge-Density Waves

CDWs to the lattice [25]. For both limits, the energy gain is of electronic origin. However, for weak

coupling, the gain is mostly around ±kF and is proportional to ∆2 ln∆, while for strong coupling

the gain is spread over the entire Brillouin zone and is proportional to ∆ [72]. Most real materials

are situated in between these limiting regimes.

A further degree of complexity is introduced when electron-electron correlation becomes more

important, usually for low temperatures. The above introduced Peierls-Fröhlich model (see Equation

1.10) neglects such an explicit electron-electron interaction term, but rather incorporates weak

electron correlation effects. It enters implicitly trough the dispersion εk of non-interacting quasi-

particles which are regarded as stationary solutions of band electrons in a perfect periodic lattice

including the renormalization from Coulomb interactions [65].

In an expanded approach, Chan and Heine derived a more general stability criterion, also

including the effects of Coulomb (UQ) and screened electron-electron exchange (VQ) interaction

[58, 72], yielding
4g2

Q

~ωQ
− 2UQ + VQ ≥

1
χ(Q)

(1.26)

with the necessary hierarchy for CDW formation
4g2

Q

~ωQ
> 2UQ > VQ > 0. (1.27)

In the absence of electron-phonon coupling (gQ = 0), this extended criterion shows that the Coulomb

interaction UQ outweighs the electron-electron exchange interaction (VQ) and hinders the formation

of a CDW. A beneficial situation, however, is realized for strong electron-phonon coupling gQ, large

non-interacting susceptibility χ(Q), weak Coulomb interaction UQ and small phonon energy ~ωQ

[72].

The material studied in this thesis, 1T-TaS2, is a good example of a system that adheres to the

principles outlined in the above discussion. The roles of the Fermi nesting mechanism and the

strength of electron-phonon coupling gQ are intimately connected to the emergence of various CDW

phases exhibiting incommensurate as well as commensurate periodicities. In the low-temperature

regime, electron-electron interactions (UQ and VQ) have an increasing influence and are believed

to give rise to an insulating Mott state. The exact nature of this state is still under debate as it is

challenging to access experimentally. Time-resolved techniques, in particular, could provide further

information and elucidate important aspects [76].

1.1.5 Fluctuation Effects

The previously discussed mean field treatment neglects fluctuations in the system which results

in a finite phase transition temperature for long range order. This, however, is an artefact of the
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chosen approach and does not hold for strictly one-dimensional systems with fluctuations. As

mentioned in the introduction of this chapter, this leads to the nomenclature of quasi-one and quasi-

two-dimensional systems. In this section, we discuss the role of fluctuations in a CDW system.

1.1.5.1 Collective Excitations

Among the various theoretical approaches, a common theoretical description of broken-symmetry

states and their excitations is the phenomenological Ginzburg-Landau theory that has been widely

and successfully used in describing structurally incommensurate phases [68, 77, 78]. Here, the

breaking of a symmetry is described by a coordinate-dependent order parameter ∆(x, t) that has

a finite non-zero value in the low-symmetry phase while vanishing in the high-symmetry-phase

[79–81]. This abstract object can be related to physically observable quantities, such as spontaneous

magnetization or crystal lattice distortion, like in the present case for CDWs [82]. The system’s

equilibrium state is then determined by the global minimum of the order-parameter-dependent

free-energy F(∆(x, t)) [83].

phase oscillations

amplitude
oscillations

high temperature
(T > Tc)

low temperature
(T < Tc)

Figure 1.6: Symmetry-breaking phase transition described by a free-energy potential. For a transition

described by a complex order parameter, the rotational symmetry yields a potential in the form of a champagne

bottle bottom.

For the charge-density wave of a one-dimensional chain, the free-energy expansion is given by [26]

F = F0 + n(εF )
∫

dx

[
a|∆|2 + b|∆|4 + c

����d∆dx

����2 + d
����d∆dt

����2] , (1.28)

where n(εF ) is the electron density at the Fermi energy, and a, b, c and d are known as the
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temperature-dependent Ginzburg-Landau parameters that can be derived frommicroscopic theories,

like the Peierls-Fröhlich model introduced above.

For a complex order parameter, the form of the free-energy functional below and above Tc is

shown in Fig. 1.6. In the high-symmetry phase, the amplitude of the order parameter fluctuates

around |∆| = 0, whereas below Tc, the system’s symmetry is spontaneously broken with fluctuations

around a finite value of |∆|, in a potential whose shape resembles the bottom of a champagne bottle.

The phase of the order parameter is continuous and can freely rotate in the minimum of the potential

well [84].

in Equation 1.28, the third and fourth term refer to spatial and temporal changes of the fluctuating

order parameter that can be assumed to have the form

∆(x, t) = [|∆| + δ(x, t)]ei(ϕ0+ϕ(x,t)). (1.29)

The quantities |∆| and ϕ0(= 0) are the spatially and temporally averaged amplitude and phase,

whereas δ(x, t) and ϕ(x, t) describe the fluctuations around the mean values. In this low-order

approximation, the long-wavelength excitations of the condensate consist of two independent modes,

the amplitude mode and the phase mode [26].

The concept of the spontaneous breakdown of a continuous symmetry has broad applicability in

many fields of physics [64, 85–88]. In quantum field theory, the amplitude and the phase excitations

are also referred to as the Higgs [89] and the massless Nambu-Goldstone mode [90], respectively,

named after its discoverers. For a rigorous mathematical derivation of symmetry breaking from a

field-theoretical point of view, we refer to Ref. [91] published by Strocchi. In his lecture notes,

he unfolds in detail the depths and subtleties of this mechanism, avoiding the ’standard folklore

explanations’.

The altered phonon dispersion of CDW-coupled modes in the vicinity of Q = 2kF +δq has been

calculated by Lee, Rice, and Anderson [92] within a perturbative approach, i.e., small fluctuations,

based on the microscopic Fröhlich Hamiltonian, and yields for zero temperature

ω2
pha(δq) =

m
m∗

v2
Fδq

2 ≡ v2
ϕδq

2 (1.30)

ω2
amp(δq) = λω

2
2kF +

4
3

m
m∗

v2
Fδq

2, (1.31)

where vϕ denotes the phason sound velocity, and the ratio of the effective mass m∗ and the band

mass m [92] is given by
m∗

m
= 1 +

4∆2

λω2
2kF

(1.32)
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with the dimensionless electron-phonon coupling constant

λ =
pg2

~ω2kF εF
(1.33)

and the number of conduction electrons per atom p. The ratio of the effective mass ratio m∗/m enters

the dispersion expressions since the CDW-coupled lattice modes respond slower than that of the

electronic system [92]. A similar expression for the effective mass m∗ was derived by Fröhlich [33].
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Figure 1.7: Schematic illustration of the dispersion relation for a material undergoing an incommensurate

displacive phase transformation. Adapted from [93] (a) A phonon branch softens above Tc at Q = 2kF , and

splits up into a gapless phason branch and an upper amplitudon branch below Tc . (b) Sketch of backfolded

dispersion of CDWmodes. Adapted from Ref. [55, 94, 95]. (c) Illustration of (sliding) phason and amplitude

modes in a 1d atomic chain.
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Figure 1.8: Sketch of the dispersion relation for an incommensurate structure featuring phase (dashed line)

and amplitude (solid line) fluctuation modes. (a) A free-floating phason exhibits linear dispersion whereas

(b) pinning of the phase by commensuration lock-in terms or impurities result in a gap of the phase excitation

spectrum. Adapted from Ref. [96].

As shown in Figure 1.7, CDW-coupled modes emerge as a result of a soft lattice mode (see Fig. 1.7a)

and introduce a new 2kF -periodicity leading to an altered Brillouin zone with backfolded branches
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of these new vibrational modes [84]. In terms of the order parameter introduced in Equation 1.15,

the upper branch (see Fig. 1.7b) corresponds to a spatio-temporal modulation of the amplitude of

the CDW, more specifically, the totally symmetric soft mode [68] or amplitudon. The lower branch,

on the other hand, corresponds to the phase fluctuations of the order parameter, also called phasons

[92, 94]. The phason is expected to be optically active because of a non-vanishing dipole moment

[92], whereas the amplitude mode is a Raman-active mode [26].

Figure 1.9: Frequencies (a) and damping (b) of the soft phonon (T > Tc = 150 K), phase and amplitude

mode (T < Tc) in BCPS obtained from neutron scattering measurements [84]. This insulating molecular

compound undergoes a second order structural, displacive IC phase transition at Tc . One main characteristic

is the underdamped soft mode in the high temperature phase that splits up into a amplitude and phase mode

below Tc . From Refs. [84, 97]

While amplitudons as an optical mode always exhibit a finite energy gap, in an incommensurate

structure, phasons are soft modes with vanishing excitation energy at δq = 0. The low-energy

excited phasons around this point can be thought of as a homogenous change of the phase or a

sliding motion of the CDW which corresponds to the already introduced sliding mode (see Fig.

1.7c). For this reason, such modes were expected to carry current in a resistance-free manner [33,

92]. However, the sliding motion of the CDW is usually hindered by commensurate locking to

the atomic lattice or pinning due to inhomogeneities [71, 96] removing the translational invariance

in their presence. Consequently, the forming CDW does not break a continuous symmetry and
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completely softened modes should not emergence. Instead, phason modes exhibit an electronic gap

with a finite excitation energy (see Fig. 1.8) [54].

As a result, for example shown by conductivity and neutron scattering measurements on quasi-

one-dimensional systems [71, 74, 98], the oscillator strength of the CDW sliding mode is shifted

from zero to finite frequency [84, 99] and is referred to as the pinned phase mode [96]. It is

interpreted as a ’bound’ collective mode arising from the presence of polarisable impurities [71].

Nonlinear transport properties were reported by Sinchenko [100] for layered DyTe3, demonstrating

the sliding in a quasi-2d compound with striped CDW order [71, 101] while in materials systems

with 2d CDW order, 2H-TaSe2 and 1T-TaS2, such a current–voltage nonlinearity was not observed,

possibly due to efficient commensurability or impurity pinning [102].
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Figure 1.10: Neutron scattering experiment to retrieve phonon dispersion of the CDW material Ni2MnGa.

(a) Intensity contours determined from a series of constant-Q scans measured with PUMA at FRM-II reactor.

Black areas were outside the scan limits. The lines are guides through the intensity maxima. (b) Low-energy

phonon dispersions measured along the transverse [110] direction. Measurements were made with FLEX at

BENSC at Hahn Meitner Institute reactor. Adapted from Ref. [103] by Shapiro et al., licensed under CC BY

3.0.

Moreover, in many incommensurate structures, including non-CDW materials, it has been shown

by means of inelastic neutron scattering that phason excitations exhibit a finite life-time due to

dissipative coupling [80]. In the notation of various pinning models, a damping factor (Γϕ) is

introduced that is defined through a phenomenological CDW viscosity [96]. Depending on the

magnitude of this damping factor, the phason mode is diffusive instead of propagating [70, 104,

105]. The damping of phase excitations strongly depends on the material system and has been

shown to be overdamped for, e.g., potassium selenate (K2SeO4) [106] and betaine calcium chloride

dihydrate [107], but underdamped for thorium tetrabromide (ThBr4) [106], biphenyl [106, 108] and

BCPS [84] (see Fig. 1.9). From experimental observations, values of the gap size and the damping
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constant of the collective excitation modes were found to be in a similar order of magnitude of

0.1 meV [84, 109, 110].

CDW excitations have been well investigated in the past with many steady-state techniques [68,

110–114]. Since the damping of phasons and amplitudons is of similar strength and mostly Q-

independent, phasons in the vicinity of Q = 2kF are inevitably strongly damped and therefore very

challenging to study. Among the experimental approaches, neutron scattering stood out as being

well suited to map large parts of the material’s vibrational spectrum providing first unambiguous

evidence for phase excitations in incommensurate structures [68]. Exemplary, Figure 1.10 shows

the vibrational spectrum of the 3d metallic CDW compound Ni2MnGa featuring normal phonon

modes and a well-defined phason branch [103].

1.1.5.2 Domains

Small CDW fluctuations led to the emergence of collective excitations, namely amplitudons or

phasons, whereas large spatio-temporal fluctuations of the order parameter give rise to additional

types of excitations, such as domain structures or CDW dislocation defects [78, 115]. Here, we

briefly sketch two scenarios in which these special objects naturally arise [54].

Figure 1.11: The dimerized lattice (dots) exhibits two energetically equivalent deformation configurations in

the CDW state (green lines). Adapted from Ref. [54].

First, we consider once more a half-filled 1d chain of atoms that commensurably dimerizes due to

a 2kF instability discussed above. The CDW phase is commensurate to the lattice resulting in a

two-fold (ϕ = 0 or ϕ = π) degenerate ground state configuration for the lattice deformation (see

Fig. 1.11). In the more general case of a m-fold commensurability, the ground state exhibits m

energetically equal configurations determined by the phase-dependent commensurability energy

Ecomm ∼ 1 − cos(mϕ). (1.34)

Large phase fluctuations between the two ground states, defined by non-zero integer multiples of

2π/m , lead to different lattice deformations in these intervals. At the meeting points, a characteristic

border will form compensating for the phase difference by either straining or compressing the lattice
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(see Fig. 1.12). Determined by the outer phase boundary condition of the system, the domain

wall is topologically protected and cannot decay, leading to emerging domains of different phase.

In theory, this is reflected by a sine-Gordon-type equation that incorporates the commensurability

energy (equation 1.34) and yields solitary wave solutions that are interpreted as edges with an

invariant shape [54].

CDW

atoms

CDW

atoms

Phase domain 1 Phase domain 2Domain wall

Figure 1.12: Phase compartmentalization. Where two oppositely dimerized domains meet, the density wave

is either stretched (top) or compressed (bottom), creating a domain wall with different periodicity. Adapted

from Refs. [54] and [56].
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Figure 1.13: Phase jumps in the close to commensurate case. The CDW phase locally registers with the

atomic lattice creating commensurate patches that are separated by discommensurations. Adapted from

Ref. [116].

Aparticularly interesting case occurs when the lattice experiences a distortion by an incommensurate

CDW, whose wavelength λCDW is close to a multiple of the atomic lattice constant a. For the lattice,

it may now be energetically favorable to locally increase commensurability within finite regions by
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1.1. Theoretical Framework of Charge-Density Waves

pinning the phase to the atomic lattice. As a result, the emerging domains of constant (or slowly

changing) phase are separated by domain walls that correspond to a fast spatial variation of the

phase, also known as discommensurations [78, 116] (see Fig. 1.13). This phenomenon is not unique

to CDW systems and was also studied theoretically very early in connection with adsorbates on

substrates by Frenkel, Kontorowa and van Merwe, amongst others [116–122]. The local increase in

commensurability also affects the spectrum of collective excitations and introduces a finite-energy

phason (see Fig. 1.8).

As a matter of fact, the described scenario of patch formation is realized in the nearly com-

mensurate CDW phase of 1T-TaS2 and can be experimentally observed at room temperature (see

Sec. 1.3).

1.1.5.3 CDW Dislocation Defects

A genuinely incommensurate CDW phase interacts very weakly with the underlying atomic lattice

and is often considered to be free-floating [80]. Any phase jumps of the type shown in Fig. 1.12

that are present in the system, for example, externally introduced by intense laser irradiation, will

decay over time, restoring the slowly-varying phase dependency. Coming to the second scenario,

this statement does not necessarily hold going to two-dimensional incommensurate CDW systems

that usually exhibit a specific kind of crystalline order.

More specifically, McMillan [77] constructed the hexagonal CDW lattice of transition-metal

dichalcogenides by superimposing complex order parameters in the form of three phase-locked

complex plane waves

ψj(r) = φ j exp(iQ j r), for j = 1,2,3 , (1.35)

where φ j are complex amplitudes andQ j thewave vectors, rotated by an angle of 120◦ relative to each

other. Based on a Landau free-energy of the incommensurate phase, he showed that dislocation-

type defects may emerge in such CDW lattices, much like vortices in superfluidic helium and

superconductors [77]. In the CDW, a single defect (see Fig. 1.14a and b; note two CDW dislocation

defects are shown) consists in this picture of two pitchfork dislocations in two of the three complex

order parameters where the amplitude vanishes in the center of the dislocation (Fig. 1.14c) and

the phase adds to ±2π on a closed contour around the phase singularity (Fig. 1.14d). In the CDW

lattice, this translates to two additionally inserted rows (Fig. 1.14b). CDW dislocation defects, each

characterized by a Burgers vector b, emerge as pairs that can move, annihilate or recombine to a

different type.

Generally, an incommensurate phase in two dimensions presents a particular interesting case for

the study of correlation effects [80]. As mentioned above, the non-existence of long-range order in
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Figure 1.14: Dislocation-type topological defects. (a) Real part of the summed complex order parameters

showing a hexagonal CDW dot-lattice (blue and yellow) and a CDW dislocation defect pair. Atoms are shown

as black dots. (b) The individual defects are characterized by a Burgers vector (red arrows) or two additionally

inserted CDW lattice rows (dashed lines). (c) The real of part of a single contribution to the triple CDW

(ψ1) exhibits two pitchfork dislocations, one for each individual CDW dislocation defect. (d) The phase of

ψ1 shows two singularities that can be characterized by the value of the line integral around the defect site,

yielding ±2π. From Ref. [56].

two dimensions also prevents the formation of an incommensurate order over a long distance. The

correlation function of the ’floating’ I phase exhibits therefore an additional term that introduces an

algebraic decay which is believed to be unique to two-dimensional systems [116]. Additionally, the

system can undergo a phase transition into a so-called fluid phase that is connected to the unbinding

of dislocations or vortices. The theory of such a microscopic melting process in two dimensions

was first put forward by Kosterlitz, Thouless, Halperin and Young [80]. The correlation functions

of the order parameter in the various phases take the following forms at long distances [116]:

incommensurate: 〈∆(0)∆(r)〉 ∼ cos(Q · r + ϕ) (1.36)

floating I: 〈∆(0)∆(r)〉 ∼ r−η cos(Q · r + ϕ) (1.37)

fluid: 〈∆(0)∆(r)〉 ∼ e−κr cos(Q · r) (1.38)

commensurate: 〈∆(0)∆(r)〉 ∼ cos(Q0 · r + ϕ), Q0 commensurate, locked, (1.39)

where η and κ are constants. In a recent work, we showed that the phase-ordering kinetics of the
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1.2. Aspects of Low-energy electron diffraction

laser-induced NC-IC phase transition in 1T-TaS2 is governed by the creation and annihilation of

CDW dislocation defects [14].

1.2 Aspects of Low-energy electron diffraction

The chemical and physical properties of matter are strongly influenced by its specific structural

order. It is therefore highly desirable to determine the precise relative positions of an ensemble

of atoms. This goal can be achieved with different types of probes, often constituted of directed

particle beams (see Fig. 1.15).
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Figure 1.15: Sketch of different types of probes to investigate surfaces. Adapted from Ref. [123].

A particularly successful way of structure determination of periodic crystalline surfaces makes use

of diffracting low-energy electrons. This technique is known as low-energy electron diffraction

(LEED). Generally, diffraction is a very powerful tool when it comes to ordered structures because

suitable interference conditions allow for clear diffraction reflexes and an unaltered insight into the

structure. Moreover, small transient deviations from perfect order heavily influence the interference

condition and strongly alter the observable signals.

Furthermore, low-energy electrons interact strongly with matter, hence, scatter efficiently and do

not penetrate far into the sample in comparison to other probes like x-ray radiation or high-energy

electrons. While a large portion of backscattered electrons lose energy through various inelastic

scattering channels (see Fig. 1.16a), a few percent are elastically diffracted and contain information

about the average crystal atom positions. Inelastically scattered electrons are recorded as diffuse

background and offer a rich insight to excited lattice modes. The exact penetration depth, mainly

determined by the inelastic mean free path, weakly depends on the specific material investigated

and follows a universal, nearly constant trend in the range of tens up to few hundreds electron volts

(see Fig. 1.16b). In this range, electrons penetrate several Ångström (Å = 10−10 m) into the sample,

which corresponds to a probing volume of few atomic layers. In order to map a typical crystalline
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Figure 1.16: Electron scattering. (a) Schematic illustration of the energy distribution of backscattered

electrons. A large fraction of the electrons loses energy by various scattering processes. A few percent are

scattered elastically at an energy of Ep (primary electrons). Adapted from [123, 124]. (b) Inelastic mean

free path as a function of the kinetic electron energy. The curve (solid) shows the universal trend through the

individual measurements on different surface elements (light blue dots). Adapted from Refs. [123, 125, 126].

structure using a diffraction technique, the wavelength of the incident beam should be smaller or

equal to the lattice constant [127]. For low-energy electrons having an energy E , the de Broglie

wavelength is given by

λ =

√
150.4
E[eV]

Å, (1.40)

where an electron volt is defined by 1 eV = 1.602 · 10−19 J. The wavelength of typical energies

ranging from 30 up to 500 eV is comparable to common lattice spacings of solids. The low

penetration depth, the high scattering efficiency and the suitable wavelength range turn LEED into
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1.2. Aspects of Low-energy electron diffraction

an ideal probe to investigate the structure of surfaces [14], thin films [46] or adsorbed molecules

[50].

1.2.1 Experimental LEED Setup
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Figure 1.17: Experimental setup of LEED. (a) Millimeter-sized laser-driven electron gun. Inset: tungsten

tip, view through the hole for laser illumination. Reprinted from Ref. [14]. (b) Micrometer-sized electron

gun, prepared using nanofabrication techniques. From [14]. (c) Schematic of low-energy electron scattering

in backreflection (see also Fig. D.1). (d) Photograph of ULEED measurement chamber featuring essential

parts of a LEED setup.

In this section, the main experimental components of our LEED setup are briefly described. For

surface diffraction experiments, it is important to prepare clean samples and avoid that impurities

are adsorbed on the surface. A preparation process and measurement inside ultra-high vacuum

(UHV) conditions (pressure 10−10 − 10−11 mbar) is therefore advantageous since the amount of

remaining residual gas in the vacuum chamber is strongly reduced. In order to obtain a stable UHV

environment, an array of different types of vacuum pumps (in our case, a rotary vane pump, a

turbomolecular pump and a titanium sublimation pump, see Fig. 1.17d) is installed, and a baking

procedure of the chamber is carried out.

For the measurements, the sample is mounted on a manipulator that allows for sample translation

and rotation in multiple axis. An optimized crystal orientation during the experiment can remove

asymmetries in the diffraction pattern and simplify the analysis of the measured data.

Diffracted electrons are typically detected by a fluorescent screen for position-sensitive mea-

surements (see Fig. 1.17c). The detector is recorded with a suitable camera system that provides

experimental data in the form of diffraction images (see also Sec. E.1). The backscattering angles
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of the diffracted beams depend on the lattice constant of the sample and the specific electron energy,

but typically lie in the range of several degrees, which is much larger compared to high-energy

electron diffraction experiments. For low beam currents, as in our experiment, it is necessary to

enhance the diffracted electron signal with a multi-channel plate (MCP) before detecting it on the

fluorescent screen. Most commonly, the diffracted signal passes a retarding field energy analyzer

capable of filtering scattered electrons or removing a constant diffuse background.

Generally, the achievable quality of scattering experiments depends strongly on the performance

of the electron source. Commercial LEED guns are usually based on heated (tungsten) filaments

providing beam currents of 10−8 − 10−4 A in an energy range of 30-1000 eV and electron optics

allowing for electron foci of approximately 1 mm [125]. A further technical advantage of LEED

for the manipulation of electron trajectories is the rather simple handling of low electric voltages

compared to diffraction techniques at electron energies of several tens of keV.

In the context of this thesis, the development of new electron gun designs (see Fig. 1.17a,b and

D.1) was pursued for the purpose of a time-resolved realization of LEED, namely ULEED. For the

details of the fabrication process of the micro-meter sized gun, we refer to Chapter 2 (or Ref. [47]),

and for the concept of ULEED to Chapter 3 (or Refs. [14, 46, 56]). The first time-resolved results

using the micro-meter sized gun are published in Ref. [14] by Vogelgesang et al. on the NC-IC

transition of 1T-TaS2.

1.2.2 Instrumental Response Function

In this section, we shortly discuss the effect of the instrumentation on the quality of the diffraction

pattern. This will lead to the so-called transfer width, which is a measure for the performance of a

source used in a diffraction setup.

In an ideal scenario, diffraction with a perfect instrument on a flawlessly periodic, rigid and

infinite crystal would result in infinitely sharp observed LEED reflexes. However in real experimental

conditions, diffraction peaks exhibit a finite width due to instrumental distortions and surface

imperfections. Some details of the impact of imperfections are discussed in the chapter on scattering

theory 1.2.3.

In order to quantify the effect of the experimental setup, the so-called instrumental response

function T(s) is introduced. This function captures the broadening of the ideal intensity distribution

I(s) that would be measured with a perfect instrument. The major contributions to the broadening

are a finite energy width of the incident electron beam, the electron beam diameter, the (virtual)

electron source size and the aperture width of the detector [125]. Mathematically, the observed
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1.2. Aspects of Low-energy electron diffraction

intensity J(s) is expressed via the convolution

J(s) = T(s) ∗ I(s) =
∫

T(s) · I(s − s′)ds′, (1.41)

where s is the scattering vector quantifying the momentum transfer. The Fourier transform of the

observed quantity J(s) is given by

F {J(s)} = F {T(s) ∗ I(s)} = F {T(s)} · F {I(s)} = t(r)Φ(r), (1.42)

where t(r) denotes the transfer function and Φ(r) the autocorrelation or pair correlation function

[123]. Φ(r) provides structural information and is a measure for the degree of ordering for a given

vector r . The following chapter shows that the diffraction intensity I(s) can be obtained from the

exact distribution of the atoms. It should be noted, however, that the reverse is not readily achievable

due to the lack of the scattering phases. The autocorrelation function is modulated by the transfer

function t(r) whose full-width at half-maximum (FWHM) is called transfer width. The transfer

width can be regarded as an effective coherence length of the entire instrumentation, setting an

upper limit for the size of the observable spatial period in the sample. In particular, the correlation

between two scatterers separated by r is undetectable if the value of t(r) vanishes. Typical values

of the transfer width for commercial LEED setups lie in the range of 20 − 120 Å [125].

The electron guns developed during this thesis (see Fig. 1.17a,b) exceed these typical values

and exhibit a transfer width of 200 − 250 Å [14, 47]. The performance enhancement is due to

the significant reduction of the virtual electron source size, high electron monochromaticity and a

reduced electron beamdiameter (between 10−100 µm), achieved by using a nanometric photoemitter

[46, 128] and a miniaturized gun design (see Chapter 2).

1.2.3 Scattering Theory

Generally, the scattering process of low-energy electrons inside a crystal consists of multiple con-

secutive scattering events due to the strong interaction with the atomic potentials. In a detailed

theory, all of these scattering events must be accounted for in order to fully describe every feature of

diffraction intensity profiles [125]. Such dynamical LEED calculations were employed in our group

in order to fully resolve the surface structure of the C-phase of 1T-TaS2 [129].

For this introductory section, a simpler theory is used since multiple scattering generally has

little qualitative effect on the LEED pattern and, for example, does not change the diffraction spot

positions [125]. In this theory, it is assumed that the electron interaction is sufficiently weak such

that multiple scattering can be neglected. As a result, the diffraction problem is reduced to a single-

scattering theory, also known as a kinematic theory. For example, in x-ray and high-energy electron
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diffraction, this weak-interaction approach has real practical value in analyzing diffraction patterns

and is successfully applied [125].

In general, electron beams behave as waves with a characteristic wavelength and wave vector.

A simple example of scattering yielding structural information is illustrated in Figure 1.18. An

incoming planewave diffracts on a 1d chain of equally spaced atoms and ismodulated by constructive

and destructive interferences due to the path difference d. The condition for constructive interference,

also known as Bragg condition, is fulfilled if the difference in path length between two neighboring

scatterers is a multiple of the wavelength

nλ = a sin(θ), (1.43)

where n is an integer number and a the lattice constant. This elastic type of scattering gives rise to

characteristic reflexes, the so-called Bragg peaks.

Sample
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kout
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λ
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d = a sin(θ)

a b

θ

Figure 1.18: Sketch of a simple scattering event. (a) An incoming plane wave with a wavevector kin diffracts

at a sample resulting in a backpropagating wave with wave vector kout. The scattering vector s is the difference

of kin and kout. (b) In Bragg scattering, constructive or destructive interference is controlled by the path

difference d between two neighboring scatterers. Adapted from Ref. [130].

Bragg scattering always emerges when an electron beam hits a inhomogeneous medium, in par-

ticular for periodic structures like crystals. A crystalline lattice is an infinite periodic array of

indistinguishable sites in up to three dimensions. This Bravais lattice is spanned by a position vector

R, given by

R = n1a1 + n2a2 + n3a3, (1.44)

where n1, n2 and n3 denote integer numbers and a1, a2 and a3 are linearly independent lattice

vectors. In order to properly describe all types of crystals, a lattice site can be decorated by several

atoms, called basis atoms. With the sum of lattice and basis vector R + ti all atoms inside a crystal

can be reached. The vector t j alone gives all atoms in a unit cell. The lattice can be considered to

define volumes, the unit cells, which together fill the space and form the crystal.
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1.2. Aspects of Low-energy electron diffraction

In a more elaborate approach, the scattering of an incoming plane electron wave from a single

atom potential is described via the Schrödinger equation. In this picture, the amplitude of the

outgoing spherical wave is determined via the Fourier transform of the electric potential [131] and

is given by

A(s) =
1

4π

∫
U(r ′)e−is ·r

′

dr ′. (1.45)

For a crystal, the total potential is the sum of an array of atomic potentials

U(r) =
∑
j

Ua
j (r − r j) (1.46)

leading to a scattering amplitude

A(s) =
1

4π

∫
U(r ′)e−is ·r

′

dr ′ =
1

4π

∑
j

e−is ·r j
∫

Ua
j (r)e

−is ·rdr︸                ︷︷                ︸
fj (s)

, (1.47)

where fj(s) is the atomic form factor accounting for the specific shape of the atomic potential. In

the far field, the situation simplifies, as the scattered spherical wave resembles a plane wave. In

other words, the resulting signal will be the Fourier transform of the crystal structure giving rise to

strong Bragg reflexes if the exponent s · r j is a multiple of 2π. This motivates the definition of a

reciprocal vector Ghkl

Ghkl = ha∗1 + ka∗2 + la∗3, (1.48)

where h,k and l are integer numbers and a∗1, a
∗
2 and a∗3 are reciprocal lattice vectors spanning the

space of the Fourier transformed lattice, defined by

a∗i · a j = 2πδi j for i, j = 1,2,3. (1.49)

In a crystal with a monoatomic basis, the condition s · r j is fulfilled if the scattering vector s equals

a reciprocal vector Ghkl

kout − kin = s = Ghkl, (1.50)

where kin and kout denote the incoming and outgoing wave vector, respectively. Equation 1.50 is

often referred to as the Laue condition, which can be shown to be equivalent to the Bragg condition

(Equation 1.43). The measured intensity of the outgoing plane wave for identical scatterers is given

by the interference function

I(s) = |A(s)|2 = | f (s)|2
∑
i, j

eis ·(ri−r j ). (1.51)
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For a crystal with a polyatomic basis, the diffracted amplitude takes the form

A(s) =
∑
m,n

fmeis ·(Rn+tm) (1.52)

=
∑
m

fmeis ·tm︸        ︷︷        ︸
F(s)

∑
n

eis ·Rn︸     ︷︷     ︸
G(s)

, (1.53)

where Rn denotes the nth unit cell and fm the atomic scattering factor associated with the strength of

themth scatterer within the set of basis atoms {tm}. The first sum is also known as the structure factor

F(s) which determines the magnitude of a Bragg peak, whereas the second term G(s) is associated

with the appearance of Bragg reflexes in specific directions according to Laue’s condition.

1.2.3.1 Surface Lattice

In LEED, only the top few layers contribute to the diffraction intensity. It is therefore often sufficient

to consider a two-dimensional Bravais lattice spanned by

R = n1a1 + n2a2, (1.54)

where n1 and n2 are integers and the unit cell is constructed by a1 and a2. Accordingly, the reciprocal

vector is obtained via

Ghk = ha∗1 + ka∗2 (1.55)

with a∗1 and a∗2 being the corresponding reciprocal lattice vectors in two dimensions.

The configuration of surface atoms can deviate from that of a bulk plane due to surface recon-

structions, the formation of superstructures, like in CDW systems, or adsorbates, resulting in a new

periodicity. In general, the surface structure therefore has different lattice vectors b1 and b2 that can

be expressed in terms of the substrate lattice vectors

Ghk =
©­«
b1

b2

ª®¬ = ©­«
m11 m12

m21 m21

ª®¬ ©­«
a1

a2

ª®¬ . (1.56)

Emerging superstructures may be commensurate or incommensurate with the bulk periodicity re-

sulting in rational or irrational matrix elements mi j , respectively. Both scenarii are realized in

different CDW phases of the layered transition metal dichalcogenide 1T-TaS2.

Alternatively, Wood’s notation is a second common way to define superstructures. It considers

the ratios p = b1/a1 and q = b2/a2 between bulk and surface lattice vectors, and rotation of the

superstructure cell by an angle φ. A superstructure is then defined by (p × q)Rφ. This notation,
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1.2. Aspects of Low-energy electron diffraction

however, cannot cover all possible supercell configurations since it assumes the same rotation angle

of both b1 and b2. [131, 132].

The reciprocal lattice vectors of the superstructure are defined accordingly by

©­«
b∗1
b∗2

ª®¬ = M∗ ©­«
a∗1
a∗2

ª®¬ . (1.57)

The two matrices M and M∗ are related via inversion, yielding

M∗ = ©­«
m∗11 m∗12

m∗21 m∗21

ª®¬ = 1
m11m22 − m21m12

·
©­«

m22 −m21

−m12 m11

ª®¬ . (1.58)

In many cases, the superstructure exhibits a larger periodicity than the bulk structure. In a diffraction

experiment, this results in satellite spots around or between reflexes associated with the substrate.

1.2.3.2 Ewald Construction

The Ewald construction visualizes the angular features of elastic diffraction from a lattice, taking

into consideration energy and momentum conservation. For diffraction from a two-dimensional

lattice, the Laue conditions read

|kout | = |kin | (1.59)

s ‖ = kout, ‖ − kin, ‖ = Ghk . (1.60)

The first equation incorporates the conservation of electron energy and determines the radius of

the Ewald sphere (see Fig. 1.19). The second equation ensures in-plane momentum conservation.

More specifically, for constructive interference, the scattering vector’s component parallel to the

surface must coincide with an in-plane reciprocal lattice vector Ghk . The reciprocal lattice of a

strictly two-dimensional surface structure can be represented in three dimensions as infinite rods

that are oriented perpendicular to the surface plane (see Fig. 1.19). The two-dimensional case can

be seen as the limit of a 3d lattice where the basis vector a3, pointing perpendicular to the surface,

extends to an infinite length, resulting in an infinitesimal reciprocal vector a∗3. Hence, the reciprocal

lattice in this dimension becomes the continuum that is expressed by rods. Diffraction reflexes are

now given by the intersection points of these rods with the Ewald sphere. In contrast to diffraction

from a 3d lattice, the Laue condition can always be fulfilled independent of the angle of incidence

on the sample [130].

In real systems, the electron beam has a non-zero penetration depth and usually probes more

than a single atomic layer. The additional weak out-of-plane periodicity now has to be considered in
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the Laue conditions (Equations 1.59 and 1.60). This leads to additional interference paths between

layers, resulting in energy-dependent intensity modulations along the diffraction rods (see Fig.

1.19b), also named LEED oscillations. In this work, we observe an energy-dependent sensitivity of

main lattice reflexes to the PLD in 1T-TaS2.
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Figure 1.19: Diffraction on a surface crystal. (a) Rods of a hexagonal surface structure in reciprocal

space. The spacing is given by the reciprocal basis vectors a∗1 and a∗2. (b) Ewald construction for near-

normal incidence scattering. Intersection points of the Ewald sphere with the rods determine the wave

vector of scattering reflexes. Particular LEED characteristics are large scattering angles, a large out-of-plane

component of the scattering vector s and reflex intensity modulations along the rods when changing the

incident electron energy. Adapted from Ref. [130].

1.2.3.3 Finite 2d Sheet

Up to this point, we considered diffraction from infinite bulk and surface lattices. In a real diffraction

experiment, however, just a limited number of scatterers will contribute to the diffraction amplitude

due to a finite electron beam diameter.

For a monoatomic 1d lattice (and f (s) = 1) with scatterers at r = na, n = 0,1,2, ...,N − 1, the

diffraction amplitude is given by

A(s) = G(s) =
∑
n

eisxna =
1 − eisxNa

1 − eisxa
. (1.61)

The diffraction intensity is the square modulus of the amplitude, yielding

IN (sx) =
sin2

(
Nsxa

2

)
sin2 ( sxa

2
) . (1.62)

As a result, diffraction reflexes are not described by a δ-comb, but by the so-called Laue function

featuring maxima for sx =
(

2πn
a

)
(Laue condition) whose width and height scale with 1/N and
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N2, respectively. In other words, the limitation of the diffraction volume induces a broadening

of diffraction reflexes in comparison to the delta peaks of an idealized infinite lattice. In typical

electron diffraction experiments with beam diameters ranging from a few nanometers to several

tens of micrometers, this broadening effect is expected to be negligible because a large number of

scatterers are involved. More significant broadening contributions are introduced by the electron

source or finite correlation lengths in the sample.

1.2.3.4 Domains and Defects

Frequently, periodic superstructures are assembled of larger units, i.e., steps or antiphase domains

[131], introducing a further periodicity in the system. For example, Figure 1.20 shows a 1d chain

with two domains each consisting of N atoms. The domains are defined by a lattice vector

g = (N + ξ)a, (1.63)

where ξ denotes the spacing between the domains. Consequently, both periodicities are considered

in the total diffraction intensity being composed of two Laue functions, yielding [123]

Itot(s) = IN (sa) · I2(sg) =
sin2 (

N sa
2
)

sin2 (
sa
2
) · sin2 (sg)

sin2 ( sg
2
) . (1.64)

As a result, the diffraction pattern exhibits richer features because of an additional finer reciprocal

grid. This effect can be observed in the nearly commensurate phase of 1T-TaS2 whose CDW state

has an inhomogeneous phase distribution consisting of domains of nearly constant phase separated

by regions of rapidly changing phase.
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Figure 1.20: Diffraction intensity for a chain of atoms (top) and a cluster of chains (bottom). The additional

superstructure leads to a finer grid of diffraction reflexes. Adapted from Ref. [123].

Furthermore, irregular deviations from perfect crystalline periodicity and arrangements of different

kinds of defect structures have a characteristic impact on the diffraction pattern. For example,
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randomly distributed adsorbate atoms lead to a non-uniform structure factor for each unit cell,

leading to an average scattering intensity given by

〈I(s)〉 =
∑
m,n

〈FmF∗n〉e
is ·(rm−rn) = N(〈F2〉 − 〈F〉2) + 〈F〉2

∑
m,n

eis ·(rm−rn). (1.65)

Here, the diffraction pattern consists of two contributions. The first is a constant part independent

of the scattering vector s creating a homogeneous background in the diffraction pattern and the

second is a term that is identical to the lattice factor G(s) of the ideal surface scaled by a factor 〈F〉2.

Hence, the reflexes appear on top of a constant background, but have an unaltered intensity profile.

Experimentally, that explains the need for clean samples and ultra-high vacuum conditions.

The diffraction spot profile is affected by the size or density distribution within a probed

ensemble, such as stepped surfaces, domains or islands of different extent, lattice impurities or

dislocation-type defects in a CDW [14]. When modeling, a common choice is to assume a geomet-

rical distribution that allows for a closed calculation. The probability P of finding a domain of size

N , assuming an average size of 1/γ, is given by [123]

P(N) = γ(1 − γ)N−1, (1.66)

yielding an exponential distribution in the continuous case. In diffraction, the Fourier-transformed

exponential pair correlation function leads to intensity profiles given by a Lorentzian function [123,

131, 133]. This result is reflected in the spot profile analysis for the system investigated in this thesis

(see Fig. 3.4).

1.2.3.5 Effect of Temperature

Besides static imperfections of the surface, also dynamic effects due to a finite temperature play

an important role in electron diffraction. Temperature-induced atomic vibrations around their

equilibrium positions lead to a reduction of reflexes, the so-called Debye-Waller effect, and a

thermal diffuse background.

Lattice vibrations produce a time-dependent change of the lattice coordinates r j

r j(t) = r j + u j(t) (1.67)

with time-dependent deviations from the equilibrium positions u j . For identical scatterers, the

time-averaged diffraction intensity reads

〈I(s)〉 = | f (s)|2
∑
i, j

eis ·(ri−r j )〈eis ·(ui−u j )〉. (1.68)
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The time average of the exponential term can be expanded for small deviations, yielding

〈eis ·(ui−u j )〉 = 1 +(((((((
〈is · (ui − u j)〉 −

1
2
〈[s · (ui − u j)]

2〉 + O(ui − u j), (1.69)

where the linear term vanishes having zero mean. Skipping the details of the derivation [131], the

time-averaged intensity for independent oscillators becomes

〈I(s)〉 = e−〈(s ·u)
2 〉 | f (s)|2

∑
i, j

eis ·(ri−r j ) + N | f (s)|2{1 − e−〈(s ·u)
2 〉}. (1.70)

The first term describes the usual Bragg diffraction, reduced by an additional factor e−2W = e−〈(s ·u)
2 〉,

known as the Debye-Waller factor [131, 134, 135], whereas the second term corresponds to one-

phonon diffuse scattering. For isotropic displacements and assuming the Debye model for phonons

[125], the exponent of the Debye-Waller factor can be written as

〈(s · u)2〉 = s2〈u2〉〈cos2(α)〉 =
1
6
s2〈u2〉 ∼ s2 T

θ2
D

, (1.71)

where T denotes the temperature, α the angle between the scattering vector s and the displacement

vector u, and θD the Debye temperature, a measure for the rigidity of the lattice with respect to

vibrations [125]. Large momentum transfer and increased temperatures lower the magnitude of

reflexes, while increasing the amount of diffuse signal in the areas in-between. Note that the effect

of temperature amounts to a lowering of the scattered spot intensity, but does not change the shape

or width.

Moreover, diffuse scattering generally depends on the product of the momentum transfer s and

the orientation of the displacement vector u, which is determined by the polarization of the involved

phonon modes. Therefore, the emerging structure of the diffuse background contains precious

information about lattice vibrations in the system. A common, more general approach considers the

one-phonon scattering intensity given by [136–138]

I(s) ∼
∑
j

(
nj ,k +

1
2

)
ωj ,k

�����∑
p

fp
√
µp

e−Mp (s · ê j ,p,s)

�����2︸                             ︷︷                             ︸
|Fj (s) |2

. (1.72)

The first sum is taken over all phonon branches, j, while the second sums over all atoms p in the

unit cell. nj ,k is the population of the phonon mode with a momentum k, frequency ωj ,k and

polarization ê j ,p,s. fp is the atomic scattering factor, e−Mp the atomic Debye-Waller factor, and

µp the atomic mass. In principle, this expression allows to predict the intensity distribution of the

diffuse background in reciprocal space, based on the knowledge of nj ,k , ωj ,k and ê j ,p,s.
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While many different probes, such as angle-resolved photoemission spectroscopy [139], and

Raman spectroscopy [140] are available to investigate vibrational modes, recently, a number of

groups [141–143] successfully implemented a time-resolved technique based on high-energy elec-

tron scattering in order to map the transient changes of diffuse inelastic scattering in momentum

space [138, 141]. Exemplarily, Figure 1.21 illustrates these changes in a sequence of snapshots on

a picosecond scale, featuring characteristic patterns that belong to specific non-equilibrium phonon

distributions in graphite [138].

Figure 1.21: Temporal evolution of thermal diffuse background of graphite upon fs-laser excitation. The

diffuse background exhibits a rich pattern (red areas) that evolves on a time scale of 100 ps. This allows

to track the energy relaxation pathways and the equilibration process of different phonon modes. Reprinted

figure with permission from Ref. [138] by Stern et al. Copyright 2020 by the American Physical Society.

1.2.3.6 Modulated Structures

The effect of a displacive lattice modulation on a diffraction pattern has already been studied over a

century ago in the context of optical gratings [144]. A sinusoidal variation of the grating’s spacing

resulted in equally spaced satellites, so-called Geister, that decrease in intensity for increasing

distance from the main reflex. A crystal structure with displacive lattice modulation was first studied

by Dehlinger in 1927 using x-ray beams [145]. The same concept applies for the PLD of CDW

materials. In this section, we briefly derive an expression for the structure factor of a periodically

modulated lattice.
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1.2. Aspects of Low-energy electron diffraction

For a monoatomic ( fm = 1) CDW crystal with equilibrium sites {L}, the PLD can often be

modeled as a single harmonic

u0(L) = A · sin(Q · L + ϕL). (1.73)

The scattering amplitude (equation 1.53) then yields

A(s) =
∑
L

eis ·(L+u
0(L)) =

∑
L

eis ·Leis ·A sin(Q ·L), (1.74)

where ϕL was set to zero. This expression can be simplified using the Jacobi-Anger expansion for

Bessel functions [94]

eiz ·sin(α) =

∞∑
n=0

einαJn(z), (1.75)

where n denotes an integer number. Accordingly, the amplitude becomes

A(s) =
∑
L,n

Jn(Q · A)︸     ︷︷     ︸
F(s)

ei(s+nQ)·L . (1.76)

The allowed Bragg reflexes are determined by the altered Laue condition s = G − nQ. The main

lattice reflections are denoted by n = 0, while additional CDW satellite peaks decorate the main

reflexes, corresponding to integers n = 1,2, . . . . The structure factor F(s) determines the brightness

of each order and follows the individual Bessel function of nth order.

For incommensurate crystals, the sum over the lattice {L} cannot be restricted to a single unit

cell since, strictly speaking, the latter does not exist. Nevertheless, the structure factor can be defined

in a similar way, as the scattering normalized to a particular volume [70]. For a triple-CDW, the

above derivation can be naturally extended and yields satellite peaks in three orientations as shown

in the static LEED diffraction patterns of the NC and IC CDW phase of 1T-TaS2 (Fig. 2.4, 3.2, 3.8

and 3.9).

1.2.3.7 Effects of CDW Collective Excitations

It is important to note that the typical modes of an incommensurate structure, amplitudons and

phasons, do not increase the number of degrees of freedom. It remains the value of three times the

number of atoms in the crystal [146]. Since phasons are CDW-coupled modes with a completely

softened dispersion, they can have large amplitudes similar to low-energy acoustic phonons that

are known to contribute to the normal Debye-Waller factor. In real materials, damping and the

size of a potential phason gap also play a role [70]. The additional low-frequency modes that

coexist and merge with the normal acoustic phonons, affect many physical properties, such as the

low-temperature heat capacity, electrical resistivity, NMR spectrum and lattice thermal conductivity
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[95]. In this section, we discuss theoretically the influence of collective modes on the diffraction

pattern.

In 1971, Overhauser [94] first predicted that incommensurate CDW systems should have a new

dynamical mode that corresponds to the phase fluctuations of the modulation wave in space and

time. For a monoatomic crystal with a sinusoidal equilibrium modulation (Equation 1.73), phasons

are assumed to be the long-wavelength fluctuations in the phase ϕL of the modulation. The dynamic

distortion of atoms in one phason mode is then given by

u(t) = A sin
[
Q · L + ϕq sin(q · L − ωt)

]
(1.77)

≈ u0 +
1
2

Aϕq (sin [(q + Q) · L − ωt] + sin [(q − Q) · L − ωt]) , (1.78)

where ϕq denotes the amplitude of the particular phason mode and ω its frequency. In this

approximation, a phason mode constitutes a coherent superposition of phonon modes with wave

vectors Q + q and Q − q. In reciprocal space, this implies that phasons are located near satellite

reflexes, creating an additional diffuse background [147, 148]. According toOverhauser andGiuliani

[94, 95], phasons and amplitudons lead to additional Debye-Waller-type structure factors given by

Fϕm = e−m
2 〈δϕ2 〉 (1.79)

and

FA
m = e−m(m−1)〈δA2 〉, (1.80)

where m ≥ 0 denotes the reflex order (main lattice: m = 0, CDW satellite: m > 0), and the quantities

〈δϕ2〉 and 〈δA2〉 are the mean square deviation of phase and amplitude, respectively. These structure

factors only affect the satellite intensities and do not depend on the scattering vector, in contrast to the

conventional Debye-Waller factor [95, 148]. Moreover, Overhauser stated that phason excitations

might even reduce the intensity of CDW satellites below the limit of observability [94].

Axe [149] reevaluated Overhauser’s expression and concluded that the phason contribution had

been strongly overestimated, which is supported by the observation of satellite reflexes in experiments

[68]. First, he reproduces Overhausers’s result and compares two versions of the Gaussian phase

approximation (GPA). The structure factor for a monoatomic crystal with a cosinusoidal modulation

is given by

F(s) =
∑
L

eis ·L 〈eis ·uL 〉 (1.81)

with

uL = A cos(θL − ϕL), θL = Q · L − θ0, (1.82)
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1.2. Aspects of Low-energy electron diffraction

where θ0 is a global phase. In the GPA, it is assumed that the phase ϕL fluctuates with a Gaussian

distribution. The average value of a phase-dependent function is then defined by

〈 f (ϕL)〉 ∼
∫

f (ϕL)e−(1/2)(ϕ
2
L/〈ϕ

2
L 〉)dϕL . (1.83)

In this approximation, the structure factor becomes

F(s) = ∆(s + mQ)
∑
m

ime−imθ0 Jm(s · A)e−m
2 〈ϕ2 〉/2, (1.84)

where ∆ denotes a comb of delta functions representing the Laue condition for main and satellite

reflexes. Axe’s expression of the structure factor is in agreement with Overhauser’s result, in

which phase fluctuations are independent of the position. However, phase fluctuations cause larger

position fluctuations near the nodes of the modulation wave than near maxima. Consequently, the

mean square position fluctuations are modulated in space with a wave vector of 2Q.

In a second GPA version, Axe splits the displacement modulation into the average displacement

and its deviation in order to account for a thermal smearing of individual atoms. This yields

〈uL〉 = A〈cos(ϕ)〉 cos(θL) + A〈sin(ϕL)〉 sin(θL) = η cos(θL) (1.85)

with a renormalized amplitude

η = A〈cos(ϕ)〉 (1.86)

and

δuL = uL − 〈uL〉 = A [cos(θL)(cos(ϕL) − 〈cos(ϕL)〉) + sin(θL) sin(ϕL)] . (1.87)

The structure factor is then given by the expression

F(s) =
∑
L,m

imei(s+mQ)·LJm(s · η)〈eis ·δuL 〉. (1.88)

In this approach, it is important to note that phase fluctuations influence the structure factor via two

effects. The amplitude is renormalized and fluctuations around this new average value contribute via

the term 〈eis ·δuL 〉. This term does not have simple closed form and is considered in an expansion

[149]. Expanding the exponential and the term 〈eis ·δuL 〉 for small 〈ϕ2〉 yields Overhauser’s result.

For larger 〈ϕ2〉, both approaches give differing predictions.

Axe provides a third approach for the general case, including amplitudons, in which the dis-

placements are assumed to follow a Gaussian distribution. From Landau theory, two new normal

coordinates Aq and ϕq can be introduced. The displacement deviation can then be written as a

superposition of amplitude and phase modes, yielding

δuL =
1
√

2

∑
q

[
cos(q · L − θ0)Aq + sin(Q · L − θ0)ϕq

]
eiq ·L . (1.89)
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For independent modes, one obtains the mean square displacement

〈δu2
L〉 = 〈δη

2
A〉 cos2(θL) + 〈δη

2
ϕ〉 sin2(θL), (1.90)

where 〈δη2
A〉 and 〈δη

2
ϕ〉 denote the mean square position fluctuations associated with amplitude and

phase fluctuations, respectively. For the Gaussian displacement approximation (GDA), the structure

factor

F(s) =
∑
n

eis ·Leis · 〈uL 〉 〈eis ·δuL 〉 (1.91)

becomes

F(s) = ∆(s + mQ)ime−w
′
∑
l

(−1)lJm−2l(s · η)Il(w′′) (1.92)

with

w′ =
s̄2

2

(
〈δη2

A〉 + 〈δη
2
ϕ〉

)
and w′′ =

s̄2

2

(
〈δη2

A〉 − 〈δη
2
ϕ〉

)
, (1.93)

where Jm and Il are (modified) Bessel functions and s̄ = s · A/|A|. This result is much more

complex and deviates from Overhauser’s expression. In the regime s · η < 1 and n2〈ϕ2〉, however,

the results of GPA and GDA yield identical predictions. For the discussion of other regimes, we

refer to Axe’s publication [149].

The results published by Overhauser and Axe were reprinted in the books of Bruce et al. [150],

Currat and Jansen [146], Krivoglaz [148] and van Smaalen [70]. Several follow-up works, based

on either Overhauser’s or Axe’s approach, illuminate further aspects. Wang and Overhauser [151]

report on the diffuse scattering of x-rays by phasons. They derive expressions for the absolute

diffraction intensity, surrounding a CDW satellite, and claim that phason scattering dominates other

diffuse scattering. Adlhart [152] extends Axe’s approach and takes normal phonons into account.

He states that phasons are observable near intense satellite reflexes, but also near reflexes of the

main lattice, and that amplitudons should be visible near main and satellite reflexes when (QA) is

sufficiently large. More recently, Aslayan et al. [153] pointed out weaknesses of Axe’s approach,

regarding the modes extracted from Landau theory. According to their comment, the new set of

variables leads to physical inconsistencies due to anharmonicities in the Landau functional.

Several experimental works claimed evidence for a phason Debye-Waller factor [154–156] and

phason diffuse scattering [147, 151] using x-ray and electron diffraction techniques. Nevertheless,

their results remain inconclusive and do not resolve the quite complex theoretical situation, discussed

above [70]. Despite a number of more recent works [36, 38], the role of phasons in diffraction

experiments still remains controversial even today.
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1.3. The layered Compound 1T-TaS2

1.3 The layered Compound 1T-TaS2

As part of the family of transition metal dichalcogenides, the prototypical quasi-2d metallic com-

pound 1T-TaS2 features a particularly rich electronic phase diagramwhich is spanned by temperature

and pressure [157, 158]. The material is host to a commensurate, a triclinic, a nearly commensurate

and an incommensurate charge-density wave state (see Fig. 3.3), first shown by electron diffraction

experiments [42, 159]. At low temperatures, there is evidence for a Mott-insulating [76, 160] and

a metastable hidden phase [7]. Moreover, below T ≈ 50 K, the system can be transfered into to a

superconducting state by applying pressure [157].

Tantalum disulfide is a layered material and comes in various polytypes [159] defined by the

stacking sequence of the layers (see Fig. 1.22). The hexagonal unit cell of the polytype 1T consists

of a S-Ta-S trilayer in which the tantalum atoms are octahedrally coordinated (purple octahedron in

Fig. 1.22) to the neighboring sulfur atoms. Within a trilayer, atoms are covalently bonded, while two

trilayers are bound by weaker van der Waals interactions, turning 1T-TaS2 into a quasi-2d material.

Above 543 K (850◦ C), in the metallic phase, the structure is classified as the symmetry space group

164-P3m1 (Cd(OH)2 type) with lattice parameters a0 = b0 = 3.36 Å and c0 = 5.90 Å [161]. Below

this temperature, the structure of the metallic state is distorted due to the formation of different CDW

states. In what follows, the structures of these lower-temperature phases will be characterized by

the lattice distortions in relation to the structure of the high-temperature metallic phase.

a b
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Figure 1.22: Atomic structure of 1T-TaS2. (a) Sulfur atoms are octahedrally (violet) coordinated around

a Tantalum site. Adapted from Refs. [72, 158]. (b) The 1T crystal structure is trigonal. A unit cell (red)

contains a Tantalum atom (0,0,0) and two sulfur atoms at ±( 13 ,
2
3 , z) with z ≈ 0.25 [161]. There are weak van

der Walls bonds between S-Ta-S trilayers.
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1.3.1 CDW States

Generally, the emergence of a CDW phase leaves fingerprints in various measurable quantities.

For example, satellite peaks appear around the main lattice reflexes in electron diffraction patterns

indicating a structural transformation (see Fig. 2.4, 3.2, 3.8 and 3.9). Close to the critical temperature

of the phase transition, anomalous behavior is observable in the temperature dependence of the heat

capacity, magnetic susceptibility, electrical resistivity or spectroscopic band gaps (see Fig. 1.23)

resulting in kinks, divergencies or hysteresis loops.
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Figure 1.23: Thermodynamic properties of 1T-TaS2. (a) Comparison of the temperature dependence of (a)

specific heat (black squares) and magnetic susceptibility (blue triangles) upon cooling [162] as well as (b) the

in-plane resistivity [163]. Vertical lines indicate the position of the CDW phase transitions. Adapted from

Ref. [162] by Kratochvilova et al., licensed under Creative Commons CC BY, and from [163] by Hellmann

et al., licensed under CC BY 3.0.

For T < 543 K, this layered material exhibits a stable triple-Q charge-density wave being

described by three superimposed standing waves at a relative angle of 120◦ degrees with respect

to each other. Besides exhaustive experimental studies, a number of theoretical works based on

free-energy potentials have investigated the specific shape of the CDW, as well as its characteristic

collective excitations and phase transitions (single CDW: [78, 164, 165], triple CDW: [115, 166,

167]). We will now discuss the three main CDW phases of the material in more detail, starting at

lowest temperatures.

1.3.1.1 Commensurate Phase

For temperatures below 183 K, the material is in the commensurate (C) CDW state, which exhibits

the charge-density modulation with the simplest geometry. For a single trilayer, the center atoms

form a hexagonal lattice while the entire trilayer is part of an effective P3 space group. The supercell

in the C-phase is usually denoted as
√

13a×
√

13a× 13c [161] with a rotation of φ = 13.9◦ (see Fig.
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1.24). Clusters of thirteen tantalum atoms form so-called ’stars of David’, in each of which twelve

Ta atoms move laterally towards the center Ta-atom (see Fig. 1.24). There are two energetically

equivalent in-plane configurations considering a clockwise (α-phase) and counterclockwise (β-

phase) rotation [159, 168]. The supercell basis (see Sec. 1.2.3.1) vectors within a triple-layer are

given by

M1 =
©­«
3 −1

1 4
ª®¬ and M2 =

©­«
4 1

−1 3
ª®¬ . (1.94)

In reciprocal space, diffraction reflexes appear at the positions of the linearly combined CDW wave

vectors (for one of the above configurations) Q1,c = (3a∗0 + b∗0)/13 = 0.2308a∗0 + 0.0769b∗0 and

Q2,c = (a
∗
0−4b∗0)/13 [161]. In order to simplify the theoretical description incorporating the 3-fold

symmetry, a third wave vector Q3,c (triple CDW) is introduced, having an angle of 120◦ to Q1,c

and Q2,c. With a wavelength of 3.606 a0, the CDW fully registers to the underlying main lattice,

resulting in coinciding higher-order diffraction reflexes. In section 1.2.3.6, the emergence of higher-

order spots was the result of a harmonic lattice distortion that gives rise to a description via Bessel

functions. Any deviations from a purely harmonic distortion, however, can have a similar effect. In

several works, Nakanishi and Shiba [115, 165–167] studied the role of additional harmonics using

Landau functionals, and pointed out their importance, in particular in the C and NC phase.

a

b13.9° bcdw

aCDW

Figure 1.24: Real space unit cell of the commensurate CDW. Clusters of 13 atoms (gray spheres) emerge

that are distorted by the charge modulation (red arrows) forming stars. The superstructure is determined by

the vectors aCDW = 3a − b and bCDW = a + 4b and corresponds to the
√

13a ×
√

13a in-plane unit cell.

Moreover, it is important to note that, besides the in-plane formation of stars of David, out-

of-plane distortions are taking place, leading to a periodic swelling of individual layers (see Fig.
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1.25) [129, 169]. Tantalum atoms are mainly displaced within the plane, having mean in-plane

and out-of-plane distortion amplitudes of ĀTa, ‖ = 0.22 Å and ĀTa, ⊥ = 0.01 Å in the bulk [129],

respectively. However, sulfur atoms exhibit the reverse behavior and are mainly displaced in the

out-of-plane direction with ĀS, ‖ = 0.02 Å and ĀS,⊥ = 0.1 Å [129]. Recently, it was shown [129] that

the C-phase surface structure exhibits a distinct on-top-stacked double trilayer periodicity for which

neighboring double trilayers are shifted by almost half a superstructure. Figure 1.25 exemplifies this

particular stacking using four trilayers.

(b)

Figure 1.25: Stacking of commensurate CDW. Side view of four S-Ta-S trilayers (red, blue, yellow) in

direction of a superstructure unit vector. The blue arrow indicates the stacking sequence of layers. Sulfur

atoms (red and yellow) exhibit a strong out-of-plane distortion component. Reprinted figure with permission

from Ref. [129] by von Witte et al. Copyright 2020 by the American Physical Society.

1.3.1.2 Nearly commensurate Phase

Heating the system above 223 K [161] (see Fig. 3.3), the material undergoes a phase transition

into the triclinic phase, before it changes to the nearly commensurate (NC) CDW phase at 283 K

(see also Fig. 2.4 and 3.8). As the name NC indicates, it is closely related to the C-phase with

its
√

13a ×
√

13a structure. This is also reflected in the similar position of the NC-superstructure

diffraction peaks. For T = 298 K, the CDW vector becomes QNC = 0.245a∗0 + 0.0068b∗0 + c∗0/3

with a temperature-dependent angle of φ ≈ 12◦ [161]. However, the superstructure is not uniform

and exhibits commensurate, roughly hexagonally shaped domains that are arranged in a kagome

patchwork [157, 161, 170] (see Fig. 1.26). As discussed in chapter 1.1.5.2, the emerging pattern is

due to an incommensurate CDW wavevector that is close to the commensurate value, resulting in a

local registration to the main lattice to gain commensurability energy, and phase slips to maintain

the correct long-range average periodicity of the CDW-lattice [170]. The commensurate domains
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are separated by corner-sharing triangular discommensurate regions [161, 166] where the average

distortion amplitude is significantly reduced and the CDW phase changes rapidly. Within a domain,

the distortion amplitude increases towards the center, leading to more pronounced stars of David

[161]. Analogous to the pure C-phase, the same out-of-plane distortion behavior of Ta and S is

observed.

Diffraction on such a block-wave distortion modulation with phase jumps at the domain borders

[161] results in a fine reciprocal grid (see also section 1.2.3.4) which can be observed in the

emergence of groups of higher order satellites (see Fig. 2.4). Consequently, in the triple CDW

description, multiple harmonics of the charge-density wave vector QNC play an important role in

order to form the block-wave structure [115, 165, 166]. The density of the fine reciprocal grid

depends on the temperature-dependent patch sizes. At room temperature, the average domain

diameter corresponds to approximately five stars-of-David clusters and the center-to-center domain

distance is approximately 73 Å [161]. The angle of QNC also exhibits a temperature dependence,

varying from about 13◦ at 250 K to about 11◦ at 350 K [170].

It is difficult to assign a global value for the distortion amplitude, as it is stronglymodulated along

the structure. Considering that a large part of the volume can be assumed to be commensurate-like,

the average distortion value is expected to be only slightly decreased compared to the global C-phase.

From Spijkerman et al., precise values of individual atom displacements at room temperature can

be extracted, leading to mean values across 100 unit cells of ĀTa, ‖ = 0.1761 Å , ĀTa,⊥ = 0.0154 Å ,

ĀS, ‖ = 0.0324 Å and ĀS,⊥ = 0.064 Å .

Commensurate
Patch

Discommensuration

LEED
Diffraction

fine grid
a b

Figure 1.26: Structure of the NC phase. (a) Sketch of a kagome lattice with corner-sharing commensurate

patches (green hexaga) that are separated by incommensurate regions or discommensurations (gray triangles).

(b) Diffractive probing of the NC structure results in a rich diffraction pattern adding a fine grid of spots.

Adapted from Refs. [161] and [56]
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1.3.1.3 Incommensurate Phase

At a temperature of about 353 K, 1T-TaS2 shows a first-order phase transition into the incommensu-

rate CDW state, in which the CDW vector QIC = 0.283a∗0+ c
∗
0/3 [161] aligns to the main lattice with

a periodicity of 3.53 a0 [170]. In the LEED diffraction experiment, only first-order satellite spots

are observed (see Fig. 3.2 and 3.9), pointing to a weak harmonic distortion modulation. Due to the

incommensurate nature of the structure and the size of the electronic gap, the average displacement

amplitude is expected to be lower. It was measured by means of electron and x-ray diffraction

experiments, adopting bulk distortion values for Ta ranging from A = 0.03 Å [42] up to 0.166 Å

[154].

As the CDW is fully incommensurate, it does not register to the underlying lattice, allowing

it to freely float across the crystal. This renders the IC-phase of 1T-TaS2 a promising candidate

for gapless collective excitations, since very low excitation energies should suffice to populate a

major fraction of phase modes (see also Fig. 1.8). However, lattice impurities possibly lead to

pinning of the CDW and to the opening of a gap in the phonon band structure of the corresponding

low-lying excitations. Generally, the IC-CDW phase is much less studied since reflex intensities

are lower due to both a small PLD amplitude and a significant Debye-Waller suppression. In

addition, spectroscopic features in the electronic band structure are strongly smeared out in this

high-temperature regime. Heating the structure above 543 K melts the CDW structure and takes the

crystal, in a second-order phase transition, into the normal metal state [72, 76].

1.3.2 Electronic and Phonon Band Structures

The CDW formation is paralleled by significant change of the electronic and phonon band structure.

Figure 1.27a shows a sketch of the 2D Brillouin zone of the normal (thick line) and reconstructed

commensurate 1T-TaS2 phase with elliptical pockets of the unreconstructed Ta 5d Fermi surface at

the edges [72]. Red arrows indicate possible nesting vectors rendering the system unstable for a

Peierls-type transition. While the Fermi surface topology suggests a Peierls-type scenario for the

transition into the IC phase [159, 171], the nature of the C and NC phase, as well as of the IC-NC

and NC-C transition are still under debate [172].

In order to investigate the electronic properties of 1T-TaS2, many different techniques have

been applied, such as optical scattering [173], electrical transport [174, 175] and angle-resolved

photoemission spectroscopy (ARPES) [76]. In ARPES, the IC phase (see 1.27b) displays a single

nesting-induced CDW gap ∆ICCDW of 300 − 400 meV between the high symmetry points M and

K, whereas the C phase exhibits a much richer structure with multiple spectral signatures. At low
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a b

Figure 1.27: (a) Brillouin zones in the normal (thick solid lines) and commensurate (thin dashed lines) phases.

The unreconstructed Ta 5d Fermi surface has elliptical pockets. Possible nesting vectors are indicated. (b)

Measured ARPES band structure in the commensurate (left) and incommensurate (right) charge-density wave

phase. Characteristic spectral signatures are labeled. From Ref. [76] by Sohrt et al., licensed under Creative

Commons CC BY.

temperatures, it is commonly accepted that strong electron-electron interactions lead to the opening

of a Mott gap with an upper and lower Mott band separated by approximately 100 meV, transforming

the system into an insulator [76]. The NC phase can be understood as a combination of these two

pictures, exhibiting a spatially inhomogeneous pattern of both commensurate and incommensurate

regions. However, Ritschel et al. recently challenged the paradigm of local Mott physics as the

main driving mechanism behind the formation of these gaps, and proposed an alternative, pointing

out the crucial role of the CDW stacking and the related orbital order in the direction perpendicular

to the layers [176, 177].

As discussed above, the static structural distortion in Peierls systems can be described as a

strongly softened and eventually frozen-in phonon mode, a consequence of a drastically altered

phonon band structure. The phonon response of 1T-TaS2 was studied around the zone center by

means of infrared and Raman spectrocopy [178–182], and over the entire Brillouin zone using

neutron [183], helium atom [184], and thermal diffuse scattering [185].

Figure 1.28 illustrates the softening of the longitudinal phonon mode in the NC phase at room

temperature, indicating a Kohn anomaly in the system. While 1T-TaS2 certainly represents a model

system to study the effects of CDW formation on the electronic structure of materials, several

essential properties and phenomena are still subject to current experimental and theoretical studies.

In this context, time-resolved measurements of the electronic and lattice structure have contributed

significantly to the understanding of CDWs as will be discussed hereafter.
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Figure 1.28: Phonon dispersion of 1T-TaS2 at room temperature. The filled and open circles refer to phonons

measured in longitudinal and transverse geometry, respectively. Phonon softening emerges between the Γ-

and M-point [183]. © IOP Publishing. Reproduced with permission. All rights reserved.

1.3.3 Previous time-resolved Experiments

Many time-resolved studies have been performed on 1T-TaS2, investigating the dynamics of single-

particle and collective excitations [24, 34, 76, 163, 173, 186–188] as well as CDW phase transitions

[7, 14, 173, 189–191]. A selection of these works will be briefly discussed in this section.

Figure 1.29: Transient reflectivity measurements for 1T-TaS2 (a) and 2H-TaSe2 (b) at different temperature

above and below TC-NC and TI-N, respectively. The signals are offset for clarity. The insets represent the phase

diagrams of the corresponding bulk material. Reprinted figure with permission from Ref. [173] by Demsar

et al.. Copyright 2002 by the American Physical Society.
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In the work of Demsar et al. [173], the collective and single-particle excitations of 1T-TaS2
(and 2H-TaSe2) were probed by time-resolved optical spectroscopy. This technique measures the

transient reflectivity of the material and allows to trace the evolution of above-gap carriers after

pulsed optical excitation. For temperatures ranging from 30 K up to 220 K, the transient reflection

∆R/R exhibits typical features comprising a strong increase within few femtoseconds followed by

a relaxation on a few-picosecond time scale and THz-oscillations around the average value. From

these curves, characteristic time constants, oscillation frequencies and the gap size are obtained. The

prominent oscillation observed in these measurements is associated with the CDW amplitude mode

of the system whose damping is strongly dependent on the temperature. Specifically, for the highest

temperature of 220 K, the amplitude oscillation is attenuated after 2-4 ps only (see Fig. 1.29).

Hellmann et al. [163] investigated the C-NC phase transition by means of femtosecond time-

resolved core-level photoemission spectroscopy, which allows for measuring the atomic-site-specific

charge-order dynamics of the charge-density wave in the low-temperature commensurate phase.

More specifically, the 4f core-level splitting of Ta is a direct measure for the CDW gap ∆CDW. Upon

intense fs-laser illumination, the response consists of a subpicosecond reduction of the CDW-induced

splitting and a partial recovery on a few-picosecond time scale into a quasiequilibrium state having

a lifetime of more than 10 ps. The authors conclude that the two-step melting process is governed

by, firstly, a quasi-instantaneous collapse of the charge order due to hot electrons and, secondly,

melting of the long-range order of the C phase via energy transfer to the lattice. Moreover, they

point out that the strong coupling of the charge density modulation and the periodic lattice distortion

in the equilibrium state is suspended after photoexcitation for the time scale of electron-phonon

thermalization.

In a seminal work, Eichberger et al. [24] studied the structural changes of the NC phase using

femtosecond electron diffraction experiments in transmission geometry with a temporal resolution

of about 250 fs, and optical spectroscopy (see Fig. 1.30). They monitored the transient change of

main and satellite diffraction reflexes, observing a rapid suppression of the periodic lattice distortion

by about 20% on a timescale of about 250 fs and a subsequent recovery to a thermalized state in

about 4 ps (see Fig. 1.30). In particular, while the satellite peak intensity strongly decreases, the

main lattice reflex shows a prominent local maximum as the CDW amplitude is quenched. The

authors interpret their results based on a common free-energy picture of broken-symmetry states

that includes the rapid breakdown of the electronic modulation, the excitation of collective atomic

motion during relaxation and the transition to a thermalized state.

In a comparative study, time-resolved ARPES enabled Hellmann et al. [34] to trace the full

electronic band dispersion of 1T-TaS2, 1T-TiSe2 and intercalated Rb:1T-TaS2 (see Fig. 1.31).
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Figure 1.30: Time-dependent diffraction intensities after optical excitation of 1T-TaS2. (a-e) Snapshots of

diffraction pattern segment showing main and satellite reflexes as well as the diffuse background for several

time delays. (f) Temporal evolution of relative intensities. (g) Transient reflectivity change exhibiting distinct

oscillation frequencies (inset). Reprinted by permission from Springer Nature Customer Service Centre

GmbH [24], Copyright 2010.

Contrasting the length and excitation-density dependence of the gap melting times, the authors gain

detailed insight into the interaction-dependent processes and provide a more reliable classification

of the three insulators. The time-dependent results for the C phase of pristine 1T-TaS2 show the

fast Mott and Peierls gap collapse within < 50 fs and ∼ 200 fs, respectively, and an oscillatory

component during relaxation that is associated with the coherent amplitude-mode oscillations of the

CDW (see Fig. 1.31), as previously measured by optical spectroscopy.

The selection of works presented gives a brief overview of the transient response of the material,

including the electronic and structural degrees of freedom. The associated time scales and excited

modes will serve as a reference for the investigation of the IC and NC phase using ULEED in

Chapter 3. Special emphasis lies on the relaxation dynamics which exhibit a long-lived structural
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non-equilibrium scenario. While several other recent works studied the ultrafast structural dynamics

of 1T-TaS2 [191, 192] and related CDW materials [38, 193–195] using high-energy electrons,

ULEED provides a new complementary view on the structural dynamics at the surface.

Figure 1.31: Time-resolved electronic band structure for the layered charge-density wave compounds 1T-

TaS2 (C phase at 110 K) (a,e,j and d,h,l), 1T-TiSe2 (b,f,j) and intercalated Rb:1T-TaS2 (c,g,k). While the first

column compares unpumped and pumped ARPES spectra, the second and third column show the temporal

evolution of momentum-integrated spectra for two different fluences. Reprinted by permission from Springer

Nature Customer Service Centre GmbH [34], Copyright 2012.
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We present the design and fabrication of a micrometer-scale electron gun for the implementa-

tion of ultrafast low-energy electron diffraction from surfaces. A multi-step process involving

photolithography and focused-ion-beam nanostructuring is used to assemble and electrically

contact the photoelectron gun, which consists of a nanotip photocathode in a Schottky geom-

etry and an einzel lens for beam collimation. We characterize the low-energy electron pulses

by a transient electric field effect and achieve pulse durations of 1.3 ps at an electron energy

of 80 eV. First diffraction images in a backscattering geometry (at 50 eV electron energy) are

shown.

2.1 Introduction

Ultrafast electron diffraction [196] and microscopy [2] are rapidly evolving tools for the study of

structural dynamics. In recent years, ultrafast variants of numerous techniques employing electrons

as structural and spectroscopic probes were developed, including high-energy electron diffraction

[197, 198], transmission electron microscopy, [5, 199–204] and electron energy loss spectroscopy

[205, 206].

One of the particular benefits of electron beams is the high scattering cross-section facilitating

surface-sensitive electron diffraction, for example, in reflection high-energy and low-energy electron

diffraction (RHEED and LEED). Ultrafast RHEED was implemented early on in Refs. [207] and

[208], and its temporal resolution has reached the few-picosecond to femtosecond domain in the
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past few years [23, 209]. However, because of its grazing incidence geometry, the real strength of

RHEED is its in-situ capability to characterize growth during epitaxy, rather than to obtain direct

representations of the surface structure and symmetry. Some drawbacks of RHEED are enhanced

volume contributions for stepped and imperfect surfaces and its restriction to map a limited angular

fraction of reciprocal space. Ultrafast low-energy electron diffraction (ULEED), on the other

hand, is highly desirable due to LEED’s outstanding ability to map atomic-scale surface structures

[125] but has remained particularly challenging experimentally [210, 211]. A main obstacle in the

implementation of ULEED lies in achieving ultrashort electron probe pulses at low energies, which

are extremely susceptible to pulse spreading in the propagation from the electron source to the

sample [210, 212]. Recently, employing nanoscale photocathodes [128, 213–218] and minimized

propagation distances, this limitation was overcome in a compact transmission ULEED setup for

the study of structural dynamics in monolayers and ultrathin films [46]. In a related approach,

ultrafast point-projection microscopy was developed [219–221] and applied in the imaging of

charge dynamics [219]. Extending the ULEED methodology to a backscattering geometry would

enable investigations of ultrafast structural processes at surfaces, but, in order to avoid shadowing

of the backscattered diffraction pattern, this requires the development of miniaturized photoelectron

sources of sufficiently small outer diameters.

Here, we present the implementation of a nanofabricated electron gun (hereafter referred to

as the ’microgun’) facilitating ULEED. The microgun consists of a tungsten nanotip photoemitter

embedded in a shielded micrometer-scale electrostatic lens assembly (total outer diameter of 80

µm; Fig. 2.1d). Utilizing this photoelectron source, we achieve a temporal resolution in electron

projection imaging of 1.3 ps at an electron energy of only 80 eV and a source-sample distance

of 400 µm. High-quality electron diffraction patterns are recorded in a backscattering geometry,

demonstrating the high spatial coherence of the generated electron beam. This photoelectron

gun combines ultrafast temporal resolution with high momentum resolution and ultimate surface

sensitivity, promoting access to numerous ultrafast phenomena in the structural dynamics at surfaces.

2.2 Gun fabrication

The electrostatic microgun is assembled at the edge of a glass slide, onto which metallic lines (see

Figs. 2.1a and 2.1b) are deposited to connect themicrometer-sized gun electrodes tomillimeter-scale

pads and the voltage supplies. The chromium contact lines are fabricated using a photolithographic

process and subsequently covered with an insulating polyimide layer (Kapton). The polymer and the

backside of the glass slide are coated with thermally evaporated titanium films to shield electrical
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stray fields, except for the external contact pads and the strip lines leading to the electron gun (Fig.

2.1b).

The electrode structures comprising the microgun assembly are fabricated by slicing a gold

wire using focused-ion-beam etching and are fixed to the edge of a glass slide by ion-beaminduced

platinum deposition. In order to minimize the electron propagation distance to the sample, the

electrode assembly is placed close to the corner of the contact support. Figure 2.1c displays

a scanning electron micrograph of the resulting electron gun with five separate gold electrodes,

representing (left to right) the ground, gun lens, extractor, suppressor, and cathode electrodes. The

cathode electrode holds a nanometric tungsten tip (focus-ion-beam-prepared, 20 µm tip length,

radius of curvature below 50 nm, see Figs. 2.1e and 2.1f). Bright areas in the electron micrograph

in Fig. 2.1c are due to electron beam induced charging, indicating sufficient insulation between the

contact lines (darker regions). At this stage, the outer diameter of the electron gun is approximately

30 µm. Finally, to minimize electric stray fields, the remaining exposed contact lines and the gun

electrodes are shielded by a grounded metal-coated mica plate and a Kapton cylinder, respectively,

leading to an effective gun diameter of 80 µm (Fig. 2.1d). The aperture in the shielding hull

(indicated with the square in Fig. 2.1d) allows for inducing photoemission from the nanometric

tungsten tip by side illumination with laser pulses. The magnified view in Fig. 2.1e shows the tip

with its apex located in the center between the suppressor and extractor electrodes (approximately 6

µm from the suppressor electrode).

2.3 Numerical simulations

In order to estimate the gun performance in terms of temporal resolution and spatial beamparameters,

we carried out finite element simulations solving for the electric field and the propagation of electrons

in our gun geometry (Fig. 2.2). Generally, the microgun is composed of a source region including

a tip, an extractor and a suppressor electrode, an einzel lens formed by the extractor, a gun lens

electrode, and a grounded exit aperture (Fig. 2.2a). Electron trajectories are simulated for a range

of voltage settings and initial conditions of the electrons emitted from the hemispherical nanotip

apex (green lines in Figs. 2.2a and 2.2b). Assuming one to a few electrons per pulse, we do

not consider Coulomb interactions between electrons. For each electron kinetic energy (tip bias

plus photoemission excess energy), the suppressor and lens electrode voltages are chosen to form a

collimated beam exiting the gun, holding the extractor at ground potential (Fig. 2.2c). Trajectories

are obtained for a range of emission positions along the apex (0◦–90◦ from the axis), emission

angles (±90◦ from the surface), and initial kinetic energies (0–3 eV). A total number of about 50.000
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Figure 2.1: (a), (b) Optical microscope images of photolithographically patterned metallic tracks (Cr on a

70-µm thick Borosilicate glass slide). The electrostatic gun assembly is placed at an edge of the cleaved

substrate (dashed lines indicated in (b)). (c)–(f) Scanning electron micrographs of the miniaturized electron

gun at various fabrication stages and magnifications. (c) Contacted electrodes of the microgun (without

shielding), exhibiting tip, suppressor, extractor, lens, and ground electrodes. (d) Finished microgun with

electrostatic shielding attached. (e) Side-view through the laser excitation aperture. (f) Tungsten tip-emitter

with a radius of curvature below 50 nm (prepared by focused-ionbeam etching).

particle trajectories are computed for each bias voltage.

From these trajectories, we predict electron pulse durations byweighting the different trajectories

with distributions of the initial kinetic energy and emission angle and position, using procedures

outlined in Refs. [212] and [128]. The initial energy distribution is taken as the positive energy

half of a Gaussian centered at an energy of 0 eV, with a standard deviation (of the corresponding

full Gaussian) of σE . For different initial kinetic energy widths, Fig. 2.2d displays the resulting

electron pulse duration (full-width-at-half maximum, FWHM) in the energy range of 40–100 eV,

derived from the distribution of arrival times at a plane 400 µm behind the exit aperture of the

gun. In particular, pulse widths below 1 ps are predicted throughout the energy range shown for

initial energy widths of σE ≤ 0.5 eV and at energies >70 eV for σE ≤ 1 eV. Such energy widths were

previously observed for two-photon photoemission from tungsten nanotips in Ultrafast Transmission

Electron Microscopy (UTEM) [203]. The set of curves in Fig. 2.2d illustrates that both electron
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Figure 2.2: (a) Finite element modeling (FEM) of the miniaturized electron gun for a set of applied electrode

voltages described by (tip, sup, ext, len, gnd) = (-50, -90, 0, 90, 0) V. Cylindrical symmetry is assumed.

Solid black: equipotential lines, green: electron trajectories. (b) Magnified view of the tip region. (c)

Energy-dependent voltage setting applied to electrodes for a collimated electron beam. (d) Pulse duration

versus electron energy at a plane 400 µm behind the ground electrode, for various widths in the initial kinetic

energy distribution. Red dots in (a) and (b) indicate the positions of groups of electrons emitted at the same

time.

velocity dispersion and path length differences contribute to the final electron pulse duration. For

the present design, path length differences amount to a pulse spreading of about 200–300 fs across

the energy range plotted (red line, quasimonochromatic initial energy distribution), which could be

further reduced by the application of a higher extraction field or a smaller exit aperture.

2.4 Experimental Results

In the following, we experimentally characterize the pulse duration and the beam quality of the

ultrafast photoelectron microgun. To this end, the gun is mounted inside an ultrahighvacuum (UHV)

chamber (base pressure 7 × 10−10 mbar) and connected to computer-controlled voltage supplies.

Two-photon photoelectron emission (identified by a quadratic intensity scaling of the photoemission

current) is induced by focusing 400-nm femtosecond laser pulses (duration 80 fs, repetition rate

312 kHz, and pulse energy 110 pJ) onto the tungsten nanotip emitter using a plano-convex lens on

a motorized linear 3D stage (focal length 23mm focus diameter approx. 5 µm), resulting in the
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emission of about one electron per pulse [46, 128, 204].

The electron pulse duration is measured by using a previously established method based on

transient electric fields [218, 222, 223]. Specifically, the photoelectron beam is directed through a

transmission electron microscope (TEM) copper mesh covered with a finer amorphous carbon grid

(Figs. 2.3a–2.3c). For the lens potential at ground, a divergent beam is produced that results in a

projection image of the TEM grid (Figs. 2.3a and 2.3d) with a magnification of about 200, which

is recorded using a phosphor-screen microchannel plate (5 cm behind sample) and a CCD camera.

In the pulse duration measurement, the projection image is distorted by a spacecharge cloud near

the sample, induced by an intense pump laser pulse (duration 80 fs, center wavelength 800 nm, and

fluence up to 2 mJ/cm2), and the images are taken for variable optical-pump/electron-probe delays

(see Figs. 2.3a and 2.3d). A delay-dependent series of projections (Fig. 2.3d) and difference images

with respect to a fixed negative time delay (Fig. 2.3e) show a pump-induced contrast change over

time. Evaluating the delay-dependent image contrast, we observe dynamical features as rapid as 1.3

ps (Fig. 2.3f), which represents an upper bound to the local electron pulse duration.

b
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c
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FWHM = 1.3 ± 0.2 ps
for 80 eV
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tim
e delay

MCP TEM grid
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Figure 2.3: (a) Schematic of the experimental setup for characterizing electron-pulse durations via the

transient electric field effect (not to scale). (b) and (c) TEM copper grid (square opening with 50 µm width),

covered with a perforated carbon film (Quantifoil, circular apertures of 3.5 µm diameter). (d) Projection

images recorded with photoelectrons from the microgun for different pump-probe time delays. (e) Difference

in images taken at the given delay and a large negative delay (< −20 ps). (f) Contrast change fitted with an

error function (red line), resulting in a temporal resolution of 1.3 ps or shorter at an electron energy of 80 eV.
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In Fig. 2.4, we demonstrate the operation of the microgun in backscattering diffraction-mode.

LEED images from a single-crystalline surface of the transition metal dichalcogenide 1T-TaS2
(cleaved in UHV) are recorded, as shown in Fig. 2.4b. This material exhibits a periodic lattice

distortion (PLD) associated with a charge-density wave (CDW) [159], which results in a complex

pattern of superstructure diffraction spots. Atomic lattice Bragg spots (Fig. 2.4b, red circles) and

PLD spots of different orders (all other peaks) are clearly resolved. For approximate diffraction

probabilities of 1% − 3% and one incident electron per pulse, 105 − 106 electrons are detected in

images within one to few minutes of exposure (Figs. 2.4b and 2.4c). In order to map a large number

of Bragg conditions, the backscattered electron diffraction pattern was recorded with a gun-sample

distance of 550 µm. This gun-sample distancewas determined using a series of diffraction patterns at

different positions in front of the sample, using the linear scaling of the respective shadow diameters

with the change in the working distance. Restricting the pattern to smaller parts of reciprocal space

allows us to reduce the sample-gun distance to 270 µm (Fig. 2.4c) or below, so that electron pulse

durations as in the projection geometry (Fig. 2.3) are expected. From the minimum peak width

observed (0.025 Å−1), we determine a transfer width of 25 nm. Combined with a beam diameter

on the sample of approximately 3 µm, we estimate a normalized beam emittance of 200 nm mrad.

This emittance compares favorably with most commercial LEED instruments and is largely caused

by the small electron beam source size. A further reduction of the emittance may be achieved by

reducing the exit aperture diameter.

(01)

(00)

(10)1 Å-1

bsample MCPa c

1 Å-1

(00)

(10)

atomic lattice
CDW/PLD

Figure 2.4: (a) Schematic of backscattering diffraction using the microgun (not to scale). Sample-detector

distance: 55 mm. The maximum diffraction angle is approximately 35◦. (b)–(c) LEED patterns of 1T-TaS2
for an electron energy of 50 eV, corrected for distortions caused by the planar detector. Gun-sample distance:

550 µm (b) and 270 µm (c). Integration time: 100 s (b) and 600 s (c).
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2.5 Conclusion

We described the fabrication and characterization of a micrometer-scale ultrafast photoelectron gun

using photolithography and focused-ion-beam processing. Electron pulse widths of to 1.3 ps at

80 eV were observed, in agreement with numerical simulations for this gun geometry. Even shorter

pulse durations could be achieved by further reducing the gun-sample distance, higher extraction

fields at the tip apex, or by minimizing the photoemission excess energy using a lower photon energy.

At present, the overall size of the gun assembly is limited by the breakdown voltages of the metallic

lines and the thickness of the supporting substrate. Besides its benefits in the temporal resolution, the

nanolocalized photoelectron source employed has demonstrated its potential to yield high-resolution

LEED images. In the future, this microgun and its further developments will promote ultrafast LEED

studies with picosecond and femtosecond temporal resolutions, providing direct access to structural

dynamics at surfaces and surface reconstructions or in molecular adsorbate layers.
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We study the non-equilibrium structural dynamics of the incommensurate and nearly com-

mensurate charge-density wave phases in 1T-TaS2. Employing ultrafast low-energy electron

diffraction (ULEED) with 1 ps temporal resolution, we investigate the ultrafast quench and

recovery of the CDW-coupled periodic lattice distortion. Sequential structural relaxation pro-

cesses are observed by tracking the intensities of main lattice as well as satellite diffraction

peaks and the diffuse scattering background. Comparing distinct groups of diffraction peaks,

we disentangle the ultrafast quench of the PLD amplitude from phonon-related reductions of

the diffraction intensity. Fluence-dependent relaxation cycles reveal a long-lived partial sup-

pression of the order parameter for up to 60 picoseconds, far outlasting the initial amplitude

recovery and electron-phonon scattering times. This delayed return to a quasi-thermal level is

controlled by lattice thermalization and coincides with the population of zone-center acoustic

modes, as evidenced by a structured diffuse background. The long-lived non-equilibrium or-

der parameter suppression suggests hot populations of CDW-coupled lattice modes. Finally,

a broadening of the superlattice peaks is observed at high fluences, pointing to a nonlinear
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generation of phase fluctuations.

3.1 Introduction

The spontaneous breaking of a continuous symmetry is a fundamental concept of physics with broad

relevance in such diverse areas as particle physics [85], cosmology [86, 87], and condensed matter

physics [64, 88]. An essential consequence of this symmetry breaking is the emergence of new

amplitude and phase excitations of the fields considered, exemplified in the Higgs mechanism [89]

and massless Nambu-Goldstone bosons [90, 224], respectively. Moreover, the degenerate ground

state of such systems allows for nontrivial topological states, as in the case of magnetic vortices [88].

Electron-lattice interaction is an important source of symmetry breaking in solids, most promi-

nently in superconductivity and the formation of charge-density wave (CDW) phases [26, 32, 33,

225]. Specifically, CDWs constitute a periodic modulation of the charge density by electron-hole

pairing [26], coupled to a periodic lattice distortion (PLD) [40, 147, 154] and an electronic gap

[39, 178, 182, 226]. The emergence, correlations and fluctuations of symmetry-broken CDW states

can be revealed in the time domain by ultrafast measurement techniques. In this way, quenches of

the electronic gap coupled to coherent amplitude oscillations [37, 76, 163, 173, 187, 188, 227],

light-induced PLD dynamics [24, 194, 195, 228] and phase transitions have been investigated [163,

229, 230]. In particular, ultrafast structural probes trace changes of structural symmetry [191, 231]

and long-range ordering following a phase transformation [14, 189].

However, while the initial quench and coherent amplitude dynamics of CDW systems following

short-pulsed excitation are rather well-characterized [76, 163, 173, 187, 188, 227], the subsequent

path to thermal equilibrium, including the roles of different collective modes in re-establishing a

thermal CDW state, are far less understood. In particular, a sensitive structural probe is required to

study the interplay of CDW-coupled excitations and regular phonons.

Here, we employ ultrafast low-energy electron diffraction, a recently developed surface-sensitive

structural probe [14, 46–48], to give a comprehensive account of the non-equilibrium structural

dynamics of the incommensurate charge-density wave phases at the surface of 1T-TaS2. Harnessing

the sensitivity of ULEED to the out-of-plane periodic lattice displacements of the sulfur atoms,

we isolate the dynamics of an optically-induced amplitude quench from a multi-stage excitation

of phonons. Following a rapid partial recovery, we observe a surprisingly long-lived non-thermal

amplitude suppression that equilibrates only after approximately 60 ps. Energy transfer to acoustic

phonons is required to re-establish a thermal value of the PLD amplitude, suggesting that transient

populations of collective CDW modes have a lasting impact on the structural order parameter.
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3.2 Materials System and Experimental Approach

In this work, we study one of the most prominent CDW systems, 1T-TaS2, which is part of the

class of transition metal dichalcogenides. The atomic structure of this material consists of weakly

interacting S-Ta-S trilayers [42, 161], in which the tantalum atoms are octahedrally coordinated

between the sulfur atoms (Fig. 3.1a). This compound has attracted much attention for its various

CDW phases [26, 42, 161, 232], excitations [24, 34, 76, 173, 187, 188] (Fig. 3.1c), and correlation

effects [233–235], serving as a model system to study, for example, Peierls- versus Mott-type metal-

insulator transitions [72, 227], pressure-induced superconductivity in coexistence with CDWs [157],

transitions to metastable ’hidden’ CDW states [7, 230], the emergence of complex orbital textures

[176], or quantum spin liquid behavior [236].
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Figure 3.1: Materials system and experimental setup. (a) Layered transition metal dichalcogenide 1T-TaS2
exhibiting a trigonal crystal structure in the high-temperature phase (green lines: octahedral 1T-coordination;

red: unit cell). (b) Top view of incommensurate (IC) CDW phase illustrating charge density (green), distorted

lattice (black dots: Ta atoms, displacements exaggerated) and superstructure unit cell (orange). (c) Side view

of a single S-Ta-S trilayer, illustrating the out-of-plane periodic lattice displacements of the sulfur atoms

(exaggerated). (d) 1D sketch of CDW amplitude and phase excitations and corresponding lattice fluctuations.

(e) Schematic of the experimental setup, showing ultrafast LEED in a backscattering geometry. Ultrashort

electron pulses (green) from a nanofabricated electron gun probe the dynamical evolution of the laser-excited

surface structure. (f) Temperature-dependent CDW phases. (g) Achieved electron pulse duration of 1 ps (see

Appendix 3.6.1 for details). (h) Scanning electron micrograph of miniaturized electron gun.

The material exhibits multiple temperature-dependent phases (Fig. 3.1f) with characteristic lattice

deformations coupled to electronic structure changes [42, 72, 237]. Starting from a metallic phase
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Chapter 3. Structural Dynamics of incommensurate Charge-Density Waves

with an undistorted trigonal structure (Fig. 3.1a) above 543 K, the system undergoes a sequence of

CDW transitions, forming a commensurate (C) (Mott-insulating) state below 187 K. At intermediate

temperatures, two incommensurate phases are found, namely the so-called ’nearly commensurate’

(NC) phase (187-353 K), exhibiting commensurate patches separated by discommensurations [161,

166, 167, 238], and a homogeneous, fully incommensurate (IC) structure (Fig. 3.1b) between 353 K

and 543 K. The periodic lattice distortions in these phases are characterized by primarily in-plane

and out-of-plane displacements of the tantalum and sulfur atoms, respectively (Figs.1b, c). Ultrafast

transitions between and manipulation of these phases, as well as their collective modes (Fig. 3.1d)

have been observed in various diffraction and spectroscopy studies [14, 16, 24, 34, 38, 76, 163, 173,

186–188, 190, 191, 227, 239, 240].

In our experiments, we employ pulses of electrons at low energies, typically in the range of

40-150 eV, to probe the structural evolution of the NC and IC states in backscattering diffraction.

Ulrafast low-energy electron diffraction [14, 46–48] allows us to trace the changes of the diffraction

pattern in the time domain, following intense fs-laser illumination (red pulse in Fig. 3.1e). In this

optical-pump/electron-probe scheme, excitation and relaxation processes are sampled by varying

the time delay t between the optical pump pulse (red) and the photoemission pulse (blue) generating

the electron probe (green). Reducing electron pulse broadening by short propagation lengths, a

miniaturized electron gun (Fig. 3.1h) [47] allows for a temporal resolution of 1 ps (Fig. 3.1g).

Further experimental details are provided in Appendix 3.6.1 (Fig. 3.7).

To facilitate the discussion, we focus the presentation on the response of the IC phase, which has

not been studied by ultrafast diffraction, and provide a comprehensive data set of related observations

for the NC phase in Appendix 3.6.2.

The IC phase exhibits a triple-Q CDW/PLD, with lattice displacements for each unit-cell atom

of the form [77, 78]

u(L) =
∑

i=1,2,3
Ai sin(Qi · L + ϕi) (3.1)

for lattice sites L, CDW wavevectors Qi and phases ϕi. The CDW/PLD texture of a ’dot-lattice’

arises for the phasing condition
∑

i ϕi = 0, and for symmetry reasons, the individual plane wave

components share a common amplitude A = |Ai |. The PLD at a wavelength λIC = 3.53a (a: lattice

constant) leads to characteristic arrangements of satellite peaks [94, 95] around the main lattice

diffraction spots, seen in the ULEED pattern displayed in Fig. 3.2c. As the IC state wave vectors are

collinear to the lattice vectors, the satellites are located on the lines connecting the main reflexes.

Due to the harmonic (and weak) structural modulation [166, 167], only first-order satellites are

observed, with an intensity [94] Isat ∼ |J1(s · Ai)|
2 ∼ A2 (s: scattering vector). We note that in
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Figure 3.2: Dynamics and excitations in CDW systems influencing diffraction. (a) Electron and lattice

subsystems (right) governing CDW dynamics. Gapped band structure (top, left), symmetry broken CDW

state with phase and amplitude excitations (middle), and non-CDW phonons (bottom). (b) Changes in average

amplitude and all lattice excitations (CDW and non-CDW) lead to a redistribution of intensity in the electron

diffraction pattern. (c) Diffraction pattern of the IC phase of 1T-TaS2 showing main lattice reflexes and

first-order PLD-induced satellites (integration time: 90 s, electron energy: 100 eV). (d) Time-dependent

measurement of reflexes (blue and red circles in (c)) and diffuse background (fluence F = 2.5 mJ/cm2). The

main lattice signal is averaged over (10) and (-1 1) spots (blue), the satellite signal over several reflexes.

Curves are normalized to the signal at negative times.

this energy range, LEED is a very efficient structural probe of the PLD, because (i) backscattering

diffraction is dominated by the sulfur sublattice, and (ii) the large out-of-plane momentum transfer

enhances the sensitivity to out-of-plane displacements.

We study the excitation and relaxation of the IC and NC phases, without driving the system

across a phase transition [14, 77, 167, 189, 191, 228]. The dynamics of this incommensurate Peierls

system can be discussed based on a simplified picture of three coupled subsystems, namely, the

electronic system exhibiting a gapped band structure (Fig. 3.2a, top), the collective amplitude and

phase excitations around the symmetry-broken CDW ground state (center) [26], and the ordinary

lattice modes far from the CDW wavevector in reciprocal space, i.e., regular phonons (bottom).

It is widely established that electronic excitation by an ultrashort laser pulse induces a carrier

population above the band gap, which results in a quench of the CDW/PLD amplitude that recovers

upon carrier cooling by electron-phonon scattering [24, 34, 187]. The corresponding sequence of

relaxation processes involving the three subsystems causes characteristic changes to the diffraction

intensities of the satellite peaks and the main peaks (intensity Imain). Specifically, for small PLD
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amplitudes, the peak intensities are expected to scale as [94, 95, 131, 151]:

Isat ∼ A2 e−2Wϕ e−2Ws, (3.2)

Imain ∼ (1 − csA2) e−2Ws, (3.3)

These expressions reflect that a light-induced quench of the mean PLD amplitude A will lead to

a redistribution of intensity from the satellites to the main peaks [24, 194, 241]. Different main

reflexes are sensitive to the PLD to a varying degree, which requires the introduction of the factor

cs that depends on the momentum transfer s. Inelastic scattering by generated phonons transfers

intensity from the reflexes to a diffuse background (Fig. 3.2b) [125, 138, 141, 242], leading to a peak

suppression by a Debye-Waller factor exp(−2Ws) [125, 131]. The general form of the exponent [125,

131] Ws ∼
∑

ph(s · uph)
2 sums over the momentum transfer projected onto phonon displacements

uph in various branches. According to Overhauser [94], phase fluctuations result in the additional

’phason Debye-Waller factor’ e−2Wϕ = e−〈ϕ
2 〉, which only affects the satellite spots and also causes

diffuse scattering in the vicinity of the satellite peaks [36, 151]. Finally, dislocation-type topological

defects in the CDW may broaden the superlattice peaks and also reduce the PLD in the dislocation

core [14, 38].

3.3 Results and Analysis

Our ULEED experiments directly show the characteristic diffraction changes mentioned above: In

the exemplary data displayed in Fig. 3.2d, a main lattice peak (blue) exhibits a transient intensity

increase after the pump pulse, before experiencing an initially rapid and then slowed suppression to

a minimum at t = 60 ps. The satellite peaks (red), on the other hand, are first suppressed, before

approaching a similar trend as the main peak beyond approximately 10 ps. Both the satellite and

main peak intensities are significantly reduced by phonon populations [125]. These are evident

in the diffuse background (gray), which mirrors the suppression of the reflexes, with a step-like

increase in the first ps and a slower rise to a maximum at the delay of 60 ps. The initial step can be

interpreted as the excitation of a broad population of optical and acoustic phonons on the timescale

of electron-phonon energy relaxation (< 1 ps) [173], while the slower timescale corresponds to

phonon-phonon equilibration [243] and the population of low-energy acoustic modes. LEED

intensities are rather sensitive to the large amplitudes of low-frequency modes, particularly those

with out-of-plane polarization. Specifically, phonon modes with out-of-plane displacements uph

have a more pronounced Debye-Waller factor due to the backscattering geometry with a primarily

out-of-plane scattering vector of the electron. In addition, these modes exhibit comparatively slow
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phase velocities, as is typical for layered van-der-Waals materials [244]. Thus, the prominent main

lattice suppression evolving over tens of picoseconds primarily stems from the increasing population

of low frequency acoustic modes modulating the layer distance.

These strong Debye-Waller factors complicate an analysis of the temporal evolution of the

amplitude quench. On the other hand, our experimental data shows that the different reflexes share

a common phonon-induced peak suppression. In the following sections 3.3.1 and 3.3.2, we pursue

two approaches of disentangling the dynamics of the structural order parameter from the phonon

population, exploiting (see Section 3.3.1) the different sensitivities of two inequivalent classes of

main lattice reflections to the PLD, and (see Section 3.3.2) the direct sensitivity of the satellite

reflexes to the PLD.

3.3.1 Amplitude Analysis based on Main Lattice Reflexes

Concerning the time-dependent peak intensity, the main reflexes fall into two different groups.

Whereas all five visiblemain peaks show a suppression opposite to the increase in diffuse background

(Fig. 3.3a), we find that the transient amplitude signal is prominent only in the (1 0) and (-1 1) peaks,

while it is largely absent in the (0 1), (-1 0), and (1 -1) peaks (see also difference maps in Fig. 3.3b)

[245]. These two groups of peaks are crystallographically distinct, and the peaks within each group

are equivalent in the effective threefold symmetry of the 1T structure [129]. The different sensitivity

of the peak intensities to the PLD is a particular feature of LEED, as described in the following.

In the electron energy range of 70-110 eV, diffraction intensities aremainly governed by scattering

from sulfur atoms, due to large atomic scattering factors [129, 161]. As a result of the CDW-

induced contraction of the tantalum sub-lattice, the sulfur atoms predominantly exhibit out-of-

plane displacements. In backscattering, the opposing directions for the displacements in the upper

and lower sulfur layers within each S-Ta-S trilayer [129, 161] (Fig. 3.1c) lead to an interference

with enhanced or suppressed sensitivity of the two groups of main lattice peaks to the lattice

distortion. This feature is expected in all CDW phases of 1T-TaS2, which share the phasing

condition mentioned above (compare Fig. 3.1b). Experimentally, we found the same trend in

experiments on the NC phase (see Appendix 3.6.2), which exhibits different wavevectors but the

same phasing between the threeCDWs. In order to further corroborate these findings and considering

the importance of multiple scattering in LEED, we conducted dynamical LEED simulations for a

PLD of a varying amplitude and as a function of the electron beam energy (see Appendix 3.6.6). In

these simulations, for computational reasons, the commensurate modulation was employed, taking

quantitative displacements from a recent LEED reconstruction [129]. Importantly, the dynamical

LEED simulations qualitatively reproduce our experimental findings of different sensitivities to
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the PLD by the two groups of main lattice peaks. Moreover, the simulations predict an energy-

dependent and strongly reduced PLD-sensitivity at an electron energy of 80 eV. Indeed, experiments

at this lower energy show that the transient increase of the main peak is generally much weaker (see

additional data in Appendix 3.6.3).

We employ these different sensitivities to the PLD to derive a phonon-corrected amplitude

signal. Specifically, we remove the phonon-induced Debye-Waller suppression by normalizing the

intensity of the PLD-sensitive peaks to that of the weakly sensitive peaks (Fig. 3.3c; see Appendix

3.6.1 for details). The resulting phonon-corrected amplitude suppression is displayed in Fig. 3.3d for

three pump fluences. In each case, the amplitude exhibits a rapid initial quench (within our temporal

resolution), and a recovery with an exponential time constant of about 3 ps. The re-establishment

of the amplitude is, however, incomplete, slowing down considerably beyond 4 ps, and lasting well

into the range of tens to one-hundred picoseconds.

3.3.2 Amplitude Analysis based on Satellite Reflexes

We now aim at characterizing the evolution of the mean amplitude based on the satellite peak

intensities, again removing a time-dependent phonon Debye-Waller factor. To this end, we compare

the intensities of the main peaks with weak PLD-sensitivity to the satellite peaks. In Fig. 3.4a, we

plot the logarithm of these intensities (normalized to the signal at t < 0), divided by the fluence.

For all three fluences, the traces of the main lattice peaks collapse to a single universal curve (blue),

illustrating the phonon-induced Debye-Waller suppressionWs and its proportionality to fluence. The

satellite peaks show a non-exponential fluence dependency in their suppression and recovery. At low

fluences, however, where only a minor amplitude quench is induced, the satellite peak suppression

closely follows that of the main peaks. We use this information to derive a phonon-corrected

amplitude signal from the satellite peaks (see Appendix 3.6.1). Figure 3.4b shows the resulting

amplitude evolution. For this graph, the satellite intensities were integrated over circular masks

in the diffraction pattern (width of ∆ksat = 0.36 Å−1), therefore including also electrons scattered

by a small angle from the reflex. We find a very similar behavior as from the main peak analysis

(see Section 3.3.1), namely a rapid and fluence-dependent quench, a fast initial recovery and a

rather persistent partial suppression, and we therefore consider this quantity as representative for the

evolution of the amplitude A.

A somewhat different curve is obtained by utilizing not the area-integrated intensity, but the

maximum intensity on top of the diffraction spot (bottom graph in Fig. 3.4b). Whereas the maximum

and integrated intensities behave similarly at low fluence, at the highest fluence, the suppression of

the maximum intensity exceeds that of the integrated intensity (grey curve from integrated intensity
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shown again for comparison). Moreover, the recovery of the maximum proceeds more gradually

than the integrated intensity.

The difference between the evolution of the integrated and maximum intensities implies a

change in diffraction peak shape, which is analyzed in Fig. 3.4c. Plotting the azimuthal width of the

diffraction peak, we find a significant time-dependent broadening for the highest fluence.

This effective broadening may be a result of several phenomena: (i) Diffuse scattering to the

wings of the peak by low-energy phase excitations [147] will suppress the reflex maximum via the

phason Debye-Waller factor exp(−2Wϕ) while largely maintaining the integrated intensity. (ii) An

overall peak broadening from reduced correlation lengths will arise from the generation of CDW

dislocation-type topological defects [14, 38]. Except for the amplitude suppression in the dislocation

core, this broadening also preserves the integrated intensity. At this point, we cannot rule out either

scenario, and a more detailed spot profile analysis or higher momentum resolution may be required

to further elucidate the different contributions.

3.3.3 Non-equilibrium dynamics of the amplitude

The incomplete recovery and persistent suppression of the PLD amplitude, independently obtained

from the main (Fig. 3.3d) and satellite (Fig. 3.4b) reflexes, warrants further investigation. It implies

that the system is either thermalized at a higher temperature with reduced equilibrium amplitude

[194], or, alternatively, that non-equilibrium dynamics inhibit the recovery of the order parameter.

It was previously suggested for the NC phase that the rapid recovery results in a thermalized system

at elevated temperature [24]. Specifically, this would entail equilibrium between the electronic and

different structural degrees of freedom after approximately 4 ps.

As shown in the following, we have evidence for a sustained non-thermal suppression of the order

parameter. In Fig. 3.5, we consider in more detail the path to thermal equilibrium. An instructive

depiction is obtained by plotting the main and satellite intensities against each other, resulting in

cyclic trajectories in a two-dimensional plane (Fig. 3.5a), traced out over time in a clockwise fashion.

At long delays (beyond 100 ps), the curves for all fluences follow a universal path (dashed line)

representing a thermalized system at elevated temperatures, cooling down. Different trajectories

reach the same combination of intensities at different times. For instance, the high-fluence trajectory

exhibits the same combination of intensity suppressions at 1500 ps as the intermediate fluence at a

somewhat earlier time of 290 ps (black circle in Fig. 3.5a). Once the trajectory reaches this line, the

surface is in local thermal equilibrium, characterized by a single temperature, and the satellite peak

suppression is composed of a Debye-Waller factor as well as a thermal reduction of the amplitude.

The further progression of the system, i.e. its cooling, is governed by thermal diffusion to the bulk.
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All points displaced from the dashed line represent deviations from a thermal state, with the

distance being a very sensitive measure of the structural non-equilibrium. For example, within the

first picosecond after the excitation (dark segments of the curves), the rapid quench of the order

parameter causes a reduction of satellite intensity and a moderate enhancement of the main lattice

signal, with a fluence-dependent maximum displacement from thermal equilibrium (corresponding

curves for the main peaks insensitive to the amplitude are found in Appendix 3.6.4). The recovery

to the thermal state now proceeds through various stages and in a fluence-dependent manner. After

about 4 ps (see marks), the fast component of the amplitude recovery is completed (cf. Fig. 3.3d,

compare also Ref. 74) [246]. However, the system remains far from the equilibrium state, i.e.,

exhibits a lower-than-thermal satellite intensity. Interestingly, for all curves, a surprisingly long time

of approximately 60 ps is required to reach the thermal state. This depiction directly shows that the

persistent amplitude suppression discussed in Fig. 3.3d and 3.4b is in fact not of a thermal nature,

and that we have a pronounced deviation from equilibrium between the degrees of freedom affecting

the diffraction intensities.

To identify the origin of this long-lived amplitude suppression, we first note that the time at which

the system reaches a thermal amplitude nearly coincides with the strongest suppression of the main

lattice peaks. As this time also corresponds to the maximum intensity of the diffuse background (cf.

Figs. 3.2d, 3.3a), the full equilibration of lattice fluctuations appears to be critical in controlling

the structural order parameter. In particular, this lattice equilibration induces a significant increase

of diffuse background intensity around main lattice peaks (difference image in Fig. 3.5b), directly

pointing to the excitation of low-energy acoustic modes near the center of the Brillouin zone.

3.4 Discussion

Taken together, these observations indicate the sequence of relaxation processes illustrated in

Fig. 3.6b, which can be related to the intensity curves (Fig. 3.4a) and the cyclic trajectories in-

troduced above (simplified sketch in Fig. 3.6a). Within the first picosecond, optical excitation of

the electronic system leads to a CDW amplitude quench and a strong deformation of the potential

energy landscape (see insets in Fig. 3.6b), which triggers cooperative motion of the lattice towards

its unmodulated state, including the excitation of coherent amplitude modes (stage 1) [34, 173]. Fa-

cilitated by the generation of high-energy lattice modes, the electron system cools down within few

ps (stage 2), and as a result, the electronic potential and amplitude partially recover. The remaining

PLD suppression in the following stage 3 strongly indicates a substantial population of CDW-coupled

lattice excitations (Fig. 3.6b, red filling in bottom inset), such as amplitudons, phasons, and possible
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dislocation-type topological defects. Remaining non-thermal electronic excitations, on the other

hand, can be largely ruled out at these late times, based on results from time- and angle-resolved

photoemission spectroscopy [34, 187, 227, 230, 247]. While it is known that phonon equilibration

may take tens of picoseconds [142, 248], the present observations are significant in the sense that

the persistent structural non-equilibrium is found to directly lead to an amplitude suppression via

long-lived CDW-coupled excitations.
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of sequential relaxation process and the excitation levels of the three subsystems. The color shade represents

energy content/temperature, black arrows indicate energy flow. (d) Simplified electronic band structure and

populations (saturation of orange line) for high (left) and low (right) electronic temperature. Arrows indicate

electron-lattice scattering processes. Scattering between gap regions (momentum transfer Q) is suppressed
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Both amplitude and phase modes are expected to be rather efficiently excited by the optical

pump, either directly by the deformation of the electronic potential (amplitude modes) [76] or by

electron-lattice scattering between gap regions (Fig. 3.6d). Specifically, Fermi surface nesting is

expected to result in a high probability of scattering events with a momentum transfer around the

CDWwavevectorQ (Fig. 3.6d, left). Subsequent cooling of the carrier temperature below the energy

scale of the electronic gap will effectively suppress these inelastic scattering pathways (Fig. 3.6d

right) and decouple the subsystems (Fig. 3.6c), contributing to the persistent amplitude suppression

in stage (3). Full lattice thermalization and the excitation of zone-center acoustic modes is then only

achieved after 60 ps, from which point on the equilibrated system cools down (stage 4).

Let us consider the possible roles of different CDW excitations in the long-lived amplitude
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suppression, namely amplitudons, phasons, andCDWdislocation defects. Spatiotemporal variations

of the amplitude and phase affect the observable value of A. Specifically, amplitudons represent

amplitude oscillations ∆A around an equilibrium amplitude A0, leading to an observed average

value of 〈A0 + ∆A〉. By an anharmonicity of the electronic potential, these oscillations become

asymmetric, and a high population of amplitudons can reduce the value of A. In the case of phasons,

despite early theoretical and experimental work [94, 95, 147–149, 152–154, 249], a unifying picture

has not been reached, and recent assignments of their contribution in diffraction studies range

from largely negligible [241] to dominant [36]. While our results do not definitely resolve this

issue, the redistribution of scattering intensity near the satellite peaks suggests significant spatial or

spatiotemporal phase distortions.

CDW dislocation defects should also be considered as a possible cause for the long-lived order

parameter suppression, as they have been observed as a consequence of phase transitions, e.g. in

1T-TaS2 [14] or LaTe3 [38, 193]. The fact that we find a significant spot broadening of the satellites

(Fig. 3.4c) most strongly at high fluences suggests a nonlinear dependence of phase fluctuations.

This would be consistent with either CDW dislocations generated by critical phase fluctuations or a

parametric decay of amplitudons into phase modes, as previously proposed [37].

3.5 Conclusions

The impact of fluctuations on symmetry breaking transitions has long been considered, for example

in the Peierls instability [250–253]. Providing a time-domain view of the structural relaxation

pathways, the present measurements highlight the impact of long-lived structural non-equilibrium

to the order parameter.

The general mechanism of amplitude suppression by CDW-coupled modes should apply also to

other phases and systems. Indeed, measurements in the NC phase feature a similar behavior as the IC

phase (Appendix 3.6.2). Despite differences in symmetry, CDW wavevectors and electronic gaps,

both phases exhibit closely related amplitude and phase excitations, as pointed out by Nakanishi and

Shiba [115].

Relevant further questions pertain to the possible mechanisms of generating phasons and

dislocation-type topological defects, as well as their coupling to regular lattice modes. Also the link

between fluctuation modes and the creation and relaxation of metastable states [7, 230] and the influ-

ence of partial and full commensurability in the different CDW states call for further investigation.

Additional insights may be gained by investigating the ultrafast phase transitions between different

CDW states [14, 189, 190] and the populations of amplitude and phase modes in the nascent state
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after transition.

Considering methodical aspects, this work represents the first comprehensive study employing

ultrafast low-energy electron diffraction with a temporal resolution of 1 ps. Future investigations

using ULEED will enable a quantitative analysis of the three-dimensional structural evolution based

on time- and energy-dependent diffraction. Moreover, the method is applicable to a wide variety of

other surface systems and low-dimensional structures, harnessing its strengths of high momentum

resolution, efficient scattering and enhanced sensitivity to lattice fluctuations.
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3.6 Appendix

3.6.1 Methods

3.6.1.1 Experimental details

Here, we briefly describe our experimental ULEED apparatus (Fig. 3.7). The time-resolved mea-

surements are conducted in an ultra-high vacuum chamber (base pressure p = 5 · 10−11 mbar) into

which samples are transferred via a load-lock system and cleaved in-situ. Inside the chamber, the

electron source (microgun [47]) and a microchannel plate detector are mounted. A cooled CMOS

camera records the detected electron diffraction patterns from outside the UHV chamber.

A femtosecond laser system (Amplifier, NOPA and OPA) generates three femtosecond laser

beams of different center wavelength. An ultraviolet beam (center wavelength of 400 nm) is

focused on a nanometric tungsten needle that is embedded inside the microgun [47] generating

ultrashort electron pulses via two-photon photoemission. An electrostatic lens assembly controls

the collimation of the electron beam having an energy range of 40-100 eV. With a gun front diameter

of 80 µm and a working distance of around 150 µm, we achieve a temporal resolution of 1 ps and

an electron beam diameter of approximately 10 µm at the sample. An upper limit of the technique’s

temporal resolution is obtained by the derivative of the fastest intensity change in our data set

(suppression of satellite peak at 100 eV) shown in Fig. 3.1g. An infrared beam (1030 nm center
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Figure 3.7: Schematic of the ultrafast LEED setup.

wavelength) optically excites the sample at specific times controlled by an automated linear delay

stage. In order to heat the 1T-TaS2 sample and stabilize it in the IC phase slightly above T ≈ 353 K,

a third beam (800 nm) is aligned collinearly with the infrared beam. This pulse is delayed by about

3 ns with respect to the electron and 1030 nm pulses (i.e., it arrives 10 µs before the next pulses)

and thus leads to an average increase in sample temperature.

3.6.1.2 Data analysis

The recorded LEED images are preprocessed to correct for minor drifts in-between measurement

runs, and for distortions caused by local electromagnetic fields as well as the projection to a flat

MCP detector.

In order to obtain time curves (Fig. 3.2d) from the stacks of diffraction patterns, we process the

data in a sequence of operations. First, a binary circular mask is laid on top of each individual reflex

(Fig. 3.2c, blue and red circle, diameter ∆kmain = 0.6 Å−1 and ∆ksat = 0.36 Å−1 respectively) for

each time delay. Second, we fit 2D Cauchy distributions (background: slope and constant offset)

to the satellite reflexes and 2D pseudo Voigt profiles (background: slope and constant offset) to the
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main lattice reflexes, to determine a background profile and subtract it from each spot:

C(x, y) =
A

2πσ1σ2
·

(
1 +

(
x
σ1

)2
+

(
y

σ2

)2
)−3/2

+ (a · x + b · y) + C, (3.4)

PV(x, y) = A ·

(
1 +

(
x
σ1

)2
+

(
y

σ2

)2
)−3/2

+ B · e−(x/σ3)
2−(x/σ4)

2
+ (a · x + b · y) + C. (3.5)

Here, the x and y axes correspond to the azimuthal and radial directions (with respect to the main

peak) for a given spot. Third, from the background-corrected segment, the average and themaximum

intensity (average over brightest 4% within a mask) are determined for each reflex within the mask.

The remaining intensity outside the circular masks forms the integrated background. For improved

signal-to-noise ratio, several spot curves are averaged, i.e the satellite curves represent the mean of

the 11 brightest reflexes. Furthermore, from the 2D fit functions, we obtain the azimuthal (σ1) and

radial (σ2) widths for each reflex (Fig. 3.4b).

3.6.1.2.1 Debye-Waller-corrected amplitude signal

Next, we describe the separation of the amplitude-quench-related intensity changes from Debye-

Waller-type peak suppression for main lattice (Fig. 3.3d) and satellite reflexes (Fig. 3.4b).

The dynamical LEED simulations indicate that there can be considerable differences in the

coefficients cs (Eq. 3.3). Empirically, we find that for the IC phase, the {(0 1), (-1 0), (1 -1)}

peaks show a negligible influence of the initial quench (cs ≈ 0). In Fig. 3.3a, for each fluence,

light blue (cs ≈ 0) and dark blue curves (cs > 0) are averaged (Inon-amp and Iamp). We now use

the two peak groups to extract the temporal evolution of A by removing the time-dependent Debye-

Waller suppression e−2Ws from the intensity of the peaks sensitive to the PLD, with a constant factor

C1 = 0.81 that accounts for the slightly different Ws of these peaks:

Iratio, main, F =

(
Iamp,F

Inon-amp,F1

) F
F1
·C1

= 1 − csA2 (3.6)

The value of C1 was determined by the main peak suppression at long delays (beyond 1 ns) and

the lowest fluence (F1 = 1.3 mJ/cm2), for which a negligible amplitude change is expected. The

value of cs for the amplitude-sensitive peaks is determined from the A2-intensity dependence of the

phonon-corrected satellite peaks (Eq. 3.3), evaluated at maximum suppression of the lowest fluence.

From the satellite reflexes (11 brightest spots), the corrected amplitude is obtained similarly

using the Debye-Waller-dominated main lattice curve Inon-amp,F1 for the lowest fluence with the

factor C2 = 1.2

Iratio, sat, F =
(

Isat,F
Inon-amp,F1

) F
F1
·C2

= A2. (3.7)
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3.6.1.2.2 Fitting of time constants

The fit function in Fig. 3.3d is based on a step-like decrease followed by two exponential relaxations

S(t) = 1 − θ(t − t0) · (−A1 + A2 · (1 − e−(t−t0)/τ)) + A3 · (1 − e−(t−t0)/τ2) (3.8)

where θ is the Heaviside function, t0 time zero, A1, A2 and A3 are the amplitudes and τ1 and τ2 time

constants. The complete fit function is the convolution of S(t) with a Gaussian (FWHM of 1 ps)

corresponding to the temporal resolution in our experiment.

3.6.2 Data for nearly commensurate (NC) phase

Figure 3.8 displays the analysis discussed above applied to the nearly commensurate phase. Similar

features are found in the pump-probe curves for the main and satellite diffraction peaks as well as

the background (Fig. 3.8c), the long-lived amplitude suppression (Fig. 3.8d-e) and the relaxation

cycles (Fig. 3.8f). In particular, the two-stage amplitude relaxation process (first stage up to 4 ps,

second stage up to 60 ps) is very pronounced at all fluences.

3.6.3 Data at 80 eV electron energy

Figure 3.9 shows additional data recorded in the IC phase at 80 eV energy. The main lattice peaks

show a much weaker dependency on the PLD amplitude (Fig. 3.9b-d).

3.6.4 Relaxation cycles for main peaks (-1 1), (0 1) and (1 -1)

Figure 3.10 shows the relaxation cycles in the IC phase as in Fig. 3.5a, using the intensities of the

main lattice peaks (-1 1), (0 1) and (1 -1) without sensitivity to the PLD amplitude.

3.6.5 Impact of CDW defects on peak width

Here, we argue that our data rules out a linear scaling of CDW defect density with fluence and

is only consistent with a nonlinear or threshold behavior. Assuming a linear relation of the defect

density with the fluence n ∼ F and a correlation length L ∼ 1/
√

n (see Ref. [14]), the defect-induced

broadening should scale as σtop ∼ 1/L ∼
√

n ∼
√

F. A doubling of the normalized peak widths

σtot =

√
σ02 + σtop

2 with respect to the instrument resolution σ0 for the highest fluence would then

imply considerably higher broadening values for lower fluences (σtot , 2.5 = 1.7 and σtot , 1.3 = 1.4)

than observed in our measurement (Fig. 3.4c). Experimentally, we findmaximum broadening values

at t ≈ 1 ps of σtot , 3.8 ≈ 2 , σtot , 2.5 ≈ 1.3 and σtot , 1.3 ≈ 1 for the highest, intermediate and lowest

fluence, respectively (see Fig. 3.4c). Thus, we infer that the density of topological defects does not

scale linearly with fluence.
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Figure 3.8: Measurements in the NC phase for an electron energy of 100 eV. (a) Top view of nearly

commensurate (NC)CDWphase illustrating charge density (green), distorted lattice (black dots, displacements

exaggerated) and superstructure unit cell (orange). (b) Diffraction pattern of the NC phase of 1T-TaS2 showing

main lattice reflexes and several orders of PLD induced satellites (integration time: 90 s). (c) Time-dependent

measurement of reflexes (blue and red circles in (b)) and diffuse background (for three fluences). The main

lattice signal is averaged over the (10) and (-1 1) spots (blue), the satellite signal over several reflexes. Curves

are normalized to signal at negative times. (d) Time-dependent intensity of visible main lattice reflexes and

integrated background intensity, for a fluence of F = 2.0mJ/cm2. Two inequivalent classes of spot groups are

found, featuring a strong (dark blue) and weak (light blue) sensitivity to the amplitude quench. (e) Extracted

PLD amplitude quench and relaxation for three fluences, showing a rapid and a slower relaxation component.

(Time constants from a biexponential fit (black line) to the highest fluence data: 1.3 ps and 88.5 ps). (f) Main

lattice peak intensities vs. satellite peak intensities, leading to cyclic trajectories in a 2D plane with varying

size. Following a two-stage relaxation, all curves reach a common equilibrium line after approximately 60

ps. The gray color scale highlights certain time intervals (dark gray: 0-1 ps, intermed. gray: 1-60 ps, light

gray: 60-1500 ps).
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s). (b) Time-dependent measurement of reflexes (blue and red circles in (a)) and diffuse background (for three

fluences). The main lattice signal is averaged over the (10) and (-1 1) spots (blue), the satellite signal over

several reflexes. Curves are normalized to signal at negative times. (c) Time-dependent intensity of visible

main lattice reflexes and integrated background intensity, for a fluence of F = 3.8 mJ/cm2. Two inequivalent

classes of spot groups are found, but none shows a strong dependence on the amplitude quench. (d) Main

lattice intensity vs. satellite peak intensity, leading to cyclic trajectories in a 2D plane with varying size. Note

that all curves reach a common equilibrium line after approximately 60 ps. The gray color scale highlights

certain time intervals (dark gray: 0-1 ps, intermed. gray: 1-60 ps, light gray: 60-1500 ps).
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3.6.6 Dynamical LEED computation

We performed dynamical LEED simulations on the commensurate CDW phase of 1T-TaS2, varying

the atomic displacements of sulfur and tantalum continuously from the undistorted structure towards

the C-phase structure recently reconstructed [129]. We are aware that the C phase is a simple

approximation for the description of the high-temperature incommensurate CDW phase. However,

it exhibits the same crucial feature of opposing sulfur displacements that we believe is responsible

for the different sensitivities of the main lattice peaks. Also, dynamic LEED calculations involve

high computational effort, in particular for large unit cells necessary for incommensurate structures.

The obtained data contains PLD-amplitude- and energy-dependent scattering intensities for main

lattice and CDW satellites spots. In the following, we focus on main lattice diffraction intensities.

In the electron energy range of 70-140 eV, the diffraction intensity is mainly determined by

scattering from sulfur atoms, explaining the strong dependence from the PLD amplitude of sulfur

atoms (Fig. 3.11a).

Figure 3.11b shows PLD dependent intensities for an electron energy of 100 and 80 eV, each

normalized to the intensity value for zero distortion (metal structure). The PLD amplitude range

is adapted to the expected values realized in the incommensurate phase [42] which are assumed to

be considerably smaller (∼ 30% of PLD amplitude of the commensurate low-temperature phase).

In this range for 100 eV, we can show that there are two groups of main lattice spots that respond

differently upon PLD change, whereas for 80 eV, all intensities follow a common curve. Moreover,
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the magnitude of the relative intensity changes approximately matches the observed ones in the

experiment. The curves within a group of main lattice peaks {(1 0), (-1 1)} and {(-1 0), (0 1), (1

-1)} conincide since the simulation is performed at normal incidence.

Figure 3.11c shows energy-dependent intensity curves for two main lattice peaks contained
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Figure 3.11: Dynamical LEED simulations. (a) Normalized intensity of main lattice reflex (1 0) as a

function of sulfur and tantalum displacement for an electron energy of 100 eV. Enhanced scattering off sulfur

atoms results in a much stronger dependence on the sulfur atom displacements. (b) Normalized intensities

of main lattice spots for an electron energy of 80 and 100 eV as a function of the fraction of the maximum

commensurate PLD amplitude. The diffraction reflexes split up into two spot groups. Light and dark blue

curves coincide, respectively, due to normal incidence of the electron beam. (c) LEED spectra (top) for both

groups (light and dark blue) for vanishing (points) and finite (dash points) distortion. The percentage refers

to the amplitude of the commensurate PLD in low-temperature phase. The intensity ratio (bottom) illustrates

the energy-dependent sensitivity between reflex groups.
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in one of the two groups (light and dark blue), each for zero PLD and 30% PLD amplitude of

the commensurate low-temperature phase. The ratio of spectra for each spot with minimal and

maximal amplitude (Fig. 3.11c, bottom) displays a rich oscillatory behavior. Importantly, however,

for energies of 80 eV and 100 eV, the spots exhibit a drastically different sensitivity to PLD changes,

with a small and large difference for the separate spot groups, respectively. These predictions directly

corroborate our experimental findings at the different electron beam energies.
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In the following, a brief summary of the previous two chapters is given. After this,the current

technological status of ultrafast LEED are discussed and possible future perspectives for more

detailed work on CDW or CDW-related materials systems are pointed out.

4.1 Summary of Publications

Chapter 2 reports the design and fabrication of a micrometer-scale electron gun for the implemen-

tation in ULEED experiments. The fabrication process consists of multiple steps, including the

preparation of a suitable support for electrical contacts by means of photolithography, as well as the

construction of the gun assembly, the nanometric tip emitter and the shielding using focused-ion-

beam (FIB) etching. We achieve an effective gun diameter of 80 µm, allowing for a considerably

shorter propagation distance to the sample in the diffraction experiment as compared to the previous

minigun design.

Finite element simulations enable us to estimate the gun performance. A large number of

particles, each having different initial conditions, are propagated to obtain the trajectories in the

electric field determined by the gun geometry. At a distance of 400 µm behind the ground aperture,

the pulse duration is extracted from the differences in time of flight within the ensemble of particles

for an energy range of 40-100 eV, yielding values of 1 ps or less for most electron energies.

Finally, the pulse duration and the momentum resolution are characterized experimentally. For

the measurement of the pulse duration, the electron pulses traverse a time-dependent electric field

that forms when an intense laser pulse hits a metal grid. From the transient change of the projected

image, we obtain a pulse duration of 1.3 ± 0.2 ps. LEED images of 1T-TaS2 demonstrate the

achievable momentum resolution yielding a transfer width of 25 nm and a beam emittance of

200 nm rad.

In chapter 3, the microgun is employed to study the non-equilibrium lattice dynamics of the

charge-density wave material 1T-TaS2 with 1 ps temporal resolution. In the nearly commensurate
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and incommensurate CDWphase, we trace the time-dependent intensity ofmain and satellite reflexes

as well as the diffuse background. The intensity redistributionwithin a diffraction pattern is governed

by changes of the average PLD amplitude, CDW-related fluctuation modes and non-CDW phonons.

We use two approaches in order to separate the dynamics of the structural order parameter from

the phonon population. We compare the different intensities of two inequivalent classes of main

lattice reflections to the PLD, and exploit the direct sensitivity of the satellite reflexes to the PLD.

When we apply these methods to our data, we obtain the transient non-equilibrium signal of the

average PLD amplitude that recovers over the course of about 60 ps.

The observations suggest a sequence of processes that include the laser-induced heating of

the electronic system, efficient coupling to CDW-coupled modes, lattice equilibration, and cooling

of the thermalized state. We assign the long thermalization time of the order parameter to the

presence of a hot population of long-lived CDW-coupled excitations. For strong laser excitation, the

broadening of superlattice satellite reflexes indicates the presence of dislocation-type CDW defects

that additionally reduce the PLD in the defect core.

4.2 Improving the Electron Source

As described in Chapter 2 and 3, the microgun was developed and successfully implemented in

ultrafast low-energy electron diffraction experiments [14, 49]. The need for miniaturization is

rooted in the necessity to reduce the pulse broadening caused by energy dispersion (see Fig. 4.1).

At the same time, it is important to collect as much of the backreflected electron signal as possible

without blocking it by the electron gun. Before discussing possible alternative approaches to this

problem, we focus first on the limiting factors and major obstacles in the gun fabrication process.

Challenges of a Microgun Any miniaturized electron gun should adhere to the following require-

ments:

1. Strongly confined emitter

2. Lens for beam collimation

3. Small front diameter

4. Efficient shielding

5. UHV compatibility

6. Electrical robustness

7. Mechanical robustness
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In this work, photolithography and FIB etching have been used in order to fabricate a device that

fullfills the given requirements (see Chapter 2). The choice of these techniques, however, introduce

limitations and inter-dependencies to several of the listed requirements. A full discussion of all

details includes many technicalities which go beyond the scope of this section and are therefore kept

to a minimum.

Utip

electron pulse 
dispersion  

laser pulse

metal tip

Figure 4.1: Electron pulse broadening due to a finite initial energy width.

The first four points are related to the specific geometry of the electron gun and therefore challenge the

capabilities of the FIB technique. Generally, metal tips are known to be well suited as photoemitters

because a very confined emission surface at the apex results in enhanced beam characteristics [128].

While FIB has been proven to be quite suitable for etchingmetal tips with apex diameters in the range

of several of nanometers [254], the variety of electrode shapes and lens assembly geometries are,

however, strongly limited. This is mainly due to the fact that the electron-optical elements should

meet a high degree of rotational symmetry along the optical axis to ensure a sufficient electron beam

quality. FIB etching perpendicular or along the symmetry axis maintains the overall symmetry

whereas any deviation from these directions easily removes it. Additionally, the etching process

might increase the surface roughness which can reduce the electrical robustness because of strong

local electric fields and possible field emission.

The role of electrical shielding turned out to be of higher priority than initially expected.

Diffracted low-energy electrons are highly susceptible to any stray fields leaking out of the electron

gun or the support. In the presence of these fields, the diffraction pattern is strongly distorted,

and the observable k-space is significantly reduced at short gun-sample distances (several 100µm).

Hence, electrical shielding should, on the one hand, fully suppress any stray fields, while also only

marginally increase the front diameter.

One major issue intrinsic to the FIB technique concerns the deposition of platinum, which is

necessary for the building process and electrical connections. During the deposition procedure,

a small needle is positioned near the sample, through which a precursor gas is funneled into the

vacuum chamber close to the sample. In order to grow a conductive connection, this precursor gas is

locally cracked via intense secondary scattering that is induced by high-voltage ion beam irradiation.
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The radius of this deposition process lies in the range of several tens of micrometers, resulting in

a large conductive metal film that interconnects all electrodes of the gun and the conductive metal

strips on the glass support. Additionally, the problem is exacerbated when adsorbed remains of

the precursor gas are cracked by the impact of the scanning electron beam. In order to reduce the

effect of this emerging platinum halo on the sample, the dose of the incoming electron beam during

each transfer step was reduced as much as possible, and the vacuum chamber was vented after every

transfer step to remove any adsorbed precursor gas. Moreover, at crucial areas, the platinum halo

was removed via ion-beam etching to electrically disconnect all electrodes and metal strip lines.

Despite the efforts to minimize the impact of platinum halo, the achievable breakdown voltages for

this device are drastically decreased by at least half compared to the raw support (≈ 1000 V), and

the electrical robustness is significantly lowered.

The third point introduces very specific requirements on the multi-layer support as well as the

subsequent photolithographic fabrication process (see also Fig. D.1). Firstly, a very thin substrate

(∼ 70 µm) minimizes the shadowing of the back-diffracted electrons, but complicates the handling

during lithography and strongly reduces the mechanical robustness of the final device. Secondly, to

ensure a minimal propagation distance between gun and sample, the metallic contact lines should

converge in a small surface at a corner of the substrate. However, while lithography, in general, is

an ideal tool for producing complicated nanostructures on a surface, it underperforms on edges and

corners of substrates. To work around this issue, the lithographic process is carried out away from

the edge of the substrate, and the substrate is cleaved as the final step. To this end, predetermined

breaking lines of roughly half the thickness of the substrate are sawed into the glass support prior

to the lithographic process step. However, this makes the glass substrates much more fragile and

drastically complicates the handling during lithography. Although the cleaving procedure typically

produces clean edges, their exact position varies on the order of several tens of micrometers,

sometimes removing large parts of metallic strip lines.

The kinds of materials suitable for a pulsed LEED gun are limited, since we operate in ultra-high

vacuum conditions. Specifically, very low outgasing rates are crucial to avoid contamination of the

sample surface during a ULEED experiment. While metals (Au, Ag, Ti, Cr, W, Pt) are usually

not problematic, the class of electrically insulating materials is restricted to glasses, ceramics and

certain polymers (polyimide and polytetrafluorethylen (Teflon)). Moreover, all materials have to

be thermally stable and keep a low outgasing rate for temperatures of up to 150◦ C since UHV

conditions are achieved via an intermediate baking-out process.

Taken together, the fabrication process comprises a large number of steps, after each of which

it is crucial to check the fabrication quality. Nevertheless, it is very challenging to fully avoid
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sharp conductive edges and to control breakdown voltages, among other things. Consequently,

some possibility of device failure remains. Combined with a total building time of several weeks,

including intermediate gun tests in the vacuum chamber, the feedback loop for improving the

production process is very long. During this thesis, the entire building process was completed about

25 times.

Future gun development might include improvements of electrical and mechanical robustness.

More specifically, increasing the shortage voltage threshold would allow for higher electron energies

and extraction fields. A wider electron energy range provides access to a wider range of a LEED

spectrum, and higher extraction fields around the tip apex have a positive effect on the achievable

pulse duration. It is also highly desirable to reduce the fragility of the instrument as it can be quickly

damaged during handling outside the vacuum chamber and during measurements when working

with the sample manipulator inside the vacuum chamber. In view of the above discussion, however,

mechanical stability and miniaturization are virtually opposing concepts and very challenging to

reconcile.

Figure 4.2: Illustration of (a) a compact microelectrode field emitter and (b) experimental setup. The

multilayer coating of a tungsten nanotip is an elegant way for miniaturization. Reprinted from [216], with the

permission of AIP Publishing.

Alternative Approaches We now discuss alternative ways to approach the task of fabricating

a miniaturized source for low-energy electrons. A valid starting point is to rethink the design

or topology of the device. The essential core elements determining the gun design proposed in

this work are a nanometric tip, disk electrodes and conducting strip lines on a thin substrate. A

very elegant design would combine the actual electrodes with the conductive metal contacts. A

straightforward version of such an approach was published by Lüneburg et al., presenting a highly
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compact microelectrode-integrated field emitter. Figure 4.2 shows an illustration of the device

that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed

by a several nanometers thick gold film. The extension of this approach, however, would involve

further conductive and insulating layers complicating the fabrication process on this curved surface

even further. Moreover, in a back-reflection geometry, an efficient shielding is very important and

probably challenging to achieve for this design.

Figure 4.3: (a) Micrograph of the double-gate single nanotip field emitter device (top view). The scale bar

denotes 1 µm. (b) Schematic illustration of the device, cutout of the side view. Characterization data in the

field emission mode (c) and (d). Reprinted from [255], with the permission of AIP Publishing.

While Lüneburg’s approach leans towards the topology determined by the nanometric tip, a different

approach by Lee et al. focused on a design in the plane. As illustrated by Figure 4.3a and 4.3b,

the device consists of a nanotip field emitter and two gates combined in a multilayer stack. The

advantage of this design is that it inherits the strengths of lithography, including fabrication of

well-defined nanostructures, reproducibility due to standardized process steps, and the capability to

produce large numbers of devices simultaneously. There are considerable drawbacks of this design,
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however, for diffraction in a backscattering mode. Firstly, in this geometry, it is challenging to align a

fs-laser onto the nanotip emitter for pulsed operation. Secondly, the device should be positioned at a

corner of the substrate in order to minimize the shadowing of backscattered electrons. As discussed

above, producing high quality nanostructures at edges and corners is a weakness of lithography.

Figure 4.4: Fabrication of metal nanostructures using 3d laser printing. Lithographic process including

the fabrication of a template and the controlled growth of metal structures (left). Micrographs depicting

high-quality gold helices in a large regular pattern (right A-C). From [256]. Reprinted with permission from

AAAS.

Recently, it has been shown that lithography can also be performed in three dimensions by means

of laser nanostructuring yielding outstanding resolution and precision [257]. The underlying mech-

anism is a multiphoton absorption process which can be used to drastically change the solubility of

a photoresist in a very confined volume and thereby build structures on the scale of the light focus.

To this day, however, this direct laser printing technique can only be used to process non-conductive

polymers preventing direct access to 3d metallic nanostructures. A seminal work from Gansel et al.

extended the approach of laser nanostructuring and combined it with electroplating, achieving metal

structures of unprecedented quality on the nanometer scale [256], as shown in Figure 4.4. More

specifically, a laser beam writes helix shapes into a photoresist creating a template on a thin indium-

tin oxide layer (see 4.4 left). Subsequently, by means of electroplating, gold is grown starting from

the conductive layer and filling the void cavities of the negative template. As depicted in Figure 4.4

A-C, high-quality gold helices of about 1 µm diameter are grown on the substrate in a highly regular

pattern. The challenge of this technique, however, lies in the control of the process parameters for

fabricating the template and growing the metal structures. For a miniaturized electron gun, the weak
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points of the procedure may concern the growing of a nanometric tip as well as the minimization of

surface roughness to avoid field emission from sharp edges when voltages are applied.

Besides miniaturization of the gun, there are further prominent strategies available to obtain

short electron pulses at the sample plane. For example, radio-frequency electron pulse compression

- or temporal refocusing - has been successfully employed for electron beams in the keV-regime to

yield sub-100fs electron pulses [258, 259]. Figure 4.5 illustrates the basic principle of this technique,

which is based on a dispersed electron pulse passing trough a time-dependent electric field. The

top row shows the instantaneous state of the field and the position of the electron pulse, whereas

the bottom row illustrates the momentary phase-space distribution. In the course of stage 1 through

3, the transient electric field inside the cavity flips the configuration in phase space, such that fast

electrons at the front of the pulse are decelerated, and slow electrons at the back of the pulse are

accelerated resulting in an overcompressed pulse. In stage 4, the electron pulse freely propagates

towards the sample and reaches its state of minimal longitudinal (z-direction) extension at the sample

plane (stage 5). The temporal focus length can be tuned via the amplitude of the cavity field. A

main challenge of this approach is a frequency- and phase-stable operation in order to minimize

jitter and, as a result, the achievable pulse duration.

1 2 3 4 5

Figure 4.5: Radio-frequency electron pulse compression. A sequence of five states illustrates the momentary

electron position and field (top row) as well as the phase space distribution (bottom row). It allows for

temporal refocusing and, as a consequence, ultrashort electron pulses in the sample plane. Adapted from

[260].

In a separate project, we pursue this alternative strategy as it may allow us to achieve low-energy

electron pulses with subpicosecond duration when combined with the microgun. Additionally, a

major advantage lies in an increased temporal focus length which would result in a larger gun-sample
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distance. This could strongly facilitate the handling during the experiment.

A third avenue, distinct from gun miniaturization and pulse compression, incorporates a concept

from low-energy electron microscopy (LEEM). Here, the electron source provides electron energies

in the keV-regime which are strongly decelerated in front of the sample down to electron energies

of a few eV. In a setup with a pulsed electron source (see 4.6), this strategy is very beneficial since

higher electron energies prevent the pulse from broadening. However, as Figure 4.6 suggests, this

type of approach affects the entire geometry of the experiment. While an ultrafast implementation

of LEEM would allow for time-resolved real-space imaging of surface dynamics, at this point, it is

unclear whether the diffraction mode of such an instrument could match the momentum resolution

of ULEED. Nonetheless, a spatial resolution of few nm in an ultrafast LEEM setup would enable

nanodiffraction on a picosecond and potentially even femtosecond time scale. However, a detailed

discussion of this new type of experiment goes beyond the scope of this section.

magnetic 
prism

detector

laser-driven gun

sample

electron pulse

deceleration
excitation

pulse

Figure 4.6: Sketch of a LEEM with a pulsed source.

4.3 CDW-related Prospects

The time-resolved study of the incommensurate phases of 1T-TaS2 with ps-resolution, presented in

Chapter 3, highlighted the role of CDW-coupled excitations on the order parameter. Other aspects

of CDW fluctuation modes require further investigation and will be briefly discussed.

Diffuse Scattering An interesting aspect concerns the question of diffuse scattering caused by

phase fluctuations. According to Wang et al. [151], low-energy phasons scatter into the vicinity of

satellite peaks and dominate the spot profile exhibiting a dependence q−2 of the phason momentum.

Based on this work, Minor et al. investigated spot profiles of 1T-TaS2 using x-ray diffraction in

order to measure the phason thermal-diffuse scattering. In their measurement, they analyze satellites

close to the main peaks (010) and (030) in the IC phase. Line profile fits provide phason velocities
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of propagation in all directions, showing a strong anisotropy that is expected for layered compounds.

However, comparing a model with such a high number of fit parameters to the experiment in a

meaningful way, requires high quality data, which is very challenging to achieve. This is necessary

to reliably rule out other mechanisms affecting the line shape, e.g. CDW defects or non-CDW

phonons. In the time-resolved study presented in this work, we observe a significant difference

between the peak and integrated intensity of satellite reflexes for the highest fluence. We interpret

this reshaping as the creation of CDW defects since low-energy phasons should be also observable

for lower fluences. In order to observe a potential phason ’halo’ very close to a satellite spot, we

believe that a higher momentum resolution of the electron gun is necessary.

While Wang et al. [151] proposed an explicit expression for the line shape of a satellite

reflex, equation 1.72 offers a more general approach to predict the impact of amplitude and phase

fluctuations on the diffuse background. From a theoretical point of view, the main challenge for

reliable predictions, however, lies in the accessability to the phonon population nj ,k , dispersion

ωj ,k and polarization ê j ,p,s. In order to obtain the phonon dispersion and polarization of complex

materials, it is usually necessary to use sophisticated computational techniques [176, 177, 234].

For CDW systems, this is exceedingly challenging because the coupling between electronic and

vibrational degrees of freedom, the phonon softening and the incommensurablity have to be taken

into account. In equilibrium, reasonable assumptions can be made for the phonon population nj ,k .

However, in a non-equilibrium scenario, it is a difficult task to model the distribution of phonons

because the number of populated phonons at different momenta in different branches changes over

time (see also Fig. 1.21). In ultrafast experiments [261–263], a commonway to predict the dynamics

of phonon populations is given by the framework of multi-temperature models which, however, often

simplify the problem by using equilibrium distributions as approximation.

Impact of Pinning Further investigation concerns the effect of pinning that breaks the translation

invariance in incommensurate CDW systems and introduces a finite gap in the phason spectrum

[71]. This effect has mostly been studied in x-ray experiments [264, 265] and electric transport

measurements observing a nonlinear conductivity [71, 99, 266]. However, little is known about

how pinning affects the ultrafast dynamics of collective modes in a diffraction pattern. Future

experiments could therefore study the impact of impurity pinning, for example, in an intercalated

system [265] or commensurability pinning in the commensurate phase of 1T-TaS2. A comparative

study could reveal the influence of pinning on the relaxation dynamics of fluctuation modes.
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Exotic Phases 1T-TaS2 is known for its unique properties offering a wealth of phases and phase

transitions. Stojchevska et al. reported about a ’hidden’ state in 1T-TaS2 that emerges from the

commensurate phase at very low temperatures and under intense femtosecond laser illumination [7].

In comparison to the other phases of the system, this non-equilibrium state exhibits a large drop of

electrical resistance, strongly modified single-particle and collective-mode spectra, and a marked

change of optical reflectivity. With the considerably improved temporal resolution of ULEED, great

insight could been gained into the unique fluctuation modes of this exotic phase. It should be noted,

however, that the measurement of the phase transition necessitates a modified pump-probe scheme

(see Fig. 3.1) because of the state’s long life time in the order of tens to hundreds seconds [232].

Solutions to this problem could be significantly increased repetition rates or intermediate ’erasing’

pulses.

Furthermore, as has been shown by Vogelgesang et al. [14], the phase ordering kinetics of

the NC-IC phase transition are governed by the dynamics of CDW defects. An interesting open

question concerns the nature of the transient ensemble of CDW defects in the IC phase after the

phase transition that potentially has characteristics of a so-called hexatic phase [267]. This phase has

a specific order defined by characteristic translational and orientational correlations of the involved

CDW defects. In 1T-TaS2, a hexatic phase has been artificially created via Nb impurity doping

and was studied by means of scanning tunneling microscopy [268]. In diffraction, the CDW defect

correlations of the hexatic phase should be directly observable in the radial and azimuthal broadening

of satellite reflexes [269] (see Fig. B.1). Additionally, since CDWdefects can be seen as CDWphase

singularities, phase fluctuations are expected to play a relevant role which remains to be clarified.

Further Sample Systems Generally, a strength of the presentedULEED technique is its sensitivity

to the first few layers of a material. While, in this work, the surface of the layered 1T-TaS2 bulk

structure has been studied, including its complex interlayer couplings, the study of CDWdynamics in

a single-layer should yield interesting complementary results. In a monolayer, the lack of interlayer

coupling, strongly influences electron correlation [270, 271] and affects the formation and properties

of the charge-density wave. Along this line, interesting CDW sample systems comprise different

types of TMDC monolayer and heterostructures [160, 271, 272], or quasi-1d charge-density waves

on semiconductor and metal surfaces [43–45]. Recently, the ultrafast dynamics of self-assembled

atomic indium chains on Si(111) have been studied in our group [48] featuring the coherent control

over the metal-insulator structural phase transition in this system. Combined with the enhanced

temporal resolution, developed in this work, more insight can be gained about the structural modes

that drive this phase transition.
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Apart from the class of TMDCs, molybdenum bronzes [11, 37, 273] and tellurides [15, 38, 193,

274] have been subject to intense investigation, featuring a large set of different collective modes and

highlighting the role of fluctuations in phase transtitions. Furthermore, CDWs in cuprates hosting

high-temperature superconductivity constitute an interesting field of study [275]. The underlying

mechanism for the emergence of both superconductivity and charge-density waves has a common

origin in the coupling of electrons to the lattice [273, 276]. The role of CDW fluctuations in

cuprates has been crucial for the mutual relationship between these two effects and has not yet

been full understood [277]. More specifically, it is still unclear how these fluctuation characteristics

influence the superconducting state and if they compete or even enable it [275].

Interesting parallels could be drawn to other types of incommensurate systems. While CDWs

exhibit displacive incommensurateness, intergrowth or overgrowth structures, such as rare-gasmono-

layers (Ar or Kr) on graphite or Hg3−δAsF6, show incommensurateness between two different atomic

lattices [69, 116]. Specifically, rare-gas monolayers have been subject to extensive experimental as

well as theoretical studies [278–288]. These systems are particularly known for phase transitions

between commensurate and incommensurate phases, as well as melting transitions to fluid phases

which occur only in low-dimensional systems [80].

4.4 Concluding Remarks

In summary, this work includes important contributions in the field of ultrafast dynamics and surface

science. The development of a new ultrafast electron gun has significantly shifted the limits of the

achievable temporal resolutions of the ULEED technique and considerably extended the class of

observable dynamic processes. In addition to the technological progress, new insights into the

structural dynamics of a broken-symmetry state could be gained by investigating the prototypical

CDW system 1T-TaS2. In conclusion, ULEED paves the way to the investigation of an incredible

wealth of previously inaccessible dynamics and represents a versatile tool to study systems in reduced

dimensions, such as layered materials and adsorbed monolayers.
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α angle

γ reciprocal domain size

∆ complex order parameter, electronic gap

δ amplitude fluctuation, Kronecker delta

ε energy of a state

ε0 dielectric constant

η renormalized amplitude

θ angle, theta function

θD Debye temperature

λ wave length, dimensionless electron-phonon coupling constant

µ chemical potential, atomic mass

ξ integer

ρ charge density

σ width of distribution

τ time constant

Φ pair correlation function

φ potential, angle, complex amplitude

ϕ phase of complex order parameter, phase fluctuation

χ static response or susceptibility

ψ order parameter

ω frequency

Å Ångström

A scattering amplitude

A PLD amplitude
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a lattice constant or vector

a∗ reciprocal lattice constant or vector

b, b+ bosonic ladder operators

b superstructure lattice vector, Burgers vector

C constant

c, c+ fermionic ladder operators, constant

E energy

Ek single electron dispersion

e electron charge

ê phonon polarization vector

F free-energy, structure factor, fluence

f Fermi function, atomic form factor

G reciprocal vector, lattice factor

g electron-phonon coupling constant

g lattice vector

H Hamiltonian

~ reduced Planck constant

I intensity

i imaginary unit

J intensity, Bessel function

k wave vector

kF Fermi wave vector

kB Boltzmann constant

L equilibrium lattice site

M mass of atom, Debye-Waller exponent

m mass, integer

m∗ effective mass

N number density of atoms, integer

n electron density, integer, defect density, population

O higher orders in expansion

p number of conduction electrons per atom

Q wave vector

q wave vector

δq wave vector
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R postion vector of unit cell

r position vector

s scattering vector

T temperature, instrumental response function

t transfer function, time

U Coulomb energy, atomic potential

u lattice displacement

V atomic potential, exchange energy

v effective potential

vF Fermi velocity

W Debye-Waller exponent

x position in space

z position

ARPES angle-resolved photoemission spectroscopy

BCPS molecular compound (ClC6D4)2SO2

C commensurate

CCD charge-coupled device

CDW charge-density wave

CMOS complementary metal oxide semiconductor

ERC european research council

eV electron volt

FEM finite element modeling

FIB focused-ion-beam

fs femtosecond

FWHM full-width at half-maximum

GAUSS Georg-August University School of Science

GDA Gaussian displacement approximation

GPA Gaussian phase approximation

IC incommensurate

LEED low-energy electron diffraction

LEEM low-energy electron microscopy

mbar millibar

mm millimeter
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µm micrometer

MCP multi-channel plate

NC nearly commensurate

nm nanometer

NMR nuclear magnetic resonance

NOPA noncollinear optical parametric amplifier

OPA optical parametric amplifier

PLD periodic lattice displacement

ps picosecond

RHEED reflection high-energy electron diffraction

rms root-mean-square

TEM transmission electron microscopy

TMDC transition metal dichalcogenide

TTF–TCNQ tetrathiafulvalene-tetracyanoquinodimethane

UHV ultra-high vacuum

ULEED ultrafast low-energy electron diffraction

UTEM ultrafast transmission electron microscopy
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NC CDW phase

t < 0 ps

a

b c d

t < 0 ps

100 eV

t = 2 ps t = 500 ps

NC spot IC spot

Figure B.1: Preliminary data on the ultrafast NC-IC phase transition 1T-TaS2. (a) Diffraction pattern of

NC phase for negative delay at room temperature. (b)-(d) Time frames for a fluence of F = 2.7 mJ/cm2,

including a single main and six first-order satellite spots. During the phase transition, the intensity of NC

spots rapidly decreases paralleled by the emergence of azimuthally broadened IC satellite spots. The position

and approximate size of NC (yellow) and IC (violet) reflexes are indicated by rectangles.
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C | FEM of Sup-Ext-Unit

Figure C.1 shows maps of transmission, pulse duration and normalized emittance for varying

suppressor and extractor voltage. The electron trajectories were obtained by the same method,

discussed in Chapter 2. All three maps exhibit a common feature in the bottom left corner. This

feature defines a diagonal line (violet line), refered to as cut-off line, below of which no or few

particles are transmitted and, accordingly, the pulse width and the emittance are not defined. More

specifically, in the triangular shaped area, the electric field around the apex of the nanotip (see 2.2b)

flips sign and electrons are accelerated back to the tip’s surface after emission (see Fig. C.1d).

Accordingly, parallel lines correspond to different sign-change-positions, either being in front of the

tip’s apex or behind. Moving along a line in the map, the strength of the extraction field changes,

with stronger fields towards the top left.

As shown in Fig. C.1a, transmission values are high (55 − 65 %) close to the cut-off line,

while decreasing with distance. The transmission percentage refers to the total number of calculated

electrons per voltage pair (around 50k). For the applied voltage intervals, the overall pulse duration

lies at 1 ps or below. The smallest values of around 200 fs can be achieved near the cut-off line.

However, directly on the line, the pulse width strongly increases to values around 400 fs because

some particles are already subjected to a decelerating field (see Fig. C.1d) which broadens the

position distribution along the gun axis.

The emittance is a useful quantity for describing the quality of electrons beams [289]. The

normalized root-mean-square (rms) emittance is defined as

ε̃n =
vz/c√

1 − (vz/c)2
√
〈x2〉〈x ′2〉 − 〈xx ′〉2 (C.1)

where vz is the electron velocity in along the gun axis, c is the speed of light, 〈x2〉, 〈x ′2〉 and

〈xx ′〉2 are the moments of the electron distribution in trace space, a plane perpendicular to the beam

propagation [289]. The two first terms denote the standard deviations of position and slope, whereas

the third measures the correlations between the first two.

For the given set of parameters, the normalized rms emittance (Fig. C.1c) of the microgun lies
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in the range of about 100-350 nm mrad. This compares well to the experimental value of about

250 nm rad (see Chapter 2). The emittance varies strongly in close vicinity to the cut-off line,

whereas, for all other voltage pairs, it shows a rather weak dependence. The behavior near the

cut-off line is connected to the interplay between the sup-ext-unit and the following Einzel lens. A

strong collimation right behind the tip apex (Fig. C.1d) reduces spherical aberration of the following

Einzel lens since trajectories enter the lens close to the symmetry axis. For a more divergent beam,

particles distant from the axis suffer more significantly from aberration or are cut off by an electrode,

setting an upper limit for the emittance.
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Figure C.1: Electron gun modeling. Maps of (a) the transmission, (b) the pulse duration and (c) the

normalized radial emittance in dependence of suppressor and extractor voltage for an electron energy of

100 eV and fixed lens voltage of -180 V. All values are obtained in a plane 400 µm behind the ground

electrode. For each voltage pair, a number of 51480 trajectories were calculated. Transmission values lower

than 4000 particles were set to zero. The initial kinetic energy width was chosen to be σE = 0.5 eV. (d)

Trajectories (black lines) and local electric field for a voltage setting of (−100| − 190|0|180) V. Electrons

emitted on the side of the apex are strongly decelerated and bent towards the symmetry axis.
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Figure D.1: Technical overview. (a) Sketch of gun holder design. The holder is attached to a metal holding

strip that is mounted at the top of the vacuum chamber. The microgun support is inserted into the holder from

below where it is electrically contacted and held in position by metal clamps. (b) Exploded view of holder

showing individual components. The used materials include stainless steel, bronze and polytetrafluorethylen

(Teflon). (c) Micrograph of shielded microgun. White patches indicate charged areas by the electron beam.

(d) Sketch of support fabrication. Starting from a thin glass support, a multilayer stack is fabricated using

photolithographic techniques. It comprises metal strip lines for voltage contacts as well as the electrical

shielding.
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E | Diffraction Image Processing

This section describes the structure of measured data sets and provides an insight into the image post-

processing procedures including the correction of distortions in the recorded diffraction patterns.

Structure of measured data

In the context of this work, a run of the ULEED experiment is characterized by a number of

parameters, such as the specific CDW phase {IC, NC}, the electron energy {80 eV, 100 eV} and

the pump fluence {F1, F2, F3}. This results in a large collection of run data sets because almost all

parameter combinations were realized. Each measurement run consists of several loops. A single

loop is a stack of diffraction images in which one image corresponds to a given time delay (see Fig.

E.1). The measurement duration for a single loop is approximately one hour leading to a total run

time of several hours. In order to improve the signal-to-noise ratio, loops within a measurement run

run

loop 1

t1

t2

t3

Stack of diffraction images

loop 2 loop 3 ..

Figure E.1: Structure of a data set. Measurement run (IC-CDW of 1T-TaS2 at an electron energy of 80 eV

for a fixed fluence) containing three loops. A loop consists of a stack of diffraction images in which each

frame corresponds to a specific time delay {t1, t2, t3. . . }.

are merged into a single one using the following procedure. In a first step, a median filter applied

to each individual diffraction image lowers the noise as it removes pixels with very large or low

values (hot and dead pixels). Secondly, at a fixed time delay, diffraction patterns for loops n > 1 are
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compared with the diffraction pattern of the first loop and corrected for small shifts that occur due

to charging effects of the electron gun or sample drift. These shifts are usually small between two

neighboring loops, but larger between loops that are temporally further apart. Thirdly, for a given

time delay, diffraction images of all loops are averaged with weights given by the summed total

intensity of each individual image. This collapses all loops to a single stack of diffraction images.

Correction of image distortions

In general, diffraction techniques provide access to the reciprocal lattice of a crystal structure

by projecting the diffracted far field onto a detector. In LEED, the radius of curvature of the

associated Ewald sphere is small which typically results in large scattering angles for low-order

beams. Commonly, a detector shaped as a spherical cap facilitates the detection of the diffracted

beams and allows to directly map the Ewald sphere. The diffracted image on the sphere is then

projected onto a flat detector using a suitable camera system (see Fig. E.2a). Any deviation from

this idealized scheme leads to geometric distortions in the final image (see Fig. E.2b-d). In our

experimental setup, geometric distortions are introduced by a planar electron detector, non-normal

beam incidence on the sample and inadequate alignment of detector and sample plane. A second

source of distortions enters through electromagnetic fields which alter the electron’s trajectory.

These fields include a weak decelerating electrostatic field at the front plate of the MCP to filter out

electrons with an energy lower than approximately 15 eV, and a rather inhomogeneous magnetostatic

field introduced through a strong magnet attached at the side of the UHV chamber in order to control

the position of the diffraction pattern on the planar detector. The combination of geometrical and

field distortions (see Fig. E.3b or E.4c) strongly complicates the correction process.

In the following, a number of approaches for image correction are briefly presented. All but

the last one of these methods are based on the minimization of a cost function U that varies with

predefined length given by reflex positions and prior knowledge of the materials system. A global

minimization algorithm (MATLAB: Simulanneal, GobalSearch) searches for the global minimum

in the high dimensional landscape of U to find the optimal parameters of a correction function that

removes the distortions in the image.

Polynomials In the first approach, the correction function is given by a radially symmetric poly-

nomial

f (rs) = (rs − rc) + a (rs − rc)
2 + b (rs − rc)

3 + c (rs − rc)
4 + d (rs − rc)

5 . . . (E.1)
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where the center of distortion is given by rc and the vector rs denotes a point in the image, e.g. a

diffraction reflex. In optics, these simplistic polynomials are often used to correct for barrel and

pincushion distortions. The parameters a, b, c and d are determined by minimizing the cost function

U =
∑
i

((
dm,i

dsat ,i
− frat

)2
+

(
d̄m − dm,i

)2
+

(
d̄sat − dsat ,i

)2
)
. (E.2)

The quantities dm,i and dsat ,i denote the distances between selected main and satellite diffraction

reflexes, respectively, and d̄m and d̄sat their average values. The constant frat is the known ratio

between main lattice and CDW periodicity. The cost function U approaches its minimum when

the selected distances approach their average values and their ratio of the distances approaches the

constant frat .

Although this method partially corrects geometric distortions in the diffraction pattern, it is not

suitable for including non-radial and very localized distortions in the image. Moreover, to correct

for larger distortions at the edge of the image an increasing number of polynomial orders has to

be included. An alternative approach that allows to extend the set of representable functions, is

to decompose the distortion field into gradients of Zernike polynomials Zm
n (ρ, ϕ) which are often

used in optics and imaging [290]. However, in order to properly represent a complicated, non-radial

distortion field, high-order Zernike polynomials have to be taken into account. This results in strong

divergences at the edges of the distortion field which are challenging to control.

Gnomonic projection The next approach considers the actual geometry of the backscattering

diffraction experiment, which consists of the conically diffracted beam from the sample and the

projection onto a planar detector. In the field of map projections [291], this type of projection is

called gnomonic (see Fig. E.2b-c). This projection leads to strong distortions at the edges of the

image because points on the sphere with high latitude are projected far from the center of distortion

in the detector plane. If the north pole and the tangent point do not coincide the additional tilt

results in a non-radial distortion field (see Fig. E.2c). The coordinates of the tangent point and the

radius of the sphere determine the distortion field. These parameters are obtained in a similar way

minimizing the above mentioned cost functionU. More specifically, selected spots in the diffraction

pattern (Fig. E.2e) are back-projected onto a sphere (Fig. E.2f) according to a gnomonic map. New

spot coordinates (red dots) are obtained by the orthographic view onto the north pole (Fig. E.2g).

The minimization algorithm determines the optimal gnomonic projection and leads to a corrected

diffraction spot coordinates shown in Figure E.2h.

In an extended version of this approach, a decelerating homogeneous electric field is taken into

account which leads to parabolic electron trajectories (see Fig. E.2d). This alters the projected
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positions on the sphere. To determine the new positions, the emission angles in the sample plane are

determined analytically for each diffraction spot, which are then used to guide the particles straight

onto the sphere according to the angles obtained. The final new spot coordinates follow then from

the intersection with the sphere and the orthographic projection facing the north pole. This method

leads to additional minor corrections compared to the previous version.

Although both methods lead to a overall slightly less distorted diffraction pattern, some areas,

especially in the upper half of the image, still show significant deviations (see Fig. E.2h).

Standard LEED 
geometry

a cb d

e f g

h

Spherical 
detector

planar
detector

Gnomonic
projection

Tilted gnomonic
projection

Tilted gnomonic
projection

+ electric field

IC-CDW, 80eV

spot selection

Tangent point

View direction
onto north pole

Center 
point

Spots on 
sphere surface

Raw diffraction data points
Gnomonic-orthographic projection

x

y

x

y

x
yz

Figure E.2: Distortions caused by gnomonic projections. (a) Standard LEED geometry including a hemi-

spherical electron detector. (b) A planar detector leads to a gnomonic distortion of the diffraction image.

(c) An additional tilt of the emission cone results in a non-radial distortion. (d) A decelerating electric field

leads to parabolic electron trajectories adding further distortion to the image. (e) Distorted diffraction pattern

of the IC phase of 1T-TaS2 at an electron energy of 80 eV. Black circles indicate the positions of diffraction

reflexes that are used in the correction procedure. (f) Sketch of the gnomonic map showing the diffraction

pattern in the detector plane and electron trajectories (violet straight lines) that project coordinates on a half

sphere (red dots). The illustrated gnomonic projection in (f) and (g) is an example and does not correspond

to the optimal one determined by the algorithm (shown in (h)). (g) View on the north pole of the half sphere

shown in (f). The orthographic projection yields the new set of corrected reflexes positions (red dots). (h)

Comparison of diffraction spot positions obtained from the measurement (black dots) with the new positions

given by the optimal gnomonic projection (red dots).
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Figure E.3: Image correction via FEM. (a) Traces of particles propagated in an electromagnetic field using

FEM. The color scale indicates the particle’s velocity. The black and green arrows denote the magnetic and

electric field, respectively. (b) Distorted diffraction pattern of the NC-phase of 1T-TaS2 at an electron energy

of 100 eV. Colored hexaga serve as guide for the eye. (c) Undistorted image using the correction map obtained

from the FEM model.

Image correction via FEM In a more comprehensive model, the geometry of the experiment as

well as the decelerating electric field and the inhomogeneous magnetic field are considered. As

illustrated in Fig. E.3a, particles (zero beam and first-order main lattice) are conically emitted

and propagate in an electromagnetic field towards a planar detector using finite element modeling

(Comsol®). The final positions on the detector are compared to the ones obtained frommeasurement

yielding a specific cost function. Assuming a hexagonal diffraction pattern (see Fig. E.3b), the

first-order main lattice beams are emitted each separated by an angle of 60◦ in the plane. The free

parameters in this model are the field strength of the magnetic dipole field, the opening angle of the

emission cone, the two tilt angles of the cone, the azimuthal rotation angle of the first-order beams

and the x- and y-position of the center of the diffraction pattern. These optimal parameters are

again obtained by minimizing the associated cost function. In the corrected image (see Fig. E.3c),

it is apparent that the magnetic dipole field leads to a the strong vertical distortion of the diffraction

pattern.

Although the present method covers many features of actual experimental setup, it is important
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to note that deviations from the real field distributions are challenging to include and complicate

the full removal of all distortions in the diffraction image. More specifically, inhomogeneities in the

homogeneous electric field and the magnetic dipole field as well as local electric fields around the

electron gun are challenging to consider in this model.

Distortion 
correction

IC-CDW, 80 eV
a b

c d

(00)-spot (00)-spot

Figure E.4: Distortion correction via an interpolated vector field. (a) Diffraction pattern of the IC-phase of

1T-TaS2 at an electron energy of 80 eV. Blue circles indicate the positions of measured diffraction reflexes,

while red circles denote the exact spot positions given by the crystal structure. (b) Interpolated vector field

using vectors obtained in (a). (c) Distorted diffraction pattern. Colored hexaga serve as guide for the eye. (d)

Corrected image obtained by applying vector field given in (b).

Interpolation of correction vector field In the previous approaches, a minimization algorithm

was applied to find the optimal correction function within a specific class of parameter-dependent

functions. In this last method, the correction map is obtained from the full knowledge of the crystal

structure and the positions of the diffraction spots determined by the measurement. To this end,
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diffraction reflexes are selected in a measured diffraction image (see Fig. E.4a, red dots) that are

then moved to the positions of the known structure (Fig. E.4b, blue dots). The full correction vector

field (Fig. E.4c) that maps the intensities of all intermediate coordinates in the diffraction image to

their new positions, is obtained via interpolation using biharmonic splines (MATLAB® 4 griddata

method). The application of the correction vector field on the distorted diffraction image (Fig.E.4c)

leads then to the final undistorted image shown in Fig. E.4d.

The grade of the corrected image depends on the number of given diffraction reflexes in the

image that can serve as support points in the interpolation algorithm. In comparison to the previous

methods, it is important to point out that the correction via an interpolated vector field is only

applicable if the crystal structure of the material has been fully resolved. Since the crystal structures

of all CDW phases of 1T-TaS2 are known, the interpolation method was used troughout this work

to correct the record the measured diffraction images.
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