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Chapter 1
Introduction

The human brain is considered by many to be the most complex object we know. It
enables us to perceive, to think, to feel and to interact with the world. Understanding
how the brain works broadens our perspective on who we are, may provide us with
better treatment options for mental and neurological disorders and may enable new
technologies in the field of artificial intelligence. At the same time understanding the
brain is a daunting task. The brain encompasses a massive amount of interacting
entities operating on several spatial and temporal scales. While there is relative good
experimental access to small spatial scales on the level of cells and cell compartments
as well as on the scale of the whole brain, e.g. through neuro-imagine techniques
such as fMRI or EEG, the mesoscopic scale concerning the neural network level is
still relatively difficult to access [69, [78]. In theoretical neuroscience researchers often
create complex models consisting of larger networks which produce a broad range of
complex dynamical behavior [12, 36} 51} 59, (76} [88], [89]. The neural units of these net-
works typically involve features that are specific to biological and especially neuronal
systems and not common to systems of classical physics. As a result their dynamical
implications are less studied and less understood.

The goal of this thesis is to further our understanding of the fundamental dynamical
properties of neural features such as adaptation and pulse-coupling with and with-
out delay. We ask, which qualitative new dynamics can arise, if these features are
included into minimal dynamical systems. We approach this question by studying
three example systems and find remarkably rich dynamics.

What is a Good Model?

A good model is simple. A good model, just as in every science, is a model that
is complex enough to produce the targeted empirical observations while being as
simple as possible. Already Occam in the fourteenth century [9] proposed the idea
of choosing the simplest of all models which can explain the behavior. His idea was
that the simplest model with the least amount of assumptions necessary to explain
something is more likely to be true. The more assumptions and complexity is added,
the more likely it is that one adds a wrong assumption, which renders the model
wrong.

There is another reason for choosing the simplest model: In a trivial sense the
best model to explain something is the object itself - the brain is the best model for
the brain. However, even if somebody manages to read out every detail of a brain,
already a daunting task, and produces a gigantic computer simulation which produces
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output just as a real brain would, the question arises what has been learned (see also
’human brain project’ [53]). It seems the person has succeeded in including everything
necessary to emulate a brain, so no essential ingredient was forgotten. At the same
time, this model would not provide us with the satisfying feeling of understanding how
the brain works. We are not provided with a mechanism or principle that produces
the observed complexity but left with the complexity itself. Given such complexity of
brain structure and dynamics one might have the intuition that the building principle
of the brain must be complex in itself. We would like to challenge this intuition: First,
there are many example systems which have demonstrated that a set of extremely
simple rules is sufficient to produce remarkably complex behavior. An early example
of this kind is Langton’s Ant [92] (and turmites as systems following the same spirit)
and chaotic systems such as the Lorenz or the Roessler attractor [49] [72]. Langton’s
ant describes an agent, the ant, living on a square lattice. Each time the agent reaches
a white cell, it turns 90 degrees, flips the color of the cell to black and moves one step
forward. If it reaches a black cell, it moves 90 degrees to the left, flips the color of
the cell to white and moves one step forward. Despite these extremely simple rules
the emerging movement does not seem to settle into any graspable pattern for a long
time. The Lorenz and the Roessler attractor are both systems of only three simple
ordinary differential equations. The resulting behavior of each system, even though
fully deterministic, appears to be random. Second, the brain has a remarkable ability
to self-organize. Examples that show that the brain’s organization is not hard-wired
include the visual system taking over other functions not related to vision in congenital
blind humans (see reference [40] for a review). We have shown that self-organizing
systems can show very complex dynamics arising from extremely simple rules and
that the brain has large self-organizing capabilities. Given these two arguments it
is reasonable to assume that the complex behavior of the brain may originate from
much simpler principles. While not a given, there is hope that these principles are
simple enough that they can be grasped by our human intellect.

The goodness of a model depends on the research question. Theoretical neuro-
science aims at developing models to understand behavior observed in the brain. This
behavior can range from specific measurements of single cell spike trains or membrane
voltage fluctuations on the small scale to large scale brain measurements like fMRI
or EEG data or human behavior. The empirical phenomenon to be explained may
also vary on the time scale from a few milliseconds (e.g. the generation of spike, large
voltage fluctuations in membrane potential) to seconds and beyond (e.g. fMRI data
or human behavior).

There is not a single good model for the brain, because the goodness of the model
does not only depend on its simplicity but at the same time on the observable to be
explained. A detailed model of a single neuron may be a good model for explaining
membrane potential fluctuations across the membrane, whereas at the same time it
may be a bad model for large scale observables, such as EEG data. To understand the
principles behind EEG data a detailed neuronal model may need large resources for
simulation. And more importantly the basic principles responsible for the targeted
observable cannot be dissected from additional ingredients included in the model but
not key to the observed behavior. While the model can be useful to make predictions



it lacks the beauty of providing a moment of insight, the feeling of reducing something
complex to something much simpler to grasp.

The mesoscopic scale of the brain is difficult to access empirically. Often models
use entities from a more fine grained level of resolution and combine them in a simple
way to produce the observed behavior on a more coarse grained level of resolution.
This works well if the gaps between the resolutions that can be experimentally accessed
are not too large.

Neuroscience is a vast field ranging across several orders of temporal and spatial
scales. Whereas some of them can be accessed well experimentally, others still lack
good measurement devices.

There is relatively good experimental access to smaller scales such as single neurons
and subneuronal parts [78] and scales of the order of the brain as a whole, good meth-
ods to provide a direct window into the mesoscopic scale of larger neural networks are
rare [69]. Although, some methods have been developed (e.g. calcium imaging, multi-
electrode arrays). However these methods capture only a small subset of the network
components, they only sample a fraction of neurons or do not have any or very lim-
ited knowledge of the connectivity between neurons or other parameters are missing
[43, [75], [78]. This leaves the theoretical community with many degrees of freedom as to
how to design a neural network model producing the behavior observed at the larger
scale. Accordingly, many very different neural network models have been proposed
[13, 29, [88] and the field is far from converging onto a commonly agreed upon model
class. For example if one is interested in understanding the computational aspects
of the brain, it is not even clear whether the computation is done based on the level
of firing rates (e.g. [48]) or single spikes (e.g. [29]) or some combination. While the
task at hand seems daunting some proposed models provide hope, e.g. the balanced
state model [88] [89] explains essential behavior observed in neural networks, including
self-sustained irregular firing, while being relatively independent of the actual neural
model used, effectively reducing the degrees of freedom because many different neural
models converge to the same qualitative behavior.

The emergent behavior of neuronal networks in the brain is complex, eventually
it seems to be the basis for everything we perceive, think, feel or do. This has lead
to many neural network models, consisting of several neurons producing complex be-
havior. However the neurons in these networks often are already complex themselves
including dynamical features such as adaptation, delay and pulse-coupling [56]. This
is justified experimentally in the sense that real neurons themselves show dynamically
very complex behavior [5 20, 22 33]. As demonstrated above, the best model is not
necessarily the one including all the complexity of the units used as building blocks for
the model. Instead, if one aims at understanding the fundamental principles behind
observed behavior reducing the model as far as possible to get to the core ingredients
necessary for the to be explained behavior may proof beneficial. When considering
larger networks showing complex behavior, it is not clear whether to attribute the
complexity to network effects or to the complexity of the neural model used as build-
ing blocks of the network. Here we contribute to the dissection process by analyzing
the effects of dynamical features often included into neural models used in larger scale
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neural networks.

While these features are very common to models in neuroscience or other biological
systems, they only rarely occur in systems of classical physics. Dynamical system
theory is concerned with the relation between equations providing a rule of how vari-
ables change in time and the topological structure of the resulting trajectories in phase
space (the space spanned by these variables) [82]. It was developed while studying
physical systems, such as planetary movements, and has become very successful in
describing such systems. However, dynamical features common only to biological,
in particular neuronal, systems, are far less studied and far less understood from a
dynamical systems’ perspective.

In this thesis, we explore the dynamical properties of adaptation and pulse-coupling
with and without delay by considering three extremely simple systems including these
dynamical features and observe the complexity that these systems can produce from
a dynamical systems perspective.

Adaptation as a Neural Feature

Many models of neurons include adaptation |20} 23, 56]. The first system we consider
provides an example of a very simple adaptive system. Adaptation is not a formally
well defined concept, but there are systems that are generally considered to be adap-
tive, e.g. species changing their features as a result of environmental changes (famous
examples include Darwin’s finches, the peppered moth and bacteria becoming resis-
tant to antibiotics [91, 93]) or neuronal firing rates eventually reducing in response
to the extended presentation of a stimulus [23]. In both cases one entity optimizes
itself to better suit changes in the surroundings. In the first case the phenotype of a
species changes due to changes in the living environment optimizing survival. In the
second case neurons adjust their firing rate to changes in the baseline input, thereby
reducing energetically expensive spike generation.

In chapter 3 we study adaptation. We understand adaptation as the process of an
entity following the gradient of a potential to minimize energy expenditure within its
environment. At the same time the environment represented by the potential changes
on a slower time scale. We propose a minimal such system, that is fully described by
only two ordinary differential equations. The phase space is characterized by limit
cycles nested within each other. A proof for the limit cycle behavior is provided for a
simplified system showing the same qualitative behavior.

Interestingly, due to the system’s simple set-up it relates to other research fields
that are not concerned with adaptation but also converge onto similar systems or
equations. A discussion of the system in different contexts is provided at the end of
chapter 4.

Pulse-Coupling with and without Delay as a Neural Feature
The other two systems studied in chapter 4 and 5 focus on the effects of pulse-

coupling between network cells as opposed to interactions fully described by ordinary
differential equations.



Chemical synapses are the most common form of connection between neurons [94].
Typically, an action potential, a large fluctuation in the neuron’s membrane potential,
is generated at the soma, the cell body of a neuron. It then travels along an axon, a
cabel-like structure, to the axon terminals, the neuron’s outward connections to other
neurons. Here, at the presynaptic side of the synapse, the action potential leads to a
release of neurotransmitters, chemical messengers, into the synaptic cleft, a small gap
between the two connected neurons. These neurotransmitters reach the other side
of the synaptic cleft, cause ion channels to open, leading to a change in membrane
potential of the postsynaptic neuron.

In many neural network models each neuron is modeled as a single dynamical vari-
able describing the membrane potential. When the membrane potential reaches a
threshold a pulse is sent to all postsynaptically connected neurons. Each incoming
pulse to a neuron adds a predefined kernel to the total input. These kernels can vary
in shape, e.g. starting at zero and be fully differentiable (e.g. [38]) or include discon-
tinuities, delays or having the shape of a d-function (e.g. [5, B6, 5I]). Even though
pulse-coupling is very commonly used in network models in theoretical neuroscience
a systematic understanding from a dynamical systems perspective is missing [5], [38].
We argue in line with Kielblock et al. [38] that pulse-coupling removes restrictions
posed on possible trajectories in phase space allowing for richer dynamics as can be
obtained by similar systems described solely by ordinary differential equations.

In chapter 4 we consider an all-to-all symmetrically coupled phase-oscillator net-
work. Symmetries often produce rich dynamics [8, 111, 24, B0, [62, 81, 85]. While
Golubitsky et al. [25] established that such a system described by ordinary differ-
ential equations necessarily shows order conservation, Kielblock et al. [38] showed
that this is not true for pulse-coupled system. Building on their work we study the
transition to regaining order conservation by gradually introducing self-loops into the
pulse-coupled system and provide an analytic understanding for the reordering pro-
cess. The implications for phase space topology by introducing pulse-coupling and
self-loops into a symmetrical system are discussed.

In chapter 5 we demonstrate that a network of only two dé-pulse-coupled phase
oscillators shows chaotic behavior while the Poincaré-Bedixson-Theorem only allows
for chaos with at least three oscillators in a system of ordinary differential equations.
Again this is an example that introducing a neural feature into a simple dynamical
system gives rise to complex behavior, already very small neural networks can be
chaotic.

Thesis Structure

In Chapter 2 the theoretical background is introduced and important concepts are
defined. In Chapter 3, 4 and 5 we present three systems that show complex behavior
arising from basic neural features. Chapter 3 concerns a two dimensional adaptive
system captured by two ordinary differential equations. A proof for the numerically
observed phase space structure of nested limit cycles is presented for a simplified
version of the system. The system in chapter 4 consists of symmetrically all-to-all
pulse-coupled phase oscillators. The transition to order conservation by introducing
self-loops and the reordering process of the oscillators is studied analytically. Chapter
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5 presents a network of only two pulse-coupled neural phase oscillators showing chaotic
behavior. In chapter 6 and 7 the results are discussed and summarized.



Chapter 2

Theoretical Background

Dynamical system theory is concerned with the relation between equations providing
a rule of how variables change in time, the dynamics, and the topological structure of
the resulting trajectories in phase space, the space spanned by these variables.

In this chapter we will provide the theoretical background, which the rest of the
thesis is build upon. We will introduce many important concepts of dynamical system
theory, however, this chapter cannot and does not aim at providing an exhaustive in-
troduction. We will only touch upon many concepts, focusing on dynamical features,
that are most relevant for the following work.

2.1 Rules of Change - Dynamics

The rules describing the temporal evolution of a system are either continuous in
time, described by differential equations, or discrete in time, described by difference
equations, also known as iterated maps.

Time-continuous systems and ordinary differential equations (ODEs). Dynamical
systems only have a single independent variable, time, therefore all equations de-
scribing a dynamical system are ordinary and not partial differential equations. An
ordinary differential equation, we will use ODFE as an abbreviation, has the form

= f(z,t).

The one dimensional system corresponding to this equations is non-autonomous. If
the explicit time dependence is dropped, it is called autonomous. A dynamical sys-
tem consists of a set of equations, each describing the evolution of one dynamical
variable in the system. For an n-dimensional autonomous dynamical system with
time-continuous dynamics the equations are the following:

x = f(x).

Time-discrete systems. An iterated map has the form

2(a+1) = g(a(a)).
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An n-dimensional time-discrete dynamical system has the following form:

x(a+ 1) = g(x(a)).

A system, that comprises of continuous as well as discrete dynamics is called hybrid
system. An example is a neural model, which has continuous membrane potential
dynamics until it reaches a threshold, spikes and resets, which are discrete events.

Phase space. The phase space encompasses all possible states of a dynamical sys-
tem. Usually it is the space spanned by all dynamical variables {z1,z2,...,z,}). As
we will discuss in chapter 4, 5 and 6, the dynamical variables are not always sufficient
to fully describe the system state at a given moment in time. Additional dimensions
may become necessary, e.g. as we will see pulse-coupling induces additional dimen-
sions, since a pulse sent in the system’s past may still have an effect on the system’s
future. Here, we will distinguish between the space that is spanned by all dimensions
necessary to describe the system’s state, the phase space, and the space spanned by
the dynamical variables alone. In an autonomous system of ODEs the two spaces
coincide.

Initial Conditions. The initial conditions encompass all the information necessary
to fully determine the system’s future from a given starting point ¢y in time. They
include the values of all dynamical variables at time to ({z1(to), z2(t0), ..., Zn(to)})-
Additional information may be required, e.g. pulse-coupled systems may require
information on pulse-sending times with ¢ < tg, since the corresponding pulses may
still influence the system’s future (see chapter 4,5 and 5).

Trajectories and flow. A trajectory x(t) is a set of system states, that is ordered in
time. The flow ®(z) of a time-continuous dynamical system is a vector field indicating
the change anywhere in phase space. The dynamical equations directly provide the
flow for each system state: x = f(x) = ®((x)).

2.2 Topological Structures in Phase Space

Dynamical system theory is particularly interested in phase space topology. Two
objects are topologically equivalent, if a continuous transformation exists, that can
change one into the other. Continuous transformations include stretching, bending
and twisting, but not cutting or glueing. What kind of topological structures can be
produced by different dynamical systems? In the following we will introduce some
key structures.

Fixed points. A trajectory passing through a fixed point will remain at this point
forever. At a fixed point x* of a time continuous system the dynamical flow is zero
(f(x*) = 0). In a time discrete system the map returns the same point in the next
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iteration step: x* = g(x*).

A fixed point is stable, if all trajectories starting within a small vicinity around this
point will approach it as time goes to infinity. If all trajectories in a small vicinity
around the fixed point leave the vicinity the fixed point is unstable.

For time-continuous systems stability can be determined in the following way: First,
the system can be rewritten as a taylor expansion around the point x*:

% = f(x*) 4+ Jox + O(6x?).

If all eigenvalues of the Jacobian matrix J at point z* are negative, the fixed point is
stable. If all eigenvalues of J are positive, the fixed point is unstable. If all eigenvalues
of J are equal to zero, the fixed point is marginally stable.

Now let us consider time-discrete systems: Consider a small perturbation éx to the
fixed point x*. Does this perturbation grow or shrink over iterations of the map? The
perturbation after one iteration becomes

g(x* + 0x) — g(x*) = g(x*) + Jox + O(6x?) — g(x*) ~ Jéx.

If all eigenvalues |A| < 1 of the jacobian matrix J the fixed point is stable, if all
eigenvalues |A| > 1, the fixed point is unstable. If all eigenvalues |A| = 1 the fixed
point is marginally stable.

Periodic Orbits. If a trajectory always passes through the same points repeatedly,
then it is called a periodic orbit. More formally, if there exists a time interval T" such
that X(t +T) = x(¢t) for all ¢ then the set X is a periodic orbit or periodic cycle.
If all neighboring trajectories approach the periodic orbit it is called a stable limit
cycle. If all neighboring trajectories move away, it is called unstable limit cycle. If the
neighboring trajectories are periodic orbits as well, the periodic orbit is not a limit
cycle and is marginally stable.

Chaos. While there is no overall accepted definition of chaos, there are three char-
acteristics that every chaotic system shares (according to reference [82], p. 331):

1) trajectories do not settle into fixed points, periodic orbits or quasi-periodic orbits.
Instead the long term behavior is irregular and does not follow a fixed pattern. Note
that irregular long term behavior excludes the possibility of trajectories approaching
infinity as ¢ — £o00. The state space of a chaotic system is bounded.

2) the system is deterministic, there is no noisy input or randomness involved.

3) the system depends sensitively on initial conditions. Trajectories starting arbi-
trarily closed to each other will exponentially diverge, this translates into the system
having at least one positive lyapunov exponent.
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2.3 Bifurcations

If the topological structure of the phase space changes qualitatively due to the varia-
tion of a system’s parameter, this is called bifurcation. For example fixed points may
appear or a fixed point may become a limit cycle at a specific parameter value, the
bifurcation point.

2.4 Dynamics on Networks as a Special Case of Dynamical
Systems

A network consists of nodes and connecting edges between these nodes. Assuming
that the topology, that is the connectivity pattern, of the network stays constant,
the dynamics of a network are described by the intrinsic dynamics of each node and
the dynamics of the coupling or interaction between nodes. Here we assume that the
network is autonomous, it does not receive inputs from outside the network.

Generally the evolution of a time-continuous network is described by a set of equa-
tions of the following form:

i = filzs) + > Lij(ws, xj,t)
J

with 4,5 € {1,...,N}. The function f; describes the intrinsic dynamics of node i.
I; j(zi,xj,t) captures the coupling or input from node j to node 7 at time t.

Intrinsic node dynamics. The intrinsic dynamics of each node can be very complex
in itself. In this thesis we mainly consider phase oscillators, they are extremely simple
while not settling into a steady state:

=1
z(t7)=1—2(t")=0.

The phase = € [0, 1] proceeds with speed 1, the phase x = 1 is mapped onto x = 0.

State dependent coupling. If the network is fully described by ODEs the dynamical
equations become
i = filz) + Y gij(wi, )
J

gi,j is the coupling function from node j and node ¢. The coupling depends on the
current value of the dynamical variables x; and x;. Another way of putting it is to
say that the coupling is a function of the current state of the system. Therefore, we
call this kind of coupling state dependent coupling.

Pulse-coupling. Other forms of coupling exist, in this thesis we focus on pulse cou-
pling: In a pulse coupled system each time a specific event occurs in one node, it will
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send a pulse to the nodes it is connected to.
i = filwi) + Zi(w:) DY i Kij(t —t7)
7 m

x;(t7") = ;.
The input to node 7 is the sum of all incoming pulses send by all nodes j of the network.
The function Z; weighs the effect of the sum of all current inputs with the current
state of node i. If the network consists of coupled phase oscillators (f;(x;) = 1),
Z; is called phase response curve. €;; is the coupling strength from node j to node
i. K;;(f) is the coupling kernel with K;; = 0 for £ < 0. The coupling kernel K
can have many shapes, including continuous and differentiable functions as well as
d-functions. The set {t,,|m =1,2,...}, is defined as all times when the value of z;
was equal to the constant z7, resulting in node j sending a pulse. In this case the
coupling does not (only) depend on the current state of the system, but on events
that occurred in the past. Note that there exist different usages in the literature of
the term ’pulse-coupling’, that do not correspond to our definition, e.g. [44. [68].

2.5 Important Theorems

Existence and Uniqueness Theorem. The properties of the governing equations
describing the dynamics of the systems provide restrictions on possible trajectories
in phase space. In this thesis we will often consider a system of ODEs as reference
system, to which we compare the dynamics of other systems. In a system described
by smooth ODEs, the existence and uniqueness theorem holds (taken from 'Nonlinear
Dynamics and Chaos’ by Steven Strogatz, p.150 [82]):

Consider the initial value problem x = f(x), x(0) = x,. Suppose that £ is contin-
uous and that all its partial derivatives 0f;/0x;,i,5 = 1,...,n, are continuous for x
in some open connected set D C R™. Then for x, € D, the initial value problem has
a solution x(t) on some time interval (—7,7) about t = 0, and the solution is unique.

From this theorem it follows that as long as the function f is smooth enough locally,
trajectories locally cannot intersect, which includes trajectories not joining or splitting
in two. If the function f is globally smooth enough this holds everywhere.

Poincaré-Bendixson-Theorem. An important consequence of the existence and unique-
ness theorem is the Poincaré-Bendixson-Theorem. It states that any bounded trajec-
tory of a two dimensional smooth system eventually approaches a fixed point or limit
cycle. A consequence of this theorem is that chaos is only possible in a smooth ODE
system of at least three dimensions.






Chapter 3

Nested Limit Cycles in a Minimal
Adaptive System

3.1 Introduction

Network models in theoretical neuroscience often consist of adaptive units. What
kind of dynamics can be expected of a minimal adaptive system? In this chapter we
study the dynamics of a minimal adaptive system in greater detail. The phase space
portrait is characterized by nested limit cycles. We provide a proof for the existence
of limit cycles in a simplified system and finally consider the system from different
perspectives.

Adaptation. What is adaptation? Adaptation is not a well defined term. However,
there are systems that are generally considered to be adaptive. The evolution of
species can be seen as a game of adaptation, different species competing over resources
and fighting for survival. While species well adapted to their environment are likely to
survive and flourish, other species that are less adapted are more likely to perish. A
famous example is the evolution of the peppered moth, which has been documented for
over two hundred years. This species of moth lives on light colored trees and lichens.
While the moths were of light color originally, due to the increased pollution during
the industrial revolution the trees darkened and consequently the typical moth found
became darker, because a darker color better camouflaged against predators which
increased likelihood for survival. Eventually the air became less polluted, the trees
turned lighter again and the coloring of the typical moth returned to the original
lighter color [93].

Another example of adaptation, this time from neuroscience, is the adaptation
of neuronal firing rates [20, 23, 56]. While a new stimulus elicits an increase in
firing of neurons, the firing rate returns to baseline upon prolonged presentation of
that stimulus. Adaptation is a general principle in the nervous system and occurs
across processing levels and at a broad range of different time scales. An optical
illusion stemming from adaptation is the motion after effect. If continuous motion in
one direction is presented for a long time and the motion stimulus is then removed,
observers report to perceive illusional motion in the opposing direction. While the
motion stimulus was presented the neurons encoding this specific motion direction
adapted to the stimulus by reducing their firing rate. Therefore, when the stimulus
is removed, the neurons encoding the opposing direction of motion show higher firing
rates than the adapted neurons. This disbalance in firing rates produces the percept
of motion in the opposing direction [23| [56].
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In both cases the adaptation can be understood as an optimization process. In
evolution the phenotype of a species changes to optimize survival in a changing en-
vironment. In neuroscience the reduction of firing rates in response to a change in
baseline inputs minimizes the production of energetically expensive action potentials.

Therefore, we choose the following working definition for adaptation:

Adaptation is an ongoing minimization of an energy functional, which itself may
change on a slower time scale. Energy in this context does not refer to a physical en-
ergy but rather to a Lyapunov function, that is minimized along trajectories (except
unstable points).

In theoretical neuroscience several networks and mechanisms were proposed to pro-
duce such dynamics, which Treves [87] termed latching dynamics. These networks
are Hopfield-like networks [34], which are characterized by strongly connected cells
assemblies competing with each other, resulting in several fixed points attractors.
Hopfield-like networks can perform computational tasks, such as pattern completion,
categorization and reproduce some perceptual effects such as priming or multistable
perception [16, 66]. If equipped with an additional mechanism, destabilizing attrac-
tors on a slower time scale latching dynamics can be observed: The system starts
within the basin on an attractor and moves towards it. The additional mechanism
destabilizes the current attractor basin and the system moves towards the next at-
tractor. Overall the system produces a sequence of latching from one attractor to
another. Mechanisms that were discussed for destabilizing attractors include synap-
tic or intraneural mechanisms, noise and inhibition [3], 39, 47, [48] 58|, 66] [77, [87].

The adaptation process can be conceptualized as a particle - the adapting entity-
moving inside a potential - the environment. With the above working definition of
adaptation the simplest adaptive dynamical system consists of a one dimensional
potential fully determining the movement of a particle, and a dynamical rule how the
potential changes over time. We chose a sinusoidal potential which slowly changes
according to the particle’s position. The resulting system can be fully described by
two ODEs, its phase space portrait is characterized by discrete limit cycles nested
within each other.

Structure of this chapter. This chapter is structured in the following way: In the
second section we introduce the system studied here. In the third section we demon-
strate the system’s behavior through numerical simulations. We explore different
parameters and aim for an intuitive understanding of the system’s behavior. While
the original system studied is nonlinear and it is not possible to study it analytically
we introduce a simplified system, that still qualitatively shows the same behavior but
allows for some analytic treatment of global dynamics in a nonlinear dynamical sys-
tem. In the fourth section we introduce this simplified system, show numerically that
its qualitative behavior is the same and provide an analytic proof for the existence of
the systems limit cycle behavior (at least for a certain parameter regime). In the fifth
section we discuss the results by presenting alternative view points on the system. In
the sixth and last section we provide a short summary.
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Figure 3.1: Particle interacting with its potential. The potential determines how
the particle moves. At the same time the position of the particle leads
to a change of the potential on a slower time scale. Lines correspond
to V(z(t)), the dot o corresponds to (z(t),v(z(t)) as time ¢ evolves. The
lighter the color, the further in the past. Parameters: A =1, ¢ = —5+0.1,
g = 0.02, Tini = 11.5, Cini = 0.

3.2 The Original System

3.2.1 System Definition
The adaptive system studied in this chapter is described by the following equations:

V(z,c) = Asin(z — ¢) + cx
-0,V (3.1)

¢c=¢cx

T

¢,z € R. The system has three parameters: the amplitude A > 0, the phase shift ¢
and the time constant €. € > 0 is rather small, ensuring that the environment changes
slower than the adapting entity x.

The adaptive system can be conceptualized as a particle living inside a sinusoidal
potential to which a straight line with slope c is added. This slope changes depending
on the position of the particle z. If x is large the slope decreases and becomes more
and more negative. If the position of the particle is in the negative region of the real
space the opposite happens, the slope increases and becomes more and more positive.
This leads the particle to move back and forth from one side to the other so that the
overall dynamics resemble a seesaw (figure .

The above equations can be resolved into a simple system of only two ODZEs:
&= —Acos(z — ) —c
(=) (3.2)

¢ =cx.

There is another equivalent way of rewriting the system described by these two
ODEs as a particle moving inside a potential. However, we will focus on the one
presented above and leave the other for the appendix (section A).
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3.2.2 A Numerical Study of the System’s Behavior

Figure [3.2] shows several simulated trajectories of the system for different parameters
and initial conditions. The phase space portrait consists of several, potentially infi-
nite many, equally spaced limit cycles nested within each other (panel A and B). Even
though the shape of the cycles changes with ¢, the topology of nested cycles stays
intact (panel C). The behavior is robust against variations of other parameters (not
shown). Only when ¢ is taken to be 7 (panel 4) or a multiple of 7 the picture changes.
Simulations do not yield a conclusive picture. Panel D shows three trajectories pro-
duced with different numerical integration algorithms while keeping parameters and
initial condition identical. One trajectory spirals outwards, one inwards and one stays
a cycle. While these numerical results indicate that the limit cycle behavior is rather
robust it is not trivial to understand why it occurs. Figure provides an intuition
how to think about the system’s behavior. But at the same time it is not clear why
the system does not spiral in- or outwards. In the following part of the paper we will
focus on this question and provide a proof for the limit cycle behavior in a simplified
system.

3.3 The Zigzag-Potential - a Simplified System

3.3.1 System Definition

In the previous section we simulated a system displaying an intricate phase space
structure of concentric limit cycles. However, we were not able to understand the limit
cycle structure analytically. Here we present a simplified system that approximates the
original system, shares the limit cycle structure in phase space and is simultaneously
analytically tractable. The time evolution is defined via

=
T = (*1) T A —C (33)
c=c¢x

The representation of a particle interacting with its potential leads to a zigzag poten-

tial, that is composed of segments of straight lines:

o (2 ) e

JL’*W*%

V(z,c) = (—1){ |,

T = —%V(x, c)

Numerical simulations shows that the qualitative behavior of concentric limit cycles
in phase space is conserved across the simplification (see figure panel 1 and 2).

3.3.2 Analytic Segment-Wise Solutions

x-segments and the sign s. Now we consider x-segments:

som =71
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Figure 3.2:
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Trajectories of the original system in phase space. Panel A shows
12 trajectories starting from different initial particle positions. The phase
space seems to consist of stable and unstable limit cycles nested within
each other. Panel B shows 6 trajectories in phase space. Identical pa-
rameters are used as in panel A. Even for large initial particle positions
the limit cycle structure still seems to exist. The blue trajectories in
panel A and B are identical. Panel C again shows trajectories in phase
space. Here ¢ was chosen to be small. The trajectories become more
square shaped. The initial conditions are identical to the ones used in
panel A. Panel D shows a single trajectory in phase space simulated with
three different numerical integration algorithms for a system with ¢ = .
While all three graphs start from the same initial condition, the trajectory
simulated with a simple euler algorithm circles outwards (blue), using a
preimplemented algorithm for fast-slow systems of Matlab produces an in-
ward spiraling trajectory (green). Finally using a Runge-Kutta algorithm
4th order produces a cycle (red). Parameters: A = 1, ¢ip; = 0. Panel A:
=01 ¢=-5401,1t € [0,80)], zini € {ar — §, ar — 5 — 1.8} with
ac{1,3,5 7,9, 11}; Panel B: ¢ = 0.1, ¢ = —5 + 0.1, ¢ € [0,10000],
Tini € {am — 5} with a € {1, 11, 30, 120, 130, 181}; Panel C: Parameters
as in panel A except for e = 0.0001 and ¢ € [0, 10000]; Panel D: ¢ = 0.11,
¢ =m,t € [0,1000], zi; = 0.01
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Figure 3.3: Intuition for the limit cycle behavior in the case of ¢ < 1. Depicted
is a series of events within a full cycle, each panel shows how the velocity
2 depends on the particle’s position x. The other dynamic variable ¢ is
captured by the shift of the cosine wave with positive ¢ corresponding to
a shift downwards and vice versa. In panel A the particle starts from
an arbitrary initial condition, c is taken to be zero. Because ¢ is small
the movement of the cosine wave will be slow compared to the movement
of the particle. Hence the particle moves fast towards the zero crossing
of the curve. It then tracks the zero crossing closely as the curve slowly
moves down (panel B). At some point the curve looses touch with the
zero-line (panel C), the particle is free to quickly move over to the other
side (panel D). Once the particle passes z = 0 the curve starts moving
up again. Hence at some point the curve is touching the zero line (panel
E), the particle moves to the respective zero crossing and closely tracks
its position while the curve continues moving upwards (panel F'). In panel
G the curve looses touch again, the particle is then free to quickly move
over to the other side (panel H) until the curve touches the zero line again
(panel T) and the cycle starts anew.
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Figure 3.4: Potential and trajectories in phase space of the simplified system.
Panel A and B are constructed analog to figure [3.1] and figure [3.2] panel
A. Identical parameters are used. The zigzag behavior arising through
the interaction between the particle and its potential is visible in panel A.
Panel B shows a phase space structure of nested limit cycles very similar
to the original system.

NE]

T—p—
Within each segment the sign s(x) := (—1){ " J is either fixed at =1 or = —1.

Solving for c(x). For each segment S; the differential of ¢ with respect to x can be

solved: .
de g Ex
3. dz _
dx S sA—c

By separation of variables we obtain:

c(x) =sA+ \/A2 — (e2?2+C)

(3.4)
C = —cx?— 2 +2sc.A

with zo, co € S; as initial conditions such that x(t,) = x, and ¢(t,) = ¢o. The choice
whether the root term needs to be added or subtracted has to be taken such that
(%o, o) is part of the solution ¢(x). These equations can be rewritten as:

c(xo + Ax) = sA+ \/(A — 8¢0)% — eAx (22, + Ax) (3.5)
with Az =2 — z,.
Solutions correspond to ellipse segments The solution ¢(z) is an elliptic equation.
It can be rewritten as ellipse normal form (i—;—i— %—; = 1) with the following substitution:

y=c(z) —sA
b= \/A2+8xg+0272800/1

b2
a = —.
e
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Figure 3.5: A trajectory closely follows elliptic segments. The segments are
shifted up by A if x € S 1 depicted in red and down if x € S | depicted
in blue. The trajectory is analytically calculated segment vise using the
border point of one segment as initial condition for the next segment.
Panel B as an enlarged part of panel A shows the continuous trajectory
bending at segment borders and following the ellipses closely. Panel C and
D show only the elliptic segments of ST and S¥, respectively. The elliptic
nature becomes visible. Parameters: A =1, e = 0.4, ¢ = 0.5.

Figure [3.5| shows some example trajectories for each segment. Segments alter-
natingly produce trajectories which belong to ellipses centered either around (0, A)
(depicted in red) or (0, —A) (depicted in blue).

Up and down shifted segments. We will call these segments upshifted and down-
shifted segments, respectively:

ST = {z e R|s(z) = 1}
St={z cR|s(z) = —1}.

A piece-wise smooth system. A trajectory (c(t),z(t)) proceeds in counter clockwise
direction in phase space. For the proof section we are not interested in the time
dependence, but only in how the two dependent variables ¢ and x relate to each other.
We have seen above, that within a segment a dependence between both coordinates
can be derived: ¢(x).

A trajectory passes over segment borders. Each time a trajectory crosses such a
border, the sign s € {—1,1} switches, depending on whether the next segment is up
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or down shifted. Since trajectories are continuous this leads to a non-smooth kink in
the trajectory at segment borders. Also the time independent curve ¢(zx) is continuous
and has bents at segment borders. The system falls into the class of piece-wise smooth
systems [I0]. Further the system is a commutable pendulum (see reference [65] for
another example). To analytically calculate the full curve c¢(x), the solutions for
c(z) need to be determined segment-wise, going in counter clockwise direction and
switching the sign s when passing a segment border. The sign before the root term
switches when passing ¢ = —A in a down shifted segment or ¢ = +A in an up shifted
segment. Note that the curve ¢(x) is not necessarily a function, since there are several
c-values corresponding to one z-value originating from the same trajectory.

Remarks on monotonicity. c¢(x) in any up shifted segment is strictly monotonically
increasing with x if x < 0 and ¢ > A or z > 0 and ¢ > A. Otherwise ¢(x) is strictly
monotonically decreasing. c(z) in any down shifted segment is strictly monotonically
increasing with = if x < 0 and ¢ > —A or x > 0 and ¢ < A. Otherwise c¢(z) is
strictly monotonically decreasing. It follows that any connected part of c¢(z) increases
strictly monotonically with  while ¢ > A and = < 0. Also any connected part of
c¢(x) increases strictly monotonically with = while ¢ < —A and z > 0. Any connected
part of ¢(x) decreases strictly monotonically with = while ¢ < —A and x < 0 and also
while ¢ > A and x > 0.

3.3.3 Proof for Finite Time Convergence to Limit Cycles - Core Ideas

Numerical simulations show concentric limit cycles in phase space. Trajectories within
their basin of attraction reach these cycles in finite time. In this and the following
section we provide a proof for this behavior. Each of these sections covers the full
proof and is complete in itself. This first section aims at an intuitive understanding to
provide the reader with a quick way to grasp the core ideas using graphical material.
The next second section aims at providing a rigorous proof covering details that are
not covered in the first. The structures of both sections run in parallel allowing the
reader to easily change between both modes of presentation.

The proof consists of several parts. In the first part a region in phase space is defined
that contains a structure we denote funnel structure. All trajectories entering this
structure merge in finite time into a discrete set of trajectories leaving the structure
through predefined exit points. In the second part we show that the trajectory leaving
a specific exit point will eventually reach another corresponding exit point. And the
trajectory leaving this exit point eventually reaches the original exit point. Therefore,
cycles exist.

Finite Time Convergence within a Funnel Structure

Region with funnel structure. The horizontal axis of the elliptic curve segments
c(z) belonging to the up shifted segments ST is situated at ¢ = A. The horizontal
axis of the elliptic curve segments c(z) belonging to the down shifted segments S+
is situated at ¢ = —A. Hence, above ¢ = A all curve segments c(x), independent of
segment type, are situated above the horizontal elliptic axis and belong to the upper
half of an ellipse, below ¢ = —A all curve segments ¢(x), independent of segment
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Figure 3.6: Examples for funnels Flf and F, as well as examples for open

and closed funnels. Panel A shows an example of a funnel situated
at © < 0, the funnel exit point F” at + = z; and ¢ = —A and the
funnel entrance region F{"~ with x € [z{" — 7,25 +7) and ¢ = A. The
funnel is closed because the two trajectories passing through the funnel
borders reach the funnel center xj~ before reaching ¢ = —A. Hence, all
trajectories entering through the input region F,in_ leave the funnel as a
single trajectory passing through the funnel exit point F;)”. Panel B shows
an example for a closed funnel F; ,j situated at z > 0. Again funnel input
region F; ,in+ and funnel exit point F) ,SJ“ and the two bounding trajectories
are shown. Panel C and D show examples of open funnels. In C the
left bounding trajectory does not reach the funnel center x} + 7 before

reaching ¢ = —A. Not all trajectories leave the funnel at the funnel exit
point F;)”. In panel D neither bounding trajectory reaches the funnel
center before reaching ¢ = —A. Many trajectories leave the funnel not at

the funnel exit point. Parameters: A =1, ¢ = 0.5, ¢ = 0.04 (Panel A,B),
e =0.105 (Panel C), ¢ = 0.14 (Panel D).
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type, are situated below the horizontal elliptic axis and belong to the lower half of
an ellipse. But in the region —A < ¢ < A the situation is mixed (see figure
panel A). Within down shifted segments (z € S*) the curve segments c(z) lie above
the horizontal elliptic axis, within up shifted segments (z € ST) the curve segments
c¢(x) lie below the horizontal elliptic axis. This gives rise to a structure consisting of
elements we call funnels. A funnel has the dynamic property of collapsing a set of
trajectories onto a single trajectory. This property will be explained further below

(see figure [3.6)).

Funnel center, funnel entrance and funnel exit point. Each funnel F}, has a funnel
center :):ii, with k € {1,2...} denoting funnel identity. z{" corresponds to the kth
funnel center on the right (x > 0) and 2} to the kth funnel center on the left (z < 0),
respectively. The point (z = 2{+,c = £A) = F ]?i is the funnel output or exit point.
Further, each funnel has an input region Fi"* = {(z,¢)|z € [2{T — m,2{" + 1) Ac=
TFA}. af, are chosen such that each funnel entrance fully lies within 2 < 0 or fully lies

within z > 0.

The flow within a funnel. Within a funnel the flow in z-direction goes towards the
funnel center zf, while for < 0 the flow in c-direction moves down (¢ < 0) and for
x > 0 the flow in c-direction moves up (¢ > 0). Hence all trajectories passing through
the funnel entrance will eventually pass through ¢ = —A for x < 0 and ¢ = A for
x > 0. They are bounded by the trajectories passing through the funnel entrance
borders (z,c) = (zf — m,£A) and (x,¢) = (zf + 7, +A).

Open and closed funnels. If these two trajectories reach the funnel center xf, before
they reach ¢ = £ A for x 2 0 they will leave the funnel at the funnel exit point F,Si and
so will all other trajectories entering the funnel at Flini between the two bounding
trajectories. In this case the funnel is closed, all trajectories entering the funnel
converge in finite time onto a single trajectory passing through F,Si (see figure
panels A and B).

If one (figure panel C) or both (figure [3.6] panel D) bounding trajectories reach
x = £A (for z 2 0) before reaching the funnel center xf, there is a set of trajectories
leaving the funnel not at the funnel exit point F *. The funnel is open. The condition
that both bounding trajectories need to reach the funnel center zj before reaching
¢ = = A provides parameter constraints for a specific funnel F, ki to be closed:

442
— >t
w2t +m) TR

Short recapitulation. We set out to show that there exists a region in phase space
with trajectories converging in finite time onto limit cycles. In this section we
have characterized a structure in phase space within —A < ¢ < A we call funnel.
If a funnel is closed all trajectories passing through the funnel entrance region F; ,ini
converge onto a single trajectory passing through F,Si in finite time. However, we
still have to show that this single trajectory is a cycle. A trajectory is a cycle if a
point of the trajectory is visited again.
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Figure 3.7: How do funnels connect? A trajectory leaving at a funnel exit point
will eventually reach the funnel entrance region at the opposing side. How-
ever, it is not clear at which z-position. Subsection (ii) is concerned with
showing that a trajectory leaving a specific funnel k& at the funnel exit
point F; ,Si will reach the funnel entrance region of the corresponding kth
funnel on the opposing side F,inqt. If parameters are chosen such that the
funnels are closed it follows that the trajectory will be a cycle and not a
spiral. Parameters: A =1, ¢ = 0.02, ¢ = 0.5.

Existence of Limit Cycles

Proving the existence of cycles only requires to show how funnels connect. Let
us assume that the parameters are chosen such that the funnel Fj and F,j both are
closed. We will show that a trajectory passing through F; ,?+ will eventually reach this
point again. Specifically we will show that this trajectory passes sequentially through
the following states:

po+ B, pin= O, po— O, pint O, po+ (3.6)
The validity of the state transitions (i) directly follows from the assumption that
both funnels th are closed (see section . The transition (x) is fully analog to
the transition (i7) and included in the appendix (section C). Hence only the transition
(7i) remains to be proven, it remains to show that a trajectory leaving funnel k on the
right side reaches the funnel entrance region of funnel k on the left side (see ﬁgure.

x, - the position where the trajectory returns to ¢ = A. z}~ is defined as
the z-value of the trajectory leaving Fy'~ when it reaches ¢ = A again on the left
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Figure 3.8: A trajectory leaving Ff: will reach to the left of the right fun-
nel entrance of F,. An induction argument shows that the trajectory
leaving at the funnel exit F]ng reaches ¢ = A again to the left of the right
funnel entrance border of funnel F (ii.1). First, 2f > 0 and a mapping
f(z) are defined. ! is defined such that the distance in z-direction of the
funnel exit point F; ,§+ to z' is identical to the distance between 0 and the
right funnel entrance border xj~ + 7, compare the two solid green lines.
Second it is shown that c(xf) < c(f(z')) (depicted as black dots). Third,
it is then shown that this inequality continuous to hold when increasing
x. Dots are plotted at segment borders. The dots positioned at x and
corresponding f(z) are depicted with the same color. The dots on the left
side lie above their equicolored counterparts on the right. Importantly,
this is also true for the dot situated at the funnel entrance border zj~ 47
compared to the dot at the funnel exit point F*. Because the curve c(x)
is monotonically increasing in « for x < 0 and ¢ > A the point x* where
the curve reaches ¢ = A has to be situated to the left of the right funnel
entrance border xj~ + 7. Parameters: A =1, ¢ = 0.02, ¢ = 0.5.
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Figure 3.9: A trajectory leaving Flt will reach to the right of the left funnel

entrance of F|_. A second induction argument shows that the trajectory
leaving at the funnel exit FISJF reaches ¢ = A again to the right of the left
funnel entrance border of funnel Fy~ (ii.2). First, 2% < 0 and a mapping
g(z) are defined. 2% is defined such that the distance in z-direction of
the funnel exit point F,;)Jr to 0 is identical to the distance between x®
and the left funnel entrance border x}~ — 7, compare the two solid green
lines. Second it is shown that c(z®) = ¢(g(0)) < ¢(0) (depicted as black
dots). Third, it is then shown that this inequality continuous to hold when
increasing x. Dots are plotted at segment borders. The dots positioned at
x and corresponding g(x) are depicted with the same color. The dots on
the left side lie below their equicolored counterparts on the right. It also
follows that the point with x > 0 corresponding to x* lies above ¢ = A.
Because ¢(x) is monotonically decreasing for ¢ > A and = > 0 the funnel
exit point lies further outwards relative to this point. The same is true
for the corresponding left funnel border of Fj, which lies further outward
relative to =*, x* > 27 — m. Parameters: A =1, e =0.02, ¢ = 0.5.



The Zigzag-Potential - a Simplified System 27

side (z < 0). To show that the trajectory reaches the funnel entrance of funnel k
((zz7,A) € F;"7), we will first show that z;~ lies to the left of the right funnel
entrance border (z;~ <z~ + ) (ii.1, see figure and in a second part show that
xy~ lies to the right of the left funnel entrance border (z — 7 < a} ), (ii.2, see

figure .

(ii.1) To Show: z}~ < xf~ + m; x} Lies Left of the Right Entrance of F}"~

Defining xf, f(x), replacing the trajectory leaving at F,g"' by the function c(x).
zf > 0 is defined as the z-value that has the same distance from the right funnel
center x5 as the right funnel entrance border from x = 0: 0 — (2§ + ) = 25" — 2&.
Further, f(x) = —x + 2!, It can be shown that z and f(x) always lie within the same
segment type, either z and f(z) € ST or = and f(z) € S*; s(z) = s(f(x)). In the
paragraph ‘remarks on monotonicity’ it was discussed that any connected curve
c(z) with ¢ > A is strictly monotonically decreasing with x while z > 0 and strictly
monotonically increasing while z < 0. Here we study the trajectory (x(t),c(t)) from
leaving a funnel exit point until reentering another funnel, hence, ¢ > A and the
corresponding curve c(z) is a function, there is exactly one c-value assigned to any
x-value.

Induction. to show: c(f(z{")) = c(z{ m) > c(zf) = A

Induction step. to show: c(f(z)) > c(z) = c(f(x + Ax)) > c(z + Az) with
Ax > 0.

First, consider Az such that segment borders are not crossed and define x;11 =
xT; + Ax.

c(f(zi1) = c(—wi1 +al) = e(—wi — Az + f) = o(f(2:) + (—Ax))
> c(zit1) = c(x; + Ax)

= s(f(z:))A+ \/(A — s(f(@i)e(f(:))? = e(=Az) (2f (2:) + (—Ax))
> s(z) A + /(A — s(@i)e(@:)’ — e(Ax) (22; + Ax)

— (A= s(z)e(f(x)? — eAn(=2(—z; + 27) + Az)
> (A — s(z)e(x)? — eAx(2z; + Ax)

= (A= s(z)e(f(@)* + 2eAx af > (A — s(xi)e(a;))?

The last inequality holds because we assumed c(f(z;)) > ¢(x;) and ¢ > A > 0 and
s(x) = s(f(x)) holds. So far only Az were considered, such that x and x + Az are sit-
uated within the same segment. However the argument also holds for Az that induce
a shift across segment borders: In that case Az can be rewritten as Az = > 1" | Ax;
and the above argument can be applied sequentially passing from segment border to
segment border: We choose Ax;, such that for each [ the z-value x + Eézl Ax;
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corresponds to a segment border. ¢(f(z + i Azy)) > clz + Yl Az) =
o(fla+ X Az)) > el + Y Aay)

Induction start. to show: c(f(z/)) = c¢(0) > c(z/)
This follows from the observation that c¢(z) decreases monotonically with = for
c>Aand x> 0.

Conclusion. It follows that c(z§ + ) = c(f(z5")) > c(z5") = A. Therefore, when
the trajectory passes the right funnel entrance border of funnel F, the trajectory
does not reach the funnel entrance but lies above it. Because c(z) is monotonically
increasing with = for ¢ > A and x < 0, the point z* when the trajectory reaches
the funnel entrance (c(x) ) = A) has to lie to the left of the right funnel entrance:
x; <y +m7.

(ii.2) To Show: x{~ 4+ m < x*; =} Lies Right of the Left Entrance of F}"~

Defining 8, g(x). 2° < 0 is defined as the z-value that has same distance to the
left border of the funnel entrance F, lin* as the funnel exit point F* from z = 0:
zg — (257 —m) = xy" — 0. Further, g(z) = —z + 28. It can be shown that z and g(x)
always lie within the same segment type, either z and g(x) € ST or z and g(z) € S¥;

s(z) = s(g(x)).

+):

Induction. to show: When increasing x, c(g(z')) = c(x}”) = A occurs before c(z,
A and hence g(zit) =i —m < g(2) =z} .

Induction step. to show: c¢(g(x)) < ¢(zr) = c(g(x + Az)) < c(xz + Ax)
First, consider Az such that segment borders are not crossed and define z;y1 =
r; + Ax.
c(glx + Az)) < c(x + Ax)

— (A —s()c(g(x))* + 2eAz 29 < (A — s(z)c(x))?.

Since A < ¢(g(x)) < ¢(z) was assumed the above inequality holds, given that Az > 0
and 2% < 0. So far only Az were considered, such that x and x + Az are situated
within the same segment. However analog to (ii.1) the argument also holds for Az
that induce a shift across segment borders: In that case Ax can be rewritten as
Az = Y ; Az; and the above argument can be applied sequentially passing from
segment border to segment border: We choose Ax;, such that for each [ the z-value
x4+ YL, Az; corresponds to a segment border.

c(g(x+ Y0 Axy)) < cla+ Xy Ar) = c(g(z+ 301 Axy)) < cla+ Y] Ay).

Induction start to show: c(z9) = ¢(g(0)) < ¢(0)
This follows from the observation that ¢(x) increases monotonically with = for ¢ > A
and z < 0.
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Conclusion. While starting at * = 0 and increasing Az, the induction above showed
that c¢(g(x)) < c(z) has to hold. Hence, before " with c¢(z§") = A is reached, the
point ¢(g(z)) = A = c(x} ), when the trajectory reaches ¢ = A again, has to be
passed. Therefore, 27~ > x5 = g(z{*. The trajectory reaches ¢ = A to the right of
the left border of F,in_.

Short recapitulation. In (ii) it was shown that a trajectory leaving the funnel exit
point of the kth funnel on the right (Fy ") reaches ¢ = A again on the left within the
funnel entrance region of funnel k, F"".

We set out to show that the trajectory passing through the funnel exit point F,§+
is a cycle. We claimed that the trajectory passes sequentially through the following

states (equation [3.6)):
po+ B, pin= O, po— O, pint O, po+

While validity of the state transitions (i) directly follows from the assumption that
both funnels FiF are closed we showed in (i) that the transition (ii) also holds. The
argument showing that the transition (%) occurs is fully analog to the argument in
(77) and left to the appendix (section C). Therefore we have shown that indeed the
trajectory passing through F,SJF is a cycle. In an earlier section we characterized a
structure called funnel and showed that as long as a funnel is closed all trajectories
passing the funnel entrance leave the funnel as a single trajectory passing through the
funnel exit point F. Taken together this shows that as long as the parameters are
chosen such that both funnels & are closed there exists a region in phase space where
trajectories converge in finite time onto limit cycles.

3.3.4 Proof for Finite Time Convergence to Limit Cycles - Detailed Proof

In this proof we want to show the following:

Parameters can be chosen such that e < €y ¢, € (A, @) is a critical value, that depends
on the system parameter A and ¢ and on the index k. If the inequality holds, then
there exists a region in phase space (3F™ C R?, Fi" £ {}), such that all trajectories
passing through this space (all trajectories with (x(t),c(t)) € Fi") will converge in
finite time onto a single trajectory. This trajectory is a cycle.

Section (A) demonstrates the existence of finite time convergence: Trajectories
passing through a non-empty set of points F; ,in all reach the same point after a finite
time t if € < g c.

Section (B) demonstrates the existence of cycles. Trajectories passing through the
joined point of the previous section will revisit this point.

In Section (C) we show that all trajectories within the region of phase space where
(A) and (B) occur converge in finite time to limit cycles.
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A - Finite Time Convergence within a Funnel Structure

In this section we want to show the existence of finite time convergence of trajectories
passing through a specific region onto a single trajectory, if € is smaller than a critical
value (¢ < &.). To do so we define a structure called funnel F (see figure [3.6), all
funnels F' are situated within the region —A < ¢ < A.

Funnel center mzi and funnel identity k. Each instance Fki of this structure has a

funnel center at position :U;i:

For 0 < <m:
3
a5t ::cp—|—§7r+2(k—1)7r for z > 0,

xy :z(p—gﬂ—(2k—1)7rforw<0,

and for —m < ¢ < 0:

3
Ty, ::g0+§7r—|—2k:7r for x > 0,

xy :z(p—%ﬂ—(?k—l)w for x <0,

ke 1,.. K with K € N is the funnel identity, funnels are counted outwards from
x = 0 on both sides, '+’ and ’—’ indicate positive (x > 0) and negative (z < 0) side
respectively, while ¢ stands for funnel center.

i
Because and s(z$*) = (—1)< i ) = —1, all z{ lie at a

border between ST on the left and S* on the right.

c ™ C ™
T f _ | Tie—f
s ™

Funnel entrance region F,ic"i: Further each funnel F,f has a funnel entrance or
input region: .
Bt = {(w,c = — Ao € [af — w2l +m)
Fr = {(v,c=A)|z € [2§ — 7,25 +7)}.
Because zf, lies at the border between ST and S* the left half of a funnel entrance
belongs to ST and the right half to S*¥. Note that all funnel entrances either lie

fully within the negative or fully within the positive region: Because z7~ + 7 < 0 all
z € F{~ <0 and because 2§t —7 >0 all z € F{* > 0.

Funnel exit point F,?i. Each funnel has an output or exit point:

Ft = (z=a(",c=A)
Fm=(x =2 ,c=—-A)

The flow within a funnel. The incentive of this section, which is to show finite time
convergence, can be restated in the following way:
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We want to show that all trajectories (x(t),c(t)) passing the funnel input region F,i”i

will eventually reach the funnel exit point F,:i if € < é€pe:
in+ +. poin— —
F' = F)T R = FY
Here the arrow 'F} — Fy’ is defined as

3 |(2(t1), c(h)) € Ay

NIAE > Ofts =ty + AL A (2(ts), e(ts) ) € Fo.

Flow in z-direction. As shown above the left half of a funnel belongs to ST (s(x) =
1). From the system definition (equation it follows that the flow in z-direction in
an up shifted segment points to the right (& > 0) while ¢ < A. The right half of any
funnel belongs to a down shifted segment St (s(x) = —1). From the system definition
(equation it follows that the flow in z-direction in a down shifted segment points
to the left # < 0 while ¢ > —A. Therefore the flow in z-direction within a funnel
region (—A < ¢ < Aand z € [#{F — 7, {4+ 7) points everywhere to the funnel center
xii. While —A < ¢ < A any trajectory that passed through the funnel entrance F,ini

will move towards the respective funnel center xzi.

Flow in c-direction. From the system definition (equation it follows that ¢ < 0
if x < 0 and vice versa. Therefore within a funnel region on the left (—A < ¢ < A and
x € [xy —m ) +m) the flow in c-direction points downwards everywhere (¢ < 0.
Within a funnel region on the right (-4 < ¢ < A and x € 27" — 7, 25" + 7) the
flow in c-direction points upwards everywhere (¢ > 0. Trajectories passing through
a left funnel entrance F,inf will continue moving downwards until ¢ = —A4: ¢ <
0. Trajectories passing through a right funnel entrance F,i,n+ will continue moving
upwards until ¢ = A: ¢ > 0.

Bounding trajectories passing through the funnel entrance borders. Trajecto-
ries cannot cross each other. Further, as just demonstrated, all trajectories pass-
ing through a left funnel entrance F,in_ will move down in c-direction and towards
the funnel center in z-direction. Hence, all these trajectories are bounded from
below by the two trajectories passing through the funnel entrance borders (specif-
ically through the points (x;,¢; = A)|lz; = min([z), — 7,2} + 7)) and (2,,¢, =
A)|x, = max([zy” —m, 2y +))). All trajectories passing through a right funnel en-
trance F."" will move up in c-direction and towards the funnel center in z-direction.
Hence, all these trajectories are bounded from above by the two trajectories passing
through the funnel entrance borders (specifically through the points (z;, ¢; = —A)|z; =
min([z{" — 7, 27" + 7)) and (2, ¢, = A)|z, = max([z§" — 7, 25" + 7).

Open and closed funnels. Because all trajectories passing through a funnel entrance
are bounded by the two trajectories passing through the funnel entrance borders, if
these two trajectories reach the respective funnel center a:zi before reaching the funnel
exit point F,Si, this is true for all trajectories passing through the funnel entrance.
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Therefore, in that case all trajectories leave the funnel at the funnel exit point F]Si.
In that case we call a funnel closed otherwise open (see figure .

Conditions for a funnel to be closed. The condition for a funnel to be closed follows
from equation For the trajectory passing through the outer left border, set z, =
:cii — 7 and Az = m, for the trajectory passing through the right funnel border, set
To = wzi + 7 and Az = 7. For funnels on the left, set ¢, = A, else ¢, = —A.

For a left funnel:

—A<sA+ \/(A — 8¢0)? — eAx (22, + Ax)

For a right funnel:

A>sA+ \/(A — 8¢0)% — eAx (22, + Ax)

By rewriting these inequalities one obtains a critical parameter each for the trajectory
passing through the inner and outer funnel border. For the trajectory passing through
the outer funnel border the critical parameter is:

4A? "
— = .. 3.7
@+ m) e 3.1)

For the trajectory passing through the inner funnel border the critical parameter is:

4A2 .
_ ="
7r(2]a:zi — ) ke

If the time constant ¢ is small enough such that it is smaller than both critical pa-
rameters the funnel is closed (¢ < 6}50 and € < szic) The outer condition is harder

to be met, hence, a funnel is closed if € is smaller than the first critical parameter

(equation e < 6%)

Defining € .. So far we have considered a critical parameter for each funnel. De-
pending on ¢ either the critical parameter for funnel k on the left or the critical
parameter on the right side is larger (Ez; > Ez; or EZI < ez;). We will call the
smaller of the two e .. If € < €, both funnels, on the left and on the right, are

necessarily closed.

B - Existence of Limit Cycles

In the previous section we showed that any trajectory entering into a funnel entrance
will leave that respective funnel at its funnel exit point if the funnel is closed. In the
following section we assume that the parameters are chosen such that the considered
funnels are closed.

Proving the existence of cycles only requires to show how funnels connect. Here
we show that a trajectory passing through the funnel exit point F; ,SJF will eventually
reach this point again: F,§+ — F,S+, hence completing a full cycle. Specifically the
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trajectory starting at the funnel exit point of the kth funnel on the right side (F,§+)
passes through a sequence of states which are reaching the funnel entrance region of
the kth left funnel (F;"~), then continuous to the respective funnel exit point (F~).
This exit point in turn connects to the funnel entrance region of the kth funnel on
the right (F ,in+) and hence the trajectory will continue to the respective funnel exit
point completing the full cycle. We want to show that

po+ B, pin— @, po— O, pint @, post (3.8)

(This equation is identical to formula [3.6] in section [3.3.3])
The steps (i) were proven in the section A. Step (x) is fully analog to step (ii) and
included in the appendix (section C). Hence only step (i) remains to be proven (see

figure .

xy~ - the position where the trajectory returns to ¢ = A. Here we study the
trajectory (z(t), c(t)) leaving at the funnel exit point F* and its corresponding curve
¢(x). From the system definition (equation it follows that while ¢ > A and > 0
the trajectory is monotonically increasing in ¢ (¢ > 0) and monotonically decreasing
in z (£ < 0). Eventually the trajectory passes z = 0. While ¢ > A and z < 0
the trajectory is monotonically decreasing in z and in ¢ (¢ < 0 and ¢ < 0 until the
trajectory reaches ¢ = A). We denote the z-position of this return as z*~.

*— in— c— (5.2) e (1) c—
T, €F)T = 1, -7 < x < x +7

Therefore showing the transition Fpt E)—> Fli“* is equivalent to showing that the two
inequalities (ii.1) and (ii.2) hold.

Replacing the trajectory leaving at F,:"" by the function c(x). We are only inter-
ested in the part of the trajectory from leaving the funnel exit point F,S+ until reaching
¢ = A again. This part of the trajectory can be expressed through the corresponding
curve c¢(x) In the paragraph (remarks on monotonicity) it was discussed that
analog to the behavior of the trajectory any connected curve c¢(x) while ¢ > A is
strictly monotonically decreasing with x while z > 0 and strictly monotonically in-
creasing while z < 0. Because of the monotonicity the curve ¢(z) with ¢ > A is a
function, there is exactly one c-value assigned to any z-value. The following part of
the proof concerns the curve ¢(x) within this region.

(ii.1) To Show: z}~ < xf~ + m; x} Lies Left of the Right Entrance of F}"~

Defining «f and f(x). The function f(z) is defined in the following way (see fig-

ure Z

f(z) = —z+2a

2! is defined such that it has the same distance to the funnel exit point F,§+ as the
right border of the funnel entrance F}"~ from x = 0:

0— (25 +7) =a5" — b,
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Now we show that with the above definition it follows that zf > 0:
For 0 <o <m:

3 3
:L"f:gp—|—§7r+2(l<:—1)7r+<p—§7T—(2k—1)7r—|—7r:2<,0>0.

For —m < ¢ < 0:

3 3
J:f:<p+§7r—|—2k7r+<p—§7r—(2k—1)7r+7r:2g0+27r>0.
In the following we show that x and f(z) are situated within the same segment type.
Both either lie within an up shifted or a down shifted segment: s(z) = s(f(x)).
For0 <o <maswellas —7m < ¢ < O:

f(x)f«F%J

5

The equality holds for geometrical reasons.
Induction. to show: c¢(xz; +7) = c(f(x?r)) > c(xg_‘—) — A

Induction step. to show: c(f(z)) > c(z) = c(f(x + Ax)) > c(z + Az) with
Az > 0.

Ax is chosen such that segment borders are not crossed and we define z;11 =
x; + Az. The right side of the equation is considered:

c(f(@ip1)) = e(=wips +al) = e(—w; — Az + 2T) = o(f(2;) + (-Ax))
> (1) = c(x; + Ax)

> s(f(z:)A+ \/(A — s(f(@a)e(f(x:))? = e(=Az) (2f (2:) + (—Ax))
> s(z) A + /(A — s(@i)e(@:))’ — e(Az) (2; + Ax)

— (A= s(z)e(f(x)? — eAx(=2(—z; + 27) + Az)
> (A — s(z)e(x)? — eAx(2z; + Az)

= (A—s(z)e(f(@)* + 2eAxaf > (A — s(xi)e(z:))?

The inequality holds because we assumed ¢(f(x;)) > ¢(z;) and ¢ > A > 0 and s(z) =
s(f(z)) holds. So far we assumed staying within the same segment, however, because
s(x) = s(f(x)), incrementally adding Az going from segment border to segment
border keeps the above reasoning intact, ¢(f(x)) > ¢(z) holds true.

Induction start. to show: c(f(xf)) = ¢(0) > ¢(af)
This directly follows from section [3.3.2f Remarks on monotonicity).
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Conclusion. It follows that when passing the right funnel entrance border of funnel
F;” the trajectory does not enter the funnel yet: c(z§ +7) = c(f(2{")) > c(af") = A.

Section (Remarks on monotonicity) stated that ¢(z) is monotonically increas-
ing with x for x < 0 and ¢ > A. It follows that the trajectory will reach ¢ = A to the
left of the right funnel entrance border of F : x;~ <z~ + .

(ii.2) To Show: x{~ 4+ 7 < x*; =}~ Lies Right of the Left Entrance of F;"~

To show that the trajectory reaches the funnel entrance to the right of the left funnel
border of funnel k, we employ a strategy that is analog to(ii.1) in most parts.

Defining & and g(x). The function g(x) is defined in the following way (see fig-

ure Z

g(x) = —x +a®

28 is defined such that it has the same distance to the left border of the funnel entrance
F."~ as the funnel exit point F,S+ from z = 0.
zg— (25 —m) =2t -0,

From the above definition of z# it follows that & < 0:
For 0 < < m:

3 3
=ptgrt2k-Nr+e—gr— (k- r—m=2p -2 >0
For —m < ¢ < O:
3 3
xg290+§7T+2k7r+80—57—(2]‘3—1)”_”:29‘9>0'

Now we will show that x and g(x) are situated within the same segment type: s(z) =
s(g(z)). For 0 < p < mas well as — < p < 0

(—1){51(7@77% _ (_1){%&;%%

The equality holds for geometrical reasons.

Induction. to show: When increasing z, c(g(x')) = c(x}~) = A occurs before c(x§") =

A and hence g(z{") =z —m < g(z') =2} .

Induction step. to show: c(g(x)) < ¢(z) = c(g(x + Az)) < c(x + Ax)
Az is chosen such that segment borders are not crossed and we define z;y; =
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x; + Ax. The right hand side is considered:

e(g(wi41)) < (i) = e(zi + Ax)
— (A —s(x)e(g(x ))) +2eAza?d < (A— s(a;)c(a;i))z.

Assuming A < ¢(g(x)) < c¢(z) the above inequality follows, given that Az > 0 and
& < 0.

So far it was assumed that Az is chosen such that x + Ax remains within the same
segment as x, however, because s(z) = s(g(z)), incrementally adding Az going from
segment border to segment border keeps the above reasoning intact, ¢(g(z)) < c(x)
holds true.

Induction start. to show: c(xg) = ¢(g(0)) < ¢(0)
This directly follows from 2| (Remarks on monotonicity).

Conclusion. While starting at = 0 and increasing Az, the induction above showed
that c(g(z)) < c(z) has to hold. Hence, before 2" with c(z$") = A is reached, the
point ¢(g(x)) = A = c(2*"), when the trajectory reaches ¢ = A again, has to be
passed. Therefore, z*~ > z;” — 7 = g(ack+). The trajectory reaches ¢ = A to the

right of the left border of F; ,ifnf

Short recapitulation. Overall in (ii) we have shown that the trajectory leaving the
funnel exit point of the funnel F; reaches between the left and right funnel entrance
borders of the funnel F} . In (i) we showed that if e, > ¢ this trajectory will leave
this funnel at the funnel exit point F, ,go)f.

To complete the cycle it remains to show that a trajectory leaving at the funnel
exit point of the kth funnel on the left F)~ will enter the funnel entrance of the kth
funnel on the right F,inJr. The argument is fully analog to the one presented above in

(ii) and is presented in the appendix (section C).

C - Funnels are Dense

This section demonstrates that within the region of phase space with closed funnels
all trajectories converge in finite time to limit cycles. Specifically we want to show
that the funnel structure is dense. There are no gaps between funnel entrances:

{ale € 2] —mait +m) e g Bt FMT) = {)

This follows directly from the definition of Flini.

3.4 Discussion

In this chapter we constructed a minimal model of adaptation, considering an adapt-
ing entity in a slowly changing environment. The system was realized as an interactive
system between a potential and a particle moving inside it. The potential, a super-
position of a sinusoidal function and a straight line, slowly changes by adjusting the
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straight line’s slope depending on the particle’s position. Since the particle follows
the local gradient to minimize the energy, an overall seesaw behavior emerges. The
phase space is characterized by seemingly infinite nested limit cycles. A proof for the
existence of limit cycles was provided for a simplified system sharing the qualitative
phase space portrait of nested limit cycles. Even this minimal model of an adaptive
system, described by only two smooth ODEs, shows rich dynamics. Due to the sys-
tem’s simplicity other research fields converge onto similar equations. In the following
discussion we consider the system from those different perspectives.

The System as a Second Order Differential Equation.

The dynamics of this system are fully described by two ODEs. Indeed, they can be
rewritten as a single second order ODE:

1 1
—i = —Acos(—t — ) —x
5 £

Interpretation as a mechanical oscillator. This reformulation allows for an inter-
pretation as a mechanical oscillator such as a mass hanging from a spring.

In this framework % can be understood as the mass. x is the extension of the spring.
The last term —z is the restoring force of the spring with a spring constant of 1. The
first term on the right resembles a damping force, because it depends on the velocity
. However, opposed to the damping force in a passive spring oscillator which is
proportional to the current velocity of the mass, the dependence of the acceleration
on the velocity is mediated by a cosine function. For some velocities the particle is
accelerated while for others it is slowed down.

There is an alternative way to rewrite the system as a second order ODE which is
presented in the appendix in section B.

Without the unusual damping term the equation above describes a harmonic os-
cillator (%x = —kz with £ > 0, here £k = 1). Through decreasing the parameter A
the system transitions into a harmonic oscillator. It remains open to study how this
transition looks like. Harmonic oscillators are broadly studied in physics, since they
are very simple and many oscillatory systems can be reduced to a harmonic oscillator
by leading order approximation. A negative damping term is often added to such an
oscillator to account for energy loss of the system due to friction. An oscillator with
friction will eventually reach a stable resting position. However, here the damping
term sometimes has a positive sign, depending on the current velocity. Therefore, for
some velocities energy is added to the system, a property not found in passive matter.

Active matter. In recent years biophysics has focused more and more on studying
self-propelled particles or active matter. These particles consume energy from their
environment to convert it into motion. Examples of self-propelled particles include
animals such as birds moving in flocks and fish moving in schools. Furthermore, there
are self-propelled bacteria and other microorganisms. Also artificial systems, such as
(nano-)robots moving in a swarm exist. Many such self-propelled particles interacting
make up so called active matter. They may produce intricate collective dynamics
emerging from very simple behavior rules guiding each participating particle.
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The dependence between acceleration and velocity. In the system presented here
acceleration depends on velocity via a sinusoidal function; across the velocity dimen-
sion regions with acceleration and deceleration alternate. There are examples in the
literature of particles, which show an acceleration-velocity-dependence with a sim-
pler structure: One idea is based on empirical evidence that the motion dynamics
of some chemotactic bacteria, such as granulocytes, can be separated into two inde-
pendent processes for direction and speed control. The later can be described by a
steering mechanism, which leads to acceleration for slow speeds and deceleration for
large speeds [27, [73]. Another idea relates to the finding that some marine bacteria
temporarily store the energy gained from the environment through nutrition in an
internal energy depot. The internal energy dynamics depend on the conversion of
stored energy into motion as well as internal dissipation of energy used for metabolic
processes. Assuming fast internal energy dynamics compared to motion control leads
to a situation with bacterial acceleration for slow speeds and deceleration due to fric-
tion for large speeds within a certain parameter regime [I5) [74]. For a theoretical
overview, see reference [71].

The oscillation amplitude as a property of the initial conditions and the system.
The system presented here is an example of an active oscillator. Another active
oscillator is the van der Pol oscillator:

i=—p(z®—-1)i—=x

with the parameter p > 0. The damping term —pu(z? — 1)4 is negative for large |z|
and positive for small |z|. In the phase plane spanned by x and & the whole flow
approaches a single limit cycle. The information regarding the initial conditions gets
lost over time. The average amplitude of the oscillator is a property of the system.

In contrast the above mentioned harmonic oscillator is neutrally stable, the phase
plane consists of infinitely many closed orbits. A slight perturbation of the system
will change the long term behavior by shifting towards a neighboring orbit. The
information regarding the initial conditions is conserved, the average amplitude of
the oscillation depends only on the initial conditions.

The oscillator presented in this chapter shares properties of both system types.
While the initial condition determines which limit cycle is approached, each limit
cycle has a basin of attraction, such that many initial conditions eventually lead to
the same long term behavior. The resulting average oscillation amplitude depends on
the initial condition as well as on the system itself.

A computational perspective. Some dynamical systems may be very efficient in
performing a tasks, potentially allowing for building new efficient computational tools
[62H64]. From a computational perspective the system studied in this chapter performs
the operation of discretizing the analog signal provided by the initial conditions into
discrete average oscillation amplitudes, a digital signal. Whether this operation could
be exploited to perform interesting computational tasks should be explored in the
future. However, the oscillator presented here is not the simplest system to achieve
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such a digitalization of oscillator amplitudes. Consider the following system:

b =uw

7 = sin(r).

the angle ¢ rotates with a constant speed w. The amplitude r gets discretized, since
the sine function has infinitely many zero crossings. It remains an open question
whether a computational application can be found in which the adaptive oscillator
presented in this chapter is superior to the simpler oscillator presented above.

Conceptualizing the System as Two Coupled Phase Oscillators

The Adler equation was developed to understand the synchronization of a limit cy-
cle oscillator with a weakly coupled periodic input of similar frequency or the syn-
chronization between two weakly coupled limit cycle oscillators with similar intrinsic
frequencies. The weak coupling assumption allows for approximating the evolution
of each oscillator by a phase representation, the input is weighted by an infinitesimal
phase response curve, which accounts for the varying susceptibility to inputs within
the cycle. Further, it is assumed that both oscillators have similar frequencies, so that
the phase difference between the two oscillators changes very slowly compared to the
change in absolute phase. This slow change in relative phase allows for approximat-
ing the coupling function between the oscillators depending on the absolute phases
of both oscillators by a function that only depends on the phase differences. This is
achieved by averaging out effects of absolute phase across the completion of a cycle for
any fixed phase difference. Subtracting the equations for the phase evolution of each
oscillator from one another yields a differential equation, that defines the evolution of
the phase difference between the oscillators. For sinusoidal coupling this equation is

the Adler equation:

d?—f = Aw + esin(Ag¢)

A¢ is the phase difference between the oscillators, Aw = we — w; is the difference of
the intrinsic frequencies, € is the coupling strength. The region in parameter space
spanned by the coupling strength € and the frequency difference Aw, for which this
equation yields fixed points, is called Arnold tongue and indicates synchronization
behavior[2] 35, 67].

The equation coincides with the first of the two ODEs describing the original os-
cillator studied in this chapter (see equation . Therefore it may be possible to
reinterpret this system as an interaction of two oscillators in the spirit of the Adler
equation. Accordingly, the variable z corresponds to A¢ + ¢, the phase difference
between the two oscillators plus or minus a constant phase shift, and the variable ¢
corresponds to Aw, the difference in intrinsic frequency between the two oscillators.
With this substitution equation can be rewritten as such:

dAg

F——Aw—Acos(Agb—go)
dAw

— =cA¢p.

T
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This system can be understood as the interplay of two opposing mechanisms: As
long as the system operates within the Arnold tongue regime of the first equation the
first mechanism dominates, which strives towards a phase locking between the two
oscillators.

However, a second mechanism strives to restore the initial distance between the
two oscillators, by dynamically adjusting the frequency difference Aw = ws — wy in
favor of the oscillator lacking behind. Note that A¢ was substituted for x and is
not a periodic variable. It measures the absolute distance between the two oscillators
relative to a fixed starting position not the phase difference.

The dynamics discussed in this chapter arise from a competition: The first mech-
anism aims towards a relative phase difference A¢ measured in a periodic distance
and the second aims at restoring distance in A¢ measured in a non-periodic absolute
distance. The two oscillators stay in a phase locking Arnold tongue regime dominated
by the first mechanism, until the influence of the second mechanism becomes strong
enough to break free and the oscillators overtake each other due to differences in in-
trinsic frequencies. Eventually, the relative contribution of the first mechanism again
becomes strong enough to dominate and so forth (for a different system dynamically
moving in and out of the Arnold tongue regime, see reference [50]).

3.5 Summary

In this chapter we aimed at furthering the understanding of adaptation from a dy-
namical systems’ perspective. We defined a minimal adaptive system. Numerical
simulations revealed an intricate phase space topology of apparently infinitely many
equally spaced nested limit cycles. This finding is robust across a wide range of pa-
rameters. Only if the phase shift is a multiple of © numerical studies are inconclusive.

While the nonlinearity of the system prevented analytic treatment such analysis
was possible for a simplified system. Numerical studies confirmed that the qualitative
behavior of nested limit cycles in phase space was unharmed by the simplification.
However, analytic treatment was possible. For a certain parameter range a funnel
structure could be identified which is characterized by splitting the full flow, so that
all trajectories entering into a specific closed funnel merge into a single one. This
trajectory eventually reaches the funnel entrance of the corresponding funnel on the
opposite side. The same logic applies here, all trajectories entering this funnel merge
into one, which returns to the original funnel. This way the full cycle is closed and
the existence of the numerically observed limit cycles is analytically proven. Nu-
merical simulations indicate that the limit cycle structure exists beyond the region
characterized by closed funnels.

In the discussion section alternative views on the system were proposed. These
include understanding the system as an active oscillator or as a computational unit
that discretizes analog input into oscillations with predefined average amplitudes. In
the end we discussed the relation of the system to the Adler equation and reinterpreted
the system as an interaction between two phase oscillators.

Context of the thesis. In this thesis we want to explore the fundamental dynamical
properties of features often used in theoretical neuroscience. We ask whether emer-
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gent dynamical phenomena observed in neural networks can already be produced by
extremely simple systems based on dynamical features typical to neural models. Neu-
ral networks often are made up of adaptive neural units. Even though the adaptive
system studied in this chapter is very simple and is fully described by two ODEs, it
already exhibits an intricate phase space topology of nested limit cycles. The system
shows multistable oscillations. Multistability is considered to be an interesting feature
of neural networks (e.g. see reference [55]). Here we show that even a two dimen-
sional adaptive system can produce multistability with apparently infinitely many
stable states.






Chapter 4

Reordering and Order Conservation in
Symmetric All-to-All Pulse-Coupled Phase
Oscillator Networks Depending on
Self-Loop Strength

4.1 Introduction

The goal of this thesis is to understand the implications of dynamical features often
used to model biological, in particular neurological phenomena from a dynamical sys-
tems perspective. Units of neural networks commonly interact by exchanging pulses.
In the next two chapters we study the effect of pulse-coupling in extremely simple net-
works. A special focus lies on coupling by exchanging delayed d-pulses. To understand
the implications of pulse-coupling from a dynamical systems perspective we consider
ODE systems as reference systems. In this chapter we choose to study an all-to-all
pulse-coupled network of phase oscillators, that has full permutation symmetry.

Pulse-coupling. A pulse has a temporally extended characteristic shape of intensity.
In a system with pulse-coupling from entity a to entity b a pulse is sent each time
entity a is in a specific state, e.g. reaches a threshold. The pulse is received by entity
b and interacts with it over the full time of pulse reception with varying intensity
according to the shape of the pulse. Many examples of pulse-coupling come to mind
from artificial systems, especially from electronics. But nature also provides us with
examples: Interactions between tectonic plates can be modeled via pulse-coupling [32]
as well as the synchronization behavior of the firefly species Photonius Carolinus via
light pulses [57]. Another example is the circadian clock in mammals, that controls
physiological processes following a day-night cycle. The clock is made up of a cascade
of molecular reactions that needs approximately 24 hours to repeat itself. The control
of processes in the body is achieved by secreting the hormone melatonin into the blood
stream each night [4]. For a precise definition of pulse-coupling see chapter 2.

Pulse-coupling between neurons. Communication between neurons in the brain is
achieved by exchanging pulses. Input from other neurons is accumulated across the
neural input sides as changes in membrane potential, the electrical potential between
inside and outside of the cell. If the total depolarization at the soma, the cell body,
crosses a voltage threshold an action potential is generated. An action potential is a
large fluctuation in membrane potential, which has a stereotypical shape. This action
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potential then travels along the axon, a cable-like structure, to the output sides of the
neuron, where it is connected to other neurons via electrical or chemical synapses. In
the central nervous system, including the brain, synapses are predominantly chemical.
They consist of a presynaptic part belonging to the sending neuron, the synaptic cleft,
which is a small gap between the two neurons, and a postsynaptic part, belonging
to the receiving neuron. If an action potential reaches such a synapse, it causes the
ejection of small molecules, the neurotransmitters, from the presynaptic part into
the synaptic cleft. These neurotransmitters travel to the postsynaptic part, and by
binding at specific binding sites cause a change in membrane potential of the receiving
neuron. The process from action potential generation at the soma and transmission
and synaptic interaction once started occurs, as a first approximation, always in the
same way. The combined effect is often modeled as a pulse triggered each time the
membrane potential of the neuron reaches a threshold. In a minimal model the whole
pulse is summarized into a single §-pulse that occurs after a fixed time delay after
threshold crossing. Neural models with §-pulse-coupling can show rich dynamics
[Bl, 17, [64]

Phase oscillators. Phase oscillators are very simple, while at the same time not set-
tling into a steady state. Networks of phase oscillators are broadly studied in physics.
One reason is that weakly coupled oscillators can be described as phase oscillators
[35]. Phase oscillator networks can give rise to interesting dynamical phenomena such
as synchronization behavior [30} 57], clustering [8, 0] heteroclinic switching [8], [30],
chaos [11], repeated firing patterns [17] or chimera states [I], 41]. Dynamics of phase
oscillator networks including pulse-coupling have been discussed as well e.g. syn-
chronization behavior [57], repeated firing patterns [I7] or clustering and heteroclinic
switching [62], 85]. While many phenomena can occur in pulse-coupled oscillator net-
works as well as networks fully described by ODEs, here we consider a case, where
the two system types show qualitatively different behavior. For a definition of phase
oscillators see chapter 2.

Symmetry in networks. A fully symmetric network topology is a simple structure
and yields symmetries in the dynamics. A dynamical system has a symmetry if there
exists a transformation that keeps the set of trajectories in phase space unchanged.
Systems of oscillators with full permutation symmetry often produce interesting phe-
nomena e.g. cluster states [8, [11], 24, [30} 62, 8], [85], which may yield useful compu-
tational properties. [62H64].
Let
x'i = fi(l'l,afg, NN ,.’L‘N>

describe the evolution of node 7 in a network with N nodes. Let o be a permutation
of the numbers 1,..., N. Then ¢ is a network symmetry, if

f(ox,t) = of(x,1).

In other words there is a network symmetry if it does not make a difference, whether
the indices of the nodes are permuted or the functions describing the temporal evo-
lution of each node.
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An all-to-all coupled network (without self-loops) of identical nodes and equal cou-
pling has the full Sy symmetry. All possible permutations of N numbers are symme-
tries of this network. In such a network the dynamic node equations take the following
form (see reference [38]):

1 = f(x1;72, T3, .., TN)

&9 = f(x2; 71,23, .-, TN)

N = f(zN;T1, T2, -, EN-1)-

The overline indicates permutation symmetry of the variables (e.g. f(z1;T2, T3, .., TN)
= f(21;Toy, Tag s Ty )-

Golubitsky et al. [25] observed the following: If a network described by smooth
ODEs has a symmetry with regards to node ¢ and node j, then the polydiagonal
x; = x; is flow invariant, i.e. any trajectory starting on this polydiagonal is confined
to it. The polydiagonal separates the whole phase space into two volumes, each
corresponding to a specific ordering of nodes ¢ and j. Because in a smooth ODE system
the existence and uniqueness theorem holds, trajectories are continuous and cannot
cross each other. It follows that they cannot cross the polydiagonal. This implies that
node 7 and node j cannot overtake each other, their ordering is conserved, if they are
oscillators, their average frequency will be the same and their winding number can
maximally differ by 1. In a system with full permutation symmetry (o € Sy) it follows
that no node can overtake another, so order conservation is true for the whole network.

Even though it might be tempting to apply the same reasoning to pulse-coupled
systems as well, Kielblock et al. [38] have demonstrated that overtaking can indeed
take place in symmetrical systems of all-to-all pulse-coupled oscillators (see figure
panel A and B). They chose a coupling kernel that has no delay and does not induce
any non-smoothness into the phase evolution of the receiving oscillator. Hence the
breaking of order conservation should indeed be attributed to pulse-coupling. Kiel-
block et al. argue that this is possible despite the reasoning of Golubitsky et al.
because the state space of pulse-coupled systems has more dimensions due to an ad-
ditional dependence on pulse sending times, compared to ODE systems which show
state dependent coupling.

Furthermore, Kielblock et al. provide an analysis for a network of all-to-all §-pulse-
coupled oscillators and determine the parameter regime for which order conservation
is guaranteed.

Self-coupling. Introducing self-coupling into the system studied by Kielblock et al.
will lead to all oscillators receiving identical input at all times. Order conservation is
ensured, as will be discussed in detail in the discussion section.

Often in larger networks the effect of self-loops is assumed to be negligible due to
their small contribution relative to the input from the rest of the network or found to
not having a substantial effect [45].

However, here we present a case where the presence of self-loops leads to qualita-
tively different behavior.

Consequently, removing the self-loops gradually has to lead to a transition from a
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system of order conservation to a system with oscillators overtaking each other.

Transitions from one state to another are fundamental phenomena in nature. E.g.
transitions from aggregate states in thermodynamics such as transitions from solid to
liquid or gaseous state shape our environment. These transitions can occur discontin-
uous (e.g. the transition from liquid to gaseous state induced by heating produces a
sudden increase in density) or continuous (e.g. in the ferromagnetic transition). For
many applications it is vital to understand the nature of a certain transition and to
determine critical parameters for a transition to occur. Examples include determining
whether an epidemic will spread [26], whether a material will be stable or whether
queues will grow indefinitely. There are different fields that study transitions ana-
lytically, e.g. percolation theory or bifurcation theory. Often transitions occur by
changing a macroscopic control parameter in an otherwise unstructured/symmetrical
system (e.g. changing the temperature in the Ising model or changing the connection
probability in a percolation network).

First we demonstrate numerically that the transition from order conservation to
breaking of order conservation exists in an all-to-all pulse-coupled oscillator network,
where pulse reception does not lead to any non-smoothness in the trajectories. Then
we study the transition analytically in a system with delayed J-pulses and uncover
the mechanisms behind the reordering process, which ranges from simple reordering
patterns to quasi-chaotic reordering.

The Structure of This Chapter

This chapter is structured in the following way: In the second section we consider a
smooth pulse-coupled system that shows reordering and demonstrate that introducing
self-loops leads to order conservation. In the third section we introduce a Jd-pulse-
coupled system, that allows for analytic treatment. We derive conditions for order
conservation in the parameter space including self-loop strength and describe the
reordering process analytically. Within the reordering parameter regime we observe
different patterns of reordering including chaos-like mixing. In the fourth and final
part we provide a brief summary and discuss the results from a dynamical system’s
perspective, focusing on the dynamical features of pulse-coupling and self-loops.

4.2 Breaking of Order Conservation by Removing Self-Loops
in a Smooth Pulse-Coupled System

While Golubitsky et al. [25] showed that a symmetric all-to-all coupled network de-
scribed by ODEs necessarily shows order conservation, Kielblock et al. [38] presented
an example of a symmetric all-to-all pulse-coupled system with breaking of order con-
servation. Since the pulse-coupling introduced by Kielblock et al. had no delay and
did not induce any non-smoothness into the system, the dynamical feature of pulse-
coupling itself seems to be responsible for the breaking of order conservation. Here
we introduce self-loops into the system studied by Kielblock et al. and find, that the
system with self-loops returns to order conservation.
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K(®)

Figure 4.1: Coupling kernel K. The coupling kernel is constructed to induce no
non-smoothness, when a pulse is received.

4.2.1 System Definition

The network consists of NV = 4 all-to-all coupled nodes with the following dynamics:

N
Bi= flw) + > eiK(t—t3)

j=1s€Z
zi(t7) = 1 = 2y (£5%) = 0

f(z;) = I — x; with I = 1.1 captures the intrinsic dynamics of each node 4, which
is oscillatory, since the free dynamics eventually reach the threshold z;(t;”) = 1, the
oscillator sends a spike and resets to z;(¢;1) = 0. ¢ indicates the sending time of the
sth spike of node i. ¢ is the coupling strength between nodes with ¢ = —1 if ¢ £ j. If
1 = 7, € = 0 in the system without self-loops and € = 1 in the system with self-loops.
The coupling kernel K is given by

1.5

K(t) = —sin“(—t)

H H
for t € [0,p] and K(t) = 0 otherwise (see figure 4.1). The kernel is constructed
such that the dynamics are differentiable (except for the oscillator reset). The initial
conditions were chosen close to the synchronous state.

4.2.2 Transition to Order Conservation with Self-Loops

In the original system without self-coupling the oscillators pass each other, while order
is conserved in the system with self-coupling, see figure Therefore if we remove
self-loops by gradually decreasing their strength we expect to observe a transition from
order conservation to breaking of order conservation. In the next section we analyse
this transition and the reordering process in case of breaking of order conservation in
greater detail. Since the smooth system presented here is not analytically tractable, we
will resort to studying the transition in a simpler system, that is analytically tractable.
That system is characterized by delayed d-pulse-coupling instead of a smooth coupling
kernel. The analysis is based on the approach presented by Kielblock et al. [3§].
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Figure 4.2: Transition from overtaking to order conservation in a symmetric
smooth pulse-coupled system by introducing self-loops. Panel
A and B show trajectories of the 4-oscillator system with no self-loops
studied by Kielblock et al. [38]. Panel C and D show trajectories of the
same system with self-loops. Panel B and D show magnified regions from
panel A and C, respectively. The initial conditions were chosen close to
the synchronous state. With no self-coupling the oscillators pass each
other, while with self-coupling their order is preserved.
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4.3 Analysis of Reordering Processes in a Spiking System
with Self-Loops
4.3.1 System Definition

System class and phase representation Here we consider §-pulse-coupled networks
with N nodes of the following form:

dz; _ al r 7s
7 —f(flfi)‘FjZ_:lZS:&jK(t—tj) (4.1)

:L'Z(tAf_) =1— xz(fer) =0.

f(z) captures the intrinsic dynamics of each node. We assume f(z) to be smooth. The
free dynamics without input starting at the reset point x = 0 are assumed to reach
threshold eventually at z = 1, leading to a spike generation and reset and an overall
oscillatory behavior. Reset and threshold are chosen to be at 0 and 1. Systems with
other reset and threshold can be easily rescaled accordingly. % indicates the sending
time of the sth spike of node i. K(f — fj) = 0(t — f;f — 7) is the coupling kernel,
receiving a spike leads to an instantaneous change in the variable x;. 7 denotes a
constant delay. e;; is the coupling strength from node j to node i. We denote the
solution to the free evolution of an oscillator starting at 2(0) = 0 with F (). The time
t until threshold crossing is T: F(T) = 1. F() is monotonically increasing, F’ > 0.
(Due to the existence and uniqueness theorem trajectories need to be continuous and
flow is unique. The trajectory in a one dimensional phase space therefore can only
proceed in one direction or approach a fixed point but it cannot return).

Equation [4.1] can be translated into a phase representation. We introduce the phase
variable ¢ € [0, 1] with the following time evolution:

N
.izl ZEZ.. i ot — ?—T
¢i =1+ AM;XS: (t—t;—7) (42)

Gi(t;7) =1 = ¢i(t;T) =0.

Hence, the free solution of the phase variable ¢ needs one time unit ¢ from reset
(¢ = 0) to reach threshold (¢ = 1). Therefore we rescale the old time  with the
factor 1/T to achieve correspondence. The delay is rescaled: 7 = 7/T. The phase
response curve Z. (¢) provides the size of the instantaneous jump in phase of the
receiving oscillator induced by the reception of a spike and depends on the current
phase ¢; and the coupling strength &;;.

To achieve correspondence Z., (¢) is constructed in the following way. First we
determine the phase after spike reception ¢pos; depending the phase directly before
spike reception ¢pre

¢post - Uﬁl(U(gbpre) + Eij) - Hgij (¢pre)- (4'3)

U(¢) is obtained by rescaling the free solution F(#): U : (—o00,1) — (—00,1); ¢ —
U(¢) := F(¢T), U(0) = 0 and U(1) = 1. Since F' > 0 also U’ > 0. U(¢) is called
rise function, U~!(z) denotes the inverse rise function. H., (@) is called interaction
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Figure 4.3: Rise function Uy, interaction function H and coupling kernel K.
Panel A shows the strictly monotonically increasing rise function. The
parameter b controls the bending. The considered class of rise functions
Uy leads to an affine interaction function H (panel B). Panel C shows the
coupling kernel K (t) = 6(t — 7). Parameters: b = 2.8, ¢ = —0.2.

function. The phase response curve Z, (¢) and the interaction function H.,, () are
related through the following equation:

Zaij(¢pre) = Ppost — Ppre = Hsij(¢pre) — Gpre- (4.4)

Rise function and interaction function. We consider a system of coupled phase
oscillators according to equations and [£.4] We choose a specific class of rise
function (see figure panel A):

1
Up(¢) = yin[l + (¢" = 1)].
The parameter b > 0 controls the concavity of the curve, larger b correspond to
stronger bending. The inverse rise function is given by

bz_l

et —1

Uy H(z) = ¢ =

The interaction function H.,(¢) is provided by

HEz‘j (¢) :Uljl(Ub(qb) + Ei]')
ebsiﬂ' -1

_ beij
“ao1 T

see figure panel B. The derivative with respect to ¢ is given by

dH. () — obeij
—a5  ~HL,@)=e

Due to the choice of a specific class of rise functions Ue;;(¢), the interaction function
H.,;(¢) is affine and the slope Héij is independent of its argument ¢:

H! (¢) = H. (4.5)

Eij €ij°
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Coupling strength. We are interested in varying the self-loop strength in a permutation-
symmetric system. Therefore, €;; = € if 7 # j denotes the coupling strength between
two different nodes, while ¢;; = o if i = j denotes the self-loops strength, o € [0,1]
with ae = o captures the relative strength of self-loops to the coupling strength
between nodes in the network.

Assumption of blocked spike sending and reception times. We assume that the
system is in a state with spike sending events of all oscillators occurring as a block
followed by a block of spike reception events of all oscillators. Such a situation is
found in the vicinity of the synchronous state defined by all oscillators having identical
phases at all times.

Replacing the phase vector by a phase difference vector. Without loss of generality
we can label the oscillators of an N-dimensional system according to their ordering in
phases relative to each other directly after all oscillators have sent their spikes:

1>¢1>¢a>...>¢n >0.

This system of oscillators can equally well be described by giving the phase of the first
oscillator and the differences in phases of the other oscillators: Let A;; = ¢; — ¢; be
the difference in phase between oscillator ¢ and j. Now the system can be described
by the fOHOWng coordinates {(bl, Al’g, A2’3, ceey AN—LN}-

We assume that the first oscillator sends its spike at ¢ = 0, the second oscillator at
i—1
t = A2 and so on, such that the ith oscillator will send its spike at t = Z Aj k1

The pulse of the first oscillator will then be received by all oscillators at t = 7, the

next spike of the second oscillator will be received at ¢ = 7 4+ A2 and so on, such
i—1

that the pulse sent by the i oscillator will be received at t =7+ > Ay 11
j=1

4.3.2 Return Map for Phase Differences

A mapping from phases before to after reception of all blocked spikes. For nota-
tional reasons we define the following function of a phase shift:

Sal¢) =9+ A.

It is possible to express the phases of oscillator i and ¢ + 1 after reception of all spikes
at time 7 + Ay n, given their phases just before the first spike is received at time 7.
The effect of the full sequence of alternating spike receptions and phase shifts between
spikes is aggregated in the following function composition:
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¢i(T + Ay n) =Hc 0 SAN—l,N o---oH.o SAi+1,i+2 o He 0 Sy,
0 SA2,3 oH.o SA1,2 °© H€(¢Z(7—))

oH;oSa

i—1,1

it

This equation is solved by untangling the functions step by step applying H.(a+b) =
He(a) + H[(a) - b repeatedly. Also note that Hy(Hg(a)) = Haqp(a).

H(¢i(1)) = E(T_ZAkk+l>_ () + HI(T (ZAkk+1>

i—1
He 0 Sn,, 0 He(¢i(7)) = He 0 lHE(T) + H (7)) - <_ Z Ak,k+1> + A
k=1

i—1
= Ha(7) + H::(HE(T)) : <_ Z Akvk‘*‘l) + Hé(HE(T)) AVE
k=1

Untangling the complete function composition using equation leads to:

i(T+ALN) = HiN_1)et0(T)
+ HQ(H(N72)€+U(T)) : HQ(H(N*?))E‘FU(T)) cee Hz{:(H(ifl)era(T))

+ Hy(Hi1)e(7)) - H{(H-2):(7)) ... H{(H<(7)) - H{(7)) - (-

k
+ Hé(H(N—2)€+U(T)) ) Hé(H(N—3)6+U(T)) s Hé(H (i—1 E—HT(T))
HY(H (1) (7)) - HA(H(i2)e(7)) - .. HA(H:(T)) - Ai 2

<.
I

1
Ak,k+1>

1

+ H/(H(N Neto(T)) - HL(H(N_3)e46(T)) - .. HL.(H(;_1)eo(T))
( a(T)) ( z‘—2)a(7)) “Ajg-1

+ HQ(H(N_z)Ho( 7)) HU(H (N 3)ct0(7)) - HL(H(i1)c16(7))

“Hy(H(i_1)e(7)) - A1

+ H.(H(N-2)e10(T)) - H(H(N_3)e10(T)) - .- H.(H(;—1)e10(T))

At

+ HQ(H(N—Q)aJra(T)) 'Hé(H(N—?))E-i-O'(T)) “AN_2N-1
+ H.(H(N-9)e+0(T)) - AN_1,N
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= H(N71)€+U(T)
1—1
+H'-H .. H -H -H .. H H. (—ZAMH)
k=1

CHCH.H -H. H .. H A,

+ H.-H...

c Hé . Hzlr Hé . Az;g,z;l
—G—HéHéHéH(/fAZ,Lz

+ Hé . Hé ... AN_Q’N_l
+H. - An_1n

:H(N—1)€+U(T)
i—1
+HN g (- 3 Ak,kH) +HN T H A,
k=1

Ne—it1 N—i N—i
HHSTT H N g+ HY T HL A HY T A

(e

2
+H” Any_on—1+H.-An_1n

A return map for the phase difference vector. Now we consider the phase difference
vector between neighboring oscillators: A. We define F; . ,(A) as the map from before

to after the kth block of spike reception.

— —

AT+ A1 N) =Freo(A(T7))

Outside the block of spike receptions all phases proceed with speed 1 (equation .
Further, A is conserved across the block of phase resets. Therefore, the map F is the
return map from before the kth block of spike reception to before the k 4+ 1th block

of spike reception: AT = Frco(A):

tiv1 =0T+ A1N) = Gir1 (T + A1 N)
= T T B
= (AL~ Hy) H 7 4 HY T HG A
— [(esb o easb)esbN*I*i 4 esbeleasb]A%i_i_l

=i A1

Interestingly, the return map for each interval A; ;1 of A only depends on itself. The
return map F' is a diagonal matrix with diagonal elements \; as eigenvalues. F' is

independent of 7.
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Figure 4.4: Dependence of \; on different parameters. Panel A: Dependence

on the system size N. If the curves have a zero crossing, it is identical.
Panel B: Dependence on b, the parameters occur always together and are
considered together. Panel C: Dependence on the self-loop strength a.
Panel D: A\(i) depending on default parameters. Default parameters (see
main text) are used in all four panels, if not explicitly noted otherwise.
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Figure 4.5: The zero crossing iy of \(i) depending on parameters. The curve

be
wit o = 0 appears to be a limiting curve: ig|,_,(be) = ln[lbj L. The
bending point is determined via ipenqa = [io]-

Exploring the eigenvalue \;. For the remainder of the chapter we assume negative
coupling: ¢ < 0. Timme et al. [83, B4, 86] have shown that the synchronous state
(¢i(t) = ¢(t) for all oscillators and all times ¢) in such a system exists and is stable.
We will use e = —0.2, b = 2.8, @« = 0.7 and N = 7 as default parameter set (see

figure panel D).

figure shows how the eigenvalues \; interpreted as a function A(i) change with
different parameters. The interval with index ¢ corresponds to the phase difference
interval Ai,i—l—l-

The intercept of A() is positive:
)\(0) — (eeb _ easb)eebN_l + eebN_leozeb — eNsb >0 (46)

A(7) is monotonically decreasing:

AN (D)
di

= (e — o) N T ep) < 0 (4.7)

and bend concave down:

d)‘(l)Q _ (esb

d2i
A(7) is bounded: |[A(7)] <1 for i € [0, N — 1]:

. eaeb)esbN_l_i(_Eb)Q <0

eb < ob = aeb < 0. It follows that —1 < (e%* —e®*) < 0 and 0 < etV 1 <1 and

N-1 . N—1—i N-1
0 < e et < 1. Therefore —1 < A\(i) = (e — )b C et T et <1,
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i
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Figure 4.6: A sketch of how intervals change across a block of spike recep-
tion. )\; determines how each interval between two neighboring oscillators
A;;+1 changes size and potentially flips sign.

Zero crossing A(ip) = 0. Since A(i) is monotonically decreasing (equation [4.7)) and
starts above zero (equation [4.6)) there is exactly one zero crossing iy, see figure
However, it may lie outside of the range of interest, that is i > N — 1.

0= A(ip) = (eEb — eaéb)eebN—l—io 4 N1 ach
<— 0= (ebf _ ebaa)[eba]_io n e

1 bae __ be
io = n[e[)gQ] —a (4.8)

19 does not depend on the system size N nor does it depend on the phases or phase
differences between oscillators. For iy depending on parameters see figure 1.5

4.3.3 A Folding Mechanism

A; determines how the interval A;;;;1 changes through the completion of a cycle.
Therefore the reordering process over one cycle is fully determined by the eigenvalues
;. For a fixed parameter set the change of each interval only depends on its index
and not on the phases or phase differences between oscillators.

For some parameters A(i) has a zero-crossing ig (A(ig) = 0) within the interval
J1, N — 1[. All intervals with indices i > iy change their sign and the corresponding
oscillators change their ordering, while all intervals with ¢ < ig keep their sign and
oscillators their ordering. The smaller |i — 4|, the smaller |);| and the stronger the
shrinking of the interval. Figure [4.0] sketches the qualitative behavior assuming that
the zero crossing iy is situated between 3 and 4 (3 < ip < 4).

The reordering mechanism can be illustrated via analogy to a system of beads on
a rubber string, see figure [4.7} Each bead corresponds to the phase of an oscillator.
The spaces between the beads correspond to the phase differences A; ;1. The block
of spike receptions induces a folding of the string and a shrinking of the distances
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Figure 4.7: The folding mechanism resembles folding a rubber string with
beads. In the displayed sketch the bending point is the 4th bead, the 5th
and 6th bead are folded up and are nested between beads 1 to 4. Intervals
closed to the 4th bead show stronger shrinking that intervals further away.
After the folding is complete oscillators corresponding to the beads and
intervals are renamed according to the new ordering.

between the beads. Neighboring beads are connected with rubber bands of different
strength, determined by A;, resulting in different shrinking factors.

The folding occurs at one specific bead, we will call bending point, which becomes
the minimum of the folded string. The bending point is always the closest integer
larger than the the zero crossing (inenda = [i0]|) or N in case [ig] > N. All beads
below the bending point are are flipped up, the distances between all beads shrink
according to A;. After bending the upfolded beads are nested between the others,
resulting in a reordering. This reordering depends on the previous intervals A as well
as X, which depends on the system’s parameters.

Af ;11 = Ailj i1 provides the distance between the initially neighboring oscillators
i and ¢+ 1 after spike reception. However, the two oscillators may not be neighboring
any more, due to the reordering induced by the folding procedure. A full analytic
description of the reordering mechanism should provide a phase difference vector
of the oscillators after spike reception according to the new neighborhood relations
depending on the phase difference vector of the previously neighboring oscillators
before spike reception. This is achieved in the following way:

Relabeling and the new phase difference vector AMew,  Oscillator 1 is taken as
reference. Since we only consider relative phases, we arbitrarily set the phase of
oscillator 1 after the block of spike receptions to ¢] = 0. The phase distance relative
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Figure 4.8: Transition from overtaking to order conservation by increasing
the relative self-loop strength a. The curves in panel A separate
the parameter space into areas with and without order conservation. At
a = 1, full self-loop-strength, the curves seem to approach infinity. This is
verified in panel B, the dependent variable is transformed to 1 — tanh(b).
In this depiction all curves approach zero. While panel A displays several
curves for different values of ¢, the curves are collapsed onto a single curve
in panel C, since b and € occur together and are therefore considered as
one parameter. The area below the curves in panel A corresponds to order
conservation, in panel B and C above the curves, respectively.

to oscillator 1 for any oscillator is obtained through:
i—1 i—1
Dh=—> Afpr1=— Nilrks1
k=1 k=1

The new leading oscillator ¢}°V is the most phase advanced: ¢}V = max{¢], 5 ... }.
Oscillator ¢5°V is obtained as the most phase advanced from the remaining oscillators:
G5V = max{¢],d5 ...} \ ¢V, and so forth. The new phase difference vector is
obtained through A$Y, = ¢j*" — @77y

4.3.4 The Transition to Order Conservation with Self-Loops

Order conservation exists if no interval A; ;1 changes its sign across the block of spike
receptions, therefore if A; > 0 for all 4. Since A(7) is monotonically decreasing, order
conservation exists, if Ay_1 > 0.

N-1
ANfl — (eeb _ easb) 4 esb easb >0

N (4.9)

s tl-a) 4 ¢ >1
This condition for order conservation is identical to the condition derived in the
paper of Hinrich et al. who only considered the case without self-loops (a = 0).

Figure [4.8 shows areas of order conservation and overtaking within the parameter
space for a system of N = 5. With full self-loop strength (o = 1) there is order
conservation for all parameters. The transition to order conservation is continuous in
the coupling strength parameter ¢.
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Figure 4.9: Scaled systems with IN > N, show order conservation. Each
curve shows the critical value N in parameter space. Panel A shows
Nerit obtained by numerically solving the implicit condition for order con-
servation. Panel B shows the analytically obtained result for order con-
servation for large systems.

Order conservation depending on the system size. The zero crossing of A(i) and
with it the bending point ipenq are independent of the system size N (see equation.
Order conservation occurs in a system, if all A; > 0. Therefore, by increasing the
system size N — 1 will surpass the zero crossing ¢y and since all A\; with ¢ > iy are
negative (Aj>;, < 0) order conservation is lost.

So far we have considered fixed coupling between two oscillators, the coupling
strength between nodes ¢ is a constant, independent of the network size. Since each
node receives input from all other nodes of the network, the total input to each node
from the network increases linearly with network size. In this paragraph only we will
consider scaled coupling: ¢ = 5. The coupling between two nodes ¢ decreases with
network size, such that the total input to a node from the rest of the network stays
constant if the network size N increases. Note that we keep the relative self-loop
strength constant independent of network size: a = 2.

Analog to equation the condition for order conservation is:

eF (1) 4 o FW-1) 5 g (4.10)

Increasing the system size beyond a critical size will ensure order conservation. In
figure each line shows the critical system size N separating an area of order
conservation from an area with breaking of order conservation in parameter space.
For large systems the equation can be solved analytically:

N —

lim —— =1
n—00

eiNb(lfa) + ebs* >1
be*(1 — «)

N > Nt = m

Figure [1.9] panel B displays the explicit solution for large systems.
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4.3.5 Reordering Patterns within One Cycle

The number of theoretically possible reorderings. The system size N and the index
of the bending point k£ determine the set of possible reorderings given an arbitrary set
of initial conditions (initial phase differences &) The oscillators with indices smaller
than k keep their ordering, while the oscillators with indices larger than k fully flip
their ordering, such that they are ordered in descending order to each other. These
oscillators with indices larger than k can end up in any position between the oscillators
with indices smaller than k. E.g. In the system of size N = 7 with a bending point
k = 4 any reordering is possible with the indices 1,2 and 3 in ascending order, 5, 6
and 7 in descending order and 4 at the end or bottom of the reordering. Examples
for possible permutations are: [1762354] or [7126354]. The size of the set of possible
reorderings is given by:

(N —1)! _(N-1
(k—DY(N -1 —-[k-1])! \k—-1

Which of these permutations occurs, depends on the initial phase difference vector A
and on X, which biases the distribution of permutations, since stretching some intervals
more than others makes some permutations more likely than others to occur given
arbitrary initial phases. For k = 1 the oscillators exactly change their order, there is
no mixing, and for kK = N —1 the order is fully conserved. The number of theoretically
possible reorderings is maximal if k is approximately half the system size. Since k is
independent of N, increasing the system size N while keeping all other parameters
constant will eventually surpass the point of optimal mixing. In large systems with &
small relative to IV the amount of theoretically possible reorderings is small compared
to the theoretically possible reorderings in a situation with optimal mixing with &
approximately half the system size.

All reorderings occur in the system. In the previous section we derived the num-
ber of theoretically possible reorderings given a certain parameter set. But not all
theoretically possible reordering occur equally often, since the vector X renders some
reorderings to occur more often than others given uniformly distributed initial phase
differences. Here we study how the distribution of realized permutations depends on
the relative self-loop strength « for otherwise default parameters, including N = 7.
In Figure each panel shows a histogram for a different a-value.

The theoretically possible reorderings emerge with increasing a from 0 to 0.99
as predicted by the binomial coefficient: Within panel A-E the bending point is
k = 2 and 6 different permutations occur. The bending point increases to k& = 3
(15 permutations) in panel F and G, k¥ = 4 (20 permutations) in panel H and I,
k =5 (15 permutations) in panel J, k = 6 (6 permutations) in panel K and k =7
(1 permutaton) in panel L. The observed distributions are far from uniform. E.g.
in panel A the permutation [7654312] occurs far more often than any other. Due to
the shape of A(i) and k& = 2 (see figure the only interval not changing its order,
Aq o shrinks strongly, therefore the first oscillator is likely to remain neighboring to
the second as observed. For intermediate values of a permutations are more evenly
distributed and maximal mixing occurs. For a = 0.95, the permutation is heavily
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varied across panels.
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tor. They were then ordered and named according to their order. For
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Figure 4.10: Normalized histograms of reorderings given random
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Figure 4.11: Trajectories of reorderings with simple patterns. Oscillator iden-
tity is marked by identical color throughout the simulation. Panel A
shows 50 steps starting from equally spaced initial conditions, b = 1,
otherwise default parameters were used. Panel B shows 30 steps starting
from equally spaced initial conditions, b = 5.6, otherwise default param-
eters were used.

skewed towards [1234576], analog to panel A, the only interval changing its order
shrinks a lot, therefore oscillator 6 and 7 are likely to remain neighbors. In the last
panel we see order conservation. In this section the transition to order conservation
by increasing self-loop strength was shown from a different angle.

4.3.6 Reordering Patterns Across Cycles

So far we have only considered reorderings across one block of spike receptions. Here
we study reorderings across several steps, each step defined as a full spike reception
event. The assumption of initially well separated spike sending and spike reception
events is automatically ensured over several steps, since distances between oscillators
always shrink, since |\;| < 1. Spike sending and reception events become increasingly
separated.

Figures [4.17] {.12] [.13] and [£.14] show trajectories across several steps. Oscillator
identity is marked by identical color throughout the simulation. In each step the total
distance between the oscillators is renormalized to 1 to counteract the contraction due
to |A;| < 1. Since this has no effect on the relative interval sizes, the evolution of the
orderings of the oscillators is not affected by the normalization.

Simple patterns of reordering. Figure shows two trajectories with simple re-
ordering patterns in a system of size N = 7. In panel A all oscillators keep their
ordering, since £k = 1. In panel B the oscillators fully reverse their ordering in each
step due to kK =17.

Chaotic mixing. In figure the oscillators mix seemingly in a random fashion,
despite the deterministic nature of the system, a property often found in chaotic sys-
tems. Furthermore, the mixing results from a folding mechanism, a common mech-
anism to produce chaos. However, the overall dynamics of the system (without the
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Figure 4.12: Trajectory with chaotic mixing. Panel A shows the first 40 steps,
panel B the first 300, of the same trajectory, b = 2.2, otherwise default
parameters were used. Initial conditions were chosen randomly.
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Figure 4.13: Trajectory showing separation of one oscillator. Panel A and B
show the first 20 and 100 steps of the same trajectory, respectively. At
step 11 the dark red oscillator takes the up most position and remains
there to the end of the simulation, while the other oscillators continue to
mix. b = 2, otherwise default parameters were used.

renormalization) approach a fixed point, hence, the system does not have a chaotic
attractor.

Separation of oscillators. Figure shows a trajectory for b = 2. The first 10
steps resemble the chaotic mixing observed in figure [£.12] The oscillators seem to
randomly scatter over the space. But then at step 11 the dark red oscillator takes
on position 1 and from then onward stays in the first position. The distance to the
other oscillators, which continue mixing, seems to grow exponentially so that in the
end all other oscillators are close to zero, while the dark red oscillator remains at 1.
Even after 100 steps of simulation the situation has not changed.

In the next figure we return to the same parameter set of figure Here
we can see a similar situation as in figure [L.13] from step 7 onward the dark red
oscillator occupies the first position, all the other oscillators are rather close to zero.
But, in contrast to the trajectory in figure [£:13] discussed above, this separation is
not permanent, after several steps the dark red oscillator leaves the first position
and the system returns to the state of full mixing. It seems that in the trajectory
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Figure 4.14: Recovery of an oscillator’s separation. Panel A and B show the
first 50 and 300 steps of the same trajectory. At step 7 the dark red
oscillator separates from the others, however, at step 36 it rejoins the
mixing procedure. Identical parameters as in figure were used.
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Figure 4.15: Average separation time depending on b. Panel A: For each value
of b 40 trajectories with random initial conditions were simulated for
500 steps each. The separation step was defined as the step from which
onward the upmost oscillator remained identical until the end of simu-
lation. If no oscillator ever separated, time to separation is measured
as 500. The blue line depicts the average over all trials. The two red
lines depict average plus and minus one standard deviation. A transition
around b; = 2.1 is observed from near immediate separation for b < by
and no separation within simulation time for b > b;. Panel B shows cor-
responding A(i) for selected values of b. Otherwise default parameters
were used.



Summary and Discussion 65

with full separation (figure there is a mechanism that lets the one oscillator
separate exponentially from the others and ensures that it stays separated, while this
mechanism is not present in the trajectory in figure .14, However, we have not yet
understood such a potential mechanism and can only speculate.

For b = 2.2 we have seen an example of a trajectory that shows chaotic mixing to
the end of simulation time (figure as well as an example for full separation of
one oscillator (figure . For b = 2 we have seen an example of an oscillator at the
brink of separation, but rejoining the mixing procedure.

In the figure we estimated the average times until separation of one oscillator
from the rest depending on the parameter b. Each data point was optained from 40
simulations with random initial conditions. Since each trajectory was simulated for
500 time steps the time until separation levels of at 500. However, a transition occurs
around b = 2.1. The ziczac shape in the center of the phase transition curve coincides
with the change of the bending point from k = 4 to k = 3. The data indicate that
increasing b beyond b = 2.1 leads to more separation events. Why this is remains an
open question.

4.4 Summary and Discussion

Golubitsky et al. [25] showed that in a symmetrical all-to-all coupled network which
can be described by ODEs invariant sets exist, polydiagonals defined by two or more
units synchronized. These separate the full phase space into disjoined volumes. Each
volume corresponds to a specific ordering of the network units. Due to continuity of
trajectories and uniqueness of flow the flow invariant subspaces serve as barriers for
the flow. Trajectories are confined to their initial volume and the units show order
conservation.

Kielblock et al. [38] demonstrated that the same reasoning does not apply to sym-
metric all-to-all coupled networks of pulse coupled oscillators. They provide examples
that such systems do not show order conservation, even if the pulse-coupling has no
delay and does not induce any non-smoothness.

Kielblock et al. as well as Golubitsky et al. consider all-to-all coupled networks
without self-coupling. In this chapter we build on the work of Kielblock et al. and
introduced self-coupling gradually into pulse-coupled systems. We observed in two
example systems, in a smooth pulse-coupled system and in a system coupled via
delayed é-pulses, that self-coupling restores order conservation.

The system with delayed J-pulse-coupling allowed for analytic treatment. We as-
sumed, that spike receptions occur blocked and derived a return map, that provides
the phase differences after reception of all spikes depending on the phase differences
before. We fully described the mechanism behind the reordering process including
a folding procedure, derived conditions for order conservation and showed that it is
indeed enforced by full self-coupling. The reordering patters show rich dynamics,
including simple patterns as well as chaos-like reordering. We observed that single
oscillators may separate themselves from the reordering process, a phenomenon not
yet fully understood. The average time to separation depending on parameters was
numerically estimated.
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Theoretical Considerations on Symmetrical Pulse-Coupled Systems

How is it possible that the reasoning applied by Golubitsky et al. does not apply to
pulse-coupled systems, even if pulses are used, that induce no non-smoothness when
received?

To fully characterize the current state of a pulse-coupled system it is not sufficient
to provide the values of the dynamical variables. Pulses sent in the past may still
influence the future of the system. Therefore additional knowledge is required of the
sending times of all pulses, that may still influence the system’s future. Kielblock at al.
hypothesized that trajectories can avoid the invariant manifolds in the space spanned
by dynamical variables and can move around them in the additional dimensions, that
arise through the pulses. In the lower dimensional space spanned by the dynamical
variables it appears as though the trajectories can cross the invariant manifolds.

In the following paragraphs we would like to expand a bit on these thoughts.

Invariant Sets as Barriers in a Symmetrical ODE System

Our starting point is the system considered by Golubitsky: In a symmetrical all-to-
all coupled network described by ODEs, two units generally receive identical input
from all the other units in the network besides themselves, because any other unit
is connected to both of them with equal strenght. Each unit in the network has
identical intrinsic dynamics and processes received inputs in the same way. When
they are synchronized the input each of the two units receives from the other is
identical. Therefore they have identical dynamics and stay synchronized. Hence, the
states in phase space where two or more units are synchronized form flow invariant
subsets of space. They are polydiagonals, that separate the whole phase space into
volumes, each corresponding to a specific ordering of the units. In an ODE system
the existence and uniqueness theorem holds. Because trajectories cannot merge or
split, they cannot cross the flow invariant subspaces and are confined to their initial
volume of space, which results in order conservation.

Invariant Sets and Additional Dimensions in a Symmetrical Pulse-Coupled
System

If pulse-coupling is introduced into such a system, then the input from any of the
other units of the network to the two units is still identical. The intrinsic dynamics
of each unit in the network are identical and inputs are processed the same way by
each unit. If the two units have been synchronized in the past, they receive identical
input from each other, because their pulse sending times and pulse intensities are
synchronized. Therefore they have identical dynamics and will stay synchronized.
However the following scenario is also possible: Two oscillators can have the same
phase, again they receive identical input from the rest of the network and have iden-
tical intrinsic dynamics. But if they were not synchronized in the past and sent
pulses at different times, these differences from the past translate into different pulse
intensities received at the current time point when the two units are momentarily
synchronized. So they do not receive the same input from one another at this point in
time, despite having the same value, and they split. The qualitative difference in an
ODE system with instantaneous state dependent coupling and a pulse coupled system
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arises, because in an ODE system differences in the past do not have any effect onto
the current evolution of the system, while in a pulse-coupled system, the information
on value differences in the past remains in the system, the value differences are rep-
resented through non-synchronized pulses, which still effect the current evolution of
the system.

How to make sense of these observations with regards to the phase space of pulse-
coupled systems?

A subspace, that is defined by one constraint, has one dimension less than the
full space. If this subspace is a hyperplane, it separates the full space into disjoined
volumes. The subspace defined by two units synchronized is defined by imposing one
constraint on the full space, it is a hyperplane and therefore separates the full space
into disjoined volumes (including the dimensions from all pulses sent in the past, that
may still influence the system’s future). However, since units on this hyperplane do
not generally receive identical input, the hyperplane is not flow invariant.

The subspace defined by two units being synchronized and having been synchro-
nized in the past sufficiently long, so that all pulses sent by these two units, that may
still influence the system’s future, are also synchronized, is flow invariant. However,
this subspace is defined by more than one constraint (if the set of pulses sent in the
past by these two units, that still influence the future of the system is not empty).
Therefore it does not separate the full space into disjoined volumes. The subspace
does not act as a barrier between the volumes corresponding to one ordering of the
two units or the other, because it is too low dimensional. Therefore the reasoning of
Golubitsky et al. cannot be extended to pulse-coupled systems and they can overtake
each other.

Also we would like to add a final remark on the question, whether trajectories in a
pulse-coupled system can join or split or cross each other: A pulse-coupled system has
the peculiar property of dynamically changing the dimensionality of the space that it
is evolving in. In such a space, the evolution of two close by trajectories can be such,
that one of the two trajectories may add another dimension to the space through pulse
generation, while the other does not. Now the two trajectories are not part of the
same space anymore. Is it meaningful to ask, whether two trajectories can merge or
split, if they are not part of the same space? This surely involves conceptual problems.
What we are usually interested in is the subspace of the pulse-coupled system spanned
by the dynamic variables themselves (and not by the additional dimensions deriving
from the pulses), hence we are interested in a lower dimensional projection of the full
space. This space remains intact throughout the full evolution of the system. And
therefore comparisons between trajectories in this lower dimensional projection are
meaningful and possible. However, this projected space is not the space that many
of the central theorems of dynamical systems’ theory are concerned with, e.g. the
continuity of trajectories and uniqueness of flow theorem does not apply here.

Creating new dimensions and thereby dynamically changing the phase space they
live in is a peculiar property of pulse-coupled systems and certainly needs more in-
vestigation to be properly conceptualized, understood and treated.
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Theoretical Considerations on Introducing Self-Loops

We demonstrated numerically that introducing self-loops into the system with smooth
coupling studied by Kielblock et al. restores order conservation. Here we will discuss
why:

In a system with self-loops all network units always receive identical input, since
they receive input from every node of the network including themselves. All units
also have identical intrinsic dynamics and process input the same way. Hence the
subspace with two units synchronized is flow invariant.

For any network system it is possible to define a corresponding system with re-
placing the interactions between the units by external input provided to each unit
separately. This turns the original network into a virtual network, however the dy-
namics of each unit stay the same.

This new system representation is described by ODEs, does not entail pulse-coupling
and has an explicit time dependence. Because the pulses as chosen by Kielblock et al.
were constructed in a way that ensure smoothness, the new system is also smooth.
Through substituting time with a dynamical variable, that evolves with speed 1, it is
possible to define a system with identical dynamics, that is autonomous, while hav-
ing an additional dimension (this substitution is explicitly presented in chapter 6).
Finally in this new system the existence and uniqueness theorem holds, because it is
a smooth autonomous ODE system.

In this smooth autonomous ODE system the subspace of two units synchronized
is still flow invariant, since the dynamics of each unit were not changed through the
system transformations. Further, the subspace with two units synchronized imposes
one restriction on the full space of all N + 1 dimensions. Therefore it fully separates
the full space into two volumes, each corresponding to a specific ordering of the two
units. Because the existence and uniqueness theorem holds a trajectory starting in
one volume cannot cross the flow invariant subspace and therefore order is conserved.
This is also true for the original system, since none of the system transformations
changes the dynamics of the units themselves.

The same reasoning does not apply to introducing d-pulses. While the subspace of
two units synchronized is still flow invariant and separates the full N + 1 dimensional
transformed space, the existence and uniqueness theorem does not hold, the system
is not smooth, trajectories can jump and therefore cross the flow invariant subspace.
Here we conjecture that it is possible to find a symmetrical d-pulse coupled network
system with self-loops that does not show order conservation.

However, the d-pulse coupled system presented in this chapter does show order
conservation if self-loops are introduced. To ensure, that a system with d-pulses shows
order conservation, we considered a transfer function, that is strictly monotonically
increasing (H.(¢) = €* > 0). The transfer function provides the phase after -
pulse reception given the phase before the pulse is received. Since this function is
monotonically increasing, the spike reception is a neutral operation with regards to
the ordering of the oscillators.

One caveat: we multiply the d-pulse with the interaction function Z(¢) = H(¢p)—¢.
We interpret the d-pulse as a discrete jump with the size provided by the interaction
function. Very different dynamics can arise, if the J-pulse is considered to be the
limiting function of a smooth kernel, e.g. a bump function. The resulting system
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can show completely different dynamics (e.g. see reference [14] for a more detailed
analysis).

Context of the Thesis

In this thesis we want to study the richness of dynamics that can arise in very simple
systems when introducing dynamical features commonly used in theoretical neuro-
science. In this chapter we build our research on previous work by Kielblock et al.,
who demonstrated that introducing pulse-coupling into a symmetrical oscillator net-
work enables qualitatively different behavior not possible in an otherwise identical
ODE system: overtaking of oscillators. We expanded their work by introducing self-
loops and studied the mechanisms behind the reordering process. We found rich
dynamics including chaos-like mixing and patterned reordering depending on the sys-
tem’s parameters.






Chapter 5

Chaos in Two Pulse-Coupled Phase
Oscillators

In this thesis we study the implications that arise if dynamical features commonly used
in theoretical neuroscience are introduced into simple systems. In the last chapter we
studied the effect of pulse-coupling with a special focus on delayed d-pulses. In this
chapter we will continue studying delayed é-pulse-coupling.

We consider a network of only two phase oscillators coupled via exchanging delayed
d-pulses. We find that the network can show chaotic behavior. This is not possible
in a two phase oscillator ODE network (which has instantaneous state dependent
coupling). Hence we provide another example for a system with delayed d-pulse-
coupling that behaves fundamentally different to the corresponding ODE system from
a dynamical systems’ perspective. Far richer dynamics are possible.

5.1 Introduction

Chaos in Dynamical Systems

Since the discovery of chaos in 1963 by Lorenz [49] chaos research has become a focus
of interest in the field of dynamical system theory. With the help of chaos theory
insights could be gained in phenomena such as turbulence and weather dynamics. Also
applications of chaos have been found such as encrypted communication [96]. Others
study it for its intrinsic beauty [80]. The fascination of chaos stems from the seeming
paradox of apparent random behavior in a fully deterministic system. In a system of
smooth ODEs chaos can only occur if the system is at least three dimensional. This
follows from topological constraints regarding trajectories in a two dimensional phase
plane (Poincaré-Bendixson-theorem). Examples for such three dimensional chaotic
attractors include the Lorenz attractor [49] and the Rossler attractor [72].

Examples for Chaos in Low-Dimensional Systems

While chaos is a common to high-dimensional nonlinear systems, it occurs much
less in low dimensional systems. The Poincaré-Bendixson-theorem considers possible
phase space topologies in the plane. As direct consequence of this theorem it follows
that chaos in a system described by smooth ODEs requires at least three dimensions.
Hence, continuous-time chaotic dynamical systems with two or one dynamical vari-
ables need to entail some special feature to get around this restriction. There are
some example systems in the literature:
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Dixon et al. [I8] study the magnetization of a neutron star from a theoretical
perspective. They arrive at a simple system of two nonlinear ODEs. Simulation shows
chaotic behavior and a positive Lyapunov exponent. All trajectories seemingly pass
through a single point, which they leave in an apparent random direction. However,
this finding is an artifact of numerical instability. The singularity arises due to non-
differentiability of the two equations at this point, where all trajectories merge into a
single one.

Another example is provided by Nakano and Saito [6I]. They present a hybrid
system of two differential equation which produce outwards spiraling trajectories.
Fach time a threshold is reached trajectories are mapped to another coordinate in
phase space. The phase space portrait resembles a two dimensional projection of the
Rossler attractor.

Nosov et al. [65] present a commutable pendulum, another example of a chaotic
system with only two dynamical variables. Each time the system passes from one
region in phase space to another the dynamical equations describing the system switch,
realized by changing a parameter value depending on the exact switching point.

Xu [95] presents a kicked harmonic oscillator, a two dimensional system that receives
d-pulses at regular intervals, weighted with a position-dependent sinusoidal function,
which shows chaotic behavior.

The Role of Chaos in Neuroscience

The question whether or not neural dynamics are chaotic is a long-standing issue in
theoretical neuroscience. (e.g. [28]).

Some researchers believe that chaotic neural dynamics may play a functional role
in the brain, e.g. Aronov et al. [6] observe a specific brain area, which is responsible
for generating random vocalization in young song birds, comparable to human bab-
bling. The produced variability is likely to be necessary for learning new vocalization
patterns. The authors hypothesize that the neural dynamics within this brain area
are chaotic. Another very different interest in whether neural dynamics are chaotic
stems from the long lasting debate in theoretical neuroscience concerning the question
on how information is encoded in neural activity. Is the information carried by the
firing rates alone or are precise spike timings important? Monteforte and Wolf ([59]
argue that if the spiking dynamics are chaotic, small perturbations, e.g. produced by
ion channel noise, will exponentially grow. If this growth is fast enough information
carried by the spike timings is lost quickly, which makes spike timings unlikely to
carry the fundamental code underlying neural computations.

Research on chaotic neural dynamics often involves large neural networks (e.g.
[12, 136, 51, 59, [76]).

Many large neural networks produce irregular spiking dynamics which arise from
a balanced state network architecture [88, [89], in particular, for J-pulse-coupling.
(e.g. [36, 51, 59]. However, Jahnke et al. [36] as well as Manz et al. [51] demonstrated
that the irregular dynamics arising in large balanced state networks may be chaotic
or not, depending on the dynamical properties of the network units, i.e. whether
the coupling is excitatory or inhibitory [36] or whether the neuron models used are
leaky integrators (with positive dissipation) or anti-leaky integrators (with negative
dissipation) [51]. The question arises, whether large networks are necessary for chaos
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to arise in neural systems. Maybe certain neural features themselves are sufficient to
produce chaos already in simple, low dimensional dynamical systems. Accordingly,
in this chapter we present a simple system with delayed é-pulse-coupling, a common
neural feature. The system consists of only two interacting phase oscillators and shows
chaotic behavior. Delayed d-pulse-coupling seems sufficient to produce rich dynamics
such as chaos in a very simple system.

This chapter is structured as follows: In the second section we define the system. In
the third section we demonstrate that this system shows the typical signature found
in chaotic system. In the fourth section we show that the observed behavior is related
to chaos arising in unimodal maps. Finally, in the last two section we discuss and
summarize the results.

5.2 System Definition

We consider a symmetrical system of two d-pulse-coupled phase oscillators. The
system is described by the following two differential equations:

b1 =w+Z(¢1) > e K(t—t5"), (5.1)
G2 =w+ Z(p2) Y e K(t—1t7). (5.2)

The phase speed w = 1 describes the intrinsic dynamics of each oscillator. If the
phase reaches the firing threshold ¢ = 1 the oscillator sends a d-pulse, we will call
spike, and resets:

¢i(tzm_) =1— ¢Z(t:n+) =0.

ti" denotes the m-th time oscillator ¢ € 1,2 sent a spike, ¢;"~ denotes the time just
before reset, t;n+ just after reset. The J-pulse is received by the other oscillator after
a fixed time delay 7 > 0, which is expressed by the coupling kernel K:

Kt—t")=4d6t—t"—71).

Each incoming §-pulse is weighted by the coupling constant € > 0. Further, it is
weighted by the phase response curve Z(¢). The susceptibility to an incoming §-
pulse varies throughout the cycle of each oscillator:

Z(¢) = (¢ — ¢o)(¢ — 1). (5-3)

with ¢9 = 0.2. This quadratic function has two zero crossings: ¢ = 0.2 and ¢ = 1.
Figure displays the phase response curve Z(¢) and the coupling kernel K (¢t —t7").

Default parameter set. If not noted otherwise the following parameters are used
throughout the chapter as default: ¢ = 2.7 and 7 = 0.66. The default initial phases of
both oscillators are ¢o = 0.58 and ¢; = 0 (right after reset). Hence, there is exactly
one spike sending time relevant for the system’s future, which is ¢t} = 0).



74 Chaos in Two Pulse-Coupled Phase Oscillators

A 2 B
3 =
N Y
-.2
0 1 0 T 1

¢ t

Figure 5.1: Phase response curve Z(¢) and the coupling kernel K(t) con-
sisting of a delayed d-pulse.
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Figure 5.2: Phase trajectories of both oscillators. Depicted are the phases over
time. Panel A shows the first oscillator, panel B the second during the
same time window. Panel C shows a superposition of both trajectories.
While the underlying dynamics are deterministic the trajectories do not
follow a pattern but appear to behave randomly.

5.3 Signature of Chaos

In this section we will demonstrate that the typical signature found in chaotic systems
is found in this system as well.

Trajectories

Irregular trajectories. Trajectories of chaotic systems look irregular, they do not
fall into a repetitive pattern but seem to continue in a random fashion despite the
underlying deterministic dynamics. The phase trajectories of the two oscillators show
this kind of irregular behavior. While the phases between spiking events proceed
with constant speed ¢ = 1, receiving spikes introduces jumps of varying sizes into the
trajectories. These varying jumps, mediated through the phase response curve, create
the overall irregular trajectories (see figure .

Nearby trajectories diverge. A chaotic system is sensitive to small perturbations.
If a trajectory is perturbed only slightly it will separate exponentially fast from the
unperturbed trajectory. The perturbation leads to very different long term behavior of
both trajectories. In figurel|5.3| we show unperturbed and perturbed phase trajectories
of both oscillators. The two trajectories separate further at each spike reception event
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Figure 5.3: Unperturbed and perturbed phase trajectories of both oscilla-
tors closed to the chaotic attractor. Default parameters and initial
conditions were used. To ensure closeness to the presumed chaotic attrac-
tor an initial transient of 1500 resets of the first oscillator was discarded.
Then the phases of both oscillators were perturbed by adding 0.01. ¢ =0
denotes the time of perturbation. Panel A and B show unperturbed and
perturbed trajectories of oscillator 1 and 2, respectively. Panel C shows all
trajectories superposed. The perturbed trajectories are shown in darker
colors. At each spike reception event the trajectories separate further until
their behavior differs completely.

until they eventually show unrelated behavior.

Orbit Diagram

An orbit diagram has become an iconic depiction of chaotic behavior. It shows the
system’s behavior across a range of parameter values. In a one-dimensional time-
discrete system, such as the logistic map [54], the diagram is obtained by plotting the
values of the dynamic variable of several consecutive iteration steps on the attractor
against each parameter value. In the book 'Nonlinear Dynamics and Chaos’ by Stro-
gatz, p. 364 [82], the orbit diagram for the logistic map is depicted. If the trajectory
for a given parameter value is at a fixed point only this point appears in the diagram,
if the trajectory is a cycle of length two, the two points are plotted and so forth. If
the trajectory is aperiodic, a cloud of points will appear in the diagram. Therefore,
the diagram allows for a quick overview of periodic and aperiodic behavior within the
parameter range of interest. In a time continuous system, such as the Rossler system
[72], the consecutive points plotted against each parameter value, can be the values
of local maxima of the trajectory in one dimension. A depiction can be found on
page 386 in the same book. If the maxima appear always at the same height, only a
single point is plotted for the given parameter value in the diagram. If the maxima
alternate between two heights, then two points are plotted and so forth. Again the
diagram allows for a quick overview on periodic and aperiodic windows of behavior
within the parameter range of interest. Both orbit diagrams mentioned above, even
though obtained from very different systems and through different methods, exhibit
remarkably similar structures.

To obtain figure we vary the delay 7. For each parameter value we do a Poincaré
section of the system each time the first oscillator resets and we plot the phase of the
second oscillator ¢9. The orbit diagram we obtain shows windows of periodic behavior
interspersed with parameter regions with apparently no periodic behavior and exhibits
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Figure 5.4: Orbit diagram across varying 7. For each parameter value 7 the phase
of the second oscillator ¢ is plotted at 300 consecutive reset times of the
first oscillator. An initial transient of 200 resets was discarded to ensure
closeness to the presumed chaotic attractor. The second panel shows an
expanded region from the first. Self-similarity as well as period doubling
can be observed. Besides 7, default parameters and initial conditions were
used.

some similarity to the above mentioned examples. An enlarged region reveals a period
doubling cascade to chaos, starting with a period-5 orbit. Within the finer structure of
the enlarged region further windows of periodic behavior interspersed into regions with
chaotic behavior appear, pointing towards a possible fractal structure, also common
to chaotic systems.

Maximal Lyapunov Exponent

Chaos is characterized by a positive maximal Lyapunov exponent. We adapted the
method to numerically estimate the Lyapunov exponent from Jahnke et al. [36].
The state of the system at any point in time is fully described by the two phases of
the oscillators ¢ and ¢o and all spikes that were sent within the system’s past of
length 7, since these spikes will be received in the system’s future. Therefore each
generated spike effectively adds an additional dimension to the system. Once the spike
is received, the additional dimension corresponding to that spike can be discarded
again, since it has no further effect on the system. Similar to Jahnke et al. [36] for
each spike time ¢/ we introduce a further dynamic variable o7 (t) =t — tI"* € [0, 7]
measuring the time passed since this spike. At time ¢*, 07" (t]") = 0. o]" increases
with constant speed (67" = 1) until the spike sending time is reached (o]" (¢ +7) = )
and the additional variable ¢} (t) is discarded. We consider Poincaré sections of the
system at times the first oscillator resets. At that time the system is fully described
by the phase of the second oscillator ¢o and all the spike variables that are currently
active: {{a]"(t)|m € {1,2,... }At—t" € [0, 7]} V{oq (t)|n € {1,2,... }At—ty € [0, 7]} }.

To estimate the maximal Lyapunov exponent for each value of the parameter 7
a trajectory was simulated with otherwise default parameters and initial conditions.
The initial part of the trajectory including the first 1000 Poincaré sections was dis-
carded to ensure that the trajectory is sufficiently closed to any presumed chaotic or
periodic attractor. The state reached by the 1001th Poincaré section was taken as
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Figure 5.5: Estimated maximal Lyapunov exponent depending on 7. Across
7 windows with negative and positiv maximal Lyapunov exponent can be
observed, corresponding to the windows of periodic and aperiodic behavior
observed in the orbit diagram (figure . For details on the estimation
method refer to the main text.

initial state, an initial perturbed state was obtained by distributing a perturbation
of size Ag = 10719 equally among all active dimensions (¢ and the potentially ac-
tive additional dimensions {c}. The following procedure was performed iteratively
for 200 steps: The perturbed and unperturbed trajectory were evolved until the first
oscillator resets again. The distance between the two trajectories was measured with
the 1-Norm: A, = >, [6%|, a is the index of the iteration step, index i goes over
all active dimensions and ¢ denotes the difference within each dimension. While it
is theoretically possible that the evolved perturbed and unperturbed trajectory live
in spaces of different dimensionality, this case never occurred in our simulations, the
sequence of events between both Poincaré sections was always identical. It could be
seen as problematic to calculate 1-Norm distances in a space spanned by dimensions of
different types. However, since all variables evolve with the same speed in time (qb =1
and ¢ = 1 for any o) they may be regarded as comparable. Further it may be seen as
problematic, that the distances in different iteration steps was measured in spaces of
different dimensionality. If the dimensionality is higher, the expected distances may
be larger. As last part of each iteration step, the distance between the perturbed and
unperturbed trajectory was renormalized to the initial perturbation size Ag in the
following way: for all active dimension i §;% = 51‘-’%2 to obtain initial conditions for
the next iteration step. The maximal Lyapunov exponent was estimated with

1 200 A
max N 1 — . 4
A 200 ; n(y, (5-4)

Figure [5.5 shows the estimated maximal Lyapunov exponent for a range of parameter
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Figure 5.6: The effect of spike reception and the chaotic attractor at
Poincaré sections. Panel A: The phase ¢ directly after spike reception
is depicted depending on the phase directly before spike reception. Panel
B: Poincaré sections of the chaotic attractor at resets of the first oscillator
projected into the three dimensional space spanned by the dimensions ¢o,
oy, of* (m, n are the spike count of spikes sent by the first and second
oscillator until now). If a dimension is not active, the point is depicted at
zero. Points, that live in the space with a second spike sent by the second
oscillator (o5 ~!) active are depicted in red. Default parameters are used.

values of 7. Windows of positive and negative Lyapunov exponents correspond well
to aperiodic and periodic windows observed in the orbit diagram (see figure [5.4]).

Maximal Dimensionality and Chaotic Attractor

How does the attractor of the system within the chaotic regime look like? Before we
can answer this question we need to discuss the dimensionality of the system. The
current state of the system at any point in time is fully specified by the phases of
both oscillators and the times of all spikes sent within the past of length 7. In the
previous section we introduced dynamic variables o/*(t) € [0, 7] that capture the ad-
ditional dimensions introduced by spiking events. The dimensionality of the system is
restricted, because there exists a minimal time between resetting and reaching thresh-
old again in each oscillator, the minimal interspike-interval. Generally this minimal
time is difficult to estimate [7], but because of the specific system set-up it can be
estimated quite easily: Figure A depicts the phase ¢ directly after spike reception
depending on the phase directly before spike reception (¢post = Ppre +€ Z(Ppre)). The
part of the function above the diagonal (indicating no phase change) corresponds to
an excitatory effect and below an inhibitory effect of spike reception, respectively. To
find the minimal time between two resets, let us construct the optimal spike train to
reach the next reset in the shortest time possible. From the set of all theoretically
possible spike trains all those can be discarded as possible candidates that include a
spike with inhibitory effect as last spike, since they will be less optimal compared to
their exact counterparts except without the last spike. Therefore potential candidates
as optimal spike trains are reduced to spike trains ending with a spike with excitatory
effect and the empty spike train. The latter is not the optimal spike train, since it
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is slower than e.g. any spike train with a single excitatorily acting spike. Hence, the
optimal spike train ends with an excitatorily acting spike.

The time until reaching threshold can be divided into a first part, the time during
which spikes are received and a second part, the time after receiving the last spike to
threshold crossing. The minimal time that the first part requires is zero and occurs
if either no spike is received at all or all spiking events occur at the instant directly
after reset. The minimal time that the second part requires is the time the oscillator
needs from the phase that can be reached maximally by a spike with excitatory effect
to reach the threshold at ¢ = 1.

In the specific system at hand with default parameters both cases occur together,
if the reception of a single spike directly after reset is considered. In this case the first
part requires no time. A spike reception directly after reset leads to the phase that
can be maximally reached through a spike with excitatory effect, which is ¢ = 0.54.
Therefore the minimal inter-spike-interval is obtained as Ty, = 1 — 0.54 = 0.46.

Since 0.46 is the minimal inter-spike-interval, there can only be two spiking events
in the past of length 7 of each oscillator. This gives maximally six dimensions, four
stemming from spiking events (o7?, 0{”_1, oy, 03_1, m and n indicating the count of
the last spike sent from the first and second oscillator) and two from the two phases
of the oscillators (¢ and ¢9).

The state of the system at Poincaré sections only requires four dimensions to be
fully described, since at reset times of the first oscillator only a single active spike
sent by this oscillator can be in the system: ¢9, o7*, 07, 03—1

Figure[5.6panel B shows a three dimensional projection of 2000 consecutive Poincaré
sections of the chaotic attractor. Poincaré sections, that require the fourth dimen-
sion are depicted in red. The initial part of the trajectory including the first 300
Poincaré sections was discarded to ensure that the trajectory is close to the presumed
chaotic attractor. The Poincaré section of the attractor seems to live in a space of
dimensionality close to 1, however, no further systematic analysis was performed.

5.4 Source of Chaotic Behavior

Figure shows windows with periodic and aperiodic behavior across the dimension
spanned by the parameter 7. The diagram indicates a period-doubling route to chaos
137, 46, [82].

The aim of this section is to provide a better understanding of the mechanism
behind the observed behavior.

Figure panel B shows a three dimensional projection of the chaotic attractor at
Poincaré sections. We observe that several points of the attractor fall onto the axis
corresponding to the dimension of phase of the second oscillator ¢o. This suggests that
the system at Poincaré sections returns again and again to a one dimensional state that
can be described by the phase of the second oscillator ¢o only, all other spike induced
dimensions are not active, there is no traveling spike in the system. It may be possible
to develop a one dimensional map linking each of these states to the next occurrence of
such a state. While this is not necessarily possible for all theoretically possible states
of this kind for all parameters, because for some parameters and initial conditions the
system may not return to such a state, it may still be possible for a broader parameter
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Figure 5.7: One dimensional return map shows transition to chaos similar

to the transition observed in the logistic map. The one dimensional
return map (blue) connects reoccuring system states characterized by no
active spike variables at reset of the first oscillator. These states are fully
described by the phase of the second oscillator ¢5. The map was obtained
by systematically varying ¢o and simulating the system for 30 resets of the
first oscillator. If within this time the system never returned to the above
defined system state, this is indicated by a red cross at zero. A cobweb
plot of a trajectory starting at default initial conditions is shown for 90
returns. While within panels A-E the trajectory is confined within an
unimodal curve segment, in panels F-I the trajectory leaves these regional
confinements until in panel I the trajectory moves through most of the
space. Figure displays an enlarged view of the region characterized by
the unimodal curve segment. Parameters: Standard parameters and 7 €
{0.647900, 0.648000, 0.648255, 0.648304, 0.648550, 0.648750, 0.649450,
0.649750, 0.650000}



Source of Chaotic Behavior

81

052 054 056 058 06 0.62

,(n)

052 054 056 058 06 0.62

6,(n)

0.6 % -

052 054 056 058 06 0.62

6,(n)

052 054 056 058 06 0.62

®,(n)

052 054

0.56 0.58 0.6 0.62
@,(n)

052 054 056 058 0.6 0.62

,(n)

0520

052 054 056 058 06 0.62

F 0.62

06
3 058
T

(=
~.0.56
<

0.54

0.52f"

052 054 056 058 06 0.62

é,(n)

\

052 054 056 058 06 0.62

o)

Figure 5.8: Enlarged view on the region of interest of figure E shows the
transition to chaos more clearly. The first 30 returns of the trajectory
were discarded, only the remaining 60 are plotted. Analog to the transition
to chaos in the logistic map [54] a period doubling mechanism starting with
a single fixed point (panel A), a cycle (panel B), a double cycle (panel C)
and a cycle of length 4 (panel D) can be observed until in panel E the
trajectory appears to behave fully irregular. In the following panels (F-I)
the trajectory leaves the confinements of the unimodal part of the return

map and extends into more and more space.
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range and most initial conditions to numerically find the corresponding return state
and provide a way of insight into the system without loosing information. If such a
map can be obtained the system dynamics can be understood with the theory of one
dimensional maps.

Figure shows such a map for several values of 7. The values of T were chosen
to correspond to the period-doubling region displayed in figure panel B. The
numerically obtained map is depicted in blue, a cobweb diagram showing several
steps of a trajectory with default initial conditions is superimposed in orange. Since
for most of the panels in figure the trajectory is confined to a small region, this
region is depicted enlarged in figure In most parts of the space spanning from
¢ = 0to ¢ = 1 the map is rather complicated with many sudden discontinuous jumps.
However, there is a region roughly between ¢ = .5 and ¢ = 6.5 where the map is a
unimodal map. Through increasing 7 the curve moves up. The trajectory, initially
going to a fixed point, shows period doubling, first approaching a 2-cycle, then a 4
cycle and so fourth, until eventually the trajectory moves around chaotically, this
transition resembles closely the transition to chaos in the logistic map [54] and other
unimodal maps [82].

When 7 is increased further beyond 7 = 0.648750 the trajectory leaves the strict
confinements of the unimodal region, but remains within adjacent space. Eventually,
when increasing 7 even further another transition occurs, the trajectory escapes the
subregion and spans most of the space between ¢ = 0 and ¢ = 1, moving the system
from a local chaotic system to a chaotic system on a global scale.

In this section we have shown that, similar to many other chaotic systems, the
chaotic behavior, at least in parts, can be explained by it stemming from a unimodal
return map.

5.5 Discussion

Which feature is responsible for the observed chaotic behavior? In this chapter
we presented a coupled cell network of two units, which are coupled via exchanging
delayed §-pulses, that shows chaotic behavior. Delayed d-pulses are a common feature
of neural models. Hence, our system contributes to the question whether the chaotic
dynamics often observed in larger spiking neural networks may arise due to the J-pulse
coupling.

Several features of the system presented here may be essential to produce the chaotic
behavior. So the question arises, which of these features are necessary for the chaotic
behavior and which are not. These features include: Symmetry, delay and the shape
of the phase response curve.

The system we studied is fully symmetrical, a property that can give rise to interest-
ing dynamical properties in a system (see previous chapter 4). As further discussed in
the next chapter, symmetries impose more constraints on possible phase space topolo-
gies, so it is unlikely, that symmetry is essential to produce chaotic behavior, which
is more likely to occur with less restrictions on trajectories in phase space. Further,
there are examples in the literature of low dimensional systems that show chaotic be-
havior only without network symmetry (e.g. [12]). Therefore the symmetrical set-up
in the system presented in this chapter most likely is not a necessary requirement for
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chaos.

We chose to study d-pulse-coupling with delay. Delayed systems can show very
complex dynamics, even when they only have one dynamical variable [79]. These rich
dynamics in delayed systems with state dependent coupling (e.g. a system described
by a delayed differential equation as such: & = f(x(t),z(t — 7)) generally is infinite
dimensional, the future of the system depends on all past values within the range of
the delay, which are infinitely many. But the situation in a delayed d-pulse-coupled
system is different: the additional dimensions in a pulse-coupled system including
systems with delayed d-pulse-coupling arise from the times when pulses were sent in
the past, which in the case of delayed §-pulse-coupling only includes pulses that were
sent within the past of the length defined by the delay. It is true that this increases
the dimensionality of the system, but the dimensionality typically remains finite. In
the system presented in this chapter, we showed that the dimensionality of the system
is maximally six dimensional, while most of the time the dimensionality is even less.
However, it appears to be true that the chaotic behavior observed in this chapter
arises also because of these additional dimensions.

The shape of the response curve in this chapter is quite peculiar. It does not start
at zero for ¢ = 0, but it ends at zero for ¢ = 1. This induces a discontinuity, since
the phases ¢ = 0 and ¢ = 1 are neighboring in the periodic phase variable. It is
unclear whether this discontinuity contributes to the chaos observed in this chapter.
Another peculiar property of the phase response curve is its zero crossing. This results
on incoming pulses having a phase advancing or phase delaying effect, depending on
the current phase of the receiving oscillator. Whether this effect is necessary to
produce chaos is not clear. It surely increases the irregularity of the behavior, if
phases can be shifted both ways. Also common neural models often consider only
phase advancing or phase delaying interaction between two neurons, while here we
have mixed interactions. However, Hansel [31] report a phase response curve with a
zero crossing in coupled Hodgkin-Huxley neurons.

Are 0-pulses alone sufficient to produce chaotic behavior? Xu [95] reported chaotic
behavior in a periodically d-pulse driven harmonic oscillator. But Laing [45] re-
ports a case, when replacing the continuous coupling with §-pulse-coupling removes
the chaotic behavior, even though making the coupling function more pointy leaves
the chaotic behavior intact. The dynamic implications of instantaneous J-pulses for
chaotic behavior seem unresolved.

Chaos with Only a Few Neurons

We are interested in the fundamental dynamical properties of common neural features
such as delayed d-pulse coupling from a dynamical systems’ perspective. Hence, our
prime interest lies in the dynamics that can arise in simple systems including this
feature. We did not aim for neuronal realism.

However, since we consider the work to be relevant for theoretical neuroscience, the
question of how many neurons are necessary to produce chaotic behavior seems very
close and interesting.

Generally researchers are interested in choosing the simplest neural model grasping
core aspects of neural behavior while still being able to produce the phenomenon to
be explained. Models can vary immensely within the space spanned by the dimension
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abstraction vs. biological realism and the dimension simplicity vs. complexity. Each
model in this space may be the ideal model for a specific phenomenon of interest, that
requires explanation. Therefore, a more refined question is: Given a certain neural
model, how many neurons are necessary for chaos to occur?

In the more complex or detailed models chaos can already be found within the
dynamics of a single neuron, since the dynamics of the neuron itself are high dimen-
sional. On the other hand extremely simple neural models, such as discrete time rate
models, may allow for chaotic behavior with only a few neurons, since their dynamics
are described by maps, which require only one dimension to be chaotic (e.g. as in the
logistic map [54]).

Examples for chaos within a single more complex neuron include the four dimen-
sional Hodgekin-Huxley model: Doi et al. [I9] report chaotic dynamics, even though
within a nonstandard parameter regime.

Another example of chaos within a single rate neuron with unusual periodical driv-
ing is found by Kiirten and Clark [42], the complete autonomous model including
the neuron with an adaptation mechanism and the periodic driving consists of four
ODEs.

Ermentrout [21] presents a FitzHugh-Nagumo oscillator consisting of a voltage vari-
able and a recovery variable resembling potassium dynamics. Introducing another
variable that can be understood as mimicking another inward conductance, leads
to chaotic behavior, the complete system simulating one neuron is fully described
by three ODEs. Furthermore, he shows that adding an excitatory interneuron to a
Wilson-Cowan system consisting of an excitatory pyramidal cells and an inhibitory
interneuron, has very similar dynamical equations and also shows chaos, an example
of a chaotic system of three neurons.

Time discrete rate neurons with synchronous update are situated further towards
the simple and abstract side of neural models. At each time step the new rate value
of each neuron is updated by passing the sum of all presynaptic rate values through
a sigmoidal activation function. From a mathematical perspective these models are
multidimensional maps. Renals and Rower [70] did a broad parameter search for
these kinds of models and never found chaotic behavior for networks with two or
three neurons. However, Wang [90] presents a system class of only two such neurons
and by showing that its dynamics are topologically conjugate to S-unimodal maps,
demonstrates that the dynamical behavior is chaotic for certain parameters.

Examples for chaos in neural networks with only a few neurons, which are modeled
neither as very simple nor very complex include the following:

Laing [45] considered symmetrical all-to-all coupled theta neuron networks with
and without self-coupling. The dynamics of each neuron is fully characterized by a
single ODE. The author finds chaos in networks of three and four neurons. This may
at first be counter intuitive, since due to the network symmetry the neurons also show
order conservation. However, these two properties are not in conflict with each other
(see previous chapter 4 regarding order conservation in symmetrical networks as well
as reference [I1] for another such example).

Marcus und Westervelt [52] consider leaky integrator neurons. The delayed inputs
are summed and passed through a sigmoidal transfer function. Each neuron therefore
is described by a single delayed differential equation. They report chaotic behavior in
networks of three neurons.
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In this chapter we are concerned with delayed §-pulse coupling. None of the above
examples includes chaotic behavior with J-pulse coupling (but see Laing [45], who
reports that chaos in his systems vanishes if the coupling is replaced by instantaneous
0-pulses). Even though we proposed a system that is not aimed to be a realistic neural
model, the system’s mathematical structure is identical to neural phase oscillators
with delayed d-pulse coupling, which is multiplied by a phase response curve. E.g.
the leaky-integrate-and-fire neuron, a widely applied neuron model, often falls into the
same system class. Therefore we think that we have contributed towards answering
the question on how many neurons are necessary to produce chaotic behavior within
this system class.

5.6 Summary

In this thesis we want to understand the dynamical implications of common neural fea-
tures. In this chapter we considered delayed d-pulse-coupling and found that chaotic
behavior is possible in a system of only two phase oscillators. The system was studied
numerically, many of the typical signatures of chaos were found and we were able to
show that the chaotic behavior is related to chaos arising in unimodal maps. The sys-
tem in this chapter provides another example of a dynamical phenomenon occurring
in a pulse-coupled system, that does not occur in a corresponding ODE system. Be-
cause of the Poincaré-Bendixson-theorem chaos in an ODE network requires at least
three network nodes, while the network here only has two nodes. Another example
for a qualitative difference between ODE and pulse-coupled systems was presented in
the previous chapter.






Chapter 6

Discussion

The goal of this thesis is to understand the fundamental properties of collective dy-
namics emerging from basic dynamical features rarely considered in classical physics
but commonly used in models of systems in biology and, in particular, neuroscience.
Specifically, we take a dynamical systems’ perspective and ask which phenomena may
occur in the presence of adaptation and (possibly delayed) pulse coupling.

Taking a dynamical systems’ view, when we ask about effects, we refer to the
topology of phase space, its basins of attraction, basin boundaries, special trajectories.
We want to know whether phenomena such as chaos, limit cycles or more involved
dynamics can be generated with the help of these features and how they can be
generated. We are interested in understanding the mapping between the equations
defining the temporal evolution of the system and the corresponding phase space
topologies.

There may be no systematic way of understanding which effects emerge from cer-
tain dynamical features introduced to the equations defining a dynamical system in
general. Which general statements can be made about the phase space topology
stemming from introducing certain features?

While it is hard to provide statements about the global phase space portrait, dynam-
ical features impose limitations on how trajectories can interact locally. For instance,
given a certain system type or feature, can trajectories merge or split, do they need
to be continuous or can they jump over one another? Does the system have "hidden’
dimensions, such that while trajectories are continuous and cannot cross each other,
they appear to cross each other in the lower dimensional projections onto the space
spanned by only the dynamic variables considered 'natural’.

Rather than attempting a general systematic study, we here address these problems
from the point of view of minimal models and ask whether and how a given overall
system dynamics may arise from a given feature added to idealized model systems.

In the following section we will expand on the considerations regarding freedom
and limitations of trajectories in phase space. We do not aim at providing a complete
analysis, rather, we provide a first attempt to group dynamical systems coarsely by
their restrictions on trajectories and refer to example systems illustrating these points.
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6.1 Theoretical Considerations on Restrictions and Freedom
in Phase Space

Smooth Ordinary Differential Equations as Reference Systems

Our starting point is a smooth system of ordinary differential equations. Such a
system has the restrictions that all trajectories are necessarily continuous. Further the
existence and uniqueness theorem holds (see chapter 2), which means that trajectories
cannot join or split. It also means that the past and future of each trajectory is unique:
Given a certain point in phase space, the full future and full past is uniquely defined
by the trajectory passing through this point.

Adding Restrictions - Introducing Symmetries

It is possible to introduce more restrictions on the trajectories in phase space. An
example is the introduction of symmetries. Introducing symmetries often yields in-
teresting dynamics [8), 111, 24], B0, [62), 811, [85]. Symmetries may induce flow invariant
subspaces, which act as barriers to the flow. If a trajectory is on such a subspace,
it will remain on this space forever. It also means that if these invariant subspaces
fully separate the space into volumes, it is not possible for a trajectory to pass from
one side to the other. This is because crossing the border means intersecting with
the trajectories on the flow invariant subspace and this would be in direct violation
with the uniqueness guaranteed of the existence and uniqueness theorem. Whereas
the above reasoning applies for smooth ODE systems, introducing certain features
into the dynamical equations grants trajectories more freedom or removes conditions,
such that the existence and uniqueness theorem does not apply. We will introduce
some such examples below. For a more detailed account see reference [25] and the
discussion section of chapter 4.

Removing Restrictions: 1 - No Uniqueness of Flow

There are several restrictions on trajectories in smooth ODE systems, that can be
removed allowing for richer dynamics. For example the system can be changed in a
way that allows for trajectories to merge or split. This may be the result of different
dynamical features, which are introduced into or altered in an ODE system. An
example is the system presented by Dixon et al. [I8]. They present a system of two
ordinary differential equations. While the dynamical equations are smooth almost
everywhere there is a singularity where they are not. It turns out that almost all
trajectories in the vicinity eventually merge into a single trajectory at this point.
Therefore the system has no time reversal in the sense that points on this merged
trajectory do not have a uniquely defined history. An interesting consequence of the
specific phase space structure is its strong numerical instability. When simulated the
system appears to be highly chaotic.

Removing Restrictions: 2 - Introducing 'Hidden’ Additional Dimensions

Another way to remove constraints on phase space topology is achieved by allowing
trajectories to pass through additional ’hidden’ dimensions. An ODE system of k
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dynamic equations describes the evolution of k dynamic variables. However, there are
several features that can be introduced into such a system, that give it the appearance
of being k dimensional, even though the system is actually higher dimensional. Here,
we will provide a few examples:

Explicit time dependence. Consider the following non-autonomous system:

&1 = fi(x1,z2,1)

&g = fo(x1,22,1)

This system has two dynamical variables and is described by two differential equations.
However, to specify the state of the system, the value of z1, 9 as well as the time
point ¢ is required. Therefore, the system is actually three dimensional. This becomes
obvious, when the system is rewritten in the following way:

1 = fi(x1, z2, x3)
&9 = fo(x1,z2,x3)

T3 = 1.

Through this substitution the explicit time dependence is dropped, instead a third
dynamical variable is introduced, that evolves with unity time. The evolution of the
two dynamical variables 21 and s is conserved under the substitution. An example of
richer dynamics in systems with explicit time dependence compared to systems with-
out are driven two dimensional oscillators. Because the explicit time dependence adds
a dimension, these systems can be chaotic without violating the Poincaré-Bendixson
theorem. As an example see the system studied by Moon and Holmes [60]. They
study a ferroelastic beam, that shows oscillatory bending between two magnets. The
dynamics of the system can be reduced to a second order non-autonomous differential
equation that can be understood as a forced double-well oscillator: A damped particle
in a double well experiencing sinusoidal forcing changes chaotically between the two
wells.

Systems with noise. Real world phenomena are often modeled through dynamical
systems. The dynamical variables considered may only be very few. However, in-
creasing the resolution of almost any real world systems will lead to a highly complex
picture of an endless amount of entities interacting. E.g. any macroscopical object is
made up of a vast amount of molecules, which constantly interact with molecules sur-
rounding the object. For most research questions explicitly modeling all these entities
is neither feasible nor elegant. Instead the micro interactions with the environment are
assumed to be chaotic and modeled by introducing noise into the dynamical equations.
Therefore introducing noise is a way to account for the extreme high dimensionality
of a real world system in a simple model. The following equation is an example of
a stochastic differential equation, the time evolution of the dynamic variable x is a
function of x and gaussian white noise £(t):

i = f(2) +€() (6.1)
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The structure of this equation has much in common with a non-autonomous differ-
ential equation. While there is a part of the equation that depends on the dynamic
variable z, there is also a part that depends explicitly on the time ¢, (¢). The stochas-
tic influences can be understood as external input to the system, a form of explicit
time dependence. To describe the full state of the system only the values of the
dynamic variables are required. At the same time, two systems with identical ini-
tial conditions evolve differently unless the noise is realized in exactly the same way.
Therefore, to fully specify the system the realization of noise at all times is neces-
sary. Approached from this angle, the system may be viewed as infinite dimensional,
since infinite knowledge is required to create identical outcomes of two systems with
identical initial conditions. If systems with different noise realizations are compared,
then trajectories can cross each other in phase space. Whether further restrictions
are removed depends on the specific form of noise used, e.g. allowing for jumps in the
trajectories by introducing discontinuous noise.

Systems with delay. Delayed systems are an interesting case of introducing "hidden’
additional dimensions. The family of delayed systems is quite diverse (e.g. see [2§]).
As an example we briefly consider the following system:

&= f(z(t),z(t — 7). (6.2)

The change of the variable z depends on the current value of x through x(t) as well as
the value that x had 7 time units in the past. This system has one dynamical variable,
which is x and it is described by a single dynamical equation. It appears to be one
dimensional. However, to uniquely define the system’s initial conditions the current
value of x has to be provided as well the whole history of = up to 7 time units into
the past, since this part of the history of x still influences the future of the system.
For a time continuous variable x the set of x values included in this history is infinite
dimensional and so is the system. As a result trajectories passing through the same
point in the space spanned by the dynamical variables can evolve from there quite
differently depending on their unique past. Trajectories in this space therefore can
cross each other. There are many examples of time delayed systems with one variable
showing very rich behavior(e.g. the system & = sin(x(t — 7)) shows chaos [79]).

Removing Restrictions: 3 - No Continuity of Trajectories

A system of ordinary differential equations has continuous trajectories in phase space.
Also this restriction can be broken by introducing certain dynamical features or con-
sidering time discrete systems. Here we will briefly discuss the latter.

Time discrete systems. A time discrete system has the form
Xt+1 = f(Xt).

From a theoretical perspective this set of k equation is a k-dimensional map. If we
consider the space spanned by the variables, the analogue to the phase space of a
time continuous system, then trajectories are sets of generally unconnected points. If
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the points are plotted in temporal order, then the next point may appear at a very
distant place from the current point and the structure behind the time evolution is
difficult to grasp. Hence, to understand the behavior of maps other forms of graphical
representation are commonly used (e.g. see the cobweb plots in chapter 5 as an
example). Allowing such jumping within the value set of the dynamical variables
can give rise to very rich behavior even in low dimensional systems. A very famous
example is the logistic map (2441 = ax¢(1 — x¢)), which displays rich and chaotic
behavior for a range of parameter values a, even though the map is one dimensional
(see [54]).

Hybrid systems. Sometimes a real world system is best modeled by a dynamical
system that combines time continuous and time discrete dynamics. An example sys-
tem is provided by Nakano and Saito [61]. They describe a system of two dynamic
variables that evolves continuously in time until a predefined condition is met. At
this point the state of the system is mapped to another state and the continuous time
dynamics continue from the new state. While a hybrid system does not necessary
need to have discontinuous trajectories in the space spanned by the dynamic vari-
ables, discontinuities can be introduced through a map capturing the time discrete
part of the system’s evolution as done in the system of Nakano and Saito. For an
example of a continuous hybrid system see reference [65].

6.2 Dynamical Neural Features and Phase Space Constraints

Where do the features studied in this thesis fit into the above classification scheme?

Feature 1: adaptation. There is no general definition of how a dynamical system
needs to be set up to be considered adaptive. We decided to consider systems that
shows an ongoing minimization of an energy functional, which itself may change on a
slower time scale, since this behavior is common to adaptive systems. There are many
system types compatible with these requirements. We studied a system that can be de-
scribed by two smooth ODEs. Therefore the existence and uniqueness theorem holds,
trajectories cannot cross each other and are confined into a two dimensional space,
the set of possible topologies is restricted as described by the Poincaré-Bendixson
theorem.

Feature 2: pulse-coupling. Pulse-coupling falls into the above category of introduc-
ing hidden dimensions. To characterize the current state of a pulse-coupled system
fully, it is necessary to define the current values of the dynamical variables, but also
all the time points, when pulses were sent in the past, that still influence the future
of the system. However, an exception are instantaneous J-pulses, since they do not
extend in time and therefore do not introduce additional dimensions.

Pulse-coupling is a very peculiar feature, since it dynamically changes the dimen-
sionality of the phase space itself. The consequences of this behavior are not well
understood: Is it meaningful to ask whether neighboring trajectories can merge, if
the evolution of one of the two systems may increase the dimensionality of the space
in the next moment, so that the two trajectories suddenly are not part of the same
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space any more? Does it even make sense to talk about a trajectory, that is part of
a space with temporally changing dimensions? Nevertheless, the space spanned by
only the dynamic variables, not including the additional dimensions created by pulses,
remains intact throughout the whole evolution of the system. It therefore seems to be
meaningful to compare trajectories in this subspace, even if they really live in spaces
of different dimensionality. Though care has to be taken, since only a subspace is
considered, trajectories can merge or split and cross each other.

Pulses can have very different shapes. They can be discrete §-pulses, continuous or
smooth. They can be constructed in a way that ensures that the trajectories in the
space spanned by the dynamic variables are also smooth [38]. The shape of the pulse
also influences which topologies are theoretically possible in the space spanned by the
dynamic variables, e.g. §-pulses produce jumps.

Combining features. It is interesting to consider what topologies can occur, if dif-
ferent features are combined. In chapter 4 pulse-coupling and symmetry were both
introduced into the same system. While symmetries often lead to further restrictions
in phase space as discussed above, combined with pulse-coupling this is not necessar-
ily the case. For a detailed discussion on pulse-coupling in symmetrical systems, see
the discussion section of chapter 4.

6.3 The Approach of Studying Example Systems

While the above considerations provide an idea of which structures might be possible
for a specific system class they provide very little knowledge of how the phase space
topology of a specific system actually looks like or how a specific system should be
constructed to produce a certain phase space structure. We have reduced the set of
possible topologies but we do not have a one to one mapping between system class
and phase space topology.

To give an example, considering a non-autonomous system of two dynamical vari-
ables effectively describes a three dimensional system. Having at least three dimen-
sions in a continuous smooth system is a necessary condition for chaos to occur but
not sufficient. Hence, knowing that non-autonomous systems with two dynamic vari-
ables are three dimensional opens up the possibility for such a system to be chaotic,
but it does not mean that every such system indeed shows chaotic behavior. Further
knowledge is required to understand what the additional conditions are for chaos to
occur.

Eventually, this is a question of fully understanding the relation between systems
defined by their dynamical equations and corresponding phase space topology.

Closing the gap between system definition and phase space topology. Dynamical
systems have these two representations: dynamical equations and the phase space
portrait. A major goal of dynamical system theory is to match these two. How do
they relate to each other? This is not a statement on a specific system but on how a
system class looks like to produce a set of flows in phase space that are topologically
equivalent or share certain properties. The above considerations gave us some insights
into what may be possible in phase space, but to know, what topologies actually stem
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from certain dynamical features, we need to change our approach. Closing the gap
of understanding between phase space structure and the dynamical rules defining the
evolution of a system is a central goal of dynamical system theory.

It is surprisingly hard to design a set of dynamical equations, given a specific
non trivial phase space topology. At the same time it is relatively easy to produce
the phase space portrait of a given set of dynamical equations, at least numerically
with the help of computers (even though sometimes care has to be taken, e.g. see
reference [I8]. Therefore, to find an answer for which system class matches which
phase space topology, it seems the right approach to study many example systems in
the hope that interesting behavior will occur and with enough systems patterns can
be observed and principles can be deduced. Following this approach it may also be
possible to discover completely new topologies, e.g. as Lorenz did when he studied
his chaotic oscillator [49].

In this thesis we took this approach and studied three example systems to under-
stand which topologies can be expected by introducing these features in general. We
have found the following;:

A minimal system of adaptation. In chapter 3 we introduced a minimal system
of adaptation, which has a phase space portrait of nested limit cycles. A simplified
version of the system was also introduced, whose phase space portrait is very similar
to the portrait of the original system and which allows for proving the existence of
limit cycles. This simplified system, however, is a piece wise smooth system ([10]),
different regions is phase space follow different dynamical rules. While trajectories are
continuous everywhere, they are not smooth. At the borders of these regions they can
merge, the system shows finite time convergence and is not time reversible. This leads
to a structure we called funnel structure, which is essential for the proof. When the
funnels of this structure are closed the full flow is discretized, all trajectories entering
the structure leave through one from a discrete set of exit points.

The system we studied is a very simple adaptive system, still we found an interesting
phase space topology. Varying parameters showed that the phase space portrait is
robust. It still remains to be understood what the key ingredients are to produce this
topology. What does a system generally look like that is adaptive and produces such
a nested limit cycle topology?

We believe that our conceptualization of adaptation from a dynamical systems’
perspective is very broad and will encompass many more examples with potentially
quite different phase space portraits.

For alternative perspectives on the system in the context of other research fields,
see the discussion section of chapter 3.

All-to-all pulse-coupling in a symmetrical phase oscillator network. Chapter 4
focuses on the features pulse-coupling, symmetry and the effect of self-loops in an
all-to-all coupled network. Our motivation in the context of scientific literature is
provided in the introduction section of chapter 4. We are interested in whether the
dynamic variables conserve their ordering and if not, how they reorder themselves.
The systems studied here are based on work by Kielblock et al. [38]. The authors
considered all-to-all coupled phase oscillators with full permutation symmetry. They



94 Discussion

demonstrated that the restrictions on such systems described by ODEs do not apply
if pulse-coupling is introduced. Even if the shape of the pulses is chosen in a way that
pulse reception does not induce any non-smoothness into the trajectories in the space
of the dynamic variables, the oscillators do not show order conservation.

We extend their approach by gradually introducing self-loops. First we showed that
introducing self-loops into the smooth pulse-coupled system studied by Kielblock et
al. restores order conservation. For a theoretical discussion on how pulse-coupling
circumvents the restrictions imposed by symmetry on ODE systems and why self-
coupling restores order conservation see the discussion section of chapter 4.

Then we studied this transition in a system with delayed §-pulse-coupling. The
system shows a smooth transition to breaking of order conservation when gradually
removing self-loops. When order is not conserved the oscillators overtake each other.
The mechanism behind this reordering process is uncovered, depending on the pa-
rameters the emerging reordering patters are simple or very complex and despite
being fully deterministic resemble randomness. The mechanism involves a folding
step, which is also common for chaotic systems. However, while the reordering may
be quasi-chaotic, the global dynamics approach the fixed point of the synchronous
state. While the basic phenomenon is identical to the smooth pulse-coupled system,
it is not clear whether the mechanism behind the breaking of order conservation is
identical, since §-pulses allow for jumps in trajectories and induce less restrictions on
phase space structures. We argue that order conservation with self-loops in a smooth
coupled system as proposed by Kielblock et al. necessarily occurs, whereas this may
not be true in a J-pulse-coupled system. We conjecture that a fully symmetrical
system including self-loops with delayed d-pulse-coupling should exist, that does not
show order conservation. For details see the discussion section of chapter 4.

Chaos in a system of two pulse-coupled phase oscillators. In chapter 5 we again
focus on delayed §-pulse-coupling. We present a system of only two phase oscillators,
that shows chaotic behavior, something that would not be possible in a system of
two oscillators described by ODEs. It can be shown that at least in part, the chaos
arises through a period doubling mechanism analog to chaos in a logistic map [54].
However, it is not clear what the essential ingredients are to produce the chaoticity.
We used delayed d-pulses, yet potentially chaos can also occur with instantaneous
0-pulses or continuous pulses. We chose a phase response curve with a zero crossing,
that is discontinuous at the reset point. Would chaos be possible without any of these
two properties? It is clear that more systems need to be studied that treat these
ingredients separately to shed light onto these questions. For a detailed discussion,
also placing the system into scientific context, see introduction and discussion sections
of chapter 5.

6.4 Introducing Neural Features Does Not Always Change
Everything
We have seen that studying dynamical features commonly used in theoretical neu-

roscience can produce interesting and rich dynamics. Often these dynamics were
contrasted with the dynamics stemming from analog systems of ODEs and it was
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shown that the dynamics are qualitatively very different. But sometimes the opposite
is also true: changing the system class may result in a phase space portrait that still
strongly resembles the original system. In chapter 3 a system described by two ODEs
was introduced and its phase space portrait was determined through numerical sim-
ulations. In a second step a simplified system was introduced, one of the two ODEs
was replaced by a discontinuous function. The phase space portrait remained very
similar but the new form allowed for analytic treatment. In contrast, one of the main
points in chapter 4 and 5 was showing that systems described by ODEs as compared
to systems with pulse-coupling may show very different qualitative behavior despite
their similarity in their dynamical set-up.

The following question arises: when does introducing new dynamical features into
a system, which grant trajectories more freedom in phase space, substantially change
the phase space portrait and when does it not?






Chapter 7
Summary

In this thesis we aimed at understanding the fundamental properties of features com-
monly used in models of theoretical neuroscience from a dynamical systems’ perspec-
tive. Dynamical system theory was developed while studying classical physical sys-
tems, such as planetary movements. Such systems can often be described by smooth
ordinary differential equations and the dynamics arising from such equations are rel-
atively well understood. However, in recent years the quantitative study of biological
systems, including neuronal systems, has become a major research field. Models of
these systems often include features that are not common to classical physics and still
lack a good understanding from a dynamical systems’ perspective. We contribute
towards closing this gap.

In theoretical neuroscience models often encompass networks with many interacting
neuronal units. These networks exhibit interesting dynamical phenomena. At the
same time the neuronal units themselves may include dynamical features, such as
pulse-coupling or adaptation, which may be able to produce rich dynamics already
in very simple network architectures. If so it may be possible to consider extremely
simple systems including these neural features and observe complex dynamics often
associated with complex network models.

In this thesis we considered three very simple systems including features such as
adaptation and pulse-coupling and analyzed their behavior. In all cases we found that
these simple systems can produce surprisingly rich dynamics.

In a minimal adaptive system described by only two ordinary differential equations,
we found a phase space portrait of presumably infinitely many nested limit cycles.
In a simplified system with the same qualitative phase space portrait of nested limit
cycles, we identified a structure, called funnel structure which separates the flow in
finite time into a set of discrete trajectories. Further, we showed that these trajecto-
ries are cycles, hence proving the nested limit cycle behavior in a certain parameter
regime and hence providing analytic insights into the global dynamics of a nonlinear
system.

Building on work by Kielblock et al. [38] we analyzed symmetrical all-to-all pulse-
coupled phase oscillator networks. While corresponding ODE systems necessarily
show order conservation of the oscillators, this is not true if pulse-coupling is in-
troduced. We showed that gradually introducing self-loops may restore order con-
servation. In a system with delayed dé-pulse-coupling we were able to analytically
understand the transition to order conservation and to uncover the mechanism be-
hind the reordering process. Depending on system parameters simple or quasi-chaotic
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reordering patterns were observed. We discuss how it is possible that pulse-coupled
oscillators can circumvent the dynamical restrictions present in ODE systems and
break order conservation. Further, we discuss why order conservation may be re-
stored by introducing self-loops.

Finally we described a system of only two delayed d-pulse-coupled phase oscillators,
that shows chaotic behavior characterized by a beautiful orbit diagram. We found
that the observed chaos can be related to the period-doubling route to chaos arising
in unimodal maps, such as the logistic map.

We have seen that the neural features we focused on indeed are able to produce very
rich dynamics, even if embedded into very simple systems. Studying these systems
has lead to a better understanding of the dynamic properties of these features. At the
same time it turns out that the features themselves comprise a collection of different
subfeatures with different dynamical properties, i.e. Pulse-coupling can have quite
different properties depending on the shape of the pulse used. We also encountered
conceptual difficulties, e.g. what do we mean by adaptation in a dynamical context?
Or how can we compare trajectories in a pulse-coupled system, if the dimensionality
of the space containing them changes dynamically?

It is clear that our systems studied here are only a starting point towards gaining
a full understanding of the dynamical implications of adaptation and pulse-coupling.

If more systems are studied encompassing these dynamical features hopefully pat-
terns and principles can be discovered to develop a better theory of which topologies
are possible and under which conditions. And maybe new dynamical structures are
discovered altogether.









Appendix

A - A Particle Interacting with Its Potential - an Alternative
Representation

There is a second equivalent way of rewriting the original system as a particle inter-
acting with its potential:

V(z,c) = —exc
¢= -0,V
&= —Acos(x — p) —c.

Rewritten this way ¢ and not x is interpreted as the particles position, while z is a
variable that changes the potential depending on c¢. This formulation is equivalent to
the one in section [3.2.1]

B - A Second Order Differential Equation - an Alternative
Representation

In the main text in section (3.4)) on page the original system was rewritten as a
second order differential equation. There is a second equivalent way the system can
be expressed as a single second order differential equation:

&= Asin(zr — )i —ex

Interpreted as a mass hanging on a mechanical spring the last term ex acts as a
restoring force with a spring constant of €. The term A sin(x — ¢)& can be understood
as a damping force, since it depends on the velocity #. However, it also depends on
the position x. Hence, the damping depends also on the current position of the mass.
Through the sinusoidal function, the damping changes its sign, the resulting oscillator
is an active oscillator.

C - Existence of Limit Cycles - Connecting Funnel F}, with
Funnel F;/

To show that the trajectory leaving a funnel exit point F,Si is a cycle we want to
demonstrate that a the trajectory passes through the following sequence of states

(equation [3.6)):

po+ B, pin= O, po— O, pin+ O, po+



102 Summary

The sectionsanddemonstrate transition (i), provided a certain parameter
regime. In the proof sections (3.3.3) and (3.3.4) on pages[24/fff and [32}fff it was shown
that the trajectory leaving funnel k on the right side will reach the funnel entrance
of the kth funnel on the left. However the transition (*) showing that a trajectory
leaving a left funnel )~ will eventually reach the funnel entrance region on the right
F,i“* remains to be proven. This part of the proof was left for the appendix, because
it works completely analog. Here we define the corresponding variables and functions
and demonstrate the proof of this remaining step.

:cz+ - the position where the trajectory returns to ¢ = —A. Here we study the
trajectory (z(t), c(t)) leaving at the funnel exit point F;_~ and its corresponding curve
¢(x). From the system definition (equation it follows that while ¢ < A and x < 0
the trajectory is monotonically decreasing in ¢ (¢ < 0) and monotonically increasing
in z (£ > 0). Eventually the trajectory passes x = 0. While ¢ < A and z > 0
the trajectory is monotonically increasing in  and in ¢ (¢ > 0 and ¢ > 0 until the

trajectory reaches ¢ = —A. We denote the z-position of this return as z*T.

(42.2) - (4i.1)

1

it e " = af ot 4+
Therefore showing the transition Fj~ —(ﬁ)—> F ,i;” is equivalent to showing that the two
inequalities (ii.1) and (ii.2) hold.

Replacing the trajectory leaving at F},~ by the function c(z). We are only inter-
ested in the part of the trajectory from leaving the funnel exit point ;)™ until reaching
¢ = —A again. This part of the trajectory can be expressed through the correspond-
ing curve ¢(z) In the paragraph (remarks on monotonicity) it was discussed
that analog to the behavior of the trajectory any connected curve c(z) while ¢ < A
is strictly monotonically decreasing with x while z < 0 and strictly monotonically
increasing while x > 0. Because of the monotonicity the curve c¢(x) with ¢ < A is a
function, there is exactly one c-value assigned to any x-value. The following part of
the proof concerns the curve ¢(x) within this region.

(ii.1) To Show: z}™ > x{t — mr; =1 Lies Right of the Left Entrance of F;"t

Defining Zf and f(x). The function f(z) is defined in the following way:
flz):=—z+ &

#! is defined such that it has the same distance to the funnel exit point FY™ as the
left border of the funnel entrance F,;n‘*' from x = O:

(25" —7m) — 0 =2 — 2.
Now we show that with the above definition it follows that #f < 0:
For 0 <y < m:
i =20-21<0.
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For —m < ¢ < O:
=20 <0.

In the following we show that z and f (x) are situated within the same segment type.
Both either lie within an up shifted or a down shifted segment: s(z) = s(f(x)).
For0<p<maswellas —m < p < O:

- V(I)T%J - {—”ifﬂ—w—’z’J

The equality holds for geometrical reasons.
Induction. to show: c(x ,f;" ) = c(f(xi_)) < c(zf) = —A.

Induction step. to show: c¢(f(z)) < c(z) = c(f(z+ Azx)) < c(z + Az) with
Az < 0.

Ax is chosen such that segment borders are not crossed. The right side of the
equation is considered:

o(f(xir1) = e(—zips + &) = e(—2; = Az + &) = o f(2:) + (—Az))
< c(it1) = c(x; + Ax)

DA (4= sF@ea)’ - e(-a0) (2 () + (~a0)
< s(z) A — /(A — s(@i)e(@:))’ — e(Az) (20; + Ax)

— (A s()e(F(@:)" ~ cha(~2(—z; +3) + Ax)
(x

> (A — s(z)e(x)? — eAx(2z; + Ax)

= (A — s(a:z)c(f(uvz)))2 +2eAz & > (A — s(xi)e(x;))?

The inequality holds because we assumed c(f(x;)) < ¢(x;) < —A, hence |e(f(x;))| >
le(z;)| > A and s(z) = s(f(z)) holds. So far we assumed staying within the same seg-
ment, however, because s(x) = s(f(z)), incrementally adding Az going from segment
border to segment border keeps the above reasoning intact, ¢(f(z)) < ¢(x) holds true.

Induction start. to show: ¢(f(i/)) = (0) < c(z)
This directly follows from section (Remarks on monotonicity).

Conclusion. It follows that when passing the left funnel entrance border of funnel F,j
the trajectory does not enter the funnel yet: c(z{" —7) = c(f(2{7)) < c(z§) = —A.

Section [3.3.2| (Remarks on monotonicity) stated that ¢(x) is monotonically increas-
ing for x > O and ¢ < —A. It follows that the trajectory will reach ¢ = —A to the
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right of the left funnel entrance border of F,j C x> :z:z+ — .

(ii.2) To Show: x{~ — 7 < &} ™; ;T Lies Left of the Right Entrance of F;""

Defining 8 and g(«). The function g(z) is defined in the following way:

g(x) = —z+2°

28 is defined such that it has the same distance to the right border of the funnel
entrance F;"t as the funnel exit point FY~ from z = 0.

P — (a5t + ) =2y —0.

From the above definition of 8 it follows that 28 > 0:
For 0 < ¢ < m:
79 =2¢p > 0.

For —m < ¢ < 0:
79 =2p+21 > 0.

Now we will show that x and g(x) are situated within the same segment type: s(z) =
s(g(z)). For 0 < p < mas well as —m < ¢ < 0:

1) V(m)—ﬂw—%J 1 L—x-ﬁzgﬂ—w—%J
_ (_DLMHJ _ (‘UVﬂiﬁ%J

The equality holds for geometrical reasons.

Induction. to show: When increasing x, c(g(x') c(zyt) = —A occurs before

€T =
c(xy) = —A and hence §(zf ) = xi" + 7 > (') = ;7.

Induction step. to show: c¢(g(x)) > c(z) = c(g(x + Az)) > c(x + Az), Az < 0:
Az is chosen such that segment borders are not crossed. The right hand side is
considered:

c(§(z + Az)) < c(z + Ax)
— (A—s(x)e(§(2))? +2eA2 9 > (A — s(x)c(x))?.

Assuming —A > ¢(g(x)) > ¢(x) the above inequality follows, given that Az < 0 and
T8 > 0.

So far it was assumed that Az is chosen such that z + Ax remains within the same
segment as x, however, because s(z) = s(g(z)), incrementally adding Az going from
segment border to segment border keeps the above reasoning intact, ¢(g(x)) > c(x)
holds true.

Induction start. to show: ¢(28) = ¢(§(0)) > ¢(0)
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This directly follows from [3.3.2] (Remarks on monotonicity).

Conclusion. While starting at + = 0 and increasing |Az|, the induction above
showed that c(g(x)) > c(x) has to hold. Hence, before a2} with c(z} ) = —A is
reached, the point ¢(g(z)) = —A = c(z*"), when the trajectory reaches ¢ = —A

again, has to be passed. Therefore, z** < :Ez+ +7m = g(z} ). The trajectory reaches
¢ = —A to the left of the right border of F,;n“'.

Short recapitulation. Overall in (ii) we have shown that the trajectory leaving the
funnel exit point of the funnel F reaches between the left and right funnel entrance
borders of the funnel Fk'f and hence, have shown that the transition F;)” — F,;n‘*'
occurs.
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