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Abstract

DEVELOPMENT OF A MATHEMATICAL MODEL OF RENAL

FUNCTION FOR CLINICAL APPLICATION

by

Barbara A. Holshouser

This model describes the orthoiodohippurate (OIH) distribution and 

clearance in the renovascular system. The model is described by five

compartments: the blood, left and right kidneys, bladder and the red 

Data for these compartments, except the RBCblood cell compartment.

compartment, are collected with scintillation detectors monitoring OIH 

tagged with 1-131 as the radiopharmaceutical passes through each 

compartment. Time/ activity curves are plotted for the data and used as 

inputs to the model parameter estimation routine. The compartments are 

described by a set of first order ordinary differential equations solved 

using the Adam's methods. For parameter estimation, an iterative 

predictor-corrector procedure is used. The estimated model parameters

are used to calculate total and differential effective renal plasma flows 

which are compared to standard PAH clearance tests. A blood-to-urine

flow index, defined in this research using these parameters, and a

cortex-to-medulla transit is also used to evaluate various renal diseases

surgically induced in animal models. The predicted effective renal



plasma flows correlate well with the PAH clearances for both normal and 

abnormal conditions and the blood-to-urine flow index is particularly 

useful in differentiating between ureteral obstruction and renal vein

occlusion.
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PREFACE

The purpose of the mathematical model presented in this 

dissertation is to describe and/or quantitate some aspects of renal 
function. In the future, we hope to use this model clinically in the 

nuclear medicine laboratory to aid physicians in diagnosing and 

evaluating renal diseases in patients.
In Chapter 1, this dissertation summarizes previous work done in 

this area. Chapter 2 describes the five compartment renal model used in 

this research and the solution of the equations representing the model. 
Chapter 3 presents the protocol used for the animal experiments, the 

results and a discussion of the results. Chapter 4 summarizes and draws 

conclusions, as well as, states the extensions of this research for
future work.

Many people were involved in completing this research and thanks 

must go to all of them. In particular, thanks go to Dr. Kirk for many

hours of catheterizations and to Dr. Grames for much needed advice and

evaluation of the data. Thanks must also go to Dr. Yakush and Dr. 

Zimmerman for help in de-bugging computer programs and special thanks for 

their encouragement.
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CHAPTER 1

ANATOMICAL AND PHYSIOLOGICAL SUMMARYRENAL SYSTEM:
AND REVIEW OF PREVIOUS RADIONUCLIDE STUDIES

Renal Anatomy and Physiology

The kidneys are paired organs which constitute on the average 0.4% 

of the weight of the body, yet, at rest, renal blood flow amounts to 

20-25% of cardiac output(40). The high blood flow to the kidneys is 

related to the several vital functions the kidneys perform for the body. 

Not only do the kidneys eliminate metabolic waste products, they also 

regulate fluid balance and electrolytes such as sodium and potassium and 

perform some endocrine functions. Figure 1 illustrates some of the basic 

anatomical features of the urinary system, including the distinction 

between the outer portion of the kidney, called the cortex, and the inner 

portion, called the medulla.

To perform its functions, each kidney is composed of approximately 

one million units called nephrons each of which are capable of producing 

urine(28). Each nephron is composed of a glomerulus which filters plasma 

and a tubular portion which functions not only as a conduit but, also is 

responsible for ultimate regulation of fluid and electrolytes.

The anatomy of the nephron is described by following the path of 

the fluid flow through the kidney. Blood enters the kidney in the renal 

artery which branches into a series of successively smaller arteries and 

finally into afferent arterioles each of which leads into the glomerulus 

of a nephron. The capillaries of the glomerulus are suspended in the 

ultrafiltrate in Bowman's capsule. Since the net pressure in the

1
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Figure 1. The basic anatomical features of the urinary system 
from Guyton(28).

capillaries of the glomerulus is higher than the pressure of the 

ultrafiltrate in Bowman's capsule(2), plasma water is filtered through 

the capillary membrane. The epithelium of Bowman's capsule is continuous

with the proximal tubule. Ultrafiltrate from Bowman's capsule first

Fromenters the proximal tubule lying in the cortex of the kidney, 

there, the fluid continues into a sharp hairpin-like loop called the loop

of Henli. Cortical nephrons which make up approximately 85% of all the 

nephrons(4) have glomeruli which are located in the outer cortex and the 

descending loop of Henle protrudes only into the outer medulla. The 

remaining 15% of the nephrons have glomeruli which lie close to the 

medulla with long thin descending portions of the loop of Henle which 

descend deep into the medulla. These nephrons are called juxtamedul1 ary
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nephrons. The ascending loops of Henle for both types of nephrons

continue up into the cortex into the distal tubule. The distal tubules

of several nephrons then empty into a collecting tubule or collecting 

duct. This duct descends into the medulla paralleling the loops of Henle 

and empties into the renal pelvis. Figure 2 shows the anatomy of

cortical and juxtamedullary nephrons.

The afferent arteriole after branching into the network of

capillaries of the glomerulus recombine to form the efferent arteriole 

which leaves Bowman's capsule only to form a second network of 

capillaries called the peritubular capillaries. Blood perfuses the 

cortical interstitium around both the proximal and distal tubules in the 

peritubular capillaries. Efferent arterioles from glomeruli of 

juxtamedullary nephrons also branch into the medulla. These vessels, 

called vasa recta, are long and descend parallel with the loops of Henle 

deeply into the medulla. The vasa recta then loop back up into the 

cortex and empty into the cortical veins along with the peritubular 

capillaries. Figure 2 also compares the blood supplies of cortical and 

juxtamedullary nephrons.

Filtration, Reabsorption and Secretion

The function of nephrons is to form urine and in doing so clear the 

body of metabolic wastes and regulate sodium, potassium, chloride and 

hydrogen ions(64). The nephrons use three basic processes to accomplish 

this: glomerular filtration, tubular reabsorption and tubular secretion.

Blood perfusing the glomerular capillaries is under hydrostatic 

pressure thereby initiating the formation of urine. Cellular elements, 

large protein molecules and lipids are prohibited from passing through
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Figure 2. Comparison of the anatomy including the blood supplies 
of cortical and juxtamedullary nephrons. From Pitts (40).

the capillary membrane due to either their size or charge, so that the 

ultrafiltrate appearing in Bowman's space is essentially protein and cell 

free(2). This process is called ultrafiltration. The volume of plasma 

filtered per unit time is known as the glomerular filtration rate (GFR). 

Guyton estimates that one-fifth of the plasma that flows through the 

glomular capillaries is filtered into Bowman's capsule and enters the 

tubular portion of the nephron(28). The nonnal value for the GFR of a
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70 kg man is 125 ml/min.

Due to the large portion of plasma filtered through the glomeruli 

each day, some process must be used to retain extracellular fluid volume 

and return valuable solutes present in the filtrate to the peritubular 

capillary fluid. This process is called reabsorption. With average 

intake, approximately 99% of the salt and water filtered each day is 

reabsorbed, however, the kidney has tremendous capability to vary this 

percentage considerably in order to maintain homeostasis. The rate of 

reabsorption is the difference between the rate of filtration and the 

rate of excretion. Reabsorption occurs through the tubule walls by both 

active and passive mechanisms. Solutes such as sodium, glucose and 

phosphate require active transport mechanisms, while urea and water are

passively reabsorbed following concentration gradients.

The other process used in urine formation is called tubular

secretion. Secretion is used to transport substances into the tubular

lumen and may be either active or passive. The rate of secretion is 

equal to the rate of excretion minus the rate of filtration. Figure 3

illustrates the three basic processes of urine formation.

Clearance Concept

The clearance of a substance is defined as the volume of plasma

from which that substance is completely cleared by the kidneys per unit

time(65). Plasma clearance varies for different substances and can be

calculated by the following basic formula:

Plasma (ml/min)=Quantity of Anin)*conc. in urine(mg/ml)
Concentration in plasma (mg/ml)

The concept of plasma clearance is important because it can be used

(1)clearance
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Figure 3. The three basic processes of urine formation. From
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to measure different aspects of kidney function.

Inulin clearance is one of the most important clearance measure

ments made. Inulin is metabolically inert, is not protein bound and is 

freely filtered at the glomerulus. Since inulin is neither reabsorbed 

nor secreted by the renal tubules, the amount of inulin excreted in the

final urine is equal to the amount filtered by the glomeruli per unit 

time(2). Therefore, inulin clearance is a measure of glomerular

filtration rate (GFR). The clearance of inulin to measure GFR was first

proposed by Richards, et al and Shannon and Smith in 1935(4). One 

drawback to inulin measurement is that inulin does not normally exist in
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human plasma and so must be constantly infused to maintain a constant

level in the blood in order to perform the clearance measurement. 

However, creatinine is normally found in human plasma at relatively 

constant levels(2) and exhibits most of the same properties of inulin 

except that it is partially secreted (approximately 20%). This tubular 

secretion of creatinine makes its clearance value proportionately higher 

than that of inulin. In the human adult male, the average normal value 

for inulin clearance is 135 ml/min corrected to 1.73 square meters of 

body surface area, whereas, the average normal creatinine clearance is 

164 ml/min corrected(2).

Para-aminohippuric acid (PAH) clearance is another important

PAH, like inulin,is metabolically inert, 

is not produced by the body, is freely filtered by the glomerulus and is

Unlike inulin, however, PAH remaining in 

the plasma after filtration is almost completely secreted by the 

tubules(41).

measurement of renal function.

not reabsorbed by the tubules.

Since PAH is almost completely cleared by both filtration 

and secretion in a single pass through the kidneys, PAH clearance may be

used as a measure of renal plasma flow. In practice, since the

extraction of PAH in the normal adult man is on the average equal to 

90%(53), the true renal plasma flow is underestimated by PAH clearance. 

Therefore, the term, effective renal plasma flow (ERPF) has been used to 

describe PAH clearance(3). If the extraction ratio for PAH (Epah) is 

known, then the true renal plasma flow (RPF) may be calculated as

follows(3):

RPF = ERPF (ml/min)/EpAH (2)
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If simultaneous measurement of inulin and PAH is made at low plasma 

PAH levels, then the fraction of plasma filtered through the glomeruli, 

known as the filtration fraction, can be calculated using the following 

equation(41):

(3)Filtration Fraction = Cin/Cpah = GFR/ERPF

In a normal adult man, the filtration fraction is 16-20%(41).

Radionuclide Studies

The clearance studies previously mentioned, utilizing inulin for 

GFR determination and PAH for determining the ERPF, are not routinely 

used clinically due to their demanding, invasive nature. The standard 

urinary clearance technique involves constant intravenous infusion of the 

substance to be measured and bladder catheterization for collection of

urine. This makes the presence of a physician mandatory and the accurate 

collection of blood and urine samples absolutely important. The use of

radioactive tracers substituted for these chemical substances has become

a widespread practice. The goal is to increase the ease and accuracy of 

the analyses, since scintillation counting of a gamma emitting 

radionuclide is faster and easier than chemical analyses(61).

1-131 or 1-123 labeled orthoiodohippurate (OIH) are the most 

commonly used radiopharmaceuticals for the determination of effective

1-131 and 1-123 are both gamma photon emittingrenal plasma flow.

radionuclides with energies of 364 keV and 159 keV respectively.

OIH with gamma photon energies of 28 and 35 keV, has also had limited 

The similarity in renal handling of orthoiodohippurate (OIH) and 

para-aminohippurate (PAH) was first established in man by H. W. Smith and

1-125

use.
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co-workers(55). Smith compared clearance ratios of unlabeled OIH, PAH

and Diodrast and found these ratios to be within .95 to .97 in both dog

and man using urinary clearance techniques developed in his lab.

Realizing the advantages of labeling OIH with a radioactive tag so 

that external measurements could be taken, Tubis, Posnick and Nordyke in 

1960, were first to successfully label OIH with 1-131(63). The following 

year, Mitta et al, simplified Tubis' technique(36).

Urinary Clearance Techniques

Using the urinary clearance techniques of Smith(55), several 

investigators soon reported using the 1-131 labeled OIH to measure 

effective renal plasma flow. Schwartz and Made!hoff(48,49) performed 

simultaneous PAH and radio-OIH clearance studies on twenty-five 

patients in which they found the average Cqih/Cpah clearance ratio to be 

0.814. Burbanke and Tauxe(13), working independently, also compared PAH 

and 1-131 OIH in man and reported an average Cqih/CpaH clearance ratio 

of 0.87. Later, other investigators confirmed these clearance ratios in 

man(7,47).

Several theories have been suggested to explain why radio-OIH has a 

lower clearance than PAH. Burbank(13) suggested that the presence of 

free iodide in the 1-131 OIH may cause the failure to achieve the 

expected ratio of 1.0. However, Meschan et al,(35) reported a low 

clearance ratio with less than 1% free iodide in the preparation. 

Magnusson(32) related the discrepancy to the high specific activity of 

the 1-131 OIH, causing autoradiolysis and a higher free iodide content.

As a result, in 1967, 1-131 was replaced with 1-125 with a lower specific 

activity to tag OIH and higher clearance ratios of 0.90 by Ram et al(43)
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and 0.96 by Cutler and Glatte(16) were reported. Much later in 1980, 

Stadalnick et al(56) tagged OIH to 1-123 and reported a lower OIH to PAH

clearance ratio of 0.86.

A second theory was postulated to explain why 1-131 OIH has a lower 

clearance than PAH. Since OIH is bound to protein by as much as 50% more 

than PAH, Schwartz and Medelhoff(49) suggested that the protein binding 

retards diffusion from the peritubular capillaries to the interstitial 

fluid. Summers et al(58) used protein-free plasma filtrates to calculate 

the 1-131 OIH/PAH clearance ratio in dogs and reported 0.96.

Additionally, by administering stable iodohippurate to take up the 

binding sites. Summers reported a clearance ratio of 0.97. Maher and 

Tauxe(33) used plasma filtrates in man and reported a clearance ratio of

0.92.

Later, Gagnon et al(25), concluded from his studies that the 

presence of PAH alters the clearance of 1-131 OIH by inhibiting tubular 

secretion. This finding accounts for only part of the discrepancy 

between the clearance ratios of 1-131 OIH and PAH during simultaneous

measurements, so that, free iodide or protein binding may account for the 

remaining discrepancy.

Single Injection Techniques

In 1956, Tapi in and co-workers(60) first introduced the 

"radioisotope renogram" which involved a single intravenous injection of 

a radioiodinated substance followed by a continuous recording of the 

radioactivity in the renal area. This led other investigators to develop 

a method of determining ERPF utilizing the single injection technique. 

This method obviated the necessity for constant infusion and bladder
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catheterizations used in the chemical analysis technique of determining 

ERPF. The single injection method is based on the assumption that the 

function being measured will clear the substance after injection into the 

blood and, therefore, the clearance rate becomes a measure of the 

functional). Quantitative estimates of renal function are then 

possible, by the application of parameter estimation techniques to 

compartmental models of the renal system, yielding information not 

obtainable from the conventional renogram.

Early investigators compared the clearance ratios of 1-131 OIH to 

PAH. 1-131 OIH was first measured by using a scintillation well counter 

to count the levels of 1-131 in blood or plasma samples taken serially 

after a single injection while simultaneously measuring PAH clearances by 

the standard urinary clearance technique. Gott and co-workers(27) using 

a one compartment model to analyze plasma curves, reported excellent 

correlation (1-131 OIH/PAH = 1.01) with PAH clearances in man. With

a one-compartment model, Gott assumed that after a single injection, OIH 

came to equilibrium in the blood within minutes and was then cleared from 

the single blood compartment only by the kidneys. Dabaj and Pritchard et 

al(17) extended Gott's work using the one compartment model to find 

that renal blood flow determined by single injection of 1-131 OIH to be 

within 7.6% of direct measurements of flow in dogs. The same group of 

investigators later found the correlation of single injection to PAH 

clearances to be within 5.6% in humans(42).

Blaufox et al, interpreted the disappearance of 1-131 OIH from 

plasma in dogs(10) following the two compartment system of Saparstein(45) 

and a three compartment system. The model predictions for the cardiac
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and renal curves were compared to actual data obtained by external 

counting with Nal scintillation probes. Blaufox found that both models 

were successful in predicting 1-131 OIH clearance after single injection 

and therefore recommended and later used the simpler two-compartment 

system for analysis of renograms in man(7,9). The two compartment 

model consisted of a blood (heart) compartment and renal (kidneys) 

compartment and assumed only that the OIH in the renal compartment is 

freely available to the plasma.

Other investigators also used a two compartment model to interpret 

curves of 1-131 OIH disappearance in blood to measure effective renal 

plasma flow. Wagoner, Tauxe and Maher(67) using the two-compartment 

model, reported that the ERPF found by the single injection technique was 

an average of 5% less than the standard PAH clearance found in man. The 

same group, Tauxe et al, modified their studies to evaluate compartmental 

analysis for the simultaneous determination of ERPF and GFR using two 

different radiopharmaceuticals(24). Later, Tauxe et al, simplified their 

method of measuring ERPF so that only one plasma sample must be taken 

after a single injection of 1-131 0IH(62), however, this method seemed to 

result in loss of accuracy.

Equations for a three-compartment model, first proposed by 

Matthews(34), in which the urine (bladder) compartment is included, were 

used by Chisholm and co-workers to calculate ERPF using the clearance of 

1-125 OIH by analyzing blood samples from dogs in a scintillation well 

counter(14). These results were also compared with renal blood flow 

measurements directly made in dogs and were found to correlate well.
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Single Injection Techniques using External In-Vivo Counting

Witcofski et al, using two matched scintillation detector probes 

positioned over each kidney was first to propose that external counting 

of 1-131 OIH over the kidneys ("the renogram") could be analyzed to 

provide a measure of renal function(69).

Johnson, extending Witcofski's work, reported methods to determine total 

and differential renal blood flow in man(59).

Later, Tapi in, Dore and

In 1967, Blaufox and co-workers(11) also reported a method to 

measure ERPF in man by external counting, 

probe placed over the head was used to count 1-131 OIH in the blood after

However, one scintillation

a single injection instead of counting over the kidney. The curve 

resulting from the continuous counts over the head was used in a two 

compartment model to calculate ERPF which was correlated with PAH 

clearances (r=0.89).

A similar single injection technique in man was used by Ram, Evans 

and Chisholm(44) utilizing a single compartment model and external 

counting of 1-125 OIH in the blood over the heart. Their results showed 

that although the correlation with standard PAH clearances were 

satisfactory, the absolute values differed. This difference was 

attributed to background activity.

In 1969, Holroyd et al, suggested using the gamma camera for 

obtaining dynamic quantitative information from renogram curves by 

storing data from the gamma camera on magnetic tape for analysis(29,30). 

There are several advantages of using the gamma camera instead of probes 

for obtaining renogram curves, one of which is the elimination of errors 

associated with probe positioning since the field of view of the standard
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gamma camera is twelve inches in diameter. A second important advantage 

is related to the physical performance of the gamma camera. The 

sensitivity of the gamma camera is almost constant in a plane at right 

angles to the camera axis and decreases more slowly than the sensitivity

of a probe, as the distance from the face of the camera increases, 

the kidneys are posterior organs, when posterior views are taken, the 

distance from the face of the camera is small, so that the sensitivity

Since

and resolution are nearly equal for each kidney. Another advantage of 

the gamma camera is that due to the fact that two dimensional sequential 

images are obtained during the renogram, data on the intrarenal transport 

of OIH can be obtained which is impossible with an ordinary probe.

The following is a review of the literature in which renal function 

is evaluated by external counting using gamma cameras.

Schlegel and Bakule used sequential renal scintillation scan data 

recorded on magnetic tape to estimate individual renal function. They 

found a high qualitative correlation with comparative information 

obtained from excretory urography, biopsy and necropsy(46).

Using a modification of Schlegel's work Hayes, Brosman and 

Taplin(31) determined split renal function in dogs using sequential renal 

scintigraphy also recorded on magnetic tape. This method was based on 

quantitation of three areas of interest (left kidney, right kidney and 

pelvic background) during the one to two minute post-injection period of 

1-131 OIH. The advantage of selecting areas of interest, as recommended 

by Farmelant(23), is to exclude unwanted peripheral background activity. 

The percentage of total renal function for each kidney was calculated and 

correlated well (r = 0.974) with the standard constant infusion OIH
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clearance using individual urine collection techniques. Complicated 

models or computers were not used in this method since only simple ratios 

were calculated, however, absolute values of ERPF were not found.

Chisholm et al(15,51) described a method of measuring differential 

renal plasma flows in man using 1-123 OIH, the gamma camera and a digital 

computer. A region of interest from the gamma camera images located 

centrally and just above the kidneys was used to calculate ERPF by their 

single compartment model. This value was compared to PAH determinations 

indirectly, by using a heart probe to count 1-125 OIH after a single 

injection technique previously described. A correlation coefficient of 

0.963 was calculated for the two sets of data showing that the gamma 

camera can be used to accurately assess ERPF. Tubular transit time was 

estimated using regions of interest for the cortical and medullary 

regions from the gamma camera images of the kidneys. The computer was 

used in this study to flag the regions of interest and subtract a 

normalized background region from them, as described by Britton and 

Brown(12) earlier.

A few years later, a more complicated approach was reported by 

DeGrazia et al(19) using a seven compartment model that considered the 

distribution and rates of exchange of 1-131 OIH into red cells, plasma 

and extravascular compartments, as well as, the tubular cells of the 

kidney. Measurements of individual ERPF, urine flow fraction and tubular 

transport time were reported in forty nine patients with normal and 

abnormal renal function and compared these values with conventional 

split-function techniques using PAH and inulin. This technique used a 

gamma camera electronically split for counting the kidneys and two
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scintillation probes recording counts from the heart and bladder. The 

data recorded were transmitted by a teletypewriter over telephone lines 

to a computer for processing. The following assumptions were made for 

the computations. After injection of OIH, it is distributed between free 

OIH in plasma, the red cells, plasma proteins, interstitial and 

extracellular spaces. Exchange of OIH between the free and bound state 

is assumed to be rapid; glomerular flow is small; reabsorption does not 

take place; and OIH is cleared before it is efferent to the proximal 

tubular cells.

In DeGrazia's work, no regions of interest were flagged since only 

counts from the probes and each half of the gamma camera could be

As a result, elaborate mathematics totransmitted to the computer, 

correct for "crossover" counts between kidneys were included in the

parameter estimations. In addition, although no specific regions for 

medullary and cortical areas of the kidneys could be flagged, rate

coefficients for the flow of OIH from the tubular cells into the tubular

lumen of each kidney was reported. Tubular transport time, defined by 

DeGrazia as the time delay between tubular cell outflow and renal pelvic 

outflow, was also reported for each kidney.

DeGrazia's procedure was used clinically in Loma Linda's Nuclear 

Radiology department and was found to be unsatisfactory due to obvious 

inaccuracies for some patients. It was at this time that we decided to 

develop our own model to calculate various parameters of renal function 

to replace this procedure in the clinical laboratory. The following 

chapters are a report of this research.



CHAPTER 2

MATHEMATICAL MODEL OF THE RENAL SYSTEM

Description of Model

This model describes the OIH distribution and clearance in the

renovascular system. At this time, it is necessary to consider the 

assumptions made in setting up the mathematical model. The assumptions 

made are the following: a) it is assumed that after introduction into 

the blood stream, OIH is distributed through plasma and red blood cells 

within the first minute after injection(19). OIH, unlike PAH, diffuses 

into the red blood cells which this model takes into account. Burbank et 

al(13) reported 29% binding to red blood cells and Magnusson(32) reported 

an average of 33% binding. Magnusson also reported no binding of OIH to 

plasma proteins(32). It is also assumed that mixing through the blood 

compartment is extremely rapid in relation to removal from this 

compartment, b) It is assumed that OIH is neither destroyed nor produced 

in the body(13). c) It is assumed that OIH is cleared by the kidneys and 

not reabsorbed, d) It is assumed that the rate constants are

proportional to the quantity of tracer material in the anatomic pool. 

Specifically, it is assumed that the rate of uptake by the renal 

parenchyma is proportional to the blood concentration of 1-131 OIH.

We feel this may be assumed since the concentration of 1-131 OIH is kept 

low and the transport capacity of the renal tubules is not likely to be 

exceeded!29).

A five compartment model used in this research is diagrammed in

17
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Figure 4. The first compartment represents the plasma pool that 

participates in OIH exchange with the proximal tubules of the kidneys. 

There are two pathways from compartment one. The first pathway to 

compartment five represents the 1-131 OIH which is not cleared by the 

kidneys due mainly to binding of OIH to red blood cells. The 

differential equations describing the exchange of OIH into and out of the 

plasma and red blood cells are:

d[Q]i/dt = kg * Q5 - (ki + ke) * Ql 

d[Q]5/dt = ke * Ql - ks * Qs 

where, [Q]i and [Q]5 represent the counts from 1-131 OIH detected in the 

plasma and extra-plasma pool respectively. The rate constant ks (min"*) 

represents the proportion of 1-131 OIH per minute flowing from 

compartment five to compartment one, while kg (min”l) represents the 

proportion of 1-131 OIH per minute flowing from compartment one to 

compartment five.

The second pathway from compartment one represents the plasma 

clearance of OIH into the right and left proximal tubular cells. By 

multiplying ki (min"l) by the plasma volume, the volume of plasma cleared 

by both kidneys in one minute is obtained, commonly called the effective 

renal plasma flow. The fraction k2, represents the proportion of 1-131 

OIH going to the left kidney (compartment two) while (l-k2) represents 

the proportion going to the right kidney (compartment three). The 

differential equations describing OIH clearance by the kidneys are: 

d[Q]2/dt = ki * k2 * Ql - k4 * Q2 

d[Q]3/dt = ki * (l-k2) * Ql - k3 * Q3 

where [Q]2 and [Q]3 represent the counts from 1-131 OIH detected in the

(4)

(5)

(6)

(7)
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Heart
Extra-Renal Pool

V
P(6)

-►

P(5)
P(1)

Right Kidney IIILeft Kidney II

Bladder

Figure 4. Diagram representing a five compartment model of the 
mammalian renal system. The rate constants P(l), P(2), P(3), P(4), P(5) 
and P(6) shown on the diagram correspond to ki, k2, k3, k4, ks and kg, 
respectively, in the text.
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left and right kidneys respectively.

The fourth compartment represents the bladder. Inputs from the 

right and left kidneys are represented by k3 (min“l) and k4 (min’M 

respectively. The differential equation describing the flow of urine to 

bladder is:

d[Q]4/dt = k4 * Q2 + k3 * Q3 

The rate constant k3 (min"M represents the proportion of OIH in urine 

flowing from compartment three to compartment four. The rate constant k4 

(min-"1) represents the proportion of OIH in urine flowing from 

compartment two to compartment four.

(8).

Solution of Equations

Equations 4-8 were solved using a program package for simulation 

and parameter estimation in kinetic systems developed by D'Argenio and 

Schumitzky(18). This package was written to handle linear and non

linear, multiple input, multiple output compartment models and allows for 

both rate inputs and bolus type inputs such as is used in the model of 

this research. With this package, any model which can be represented by 

ordinary differential equations and whose inputs are piecewise constant 

or can be simulated by state jump conditions may be used(18).

Programs developed by Shampine and Gordon(50) using the variable 

order, variable step integration routine of the Adam's methods are used 

for solving the differential equations. The adaptive simplex method of 

Nelder and Mead(37) is applied as the parameter estimation procedure to 

solve for unknown parameters ki, k2, k3 and k4. The Nelder-Mead 

procedure minimizes a weighted least squares criterion and has been used 

on noisy data, such as the data encountered in this project, with
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excellent results(18,39).

The package of programs were received on magnetic tape courtesy of 

Dr. Alan Schumitsky at the University of Southern California in Los 

Angeles. All programs were written in Fortran utilizing double precision 

arithmetic and were running on a DEC KL-10 computer at the University of 

Southern California. The programs had to be converted to run on the Data 

General Eclipse S/200 system in the Scientific Computation Facility at 

Loma Linda University Medical Center.

In order to limit the memory requirement for the parameter 

estimation program while maintaining double precision arithmetic, the 

limits for the program variables had to be decreased. The programs now 

allow 5 states, 5 rate inputs, 5 bolus inputs, 5 dose events, 125 total 

observations for all outputs, 5 outputs and 15 model parameters. Many of 

the programs and subroutines had to be divided into smaller sections and 

chained together passing necessary values in data files. Following 

successful loading of the converted programs into the Data General 

Eclipse System, the accuracy of the conversion was verified by comparing 

the results of sample runs provided in D'Argenio and Schumitsky's 

publication(18) to the output from the converted programs.

Inputs to the Model

When working with compartmental analysis, it is common to observe 

the concentration of a substance in one or more compartments as a 

function of time and then try to deduce the parameters of the system from 

the observed behavior of this substance. This compartmental model was 

written to be used in this way with clinical data.

In a nuclear medicine department, a patient is given a bolus
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injection of 1-131 OIH while simultaneously detecting the photons emitted 

by the 1-131 as it passes through different organ systems. Nal (II) 

scintillation detectors are used to detect these photons. In this 

research, two scintillation probes manufactured by Technical Associates

were used, one positioned anteriorly over the heart and the other
Each probe was connected to anpositioned anteriorly over the bladder.

ORTEC single channel analyzer which analyzes each signal for the 1-131
energy and records these counts for specified units of time. The output 
of the heart probe becomes the model input, [Q]i, per unit time. The 

output of the bladder probe becomes the model input, [Q]4, per unit time.
Both inputs [Qli and [Q]4, were corrected for background counts recorded

In addition, a Nal(Tl) scintillationfor each probe prior to injection, 

gamma camera with a high energy collimator, was used to detect 1-131 OIH

as it passes through the kidneys.

The Searle, standard field of view, gamma camera was connected 

through a single channel analyzer and an analog-to-digital converter to a 

NOVA III mini-computer. The computer recorded not only the counts from 

each kidney but also the X-Y position of where each count came from in 

the field of view of the camera. This resulted in a two dimensional

image of the kidneys for each time interval recorded. Typical

acquisition time intervals for a study were for 12 seconds per frame 

acquired for 120 frames. With the computer, recorded kidney images can 

be summed over time and regions-of-interest for each kidney can be 

flagged so that only counts from the left kidney region were used to make 

a time/activity curve and, similarly, only counts from the right kidney 

region were used to make another time/activity curve. A background
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region of interest was also flagged in an area free of other organs such 

as liver or ureters. A time/activity curve for the background region was 

plotted and after normalization for the different size areas for each 

region, the background curve was subtracted from each kidney curve. The 

corrected left kidney time/activity curve was the input [Q]2» The 

corrected right kidney time/activity curve was the input [Q]3. Diagrams 

of regions and examples of time/activity curves can be found in chapter
three.

An input representing counts from a bolus of activity of 1-131 OIH 

was introduced into compartment one at time zero, 

the value of the y-intercept found by extrapolating the time/activity 

curve recorded from the heart probe back to intercept the y-axis at time

The bolus count was

zero.

It should also be noted that inputs [Qli, [Ql2» CQls and CQl4 start 

at one minute. This time lapse allows for deposition of 1-131 OIH into 

erythrocytes at the same time plasma mixing was taking place(19) and also 

insured that the background activities were proportional to the blood 

concentration of 1-131 0IH(29).

Parameters ki through k4, discussed earlier, were the unknowns 

solved for by the parameter estimation routine. The rate coefficients, 

kg and kg, representing flow into and out of compartment five 

respectively have been found by repeated analyses to be similar for all 

situations tested. For this reason, kg was held constant at 1.0/min and 

kg was held constant at 2.5/min. These values were in agreement with 

similar measurements by others(19,32). Since the rate coefficients 

describing flow into and out of compartment five were held constant and
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since it would be very difficult to sample the red cell compartment, the 

input [Qls was initially set to 1.0 for all sample times.

To test this compartmental model, animal experiments were performed 

in which normal and surgically induced abnormal clinical situations were 

tested. The quantitative clearance parameters calculated with the model 

were compared to clearance values obtained in the more conventional PAH 

and inulin clearance studies performed simultaneously. The next chapter 

describes these experiments and reports the results of these analyses.



CHAPTER 3

ANIMAL EXPERIMENTS: TESTING THE MATHEMATICAL MODEL

Design of Experiments

Initially, it was proposed to use female goats as the animal model. 

Goats were chosen because they are tolerant of indwelling catheters for 

prolonged periods of time (66). The experiments were initially set up so 

that by sterile surgery, catheters would be placed in an artery, the

renal veins and both ureters of a goat with normal kidneys. Clearance 

studies and 1-131 OIH renography would then be performed. After 

sufficient recovery, the animal would again undergo surgery to induce an

abnormal kidney condition. The clearance studies and the 1-131 OIH

renography would then be repeated.

could be compared to normal values for the same animal, 

problems of keeping the catheters in the correct position and free from 

clots, as well as, keeping the animal free from infection were

In this way, the abnormal values

However, the

insurmountable and it was decided that an acute model should be used to

replace the chronic model.

Dogs were chosen as the animal model for the acute studies, since

dogs have been successfully used for renal function studies by many

investigators in the past as referenced in Chapter one. To test the 

compartment model, simultaneous standard PAH and inulin clearance studies

for each kidney were run immediately prior to 1-131 OIH renography so 

that clearance parameters calculated by the model could be compared to 

the PAH and inulin clearances. Dogs with normally functioning kidneys

25
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were first to undergo the procedure. Afterwards, several surgically 

induced abnormal conditions were tested, including, total ureteral
obstruction, renal vein occlusion, a segmental infarct by ligating a 

branch of the renal artery, renal artery stenosis and acute renal failure 

induced by injecting a nephrotoxin. When possible the abnormal 
conditions were induced in only one kidney, leaving the contralateral 
kidney unaffected for normal comparison.

Experimental Protocol

Surgical Protocol

Both male and female mongrel dogs ranging in weight between 24 and 

40 kg, were used for these studies. The dogs were anesthetized using 

sodium pentobarbital (30mg/kg body weight) administered intravenously. A

catheter was placed in the jugular vein for administration of drugs and 

replacement of fluids. The abdomen was surgically opened, the bladder 

was dissected and catheters placed into both ureters and tied in place. 

Following a cut-down procedure, under fluoroscopy, catheters were placed 

in the aorta via the left or right femoral artery and in both renal veins 

via the left and right femoral veins. In the animals with both kidneys 

functioning normally, only one renal vein was catheterized. It was 

assumed that the concentration of PAH and inulin would be equal in the 

left and right renal veins of normal kidneys. Saline was then infused to 

achieve a urine flow rate of 1-3 cc/minute.

PAH and Inulin Clearance Studies

The PAH and inulin clearance studies were performed first, to
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prevent radioactive contamination of laboratory equipment. Blood samples

from the arterial and renal veins were drawn and twenty minute urine

collections were made prior to injecting PAH or inulin to be used as 

baseline values for PAH and inulin concentrations. A primary loading 

dose of PAH (8 mg/kg) and inulin (50 mg/kg) was then administered 

followed by a sustained infusion of 0.27 mg/kg/min of PAH and 1.1 

mg/kg/min of inulin (54). After initiation of the infusion doses and a 

thirty minute period for equilibrium, three successive twenty minute

urine collections were obtained. Arterial and renal vein blood samples 

were withdrawn at the mid-point of each urine collection period. Red 

cells and plasma were separated by centrifugation.

Concentrations of PAH and inulin in plasma and urine samples were 

analyzed using standard colorimetric methods (1). The effective renal 

plasma flow for each kidney was calculated from PAH concentrations using 

the following formula from Pitts (41):

ERPFtotal (mi/min) = (U-VP) * V
(AP - VP)

(9)

where,

U = urine concentration of PAH (mg/dl)

VP = renal vein plasma cone, of PAH (mg/dl)

AP = arterial plasma cone, of PAH (mg/dl)

V = volume of urine collected per minute (ml/min)

Glomerular filtration rate for each kidney was calculated using inulin 

concentrations using the following formula from Pitts (41):

GFRtotal = U * V (10)
VP

where.
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U = urine concentration of inulin (mg/di)
VP = renal vein plasma cone, of inulin (mg/dl)

V = volume of urine collected per minute (ml/min)

Radionuclide Studies

Prior to injecting 1-131 OIH, the animal's plasma volume was 

measured by the 1-125 albumin dilution method (21). The hematocrit was 

also evaluated. The animal was placed in a supine position over the 

gamma camera. One Nal (Tl) scintillation probe was positioned over the 

heart and another probe was positioned over the "bladder." Since the 

bladder had been dissected during surgery to insert ureteral catheters, a 

plastic cup into which both catheters drained was used to simulate the 

bladder. A 500 microcurie Tc-99m glucoheptonate dose was then injected 

to localize and position the kidneys to ensure they were in the field of 

view of the gamma camera.

The radionuclide renal clearance study was then performed by 

injecting a bolus of 1-131 OIH (4.4,/^Ci/kg) while simultaneously 

collecting counts from both probes and the gamma camera as the 

radiopharmaceutical passed through each compartment. The data was 

collected in twelve second intervals for twenty-five minutes. The counts 

per 12 seconds from the heart and bladder probes were printed out 

separately to be used as time/activity curve inputs for compartments one 

and four, respectively.

As stated previously, images of the kidneys from the gamma camera

These images were summed andwere recorded on a digital computer, 

regions of interest flagged for each kidney, as well as, a background
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region of interest, as depicted in figure 5. These kidney regions were 

then used to plot time/activity curves corrected for a normalized 

background count. Figure 6 graphically illustrates time/activity curves 

from both kidneys, the heart and bladder from a dog with normally 

functioning kidneys and from a dog with total left ureteral obstruction.

In addition to obtaining time/activity curves from kidney regions 

of interest, additional processing of the computer images of the kidneys 

was done. Each of the 120 images of the kidneys was filtered using 

digital temporal and low-pass spatial filters available on software 

provided on the Medical Data Systems NOVA III minicomputer used in the 

Nuclear medicine department. Through experimentation, using filters of 

various neighborhoods and cut-off frequencies, it was found that for both 

the temporal and low-pass spatial filter, using a neighborhood of 7 and a 

cut-off frequency of .15 cycles/sample eliminated the background counts 

and gave the overall best results. After filtering, a Fourier analysis 

was done on the images. This phase analysis was also available on 

existing software from Medical Data Systems NOVA III minicomputer.

The filtering and Fourier analysis on the series of kidney images 

showed the dynamic pattern of blood flow through the kidneys. The phase 

diagrams were color coded so that counts corresponding to blood activity 

were represented by the same color when found to be at the same phase 

angle. As the phase angle changes, so that the color scale changes, a 

representation of the pattern of blood flow through the kidney was seen. 

This colored pattern can be shown in a dynamic display on the computer.

In these color coded phase diagrams, kidneys with normal function 

showed initial blood flow to the cortical regions represented by the red
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TIME/ACTIVITY CURVES OBTAINED FROM SCINTILLATION 
DETECTORS AS A BOLUS OF 1-131 OIH WAS INJECTED 
INTO DOGS.
NORMAL FUNCTIONING KIDNEYS 

BLADDER

LEFT URETERAL OBSTRUCTION 
BLADDER1000 r4000

5002000

00

400300 RIGHT KIDNEYRIGHT KIDNEY

</) .
■q 150 200
coo0)w 1 1I J 00CM
- 300 600 r LEFT KIDNEYLEFT KIDNEY
H
Z
Z)o 300O 150

111 00

500 r400 HEARTHEART

250 ’*200

I iI1l 00 105 10 5 1515
TIME (minutes)

Figure 6

areas in figure 7, followed by flow to the medullary regions represented 

by the blue areas of the same figure. Figure 7 is the color coded phase 

diagram of a dog in which the left kidney had total ureteral obstruction. 

The normal right kidney showed the characteristic initial blood flow to
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Phase images of normal kidneys. The red areas show initial blood flow to 
the cortex followed by blood flow to the medulla represented by the blue 
areas.

Phase images of kidneys in which the right kidney is normal and the left 
kidney has total ureteral obstruction. The right kidney shows normal 
initial blood flow to the cortex (yellow area) followed by blood flow to 
the medulla (red area). The obstructed left kidney (blue areas) shows 
delayed flow compared to the right kidney with no definite cortical and 
medullary areas.

Figure 7
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the cortical region represented by the yellow area, followed by flow to 

the medullary region represented by the red area. The phase diagram 

showed delayed blood flow to the obstructed left kidney compared to the 

normal right kidney. The left kidney was represented as a blue color 

which was completely out of phase with the right kidney.

The time it takes for blood to flow from the cortex to the

medullary region was calculated using the color coded regions of 

interest from the computer to plot time/activity curves. We have called 

the difference in peak times between the cortical curve and medullary 

curve, the cortex-to-medulla transit time. The transit time varied from 

0.8 minutes to 3.2 minutes for the normal kidneys tested. The cortex-to- 

medulla transit time for the measurable abnormal kidneys tested varied 

from 0.6 minutes to greater than 20 minutes. Several of the abnormal 

kidneys had no blood flow through the kidney, therefore, cortex-to- 

medulla transit time could not be measured. Table 5 in a later section, 

lists the calculated cortex to medulla transit times and discusses the

results for the studies reported.

Computer Printout of Model Parameter Estimation Routine

The time/activity curves obtained for both kidneys, the heart and 

bladder were then inputted to a file on the Data General Eclipse S/200 

system to be used by the parameter estimation routines described in 

Chapter 2 to solve for ki, k2, ks and k4 corresponding to P(l), P(2), 

P(3) and P(4), respectively, on the computer printout. Figure 8 was a 

sample printout of a computer run on study number two. After specifying 

the data input file name, the option to print information contained in 

this file was given.
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COMPARTMENT MODEL IDENTIFICATION

ENTER THE INPUT FILE NAME:
MODEL INPUT INFORMATION 

THE NUMBER OF RATE INPUTS:
THE NUMBER OF BOLUS INPUTS:
THE NUMBER OF DOSE EVENTS:

DOSAGE REGIMEN INFORMATION 
TIME 
UNITS,

D0G2

0
1
1

RATE AND/OR AMOUNT FOR ALL INPUTS 
B (1)EVENT

0. 01 4424.00

MODEL OUTPUT INFORMATION 
THE NUMBER OF MODEL OUTPUTS:
THE NUMBER OF OBSERVATION TIMES: 
DO YOU WANT OBSERVATIONS PRINTED?

5
96
N

SUPPLY DATA WEIGHTING INFORMATION 
OUTPUT WEIGHTS

SUPPLY THE WEIGHTS FOR EACH OUPUT, Y(l)-----Y<5>:
1.0,1.0,1.0,1.0,1.0

OBSERVATION WEIGHTS
THE FOLLOWING OBSERVATION WEIGHTING SCHEMES ARE AVAILABLE: 

GENERAL WEIGHTING.
INVERSE VARIANCE OF THE ASSAY WEIGHTING. (LINEAR) 
INVERSE VARIANCE OF THE ASSAY WEIGHTING. (NONLINEAR)

1.
2.
S'.

FOR Y(1):
ENTER THE NUMBER OF THE DESIRED WEIGHTING PROCEDURE: 
ENTER THE NUMBER OF NON-UNITY WEIGHT OBSERVATIONS:

1
0

FOR Y(2)s
ENTER THE NUMBER OF THE DESIRED WEIGHTING PROCEDURE: 
ENTER THE NUMBER OF NON-UNITY WEIGHT OBSERVATIONS:

1
0

FOR Y(3):
ENTER THE NUMBER OF THE DESIRED WEIGHTING PROCEDURE: 
ENTER THE NUMBER OF NON-UNITY WEIGHT OBSERVATIONS:

1
0

FOR Y(4):
ENTER THE NUMBER OF THE DESIRED WEIGHTING PROCEDURE: 
ENTER THE NUMBER OF NON-UNITY WEIGHT OBSERVATIONS:

1
0

FOR Y(5):
ENTER THE NUMBER OF THE DESIRED WEIGHTING PROCEDURE: 
ENTER THE NUMBER OF NON-UNITY WEIGHT OBSERVATIONS: 
ARE ALL NON-UNITY WEIGHTS EQUAL TO ZERO?

1
96
Y

Figure 8. Computer printout of the Parameter Estimation Routine.
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SUPPLY MODEL EQUATION INFORMATION

ENTER THE NUMBER OF DIFFERENTIAL EQUATIONS:
ENTER THE COMPARTMENT NUMBER FOR EACH BOLUS INPUT: 
ENTER THE NUMBER OF MODEL PARAMETERS:

5
1
6

ENTER PARAMETER ESTIMATES & SPECIFY THOSE TO BE ADAPTED: 
ESTIMATE ESTIMATE

P(l) 
ADAPT? 
P(2) 
ADAPT? 
P (3) 
ADAPT? 
P (4) 
ADAPT? 
P (5) 
ADAPT? 
P (6) 
ADAPT?

.3 IC(1)
ADAPT? N 
IC (2)
ADAPT? N 
IC (3)
ADAPT? N 
IC ( 4)
ADAPT? N 
IC (5)
ADAPT? N

0
Y

.5 0
Y

.5 0
Y

.5 0
Y

1.0 0
N

er
jIm m '

N

ENTER MAXIMUM NUMBER OF ITERATION: 
DO YOU WANT ITERATIONS PRINTED?

99
N

RESULTS
A. ITERATIONS

ITERATION 0
NUMBER OF FUNCTION CALLS = 
ADAPTED PARAMETERS 

P( 1 ) =
P (2) =
P (3) =
P ( 4) =

1

.30000 

.50000 

.50000 

.50000

B. ITERATION SUMMARY

CONVERGENCE HAS BEEN ACHIEVED

NUMBER OF ITERATIONS = 
NUMBER OF FUNCTION CALLS = 
ADAPTED PARAMETERS 

P(l) =
P (2) =
P (3) =
P ( 4 ) =

19
95

.35660

.51295

.55011

.55453

Figure 8 - cont.
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Observation weighting scheme 1 was then selected. The general weighting 

scheme allows the user to enter directly the observation numbers and the 

associated weights for any or all of the observations. Since there was 

more than one compartment sampled, it was necessary to assign a weight to 

each output since each may represent different quantities or may be 

measured on different scales. A weight of unity was given to all 
observations unless specified otherwise. Since the red cell compartment 
cannot be sampled, observations for compartment five were inputted at a 

value of 1.0. The weights for these observations were then set to zero so 

as not to affect the other parameter estimates. The general weighting 

scheme was chosen as recommended for observations which have a constant
variance (18).

The number of differential equations, the compartment number for 

the bolus report, estimates for each parameter and the option to adapt 

each parameter was then inputted.

A summary of the iteration after convergence was achieved, was then 

printed out. Values for the four adapted parameters were given.

Results and Discussion of Parameter Estimates

Table 1 is a listing of the values for each of the four parameters 

calculated for all of the studies reported, 

the two parameters, P(3) and P(4), it was found that when running the 

parameter estimation routine after fixing P(3) and P(4) at values ranging 

from .05 to 1x10"^ for various studies, that values less than .01, for 

either parameter had no affect on values estimated for the remaining 

Therefore, estimated values less than .01 for parameters

It should be noted that for

parameters.
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This change affected studies 8, 9,P(3) and P(4) were reported as .01.

10, and 16 for parameter P(4).

The mean value and standard deviation at the 95% confidence level 

for P(l) for the normal studies 2-7 was reported to be .337 jK040 min"l. 

The remaining values for P(l) for the abnormal studies decreased

corresponding to a decreased total effective renal plasma flow.

The mean value and standard deviation at the 95% confidence level

for P(2) and 1-P(2) for the normal studies 2-7 was reported to be .500+ 

.106. These parameters, representing the fraction of total effective 

renal plasma flow to the left and right kidney, respectively, were 

expected to be .5 since half the blood flow was expected to go to each 

kidney for normal function. The values for P(2) for the abnormal kidneys 

were decreased significantly, as expected with corresponding increases in 

the fraction of total to the right kidney. Parameters P(l), P(2) and 

1-P(2) will be discussed in more detail in the next section.

The mean value and standard deviation at the 95% confidence level

for P(3) and P(4) for the normal studies was reported to be .461j^ .10 

min"l. These parameters which were proportional to the urine flow from 

the right and left kidneys respectively, decreased for the abnormal

studies as expected. P(3) and P(4) will also be discussed in more detail

in the next two sections.

Results and Discussion of Predicted Effective 
Renal Plasma Flow Estimates

Table 2 compares the PAH clearances to the ERPF's predicted by the 

model and Table 3 gives the results of the inulin clearance tests, 

normal value for PAH clearance for female dogs was reported to be 13.5

The
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3.26 ml/min/kg from Smith (52). The normal value for inulin clearance 

for female dogs was reported to be 4.3 + 1.01 ml/min/kg from Smith (52).

It was assumed that similar to humans, the PAH and inulin clearances for 

male dogs would be higher. The mean value and standard deviation at the 

95% confidence level for the PAH clearance in the three normal male dogs 

evaluated in this study was 16.5_+4.3 ml/min/kg and 15.9_+2.5 ml/min/kg in 

two normal female dogs studied. The range of PAH clearances in normal 

female dogs found in this study was within the reported normal range found 

in the literature. Two dogs evaluated for this study as normals were not 

included in the data since the laboratory analyses for PAH were in error 

and the PAH clearances calculated, far exceeded the normal range.

Comparing the predicted ERPF's to the PAH clearances, for normal 

and abnormal studies 2-16, we found the correlation coefficient, r, to be

0.88. The study with the largest difference between the PAH clearance 

and the predicted ERPF was study number 13. Excluding number 13, the

correlation coefficient for studies 2-16 was 0.92. We were unable to

determine the reason for such a large error for study number 13. 

Therefore, it was repeated.

For studies 8, 9, 10, 14 and 16, the surgically induced abnormality 

to the left kidneys caused these kidneys to become anuric. Since the 

analytical analyses for PAH and inulin clearances depend on urine 

concentrations, no PAH and inulin clearances could be calculated for the 

above mentioned studies.

In study number 8, total left ureteral obstruction was produced by 

ligating the ureter from the left kidney. The right kidney was normal. 

The basic mechanism for altered renal function in urinary tract
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obstruction was a decrease in urine flow and an increase in pressure in 

the renal tubule, resulting in decreased ERPF and glomerular filtration 

(68). As expected, the PAH clearance was markedly decreased. The 

predicted total ERPF was also markedly decreased, following the PAH 

clearance. The left kidney PAH clearance could not be calculated due to 

postrenal anuria. The model predicted an abnormally low left kidney ERPF 

as expected and normal right kidney ERPF. Also as expected, the model 
predicted a very small value for P(4), which represents urine flow from 

the left kidney. In this study, the blood flow to the left kidney was 

somewhat reduced while the urine flow from the left kidney was drastically
reduced.

In study number 9, total left renal vein occlusion was surgically 

induced by ligating the left renal vein. The right kidney was normal. 

Renal vein occlusion has been known to cause a decline in renal function

by decreasing both the ERPF and GFR with resulting oliguria and anuria 

for the affected kidney (20). The degree of decline in renal function was 

largely dependent on the degree of the occlusion. As expected in this 

study, the PAH clearance was reduced, followed by a reduced predicted 

ERPF. The left kidney PAH clearance could not be calculated since no 

urine was produced. The predicted left kidney ERPF was drastically 

reduced (10% of normal) while the predicted right kidney ERPF was normal. 

In addition, P(4) was also a very small value, predicting very little 

urine flow from the left kidney as would be expected with severely

The GFR of the right kidney was elevated which

In this study, both the

reduced kidney function, 

may be a response to the left kidney problems.
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blood flow to the left kidney and the urine flow from the left kidney 

were both drastically reduced.

In study number 10, total left renal vein occlusion was surgically 

induced by ligating the left renal vein, similar to study number 9.

Again as expected, the predicted total ERPF was reduced, however no PAH 

or inulin clearance could be calculated for comparison since the catheter 

placed in the right renal vein became clotted and no urine was produced 

from the left kidney. The predicted left kidney ERPF was again 

drastically reduced (15% of normal) with a very small value of P(4) 

representing little urine flow from the left kidney. These results 

compare favorably to the results found in study number 9, showing 

consistency in the model predictions.

In addition, for study number 10, a segmental infarct to the right 

kidney was induced by ligating a branch of the right renal artery. An 

infarct results in a loss of renal function shown by a decrease 

in the ERPF accompanied by a decrease in urine output (20). The degree 

of decline in renal function depends on the degree of the infarct. Since 

we do not have a PAH clearance for the right kidney, we have no 

comparison for the predicted right kidney ERPF. A comparison with other 

kidneys in which segmental infarcts were induced will be made in a later 

section discussing the blood to urine flow index.

In study number 12, renal artery stenosis was induced in the left 

kidney by partial clamping of the left main renal artery. The clamp was 

tightened on the left artery until the urine output from the left kidney 

was reduced to one third of the urine output from the right kidney.

Using a flowmeter, the stenosis was estimated to be 65-75%. The right
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kidney was normal in this study. Mild to moderate unilateral renal 

artery stenosis may cause little or no change in total renal function as 

determined by inulin and PAH clearance tests however, diminution of

urinary volume may occur and become more marked as the stenosis becomes
\

more severe (20). As the stenosis becomes more severe, the decrease of 

ipsilateral blood flow was countered by an increase in blood flow to the 

contralateral kidney (20). Using conventional radio-renograms, unless 

the stenosis was quite severe, 80% or more, no changes are seen in the 

renogram curves (5). The total PAH clearance for study number 12, was 

moderately reduced with the left PAH clearance being reduced while the 

right kidney PAH clearance was elevated slightly. Also, the left kidney 

inulin clearance (GFR) was reduced while the right kidney inulin clearance 

(GFR) was elevated. As explained above, this may be expected for a severe 

stenosis. The predicted total ERPF was reduced following the PAH 

clearance. However, the predicted left kidney ERPF was not reduced as 

much as the corresponding left PAH clearance and the predicted right 

kidney ERPF was not elevated as was the corresponding right PAH clearance. 

The parameter, P(4), representing left urine flow, was less than P(3), 

representing right urine flow, which may be expected for stenosis. One 

explanation for these differences in predicted ERPF and PAH clearances was 

that the radionuclide evaluation may not be as sensitive as the chemical 

evaluations. As stated earlier, unless a severe stenosis of at least 

80% was present, little or no changes are seen in the radionuclide curves. 

Although the model predicted some decreased left kidney function, the 

model may be limited in evaluating less severe degrees of renal artery

stenosis.
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In study number 13, a segmental infarct to the left kidney was 

induced by ligating a branch of the renal artery, similar to the right 

kidney of study number 10. The right kidney for study number 13 was 

normal. The PAH clearance was drastically reduced (less than half of 

normal) whereas, the predicted total ERPF was only slightly reduced from 

normal. A 55% difference in these values was noted, however, no reason 

for this large difference could be attributed except for a possible error 

in the laboratory PAH analysis or overestimation by the model. The PAH 

clearance and predicted ERPF for the left kidney both showed reduced 

function compared to the right kidney. In addition, the inulin clearance 

for the left kidney was reduced as expected. The parameter, P(4), was also 

reduced representing decreased urine flow from the left kidney. In this 

study, the PAH clearance and predicted ERPF, both showed decreased left 

kidney function as expected, however, the precision of the quantitative 

comparisons was not good. The study was repeated for this reason in 

study number 15.

In study number 15, again a segmental infarct to the left kidney 

was induced. The total PAH clearance was slightly reduced as expected.

The predicted total ERPF was also slightly reduced corresponding to the 

decrease in blood flow to the left kidney. For this study, the values 

for PAH clearance and ERPF agreed quite well. The difference in these 

values was small (6%) providing a higher precision than for study number 

13 and still followed the pathology as well. The left kidney PAH 

clearance and predicted ERPF agreed and both showed decreased blood flow 

to the left kidney as expected. The right kidney values were within the 

normal range. The left kidney GFR was not reduced as expected. The
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parameter, P(4), was also slightly reduced corresponding to a reduced 

urine flow from the left kidney as expected, due to decreased function. 

In study number 14, acute renal failure was induced by injecting a

nephrotoxin. The nephrotoxin used for this study was uranyl nitrate. 

Acute renal failure was induced as recommended by Flamenbaum, by 

injecting uranyl nitrate, 10 mg/kg body weight, in a saline solution 

(22). Since unilateral acute renal failure was the objective, uranyl

nitrate at the above dose level, was slowly injected into the left renal 

artery via a catheter placed under fluoroscopy. Immediately after the 

injection, fluoroscopy of the left kidney was performed. At this time, 

it was observed that the left kidney was in total acute renal failure.

The possibility was noted that the nephrotoxin refluxed systemically and 

so affected the right kidney. Acute renal failure induced by uranyl 

nitrate is characterized by a decrease in both ERPF and GFR accompanied 

by oliguria and anuria (22). After studying the data from Flamenbaum 

(22), it was decided to perform the clearance studies and 

radio-renography twenty four hours after injection of the uranyl nitrate 

because all function parameters seemed to be reduced significantly by 

this time without large changes after twenty four hours. The left kidney 

was anuric at twenty four hours. As a result, PAH and inulin clearances 

could not be calculated for the left kidney. The right kidney had 

reduced urine output at twenty four hours. The PAH and inulin clearances 

for the right kidney were severely reduced as was the predicted ERPF, 

confirming that uranyl nitrate refluxed into the systemic circulation and 

affected the right kidney. The 1-131 0IH renography recorded no activity 

in the left kidney. The input to the model for the left kidney
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was therefore zero for all time intervals sampled, 

predicted left kidney ERPF was zero.

As a result, the 

The parameter, P(4), was zero 

representing no urine flow from the left kidney and the parameter, P(3),

was reduced corresponding to reduced urine flow from the right kidney.

In this study, a severe acute renal failure was induced inadvertantly 

affecting both kidneys. However, the model followed the pathology quite 

well. This study was repeated to test unilateral acute renal failure.

In study number 16, unilateral acute renal failure was induced by 

injecting a quarter of the previously injected dose (2.5 mg/kg) of uranyl 

nitrate into the left renal artery. Fluoroscopy of the left kidney 

showed decreased function immediately, however, refluxing into the 

systemic circulation was not observed. Twenty four hours later, the left 

kidney was not producing urine, therefore, PAH and inulin clearances 

could not be calculated. The right kidney had normal urine output. The 

1-131 OIH renography showed a small amount of activity in the left 

kidney. The predicted left kidney ERPF was severely reduced, while the 

predicted right kidney ERPF was within the normal range and agreed with 

the right kidney PAH clearance. The parameter, P(4), was reported as a

very small value indicating very little urine flow from the left kidney. 

P(3) was within the normal range. The GFR calculated for the right

kidney was reduced which may be explained if unobserved reflux of the 

nephrotoxin into the systemic circulation took place, 

which unilateral acute renal failure was produced, the model followed the

In this study, in

pathology predicting a decreased ERPF and decreased urine flow from the 

left kidney while the right kidney was predicted as normal.
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Results and Discussion of the Blood-to-

Urine Flow Index

The Blood-to-Urine Flow Index for each kidney was being defined in 

this research as the ratio of the model parameters which indicate blood 

flow into the kidney versus the urine flow out of the kidney. For the 

left kidney, the Blood-to-Urine Flow Index was equal to P(2)/P(4). For 

the right kidney, the Blood-to-Urine Flow Index was equal to 1-P(2)/P(3). 

Table 4 is a listing of these ratios calculated for all reported studies. 

The mean value for the normal kidneys with the standard deviation at the 

9S% confidence level was 1.40 + 1.02. The normal kidneys included in this 

mean are the left kidneys for studies 2-7 and the right kidneys for

studies 2-16 excluding studies 10 and 14. All normal kidneys had 

reported flow indexs within two standard deviations of the mean.

In study number 8 (left total ureteral obstruction), the blood flow 

into the left kidney decreased slightly while the urine flow was severely 

reduced. As a result, the left kidney flow index was very high, equal to

25 times above the mean.

In study number 9 (left total renal vein obstruction), both the 

blood flow into the left kidney and the urine flow out of the kidney were

severely reduced with the urine flow more reduced than the blood flow.

The resulting flow index was therefore higher than normal, seven times 

above the mean, but not as high as in study number 8.

In study number 10, the flow index for the left kidney (also with 

total renal vein occlusion) agreed with the left kidney flow index 

calculated in study number 9. 

differentiating the two conditions induced in the left kidneys of studies

The flow index was very successful in
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However, these studies represent extreme conditions, 
therefore, for less severe ureteral obstruction or renal vein occlusion, 
there will probably be a range of overlap in the values calculated for

8, 9 and 10.

the flow index.
Also in study number 10, the right kidney (renal artery branch 

occlusion) showed both decreased ERPF and urine flow. In this condition,
both parameters were decreased proportionately. As a result, the flow 

index was within the normal range as might be expected. This was also true 

for study numbers 13 and 15 in which left renal artery branch occlusion
was induced.

In study number 12 (left renal artery stenosis), the left kidney 

showed a slightly decreased ERPF and decreased parameter for urine flow. 

With renal artery stenosis, as in study numbers 10 and 12, both 

parameters were decreased proportionately. Therefore, the flow index for 

the left kidney was within the normal range.

In study number 14, both kidneys were affected by the nephrotoxin. 

The left kidney was in total acute renal failure and the flow index was 

zero. In the right kidney, the urine flow was reduced more than the ERPF 

resulting in a higher than normal flow index, six times above the mean.

In study number 16, the left kidney was affected more by the nephrotoxin. 

This kidney had an even lower urine flow with reduced ERPF resulting in a

higher value for the flow index, ten times the normal mean.

Results and Discussion of the Cortex-to-Medulla
Transit Time

The cortex-to-medulla transit time as discussed in a previous 

section was the peak to peak time difference of the cortex and medulla
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time/activity curves. Table 5 lists the transit times for the reported 

studies. The mean value for the normal kidneys with the standard 

deviation at the 95% confidence level was 1.37 + .660 minutes. The normal

kidney values included in this mean were the left kidney transit times for 

studies 2-7 and the right kidney transit times for studies 2-16, 

excluding studies 10 and 14. All normal kidneys had reported transit 

times within two standard deviations of the mean, except the right kidney 

of study number 6. This variation may be due to the low counts observed 

for the cortex and medulla areas causing errors in the flagging process 

for obtaining the time/activity curves which were used for peak time 

determination.

In study number 8 (left ureteral obstruction), the transit time was 

delayed probably due to the increased pressure caused by the obstruction.

In studies 9 and 10 (left renal vein occlusion), the counts 

observed in these kidneys were very low so that the cortex and medulla

The transit times are reported as 

infinity since the small amount of activity entering the kidney was not 

1eaving.

could not be differentiated very well.

In the right kidney of study number 10 and the left kidney of study 

number 13 in which segmental infarcts were induced, the transit times 

were within the normal range as might be expected since the 1-131 0IH 

flowing through the unaffected segments of these kidneys was cleared 

normally. However, in study number 15, in which a segmental infarct had 

also been induced, the transit time was delayed, contradicting the above 

findings, but most likely due to low counting statistics.

In study number 12 (left renal artery stenosis), the transit time
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was within the normal range of values. This might be expected for a 

moderate stenosis since little change in the renogram curve was
observed.

In study number 14, in which both kidneys were affected by the 

nephrotoxin, no activity was observed in the left kidney, therefore, the 

transit time was reported as infinity. The activity seen in the right 

kidney of study number 14 stayed in the cortex, therefore, the transit 

time was reported as infinity for this kidney also.

In study number 16 (left kidney acute renal failure induced by a 

nephrotoxin), the transit time for the left kidney was delayed at ten 

times the normal mean.



CHAPTER 4

SUMMARY AND CONCLUSIONS

Summary
The model simulates OIH distribution and clearance in the

renovascular system. This mathematical analysis describes the renal 

system as five compartments; the blood, left and right kidneys, bladder 

and the red blood cell compartment. The model takes into account the OIH 

trapped in the red blood cell compartment, even though this compartment 

cannot be directly monitored.

Data for the blood, kidney and bladder compartments are collected 

with scintillation detectors monitoring OIH tagged with 1-131 as the 

radio-pharmaceutical passes through each compartment. The kidney data 

from the gamma camera are acquired onto a computer so that flagged 

regions of interest can be used to plot time/activity curves for each 

kidney. The heart, bladder and kidney data are then used as inputs to 

the model parameter estimation routine.

The compartments are described by a set of first-order ordinary 

differential equations. A method developed by Shampine and Gordon (50) 

using the Adam's methods is used to solve the equations. For parameter 

estimation, a method is used as developed by D'Argenio and Schumitsky 

(18) using an iterative predictor-corrector procedure. A Data General 

Eclipse S/200 system is used to carry out these calculations.

The estimated model parameters are used to calculate the 

quantitative values of total, left and right kidney effective renal

54
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plasma flows. Two parameters are used as indications of urine flow. In

addition, the Blood-to-Urine Flow Index is defined in this research using

these parameters and is an indication of individual renal function. A

cortex-to-medulla transit time is calculated using a Fourier analysis of 

the kidney images stored on the computer.

To verify the accuracy of the model, animal studies were done in 

which various kidney abnormalities were surgically induced 

abnormalities induced included, ureteral obstruction, renal vein

The

occlusion, segmental infarcts, arterial stenosis and acute renal failure. 

The quantitative clearance parameters calculated by the model were then 

compared to clearance values received in PAH clearance studies performed

simultaneously. Inulin clearances were also performed to substantiate

the abnormalities.

Conclusions

Using this model, quantitative clinical estimates of renal function 

are possible. In addition, indications of urine flow, a Blood-to-Urine 

Flow Index, and cortex-to-medulla transit times are compared to help 

identify abnormal renal conditions which may be encountered in a clinical 

situation. Images obtained of the kidneys are helpful in identifying 

gross morphology.

The model predicts decreased effective renal plasma flow for all 

the abnormal conditions tested as expected. The predicted ERPF's 

decreased porportional to the degree of abnormality in the kidneys and 

correlated with an r = .88 with PAH clearances. The precision for these 

comparisons were not as good as might be expected. This limitation may 

be due to the accuracy of the laboratory analyses. The urine flows for
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all the abnormal conditions were also decreased proportional to the

degree of abnormality as expected.

Of particular interest is the Blood-to-Urine Flow Index. The flow

index was successful in differentiating two conditions which are normally

difficult to identify. These two conditions are ureteral obstruction and

renal vein occlusion. Clinically, this could be very helpful in 

screening patients with renal problems. The flow index is also abnormal 

when acute renal failure is present. However, since some of the

conditions induced in this research were extreme conditions, we feel that

further studies should be done investigating such conditions as partial 

ureteral obstruction and partial renal vein occlusion. These studies 

would help to identify the limitations of the flow index and are planned

in further research.

One of the abnormalities studied in this research, renal artery

However, thestenosis, was not predicted precisely by the model.

stenosis induced was moderate which makes detection difficult.

Therefore, further study using more severe degrees of stenosis is also 

planned in further research.

Finally, in the future, we hope to use this model in a clinical 

nuclear medicine department to aid clinicians in diagnosing renal

disease.



BIBLIOGRAPHY

1. BAUER, J. D., P. G. ACKERMANN and G. TORO. Bray's Cinical Laboratory
Methods. 7th ed., St. Louis, C. V. Mosby Company, 1968, pp. 58-66.

2. BAUMAN, J. W. and F. P. CHINARD. Renal Function. St. Louis, C. V.
Mosby Company, 1975, pp. 40-45.

3. BAUMAN, J. W. and F. P. CHINARD. Renal Function. St. Louis, C. Y.
Mosby Company, 1975, pp. 64-66.

BLAUFOX, M. D. (vol. editor).4. Progress in Nuclear Medicine, Vol. 2, 
Evaluation of Renal Function and Disease with Radionuclides. 
Baltimore, University Park Press, 1972, pp. 21, 54-67.

BLAUFOX, M. D. (vol. Editor).5. Progress in Nuclear Medicine, Vol. 2, 
Evaluation of Renal Function and Disease with Radionuclides. 
Baltimore, University Park Press, 1972, p. 255.

6. BLAUFOX, M. D., H. G. FROHMULLER, J. C. CAMPBELL, D. C. UTZ, A. L.
ORVIS and C. A. OWEN. A simplified method of estimating renal 
function with iodohippurate 1-131. J. Surg. Res. 3:122-125, 1963.

7. BLAUFOX, M. D. and J. P. MERRILL. Compartmental analysis of the
hippuran 1-131 renogram in man. Fed. Proc. 24:405, 1965.

8. BLAUFOX, M. D. and J. P. MERRILL. Measurement of renal function in
man with simplified hippuran clearances. Nephron 3:274-279, 1966.

9. BLAUFOX, M. D. and J. P. MERRILL. Evaluation of renal transplant
function by iodohippurate sodium 1-131. JAMA 202:575-578, 1967.

10. BLAUFOX, M. D., A. L. ORVIS and C. A. OWEN. Compartment analysis of 
the radiorenogram and distribution of hippuran 1-131 in dogs.
Amer. J. Physiol. 204:1059-1064, 1963.

11. BLAUFOX, M. D., E. J. POTCHEN and J. P. MERRILL. Measurement of
effective renal plasma flow in man by external counting methods. 
J. Nucl. Med. 8:77-85, 1967.

12. BRITTON, K. E. and J. G. BROWN. The clinical use of C.A.B.B.S. 
renography. Br. J. Radiol. 41:570-579, 1968.

13. BURBANKE, M. K., W. N. TAUXE and F. T. MAHER. Evaluation of
radioiodinated hippuran for the estimation of renal plasma flow. 
Proc. Staff Meet. Mayo Clin. 36:372-386, 1961.

14. CHISHOLM, G. D., K. EVANS and A. E. KULATILAKE. The quantitation of
renal blood flow using 1-125 hippuran. Brit. J. of Urol. 39:50-57, 
1967.

57



58

CHISHOLM, G. D., M. D. SHORT and H. I. GLASS. The measurement of 
individual renal plasma flows using 1-123 hippuran and the gamma 
camera. Brit. J. Urol. 46:591-600, 1974.

15.

CUTLER, R. E. and H. GLATTE. Simultaneous measurement of glomerular 
filtration rate and effective renal plasma flow with Co-57 
cyanocobolamin and 1-125 hippuran. J. Lab. Clin. Med. 
65:1041-1046, 1965.

16.

17. Detennination of renalDABAU, E., H. MENGES and W. H. PRITCHARD, 
blood flow by single injection of hippuran 1-131 in man. 
Heart Journal, 71:79-83, 1966.

Am.

D'ARGENIO, 0. Z. and A. SCHUMITZKY. A program package for simulation 
and parameter estimation in pharmacokinetic systems. Computer 
Programs in Biomed. 9:115-134, 1979.

DeGRAZIA, J. A., P. 0. SCHEIBE, P. E. JACKSON, Z. J. LUCAS, W. FAIR, 
J. VOGEL and L. BLUMIN. Clinical applications of a kinetic model 
of hippurate distribution and renal clearance. J. Nucl. Med. 
15:102-114, 1974.

EARLEY, L. and C. GOTTSCHALK (editors). Strauss and Welt's Diseases 
of the Kidney, Vol. II. 3rd ed., Boston, Little, Brown and 
Company, 1979, pp. 1371-1394.

EARLY, P. and D. SODEE. Technology and Interpretation of Nuclear 
Medicine Procedures. 2nd ed., St. Louis, C. V. Mosby Company,
1975, pp. 208-209.

FLAMENBAUM, W. J. S. MCNEILL, T. A. KOTCHEN and A. J. SALADINO. 
Experimental acute renal failure induced by uranyl nitrate in the 
dog. Circ. Res. 31:682-697, 1972.

18.

19.

20.

21.

22.

A region of interest system to reduce tissue 
J. Nucl. Med. 11:267, 1970.

23. FARMELANT, M. H. 
background in renograms.

24. FARMER, C. D., W. N. TAUXE, F. T. MAHER and J. C. HUNT. Measurement 
of renal function with radioiodinated diatrizoate and 
o-iodohippurate. Amer. J. Clin. Path. 47:9-16, 1967.

GAGNON, J. A. and L. U. MAILLOUX. Differences in simultaneous and 
sequential clearances of I-131-iodohippurate and p-aminohippurate. 
Amer. Soc. Nephrol. 1:21, 1967.

GAGNON, J. A., L. U. MAILLOUX, J. E. DOOLITTLE and P. E. TESCHAN. An 
isotopic method for instantaneous measurements of effective renal 
blood flow. Amer. J. Physiol. 218:180-186, 1970.

25.

26.

27. GOTT, F. S., W. H. PRITCHARD, W. R. YOUNG and W. J. MAC INTYRE. 
Renal blood flow measurement from the disappearance of 
intravenously injected hippuran. J. Nucl. Med. 3:480-485, 1962.



59

5th ed.,28. GUYTON, A. C. Textbook of Medical Physiology.
Philadelphia, W. B. Saunders Company, 1976, pp. 438-440.

29. HOLROYD, A. M., G. D. CHISHOLM and H. I. GLASS. The quantitative
analysis of renograms using the gamma camera. Phys. Med. Biol. 
15:483-492, 1970.

30. HOLROYD, A. M. and T. JONES. A simple method for obtaining dynamic
quantitative information from the gamma camera. Phys. Med. Biol. 
14:631-638, 1969.

31. HAYES, M., S. BROSMAN and G. V. TAPLIN. Determination of
differential renal function by sequential renal scintigraphy. J. 
of Urol. 111:556-559, 1974.

32. MAGNUSSON, G. A. Kidney function studies with 1-131 tagged sodium
orthohippurate. Acta. Med. Scand. [Suppl] 171:94-124, 1962.

33. MAHER, F. T. and W. N. TAUXE. Renal clearance in man of pharmaceu
ticals containing radioactive iodine, Influence of plasma binding. 
JAMA 207:97-104, 1969.

34. MATTHEWS, C. M. The theory of tracer experiments with 1-131 labeled
plasma proteins. Physics Med. Bio. 2:36-53, 1957.

35. MESCHAN, I., H. E. SCHMID, F. C. WATTS and R. WITCOFSKI. The
utilization of radioactive iodinated hippuran for determination of 
renal clearance rates. Radiology 81:437-446, 1963.

36. MITTA, A. E., A. FRAGA and N. VEALL. A simplified method for
preparing 1-131 labeled hippuran. Int. J. Appl. Radiat. Isotopes 
12:146-147.

A simple method for function minimization.37. NEL0ER, J. and R. MEAD. 
Comput. J. 4:308-313, 1965.

38. NORMAN, N. Effective plasma flow of the individual kidney.
Determination on the basis of the 1-131 hippuran renogram. Scand. 
J. Clin. Lab. Invest. 30:395-403, 1972.

39. OLSSON, D. and L. NELSON. The Nelder-Mead simplex procedure for
function minimization. Technometrics 17:45-51, 1975.

40. PITTS, R. F. Physiology of the Kidney and Body Fluids. 3rd ed.
Chicago, Year Book Medical Publishers, Inc., 1974, pp. 1-8.

41. PITTS, R. F. Physiology of the Kidney and Body Fluids. 3rd ed.
Chicago, Year Book Medical Publishers, Inc., 1974, pp. 158-161.



60

42. PRITCHARD, W. H., R. W. ECKSTEIN, W. J. MAC INTYRE and E. DABAJ .
Correlation of renal blood flow determined by the single injection 
of hippuran 1-131 with direct measurements of flow. Am. Heart 
Journal 70:789-796, 1965.

43. RAM, M. D., K. EVANS and G. D. CHISHOLM. Measurement of effective
renal plasma flow by the clearance of 1-125 hippuran. Lancet 
645-646, 1967.

44. RAM, M. D., K. EVANS AND G. D. CHISHOLM. A single injection method
for measurement of effective renal plasma flow. Brit. J. Urol. 
40:425-428, 1968.

45. SAPIRSTEIN, L. A., D. G. VIDT, M. J. MANDEL and G. HANUSEK. Volumes
of distribution and clearances of intravenously injected creatinine 
in the dog. Am. J. Physiol. 181:330-336, 1955.

46. SCHLEGEL, J. U. and B. T. BAKULE. A diagnostic approach in detecting
renal and urinary tract disease. J. Urol. 104:2-10, 1970.

47. SCHLEGEL, J. U., B. G. SMITH and R. M. O'DELL. Estimation of
effective renal plasma flow using 1-131 labeled hippuran. J. Appl. 
Physiol. 17:80-82, 1962.

48. SCHWARTZ, F. D. and M. S. MADELHOFF. Simultaneous renal clearances
of radiohippuran and PAH in man. Clin. Res. 9:208, 1961.

49. SCHWARTZ, F. D. and M. S. MADELHOFF. Use of radio-hippuran in
diagnosis of unilateral renal disease. J. Urol. 87:244-257, 1961.

50. SHAMPINE, L. and M. GORDON. Computer Solution of Ordinary
Differential Equations. San Francisco, W. H. Freeman, 1975.

51. SHORT, M. D., H. I. GLASS, G. D. CHISHOLM, P. VERNON and D. J.
SILVESTER. Gamma camera renography using 1-123 hippuran. Brit.
J. Radiol. 46:289-294, 1973.

52. SMITH, H. W. Principals of Renal Physiology. New York, Oxford
University Press, 1956, p. 32.

53. SMITH, H. W. Principals of Renal Physiology. New York, Oxford
University Press, 1956, p. 58.

54. SMITH, H. W. Principals of Renal Physiology. New York, Oxford
University Press, 1956, p. 200.

55. SMITH, H. W., N. FINKLESTEIN and L. ALIMI NOSA. The renal clearances 
of substituted hippuric acid derivative and other aromatic acids 
in the dog and man. J. Clin. Invest. 24:388-404, 1945.



UNIVERSITY LIBRARY 
LOMA LINDA, CALIFORNIA 61

56. STADALNICK, R. C., J. M. VOGEL, A. JANSHOLT, K. A. KROHN, N. M.
MATOLO, M. LAGUNAS-SOLAR and F. ZIELINSKI. Renal clearance and 
extraction parameters of ortho-iodohippurate (1-123) compared with 
OIH (1-131) and PAH. J. Nucl. Med. 21:168-170, 1980.

57. STOKES, J. M. and M. M. TER-POGOSSIAN. Double isotope technique to
measure renal functions. JAMA 187:20-23, 1964.

58. SUMMERS, R. E., J. P. CONCANNON, C. WEILS and C. COLE. Determination
of simultaneous effective renal plasma flow and glomerular 
filtration rate with I-131-o-iodohippurate and I-125-allyl inulin. 
J. Lab. Clin. Med. 69:919-926, 1967.

59. TAPLIN, G. V., E. K. DORE and D. E. JOHNSON. The quantitative
radiorenogram for total and differential renal blood flow 
measurements. J. Nucl. Med. 4:404-409, 1963.

60. TAPLIN, G. V., 0. M. MERIDITH, H. KADE and C. C. WINTER. The
radioisotope renogram. J. Lab. Clin. Med. 48:886-901, 1956.

61. TAUXE, W. N. and J. C. HUNT. Evaluation of renal function by
isotope techniques. Medical Clinics of North America 50:937-954, 
1966.

62. TAUXE, W. N., F. T. MAHER and W. F. TAYLOR. Effective renal plasma 
flow: Estimation from theoretical volumes of distribution of 
intravenously injected 1-131 orthoiodohippurate. Mayo Clin. Proc. 
46:524-531, 1971.

63. TUBIS, M., E. POSNICK and R. A. NORDYKE. Preparation and use of
1-131 kidney labeled sodium iodohippurate in kidney function tests. 
Proc. Soc. Exp. Biol. Med. 103:497-498, 1960.

64. VANDER, A. J. Renal Physiology. New York, McGraw-Hill Book
Company, 1975, pp. 4-12.

65. VANDER, A. J. Renal Physiology. New York, McGraw-Hill Book
Company, 1975, p. 30.

66. VISBAL, GEOFFREY (Chief Technologist for Cardiology Research Group,
Loma Linda University Hospital). Personal Communication.

67. WAGONER, R. D., W. N. TAUXE and F. T. MAHER. Measurement of
effective renal plasma flow with sodium iodohippurate 1-131. JAMA 
187:811-813, 1964.

68. WELLER, J. M. (editor). Fundamentals of Nephrology. New York,
Harper and Row, 1979, p. 189.

69. WITCOFSKI, R. L., J. E. WHITLEY, I. MESCHAN and W. E. PAINTER. A
method and parameters for the analysis of renal function by 
external scintillation detector technic. Radiology 76:621-627, 
1961.


	Development of a Mathematical Model of Renal Function for Clinical Application
	Recommended Citation

	Holshouser, A. Barbara.pdf

