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ABSTRACT

MECHANISM OF MITOGENIC ACTION OF ALUMINUM ION

ON BONE CELLS: POTENTIAL INVOLVEMENT OF

THE INSULIN-LIKE GROWTH FACTOR REGULATORY SYSTEM.

by

Aera Yoo

Micromolar concentrations of aluminum ion (oxidation state of 3 +) consistently 

stimulated [3H]thymidine incorporation into cell DNA and increased cellular alkaline 

phosphatase activity (an osteoblastic differentiation marker) in osteoblast-like cells of 

chicken and human origin. Although biphasic, dose-dependent stimulations were highly 

reproducible, the maximal stimulatory dose varied among different experiments. 

Mitogenic doses of aluminum ion also stimulated collagen synthesis in cultured human 

osteosarcoma TE85 cells. In addition, the same mitogenic concentrations of aluminum 

ion enhanced the 1,25 dihydroxy vitamin D3-dependent stimulation of osteocalcin 

secretion. Together, these findings indicate that aluminum at micromolar 

concentrations, stimulates the proliferation, differentiation, and activity of human 

osteoblastic-line cells in vitro. With respect to the mechanism of its mitogenic action, 

the mitogenic concentrations of aluminum ion did not stimulate cAMP production in 

human osteosarcoma TE85 cells, indicating that the mechanism of aluminum ion does 

not involve cAMP. Additional studies have also revealed that the mitogenic activity of 

aluminum ion is different from that of fluoride because (a) unlike fluoride, the 

mitogenic action of aluminum was unaffected by culture medium changes (/. e., it was 

not dependent on the presence of essential factors in the cell-conditioned media);



(b) unlike fluoride, the mitogenic action of aluminum was not specific for bone cells; 

and (c) interaction studies with fluoride revealed that aluminum and fluoride did not 

share the same rate-limiting step(s) for their effects in stimulating the proliferation of 

osteoblastic-like cells. To test the additional hypothesis that the mitogenic action of 

aluminum ion is mediated through the insulin-like growth factor (IGF) regulatory 

system, the effects of mitogenic concentrations of aluminum on IGF-I and IGF-II 

production were evaluated. TE85 cells treated with aluminum ion for 48 hours showed 

biphasic stimulation of the synthesis/secretion of IGF-I and IGF-II into the conditioned 

medium (CM). The addition of IGFBP-4, an inhibitory IGF binding protein, 

significantly reduced the effect of aluminum to stimulate [3H]thymidine incorporation, 

supporting the hypothesis that the mitogenic action of aluminum was mediated by an 

increase in IGF production. Western ligand blot analysis revealed that mitogenic 

concentrations of aluminum ion also inhibited the secretion of IGF binding proteins, 

particularly the inhibitory IGFBP-4, an action which could lead to the potentiation of 

the overall activity of IGFs. Based on these findings, it is concluded that aluminum 

ion, at micromolar concentrations, acts directly on human bone cells to stimulate their 

proliferation and differentiation by a mechanism that involves increase in the production 

and activity of IGFs in bone cells.
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CHAPTER 1: BACKGROUND

Cellular toxicity of high concentrations of aluminum ion.

Historically, aluminum, a ubiquitous heavy metal, was considered nontoxic 

largely because the gastrointestinal tract was believed to act as an effective barrier to its 

entry, most of the metal ingested being excreted in the feces. For this reason, 

aluminum-containing antacids given to patients with peptic ulcers were presumed to be 

innocuous. However, it is now well documented that some aluminum is absorbed 

during therapy with this type of compounds, and a significant amount of aluminum ion 

can be accumulated in various tissues after prolonged administration of aluminum ion.

In this regard, high levels of aluminum have been found in serum and various organs of 

chronic renal failure patients as a consequence of either the administration of aluminum 

hydroxide (1-3) or the presence of this compound in dialysis fluid (4-6).

Like other heavy metals, aluminum ion is not biologically inert, and the toxicity 

of high concentrations of aluminum ion in biology has been well documented (7). For 

example, aluminum has been implicated as the etiologic agent in the encephalopathy 

observed in patients with chronic renal failure who are treated by long-term 

hemodialysis with aluminum-rich dialysate (8). It has also been considered a 

contributing factor to the pathogenesis of several neurological disorders {e.g., 

amyotrophic lateral sclerosis, presenile dementia, etc.) of environmental 

etiology (9,10). Furthermore, aluminum deposits have also been found in brains of 

Alzheimer's disease patients, which led to the speculation that the accumulation of 

aluminum ion in the brain may be associated with the development of Alzheimer's 

disease (11). While the proposal for an etiological role of aluminum in Alzheimer's 

type senile dementia is controversial (9,11-13), evidence for the neurotoxicity of the 

accumulation of high concentrations of aluminum in brain tissues is compelling.

I.

1



2

In addition to its neurotoxic effects, aluminum loading has also been implicated 

as an important contributing factor in the development of non-iron-deficient anemia in 

patients with chronic renal failure (14,15). Supporting evidence for this conclusion is 

that hemoglobin levels in these patients fall with continued aluminum exposure (14,16) 

and rise when the body burden of aluminum is decreased by therapy with deferoxamine 

[a specific chelator for aluminum ion] (17,18) or by dialysis against aluminum-free 

solutions (14,15). Furthermore, it has been shown that aluminum ion inhibited 

erythropoiesis (19) by binding tightly to transferrin (20,21), an action which prevented 

the binding and transport of iron to the marrow for hemoglobin synthesis.

Accordingly, aluminum intoxication is an important cause of morbidity and mortality in 

hemodialysis patients (22).

II. Effects of aluminum accumulation on mineralization.

Because the mineral present in bone (/. e., hydroxyapatite) has a high affinity for 

heavy metals, including aluminum ion, bone is a major target tissue for aluminum 

deposition. This expectation is consistent with the findings that aluminum is selectively 

deposited at the mineralization front and along trabecular bone surfaces (23,24). Once 

deposited in bone matrix, aluminum is removed very slowly (25). Thus, prolonged 

treatment with aluminum should lead to accumulation of high aluminum concentrations 

in bones, and this is supported by findings that aluminum administration in animals and 

humans causes elevated aluminum content in bone matrix (26-29).

Aluminum toxicity to bone and bone cells has been widely reported. In this 

regard, renal osteodystrophy is a universal complication in patients with chronic renal 

failure. This bone disease comprises a heterogeneous group of disorders of diverse 

pathophysiology. Numerous studies have previously established that the vast majority 

of patients with uremia exhibit osteitis fibrosa, a disease characterized by evidence of 

increased bone resorption, peritrabecular fibrosis, and a normal or accelerated rate of



3

bone formation (30). However, osteomalacia and aplastic bone disease, unique bone 

abnormalities marked by a low rate of bone turnover, are the most prevalent 

complications in patients with chronic renal failure and, particularly, those who are 

dialysis dependent. It has been suggested that aluminum may be the etiologic agent in 

the pathogenesis of this osteomalacia (31-33). Histological studies have shown that 

aluminum-induced osteomalacia is accompanied with impaired mineralization and, in 

some cases, with decreased bone matrix formation (26,35). The aluminum-associated

osteomalacia differs from "classical" vitamin D-deficiency osteomalacia in that patients 

have an increased incidence of bone fractures, are resistant to treatment with even large 

doses of vitamin D, and seldom have secondary hyperparathyroidism (22).

Accordingly, the aluminum-associated osteomalacia has been a significant problem in 

the management of renal failure patients.

While the cause and treatment for vitamin D-resistant osteomalacia has been

extensively investigated, the mechanism by which aluminum induces osteomalacia is 

not well understood. Because aluminum is found in the areas corresponding to the 

mineralization front (24,35), it has been thought that aluminum could physically and/or 

chemically interfere directly with the normal mineralization process (36), which in turn, 

would lead to severe osteomalacia (23,27,32). However, since osteoblasts are 

responsible for bone matrix synthesis, it has also been suggested that aluminum ion may 

act to affect the proliferation and/or activity of osteoblasts, which would lead to a 

reduction in the rate of bone matrix formation (37). In addition, aluminum 

accumulation is associated with reduced PTH secretion, which could also cause a 

reduction in osteoblastic activity (38). These observations raise the interesting 

possibility that an aluminum-induced reduction in serum PTH may be responsible for 

some of the effects of aluminum in the development of osteomalacia. On the other 

hand, in some uremic patients who had high bone aluminum content and also high 

serum PTH levels, no osteomalacia was observed, whereas thev all showed increased
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osteoclastic resorption (/. e., a well known characteristic of

hyperparathyroidism) (39,40). Thus, these findings are in support of a key role for 

PTH deficiency in aluminum-associated osteomalacia, but they are in contradication to 

the proposal of a direct inhibition of the mineralization process by aluminum.

Moreover, it is now clear from histomorphometric studies that the aluminum-dependent 

decrease in osteoblastic activity cannot be explained by reductions in PTH levels 

alone (26). It has also been shown with isolated perfused tibia that bones of aluminum 

treated dogs are resistant to the effects of PTH, suggesting that aluminum treated bones 

may also have defects in the responsiveness to PTH (41). Consequently, while PTH 

deficiency may be important in aluminum-associated osteomalacia, the exact cause is 

unclear and remains controversial.

Osteogenic effects of low concentrations of aluminum ion.

While evidence in the literature indicates that the accumulation of high 

concentrations of aluminum in bone matrix of chronic renal failure patients is harmful 

to skeletal metabolism, there is evidence that low concentrations of aluminum may 

actually increase bone formation. In this regard, Quarles and Drezner have recently 

shown that short term (8-16 weeks) administration of aluminum to normal adult dogs 

induced de novo bone formation within the marrow cavity of the iliac crest (42) [as 

indicated by significant increases in histomorphometric bone formation parameters] and 

increased bone density (measured by Quantitative Computed Tomography) and 

histomorphometric bone formation parameters in thoracic and lumbar 

vertebrae (43,44). These investigators also demonstrated that the osteogenic effects of 

aluminum appeared to be dependent on PTH, since the osteogenic effects of aluminum 

were reduced in parathyroidectomized dogs (44). Therefore, these findings raise the 

interesting possibility that low concentrations of aluminum ion might have a stimulatory 

effect on osteoblasts, and thereby increase bone formation. In support of this

III.
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hypothesis are the previous findings that: a) administration of aluminum to normal dogs 

induced a transient increase in osteoblastic activity and increased osteoblast 

numbers (41), and b) short term treatment of beagle dogs with aluminum increased 

bone collagen synthesis (42).

The in vivo findings in intact adult dogs differ from previous findings of 

aluminum-induced osseous events in various animal models which indicated that toxic

effects, such as abnormal mineralization and decreased bone formation, are the sole 

outcomes of aluminum administration (23-29). The reason for the discrepancies is not 

clear. However, there are two potential explanations. First, the length of aluminum 

administration (/. e. ,8-16 weeks) in these dog studies was much shorter than most 

previous studies {e.g., 1-3 years) of aluminum-induced osteomalacia. Furthermore, the 

doses of aluminum used in the recent dog studies (/. e., 1-1.25 mg/kg, three times per 

week) were also lower than those of most of the previous animal studies 

(/. e., 5-10 mg/kg/day). Consequently, the total amount of aluminum exposure was 

much lower in the recent dog studies than the previous animal studies. Second, the 

dogs used in these studies were healthy with normal kidney functions, whereas most 

previous studies employed uremic animals. Accordingly, we can hypothesize that these 

dogs were able to excrete most of the absorbed aluminum through normal kidney 

function, and consistent with this hypothesis, the histomorphometric studies showed that 

the amount of stainable bone matrix aluminum in the dogs was at least 10-fold lower 

than that seen in bone matrix of patients with chronic renal failure (42). Based on these 

observations, we have further hypothesized that while high concentrations of aluminum 

are harmful to bone cell metabolism, low concentrations of aluminum could stimulate 

bone cell proliferation, and/or differentiation and activity. The biphasic response (/.e., 

stimulatory at low doses and inhibitory at high doses) of bone cells to aluminum is not 

unique since the mitogenic actions of various bone cell effectors {e.g., fluoride, IGFs, 

PTH, etc.) are also biphasic in nature (45-47).



6

In order to fully appreciate the effects of aluminum on bone cell metabolism, it 

is important that we understand both the osteogenic effects of low concentrations of 

aluminum and the toxic effects of high doses of aluminum. An understanding of how 

low concentrations of aluminum can stimulate bone cell proliferation and/or 

differentiation could also produce invaluable insights into how bone cell proliferation 

and/or differentiation is regulated. It should be noted that the in vivo dog studies did 

not demonstrate whether the anabolic effect of short term aluminum treatment was 

mediated through direct action of the cation on bone cells, or indirectly (e.g., through 

effects on systemic hormones). However, it has previously been reported that low 

concentrations (/. e., //M) of aluminum ion could stimulate the proliferation of mouse 

lens epithelial cells and Swiss 3T3K skin fibroblasts in vitro (48,49). Furthermore, it 

has recently been shown that micromolar concentrations of aluminum ion stimulated the 

proliferation of mouse MC3T3-E1 cells by inducing a transition from the GQ to the S 

phase of the cell cycle (50). Accordingly, it is anticipated that aluminum ion may also 

be a bone cell mitogen which can be osteogenic, because it acts directly on osteoblasts 

to affect their proliferation, differentiation, and activity. Consequently, the central 

theme of this thesis project was to evaluate the osteogenic effects of low doses of 

aluminum on human bone cells in vitro.

IV. Potential mechanisms of aluminum ion on cell metabolism.

1. Biologically active species of aluminum.

In order to understand the biological activity of aluminum in cells, it is 

necessary to understand some aspects of the chemistry of aluminum. The chemistry of 

aluminum in biology is dominated by its ligation by oxygen-based functional groups, 

principally through aluminum substitution for competitive cations, of which magnesium 

is considered the most biologically relevant (51). Aluminum reacts via the hexa-aqua 

trivalent species Al3+, and it is the concentration of this species, but not the total
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aluminum concentration, that is believed to be responsible for the biological activity of 

aluminum (52). The pH has profound effects on the free Al3+ concentration (53). For 

example, in the absence of all other competing ligands, the solubility of amorphous 

aluminum hydroxide controls the free Al3+ concentration at pH 6.0. When the pH is 

raised to 7.4 the control of the concentration of free Al3+ switches to the aluminate

species, Al(OH)4, the predominant aluminum species at alkaline pH. In the 

physiological milieu (pH in the range 6.5-7.4), citrate (found commonly at serum 

concentrations of 0.1 mM) is a likely pre-eminent intracellular oxygen-based ligand and 

will bind aluminum to decrease the cellular free Al3 + concentration (54). In the 

absence of citrate, or towards the more acidic pH of the physiological milieu, inorganic 

phosphate (52) or ATP (55) [both found at intracellular concentrations of about 10 mM] 

similarly reduce the free aluminum concentration toward femtomolar levels. Other 

influencing factors include the relative concentrations of competitive anions (e.g., 

hydroxide, fluoride, silicate, inorganic phosphate, etc.) and cations (e.g., calcium, 

magnesium, manganese, zinc, iron, etc.), the intrinsic binding strength of any ligand 

for aluminum and the comparative reaction kinetics (53). The biological reactivity of 

aluminum cannot simply be predicted on the basis of a hierarchy of known aluminum- 

ligand binding constants. It is the combination of the aforementioned influences which 

together determine the bioavailability and hence biological effects of aluminum (53).

Cellular uptake of aluminum.

High electropositivity, large solvation shells and a concomitant tendency toward 

hydrogen bonding are characteristics of the free aluminum species thought to preclude 

the passive diffusion of aluminum through biological membranes. However, it is now 

clear that aluminum is found intracellularly, even though the mechanism for its cellular 

uptake is not well understood. Three potential mechanisms by which aluminum 

permeates biological membranes and accumulates intracellularly have been proposed.

2.
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First is passive diffusion of uncharged aluminum complexes, e.g., A1F3 (56), and 

aluminum-glutamate (57). Second is passive diffusion of aluminum species mediated 

through aluminum binding to membrane-orientated transport proteins (58) and 

aluminum effects on membrane fluidity (59). In this regard, it has been shown that 

cellular uptake of aluminum is significantly enhanced by the presence of transferrin, the 

principal iron-carrying protein in physiological milieu (60-62). Aluminum-transferrin 

is believed to follow the iron transport route into cells (62), transferrin-mediated 

endocytosis (60), although on internalization, aluminum-transferrin, unlike iron- 

transferrin, is not reduced to release the bound metal and continue the transferrin cycle. 

Third is adsorption-mediated endocytosis (56). Accordingly, aluminum could be taken 

up intracellularly into cells by any one or all of these mechanisms.

3. Intracellular actions of aluminum.

There is a large body of evidence that aluminum acts intracellularly to exert its 

biological effects (7,63). However, the significance of such findings at the whole cell, 

tissue or organism level remains largely unknown. The physico-chemistry of aluminum 

predicts higher binding strengths and slower reaction kinetics than, for example, the 

universally important divalent metal ions calcium and magnesium. It is not surprising, 

therefore, to find that aluminum can act as a potent inhibitor of many enzymes and/or 

biological processes by competing with other cations, e.g., calcium and magnesium. In 

this regard, it has been demonstrated that aluminum inhibited several enzyme activities 

and cellular processes in vitro. For example: it has been shown that aluminum ions 

are required for inhibition of hepatic microsomal glucose-6-phosphatase by sodium 

fluoride (64), and that fluoroaluminate also inhibited the inactivation and transformation 

of glucocorticoid receptor (65). In addition, incubation of rat calvaria with aluminum 

for 24 hours significantly reduced the cellular alkaline and acid phosphatase 

activities (66). However, the inhibitorv effects of aluminum on bone nhosohatases
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were probably not due to direct inhibition of the enzyme activities by aluminum since 

aluminum, at concentrations of up to 1 mM, did not significantly affect the activity of 

human osteoblastic alkaline phosphatase or acid phosphatase in vitro (Yoo and Lau, 

unpublished observations). On the other hand, fluoroaluminate has also been shown to 

have stimulatory effects on numerous cellular processes through its activation of G 

proteins (67-70).

The intracellular response to an aluminum challenge has not received a great 

deal of attention until recently. Even then, the types of cellular models studied are 

diverse and include: synaptosomes (71), hepatocytes (72), neuroblastoma cells (73), 

liver microsomes (74), pancreatic acinar cells (75), astrocytes (76), parotid acini (77), 

salt-secreting cells (78), barnacle muscle fibres (79), heart tissue (80), and 

osteoblasts (50,81). The comparative value of much of this research is compromised 

by the lack of consensus in the application of exposure systems and (in particular) 

culture conditions. Only rarely are the influences on aluminum binding and uptake by 

cells taken into account in the experimental design. Thus, the results of these studies 

are ambiguous for the most part. On the other hand, while the biological effects of 

aluminum in each of these systems appeared different, these studies have demonstrated 

that the intracellular effects of aluminum were consistently documented as stimulatory 

at low concentrations becoming inhibitory with increasing aluminum concentration. 

Consequently, these findings are supportive of our contention that aluminum at low 

concentrations can increase bone cell proliferation and bone formation.

Interaction of aluminum ion with G proteins.

The majority of reported intracellular responses to aluminum have been 

associated with second messenger systems, the central components in the control 

mechanisms of many (and possibly all) cells (82). For example, it has been shown that 

aluminum, at 10 ^M, stimulated the production of calcium transients in agonist-

4.
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stimulated single rat hepatocytes (72). The mechanism by which aluminum stimulated 

calcium transients appeared to involve the inositol phosphate signaling pathway (72). 

Furthermore, a recent report (83) has demonstrated that oral aluminum consumption 

alters in vitro protein phosphorylation and protein kinase C activity in rat brain, and 

suggested that alteration of protein phosphorylation may be responsible for the 

neurotoxic effects of aluminum over exposure. Inhibitory effects of aluminum on 

cellular processes mediated through second messenger systems are also documented in 

extracellular aluminum challenges on whole cell preparations. For example, aluminum 

inhibits the agonist-stimulated hydrolysis of phosphoinositides and the incorporation of 

inositol into phospholipids (71) in rat cortical slices, the fast and slow phases of 

voltage-dependent Ca2+ uptake in synaptosomes (84), and causes the premature onset of 

deterioration of electrophysiological properties in differentiated neuroblastoma 

cells (73). Similarly, the disruption of cAMP-mediated phosphorylation of Ca2+ and/or 

K+ channels is implicated in recent research showing an aluminum-induced decrease in 

maximum inward calcium currents in heart tissue of both rabbits and frogs (80).

There is evidence that aluminum affects the second messenger systems (e.g., 

phosphoinositide pathway, cAMP pathway) that involve the G proteins (53,72). In this 

regard, aluminum is known to combine with fluoride to form fluoroaluminate (A1F4‘), 

which has been shown to be a potent activator of Gs (85), which in turn activates 

adenylate cyclase to increase cellular production of cAMP (86). Similarly, 

fluoroaluminate has also been shown to activate G., which is associated withr

phospholipase C and D activation (87,88), and in turn leads to stimulation of 

phosphoinositide breakdown. The resulting products, phosphoinositides and 

diacylglycerol, subsequently increase intracellular calcium mobilization (82) and 

activation of protein kinase C (82), respectively. In this regard, Stemweis and 

Gilman (86) have reported that Al3+ was required for fluoride to activate Gs, Gj, and 

transducin. It has also been demonstrated that fluoroaluminate substituted for the
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gamma-phosphate of GTP (85). This conclusion comes from the fact that there are 

structural similarities between fluoroaluminate and phosphate group. Both 

fluoroaluminate and phosphate are tetrahedral, the atomic sizes of phosphorus and 

aluminum are similar, fluorine and oxygen have the same van der Waals radii of
o

1.35 A, and the bond lengths for aluminum-fluorine and phosphorus-oxygen are 

approximately the same. Thus, it is reasonable to conclude that fluoroaluminate can act 

as a potent phosphate analog in biological systems.

Perhaps the most compelling evidence to-date that points toward the 

involvement of G protein systems in the biological action of aluminum is the finding 

that aluminum treatment inhibited the activation of the signal-transducing G protein 

transducin (89), and that aluminum disrupted the GTP-GDP exchange activity of a 

G protein in the stimulation of Na+ efflux in single barnacle muscle fibres (79). On the 

other hand, while the strong interaction between fluoroaluminate and the G proteins 

may be, in part, responsible for the observed biological effects of aluminum, there is 

evidence that is inconsistent with the involvement of the G proteins. For example, it 

has been shown that aluminum did not bind to the "model" G protein, elongation factor 

Tu-GDP, although those studies were complicated by the presence of millimolar 

concentrations of fluoride (90,91). In addition, the mitogenic effect of aluminum is 

abolished in cells pretreated with pertussis toxin (50), suggesting that aluminum- 

induced mitogenesis is probably not mediated through a G protein system.

Consequently, while evidence for the involvement of the G proteins in the biological 

actions of aluminum is strong, that mechanism may not account for all of the biological 

effects of aluminum.

V. Mitogenic action of fluoride.

The facts that aluminum ion forms tight complexes with fluoride, and that the 

biological action of aluminum may be mediated through the formation of
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fluoroaluminate, are important and could be clinically relevant as demonstrated by 

previous investigations that fluoride is one of the most effective single agents currently 

available for increasing bone density in osteoporotic spines (92-94), and that fluoride is 

a bone cell specific mitogen in vitro (47,95). Accordingly, if the hypothesis that the 

biological effect of aluminum is mediated through the formation of fluoroaluminate is 

indeed true, then the understanding of the mechanism of aluminum to stimulate bone 

cell proliferation and differentiation may yield important information as to how fluoride 

exerts its osteogenic effect. In this regard, a direct comparison between the mitogenic 

action of fluoride and that of aluminum on bone cells seems warranted as it would 

disclose information regarding whether fluoride and aluminum act through similar 

mechanisms. Thus a major objective of this thesis work was to compare the mitogenic 

action of aluminum on human bone cells to that of fluoride on the same cells in vitro. 

However, in order to have a better appreciation of the potential relationship (or the lack 

thereof) between aluminum and fluoride on bone cell proliferation, a brief discussion on 

the current knowledge of the osteogenic action of fluoride would be appropriate.

Previous histomorphometric studies indicate that fluoride increases bone density 

by stimulating osteoblastic proliferation (93). The bone cell mitogenic activity of 

fluoride has been confirmed in vitro by several laboratories, including ours (47,95-98). 

Although the exact mechanism of the mitogenic action of fluoride is not known at the 

present time, it is now clear that the mitogenic action of fluoride exhibits the following 

characteristics: a) mitogenic effect of fluoride is specific for bone and, perhaps, kidney 

cells (95,99), b) the effective mitogenic concentrations of fluoride are in the 

micromolar range (47,95,100), c) fluoride-induced osteoblast proliferation is dependent 

on the presence of a growth factor whose receptor is a tyrosyl kinase (101), d) 

mitogenic activity of fluoride can be potentiated by inorganic phosphate (101), and e) 

fluoride synergizes with growth factors whose receptor is a tyrosyl kinase to increase 

osteoblastic proliferation (100,101). These characteristics are unique for fluoride-
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induced mitogenesis. Accordingly, if the aluminum-induced osteogenesis is mediated 

through fluoride, the in vitro mitogenic activity of aluminum should show the same 

properties as fluoride.

With respect to the potential mechanism of action of fluoride on bone cells, Lau 

and coworkers have purified an acid phosphatase from osteoblasts, which displayed 

phosphotyrosyl protein phosphatase activity at neutral pH (102,103). These 

investigators have provided a large body of circumstantial evidence supporting the 

notion that this nonlysosomal osteoblastic acid phosphatase may function as a 

physiological phosphotyrosyl protein phosphatase in bone cells (102,103). A unique 

property of this enzyme is its inhibition by mitogenic concentrations (/. e., micromolar) 

of fluoride. Because tyrosyl phosphorylation is closely associated with cell 

proliferation (104), and because increased tyrosyl phosphorylation can also be achieved 

by an inhibition of phosphotyrosyl protein dephosphorylation (105,106), it has been 

hypothesized that the mitogenic action of fluoride on bone cells may be mediated by a 

direct inhibition of the fluoride-sensitive phosphotyrosyl protein phosphatase 

activity (100). This hypothesis assumes: a) that the increase in tyrosyl protein 

phosphorylation is responsible for the stimulation in bone cell proliferation, b) that the 

binding of a growth factor {e.g., IGF-I) to its membrane receptor on osteoblasts 

activates the intrinsic tyrosyl kinase activity of the receptor, and thereby stimulates the 

phosphorylation of the key mitogenic signaling proteins at the tyrosyl residues, which 

eventually leads to an increase in osteoblast proliferation, c) that this mitogenic signal 

should be terminated by the dephosphorylation reaction catalyzed by the fluoride- 

sensitive phosphotyrosyl protein phosphatases, and d) that the action of fluoride is to 

inhibit the activity of this phosphotyrosyl protein phosphatase and prolongs the 

mitogenic signal, resulting in a stimulation of osteoblast proliferation.

The following is a brief enumeration of the evidence that supports the concept 

that the mitogenic action of F is mediated by inhibition of fluoride-sensitive
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phosphotyrosyl protein phosphatase: First, the mitogenic dose of fluoride is very low 

compared to fluoride doses that affect other biological systems, and yet it is very 

similar to the dose that is required for inhibition of this phosphatase activity and for 

increased tyrosyl phosphorylation in human bone cells (100,107). Second, other 

inhibitors of this phosphotyrosyl protein phosphatase, such as vanadate and molybdate 

are, like fluoride, mitogens for bone cells at concentrations that inhibit the F-sensitive 

phosphotyrosyl protein phosphatase activity (100,108). Moreover, the mitogenic effect 

of vanadate is identical to the effect of fluoride in that it requires the presence of a 

skeletal growth factor (108). Third, fluoride treatment of normal bone cells leads to a 

net increase in protein phosphorylation (100). Fourth, fluoride stimulates enzymes in 

the bone cell membrane to increase the overall tyrosyl phosphorylation of an artificial 

substrate in vitro (100). Fifth, thiophosphorylation studies suggest that fluoride acts to 

increase tyrosyl phosphorylation through an inhibition of phosphotyrosyl protein 

phosphatase rather than a stimulation of tyrosyl kinase (100). Sixth, fluoride causes an 

increase in the tyrosyl phosphorylation of, at least, ten cellular proteins (Thomas and 

Lau, unpublished observations). Seventh, the time course for the effect of fluoride on 

both mitogenesis and on tyrosyl phosphorylation exhibits a lag period consistent with an 

inhibition of phosphotyrosyl protein phosphatase and inconsistent with an effect on 

tyrosyl kinase (Thomas and Lau, unpublished observation). Finally, bone cells (and 

perhaps also kidney cells) have been shown to contain this fluoride-sensitive 

phosphotyrosyl protein phosphatase activity (100), a finding that is consistent with the 

observation that the mitogenic action of fluoride is specific for bone cells (and perhaps

also kidney cells - 95,99).

It should be noted that there are some observations that are inconsistent with the

hypothesis that the aluminum ion acts through a mechanism which is similar to that of 

fluoride to exert its mitogenic actions. First, while the mitogenic action of fluoride is 

specific for bone cells (95,100), the mitogenic effect of aluminum does not appear to be
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tissue-specific as it stimulates the proliferation of many cell types, e.g., mouse lens 

epithelial cells (48) and Swiss 3T3K skin fibroblasts (49). Second, the mitogenic action 

of aluminum on bone cell proliferation is highly reproducible, whereas the bone cell 

mitogenic effect of fluoride is inconsistent.

Potential involvement of local bone cell production of growth factors in the 

osteogenic action of aluminum.

Recent investigations have revealed that many bone cell effectors exert their 

osteogenic effects by modulating the production and/or the activity of bone cell growth 

factors. It has been reported that a) progestins stimulate human bone cell proliferation 

by increasing the bone cell production of IGF-II (109); b) estrogen affects bone 

formation by altering the production of TGF8 (110); c) 1,25 dihydroxy vitamin D3 

inhibits bone cell proliferation by altering the production of IGFs and their binding 

proteins (111); d) androgens stimulate bone cell proliferation and differentiation by 

modulating IGF production (112); and e) low-amplitude, low frequency electric 

field-stimulated bone cell proliferation is mediated, in part, by increased production of 

IGF-II (113). Consequently, these findings suggest the interesting possibility that some 

bone cell mitogens may induce cell proliferation indirectly through stimulation of 

production of bone cell growth factors, and we have, therefore, hypothesized that 

aluminum may be acting as a bone cell mitogen by altering the effective concentration 

or activity of bone cell-derived growth factors. Accordingly, one of the goals of this 

thesis work was to determine whether the mitogenic action of aluminum is mediated by 

the production of growth factors by human bone cells in vitro (or by synthesizing 

products, such as IGFBPs, that modulate the activity of the growth factors).

Bone cells are known to produce several growth factors, i.e., IGF-I, IGF-II, 

TGFB, PDGF, and FGF (114), and it has been hypothesized that these growth factors, 

upon secretion from osteoblasts, will be deposited in bone matrix (114), and released

VI.
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during resorption (115). In human bone cells, the most abundant and apparently most 

important growth factors are IGF-II and TGF8 (116,117). TGF8 is synthesized by 

bone cells as latent holoenzyme form, which needs to be activated by proteolysis (118). 

Because our laboratory has the expertise and reagents to measure IGFs accurately, 

whereas measurements of active TGF8 is based on an insensitive and less reliable

bioassay (117), this thesis work had been focused on investigation of the potential 

effects of aluminum on the IGF regulatory system.

Insulin-like growth factor regulatory system and bone cell proliferation.

It is now clear that the IGF regulatory system is complex and highly regulated. 

Human bone cells produce two IGFs (/. e., IGF-I and IGF-II) and at least six binding 

proteins (/.e., IGFBP-1, -2, -3, -4, -5, and -6). These two classes of molecules, the 

IGFs and their binding proteins, represent two major components of the IGF regulatory 

systems. My thesis work has been focused primarily on these two components of 

the system.

VII.

IGF-II is the most abundant growth factor in human bone matrix (114), and is 

produced by bone cells from a number of species, including human, mouse, and 

rat (116). IGF-II is synthesized as a prepropolypeptide with an approximate molecular 

mass of 20 kD that includes a 24 amino acid signal peptide and an 89 amino acid 

carboxyterminal peptide (119). IGF-II stimulates cell proliferation in a dose-dependent 

manner in serum-free cultures of bone cells isolated from a number of species, 

including chick, mouse, and human (120). It has been shown that IGF-II is one of the 

few growth factors that is mitogenic for untransformed normal human bone cells 

isolated from the trabecular bone of femoral head samples (121). In addition to 

stimulating bone cell proliferation, IGF-II also stimulates the differentiated function of 

bone cells. In this regard, IGF-II stimulated synthesis of type I collagen in mouse 

calvarial MC3T3-E1 cells (122). The production rate of IGF-II by human bone cells is
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regulated by a variety of bone cell regulators. PTH has been shown to stimulate IGF-II 

release in newborn mouse calvaria (123); and 1,25 dihydroxyvitamin D3 stimulated 

production of IGF-II in serum-free organ cultures of newborn mouse calvaria (111). 

Also 17-8 estradiol, was found to increase the secretion of IGF-II from the rat 

osteosarcoma UMR106 cell line (124). Thus, the bone cell production of IGF-II is 

regulated, and agents that stimulate bone formation may act, at least in part, by altering 

the production of IGF-II by bone cells.

IGF-I is produced by human bone cells at concentrations of 50- to 100-fold less 

than those of IGF-II (125). IGF-I stimulates human bone cell proliferation in a dose- 

dependent manner (120). The mitogenic efficiencies of IGF-I and IGF-II in vitro were 

almost identical, since identical dose response curves for IGF-I and -II were obtained in 

untransformed normal human bone cells and embryonic chick calvarial cells under 

serum-free conditions (120). Studies on the regulation of IGF-I production by bone 

cells have shown that 178-estradiol stimulated the production of IGF-I in 

UMR106 cells (124). PTH has also been shown to increase the production of IGF-I by 

monolayer cultures of rat osteoblasts (/.e., 1.5- to 2-fold after 24 hour treatment).

These findings are consistent with the notion that the bone cell production of IGF-I, like 

that of IGF-II, is regulated and may play a role in mediating the mitogenic effects of 

bone cell effectors.

IGF-I and II are bound to specific binding proteins in the serum, tissue extracts, 

and conditioned media (126,127). Six different IGFBPs have been identified thus far. 

IGFBP-1 has 234 amino acids with a predicted molecular mass of 25.3 kD, somewhat 

smaller than the apparent molecular size (30-35 kD) estimated by SDS polyacrylamide 

gel (128). IGFBP-1 binds to both IGF-I and -II with similar affinity (128). Human 

IGFBP-2 contains a 39-residue signal peptide followed by a mature protein of 289 

residues with a predicted molecular mass of 31 kD. While IGFBP-2 binds both 

IGF-I and -II, it has a much higher affinity for IGF-II than IGF-I (129). IGFBP-3, the
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major IGFBP in serum, has a 27 amino acid signal sequence followed by a mature 

protein of 264 amino acid residues, and it binds both IGF-I and -II with similar

affinity (130).

The exact functions of these IGFBPs is not fully understood. IGFBP-1 has been 

shown to induce IGF-I-stimulated cell proliferation in muscle cells (133). On the other 

hand, high concentrations of IGFBP-1 inhibited the actions of IGF-I in cultured 

choriocarcinoma cells (134). The function of IGFBP-2 is unknown. Purified IGFBP-3 

either inhibits or stimulates cell proliferation in neonatal skin fibroblasts depending on 

culture conditions (135).

Perhaps the most important IGFBPs in human bones are IGFBP-4 and IGFBP-5. 

IGFBP-4, molecular size of approximately 25 kD as determined by SDS 

polyacrylamide gel electrophoresis, is a potent inhibitor of IGF activity on bone 

cells (131) that binds IGF-I and -II but not insulin. IGFBP-4 is the most potent 

inhibitory binding protein identified thus far. IGFBP-5 is a newly discovered binding 

protein (132). IGFBP-5, upon binding to IGFs, enhances the mitogenic activity of the 

bound IGF; thus, IGFBP-5 has been described as a stimulatory IGFBP (132). The 

most unique feature of IGFBP-5 is that it has high binding affinity for the mineral phase 

of bone, and may play a role in fixing IGFs in mineralizing human bone matrix (132). 

IGFBP-6 is a newly discovered binding protein, whose function and properties are not 

yet well understood.

VIII. Human TE85 osteosarcoma cells as a model system for human osteoblasts.

In order to evaluate the mechanism of the mitogenic action of aluminum on 

human bone cells, an appropriate cell model is necessary. The normal human bone cell 

population is generally heterogeneous consisting of many cell types with various 

degrees of differentiation. Human osteosarcoma cells are transformed tumor cells, 

which are more homogeneous than normal human bone cell populations. Moreover,
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some osteosarcoma cells appear to have retained some of the normal regulatory 

mechanisms for cell proliferation. Hence, useful information can be obtained from 

appropriate osteosarcoma cells.

In these studies I have used human TE85 osteosarcoma cells. These cells were 

chosen because a) they grow much faster than the normal untransformed human 

osteoblasts, and thus would provide sufficient cell numbers for my experiments in a 

reasonable time frame; b) unlike normal human bone cells, they are relatively 

homogeneous; c) they exhibit several characteristics which are similar to those of 

untransformed human osteoblasts (81); and d) previous studies have used these 

osteosarcoma cells to investigate the mitogenic action of fluoride on human osteoblast

line cells. Consequently, we have been able to compare the results of our studies with 

previous work on fluoride in the same cells.



CHAPTER 2: MATERIALS and METHODS

I. MATERIALS.

Tissue culture supplies were from Falcon (Oxnard, CA). Dulbecco's modified 

Eagle's medium (DMEM), collagenase, bovine calf serum, penicillin, and streptomycin 

were from GIBCO Laboratories (Grand Island, NY). [3H]Thymidine (48 Ci/mmol) 

was obtained from Research Products International (Mount Prospect, IL). [3H]Proline 

(52 Ci/mmol) was a product of New England Nuclear (Wilmington, DE). [125I]NaI 

(2,125 Ci/mmol) and [32P]ATP (10-25 Ci/mmol) were products of ICN Biochemicals 

(Irvine, CA). The radioimmunoassay kit for cAMP was purchased from Incstar, Inc. 

(St. Paul, MN). p-Nitrophenyl phosphate (PNPP), Folin-Ciocalteu's Phenol reagent, 

and bovine serum albumin were products of Sigma Chemical Company (St. Louis, 

MO). Aluminum sulfate, aluminum nitrate, aluminum chloride, and sodium sulfate 

were purchased from Fisher Chemical Co. (Los Angles, CA). Chloroform, 

formaldehyde, and 2-propanol were obtained from Fisher Scientific (Irvine, CA). 

Molecular biology grade phenol was purchased from USB Corp. (Cleveland, OH). 

Guanidine thiocyanate was a product of Fluka Chemicals Corp. (Ronkonoma, NY).

All other chemicals were molecular biology grade (or reagent grade, as appropriate) 

and were obtained from Sigma Chemical Co. (St. Louis, MO). Recombinant human 

IGF-I and IGF-II were purchased from Bachem Chemicals (Torrance, CA). The 

human osteosarcoma TE85 cells were obtained from Dr. J. Fogh of the Sloan Kettering 

Institute (New York, NY), and were maintained in our laboratory. Normal human 

bone cells were provided by Dr. J. Wergedal of Loma Linda University. 1,25 

dihydroxy vitamin D3 was kindly provided by Dr. M. R. Uskokovic of Hoffmann- 

LaRoche, Inc. (Nutley, NJ).

20
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II. METHODS.

Cell cultures.1.

Embryonic chicken calvarial cells were prepared by sequential crude 

collagenase digestion in serum-free DMEM at 37°C as previously described which 

resulted in enriched cultures of osteoblasts and their precursors (136). Cells isolated by 

trysin digestion were plated at 7,000 cells per well (in 1 ml medium) in 24-well plates 

in serum-free DMEM and cultured for 24 hours. Normal human bone cells, which 

were prepared according to Wergedal and Bay link (137), were plated at 10,000 cells (in 

1 ml) per well in 24-well plates in DMEM containing 10% bovine calf serum and 

cultured for 24 hours. These human bone cells were shown to be of osteoblastic

nature (121). Human osteosarcoma TE85 cells, a cell line showing osteoblastic 

characteristics (138), were routinely maintained by weekly passaging in DMEM 

containing 10% bovine calf serum. The TE85 cells were plated at either 5,000 cells 

per well for DNA synthesis studies or 20,000 cells per well for alkaline phosphatase 

studies in 24-well plates in serum-free DMEM and cultured for 24 hours. 24 hours 

after plating, each bone cell culture was changed to serum-free DMEM and effectors 

were added half an hour later, for incubations of either 20-24 hours for [3H]thymidine 

incorporation assay or 48 hours for alkaline phosphatase specific activity 

measurements. Aluminum salts were added in DMEM supplemented with 0.1% bovine 

serum albumin as carrier. Bovine serum albumin by itself had no significant effect on 

[3H]thymidine incorporation or on cellular alkaline phosphatase activity (data not 

shown).

Cells from embryonic chicken intestine, liver, muscle, and heart were also 

prepared, according to the method for embryonic chicken calvarial cell 

preparation (136), for determination of cell specificity for mitogenic activity of 

aluminum ion.
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2. Cell DNA synthesis assay.

Bone cell mitogenic activity was assayed by measuring the stimulation of 

incorporation of [3H]thymidine into cellular DNA. The assay was adapted from the 

method of Gospodarowicz et al. (139) and has previously been

described (136,140,141). Briefly, the bone cells were plated at 2,500 cells per cm2 in 

24-well plates in DMEM containing 10% bovine calf serum for 24 hours. After 

plating, the bone cells were changed to serum-free DMEM and incubated for 24 hours. 

The medium was then changed to fresh serum-free DMEM and effectors {e.g., 

aluminum) were added half an hour later, and the cultures were incubated for an 

additional 24 hours. Aluminum ion (z.e., aluminum sulfate) was added in DMEM with 

0.1% bovine serum albumin as carrier. Addition of aluminum ion did not alter the pH 

of the culture medium according to the pH indicator in the culture medium. 

[3H]thymidine was added to each culture (20 ^ul, containing 0.75 fid) 2 hours before 

the end of the incubation. Bone cell mitogenic activity was assayed by the stimulation 

of incorporation of [3H]thymidine into cellular DNA during the last 2 hours of the 

exposure to effectors. To confirm the assay as a measurement of cell proliferation, the 

number of cells in parallel replicate cultures of TE85 cells were also counted after 

incubation with or without aluminum ion for 48 hours (z. e., in two separate 

experiments). A minimum of six replicate culture wells were used to measure 

[3H]thymidine incorporation for each tested dose of effector.

3. Cellular alkaline phosphatase activity assay.

Cell layer protein was extracted in a buffered solution of 0.01% triton X-100, 

and cellular alkaline phosphatase activity was determined in an aliquot of this extract 

with 10 mM PNPP in 0.15 M sodium carbonate buffer (pH 10.3) in the presence of 

1 mM MgCl (142). One unit of enzyme activity was the amount of enzyme that 

hydrolyzed 1 ^tzmol PNPP per min at room temperature (25°C). The cellular enzyme
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activity was normalized against DNA content measured by a fluorescent method (143), 

or against cellular protein determined according to Lowry et al. (144). Alkaline 

phosphatase specific activity was determined in six replicate cultures for each tested 

effector concentration.

Collagen synthesis assay.

The ability of aluminum ion to stimulate bone formation was assessed by the 

measurement of collagen synthesis in six replicate monolayer cultures of human 

osteosarcoma TE85 cells. The procedure has previously been described (145). Briefly, 

sub-confluent cultures of TE85 osteosarcoma cells were plated in 24-well culture plates 

in serum-free DMEM, and 24 hours later effectors were added for an additional 

48 hours incubation. Sodium fluoride (100 /uM) and insulin (0.1 ^M) were included as 

positive controls. During the final 6 hours, [3H]proline (8 ^uCi/ml) and 8- 

aminopropionitrile (50 /ug/m\) were added to each well. Radioactivity in collagenase- 

digestible and -nondigestible proteins was determined according to 

Beresford et al. (145). Percent collagen synthesized was calculated after multiplying 

collagenase-nondigestible proteins by 5.4 to correct for the relative abundance of 

proline in collagenase-digestible and -nondigestible proteins (146).

4.

5. cAMP assay.

Cellular cAMP production in confluent cultures of TE85 cells was determined 

as previously described (141). The cells were plated in 24-well plates in 1 ml DMEM 

with 10% fetal bovine serum, and allowed to grow for 24 hours. The cells were then 

washed three times with serum-free DMEM, and placed in 1 ml fresh serum-free 

DMEM containing 1 mM isobutylmethylxanthine to inhibit phosphodiesterase activity. 

After incubation with effectors at room temperature for 15 min, incubation medium was 

decanted rapidly. The cells were washed with ice-cold phosphate-buffered saline
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(0.15 M NaCl/5.6 mM Na,HP04, pH 7.4) and 1 ml of 10% trichloroacetic acid (4°C) 

was added to each cell layer. The cell layer was then scraped from the plate with a 

rubber policeman and transferred into a test tube. The cell extracts were then 

centrifuged for 5 min at 2,500 x g, and the acid was removed by extracting four times 

with 2 ml of diethyl ether. The aqueous extract was dried by Speed-Vac vacuum 

centrifugation, and stored at -20°C until assay.

Shortly before assay, each dried extract residue was redissolved in 0.4 ml 

sodium acetate (50 mM, pH 6.2). cAMP was measured by a radioimmunoassay (RIA). 

The overall recovery of cAMP was estimated by adding [3H]cAMP (20,000 cpm) to 

replicate cell cultures during initial trichloroacetic acid extraction. Recovery was found 

to be 85-90%. The cellular protein concentration in the trichloroacetic acid-insoluble 

fraction was measured by the protein assay of Lowry et al. (144). The amount of 

cellular cAMP was normalized against cellular protein.

6. Osteocalcin production assay.

Normal human bone cells were plated at 15,000 cells per well in 1 ml of serum- 

free DMEM in 24-well plate. The cell medium was replaced with 1 ml per well fresh 

DMEM supplemented with 10'8 M vitamin K 24 hours later. Various concentrations 

of aluminum sulfate were then added in the presence or absence of 10'8 M 1,25 

dihydroxy vitamin D3. Cells were allowed to incubate for 72 hours at 37°C under an 

atmosphere of 5% C09 in air. CM was collected and frozen until assay. Osteocalcin 

concentration in the CM was assayed with an RIA specific for the mid-molecule of 

human osteocalcin (147). Cells were then extracted with 0.1% Triton X-100, and cell

extract alkaline phosphatase activity and protein were assayed as described above.
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IGF assays.

IGF-I was determined in CM by an RIA, using rabbit polyclonal anti-human 

IGF-I antiserum UB3-189 from the National Institutes of Health. Recombinant human 

IGF-I was used as standard and tracer. IGF-I was labeled with [125I]NaI by 

chloramine-T iodination as described previously (125) and separated from free 125I 

using a Sep-Pak (Waters, Milford, MA). The range of the assay was 0.05-3 ng/ml, the 

cross-reactivity with IGF-II and insulin was < 0.5% (125), and there was no cross

reactivity with other growth factors. IGF-II was assayed with a radioreceptor assay 

(RRA) using competitive displacement of 125I-labeled human IGF-II binding to 

monolayer cultures of H-35 rat hepatoma cells. These cells have no type 1 IGF 

receptors. Human recombinant IGF-II was used for standard and tracer. [125I]IGF-II 

was prepared as described for IGF-I. The RRA, described previously (125), had a 

range of 6-80 ng/ml, a cross-reactivity with IGF-I and insulin of < 2%, and no cross

reactivity with other growth factors. Both IGF-I and IGF-II assays have been 

standardized and validated (125). IGFBP artifacts in the CM samples have been

7.

eliminated by pre-incubating the samples with 50 ng/ml IGF-II in the IGF-I RIA or 

with 400 ng/ml IGF-I in the IGF-II RRA (125).

Western ligand blotting of IGFBPs.

Human TE85 cells were plated at a density of 17,500 cells per cm2 in 2 ml of 

DMEM containing 10% calf serum in 60-mm culture plates and cultured overnight. 

The culture media were then changed to serum-free DMEM and incubated for 

24 hours. After the incubation, the culture media were changed to fresh DMEM and 

effector was added. CM was collected after 6, 24, or 48 hours incubation, and dried 

by Speed Vac centrifugation. Each sample was then resuspended in 0.1 ml of deionized 

water and 0.1 ml SDS-polyacrylamide gel electrophoresis treatment buffer without 6- 

mercaptoethanol. A 0.05 ml volume of each CM sample was electrophoresed on a

8.
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10-20% gradient SDS-polyacrylamide gel under non-reducing conditions. The size- 

fractionated proteins were electroblotted onto a nitrocellulose membrane for 24 hours 

at 50 volts. The immobilized proteins on nitrocellulose membrane were incubated 

overnight with 2 x 106 cpm each of [125I]IGF-I and [125I]IGF-II at 4°C. IGFBPs were 

visualized by autoradiography. The relative concentrations of each IGFBP was 

determined by measuring the relative intensity of the bands with laser densitometry 

(Biomed Instruments, Fullerton, CA).

Statistical Methods.9.

The statistical significance of the differences was determined by two-tailed 

Student's t-test and analysis of variance using a MICROSTAT computer program. The 

differences were significant when p was < 0.05. The results in this thesis are 

presented as mean ± S.D. of six replicates. Each experiment has been repeated at least 

twice.



CHAPTER 3: RESULTS

Effects of aluminum on bone ceil DNA synthesis and alkaline phosphataseI.

activity.

Micromolar aluminum sulfate significantly stimulated the [3H]thymidine 

incorporation into DNA of the chicken calvarial cells in a diphasic, dose-dependent 

manner (Fig. 1). The maximal stimulation was seen between 10-25 /uM aluminum 

sulfate. Aluminum sulfate also significantly increased the specific activity of cellular 

alkaline phosphatase in the monolayer chicken calvarial cells (Fig. 1). The stimulation 

was also diphasic with the maximal stimulation seen at doses between 15 and 50 juM of 

aluminum sulfate (Fig. 1). Other forms of aluminum salt, i.e., aluminum nitrate and 

aluminum chloride, also stimulated cell DNA synthesis and cellular alkaline 

phosphatase specific activity in chicken calvarial cells, whereas sodium sulfate at the 

same doses was ineffective (data not shown). Thus, the mitogenic activities were 

attributed to aluminum ion and not to its conjugated salt.

The mitogenic effects of aluminum ion were not unique to chicken bone cells, 

since aluminum caused a similar dose dependent stimulation of [3H]thymidine 

incorporation and cellular alkaline phosphatase activity in a human osteosarcoma TE85 

cell line (Fig. 2, top panel), and in normal human osteoblasts (Fig. 2, bottom panel).

In addition, micromolar concentrations of aluminum ion were also mitogenic to chicken 

intestinal cells, but not to chicken liver, heart, or muscle cells (Fig. 3). Thus, our 

results suggest that the mitogenic action of aluminum is not specific to 

chicken bone cells.

It should be noted that the increases in [3H]thymidine incorporation appeared to 

reflect the stimulation of cell proliferation since the increases in [3H]thymidine 

incorporation after 24 hours incubation with aluminum sulfate corresponded to the 

increases in the number of TE85 cells after an 48-hour incubation (Fig. 4).

27
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Stimulation of [3H]thymidine incorporation and cellular alkalineFigure 1.
phosphatase activity in cultured embryonic chicken calvarial cells by aluminum 
sulfate. The data are shown as percentage of the corresponding no addition controls. 
The closed circles show the [3H]thymidine incorporation; while the closed squares 
represent the cellular alkaline phosphatase activity. The dashed line indicates 100% of 
the corresponding control value, which was 143 cpm incorporated per well for the 
[3H]thymidine incorporation experiment, and 0.178 mli/^ug DNA for the cellular 
alkaline phosphatase experiment.
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Stimulation of [3H] thymidine incorporation and cell alkalineFigure 2.
phosphatase activity in monolayer cultures of human TE85 osteosarcoma cells 
(upper panel) and in normal human osteoblasts (bottom panel) by aluminum 
sulfate. The data were presented as percentage of the corresponding controls. Open 
circles represent [3H]thymidine incorporation and closed circles indicate the cellular 
alkaline phosphatase specific activity. The dashed lines indicate 100% of the 
corresponding control value. In the top panel, 100% of [3H]thymidine incorporation 
was 3878 cpm per well; and that of cellular alkaline phosphatase specific activity was 
0.16 mll/jUg DNA. In the bottom panel, the 100% of control represents 599 cpm per 
well.
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Figure 3.
Embryonic chicken intestinal, liver, heart, and muscle cells were prepared from 
16-day-old embryos. The mitogenic activity of aluminum sulfate was measured by the 
stimulation of [3H]thymidine incorporation into cellular DNA and is shown as 
percentage of the corresponding no addition controls. The dashed lines are the 
corresponding 100% controls, which represented 1346 cpm per well for the intestinal 
cells, 1455 cpm per well for the liver cells, 792 cpm per well for heart cells, and 613 
cpm per well for the muscle cells. As positive control, 1% bovine calf serum was 
added to each cell monolayer cell cultrues, and each gave significant stimulations of 
[3H]thymidine incorporation ranging from 406% of control for intestinal cells to 200% 
of the control for liver cells.

Cell specificity of the mitogenic activity of aluminum sulfate.
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Figure 4.
by aluminum ion. TE85 cells were plated at 5,000 cells per well in 1 ml serum-free 
DMEM and cultured for 24 hours. The cells were then changed to fresh serum-free 
DMEM, and effectors were added half an hour later. In one set of the experiment, the 
thymidine incorporation was determined after an 24-hour incubation (panel A); and in a 
duplicate set of the experiment, the number of cells per well was counted after an 48- 
hour incubation using a hemocytometer. Results were presented as percentage of the 
no effector controls. The dashed lines are the corresponding 100% controls. The error 
bars indicate the standard deviation of the mean of 6 replicates. The 100% of control 
in panel A was the incorporation of 4576 cpm per well; and that in panel B was 4,055 
cells per well.

Stimulation of the proliferation of human TE85 osteosarcoma cells
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Stimulation of collagen synthesis by mitogenic doses of aluminum.

The effect of the mitogenic concentrations of aluminum on the stimulation of 

bone formation in vitro was assessed by the ability of the cation to stimulate 

incorporation of [3H]proline into collagenase digestible proteins. Table 1 shows that 

aluminum ion significantly stimulated the incorporation of [3H]proline into collagenase- 

digestible and total proteins, suggesting that aluminum ion stimulated both the de novo 

synthesis of total and collagen proteins. That the mitogenic concentrations of aluminum 

ion (/. e., 10-25 ^M) significantly increased the relative proportion of collagen indicated 

that the observed stimulation in collagen synthesis was not a result of a nonspecific 

overall stimulation of protein synthesis. As positive controls, the mitogenic doses of 

fluoride (/.e., 100 ^M) and insulin (0.1 ^M) (108) were both shown to stimulate 

collagen synthesis in these cells.

II.

Effects of mitogenic doses of aluminum ion on osteocalcin production.

The action of mitogenic concentrations of aluminum sulfate on the secretion of 

osteocalcin by normal human osteoblasts was examined. The human osteoblasts under 

basal conditions secreted little, if any, osteocalcin into their conditioned medium (i.e., 

undetectable by our assay), and mitogenic concentrations of aluminum did not stimulate 

its secretion, or the effect was masked by the insensitivity of the assay (Fig. 5, top 

panel). However, micromolar aluminum ion significantly increased cellular alkaline 

phosphatase specific activity in the same cells (Fig. 5, bottom panel). High 

concentrations of aluminum appeared to be toxic to these cells, since 200 /uM aluminum 

sulfate reduced the specific activity of alkaline phosphatase to the undetectable level, 

and since the cells also looked unhealthy, since a significant amount of cell debris was 

seen in these cultures.

III.

Because it has been suggested that 1,25 dihydroxy vitamin D3 is required for the 

activation of osteocalcin synthesis by osteoblasts (148), the effect of aluminum ion on
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Ikble 1. Aluminum ion stimulates collagen synthesis in human osteosarcoma TE85 
cells in vitro. TE85 cells were plated at 50,000 per well of 24-well plates in 1 ml of 
DMEM containing 10% bovine calf serum and cultured for 24 hours. Cells were then 
changed to 0.5 ml serum-free DMEM containing SO^ug/ml ascorbate, for an additional 
48 hour incubation. At the end of that incubation, a solution of 2 /iCi [3H]proline 
(52 Ci/mmol) and 25 /ig/ml 8-aminopropionitrile were added and the cells were further 
incubated for 4 hours. The amount of collagen and total protein synthesis were 
determined as previously described (25). The results are reported in mean ± S.D., 
n = 6. Statistical significance was determined by comparing the effector-treated cells 
to the "no addition control" cells using a two-tailed Student's t-test.

CollagenTotal Protein

(cpm/well) p(cpm/well) % Collagen pEffector P

3.59±0.67140.2145.23 —Control 3845.21692.0

io ^mai2(so4): 

25 /iM A12(S04): 

50 ^MA12(S04): 

75 A12(S04):

100 /uM A12(S04) 

100 jUM Fluoride

<0.001 812.01180.8 <0.001 6.5310.77 <0.00112708.313718.5

4.8211.32 <0.050<0.001 546.8175.9 <0.00111695.911776.1

<0.001 480.01117.7 <0.001 4.6311.1010190.912379.9 n.s.

3.5510.62<0.001 368.91147.8 <0.00110293.813561.9 n.s.

4.5010.43 <0.020<0.001 465.0189.4 <0.00110357.311980.0

5.0510.62 <0.010<0.001 648.5176.4 <0.00113062.312574.5

5.2510.90 <0.010<0.001 689.41160.5 <0.0010.1 Insulin 13234.012484.2
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Figure 5. Effects of aluminum ion on basal and 1,25 dihydroxyvitamin D^- 
stimulated osteocalcin secretion and cellular alkaline phosphatase specific activity 
in normal human osteoblasts. The top panel shows the effects of aluminum ion on the 
secretion of osteocalcin by normal human bone cells. The open symbols represent the 
amount of osteocalcin in the conditioned medium after an 24-hour incubation in the 
absence of l,25(OH)2D3 (but in the presence of the ethanol vehicle control). The 
closed symbols indicate osteocalcin production in the presence of 10'8M l,25(OH)7D3. 
The detection limit of the osteocalcin RIA was 30 pg/well. The bottom panel shows the 
effects of aluminum ion on the specific activity of the cellular alkaline phosphatase in 
the same experiment. The open symbols are the cells incubated for 24 hours without 
l,25(OH)2D3; and the closed symbols are those in the presence of l,25(OH)2D3.
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the 1,25 dihydroxy vitamin D3-stimulated osteocalcin release by these cells was also 

evaluated. 1,25 dihydroxyvitamin D, (10~8M) stimulated osteocalcin secretion, and 

mitogenic doses of aluminum ion significantly potentiated the release of osteocalcin by 

human osteoblasts. However, it is not clear as to why there were two apparent "peaks" 

of stimulation. Nonetheless, the stimulation by aluminum was confirmed in two 

separate experiments. In contrast, aluminum ion inhibited the 1,25 dihydroxyvitamin 

D3-dependent stimulation of alkaline phosphatase specific activity in a dose-dependent 

manner. This finding indicates that the effects of aluminum on these two 

1,25 dihydroxyvitamin D3-dependent events were different; and raises the possibility 

that they might act through different mechanisms.

Effect of medium change on the mitogenic activity of aluminum ion.

Because no attempt was made in this study to remove contaminating fluoride 

from reagents and glassware, one might argue that the observed mitogenic actions of 

aluminum could be due to low concentrations of fluoride. To assess this possibility, the 

mitogenic activity of aluminum was compared to that of fluoride. This laboratory has 

previously shown that the osteogenic actions of fluoride were abolished by medium 

changes, and that the mitogenic activity of fluoride depended on a coincubation with 

growth factors (/. e., in the CM (101,108)). My studies showed that removal of 

endogenous growth factors by medium change immediately before the addition of 

aluminum did not abolish the stimulatory effects of aluminum ion on the [3H]thymidine 

incorporation into cell DNA (Fig. 6, top panel) or on cellular alkaline phosphatase 

activity (Fig. 6, bottom panel). Analyses of variances indicate that the stimulation of 

both [3H]thymidine incorporation and of cellular alkaline phosphatase activity were 

significantly higher in the group without medium change than that with medium change 

(p < 0.00001 for [3H]thymidine incorporation; and p < 0.0027 for cell alkaline 

phosphatase activity), suggesting that there were interactions between aluminum ion and

IV.
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Evidence that the stimulation of [3H]thymidine incorporation (upperFigure 6.
panel) and of cellular alkaline phosphatase specific activity (lower panel) of 
aluminum on human TE85 osteosarcoma cells is not dependent on a factor(s) in 
conditioned medium. The osteogenic effects of aluminum sulfate were determined in 
human osteosarcoma cells in conditioned medium, i.e., no medium change, and in fresh 
medium, i.e., with medium change. Conditioned medium had been conditioned by 
overnight incubation with TE85 cells. Fresh medium indicates replacement of 
conditioned medium with fresh unconditioned DMEM half an hour before the addition
of aluminum sulfate. The results are presented as the percentage of the untreated 
control value. Values for untreated controls (indicated by the dashed lines) reflected 
[3H]thymidine incorporation or the cellular alkaline phosphatase specific activity in the 
absence of aluminum. The 100% control value of [3H]thymidine incorporation for the 
conditioned medium group and the fresh medium group was 276 cpm and 359 cpm 
incorporated per well, respectively. The 100% control value of cellular alkaline 
phosphatase specific activity for the conditioned medium group and the fresh medium 
group was 0.468 U//ig DNA and 0.218 UZ/zg DNA, respectively.
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endogenous growth factors in the stimulations shown in these two parameters, even 

though the effects of aluminum ion did not require the presence of growth factors.

Interaction of fluoride and aluminum on bone cell proliferation.

As a further test of the hypothesis that aluminum might be acting in concert with 

fluoride, we reasoned that if aluminum acts via the formation of aluminum fluoride, 

then addition of fluoride should shift the bone cell mitogenic dose-dependent curve of 

aluminum to left (/. e., lower optimal doses) without altering its maximal stimulation. 

Furthermore, if fluoride and aluminum act through the same biochemical mechanism 

(/. e., through the formation of aluminum fluoride), there should be no interaction 

between the two mitogenic activities. Accordingly, the effects of various doses of 

fluoride on the stimulation of TE85 cell proliferation by aluminum sulfate were tested 

(Fig. 7). There were two noteworthy observations: (a) fluoride did not significantly 

shift or alter the dose-dependent curves of aluminum ion; and (b) fluoride potentiated 

the stimulation of [3H]thymidine incorporation by aluminum ion, i.e., the maximal 

stimulation was higher when both effectors were present than each alone. To further 

analyze this apparent interaction between fluoride and aluminum ion, the data of 

Figure 7 were replotted in a manner analogous to the Line weaver-Burk kinetic plot, 

i.e., 1/(stimulation of [3H]thymidine incorporation) vs l/[aluminum sulfate] (Fig. 8). 

This plot indicates that the maximal stimulation {i.e., analogous to "V 

aluminum sulfate in the presence of fluoride was greater than that by aluminum alone, 

and that the presence of fluoride had no effect on the dose of aluminum that was 

required to produce half maximal stimulation {i.e., analogous to "Km"). This non

competitive type of interaction, which indicates that fluoride indeed interacted with 

aluminum ion, is consistent with the interpretation that the rate-limiting steps for the 

mitogenic actions of fluoride and aluminum are different.

V.

") bymax
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Figure 7.
human TE85 osteosarcoma cells. Various concentration of sodium fluoride [/. c., 0 
(closed circles), 50 (closed triangles), 100 (open triangles), and 200 yM (open circles)] 
potentiated the bone cell mitogenic activity of aluminum sulfate. The results were 
presented as percentage of the no addition control (/. e., neither aluminum nor fluoride). 
The 100% of the control value (indicated by the dashed line) was 4891 cpm 
incorporated per well.

Interaction of the mitogenic activity of aluminum and fluoride on
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Figure 8.
analogous to the Lineweaver-Burk kinetic plot. The results of Figure 7 are plotted 
as 1/stimulation of [3H]thymidine incorporation (/. e., difference in the cpm 
incorporated/well of the treated group and that of the no addition control) vs 
1/aluminum sulfate concentration. Closed circles are for the no fluoride; open circles 
are for 100 fluoride; and the open triangles are for the 200 fluoride.

Analysis of interaction between fluoride and aluminum with a plot
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Effects of aluminum on cAMP production.

Since fluoroaluminate is a potent stimulator of adenylate cyclase through its 

action on the G-proteins (85,86), we also measured the effects of aluminum ion on 

cAMP production by TE-85 cells. Table 2 shows that mitogenic concentrations of 

aluminum did not significantly increase the cellular cAMP production in these cells. 

PTH and 10 mM sodium fluoride both significantly stimulated the cellular cAMP 

production in these cells, indicating that the adenylate cyclase system in these cells was 

responsive to stimulation.

VI.

Effects of aluminum ion on IGF's release from TE85 cells.VII.

To test the hypothesis that the mitogenic action of aluminum ion is mediated by 

the local bone production of IGFs, the concentrations of IGFs in the CM of TE85 cells 

treated with or without mitogenic doses of aluminum sulfate for 48-hours were 

measured (Fig. 9). The basal concentration of IGF-I produced by TE85 cells was very 

low (/. e., at the low detection limit of our RIA), and treatment with aluminum ion

appeared to enhance the release of IGF-I into CM by these cells. However, the 

effective dose range was very narrow. In this experiment, 25 ^M of aluminum ion was 

the only effective concentration. In a repeat experiment, the optimal dose of aluminum 

ion was between 25 and 50 /uM (data not shown). On the other hand, the IGF-II 

concentration in the CM of the unstimulated TE85 cells was at least an order of

magnitude higher than that of IGF-I. Treatment with the same doses of aluminum ion 

significantly stimulated the release of IGF-II by these cells in a biphasic dose-dependent 

manner. The optimal dose of aluminum ion in each of three experiments ranged from 

50 to 75 /uM. Equivalent concentrations of sodium sulfate (up to 200 /uM) were also 

tested, but sodium sulfate had no effects on either [3H]thymidine incorporation, or cell 

alkaline phosphatase specific activity (data not shown). Thus, the observed effects 

were due to aluminum ion and not to the counter anion, sulfate.
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Ikble 2. Effect of the mitogenic concentrations of aluminum on cAMP production 
in TE85 cells. Confluent TE85 cell cultures were treated with effectors in fresh serum- 
free DMEM containing 1 mM isobutylmethylxanthine at room temperature for 15 
minutes. cAMP content in the cell extract after extraction with ether to remove 
trichloroacetate acid was measured with a commercial RIA kit. The results are 
presented in mean ± S.D. of 6 replicates.

Cellular cAMP

Concentration

(pmol/mg cell protein)Effector p*

No addition Control 46.12± 15.06

10 /uM A12(S04)3 

30 /uM A12(S04)3 

50 /uM A12(S04)3 

100 /uM A12(S04)3 

150 A12(S04)3

10 mM Fluoride** 

100 nM PTH

76.98±30.37 n.s.

56.85 ±17.83 n.s.

86.30 ±43.27 n.s.

58.80± 17.68 n.s.

70.58±39.09 n.s.

<0.02082.15 ±23.93

<0.050208.82± 135.31

*Statistical significance was determined by comparing the effector-treated cells to the 

"no addition control" cells. One way of Anaylsis of Variance indicates that there 

was no significant dose-dependent stimulation of cAMP by aluminum ion

(p = 0.2563).

**Fluoride, at millimolar concentrations, is known to stimulate adenylate cyclase. 

Thus, 10 mM fluoride was included in this study as a positive control.
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Figure 9.
osteosarcoma cells. TE85 cells were plated at a density of 5,000 cells per cm2 in 3 ml 
of DMEM containing 10% bovine calf serum in 6-well plates. When the cells reached 
approximately 40% confluence, the cultures were changed to serum-free DMEM for 
24 hours, after which the medium was changed to fresh serum-free DMEM, and 
various concentrations of aluminum were added half an hour later. The cells were 
allowed to incubate for 48 hours. The CM from each well was then collected in plastic 
test tubes precoated with 1% bovine serum albumin in DMEM. One ml of each CM 
was then dried by vacuum centrifugation, and resuspended in 50 //l of assay mixture. 
IGF-I and -II were assayed as described in Methods. The top panel shows the IGF-I 
concentrations in CM; and the bottom panel indicates the IGF-II concentrations in CM. 
The dotted lines represent the IGF concentrations in CM of the untreated control cells.

Effects of aluminum ion on the secretion from IGFs of human TE85



51

0.400

* p<0.052o 0.300--

E
o»c 0.200--

I

o ai00C3 — -e -o~~
0.000 +

* p < 0.001

**p < 0.05

25--

2
O 20--
E
a« 15--c

10--oI iu.
5--u

0 ++
0 10025 7550

[ Aluminum Sulfate ], /xM



52

VIII. Effects of an inhibitory IGF binding protein (i.e., IGFBP-4) on the 

aluminum ion-dependent stimulation of cell proliferation of TE85 cells.

As a further test of the hypothesis that the aluminum-dependent stimulation of 

human bone cell proliferation was mediated by an increase in IGF secretion, we 

measured the effects of adding an inhibitory IGF binding protein, IGFBP-4 (131), on 

aluminum-induced human bone cell proliferation. [Mohan and coworkers have 

previously demonstrated that IGFBP-4 was a specific and potent inhibitor of 

IGF-I and -II stimulated in human bone cell proliferation (131)]. Figure 10 shows that 

IGFBP-4 at 300 ng/ml significantly inhibited the basal proliferation of the TE85 cells 

by 17.8 ±11.0%, and that aluminum sulfate at 100 stimulated the [3H]thymidine 

incorporation into TE85 cells by 47 ±21.9% (p < 0.001). Addition of 300 ng/ml of 

IGFBP-4 significantly blocked the aluminum-induced stimulation of [3H]thymidine 

incorporation by 27.7 ±8.6% (147.0 ±21.9% of controls vs. 106.3 ±11.9% of controls, 

p < 0.001), which is larger than the inhibitory effect of IGFBP-4 on the basal cell 

proliferation rate.

Effects of aluminum ion on secretion of IGFBPs by human bone cells.

The effects of a mitogenic dose of aluminum sulfate on the secretion of IGFBPs 

by TE85 cells were also examined. IGFBPs were measured by Western ligand blot 

analysis. Figure 11 shows that human TE85 cells secreted mostly the 38.5 and 41.5 kD

IX.

IGFBP-3 and the 25 kD IGFBP-4. TE85 cells also secreted an unidentified IGFBP

with an apparent molecular size of approximately 30 kD. Treatment with 50 

aluminum sulfate appeared to greatly inhibit the secretion of IGFBP-3 and -4 from 

TE85 cells. Laser densitometric analyses of the autoradiographs of the Western ligand 

blots revealed that this dose of aluminum ion reduced the IGFBF-3 level in the CM by 

approximately 35% at each time point and the IGFBP-4 level in the CM by 

approximately 30% at each time point. The inhibitory effects of aluminum ion could be
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Figure 10. Effect of IGFBP-4 on the mitogenic activity of aluminum ion on 
TE85 cells. The mitogenic activity was assessed by stimulation of [3H]thymidine 
incoqx)ration. The cells were incubated with 300 ng/ml IGFBP-4 alone,
100 (jM aluminum sulfate alone, or both effectors for 20 hours. The dotted line 
indicates the 100% value of [3H]thymidine incorporation in the vehicle-treated control 
cells.
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Figure 11. Effect of aluminum ion on the secretion of IGFBPs into CM by TE85 
cells. The procedure for the IGFBP assay is described in the Methods. This figure 
shows the autoradiograph of the Western ligand blot. Laser densitometric analyses 
indicate that the reduction of IGFBP-3 level induced by 50 /uM aluminum at 6-, 24-, 
and 48-hour incubation was 24%, 36%, and 34%, respectively. The reduction of 
IGFBP-4 level induced by aluminum at 6-, 24-, and 48-hour incubation was 21%, 25%, 
and 25%, respectively. This experiment has been repeated twice with similar results. 
These cells also secreted an identified IGFBP with an apparent molecular size slightly 
larger than that of IGFBP-4.
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observed within the first 6-hours of exposure and remained evident even after a 48-hour 

treatment. Similar results were obtained in two repetitive experiments.



CHAPTER 4: DISCUSSION

The present study demonstrates that low concentrations, in the micromolar 

range, of aluminum stimulated the proliferation, measured by the incorporation of 

[3H]thymidine into cellular DNA and differentiation, determined by increased cellular 

alkaline phosphatase specific activity, a recognized marker of osteoblastic 

differentiation (149), in osteoblast-like cells derived from chicken or human bone. The 

stimulations were highly reproducible (/. e., observed in every experiment), but the 

extent of stimulation and the optimal dose of aluminum varied from experiment to 

experiment. For example, the stimulation of [3H]thymidine incorporation by aluminum 

in some experiments was as high as 300% of control, but only 150% of control in 

others. The optimal doses of aluminum in various experiments also differed from 10 to 

75 yuM. The cause for this variation is unknown. However, aluminum is one of the 

most abundant elements in the Earth, and is a major contaminant found in reagent 

chemicals, culture media, and laboratory glasswares. These experiments did not take 

into account the possibility of contaminating aluminum as a secondary determinant of 

the actual concentration of aluminum in our experiments.

My findings were consistent with previous studies (48,49) which showed that 

the mitogenic action of aluminum, unlike that of fluoride (45,95,100), was not specific 

for bone cells. Since the mitogenic concentrations of aluminum also influenced the 

1,25 dihydroxyvitamin D3-dependent stimulation of osteocalcin secretion, an index of 

osteoblastic function (150), by human osteoblasts and these concentrations of aluminum 

stimulated collagen synthesis by human osteoblast-line cells, the results of my studies 

provide strong evidence that aluminum can directly affect the activity of human 

osteoblast-line cells.

The mechanism (s) by which aluminum stimulates osteoblastic proliferation and 

differentiation is unknown. It has been suggested that aluminum might act through the

58
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activation of G proteins (85,86). G proteins have been implicated to be key regulators 

of cellular signal transduction mechanism (151), an important initial step in the cell 

proliferation and differentiation processes. However, my results indicated that 

mitogenic concentrations of aluminum did not stimulate cAMP production in TE-85 

cells. A recent study showed that agents which affected the adenylate cyclase activity 

through the interaction with G proteins would significantly inhibit the 

1,25 dihydroxyvitamin D3-dependent stimulation of osteocalcin production (152). In 

contrast, this study showed that aluminum, not only did not inhibit, but significantly 

enhanced the 1,25 dihydroxyvitamin D3-dependent stimulation of osteocalcin production 

by normal human osteoblasts. Hence, these findings argue against the involvement of 

G proteins in the osteogenic action of aluminum. It should, however, be emphasized 

that G proteins can also have other functions, e.g., activation of phospholipase C, 

protein kinase C, and the phosphoinositide pathway (68), and that aluminum has been 

shown to stimulate phosphoinositide breakdown in fibroblasts (87). In addition, a 

recent preliminary report using mouse MC3T3-E1 cells suggested that the mitogenic 

action of aluminum might involve protein kinase C (50). Thus, we cannot dismiss the 

possibility that the osteogenic action of aluminum may involve G proteins that do not 

effect cAMP production.

One mechanistic possibility was also examined that aluminum and fluoride could 

act through the same mechanism to stimulate the proliferation and differentiation of 

osteoblasts. In this regard, Lau and Farley have previously demonstrated that the 

mitogenic actions of fluoride and another transition state analog of phosphate, vanadate, 

require the presence of a growth factor whose receptor is a tyrosyl protein 

kinase (100,101,108). Two observations indicated that the mitogenic action of fluoride 

also required that a growth factor be present: (a) the removal of endogenous growth 

factors by replacing the conditioned medium with fresh unconditioned medium 

completely abolished the mitogenic effects of fluoride (101,108); and (b) the addition of
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a growth factor that would stimulate tyrosyl kinase activity, e.g., insulin or IGF-1, in 

the fresh medium restored the mitogenic activity of fluoride (101,108). My findings 

that the osteogenic effects of aluminum ion could not be abolished by medium change, 

indicated that the actions of aluminum, unlike that of fluoride, were independent of 

bone cell growth factors. The conclusion that the mechanism of action of aluminum is 

different from that of fluoride was further supported by the following observations: (a) 

unlike fluoride, aluminum is not a bone cell specific mitogen; (b) addition of fluoride 

did not appreciably alter the dose dependent curve of aluminum stimulated human 

osteoblast proliferation; (c) addition of fluoride potentiated the maximal mitogenic 

actions of aluminum; and (d) the interaction between fluoride and aluminum appeared 

to be noncompetitive, indicating that the two osteogenic agents each have different rate- 

limiting steps. Based on these findings, I tentatively conclude that aluminum does not 

exert its osteogenic actions by inhibiting osteoblastic phosphotyrosyl protein 

phosphatase activity.

My data clearly showed that aluminum ion also had direct effects on human 

TE85 osteosarcoma cells, at concentrations that stimulated human bone cell 

proliferation to: (a) increase the secretion of the IGF-I and -II, in a dose-dependent, 

biphasic manner, and (b) inhibit the secretion of IGFBPs, especially the inhibitory 

binding protein IGFBP-4. These effects were reproducible, as similar results were 

attained in repetitive experiments. The conclusion that mitogenic concentrations of 

aluminum increased IGF production was further supported by the findings that 

aluminum increased the steady state level of IGF-I mRNA in TE85 cells during a 24- 

hour incubation (153). Together, these findings are consistent with the interpretation 

that mitogenic doses of aluminum ion have significant effects on at least two 

components of the IGF regulatory system (/. e., the IGFs and the IGFBPs) in human 

TE85 osteosarcoma cells.
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Recent findings from several laboratories, including our own, indicated that 

bone-derived growth factors, especially IGF-II, play an important regulatory role in 

human bone cell proliferation and/or differentiation (120). My findings that mitogenic 

concentrations of aluminum ion increased the synthesis and secretion of IGF-II, 

therefore, suggest an interesting possibility that the mitogenic activity of aluminum ion 

on human bone cells could be mediated through the stimulation of the local synthesis 

and release of IGF-II by bone cells to serve as autocrine/paracrine agents. If this 

hypothesis is correct, it follows that an inhibition of the action of IGF-II should abolish 

the aluminum ion-dependent stimulation in cell proliferation of the human bone cells. 

Ideally, one would like to test whether addition of a specific inhibitory antibody for 

IGF-II would effectively block the aluminum ion-dependent stimulations of bone cell 

proliferation. Unfortunately, specific inhibitory antibodies for IGF-II are currently 

unavailable. However, our laboratory has recently purified an inhibitory IGF binding 

protein (/. e., IGFBP-4), which specifically inhibits the mitogenic activity of both 

IGF-I and -II (131). Accordingly, if our hypothesis that the mitogenic action of 

aluminum ion is mediated via local production of IGFs is correct, addition of an 

inhibitory dose of IGFBP-4 in the medium should also inhibit the mitogenic activity of 

aluminum ion on bone cells; and, consistent with this expectation, my data clearly 

showed that the stimulation of [3H]thymidine incorporation induced by a mitogenic 

concentration of aluminum was blocked by an inhibitory dose of IGFBP-4. In addition, 

a previous study indicated that the effect of aluminum ion on the proliferation of mouse 

MC3T3-E1 cells was to induce cells to enter the S phase from the G0 phase (50). Since 

it has been known that the action of growth factors to stimulate cell proliferation is also 

mediated by an induction of the G0 to S transition, these observations are also consistent 

with our hypothesis that the mitogenic action of aluminum might be mediated through 

the local production of growth factors, e.g., IGFs.
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Recent evidence indicates that IGFBPs may play an important regulatory role in 

modulating the local activity of IGFs (120). Of particular interest to my studies of 

human bone cell proliferation is the finding that the level of IGFBP-4 in the CM of 

human bone cells correlated negatively with bone cell proliferation rate (154). The 

results of my studies showed that mitogenic doses of aluminum ion, in addition to 

increasing the production and secretion of IGFs, also reduced the secretion of IGFBP-4 

into CM by human osteoblasts. This inhibitory effect of aluminum ion on IGFBP-4 

synthesis/secretion can be seen within the first 6 hours of treatment with aluminum ion, 

suggesting that this effect is probably a direct action of aluminum. Accordingly, we 

now hypothesize that treatments of human osteoblastic cells with aluminum ion will, not 

only increase the levels of the IGFs, but will also reduce the concentration of inhibitory 

IGFBP-4 in the CM. Together, these two actions of aluminum ion could provide a 

mechanism to increase the bioavailability of IGFs and thus allow for the indirect 

induction of a mitogenic signal by aluminum ion. Although my studies indicated that 

human TE85 osteosarcoma cells also produce and secrete IGFBP-3, and that treatment 

of TE85 cells with aluminum reduced the concentration of IGFBP-3 in the CM, we 

have not included that effect in our working hypothesis for the mitogenic responce of 

TE85 cell to aluminum, because the in vitro effect of IGFBP-3 on IGF activity has been 

shown to vary with changes in culture conditions (120). Hence, the significance of the 

reduction of IGFBP-3 secretion by aluminum ion is not clear at this time, because the 

physiological function of IGFBP-3 in human bone cells is yet to be determined.

To further assess our hypothesis that the action of aluminum to increase human 

osteoblastic-line cell proliferation was mediated by an increase in the effective activity 

of locally synthesized IGFs, the dose-dependencies for the mitogenic activity of 

aluminum and the aluminum-dependent stimulations of IGF secretion were compared. 

The result of my studies showed that the dose-responce curve for aluminum-stimulated 

mitogenic activity correlated more closely with the stimulation of IGF-II secretion than
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with the stimulation of IGF-I (Figs. 4 and 9). In addition, TE85 cells synthesize mostly 

IGF-II and very little IGF-I. Thus, my data lead me to hypothesize that IGF-II, most 

likely mediates the mitogenic activity of aluminum in human TE85 osteosarcoma cells.

Regardless of whether IGF-I or IGF-II is the agent that mediates the effect, the 

most significant aspect of my studies was finding that the mitogenic action of aluminum 

ion is, at least in part, mediated by local bone cell production of IGFs. If my 

hypothesis that the mitogenic action of aluminum is mediated through IGF-II is correct, 

it would be more accurate to speak of aluminum ion as an effector of bone cell 

proliferation, but not a bone cell mitogen per se. The action of aluminum is not to 

directly stimulate mitosis, but rather to stimulate the production of IGF-II, and further 

enhance the cellular activity of IGF-II reducing the level of IGFBP-4. At the present 

time, the mechanism by which aluminum stimulates the production and secretion of 

IGFs and inhibits the secretion of IGFBP-4 is unknown. However, it should be noted 

that I did not evaluate whether aluminum ion also increases the synthesis and 

production of other bone-derived growth factors {e.g., TGF8), so that I do not know if 

other growth factors might also be involved. Nevertheless, my findings are consistent 

with the premise that the mitogenic action of aluminum ion on human TE85 cells is, at 

least in part, mediated through effects on the IGF system.

While the findings described in this thesis suggest that the mitogenic activity of 

aluminum could not be attributed to its counter ions, we can not dismiss the possibility 

that other group III A metals, similar to aluminum, may be able to stimulate bone cell 

proliferation. Indeed, preliminary studies by Lau indicated that boron, gallium, and 

indium, like aluminum, all significantly stimulated [3H]thymidine incorporation and 

increased alkaline phosphatase specific activity in human TE85 osteosarcoma cells; 

whereas type MB metals, {e.g., lanthanum), did not have the same effect (Lau, 

unpublished observation). However, it is not clear as to whether the mitogenic action 

of other type IIIA metal is also mediated through a stimulation of IGF production by
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bone cells.

The physiologic significance of my findings that micromolar aluminum ion can 

be mitogenic for bone cells is unclear at the present time. In this respect, the serum 

concentration of aluminum is normally very low. Even in the case of renal failure 

patients treated with aluminum, the serum aluminum concentrations are usually between 

5-30 (1,4-6,18), which are lower than the in vitro effective doses. On the other

hand, because of the high affinity of aluminum ion for bone mineral, the local 

concentrations of aluminum in bone could be somewhat higher. For example, the bone 

aluminum content in normal individuals was determined to be 2.4 ± 1.2 mg/kg dry bone 

(26). Assuming that the extracellular fluid in bone constitutes 50% of the bone weight, 

this amount of aluminum ion would be equal to approximately 100 ±50 //M, which 

would be well within the in vitro osteogenic doses of aluminum ion. This speculation is 

consistent with the finding that administration of aluminum ion to normal Beagle dogs 

induced de novo bone formation in vivo (42-44). However, in the chronic renal failure 

patients, the bone aluminum content is very high [i.e., it could be as high as 175 mg/kg 

dry bone weight (26)]. This amount of bone aluminum is roughly equivalent to 

10 mM, which is approximately 100-fold higher than the in vitro osteogenic dose of 

aluminum, and was inhibitory in my studies. Accordingly, it can be postulated that 

while low doses of aluminum could stimulate bone formation, the accumulation of high 

bone aluminum concentrations could be toxic and may lead to the development of

osteomalacia (17,18,23-27).
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