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INTRODUCTION

Exposure to ethylene causes pea subhook tissue to

swell, resulting in a reduction in the rate of elongation 

Both ethylene application (1,57>58) and 

supraoptiinal auxin concentrations (63,64) cause altered 

orientation of newly deposited cellulose microfibrils in a

(2,10,12,13).

longitudinal rather than the usual radial direction® Pre­

sumably as a result of this change in orientation, ethylene

alters the birefringence pattern of the cell walls, producing

a characteristic banding pattern in treated parenchyma cells

(10,13,26,55).
According to the multinet hypothesis, isodiametric 

expansion is prevented in normally elongating cells by 

radially oriented microfibrils in the cell wall (35,56).

The finding that the orientation of microfibrils usually 

parallels that of microtubules (44,51) has led to the sug­

gestion that microtubules may be responsible for deposition 

of cellulose microfibrils (8,32,44,51,53). In addition, 

colchicine (8,53) depolymerlzes microtubules in plant and 

animal cells and is reported to disrupt newly deposited 

cellulose microfibrils in plant cell walls (31) causing a 

mottled birefringence pattern in parenchyma cells (26). Low 

temperature causes depolymerization of microtubules (47,62) 

in contrast to the stabilizing effects of D2O (16,33,3^) 

which also causes swelling and a banded birefringence pat­

tern (I?).
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The effects of ethylene on microtubules have not been

investigated and in light of the apparent link between 

microfibrils and microtubules, it now seems imperative to 

do so* This paper presents evidence suggesting that micro­

tubules are indeed reoriented as a consequence of ethylene 

treatment and that some of the pronounced effects caused by 

the gas can be reversed by low temperature or colchicine. A

model is presented in which ethylene stabilizes microtubular 

structure which may cause the observed change in the orien­

tation of microtubules and microfibrils leading to radial

cellular expansion.

MATERIALS AND METHODS

Seeds of Pisum sativum L. (cv. 

Alaska) were soaked for 6 hr in running water, and planted

After grow-

Hook Curvature Studies.

in moist vermiculite in wide mouth glass jars, 

ing 3 to 4 days in darkness at 24 C, the seedlings were 3 to 

4 cm tall. The jars were sealed with airtight covers and

ethylene was added to make appropriate final concentrations. 

Some jars were kept at 6 C for 48 hr in either light or 

dark and others were incubated for various times at 24 C in

the light or dark. After the predetermined period of time.

epicotyls were cut from the seed and shadowgraphed. Hook 

angles were measured with a protractor (40).
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Straight Growth Tests, Seeds were soaked as previous­

ly described* germinated in plastic bins containing moist 

vermiculite and grown in darkness at 24 C for ? days. Under 

dim green light* 10 mm subhook sections were excised from 

the third internode of selected seedlings (plants whose 

third internode was less than 30 mm). Ten sections were 

floated in 10 ml of standard growth media [2% sucrose (w/v)9 

5,0 pm CoCl2s 5*0 mM phosphate buffer (pH 6,8)* 1,0 pM IAA, 

and appropriate concentrations of colchicine and ethylene) 

in 125 ml Erlenmeyer flasks which were sealed with vaccine 

caps and gently shaken in the dark at 24 C for 12 hr. In 

some experiments, some of the flasks were incubated for 48 

hr at 6 C, After incubation, ethylene levels were determined 

by gas chromatography, stem sections were weighed on an ana­

lytical balance and lengths were measured to the nearest 

0,1 mm.

Long Term Low Temperature Experiments, Pea seeds were 

surface sterilized with a % clorox solution, rinsed and 

soaked in sterile water for 6 hr and planted in moist ver­

miculite in autoclaved 1 liter glass jars. The jars were 

sealed with airtight lids and appropriate concentrations 

of ethylene were introduced through a millipore filter.

Jars were incubated at 6 C for up to 60 days. Every 3 to 5 

days the jars were ventilated and fresh ethylene was intro­

duced. Observations were made and pictures were taken
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periodically*

222 Growth Studies* Peas were treated as above except

that D2O was substituted for various amounts of H2O and 

growth was at 24 Co Samples of air were withdrawn period­

ically to check for DgO-induced ethylene production* 

vations were made and pictures were taken periodically*

Obser-

Tlssue Preparation For Electron Microscopy* Presoaked 

seeds were planted in moist vermiculite in 1 liter wide-mouth 

jars* After 4 days in the dark the jars were sealed and 

ethylene was added to some for 12 hr* Five mm subhook sec­

tions were then excised from normal looking plants with ter­

minal internode lengths of at least 15 mm. The sections 

were cut longitudinally with a sharp razor blade into ax^prox- 

imately equal halves and placed in 2% glutaraldehyde in 0.1M 

phosphate buffer (pH 7.2) at 24 C for 24 hr. Sections were 

then rinsed with buffer for 1 hr and rinsed again in buffer. 

After thorough dehydration in an ethanol series, the tissue 

was infiltrated with a propylene oxide to epon series. 

Sections were embedded in epon, cured overnight, and section­

ed ‘With glass knives. The grids were post-stained with 

uranyl acetate and lead citrate. Cell wall regions were 

photographed at various magnifications with a Siemens 1A 

transmission electron microscope* Three separate tissue 

batches were prepared and photographed in this manner.
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RESULTS

Hook Curvature Studies. When applied to etiolated
pea seedlingss ethylene causes the hook to tighten, increas­
ing the angle of curvature (Table l)s unless the seedlings

I found that at 6 C, 
marked hook expansion occurs in both the control and ethylene 

treated hooks and no significant difference between the means 

was detectable even when treated with high concentrations of 
the gas for as long as 7 days.

are under low temperature conditions.

When pea seedlings are exposed to a light regime, a
pronounced hook expansion results, an effect reversible by 

ethylene. My data show that under low temperature conditions 

however, the pea seedlings respond by an even greater degree 

(P<.001) of hook opening, and ethylene only partially atten­
uates this response.

Straight Growth Tests. The dose response curve for 

ethylene at 24 C shows increasing inhibition of elongation 

with increasing gas concentrations (Fig 1). This inhibi­
tion due to ethylene was almost entirely reversed when the 

sections were incubated at 6 C. The inset shows that within
15 lain the flasks had cooled to very nearly the incubation 

temperature which demonstrates that most of the growth 

occurred at the low temperature.
Straight growth tests with a colchicine containing 

medium show that inhibition due to colchicine increases with
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increasing dx^ug concentrations (Fig 2A)* When stem sections

are incubated in various combinations of colchicine and

ethylene? the inhibition due to ethylene is significantly 

(P<*01 by ANOVA) reversed (Fig 2B)e 

effect of the two elongation inhibitors, there appears to be 

an antagonistic effect, with colchicine opposing the inhibi­

tion due to ethyleneo

Long Term Growth At 6 C« 

ate and grow much more slowly at low temperatures than they 

do at 24 G (Table 2). 

a characteristic and marked effect at 24 C show little or no

Instead of a synergistic

Alaska variety seeds germin-

Concentrations of ethylene which have

effect on cold grown seedlings (Fig 3> 4 and Table 2), 

izontal nutation of stems is absent, subhook swelling and 

growth inhibition due to ethylene is drastically reduced®

Hor~

Ethylene treated roots are geotropic in the cold and show 

practically no swelling, in contrast to the striking effects 

caused by similar treatment at 24 C (Fig 4)®

D2O Growth Studies® Deuterated water causes delayed 

germination (Table 2), swelling, ageotropic roots (Fig 5 and 

6), and in DgO treated seedlings, a curious release of 

axillary buds (Fig 6)®

Electron Microscopy, Longitudinal and transverse sec­

tions were examined to determine microtubule orientation

in elongating pea stem parenchyma cells. The normal orien­

tation of microtubules is radial, i®e they are seen to run• *
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circumferentially (around the cell) In the cytoplasm near 

the plasmalemma (5i)* This orientation was confirmed in

most cases by both longitudinal (Pig ?) and transverse (Fig 

8) sections of control tissue® In tissue treated, with ethy­
lene however, the microtubule orientation was found to be
altered so that the patterns in transverse and longitudinal 
sections were reversed with respect to control tissue (Fig 9 

and 10)® This condition was observed in ?0$ of the fields 

photographed in which microtubules were discernible® Micro­
tubules in both orientations were seen in 11$ of the fields 

and the remaining 19$ (most of which were fields of ethylene 

treated tissue) showed microtubules orientation opposite to 

the stated conditions.

DISCUSSION
Radial cellular expansion is prevented by circum­

ferentially oriented microfibrils in the cell wall of many 

plant tissues (35*56). Agents which cause swelling in 

etiolated pea stem sections, such as benzamidazole (13*26, 
30,5*0 * benzyladenine (26), kinetin and other cytokinins 

(29), colchicine and vinblastin sulfate (10), supraoptimai 
auxin concentrations and ethylene (13,26), all reorient 

microfibrils, as evidenced by changes In the optical bi­
refringence patterns (10,13,26,54). The characteristic 

banded pattern produced by ethylene is indistinguishable
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from that observed in cells treated with benzamidizole, 

benzyladenine, kinetin, or supraoptimal auxin concentrations* 

Microfibril orientation is altered by a different mechanism 

however when cells are treated with colchicine and vinblas-
tin sulfate. In this case the optical birefringence pattern 

appears diffuse or mottled (26*53) apparently due to the
depolymerization of microtubules (51$53)« All these agents 

which cause swelling do so by altering cellulose microfi­
brillar deposition; the auxins* ethylene, benzyladenine and 

benzamidizole alter the microfibrils to a longitudinal direc­
tion by an orderly redirecting of cellulose deposition (1,5^9 

63,64) and the others do so by random deposition (10,26). 

These findings clearly indicate that swelling is mediated by 

microfibrillar orientation.
In view of the fact that microtubule orientation

usually parallels that of newly deposited cellulose micro- 

fibrils (44,51), it had been suggested, that microtubules may 

be responsible for microfibrillar deposition (8,32,44, 51, 
53)# Further support for this suggestion is my evidence that 

ethylene treated tissue has microtubules which, like the 

microfibrils, are reoriented to a predominantly longitudinal 

direction (Fig 9 and 10). Therefore a key to microfibrillar
orientation and radial swelling in cells seems to lie in the
structure and orientation of microtubules.

Microtubules are protein polymers in which the spiral-
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ing monomers from hollow, unbranched, cylindrical structures 

about 240 A in diameter (5D° Inoue and Sato (37) have 

proposed a dynamic state of equilibrium between pools of

monomers and the microtubule polymers which undergo cyclic 

breakdown and reformation. Under certain conditions such 

as low temperature (62), high hydrostatic pressure (52), and 

treatment with colchicine and other drugs (16,36,38), the 

dynamic equilibrium is shifted towards the monomer state 

resulting in a breakdown of microtubules. Converesly, high 

temperature (47,62), low hydrostatic pressure (4?), and D^O 

(16,46,47) result in stabilization of microtubular structure 

due to a shift towards increased polymerization. Thus, con­
ditions iThich alter the stability of microtubules also alter 

birefringence patterns and microfibrillar deposition.
The similarity of effects of ethylene and D2O (Table 3) 

suggest that ethylene may be affecting microtubules In a 

manner similar to that of heavy water, that is by stabili­
zation of the microtubular structure.

If ethylene is in fact stabilizing microtubules when 

It causes swelling and altered microfibrillar deposition, 

this could explain the pronounced reversal of ethylene 

effects by low temperature (Table 1). By causing hooks to 

open, low temperature has the same effect as light appli­
cation or hypobaric treatment [which removes the gas from the 

tissue (40)). These latter conditions are known to open
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hooks by attenuation of the ethylene effects* Reversal of 

inhibition due to ethylene at low temperatures (Fig 1) and 

slight reversal of the inhibition by some levels of colchi­
cine (Fig 2) are added evidence that ethylene may act by 

stabilization of microtubules*
Gross and Spindle (33*3^) have suggested hydrogen

bonding to be the force responsible for stabilization or 

freezing of the mitotic apparatus, a structure composed 

largely of microtubules This suggestion was based upon the 

rapid and reversible arrest of mitosis following application 

of D20, apparently as a result of overstabilization of micro­
tubules and the evidence that D20 forms stronger intermolec- 

ular deuterium bonds*

Evidence that the major bonding force may be other 

than hydrogen bonds comes from the effects of temperature 

on microtubules (47,62)* If hydrogen bonding supplied the 

major impetus, the bonds should be weaker at higher tempera­
tures and stronger at lower temperatures (45). One of the

most consistent observations in connection with microtubules
is that, in fact, the opposite is true* This condition is 

precisely what one would expect were hydrophobic bonds the 

major source of interaction between subunits (43,50)* The 

observed effects of D20 would be explanable on the basis of 

an increased strength of hydrophobic bonding resulting from 

the reduction of entropy imposed by slightly stronger D-0
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attractive forces*

If hydrophobic bonds constitute the major stabilizing 

force in microtubule polymerisation, a mechanism for ethylene 

action suggests itself* Each subunit may contain one or more 

divalent cations to which ethylene could bind (14). In the 

absence of ethylene a dynamic equilibrium is maintained be­

tween the polymer and monomers by the presence of hydrophilic 

sites (divalent cations) on the individual subunits. When

ethylene is bound to this site, the equilibrium is shifted 

in favor of the polymer by the resulting enhancement of hydro-

phobic bonds. Furthermore, 002* a Poten^ competitive inhib­

itor of ethj'lene action which is thought to bind to the eth­

ylene site (14,39), may act by reducing the strength of the 

hydrophobic bond. This mechanism of COg action is what 

would be predicted due to the polarity of the molecule and 

its affinity for water. Binding of CO2 on a microtubule 

polymer then would shift the equilibrium toward a depolymer- 

ized state by the reduction of hydrophobic bonding.

Such a model would suggest that cold hardy plants ought 

to be less susceptible to ethylene or D2O and a difference 

ought to be observed in the structure of their microtubules. 

The microtubules of cold hardy plants have not yet been in­

vestigated (65), but winter rye plants were much less suscep­

tible to D2O (59) than were most other types of seed plants 

(27).
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A recent finding (which may possibly be related to 

hydrophobic bonding and its reaction to ethylene) was that 

yeast alcohol dehydrogenase, a metal containing enzyme, is 

stabilized when in an ethylene atmosphere (28)* 

sible, though only speculative, that this stability is 

caused by an increase in the strength of hydrophobic bonds* 

Further investigation ought to be done to determine 

the connection between reorientation and stabilization of

It is pos-

the microtubular structure, to determine the susceptibility 

of cold hardy plants to ethylene and DgO and to determine 

what differences there are, if any, in microtubular struc­

ture.

SUMMARY

This paper presents evidence that;

1. Cold reverses many of the ethylene effects such as hook 

tightening, swelling, horizontal nutation, root ageotropism 

and inhibition of elongation.

2. Colchicine reduces the effects of ethylene as determined 

by the straight growth test.

The effects of ethylene and D£0 are, in many cases,3.
similar.

4. Microtubule orientation is markedly altered by ethylene

treatment.

Based on this evidence, a working model is suggested
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in which ethylene stabilizes the microtubule polymer (when 

it binds to a metal containing site on the microtubule 

subunit) by strengthening hydrophobic bonding*
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Table 1, Hook curvatures of etiolated seedlings treated 
with and without added ethylene at 24 C and 6 C.

HOOK ANGLE (degrees)TREATMENT

ETHYLENECONTROL
Temp Light Incu- 

C Cond. bation ppm 
Time

P
X *f SE N valueX *f SE N

164 + 5 48125 ± 5 42 .00124 hr24 10Dark

166 + 5 41 .001120 H- 8 3124 12 hr 1.0Dark

.0011?8 + 8 2224 hr24 85 ± 5 2910Light

120 6 196 .5125 +52?1007 dayDark

108 + 4 ?3104 + 4 62 .56 48 hr 10Dark

94+6 2245 + 4 24 .0016 48 hr 10Light



Table 2. The effects of low temperature, ethylene and D2O on germination and morphological development, 
represents the general trend of at least 6 experiments (3 for *

This data
After 9 days all observed effects are + 3 days.

Days
from

Plant­
ing

24 C 6 C

Control Ethylene D„0 Control Ethylene2

Epicotyls less than 
1 cm. Roots 3 to 4 
cm, both geotropic

3 Roots less than 1 cm

Epicotyls 20 to 30 
cm, Roots more than 
15 cm, geotropic

6 Roots less than.l cm Roots 1 cm

Roots 1.5 cm9 Roots 0.5 cm Roots less than 1 cm Roots less than 1 cm

Epicotyls less than 
1 cm, swollen,
Roots ageotropic

12 Roots 1.2 cm Roots 1 to 4 cm Roots 1 to 2 cm

Epicotyls 1 cm, swol­
len, Roots 3 cm, 
ageotropic

Epicotyls 1 cm, swol­
len, Roots' 3 cm, 
ageotropic

15 Roots 3 to 5 cm Roots 2 to 3 cm

Epicotyls 2 cm, swol­
len, Roots 4 cm, 
ageotropic

Epicotyls 2 cm, swol­
len, Roots 4 cm, 
ageotropic

Epicotyls 1 to 2 cm 
No swelling 
Geotropic

Epicotyls 0.5 cm 
No swelling 
Geotropic

24

Epicotyls 2 to 3 cm 
No swelling 
Geotropic

Epicotyls 1 to 2 cm 
Moderate swelling 
Geotropic

50

V.A
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Table 3* Comparison of effects of ethylene and D^O as found 
in the literature and experimental results*

OBSERVATIONS d20ETHYLENE

(4,5,6,22) 

(Pig 5)

(7.8.12.13.18.49) 

(9,11,13,23,49,60)

(12.13.18.49)

(12,18,19,Fig 5)

Banded birefringence pattern (13,17,26,54,63,64)

(7,13,24,25,67) 

(20,21,42)

Reduced elongation

Swelling

Horizontal nutation (6)

(Pig 6)Ageotropic roots

(17)
(6)Leaf epinasty

(5,6)Anthocyanin production

(6)(18)Reversible effects

(Table 2) (4,5)Delayed germination

(61) (5)Chloroplast bleaching

(15) (5)Flowering effects

(3,41) (33,34,66)

(4,22)

Reduced cell division

(48)Species specific effects



Figure !• Effects of ethylene on elongation of 10 mm sub- 
apical sections when incubated at 24 C for 12 
hr (©); and at 6 C for 48 hr (■)• Vertical 
lines represent + 1 standard error* Data are 
means of at least 30 replicates* Inset shows 
rate of cooling of flasks.
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Figure 2, A* Effects of various concentrations of colchi­
cine on elongation in 10 mm subhook sections.
B. Effects of various combinations of ethylene 
and colchicine concentrations on elongation of 
10 mm subhook sections. Dotted lines represent 
+ 1 standard error. (X) is the number of repli­
cates.
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Figure 3. A: Control hook taken from 7 day old etiolated 
stem* Terminal internode is about 20 mm.

Intact stem tissue treated for 3 days
Notice swelling and

B & C: 
with 100 ppm ethylene, 
horizontal nutation.

D: Intact stem tissue treated with 100 ppm eth­
ylene for 24 days at 6 C. Note absence of swel­
ling and horizontal nutation.
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Figure 4* Upper: Seedlings which were germinated and
grown for ? days in the presence of 5*0 PP^i eth­
ylene at 24 C. Eplcotyls are swollen, roots are 
ageotropic, and growth retarded* Epicotyls of 
control seedlings grow to about 20 cm in 7 days. 
Each large square is 1 square inch.

Lower: Seedlings which were germinated and 
grown at 6 C for 30 days. 100 ppm ethylene was 
introduced initially which dropped to 15 PPQ at 
the conclusion of the 30 days* In order to pre­
vent contamination, the jars were not aired 
during the experimental period. Seedlings in 
both pictures are oriented in their growing 
position.
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Figure 5* Upper: Closeup of a seedling which was germin­
ated and grown in 75% U2O for 28 days showing 
pronounced swelling and reduced plumule.
Lower: Closeup of a seedling which was germin­
ated and grown in a 5 PP® ethylene atmosphere 
for ? days at 24 C. Swelling is pronounced and 
the plumular hook is tight. The root is ageo- 
tropic and with prolific root hairs.
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Figure 6, Upper: Seedling which was germinated and grown 
in 50^ O20 for ^-5 days at 24 C in the dark* 
Epicotyl is swollen, roots ageotropic, and growth 
is markedly inhibited.
Lower: Closeup of a seedling which was germin­
ated and grown in 75% D2O for 28 days showing 
axillary buds which have been released from api­
cal dominance. Nearly all of the seedlings which 
germinated in 75% D20 exhibited this phenomenon.



28



Figure ?• Longitudinal section through the subapical zone 
of a pea stem from a control plant showing the 
cell wall (CW) region of parenchyma cells. Note 
the microtubules (arrowed) commonly found in 
groups of three just beneath the plasmalemma. 
X100,000.
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Figure 8. Transverse section through the subapical zone of 
a pea stem from a control plant showing the cell 
wall (CW) region of parenchyma cells• Micro­
tubules (arrowed) are found running circumfer­
entially just beneath the plasmalemma* Note the 
orientation of newly deposited microfibrils which 
mirror the orientatation of the microtubules* 
X100,000.
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Figure 9* Longitudinal section through the subapical zone 
of a pea stem from an ethylene treated plant 
showing the cell wall (CW) region of parenchyma 
cells. Microtubules (arrowed) appear in a longi­
tudinal orientation paralleling the long axis of 
the cell. X130.000.
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Figure 10* Transverse section through the subapical zone of 
a pea stem from an ethylene treated plant show­
ing the cell wall (CW) region of parenchyma 
cells. Microtubules (arrowed) are shown in 
cross section parallel to the orientation of 
newly deposited cellulose microfibrils in the 
cell wall. X130,000.
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INTRODUCTION

The purpose and rationale of this paper have been 

stated previously in the introduction to the manuscript 

for publication* The purpose of this appendix iss to pre­
sent additional evidence which was not included in the main
body because5 either it was not significant enough for 

publication or it has already been published; and to add 

details to the materials and methods which may be too in­
significant to mention in a publication but which would be 

helpful to any who try to build on this work.

LITERATURE REVIEW

A report in the Proceedings of the Academy of Natural 

Sciences in Philadelphia in 1858 (39) describing the effects 

of “illuminating gas" on plants in the vicinity of a broken

natural gas line is probably the first observation in the 

literature on the effects of ethylene, a component of 

natural gas. The active ingredient however, was not dis­
covered until 1901 when Neljubow, while conducting exper­
iments in the laboratory on etiolated pea seedlings, noticed
a strange behavior of the seedlings when grown in air 

contaminated with natural gas (56)* He isolated ethylene 

as the culprit and the effects on etiolated seedlings which 

he described, later became known as the "triple response" 

(31)* The triple response, which involves subapical swel-
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ling, inhibition of elongation, and horizontal nutation, is 

characteristic and so sensitive to low levels of ethylene 

that for many years etiolated pea seedlings were used to 

determine the presence of ethylene.
Many of the early ethylene effects on plant physiology 

were investigated at the Boyce Thompson Institute where it 

was learned that most vegetative tissues produce ethylene to 

some extent (33s3^) and that ethylene production is enhanced 

'by application of the growth hormone indole~3“&cetie acid 

It was also while working at the institute that 

Crocker, Hitchocock and Zimmerman proposed ethylene as a 

plant growth hormone since so many of its effects were 

similar to those of IAA (31), 

established that swelling and inhibition of elongation 

resulting from auxin application are caused entirely by 

ethylene resulting from IAA-induced ethylene production (10,

(64).

Recent reports however have

18,26).
From the late 50*s and on, investigators turned again 

toward physiological ethylene effects reviewed by Pratt
and Goeschl (58) ---- in an effort to find a mechanism or
mechanisms of action for the catalog of effects which by 

this time included abscission of buds, fruits (43) 

leaves (1); inhibition of elongation (18); mediation of 
geotropic responses (26,2?); swelling (13,18); root hair 

proliferation (26,53); senscence (4,5); epinasty (19); and

and
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effects on flowering (17,24), to name a few. 

reports dealing with mechanisms of action can be divided 

into a few general areas which are here discussed briefly# 

There is also an excel!.ent review on ethylene and its me ch­
an ism of action (3)«

Host of th©

ETHYLENE AND AUXIN TRANSPORT: Ethylene completely 

blocks lateral auxin transport in peas (18) but not in 

Avena coleoptiles (52), which explains why ethylene destroys 

tropistic responses in peas and not in Avena# Basipetal 
movement of auxin is reversibly inhibited after yjrolonged 

exposure to the gas (20), and leaf abscission has been 

closely tied to ethylene mediated inhibition of polar auxin 

transport (9,28)# Morgan showed that most species show some 

degree of decline in auxin transport in response to ethylene 

(55)* Furthermore Burg and Burg have (18) suggested that 

ethylene effects on auxin uptake, transport, and destruction 

may account for tropistic responses.
ETHYLENE AND NUCLEIC ACID METABOLISM: DNA content and

growth rate in the apical region of soybean seedlings are 

reduced when exposed to the gas (45). Ethylene inhibits 

incorporation of ^H-thymadine in the plumule, subapex and 

root of intact etiolated pea seedlings (8,50) but BNA 

synthesis remains unchanged (50). Bean leaf tissue however 

shows no change in DNA content or rate of synthesis during 

a ? hour exposure to ethylene (44). Ethylene does inhibit
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cell division in lateral buds of etiolated pea plants and 

petunias after they have been released from apical dominance 

Cell division is also inhibited in fig fruits (54)* 

potatoes (38) and fern spores and gametophytes after exposure 

to the gas (35936)*

(22)*

ETHYLENE AND PROTEIN SYNTHESIS AND STABILITY: Ethylene
1Ainhibits incorporation of 14C-proline (but

C-glucose) into a pronase- or base-extract able cell 
wall fraction after 4 hours of incubation; This inhibition 

is synchronous with the onset of swelling (3?)» In contrast* 

after a 3 hour lag time* ethylene induces cellulase pxx>- 
duction which is localized in the separation layer of the 

abscission zone (2*4*46)* Abscission retardants such as 

IAA, cytokinins* C02* cycloheximide, and actinomycin D 

inhibit cellulase induction and with the exception of the 

antibiotics* they are ethylene competitors or antagonistso 

Chlorophyll biosynthesis during light application in 

dark grown cucumber cotyledons is enhanced by ethylene 

treatment during the dark phase (6) and* depending on the 

light and treatment Involved, ethylene both promoted and 

inhibited anthocyanin synthesis in sorghum (29,30,51)®
Fuchs and Gertman (40) Just recently reported a 

stabilizing effect of ethylene on the enzymatic activity 

of yeast alcohol dehydrogenase, a relatively unstable enzyme 

at low concentrations. Thus, ethylene has been found to

C-leucine and
14not
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induce or inhibit protein synthesis as well as to have a 

stabilizing effect on protein structuree

ETHYLENE AND CELL ULTRASTRUCTURE: Veen (61,62) reported 

that supraoptimal concentrations of IAA cause swelling along

with a change in the optical birefringence pattern and re­
orientation of newly deposited cellulose microfibrils in 

parenchyma cells. Since Burg and others (10,26,31,49,60) 

have established that supraoptimal auxin concentrations in­
duce ethylene formation and that ethylene alone is the cause 

of swelling, it is not surprising that ethylene also causes 

a change in the birefringence pattern of parenchyma cells 

in pea subapical sections (14,19,3?) and a change in orien­
tation of newly deposited wall microfibrils (?). It has 

been suggested that since microtubule orientation usually 

parallels the orientation of newly deposited wall microfi- 

brlls, the microtubules may be responsible for microfibrillar 

orientation (42,53>57) in newly deposited wall material.
This paper presents evidence that ethylene alters micro­

tubule orientation and furthermore, that the stability of 

microtubule polymers are enhanced by ethylene application. 

The spectrum of effects brought on by ethylene treatment 
are probably due to one or more of the above mechanisms 

acting singly or in concert to bring about modifications in 

plant morphology and development.
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MATERIALS AND METHODS
Straight Growth Tests,,

Alaska) were soaked in running tap water for 6 hr in the 

Plastic pans which measure 30 x 22 x 12 cm were 

filled to within 3 cm of the top with soaked and drained 

vermiculite which had been freshly transferred to the pan 

after draining to prevent water induced settling and packing

Seeds of Pisum sativum L. (cve

dark*

of the vermiculite particles. The surface of the vemicu­
ll te was leveled but not packed and then the freshly soaked 

seeds were sprinkled on top until they were evenly layered 

to about 2 seeds deep® More soaked and drained vermiculite 

was spread on top (smoothing but not packing) till all seeds

were covered by about 1 cm of vermiculite*

The pans were left in the dark room with a fan running
to circulate room air but aimed so as not to dry the ver­
miculite. Every two or three days the seedlings were
watered with about 250 ml of tapwater per pan.

After 7 days, when a majority of the seedlings had 

achieved a third internode length of between 10 and 30 mm9 
the plants were harvested and processed one handful at a 

time by cutting them off close to the substrate surface with
a razor blade. Ten mm sections were excised from selected
seedlings (those which had a normal appearing third inter­
node without swelling or horizontal nutation and a length 

of between 10 and 30 mm). All subsequent manipulations
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were carried out as previously described.

Optical Birefringence Studies. After the 12 hr straight 

growth incubation period, when stem sections had been weigh- 

ed and measured, several sections each from selected flasks
were put in small vials containing a 1:1 mixture of HgOg 

and glacial acetic acid0 After 24 hr, the tissue was mac­
erated in the same solution and optical birefringence pat­
terns of parenchyma cell walls were observed and photograph­
ed using a polarized light microscope fitted with a Pol­
aroid film pack. The microscope stage was rotated until 

the long axes of cells were oriented at a 45 degree angle 

to one of the axes of the birefringence pattern seen in 

bubbles in the same field as the observed cell. Stem sec­
tions taken from at least 3 separate experiments were 

observed and parenchyma cells were catagorized as to their
birefringence pattern. A minimum of 100 cells were counted
for each type of treatment.

Germination and Growth of Intact Seedlings in D?Q. 
Seeds were surface sterilized as previously described, 
rinsed and soaked in various concentrations of sterile D2O 

for 6 hr. Imbibed seeds were then planted in sterile ver- 

miculite which had been soaked with the appropriate concen­
tration of DgO in sterile glass jars with airtight covers. 
Appropriate concentrations of C2H4 were introduced with 

syringes and the jars were aired periodically.
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All manipulations were done at 24 C under dim green light 

to avoid photomorphic or phototropic responsese When seed­

lings had grown to their limit in the jars or when their 

future existence was threatened by fungi and rot* the plants 

were taken out9 photographed, weighed and measured*

Straight Growth Tests With DoO and C0?» Prelim.inary 

experiments to determine the effects of DgO and CQg were 

conducted at 24 C for 12 hr as previously described under 

straight growth tests except that predetermined volumes of 

DgO were substituted for HgO* COg gas was introduced 

through the sealed caps with a syringe*

RESULTS

Optical Birefringence Experiments* Optical birefrin­

gence patterns of the cell walls of etiolated subhook sec­

tions have been described for control, ethylene treated, and 

colchicine treated tissues (19*3?*4l)o The descriptions 

are in agreement with my results (Pig 11 and Table 4).

The majority of cells fran control tissue exhibit a more 

or less uniform appearing birefringence pattern whereas the 

majority of ethylene or D£0 treated cells have a similar and 

characteristic banding pattern which we recently reported 

(25)* Colchicine treated cells have a very faint and almost 

nonexistent birefringence pattern which appears mottled or 

with lighter more diffuse banding* When treated with combi-
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nations of colchicine and ethylene or DgO and CO2 

majority of cells again look like control cells*
the

DgO And Ethylene Growth Studies. Seedlings grown in 

the presence of various concentrations of D^O exhibit many 

of the characteristics of ethylene treatment (Pi 12 and 

Table 5)» Inhibition of germination and elongation are 

directly proportional to the concentration of heavy water 

as they are with ethylene. Swellings horizontal nutation of 

stems and ageotropic roots are character1stic of both types 

of treatment. The additive effects of DgO and ethylene be­
come obvious when the growth rate is high enough to demon* 

strate this effect (l«e. 25$ DpO).
Straight Growth Tests in DgQ and CO?* Preliminary 

results indicate that inhibition is a direct function of 

DgO concentration (Fig 13)* A maximum inhibition of about 
80$ is achieved with 99.8$ DgO. When 10$ COg was introduced 

in some experiments, it weakened the severity of the D2O 

induced inhibition.

DISCUSSION
The use of the optical birefringence pattern in connec­

tion with microtubule (47,^8) and microfibril (11,12,19»37» 

61,62) orientation studies make it a useful tool for deter­

mining the effects of various chemicals on the change in 

orientation of cell ultrastructure. Much more difficult
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means such as electron microscopy must be used however to 

determine precise orientations with respect to the cell axis.

To my knowledge5 there are no other reports in which 

birefringence data is presented as a differential count of 

representative forms of a dynamic process (Table 4)e Most 

of them simply present data in the form of a picture, never 

mentioning the polymorphic appearance of the parenchyma cell, 

I believe that the data are much more informative using the 

differential count. Although the small sample size used for 

differential counts preclude any strong conclusions, it is 

interesting to note general trends. The decided majority 

of morphs from each treatment are in agreement with previous­

ly published descriptions but an interesting reversal to 

control like forms occurs from treatment with a combination

of colchicine and ethylene or with DgO and COg. 

precisely what would have been predicted from the results

This is

of straight growth tests using combinations of colchicine 

and ethylene (Fig 2) and from the preliminary results in

Fig 13. These findings should be repeated and put together 

with the results of additional straight growth tests to 

confirm the validity of the observed trends.

Added evidence for the marked similarities of effects 

of ethylene and D2O (Table 3) are given in Table 5 and Fig 

At high D2O concentrations there is an apparent in­

ability of ethylene to exert any added inhibition; which

12,
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could be caused by a maximal effect on the same system due 

to DgO* If DgO and ethylene are both acting by enhancing 

hydrophobic bonding then high concentrations of either one

or the other could produce maximal effects with no added

effects due to the other.

Carbon dioxide* a potent competitive inhibitor of ethyl­

ene action, is thought to bind to the same metal containing 

site to which ethylene binds (21). Preliminary results of

straight growth tests with various combinations of D^O and 

10% 002 show that CC>2 may affect DgO induced phenomena in 

the same way. This aspect ought to be investigated further.

SUGGESTION FOR FURTHER RESEARCH

The relationship between COp and the various D20 induced 

effects should be investigated using straight growth tests,

swelling, and optical birefringence pattern studies to see

if in fact COg is a competitor of DgO action.

The relationship between microtubule and microfibril

orientation needs to be studied with emphasis on how micro­

tubule orientation is changed and how that change brings

about microfibrillar orientation changes. One way of

determining the mechanism of microtubule reorientation is 

to treat with ethylene and then take successive specimens at 

intervals and observe what happens by electron microscopy.

It would be time consuming and tedious but should show what

happens, much like the successive frames of a movie.
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Differential counts (%) of various optical bi~Table 4*

refringence patterns as seen in macerated parenchyma cells 
under polarized light microscopy*

Treatment Birefringence Pattern

(ES)ssgaEfcgsaPia

1Control 90 9 0

94^ D20 18 3 79 0

50^ d2o 10 7317 0

10“% Colchicine 414810 1

6910 ppm Ethylene 0229

-6 66 2410 M Colchicine 
10 ppm Ethylene

50$ D2O 
10^ C02

10 0

64 27 09
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Table 5. Effects of D^O and ethylene on germination and 
development of etiolated seedlings.

% Ger« % V/ith 
mlna- 
tion

LENGTH (cm)Days
Treatment of Axial

Budsgrowth Epicotyls Roots

6 6.6 -f” .2 14.2 ± .3Control 100 0

Control •r 
C2H4 0.2 ppm 6 5*8 4; c 4 12.4 ± .5 100 0

25% D20 

25%
C2H^ 0.2 ppm

6 4.6 + .3 11.9 ± *7 100 0

6 9.8 4 .4 982.2 4 .2 0

50$ d2o 6?15 2.5 4 .2 10.0 4 .5 90

50^ DoO 4 
C2H^ 10 ppm 492.8 4 .215 9.2 ± .5 93

75% D2o 4.2 4 .328 851.1 4 .1 100

75% D20 4 
C2H4 10 ppm 28 3.8 4 .2 851.1 4 .1 100

99.8^ D20 28 66.99 ± .1

99.8$^ 1^2^ 
C2Hj^ 10 ppm • 84 4 .128 80



Figure 11. Birefringence patterns as seen in macerated
parenchyma cells of excised tissue treated as 
follows. A: Control; B: iO~?M Colchicine for 
12 hr; C: 10 ppm ethylene for 12 hr; D: 50$ 
D20 for 12 hr.
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Figure 12* Effects of various concentrations of ethylene 
and D2O on morphological development. Solid 
lines are 1 inch apart.

As Control with and without 0.2 ppm ethylene, 6 days
B: 2% D2O with and without 0.2 ppm ethylene, 6 days
Cs 50$ D2O with and without 10 ppm ethylene, 15 days
D: 75% D2O with and without 10 ppm ethylene, 28 days
E. 100$ D2O with and without 10 ppm ethylene, 28 days
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Figure 13» Effects of various concentrations of D2O on 
elongation of 10 mm subapical sections* CO2 
was added in some experiments* Vertical lines 
represent + 1 standard error and number of flask 
replicates are in brackets*
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ABSTRACT

The marked effects of ethylene on pea stem growth
have been investigated. Low temperature mid colchicine.
both known microtubule depolymerization agents, reverse
the effects of ethylene in straight growth tests. Low 

temperature (6 C) also profoundly reduces the effects of 

the gas in terms of swelling, hook curvature, and horizontal 
nutation. Electron microscopy shows that microtubules are
reoriented after treatment with ethylene for as little as
12 hours. The findings indicate that some of the ethylene
responses may be due to a stabilizing effect on micro­
tubules in plant cells.
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