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ABSTRACT OF THE THESIS

Effect of Almond-Raisin versus Commercial Sports Beverage on Antioxidant Status of
Runners

by

Anh Thu V. Tran

Master of Science, Graduate Program in Nutritional Science 
Loma Linda University, September 2005 

Dr. Sujatha Rajaram, Chairperson

Background: Whole foods are readily available antioxidant source and provide beneficial

macromolecules and phytochemicals, which may contribute to optimal health. However,

the approach to examining whole foods rich in antioxidants to play either an equivalent or

better role in defending exercise-induced oxidant stress have not yet been taken.

Objective: The objective of this study was to compare the effects of 2 isocaloric pre­

exercise beverages: an almond-raisin beverage and a commercial sports beverage in male

endurance runners on selected antioxidant status markers.

Design: In a randomized crossover study, 10 male runners (ages 28+1.2 years) ran to

exhaustion on a treadmill at 70% V02max, twice, separated by 2 weeks. Blood samples

were drawn 60 minutes pre-exercise, at the start, and every 20 minutes thereafter. Trolox

Equivalent Antioxidant Capacity (TEAC) represented antioxidant activity. Gallic Acid

Equivalents (GAE) represented total serum polyphenols. Using high-pressure-liquid- 

chromatography, thiobarbituric acid reactive substance (TEARS) reflected serum 

malondialdehyde levels. Statistical analyses were conducted using mixed linear models

that included time and treatment as fixed factors, and subject as a random factor.

vm



Results: In the longitudinal analysis, there was a significant main treatment effect found

when all time points were included for TEAC and GAE, with the almond-raisin beverage

having a significantly greater level than the commercial sports beverage (p = 0.0002, p

0.0239, respectively); the TEARS showed no significant treatment effect (p = 0.08278).

Conclusion: The almond-raisin beverage appears to provide a measure of antioxidant

protection beyond that of the sports beverage and may be considered as an alternative to

the commonly used beverages for endurance runners.
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CHAPTER ONE

INTRODUCTION

Statement of the Problem

Driven virtually from gun to tape, conquering a stretch of distance, today’s

endurance runners strive to perform to near genetic and training limitations. Regular

physical exercise alone has been well-documented for its beneficial effects in circulating

lipids and lipoproteins, maintaining ideal body weight, reducing blood pressure,

improving insulin sensitivity, and decreasing the overall risk of death due to degenerate

diseases (Whyte et al 2005). Despite these advantages, it is now clear that rigorous

muscular exercise results in an overwhelming production of radicals and other reactive

oxygen species (ROS) known as oxidative stress (Ginsburg et al 1996, Leaf et al 1997,

Child et al 1998, Whyte et al 2005). During intense exercise, an athlete’s ability to

approach maximum oxygen consumption (VCbmax) can cause the whole body to increase

10 to 20-folds above resting levels of oxygen consumption and potentially raise 200-folds

in active muscle fibers (Keul et al 1972, Sacheck et al 2001). This increase has been

suggested to generate the “mitochondrial leak,” which is associated with approximately 2

to 5 percent of total electron flux through the cytochrome chain resulting in reduction of

the remaining oxygen to form superoxide radicals, igniting a cascade of events (Figure 1)

(Leaf et al 1997, Child et al 1998; Evans WJ et al 2000, Sen et al 2001, Takanami 2000,

Chevion et al 2003).

Previous studies have associated accumulation of ROS as the underlying

mechanism to the disturbance of muscle homeostasis (i.e. oxidation-reduction status),

suggesting that the imbalance causes muscle fatigue and injury (Schneider et al., 2004).
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Given that radicals are produced during normal metabolism, it is no surprise that skeletal

muscle myocytes contain defense mechanisms to reduce the risk of radical-mediated

injuries (Criswell et al, 1993, Venditti et al 1997, Aslan et al 1998, Chevion et al, 2003).

As a protective network in the intra- and extracellular environment to detoxify and reduce

the deleterious effects of ROS, there are 2 major classes that make up the endogenous

protective system: 1) enzymatic (common but not limited to superoxide dismutase,

glutathione peroxidase, and catalase) and 2) non-enzymatic (glutathione, vitamin E,

vitamin C, lipoic acid, carotenoids, ubiquinone, uric acid, and bilirubin) antioxidants.

Although the body has an elaborate antioxidant network to quench free radicals, under

certain conditions, such as exhaustive exercise of greater than 60 minutes approaching

VCEmax, the protective capabilities are compromised (Leaf et al 1997, Vasankari et al

1998, Liu et al 1999, Child et al 1999, Chevion et al 2003).

Interne Aerobic Exercise

Increase Oxygen Consmifi tion

Increased Mitochondrial Free- 
Radical Generation:

TOKurnaMAca:

/DAFT ATI 0IT Unregulated
Antioxidant

Defense
"Tte -Mtochondrin Leak '

Protein Oxidation, 
Lipid Peroxidation, 

& DNA Damage

Acute Antioxidant 
Rehouse

Figure 1. Proposed cascade of events ignited by intense aerobic exercise (Adapted from 
Adams et al 2002).
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Study designs using animal models have shown the significant delay of muscle

fatigue and/or injury using antioxidant supplementation, but a few results have been

replicated in humans (Witt et al 1992). An observational trail of a single bout

ultraendurance exercise on athletes reporting pre-race use of isolated vitamin E

supplement demonstrated possible protection against some of the acute effects of

exercise-induced oxidative stress (Ginsburg et al 1996). However, no significant effect

was found in athletes reporting pre-race usage of isolated vitamin A or C from this study.

A more specific design in supplementation reported short-term dosage of pre-race

vitamin E resulted in fewer complaints of intestinal injury, occult bleeding, and/or the

severity of post-race GI complaints among marathon runners (Buchman et al 1999). The

increased vitamin E turnover during endurance exercise compared to sedentary periods is

a repeated pattern in numerous studies and suggests its strong contribution in the fight

against oxidative stress (Mastaloudis et al 2001).

Although vitamin E plays an important role, single-dose antioxidant studies suffer

from experimental design weaknesses due to, but not limited to, the possible additive or

synergistic effect in coupling antioxidants. Studies that investigated a mixture of

antioxidant supplementation, such as an ascorbic acid, carotenoids, and a-tocopherol

cocktail, taken prior to intense aerobic exercise have demonstrated more replicable results

in the delay and/or reduction of exercise-induced oxidative stress (Kanter et al 1993,

Vasankari et al 1997, Balakrishnan et al 1998). However, evidence suggesting too high a

dose of antioxidant supplementation may shift intracellular redox balance to reduce state

and cause another source of impair next to the skeletal muscle contractile function and

performance (Coombes et al 2001, Marshall et al 2002). A recent study reported that at
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overload intensity of exercise training low doses of antioxidant mixture significantly

reduced creatine kinase, a common biomarker for muscle damage (Palazzetti et al 2004).

There is overwhelming evidence that it is the complete antioxidant defense network

balance that combats oxidative stress, not the overload of a single presence of one factor.

There is a strong consensus from the literature that endurance exercise induces

oxidative stress and that the pre-exercise usage of combination supplementation aids in

the delay of this stress; yet what is lacking in the literature is an aggregate approach.

Little progress has been made in the past decade to delineate the contribution of nutrients

delivered as whole and unrefined food to the modulation of the pathological

consequences of free radicals in the human body. Pre- and post-exercise regimes of high

carbohydrate and low fat intake have been a well recognized staple for endurance athletes

to maintain the rigors of daily training as well as to optimize performance in regard to

achieving proper energy. Recent findings of no significant difference in time-to-

exhaustion using a high fat and low carbohydrate combination in a pre-exercise beverage

versus the traditional staple among endurance runners suggest plausible flexibility in

macronutrient composition (Bazilian et al 2003). Studies have also demonstrated that

upon intake of vitamin E supplement, subjects with higher fat intake have a higher

plasma vitamin E concentration (Sacheck et al 2000). Therefore, it is reasonable to

suggest a high-fat and antioxidant-rich food as a pre-exercise snack. If it can be shown

that a whole food approach can combat or even delay exercise-induced oxidative stress, it

will help to not only offer an alternative preventive measure to oxidative stress, but also

pave the way to investigate natural and inexpensive whole food sources that may confer
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equal or better benefits to the athletes compared to commercial sports snacks and

beverages.

Purpose of the Study

Objectives

The primary objective of this study is to understand the effects of a pre-exercise

almond-raisin beverage, rich in natural antioxidants, specifically vitamin E and

polyphenols, versus a commercial sports beverage (Gatorade ®) on exercise-induced

oxidative stress among endurance male runners undergoing time-to-exhaustion run at 70

percent VOimax.

Specific Aims/Hypotheses

The specific aims of this study are:

1) To compare the almond-raisin beverage versus commercial sports beverage (Gatorade

®) effect on serum total antioxidant activity.

Hypothesis: The Almond-raisin beverage will increase serum levels of Trolox Equivalent

Antioxidant Capacity (TEAC) compared to the commercial sports beverage (Gatorade

®).

2) To compare the almond-raisin beverage versus commercial sports beverage (Gatorade

®) effect on serum total polyphenols.

Hypothesis: The Almond-raisin beverage will increase serum levels of Gallic Acid

Equivalents (GAE) compared to the commercial sports beverage (Gatorade ®).

3) To compare the almond-raisin beverage versus commercial sports beverage (Gatorade

®) effect on lipid-peroxidation by-product - Malondialdehyde (MDA).
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Hypothesis: The Almond-raisin beverage will reduce serum levels of thiobarbituric acid

reactive substance (TEARS) compared to the commercial sports beverage (Gatorade ®).
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CHAPTER TWO

REVIEW OF THE LITERATURE

In the prevention of cellular damage — the common pathway for aging, cancer,

cardiovascular disease, muscle fatigue and/or injury, and a variety of other degenerate

diseases, the process to maintain cellular oxidation-reduction homeostasis involves an

elaborate system, in which endogenous and exogenous antioxidants are intimately

interwoven in an intricate network against their antagonist: the oxidants, also known as free

radicals. What appears to be a paradox is that intense exercise increases the production of

free radicals by virtue of an increase in oxygen utilization (Figure 1, 2). The purpose of this

literature review is to discuss the current understanding of the relationship between

antioxidants and exercise-induced oxidative stress.

Oxidants

Chemicals of Free Radicals

Molecules generally contain pairs of electrons that orbit their nucleus, however an

electron is occasionally "lost,” transforming the molecule into a free radical. An oxidant,

which can be interchangeable with the term free radical, is a molecule capable of

independently existing with one or more unpaired electrons in its outer orbital. This ability

causes great molecular instability and gives the oxidant its high reactive character, which is

extremely useful to the body in cases of immunological activation, drug detoxification, and

proper relaxation function of the blood vessels. Despite their role in regular metabolic

processes, these molecules provoke a cause for concern because an overwhelming presence

can promote oxidation-induced damage to important macromolecules such as lipids,

proteins, and nucleic acids.
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The diradical characteristic of molecular oxygen presents a higher susceptibility to

several highly reactive intermediates. The electron configuration of oxygen favors the

tendency to receiving one electron at a given time. Sequential reduction of molecular

oxygen (equivalent to sequential addition to electrons) leads to the formation of superoxide

anion, peroxide (specifically hydrogen peroxide) (H2O2), and hydroxyl radicals (HO)

(Figure 2). Reactive oxygen species (ROS) is a more commonly used term in regard to

collectively addressing these 3 main intermediates generated from the complete reduction of

oxygen to water (H2O). Although superoxide anions and H2O2 are not highly reactive

species, their activity as active oxygen species comes from their potential to produce

extremely highly reactive HO through the Fenton reaction (I) and Haber-Weiss reaction (II).

HO reacts with all biological materials, oxidatively by hydrogen withdrawal, double bond

addition, electron transfer and radical formation, and initiates autoxidation, polymerization

and fragmentation. The overwhelming production of reactive molecules either weak or

strong, could set off a cascade of reactions with important macromolecules, putting nucleic

acids, lipids, and proteins at stake for oxidative damage.

O2"

h2o ^ ho2' +
Superoxide radical 

Hydroperoxyl radical 

Hydrogen peroxide 

Hydroxyl radical

021. + e

OH'2. O2 +
H2O23. H02 +

H2O2

H+e

^ HO OH'4. ++ e

Figure 2. Complete reduction of oxygen and bolded are the oxygen-derived intermediates 
(Adapted from Clarkson et al 2000).

The most common location for radical attack is at the cell membranes, where

polyunsaturated fatty acids (PUFAs) become victim to lipid peroxidation. Detrimental
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change to the organization of cellular membrane could cause increased membrane

rigidity, decreased activity of membrane-bound enzymes (i.e. sodium pumps), and altered 

membrane receptors and permeability. This results in an influx of Ca2+, a loss of

intracellular enzymes, and an influx of lysosomal (destructive) enzymes. Besides the

basal level of oxygen needed in regular metabolic functions, there is no circumstance

other than physical exercise that demands an exceedingly high level of oxygen

consumption.

Oxidative Stress Induced by Exercise

Ignited by early studies of skeletal muscle production of free radicals during

contractile activity, overwhelming evidence has confirmed exercise-induced oxidant

production (Dillard et al 1978, Davies et al 1982, Criswell et al 1993, Venditti et al 1997,

Child et al 1997, 1998, Liu et al 1997, Sacheck et al 2000, Ji 2002, Powers et al 2004).

The term oxidative stress is used in circumstances where an overwhelming amount of

oxygen radicals are produced, exceeding the cellular antioxidant defense system (Figure

3). The magnitude of the exercise-induced oxidative damage is dependant upon the rate

of oxygen consumption and the presence of cellular antioxidant systems (Schneider et al

2004). Current evidence suggests the following sources of skeletal muscle radical

production: 1) the mitochondria, where ROS that have escaped scavenging enzymes

present in the mitochondria may leak into the sarcoplasm, 2) the capillary endothelium,

where hypoxia or reoxygenation process is created during exercise, and 3) an oxidative

explosion due to inflammatory cells mobilized as a result of muscle and tissue damage

(Figure 1) (Evans et al 2000).
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Although the mitochondria are often viewed to be the power house for cells, the

“mitochondrial leak” accounts for the majority of free radicals produced. During

exhausting exercise, an athlete’s ability to approach maximum oxygen consumption

(V02max) can cause the whole body to increase 10 to 20-fold above resting levels of

oxygen consumption and potentially raise 200-fold in active muscle fibers (Child et al

1997, 1998, Sacheck et al 2001). While 85 to 90 percent of the skeletal muscle oxygen

consumption in the mitochondria undergo the electron transport chain (ETC) to produce

adenosine 5’-trisphosphate (ATP) and water, 10 to 15 percent is directed by oxidation

chemical reactions. At the terminal part of ETC, the enzyme cytochrome oxidase

oxidizes 4 cytochrome-reduced-molecules to form water (95 to 98 percent from the 85 to

90 percent mentioned above). The remaining 2 to 5 percent of this oxygen undergoes one

electron reduction resulting in superoxide radical formation (equation 1 in Figure 2)

(Schneider et al 2004). Elevated muscular activity and oxidative metabolism coupled by

a proportional increase in ROS formation are the underlying means of offsetting the

redox scale (Figure 3) (Child et al 1997, Schneider et al., 2004, Powers et al 2004).

Redox Status and Oxidative StressOptimal Redox Status

wnoxmwTsOXIDANTS

Oxidative Stress.Oxidative Stress. ^Reductive StressReductive Stress

REDOX SCALEREDOX SCALE

Figure 3. Relationship between oxidants and antioxidants (Modified from Powers et al 
2004).
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Measuring Oxidative Stress

Due to the short half-lives (typically 10‘6 to 10"12) of reactive intermediates, it is

difficult to monitor oxidative stress in vivo (Leeuwenburgh et al 2001). Because it is not

possible to directly measure free radicals in the body, scientists have approached this

question by measuring the by-products that result from free radical reactions. If the

generation of free radicals exceeds the antioxidant defenses then one would expect to see

more of these by-products. These measurements have been performed in athletes under a

variety of conditions.

Lipid Peroxidation By-Product

In the inner mitochondrial membrane, superoxide radicals are formed during the

reduction of oxygen. These radicals can trigger a cascade of reactions in the fatty acids of

phospholipids, resulting in membrane lipid peroxidation and disruption of the organization

of the membrane bilayer. The integrity of the barrier such as fluidity and permeability is

altered and compromised. Polyunsaturated fatty acids become victim to peroxidation and

generate reactive free radicals and toxic aldehydes, which can hamper or completely inhibit

the normal functionality of the components of the cell. Although harmful to cellular

function, these by-products offer effective biomarkers for oxidative stress. While not

limited to three, the following are three common biomarkers used for oxidative stress: 1)

conjugated dienes, 2) lipid hydrocarbons, and 3) thiobarbituric acid-reactive substance

(TEARS) such as malondialdehyde (MDA) (Clarkson et al 2000, Leeuwenburgh et al

2001),

Diene conjugation. One of the first products of unsaturated fatty acid peroxidation,

conjugate dienes, absorbing ultraviolet light at 230 to 235 nm, has been commonly used to
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infer oxidative stress, but previous studies noted its use with caution (Clarkson et al 2000).

Due to the nature of conjugated dienes, they are useful to measure bulk lipids (LDL) and

monitor the early stages of the peroxidative process. However, in the circumstances of

measuring human fluid, this biomarker has its limitations. Even with the use of high-

pressure-liquid-chromatography (HPLC), used to separate conjugated dienes from human

fluid, the extraction were found to be unsuccessful, leaving non-oxygen-containing isomer

of linoleic acid (Halliwell et al 1993).

Lipid hydrocarbons. During the decomposition of lipid peroxides, hydrocarbon

products of ethane and pentane are also generated. Ethane and pentane have also been used

to infer oxidative stress by the collection of these products through exhalation (Clarkson et

al 2000). Its dependency on the presence of metal ions to decompose lipid peroxides may

not give an adequate index of overall peroxidation (Halliwell et al 1993). Hydrocarbons are

also produced by bacteria and are air pollutants and these confounding factors set another

limitation to this approach.

Thiobarbituric Acid-Reactive Substance (TEARS) - Malondialdehyde (MDA). For

its mere ease and cost effectiveness, the thiobarbituric acid-reactive substance (TEARS) is

the most widely used technique to detect lipid peroxidation: malondialdehyde (MDA) is

commonly used for human fluids. Sample material is heated at low pH with thiobarbituric

acid (TEA) and the resulting chromogen is measured by absorbance at approximately

532nm or fluorescence at 553 (Halliwell et al 1993). A major setback to this approach is

that TEARS is prone to artifacts because TEA can react with a wide variety of compounds

that absorb at the same range, including sugars (Leeuwenburgh et al 2001). Thus TEARS

has been subject to criticism; even when it does offer an empirical window on the complex
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process of lipid peroxidation (Halliwell et al 1993, Clarkson et al 2000, Leeuwenburgh et al

2001).

In the case of oxidative stress, oxidant products are typically detected at low

levels, which present a challenge in observing accurate results. Specifically for screening

of human body fluid, recent improvements have been adapted to the TEARS assay: 1)

amplification and 2) purification process. To hamper amplification of peroxidation and

limit the variations in sample lipid content and/or antioxidant content, butylated

hydroxytoluene (BHT) is added to the sample. To eliminate possible artifacts due to the

reaction of TEA with other body-fluid content, a separation process is conducted through

HPLC to separate the authentic (TBA)2-MDA (Leeuwenburgh et al 2001). Indeed these

2 additional procedures do not eliminate the problem, but it does enhance the accuracy

and allows for general measurement of peroxidation.

A ntioxidant A ctivity

Since there is yet to be a “gold standard” in measuring oxidative stress, previous

studies have recommended that at least 2 techniques be used for an accurate and consistent

evaluation. Other than looking directly at the by-products of oxidation, antioxidant activity

has been another way to express the degree of exercise-induced oxidative stress. Previous

studies tended to use this approach because it required a small amount of human body fluid

for such reliable and practical use (Clarkson et al 2000). Not limited to the following 3,

these are common antioxidant activity assays with the latter specifically looking at total

phenolic capacity: 1) Ferric Reducing Ability of Plasma (FRAP), 2) Trolox Equivalent

Antioxidant Capacity (TEAC), and 3) Total Radical-Trapping Antioxidant Parameter

(TRAP)
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Ferric Reducing Ability of Plasma (FRAP). The time and cost efficiency of the

Ferric Reducing Ability of Plasma (FRAP) assay makes it one of the commonly used

tests for the antioxidant power of a given sample. The general concept of FRAP is

through the reduction of ferric to ferrous ions at low pH, which cause a colored ferrous-

tripyridyltriazine complex that can be compared in the test reaction mixture by

absorbance change at 593nm (Benzie et al 1996). As in other test of oxidative stress and

antioxidant defense, FRAP reaction conditions are far from physiological, and must be

interpreted with caution for in vitro testing of human body fluid may not reflect in vivo.

(Benzie et al 1999).

Trolox Equivalent Antioxidant Capacity (TEAC). Essentially, this method is an

inhibition method, in which radical species is generated. There is an end point by which

the presence of the radical is detected, and the antioxidant activity of the added sample

inhibits the end point by scavenging the free radicals (Re et al 1999). TEAC is the

capacity of an individual antioxidant to inhibit preformed radical monocation of 2’, 2’-

azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS’+) at a defined time point

relative to Trolox (6-hydroxy-2,5,7,8-tet-ramethychroman-2carboxlic acid). This

decolorization assay screened for both lipophilic and hydrophilic antioxidants

flavonoids, hydroxycinnamates, carotenoids, and serum antioxidants (ascorbic acid, a-

tocopherol, gluthathione, and uric acid).

Due to its common use to indirectly infer exercise-induced oxidative stress, there

have been many developments to improve this approach (Re et al 1999, Art et al 2001,

Arts et al 2002). One is the direct production of the blue/green ABTS + chromopore

through the reaction between ABTS and potassium persulfate, which broadens the range

14



in which absorption can be read (Re et al 1999). Another is to add a deprotenation

process to render the effects of protein masking actual antioxidant capacity (Arts et al

2001, 2002). The practical implication of this assay justifies its frequent use and

reference, but should not be the sole determinant of oxidation-reduction status.

Total Radical-Trapping Antioxidant Parameter (TRAP). The basic concept of the

Total Radical-Trapping Antioxidant Parameter (TRAP) assay uses Folin-Ciocalteau

regent to reaction with present polyphenols through an extraction/hydrolysis and protein

precipitating step. Often repeated, the polyphenol extraction involves a hydrolysis step,

which breaks the links of polyphenols with lipids and final precipitation of the

supernatant to be filtered and assayed with Folin-Ciocalteau reagent (Serafini et al 1998,

O’Byrne et al 2002). A direct relationship between total phenolic content and total

antioxidant activity in phytochemical extract from dried fruits has been demonstrated in

previous studies (Sun et al 2002). With this premise, the use of TRAP assay has become

more common.

Antioxidant Network: The Endogenous Protective Mechanism

The question that arises now is, how effectively can athletes defend against the

increased free radicals resulting from exercise? Do athletes need to take extra antioxidants

or does a training adaptation exist? The human body maintains an elaborate antioxidant

system that is extremely effective at counteracting oxidative damage under normal

metabolism. This system is composed of several enzymes, vitamins, and minerals acting as:

radical scavenger, hydrogen donors, electron donor, peroxide decomposer, singlet oxygen

quencher, enzyme inhibitor, synergist, and metal-chelating agents.
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In both the intra- and extracellular environment, there are 2 broad classes of

endogenous antioxidant defenses that inhibit or react with radicals and radical

intermediates: 1) enzymatic and 2) non-enzymatic (Table 1). Within these 2 divisions,

antioxidant can be further classified into four categories based on function (Noguchi et al

2000). Comprised mostly of enzymatic antioxidants, the preventive antioxidants work to

suppress the formation of free radicals. The radical scavenging antioxidants work to

suppress chain initiation and/or breaking chain propagation reactions. The third category,

de novo antioxidant’s, main function is to simply repair compromised enzymes. Lastly, the

fourth function responds to adaptation where the signal for the production and reaction of

free radicals induce fonuation and transport of the appropriate antioxidant to the right site.
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Table 1

Important enzymatic and non-enzymatic physiological antioxidants (Derived from 
Powers et al 2004).

Main PropertiesEnzymatic antioxidants Location
Mitochondria & cytosol Dismutase superoxide 

radicals
Superoxide dismutase (SOD)

Mitochondria & cytosolGlutathione peroxidase (GSH-Px) Removes H2O2 and organic 
Hydroperoxide

Mitochondria & cytosolCatalase (CAT) Removes H2O2
Non-enzymatic antioxidants Main PropertiesLocation

Acts as free radical scavenger 
and recycles vitamin E

Aqueous phase of cellVitamin C (Ascorbic acid)

Cell membrane Major chain-breaking 
antioxidant in cell membrane

Vitamin E (a-tocopherol)

Non-protein thiol in cell Serves multiple roles in the 
cellular antioxidant defense

Glutathione

Endogenous thiol Effective in recycling vitamin 
C, may also be an effective 
glutathione substitute

a-lipoic acid

Scavenger of OH radicalsPurine metabolism 
product

Uric acid

Scavengers of ROS, singlet 
oxygen quencher

Membrane tissueCarotenoids

Extracellular antioxidantProduct of heme 
metabolism in blood

Bilirubin

Reduced form are efficient 
antioxidants

MitochondriaUbiquinone

Enzymatic Antioxidants

Super oxide Dismutase (SOD)

Three groups of enzymes play significant roles in protecting cells from oxidant

stress. The first, located both in the mitochondria and cytosol, superoxide dismutase

(SOD) is the primary defense against superoxide radicals. This is an antioxidant that is

poorly understood as it catalyzes to form a weak oxidant. However the benefit is that this

oxidant is less toxic than superoxide anions. Acting as a Bronsted base in aqueous

solutions, superoxide radicals (O2’) shift the acid-base equilibrium to form a
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hydroperoxyl radical (HO2) and in low pH conditions form hydrogen peroxide (H2O2) 

(equation 1 Figure 2). This reaction can accelerate up to 104 times the frequency for

spontaneous dismutation in physiological pH with the presence of SOD (Schneider et al

2004). SODs are metal-containing enzymes that depend on cofactors of bound

manganese, copper, or zinc for their antioxidant activity. The manganese-containing

enzyme is most abundant in mitochondria matrix, while the zinc or copper forms are

predominant in cytoplasm. Interestingly, SODs are inducible enzymes - exposure of cells

to higher concentrations of oxygen results in rapid increases in the concentration of SOD.

(Williams et al 1998, Powers et al 1999)

Catalase (CAT) and Glutathione Peroxidase (GSH-Px)

As discussed earlier, H202 is not a radical, but because it is highly likely to

produce hydroxyl radicals, which presence in the body is detrimental. To hamper any

formation of hydroxyl radicals, catalase (CAT) and glutathione peroxidase (GSH-Px) are

equally active in the blood to detoxify and/or reduce H202. Found mostly in the cytosol

or peroxisomes and only in the mitochondria of the heart, CAT is a protein that contains

iron in the form of heme and reduces H202 to water and oxygen hence finishes the

detoxification reaction started by SOD. On the other hand, located in both cytosol and

mitochondria, glutathione peroxidase reduces H202 to water by means of lipid peroxides

metabolism. GSH-Px is a group of enzymes, the most abundant of which contain

selenium. They also reduce organic peroxides to alcohols, providing another route for

eliminating toxic oxidants. In addition to these enzymes, glutathione transferase,

ceruloplasmin, hemoxygenase and possibly several other enzymes may participate in
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enzymatic control of oxygen radicals and their products. (Williams et al 1998, Power et al

1999)

Especially studies investigating exercise-induced oxidative stress, SOD, GSH-Px,

CAT are common markers for antioxidant status in human studies. An early study by

Robertson et al examining the response of runners to training load reported a positive

correlation with the weekly training of low range (16 to 43km) to high load range (80 to

147km) to erythrocyte activity of enzymatic antioxidants (1991). However, subsequent

studies showed varying results, which may be due primarily, but not limited to study

design. Surmen-Gur et al. examined acute exercise on young male smokers and non-

smokers at a load of 60 percent V02max (2003). Their study suggests that SOD and

GSH-Px are more prone to oxidative damage with acute exercise. However, another

fairly recent study investigating the effect of exercise training on SOD mRNA

expression, found no significant difference before or after training (Morikawa et al 2004).

There may be an increase in these enzymes and other common enzymatic antioxidants in

response to increased exercise-induce oxidant production, yet in terms of adaptation

response to exercise, it is still unclear (Aslan et al 1998, Surmen-Gur et al 2004,

Morikawa et al 2004). Since there is a strong association between intense exercise and

oxidative stress, one can assume under these circumstances, sources of enzymatic

antioxidants are exhausted, which leads to another line of defense: the non-enzymatic and

dietary antioxidants.

Non-enzymatic and Dietary Antioxidants

Non-enzymatic antioxidants are another line of defense against radicals. These

are found primarily within the lipid (fatty) and aqueous (watery) portions of the body.
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The major aqueous-based antioxidants are reduced glutathione (GSH) and vitamin C,

while the major lipid antioxidants are vitamin E, ubiquinol (coenzyme Q10) and P-

carotene. Certain phytochemicals, like flavonoids also possess antioxidant ability.

Glutathione (GSH)

Primarily synthesized in the liver (approximately 90 percent) and transported to

tissue via circulation, GSH is the main source of non-protein thiol in muscle cells (Ji et al

1995). It is a tripeptide (glutamyl-cysteinyl-glycine) and because of its structural

composition, GSH is highly susceptible to degradation in the small intestine. Therefore,

GSH cellular concentrations are not directly influenced by diet. However, based on

several independent experimental studies, it appears that GSH content and GSH enzyme

activities respond to training (Sen et al 2000). Animal models have demonstrated

adaptation possibility due to training exercise with skeletal muscle GSH concentrations,

where there is 600 percent more GSH and corresponding enzymes as well as catalase in

(slow) type I fibers than (fast) type lib fibers (Ji et al 1995). Perhaps this is due to greater

oxygen utilization by the Type I fibers and GSH ability for compensatory response to

acute exercise and training. Balakrishnan et al conducted a study comparing depletion of

antioxidants among trained and untrained males and found that the basal GSH was

negatively correlated with conjugated diene, a lipid peroxidation by-product, and

V02max, demonstrating the possible strain exercise has on the GSH basal source (1998).

In terms of acute, chronic, and training response to exercise, GSH has been seen to

modulate accordingly, thus demonstrating the active role GHS plays in defense against

oxidant production (Ji et al 1995, Clarkson et al 2000, Sacheck et al 2001). (Williams et

al 1998, Powers et al 2004)
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During exercise, these defense systems become more active, although there is no

clear explanation for the increase. Antioxidants have been observed to have a marginal

adaptation. Such rapid up-regulation of gene expression of antioxidant enzymes in

response to acute oxidative stress is not likely. Studies have observed exercise training to

promote adaptation by the antioxidant defenses as antioxidant enzymes are increased as

well as glutathione (Ji et al 1995).

Glutathione is a major non-enzymatic antioxidant and has several important

functions: detoxification and recycling antioxidants (Table 1). Detoxification of ROS is

accomplished through 2 general mechanisms: 1) direct or spontaneous reaction with ROS

and 2) GSH-Px catalyzing ROS decomposition. During a reaction catalyzed by

glutathione peroxidase, GSH donates a hydrogen pair in the removal of hydrogen and

organic peroxides (i.e. lipid peroxide) by oxidizing 2 GSH to form glutathione

disulphide. The cysteine from its tripeptide composition provides an exposed free

sulphydryl group (SH) that is very reactive, providing an abundant target for radical

attack, thus allowing for the second role as an effective and direct scavenger to a variety

of strong radicals like hydroxyls and carbon centered radicals (Sen et al 2000). Reaction

with radicals oxidizes glutathione, but the reduced form is regenerated in a redox cycle

involving glutathione reductase and the electron acceptor NADPH (Figure 4). This same

redox cycle and that of a-lipoate redox cycle demonstrates the strong interwoven link to

the antioxidant defense system, where GSH acts as an effective reducing agent to support

the recycling of vitamin C, ubiquinol, and vitamin E (Figure 4) (Sen et al 2000).

(Williams et al 1998, Powers et al 2004)
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Vitamin E: Tocopherols or Tocotrienols

Vitamin E is by far the most important lipid-soluble antioxidant and most

commonly present in nuts (especially almonds and hazelnuts), seeds, vegetable and fish

oils, whole grains (especially wheat germ), fortified cereals, and apricots. Vitamin E is a

generic term to represent at least 8 isomers of tocopherol or tocotrienols. There are 4

forms of tocopherols and tocotrienols: a, p, y, and 5, which differ in the position of

methyl groups on the aromatic ring. Most studies examine a-tocopherol because is the

most biologically active, potent in antioxidant ability, and the most widely distributed in

food (Powers et al 2004). Traditionally, tocopherol and tocotrienols have been expressed

in terms of international units (IU), where 1 IU is equal to Img of d-a-tocopherol acetate.

The current recommended daily allowance (RDA) is 15 IU per day for men and 12 IU per

day for women. The biological activity of tocopherol and tocotrienols recently has been

expressed in d-a-tocopherol equivalent (a-TE). (Tidus et al 1995).

The primary activity of tocopherol is to trap superoxide, hydroxyl, and lipid

peroxyl radicals to less reactive forms in the cellular membranes. Lipid hydroperoxides

are oxidized to peroxyl radicals (ROO), which can react with fatty acids in the

membranes, but if vitamin E is present, these radicals react with vitamin E to form

ROOH. Embedded strategically within the various lipid-rich membranes (i.e.

sarcolemma, inner mitochondrial, and plasma membrane) and due to its lipid-soluble

character, its major function is to protect membranes and lipoproteins from oxidative

damage. (Tidus et al 1995, Williams et al 1998)

Although vitamin E is a chain-breaking antioxidant which reacts rapidly with

fatty acid radicals to prevent further propagation, during the course of such reactions the
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vitamin can itself be oxidized to tocopheroxyl radicals. Pincemail et al looked at

tocopherol mobilization during bouts of intense exercise, and found a significant increase

during the exercise and a return to baseline post-exercise (1988). Robertson et al found

similar response and reported that in response to training load, levels of vitamin E were

elevated in erythrocyte among running groups compared to sedentary subjects (Robertson

et al 1991). Similar reports were found in single bouts of endurance exercise (Hutler et al

2001). Deuterated a-tocopherol was observed to deplete faster during an extreme

ultramarathon (50km) than that of sedentary subject (Mastaloudis et al 2001). An

explanation of this disappearance is due to increased levels of vitamin E committed to

respond to the exercise-induced lipid peroxidation. Therefore, these radicals must be

reduced back after each reaction by glutathione or vitamin C (Figure 4). The remarkable

ability of vitamin E to continuously work against lipid peroxyl radicals in the membrane

can be explained by the continuous recycling of this vitamin and explains why vitamin E

has the reputation of being one of the most effective antioxidants (Sen et al 2000).

fADF*-

NADIH

Figure 4. Interaction between non-enzymatic antioxidants, a-lipoic acid (aLA), 
glutathione (GSH), and vitamin C (VC) in the recycling of vitamin E (VE). VC = 
ascorbate radical; VE • = vitamin E, DHLA = dihydrolipoic acid; GSSG = oxidized 
glutathione (Adapted from Ji 1995).
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Vitamin C: Ascorbic Acid

Vitamin C (ascorbic acid) is a water soluble vitamin present in citrus fruits and

juices, green peppers, spinach, broccoli, kale, cantaloupe, kiwi, and strawberries. As

opposed to vitamin E, its water-soluble character allows for antioxidant activity to be

prominent in aqueous environments. These chemical properties allow it to interact directly

with superoxide and hydroxyl in the aqueous phase such as plasma thus preventing damage

to erythrocyte membrane (Ji et al 1999). The RDA is 90 mg/day for men, 75 mg/day for

women, with an additional 35 mg/day for smokers. Intake above 2000 mg may be

associated with adverse side effects in some individuals (Powers et al 2004).

There are basically 3 main functions that vitamin C plays, 2 of which are linked to

the body’s antioxidant defense mechanism (Table 1). Taking on the role first as a free

radical scavenger, ascorbate can react with superoxide, hydroxyl, and lipid hydroperoxides

for their removal. Secondly, vitamin C is a major contributor to recycling vitamin E

radicals by converting reduced vitamin C to a semiascorbyl radical, which is later reduced

back into its reduced state through NADH semiascorbyl reductase, GPH, or dihydrolipoic

acid (Figure 4). These 2 functions play a vital role in the antioxidant defense network

against oxidative stress. Thus, it is no surprise that ascorbate acid has been observed to

respond to extreme bouts of exercise. Gleeson et al, investigating endurance runners,

reported that the plasma concentration of ascorbic acid increased significantly in response to

a 21-km run, however at 24 hours post-exercise, baseline levels of ascorbic acid were

reduced to 20 percent and remained that low for another 48 hours (1987). Subsequent

studies found similar response to concentration of vitamin C during and post-exercise

(Clarkson et al 2000). Although the vitamin C antioxidant mechanism is well established,
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the importance of vitamin C in protecting against exercise-induced oxidative stress is not

clear.

Interestingly, vitamin C also functions as a pro-oxidant under certain circumstances, 

especially in the presence of transition metals such as Fe or Cu . The ability for vitamin 

C to convert reduced iron (Fe3+) to the ferrous state (Fe2+) would ignite a cascade of further

production of free radicals (Ji et al 1995). The notion to mega-dose vitamin C

supplementation to overcompensate loses is still unclear and avoided due to its potential

ability to be a pro-oxidant.

Flavonoids

Flavonoids are not part of the endogenous antioxidant family, but rather a larger

family, the diphenolpropanes (over 4,000 members), which contain antioxidant properties

and ability to reduce oxidative stress (O’Byrne et al 2002). They are commonly found in

everyday foods, like fruits (especially grapes and raisins), vegetables, chocolate, tea, and

wine.

In addition to the three main endogenous non-enzymatic antioxidants and the fourth

as a phytochemical, there are numerous small molecules that function as antioxidants:

dihydrolipoic acid (active form of a-lipoic acid), carotenoids, ubiquinone, bilirubin, uric

acid, and certain trace minerals. Their main properties and location is briefly summarized

in Table 1.

Combating Oxidative Stress: Nutrition Manipulation

The Supplementation Approach

Table 2 summarizes the studies that have investigated the effect of antioxidant

supplementation use prior to an intense bout of exercise on exercise-induced oxidative
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stress. A randomized, single blinded study of 20 non-smoking males (mean age of

25.0+5.6 years) with varying levels of training compared the effect of a daily dose of

vitamin supplement mixture (592mg a-TE, lOOOmg ascorbate acid, and 30mg P-

carotene) to a placebo for 6 weeks prior to a exercise run (Kanter et al 1993). The

exercise test consisted of a 30 minute treadmill run at 60 percent V02maX, followed by a 5

minute run at a pace that elicited approximately 90 percent VCbi Results reported arax-

significant lower rate of pentane production and MDA at rest after the vitamin

supplement mixture group (significant values at P<0.05) and no significant changes with

the placebo group.
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Table 2
Human studies on the effect of antioxidant supplementation use prior to an intense about of exercise on exercise-induced oxidative stress

Study
Design

Factors
StudiedReference Subjects Length Treatment Results

Daily dose of 1 of the following:
• Vitamin supplements (VS)

(592mg-aTE 
lOOOmg-ascorbate acid,
3 Omg-(3 carotene)

• Placebo (P)
(saturated medium-chain Triglyceride gelatin)

VS vs. P:
■f Absolute 
pentane, 
f MDA

20 non-smoking 
males,
(25.0 + 2.9 yrs)

Pentane 
TEARS - 
MDA

Kanter et al 
1993

Randomized,
single-blind 6 wks

Vasankari et 
al 1997

Daily dose of 1 of the following 4wks prior to 
each exercise test (2):

• Vitamin supplements (VS)
(294mg vitamin E,
lOOOmg vitamin C,
60mg ubiquinone)

• Placebo (P)

Antioxidant VS vs. P: 
t LDL- &
TRAP 
t Serum 
tocopherol,
No sig. difference 
on DC

potential serum(TRAP),8 endurance male 
runners,
(25 - 39 yrs)

Randomized,
single-blind
crossover

8wks +
4wk
interval

Serum oc-
tocopherol,
Diene

a-

conjugates
(DC)

• Study I
(Ingested 1 of the following prior to each 
exercise test):

vitamin C solution (VC): 2.0g ascorbic acid or 
placebo (P)

• Study II
(Ingested 1 of the following prior to each 
exercise test):
carbohydrate solution (C): 5g glucose + lOg 

maltodextrin or placebo (P)

Study I:
VC vs. P
No sig. difference 
during test, 
fDC @ recovery; 
Study II:
No sig. difference 
between C vs. P

17 endurance 
athletes:
Study I —
9 (20-37yrs) & 
Study II - 
8 (24-34 yrs)

2 bouts of 
exercise 
test + 7d 
interval

Randomized,
single-blind
crossover

DieneVasankari et 
al 1998 conjugates

(DC)



Table 2 (continued)

Reference Subjects Study Design Length Factors StudiedTreatment Results
Daily dose of 1 of the following 14d prior 
to exercise test:

• Vitamin supplement (VS)
(1000IU d-a-tocopherol)

• Placebo (P):
(soya lecithin + 0.02mg a-tocopherol)

VS vs. P:
No sig. difference in 
Salicylate & plasma 
VE,
T VE:total lipid ratio

26 marathon male 
(24) & female (2) 
runners (18- 
55yrs)

Randomized,
single-blind,
placebo
controlled

2wks pre­
test + 1 
bout of 
exercise test

Salicylate,
Plasma Vitamin E
(VE),
total lipid

Buchman et 
al 1999

Sacheck et al 
2000

Daily consumption of 1 week prior to 
exercise test (at least 3-days (1 weekend + 
2 weekdays) was confirmed):

• Low fat diet -LF (<40g fat/d):
(2.9mg vitamin E/d)

• High fat diet -HF (>60g fat/d)t: 
(9.8mg vitamin E/d)

3 month (1 
bouts of 
exercise test 
during early 
follicular 
phase

22 females:
11(19.6+0.9),
11(20.5±1.7)

VE,Ancillary, 
unblind parallel

LF vs. HF:
No sig. differenceMDA,

DC

to
00

2 wks pre­
race + 1 
bout of 
exercise test 
(Trial 1) &
1 month

Trial 1 vs. 2:
No VC comparison 
between trials due to 
lost of samples,
T rate d-VE depletion, 
Plasma F2-isoprostane 
no sig. difference

11 athletes:
8 males (46+3yrs) 
& 11 females 
(44+3 yrs)

Ascorbic acid (VC), 
d-tocopherol (d-VE), 
Plasma F2- 
isoprostanes

14hrs prior to each trial (2) consumed 
both of the following: 75mg d2-RRR & 
d6-all-rac-a-tocopherol

Mastaloudis 
et al 2001

Unblind
crossover

post-race 
(Trial 2)

OT vs. NT:
Tgsh
S vs. P:

4wk
overload 
training - 
OT & 4wks 
normal 
training- 
NT)

Daily dose of 1 of the following prior to 
training:

• Vitamin supplement (S)
(75pg Se + 75|ig retinyl acetate, 60mg 
ascorbic acid and 60mg d-a-tocopherol)

• Placebo (P)

Gluthathione(GSH), 
Glutathione 
peroxidase (GSH-Px), 
Superoxide dismutase 
(SOD),
Creatine kinase (CK)

17 male
triathletes,
(32.9+9.9)

Palazzetti et 
al 2004

Randomized,
double-blind GSH-Px higher in both 

OT & NT, 
t SOD,
ICK



Another randomized, single-blind, however in a crossover fashion of 8 endurance

male runners ages ranging from 25 to 39 years compared the effects of a daily dose of a

combination of antioxidants mixture (294mg vitamin E, 1 OOOmg vitamin C, and 60mg

ubiquinone) to a placebo for 4 weeks, prior to each exercise test (Vasankari et al 1998).

The exercise test consisted of a repeated 31km running exercise twice with a washout

period of 4 weeks. Among the vitamin treated group, levels of LDL-TRAP, serum

TRAP, and serum a-tocopherol inferring antioxidant potential were significantly

increased compared to the placebo group (P = 0.0031, P = 0.0037, and P = 0.0031

respectively). There was no significant difference found between the groups for diene

conjugates.

Vasankari et al conducted another randomized, single-blind crossover study on 17

endurance athletes on 2 bouts of exercise tests: Study I: 9 athletes (ages ranging from 20

to 37 years) and Study II: 8 athletes (ages ranging from 24 to 34 years) (1998). Study I

compared the effects of a vitamin C solution (2.0g ascorbate acid) to a placebo alternate.

The washout period was 7 days. There was no significant different during the exercise,

but among the vitamin C group, there was a significant decrease of conjugate dienes at

recovery compared to the placebo group. Study II compared the effect of ingesting a

carbohydrate solution to a placebo with a washout period of 7 days too. There was no

significant difference between the carbohydrate group and that of the placebo group.

In another randomized, single-blind placebo controlled study, 26 marathon

runners consisting of 24 males and 2 females (ages ranging 18 to 55 years) compared the

daily dose of vitamin supplement of 1000IU of d-a-tocopherol to a placebo (soya lecithin

and 0.02mg-a-tocopherol) for 14 days prior to the 1996 Houston-Tennaco Marathon run
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(Buchman et al 1999). Subjects were included if they had no use of non-steroidal anti­

inflammatory drugs (NS AIDS) within 24 days of the race or vitamin or mineral

supplements containing vitamin C or E or selenium within 30 days of the race. Runners

were studies 2 weeks prior to the race. The vitamin Eitotal lipid ratio had a significant

increase in the supplemental group (P = 0.02), but not in the placebo group (P = 0.25).

There was no significant difference in salicylate and plasma vitamin E.

Sacheck et al conducted an ancillary, unblind, parallel study on 22 female rowers

(11 of whom were ages 19.6+0.9 years and 11 of whom were ages 20.5+1.7 years)

comparing a daily consumption of a low fat (LF) diet (<40% in fat/d) to a high fat (HE) diet

(>60% in fat/p) with the premise that the LF would have a significantly low amount of

vitamin E (2.9mg vitamin E per day) in respects to the RDA than that of the HF (9.8mg

vitamin E per day) (2000). The pilot study spanned 3 months until a single exercise test was

performed during the early follicular phase to see the effect of the treatments. The exercise

consisted of running on a motorized treadmill for 5 minutes (0 percent grade) and then

another 45 minutes at a downhill grade of-10° at 75% of each subject’s age-predicted

maximum heart rate (220 - subject’s age). The diet was maintained for at least 1 week prior

to exercise (at least 3-days were confirmed through a dietary recall. No significant difference

for vitamin E, MDA, and DC were seen between the 2 groups.

Another unblind, crossover study on 19 athletes, 8 males (ages 46+ 3 years) and

11 females (ages 44+3 years), compared the effects of consuming both 75mg ds-RRR and

de-all-rac-a-tocopherol 14 hours prior to a single bout exercise trial and a sedentary trial

(Mastaloudis et al 2001). Trial 1 consisted of a 5km ultramarathon run with a 1 month

washout period and trial 2 was no physical exercise. The baseline of this study was 2
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weeks prior to the race. Due to loss of samples from trial 2 because of technical reasons,

there was no comparison test run between the 2 groups. There was no significant

difference in F2-isoprostene between groups. However, there was a significant increase

in the rate of d-tocopherol disappearance in trial 1 compared to trial 2 (P<0.03).

In a more recent randomized, double-blind study (Palazzetti et al 2004), 17 male

triathletes (32.9+9.9) compared the daily dose of either a vitamin supplement mixture

(75pg Se + 75pg retinyl acetate, 60mg ascorbic acid and 60mg d-a-tocopherol) to a

placebo for 4 weeks of either overload training (OT) or normal training (NT). Training

loads (NT) were individualized for each subject, quantitatively by collecting personal

data in regard to past training and qualitatively by functional assessments. OT was

defined as 42 percent increase from NT. There was significant increase in GSH in

response to supplementation and remain elevated in the OT group compared to the NT

group (P<0.05). GSH-Px was significantly higher in the supplement group in all cases

after NT and OT (P<0.01). In response to OT, supplementation increased SOD

significantly (P<0.05) and significantly decreased the magnitude of creatine kinase

(P<0.05).

The Whole Foods Approach

Plants are especially susceptible to damage by active oxygen (exposed to

radiation UV light) and it is no surprise that plants have their own antioxidant defense

systems that can act as very potent antioxidants. (Bruce et al 2000, Karadeniz et al 2000,

Sun et al 2002, O’Byrne et al 2002). Daily foods contain a wide variety of free radicals

scavenging molecules, such as nuts, fruits, vegetables, teas, wines, and a variety of other

foods are product rich in natural antioxidant compounds.
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In a randomized, crossover study on 12 hyperlipidemic women 2 diets were

compared (refined-food diet and phytochemically-rich food diet), where the

phytochemically-rich diet intake was increased in dietary fiber, vitamin E, vitamin C, and

carotene (respectively 160, 145, 160, and 500 percent increase) compared to that of the

refined-food diet (Bruce et al 2000). Not only was the lipid profile improved by a

decrease of 13 percent in total cholesterol (P<0.05) and 16 percent decrease in low-

density-lipoprotein-cholesterol (PO.OOl), but also blood SOD decreased by 69 percent

(P<0.01) and GSH-Px by 35 percent (P<0.01) on the phytochemical-rich diet. These

results suggest that phytochemical-rich foods may offer a beneficial effect on lipid profile

and possibly decrease the need for oxidative defense mechanisms.

Another randomized study on 17 healthy adults compared the antioxidant effects

of Concord grape juice (10ml) and oc-tocopherol supplementation (400 IU RRR-a-

tocopherol) on biomarkers of oxidative stress (O’Byrne et al 2002). Both regimes

significantly increased serum oxygen radical absorbance capacity (ORAC) (P<0.001) and

LDL lag time (PO.OOl), suggesting the Concord grape juice as an equal alternative to

vitamin E supplementation. In normal metabolic circumstances, the whole food approach

does demonstrate merit for recommendation purposes. However, it would also be of

interest to see if this approach holds up in conditions inducing oxidative stress, like that

of intense physical exercise.

Research Gap

Form of Antioxidant Delivered

All of the studies thus far have assessed the effects of dietary antioxidants on

exercise-induced oxidative stress by using dietary supplements instead of considering the
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possible additive or synergistic effects of nutritious whole food sources. No studies have

yet to standardize a pre-exercise beverage in respect to taste, energy, consistency, and

antioxidant composition requirements like that created in the Food Laboratory at Loma

Linda University. This study will be the first to systematically explore the effects of whole

food pre-exercise snacks (almond-raisin beverage versus a commercialized sports beverage

(Gatorade ®)) on antioxidant activity and lipid peroxidation among endurance male

runners.

Methodology

Over the last decade of studies examining the effect of dietary antioxidants on

exercise-induced oxidative stress, common biomarkers used to monitor antioxidant activity

and lipid peroxidation were reported to have inconsistent results. The explanation to this

variability range is a number of possibilities including the differences in the mode of

exercise used, the time points examined, the level of training of subjects, environmental

factors (i.e. altitude), and/or the lack of control for changes in the plasma/serum volume

(Clarkson et al 2000). Furthermore, few studies have sought to determine and utilize

optimal dosing strategies in regard to both dosing and delivery. These studies often neglect

the possibility that mega-dosing may overcompensate the shift in the redox balance. Aside

from study design limitation, assay protocols, sample size, and possible training adaptation

effect, other confounding factors may be contributing to the variability.

Clearly, additional research is necessary before it can be stated with certainty that

dietary antioxidant supplements in athletes are effective in combating exercise-induced

oxidative stress. Furthermore, studies paving the way to investigate whole food sources

may offer a more conducive, convenient, and natural alternative for athletes concerned with
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this arena. The “Almond-raisin Beverage versus Commercial Sports Beverage Study”

provides an ideal study design and data set that may fill some gaps in research concerning

antioxidant activity and lipid peroxidation among endurance athletes.

Pre-exercise Beverages

Commercial Sports Beverage (Gatorade ®)

Commercial sports beverages (like Gatorade®) have become a very important part

of the current sports market. Research has confirmed that, for the most part, the claims

about the effectiveness in endurance events and athletic competitions may hold truth

(Coombes et al 2000). Gatorade ® and other commercial sports beverages have been

reported to be effective in preventing dehydration, providing carbohydrate, stimulating

rapid rehydration, and in most cases encouraging athletes to drink enough fluid to avoid

dehydration without any adverse side effects (Davis 1990, Ryan 1991, Burke 1993).

Although commercial sports beverages encompass a number of vital factors in physical

exercise (energy and hydration), it is lacking in response to the last decade of studies

indicating a need to combat exercise-induced oxidative stress.

The Almond-Raisin Combination

Almonds

Over the past few years there have been a growing number of new findings on the

nutritional benefits of nuts, especially almonds. Almonds are unique in composition

because they are an excellent source of plant protein, fiber, and vitamin E. Of all the nuts,

almonds have the highest concentration of natural a-tocopherol, the most biologically

active form of the vitamin E compounds (Kris-Etherton et al 1999, Sabate et al 1996, 2001,

2003). Investigating an almond-rich diet, Sabate et al reported that on average men needed
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5mg of a-tocopherol and women 8mg to meet the daily vitamin E requirement (2001).

Furthermore, the study demonstrated that just one ounce of almonds a day almost bridges

the gap for the daily requirement (Sabate et al 2001).

The source of almond's antioxidant potency comes not only from vitamin E, but also

from manganese and copper. These 2 trace minerals are essential cofactors for proper

scavenging of the non-enzymatic antioxidant: superoxide dismutase (SOD).

Raisins

According to the USD A, raisins rank among the top antioxidant foods. Not

necessarily in terms of antioxidant vitamins, but rather in a high composition of flavonol

glycosides and phenolic acids (Karadeniz et al 2000). A direct relationship between total

phenolic content and total antioxidant activity in phytochemicals extracts in dried fruits has

been demonstrated in previous studies (Sun et al 2002). Only in the past few years have

studies examined whole foods promoting optimal health, so the area of research of raisin

and health is in its early stages. Raisins have been the object of research primarily for their

unique phenol content. There are less studies in comparison with almonds on the effect of

raisins and antioxidant status and no study to date that associate the consumption of them to

protect exercise-induced oxidant production.

The Almond-raisin Beverage

Although incorporating almonds and raisins in the diet to improve oxidative status to

meet the needs of normal metabolic processes has been studied, there has not yet been a

study that has considered almonds and raisins as an antioxidant source to combat against

exercise-induced oxidant production. This study has opted to combined almonds and

raisins in the form of a liquid as a pre-exercise beverage due to its ease of consumption and
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consistency in studying its effect as an antioxidant source versus a commercial sport

beverage (Gatorade ®) among endurance male runners. The beverage was prepared by

toasting the almonds and soaking the raisin in water overnight before blending them in a

high-speed Food Processor. The amount of water used to prepare the almond-raisin

beverage was accounted for to ensure equal water consumption between the 2 beverages.

Isocaloric conditions between the 2 beverages assured equal energy comparisons. The

primary reason for combining almonds and raisins is the nutrient composition - especially

the antioxidant potency that each possesses, and its potential combined antioxidant power.

(Bazilian et al 2003).

Clearly the consumption of natural whole food combinations rich in antioxidant

potency has the potential to improve antioxidant status. The degree of that improvement

among male endurance runners is the primary objective of this study. By building on the

much-needed data, the long-term objectives of the “Almond-raisin Beverage Versus

Commercial Sports Beverage Study” is to pave the way for further studies examining the

role of combining different types of whole food sources such as nuts and dried fruit as pre­

exercise, during exercise, and post-exercise snacks to combat exercise-induced oxidative

stress.
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CHAPTER THREE

OUTLINE OF THE RESEARCH

The Effect of a Pre-exercise Almond-Raisin Beverage versus a Commercial

Sports Beverage on Endurance in Male Runners was conducted in 2002 with the support

of the Nutrition Department and the Center for Health Promotion of Loma Linda

University with Sujatha Rajaram, PhD, as the primary investigator (Rajaram et al 2003

submitted). The primary objective of the nutrition-exercise study was to determine the

effects of fat and carbohydrate on fuel utilization and endurance performance in trained

male runners. In the course of this study, extra serum samples were stored for further

testing of an ancillary hypothesis such as the current study that examined the effect of an

almond-raisin beverage on antioxidant activity and lipid-peroxidation.

Subjects

Male endurance runners were recruited from Loma Linda University, California

State University San Bernardino, University of California Riverside, and the surrounding

communities. Representation of the major ethnic groups in Southern California was

considered: Caucasians, Asians, African Americans, and Hispanics.

Inclusion Criteria

Subjects qualified to participate in the study were healthy males between the ages

of 20 to 35 (age 28+1.2) years, habitual endurance runners (running at least 30 miles per

week), VCEmax between 56 to 65 ml/kg/min (VC^max 61.9+2.1 ml/kg/min), had no

adversities to nuts or dried fruit (specifically almonds and raisins), maintained the same

training schedule throughout the study period, and adhere to the diet and exercise

protocol outlined in this study.
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Exclusion Criteria

Based on a two-stage screening process, recruited individuals were excluded if

they were not male, fell outside the age range of 20 to 35 years, have any medical

conditions (cardiovascular disease, diabetes and/or other metabolic disorders) deeming

unhealthy status based on brief medical history questionnaire, have adversities to nuts or

dried fruit, and did not run at least 30 miles per week. Significant weight change (>2.27

kg) in the last year and unwillingness to maintain training status and adhere to the diet

and exercise protocol for the duration of the study were excluded. Those who met this

initial screening were then invited to review and sign the inform consent, complete a

treadmill test to determine their maximal oxygen consumption (VC^max), and provide a

blood sample for a basic chemical profile. Contingent on the normative data report for

the level of fitness for male runners by the American College Sports Medicine, VC^max

below 50 ml/kg/min were excluded. Those who donated blood within two months prior

to signing informed consent, had medical conditions, or sub-normal nutritional status

identified by the chemical profile were also excluded.

Study Design

This study was a randomized, single-blind, crossover experimental design (Figure

5) based on the Rajaram et al. 2003. In Rajaram et al. 2003, 10 subjects completed the

study. Only viable serum samples were assayed and missing data was accounted for in

the statistical analysis. Subjects were randomly assigned to one of the two treatment

groups: (1) Almond-raisin beverage or (2) Commercial sports beverage (Gatorade®) as a

pre-exercise snack before they ran to exhaustion on a treadmill at 70% V02inax twice in

a crossover fashion separated by at least 2 weeks.
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Figure 5. Study design

Data Collection and Analysis

Serial blood measures were collected 60 minutes prior to treadmill test fasting (T.

6o), prior to test (To), 20 min intervals from start (To) until exhaustion (Tend), and 30

minutes post-exercise (T+30). Blood draws were performed at the Center for Health

Promotion, Loma Linda University, centrifuged within 20 minutes, serum aliquoted

immediately, and stored at -85 degrees Celsius until further analysis. Samples were then

analyzed at the Nutrition Research Laboratory, Department of Nutrition, Loma Linda

University.

Rationale for Selection

The methods employed to observe oxidative stress was based on cost, availability

of viable serum, and most commonly used biological markers used in recent discussions

of studying antioxidant activity and lipid peroxidation. Lack of accuracy, validity, or

both of current methods to assess oxidative stress in humans was acknowledged and

handled by conducting more then 1 technique to provide a better estimate. Due to these

limitations of each biological assay alone, 3 assays were considered to study both sides of

the Redox scale.
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Total Antioxidant Activity: Trolox Equivalent Antioxidant Capacity (TEAC)

Serum TEAC was determined following an adapted and improved method of an

assay described previously (Re et al, 1999). TEAC is the capacity of an individual

antioxidant to inhibit preformed radical monocation of 2’, 2’-azinobis-(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS'+) at a defined time point relative to Trolox

(6-hydroxy-2,5,7,8-tet-ramethychroman-2carboxlic acid). This decolorization assay

screened for both lipophilic and hydrophilic antioxidants - Flavonoids,

hydroxycinnamates, carotenoids, and serum antioxidants (ascorbic acid, a-tocopherol,

gluthathione, and uric acid). The minimum sample volume used for TEAC was 10pl for

each serum sample and working Trolox standards (1, 0.5, and 0.25 mmolar). Each

sample was read at the absorbance of 734 nm in the spectrophotometer within 1 minute

after sample was exposed to ABTS'+.

Total Radical-Trapping Antioxidant Parameter (TRAP)

Serum levels of total polyphenols were measured by Total Radical-Trapping

Antioxidant Parameter (TRAP) assay using Folin-Ciocalteau reagent and expressed as

Gallic Acid Equivalents (GAE) described and adapted by previous studies (Singleton et

al 1999). Originated in the late 1950s, by Swain and Hills, the modified TRAP method

used adapted deprotenation of the sample prior to remove masking of phenolic

compounds by proteins (Serfini et al 1998). The minimum volume of samples used was

500pl for each serum sample and working Gallic Acid Standards (500mg GAE/L): 1:10,

1:25, and 1:50. After 6 hours samples were read in the spectrophotometer at absorbance

of 765 nm.
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Lipid-Peroxidation By-Product - Malondialdehyde (MDA):

Thiobarbituric Acid Reaction (TEARS)

Serum malondialdehyde was monitored by thiobarbituric acid reaction (TBARS)

using high-pressure-liquid-chromatography (HPLC). Although the TBARS is a non­

specific technique, it is widely used in the discussion of lipid peroxidation because it does

offer an empirical window on the complex process of lipid peroxidation. The improve

method was used to enhance accuracy and reliability by a series of amplification and

purification steps (with the use of HPLC) (Furkunaga et ah, 1998, Clarkson et ah, 2000).

The minimum volume of samples used was 50pl for each serum sample and working

MDA 5pmol/mL) standards with 1ml TBA-buffer solution and injections of lOpl was

done thereafter into the HPLC.

Statistical Analysis

Statistical results were based on analysis carried out by the Statistical Analysis

System, version 8.0 (SAS Institute Inc., Cary, NC). For each of 3 assays, TEAC, FC, and

TBARS, the following analyses were conducted: (1) paired t-test on the change T.6o to

exhaustion, (2) paired t-test on the change from T_6otoTo, (3) longitudinal analysis using all

time points from T-6o through Tgo, and (4) paired t-test for the area under the curve (AUC)

formed by readings at all time points from T_6o through Tgo- Descriptive statistics was

reported as means + SD and the results with a P value of < 0.05 were considered

statistically significant. The longitudinal analyses were conducting using mixed linear

models that included time and treatment as fixed factors, and subject as a random factor.

This variance components covariance structure was to found to provide a better model fit

than unstructured or autoregression covariance structures, either with or without a subjects
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variance component. As an additional fixed factor, the models ran with hemolytic status.

Missing data was handled by a test-by-test basis.
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CHAPTER FOUR

RESULTS

The subject baseline characteristics are shown in Table 3. The subjects were

healthy, male endurance runners that had a mean maximal oxygen capacity of 62±2.

Figures 6-8 shows the differences between almond-raisin beverage and

commercial sports drink with respect to the markers of antioxidant status before, during

and after running to exhaustion by the study runners. Figure 6 depicts the results from

plasma antioxidant capacity (TEAC), Figure 7 that of serum total phenols measured as

gallic acid equivalent (GAE) and Figure 8 that of serum malondialdehyde measured as

thiobarbituric acid reactive substance (TBARS). Paired t-test on the change from 60

minutes prior to start of exercise (T-60) to exhaustion and the change from T-60 to start

of exercise (TO) demonstrated no significant differences for any of the three antioxidant

status markers. However, including all time points from T-60 through 80 minutes into the

run (T80) in the longitudinal analysis, there was a significant main treatment effect with

the almond-raisin beverage showing higher values than the commercial sports drink for

total antioxidant capacity (p=0.0002) and total phenols (p=0.002). Serum

malondialdehyde as TBARS showed no significant treatment effect (p=0.08).

For the plasma total antioxidant capacity analysis, the area under the curve for

almond-raisin beverage was significantly greater than for the commercial drink

(p=0.016). For serum total phenols (GAE), the area under the curve was also greater for

the almond-raisin beverage compared to the commercial sports drink, but the difference

was only borderline significant (p=0.068). The area under the curve for serum TBARS

was not significantly different for the two pre-event beverages.
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Table 3
Subject’s baseline characteristics

Mean + SEMCharacteristics

28+1Age (yr)

Height (cm) 177+2

Weight (kg) 67+2

21.5+0.3BMI

V02max (ml*kg-l*min -1) 62+2

Resting heart rate 61+2

Max heart rate 193+1
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CHAPTER FIVE

DISCUSSION

This study sought to explore the effects of a whole food combination (almond-

raisin) versus a commercial sports beverage (Gatorade ®) as a pre-exercise snack on lipid

peroxidation and antioxidant activity before, during, and after a time-to-exhaustion

treadmill run performed at 70 percent VO2 This study is a sub-study of a main studymax*

the objective of which was to determine if the performance time and fuel use by runners

differed following the ingestion of the above mentioned pre-event beverages. The

primary study results showed that performance time were similar following the ingestion

of both the beverages; however fuel use was different in that the plasma fatty acid levels

were higher following the consumption of the almond-raisin beverage. The primary

objective of this sub-study was to look at the antioxidant status following the

consumption of the two test beverages. The overall results demonstrate a more favorable

antioxidant status following the ingestion of almond-raisin beverage compared to the

commercial sports drink.

This study is the first to look at an antioxidant rich whole food combination on

exercise induced oxidative stress. Previously published studies on antioxidant rich whole

foods have looked at antioxidant status of participants at sedentary states more as a health

outcome (Bruce et al 2000, O’ Bryne et al 2002). On the other hand, studies that have

looked at exercise induced stress have only looked at synthetic vitamin supplementation

as a way to combat the free radicals. Therefore, our study is unique as it simultaneously
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studied both sides of the redox scale with regard to antioxidant protection in runners that

experience exercise-induced oxidative stress.

Antioxidant rich whole food like Concord grape juice has shown to increase

oxygen radical absorbance capacity to a similar extent as 400 IU of vitamin E supplement

in healthy adults (O’ Bryne 2002). Consistent to this, we showed in our study that some

of the biomarkers of antioxidant status such as total antioxidant capacity and total

phenols, were higher among runners following the ingestion of the whole food test

beverage (almond-raisin beverage) compared to the commercial sports drink.

Previous studies using synthetic vitamins as mixtures have demonstrated that

antioxidant supplementation during exercise can help combat the exercise induced stress.

Following the ingestion of a combination of antioxidants (592 mg of a-tocopherol, 1000

mg ascorbic acid, 30 mg (3-carotene) for 6 weeks, a significant reduction in pentane and

MDA production was observed among runners compared to a placebo (Kanter et al

1993). Another similar antioxidant mixture increased serum antioxidant capacity and

serum a-tocopherol levels compared to a placebo in endurance male runners during an

exercise test (Vasankari et al 1997). Increases in serum antioxidant enzymes such as

glutathione peroxidase and super oxide dismutase were also seen following the ingestion

of similar antioxidant mixtures compared to placebo among male triathletes (Palazzati et

al 2004).

In comparison, studies that tested isolated antioxidants such as 75 mg a-

tocopherol (Mastaloudis et al 2001) or 2 g ascorbic acid (Vanasankari et al 1998) or 1000

IU a-tocopherol (Buchman et al 1999) in comparison to a placebo failed to show

significant changes in antioxidant markers following exercise. These observations
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suggest that there may be a favorable synergistic interaction that exists among

antioxidants given in mixtures that makes it more effective in improving antioxidant

status during exercise compared to isolated nutrient supplement. The advantage of whole

foods is that they contain a matrix of nutrients and non-nutrients that may have

synergistic effect on each other thus enhancing their function as an antioxidant. It is

likely that antioxidant rich whole foods may have similar or better antioxidant effects

than isolated antioxidant vitamins in supplemental fonn. Thus future studies comparing

whole food antioxidants to isolated synthetic antioxidant supplements as a way to combat

exercise induced stress becomes important and a necessary next step in this line of

research.

While the plasma total antioxidant capacity and serum total phenols were higher

following the almond-raisin beverage ingestion among our study runners, no differences

were seen with the serum TBARS-MDA levels between the two test beverages. The serum

TBARS assay although not considered as the best biomarker of antioxidant status (Halliwell

et al 1993, Clarkson et al 2000), was used in this study because it has also been

demonstrated to have some merit as a general inference for oxidative stress (Leeuwenburgh

et al 2001). It is possible that the lack of significant results for this assay even after

amplification and purification procedures could be due to the non-specificity of this assay

and possible inter-subject variability in MDA levels.

Future research is necessary before any definite conclusions are made for athletes

with respect to the consumption of antioxidant rich whole food beverage as an alternate

to the traditional sports drink. However, our preliminary data showed higher levels of

certain biomarkers of antioxidant status following the intake of almond-raisin beverage
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compared to the commercial sports drink. Also, we know that almonds and raisins are a

combination of nutrients and non-nutrient phytochemicals many of which are more

potent antioxidants than vitamins E or C. If indeed this combination is able to achieve

antioxidant protection during intense exercise that is better than what can be seen with

carbohydrate-electrolyte based sports drinks, it would be prudent to consider this as a

viable alternate as a pre-event snack for endurance athletes.

Prior to making recommendations, future studies need to investigate the effects of

antioxidant rich whole foods in comparison to antioxidant vitamin supplementation to

combat exercise induced stress. Also, studies on the optimal dose of whole foods to be

used, the best form to deliver the nutrients/non- nutrients and the practical convenience of

using such foods needs to be studied. Finally, it has still not been clearly documented

what the significance of reducing exercise induced stress is for athletes in terms of

performance and health outcomes. Thus future studies should look at these variables and

not just limit to reporting the antioxidant status of athletes. However, based on previous

studies that show that eating nuts (almonds) and dried fruits (raisins) may actually

improve health outcomes (Kris-Etherton et al 1999, Sabate et al 1996, 2001, 2003, Sun et

al 2002), it may be prudent for athletes also to include these foods as part of their daily

diet.
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CHAPTER SIX

SUMMARY AND CONCLUSIONS

This study sought to explore the effects of a whole food combination (almond-

raisin) versus a commercial sports beverage (Gatorade ®) as a pre-exercise beverage on

lipid peroxidation and antioxidant activity before, during, and after a time-to-exhaustion

High compliance to the protocol andtreadmill run performed twice at 70 percent VO2,nax-

favoring results suggest that the primary objective of this study was met. The primary

outcomes appear to favor the use of the almond-raisin beverage as a pre-exercise snack

over the traditional sports beverage in terms of antioxidant protection, in which a

significantly greater main treatment effect was seen with the whole food source.

This investigation originated from the primary study that compared the effects of

these two beverages on fuel use and performance among male endurance runners, where

endurance time (time-to-exhaustion) was used as the primary outcome, at an alpha of

0.05. Therefore, the sample size (n=10) and sample collection were based on these

parameters instead of that of lipid peroxidation and antioxidant activity markers. It is

possible that this factor alone may have a limited achievement of a minimum of 80

percent statistical power for certain biomarkers used in this study.

To date, there are a few published experimental investigations on the effects of

whole food sources rich in natural antioxidants as a method to combat exercise-induced

oxidative stress. Our study sought to simultaneously study both sides of redox scale and
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it demonstrates antioxidant protection, following exercise-induced oxidative stress

(O’Byrne et al 2002).

Although there was a significant antioxidant protective effect, it was surprising to

see that there was no significant difference across the board between groups in regard to

lipid peroxidation. The TBARS-MDA test has generated some controversy in its

discrepant results from previous studies, but it was used in this study because it also has

demonstrated merit in regard to a general inference of oxidative stress. Even after

amplification and purification procedures the non-specificity of this assay and possible

inter-subject variability in MDA could explain these results.

Missing samples due to difficulty in blood draws, hemolysis, or insufficient

amount collected for both the primary study and this sub-study could also account for

insignificant results in paired t-tests on the change from baseline to exhaustion and the

change from baseline to start of test. Due to the conditions of the exercise run, blood

draws could not be done during actual run, but rather, the subject stopped and within 30

seconds blood was drawn and then exercise test resumed. However, possibly due to

degree of hydration and circulation under such intense physical exertion, blood flow was

often partially shunted in the upper extremities making the conditions more susceptible to

hemolysis. Consequently, an insufficient amount of blood was collected for all analysis.

Assays run with slightly hemolyzed samples were statistically adjusted, but did not affect

the results of any assay.

Future Directions

Future research is necessary before any definite conclusions are made for athletes

to clearly understand the antioxidant defense role, if any, on the consumption of whole

53



foods as a pre-exercise snack. If indeed this combination of almonds and raisins is able

to achieve antioxidant protection during the event of intense exercise, it would be

advantageous to continue this line of research not only to confirm the impact it may play

in oxidative stress, but also to explore the mechanism of action. In doing so, a systematic

approach defining an optimal dose or formula for improving antioxidant protection for

athletes can be accomplished.

Future studies should set precedence on lipid peroxidation and antioxidant activity

biomarkers as the primary research outcome variables. In doing so, the study design

should provide adequate sample size, rigorous control against confounding factors (such

as any antioxidant supplementation and/or high or low amount of fat or antioxidants in

the diet), and a defined treatment dose, delivery, and duration to be able to achieve

significant changes in oxidation-reduction status. Sample collection should be specific

for lipid peroxidation and antioxidant biomarkers. It would be interesting to determine

different dose ranges of the pre-exercise food combination needed for varying duration,

intensity, and level of training of the athletes.

It is especially important that future research also determine the most accurate and

replicable method of monitoring lipid peroxidation and antioxidant activity. To confirm

the total effect of such a whole food combination, it is also necessary to monitor

oxidative stress on both sides of the redox scale. Thus, it is suggested that at least two

techniques monitoring lipid peroxidation and antioxidant activity are considered. It is

also imperative to ensure minimal hemolysis and an adequate amount of human body

fluid collected for all analysis. Pre-event protocols should consider hydration or any

other influence on the blood flow during intense exercise.
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The research on whole food sources as a pre-exercise snack and biomarkers of

lipid peroxidation and antioxidant activity requires confirmation and further research is

warranted regarding the effects of the almond-raisin combination and exercise-induce

oxidative stress. Numerous studies have demonstrated that intense exercise overwhelms

our natural antioxidant capacity thus leading to increased levels of oxidative stress.

There is some evidence that antioxidant combination sources delay or lower the risk of

exercise-induced oxidative stress and speed the recovery process or lessen muscle

damage. Therefore, the best recommendation to date is still to eat a nutritionally

adequate diet with generous servings of antioxidant rich foods, including those that

contain vitamin E and polyphenols.
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