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Electron Energization by Parallel Electric Fields in
Poloidal Standing Waves

P. A. Damiano1 , E.-H. Kim2 , J. R. Johnson3, and P. Porazik4

1Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA, 2Princeton Plasma Physics Laboratory,
Princeton University, Princeton, NJ, USA, 3Department of Engineering and Computer Science, Andrews University,
Berrien Springs, MI, USA, 4Lawrence Livermore National Laboratory,Livermore, CA, USA

Abstract A hybrid gyrofluid-kinetic electron model is adapted and used to simulate poloidal standing
modes for different electron temperatures and azimuthal mode numbers. As in previous studies of toroidal
standing modes, mirror force effects lead to increased parallel potential drops, monoenergetic electron
energization, and wave energy dissipation as the ambient electron temperature is increased. A similar
trend is also observed when the electron temperature is held fixed and the azimuthal mode number
increased—owing to the narrowing of the azimuthal flux tube width, which necessitates more electron
energization to carry the increased parallel current density. In both cases, the increase in electron
energization eventually leads to more rapid decreases in the parallel current with time because of the
dissipation of wave energy.

1. Introduction
Standing waves in the magnetosphere occur in both toroidal and poloidal polarizations (where the perpen-
dicular electric field is in the radial and azimuthal direction, respectively). Toroidal modes generally result
from mode conversion from fast compressional modes (Chen & Hasegawa, 1974; Southwood, 1974), while
the generation of poloidal modes are associated with wave-particle interactions in the inner magnetosphere
(Chen & Hasegawa, 1988; Southwood, 1976). Poloidal modes also exist with or without significant mag-
netic compressional components (e.g., Dai et al., 2015), and both limits have similar occurrence rates that
increase during storm time conditions. Although the two polarizations of the standing waves can have dif-
ferent driving mechanisms, these waves are generally neither purely toroidal nor poloidal, but a mixture.
Additionally, dominantly poloidal modes can gradually evolve into dominantly toroidal modes due to phase
mixing effects (Leonovich & Mazur, 1998; Mann & Wright, 1995; Mann et al., 1997; Radoski, 1967) and under
certain conditions, poloidal modes may change polarization to toroidal as they propagate across magnetic
shells (Klimushkin et al., 2004; Leonovich & Mazur, 1993).

In the auroral context, toroidal modes have been linked to the formation of some discrete auroral arcs (e.g.,
Lotko et al., 1998; Samson et al., 2003) and previous kinetic simulations (Damiano & Wright, 2008; Damiano
& Johnson, 2012) illustrate a monoenergetic energization (consistent with the nature of the observed auro-
ral arcs) under the influence of the wave parallel electric field. In the inner magnetosphere, the dominant
azimuthal electric and magnetic fields (for poloidal and toroidal modes, respectively) are in the direction
of the magnetospheric particle drift and electrons can be energized by drift/drift-bounce resonance to very
high energies (e.g., Elkington et al., 1999; 2003; Ozeke & Mann, 2008; Shprits et al., 2008), which leads to
an inward radial diffusion after multiple wave-particle interactions (e.g., Elkington et al., 2003; Ozeke et al.,
2012; Shprits et al., 2008). Modes with high azimuthal wave numbers (m ≈ 40–120) cannot exhibit res-
onance with the electron drift motion, but nonresonant interaction of electrons with the wave azimuthal
electric field can also lead to rapid radial transport (Ukhorskiy et al., 2009). The acceleration of electrons
under the influence of the azimuthal electric field, however, does not preclude the potential for electron
energization in poloidal Alfvén modes by the parallel electric fields inherent in the wave (as evident in the
toroidal case). For example, in the theory of kinetic ballooning modes (e.g., Cheng & Lui, 1998; Cheng, 2004),
which have poloidal polarization and have been linked to observations of auroral beads (e.g., Donovan et al.,
2006; Motoba et al., 2012; Rae et al., 2009), parallel electric fields lead to the acceleration of the electrons. In
the magnetohydrodynamic limit, these ballooning modes have zero frequency so we expect there would be
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Figure 1. (a) Initial radial velocity perturbation (km/s) presented as a function of magnetic latitude and L shell. (b)
Initial perturbation in cartesian coordinates. Inset displays the relation between polar and curvilinear coordinates
where x1 = cos 𝜃∕r2, x2 = sin2𝜃∕r, x3 = 𝜙, and 𝜃 is the angle subtended from the z axis. The circle of radius 1 RE
denotes the surface of the Earth. The low-altitude simulation boundary is at a geocentric distance of 2 RE .

good correspondence between the nature of electron energization in the growth phase of a low-frequency
poloidal standing wave and electron energization in a ballooning mode. We have therefore adapted the 2-D
gyrofluid-kinetic electron model (Damiano et al., 2007; 2015), previously used to consider toroidal standing
(e.g., Damiano & Wright, 2008; Damiano & Johnson, 2012) and propagating (Damiano et al., 2015, 2016)
modes to study electron energization by parallel electric fields in poloidal standing waves. While this study
is interesting in itself, this work also serves as a stepping stone to a more complicated investigation of elec-
tron energization in ballooning modes to be conducted in future. The remainder of the paper is divided into
three sections. Section 2 presents an overview of the hybrid gyrofluid-kinetic electron model that will be
used in the investigation. Section 3 presents the simulation results, while section 4 draws conclusions based
on this analysis.

2. Hybrid Model
The model used is a version of the 2-D hybrid gyrofluid-kinetic electron model in dipolar coordinates
(Damiano et al., 2007, 2015) modified for the inclusion of poloidal Alfvén modes, but for the moment neglect-
ing coupling to the compressional mode. The geometry is illustrated in Figure 1b and explicitly includes
the field aligned direction (x1) and the direction across L shells (x2). For consideration of the poloidal
modes, the gyrofluid portion of the model incorporates the modified linearized radial momentum equation
given by

𝜇o𝜌o
𝜕ũ2

𝜕t
=

Bo

h1h2

(
𝜕

𝜕x1

(
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r3∕(1 + 3cos2𝜃)1∕2, h2 = r2∕(sin 𝜃(1 + 3cos2𝜃)1∕2), and h3 = r sin 𝜃 (where 𝜃 is the angle subtended from the
z axis as illustrated in Figure 1) and 𝜌o and Bo denote the background plasma density and magnetic field,
respectively. The modified fluid velocity ũ2 is defined to include the original cold plasma fluid velocity as
well as a gyroviscosity term resulting from an off-diagonal term in the divergence of the pressure tensor.
The coefficient of 𝜌2

i ∇
2
⟂ is obtained from a Padé approximation (Cheng & Johnson, 1999; Johnson & Cheng,

1997). Equation (1) is coupled to the radial component of Faraday's law given by
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where m is the imposed azimuthal mode number (such that u2, b2,E3 ∝ sin(m𝜙) and E1=E|| ∝ cos(m𝜙))
and the azimuthal (where a Padé approximation has also been used to relate ũ and the E⃗ × B⃗ velocity)

E3 = Bo(1 − 𝜌2
i ∇

2
⟂)ũ2 (3)

and parallel Ohm's laws
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Here,𝜇m = mev2
⟂∕(2B) is the electron magnetic moment, the second term on the right-hand side is associated

with the parallel gradient of the electron pressure, while the third and fourth terms are associated with the
magnetic mirror force incorporating the perpendicular and parallel electron pressures, respectively. This
equation was derived, as presented for the toroidal mode in Damiano et al. (2007), using Ampere's law,
Faraday's law, and the gyroaveraged Vlasov equation, with the exception that the azimuthal component of
Faraday's law (E3) was used in place of the radial component (E2) in order to consider poloidal modes.

The model equations are solved using a predictor-corrector method, and equation (4) provides an estimate of
parallel electric field at the predictor step. In order to enforce quasineutrality, any residual ∇ · 𝑗, is corrected
for using the auxilliary Poisson's equation:

𝜖o
𝜕

𝜕t

(
1

h1h2h3
(mh1h2E3c)

)
= −∇ · 𝑗

= −1
h1h2h3
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𝜕

𝜕x1
(h2h3𝑗e) + mh1h2𝑗3

) (5)

where 𝑗e = −e ∫ v1𝑓d3v is the electron parallel current and E3c is the correction to the perpendicular electric
field. Equation (5) is derived by taking the divergence of the full Ampere's law and noting that∇·E⃗|| ≪ ∇·E⃗⟂
(e.g., Damiano et al., 2005). The correction is then applied to E|| by incorporating E3c in the first term on the
right-hand side of equation (4) at the corrector step (e.g., Damiano et al., 2003; 2007).

The guiding center equations are used to describe the parallel electron dynamics:

me
dv1

dt
= −eE1 − 𝜇m

1
h1

𝜕Bo

𝜕x1
(6)

h1
dx1

dt
= v1, (7)

where v1 is the parallel electron velocity and v⟂ =
√

v2
2 + v2

3 is the gyrophase independent perpendicu-
lar velocity. The corresponding integral moments of the electron distribution functions in equations (4)
and (5) are treated computationally as summations using standard particle-in-cell techniques (Damiano
et al., 2007).

The neglect of the compressional mode, via the absence of the parallel magnetic field perturbation (b1), pre-
cludes coupling between the toroidal and poloidal Alfvén modes within the simulation and neglects electron
energization associated with the parallel magnetic field perturbation (e.g., Klimushkin & Mager, 2014). For
the moment, the model is run independently for consideration of either toroidal or poloidal modes. As men-
tioned earlier, poloidal modes exist with or without significant compressional components (e.g., Dai et al.,
2015) and it is in limit of the latter (which are also generally high m modes) that this work most applies.
However, it is our intention to generalize the model in future to include all three components of the mag-
netic field perturbation in tandem so that it is valid in high 𝛽 plasmas where compressional effects are largest
(e.g., Xia et al., 2017). This inclusion is already done in our box model (Damiano et al., 2003). Compressional
modes have additionally been considered using both analytical gyrokinetic (Crabtree et al., 2003; Crabtree
& Chen, 2004; Mager et al., 2013) and computational gyrokinetic (Porazik & Lin, 2011a, 2011b) frameworks.
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Figure 2. Parallel current evolution above the northern ionospheric boundary for m = 250 at the indicated times and
temperatures.

3. Simulations
The simulation is initialized using an eigenmode solution for the velocity perturbation of a fundamental
standing mode derived from the model of Taylor and Walker (1984). The exact same functional dependence
for the eigenmode as was used in previous studies (e.g., Damiano et al., 2007; Damiano & Wright, 2008;
Damiano & Johnson, 2012) is used here except that we are initializing the radial (as opposed to azimuthal)
velocity in order to drive the poloidal mode. The initial perturbation is displayed in Figure 1 and remains
consistent for all the simulations presented. For the present study, we do not consider ion gyroradius effects
(assuming Ti = 0 so that 𝜌i corrections in ũ2 and E2 are neglected). This simplification is done for consistent
comparison with our previously published works on toroidal standing modes, and 𝜌i effects will be addressed
in a separate publication. In this paper, two limiting cases are considered.

3.1. Case of Fixed Azimuthal Mode Number and Variable Te
For the present section, we fix the azimuthal mode number to be m = 250 but vary the electron temperature
between 50 and 400 eV. Our choice of azimuthal wave number is admittedly high but not unreasonable as
cases of m ∼ 200 have been inferred from observations (e.g., Takahashi et al., 2013) and high m modes do
not generally have strong magnetic compressional components (e.g., Dai et al., 2015). We also consider a
large range of m values here (more clearly evident in the next section) to emphasize trends. Figure 2 then
illustrates the resulting profile of the parallel current for a cut along the northern low-altitude boundary
(which is set at a geocentric distance of 2 RE). Three different electron temperature cases are presented,
and although the evolution looks quite similar at earlier times, there is a pronounced divergence as time
increases. The amplitude of the higher temperature cases (Te = 200 and 400 eV) begins to decrease after
about t = 0.1–0.15 TA, while the coldest temperature (Te = 50 eV) case continues to grow, obtaining the
largest amplitude.

Figure 3 then presents the field-aligned parallel current profile along L = 9.6 and at t = 0.15TA (same time
as in Figure 2a). The increased current in all three temperature cases results from the converging magnetic
field topology, and the figure illustrates that the diverging current magnitudes evident in Figure 2 extend all
along the field line. In order to understand these different parallel current magnitudes as a function of elec-
tron temperature, it is necessary to consider the evolution of the electron distribution in each of the cases.
Figure 4 plots electron distribution functions at the northern low-altitude boundary in all the temperature
cases. The distributions are taken along the field line of maximum parallel current (L = 9.6) and are iden-
tical in feature to those generated for toroidal standing modes (and presented in Damiano & Wright, 2008).
The distributions are the result of the field-aligned acceleration of electrons (positive displacement to carry
the negative field-aligned current) some of which then undergo reflection in the converging magnetic field
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Figure 3. Parallel current density as a function of magnetic latitude along
L = 9.6 field line for indicated temperatures. In all cases, m = 250.

topology and travel back up the field line forming the plotted ring dis-
tributions in velocity space. The radius of the ring is indicative of the
magnitude of the parallel potential drop in the wave, which from a simple
conservation of energy argument results as

eΔ𝜙 = 1
2

me(v2|| + v2
⟂). (8)

This relationship is what is expected to occur since the potential drop
needed to overcome mirror force repulsion increases with the ambient
electron temperature in the converging magnetic field topology (e.g.,
Damiano & Wright, 2008; Knight, 1973; Nakamura, 2000; Rankin et al.,
1999). As more electrons are effectively trapped by the mirror force as
temperature increases, fewer electrons must be accelerated to higher
energies to carry a similar (or in this case) smaller parallel current. This
point is illustrated in Figure 5 where the net energization of electrons at
the northern low-altitude boundary is presented as a function of time.
The corresponding diminishment of the current can be understood by
examining the profiles of the component energies in Figure 6. The drop
in the energy in u2 is indicative of ion drift energy being converted to both
magnetic field and electron energy. The magnetic field energy (and cor-
respondingly the magnitude of j||) drops as progressively more ion kinetic
energy is transferred to electron energization to carry the parallel current
as the electron temperature is increased.

As mentioned, the qualitative features of the electron energization presented in this section are very similar
to that seen for toroidal modes. This similarity is to be expected since the change in wave polarization should
not alter the characteristics of the electron energization which is defined by the mirror force topology rather
than the polarization of the wave. The mirror force effect on E|| in toroidal standing modes was first noted
by Rankin et al. (1999; and subsequent publications, Tikhonchuk & Rankin, 2000, 2002). Rather than in
simulations as presented here, they considered the relation between E|| and j|| (in the quasi-static limit)
via the evaluation of the nonlocal conductivity matrix derived from the low-frequency electron gyrokinetic
equation (Antonsen & Lane, 1980) in a dipolar geometry. In the next section, we extend our consideration

Figure 4. Distribution function at northern low-altitude boundary at t = 0.15TA for (a) Te = 50 eV, (b) Te = 200 eV,
and (c) Te = 400 eV.
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Figure 5. Energy of the accelerated electron population in the region of the current maximum as a function of time for
(a) Te = 50 eV, (b) Te = 200 eV, and (c) Te = 400 eV. In all cases, the azimuthal mode number is 250.

of the poloidal wave system to the limit of fixed electron temperature and variable azimuthal mode number.

3.2. Case of Fixed Electron Temperature (Te = 200 eV) and Variable m
In analogy to Figure 2, Figure 7 displays the parallel current density evolution at the northern ionospheric
boundary for a fixed electron temperature but for variable azimuthal mode number. Initially, the magnitude
of the parallel current density increases with the azimuthal mode number (Figures 7a–7c). This trend is as
would be expected because the flux tube width narrows as the azimuthal mode number is increased and the
magnitude of j1 must increase in order to carry the same total parallel current through a narrower channel.
However, the increased parallel current density needs to be carried by more energetic electrons. Therefore,
since the simulation is undriven, the fixed initial wave energy is dissipated most quickly in the highest
azimuthal mode number case (m = 250) meaning that the parallel current density begins to decrease relative
to the lower m cases as time goes on (Figures 7d and 7e).

The increased energization of the electrons with the increase in m (and parallel current density) is illustrated
in Figures 8 and 9. As per equation (8) the increased potential drop needed to accelerate electrons results
in a larger radius in velocity space (Figure 8). Figure 9 then displays the partitioning of the wave energy for
the three values of the azimuthal mode number considered. The initial ion kinetic energy is consistent in
each case, but as m is increased, the energy transferred to the magnetic field goes down dramatically at the
expense of wave energy going into the energization of precipitating electrons. This reduction in the magnetic

Figure 6. Component energies for (a) Te = 50 eV, (b) Te = 200 eV, and (c) Te = 400 eV. In all cases, the azimuthal
mode number is 250.
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Figure 7. (a–e) Parallel current evolution above the northern ionospheric boundary for Te = 200 eV at the indicated
times and m values.

field energy also accounts for the drop in parallel current density for the largest azimuthal mode number
evident in Figures 7d and 7e. It should be noted that the total energy does not appear constant in Figure 9
because the analysis neglects the initial thermal energy of the electrons.

As a final comment, it should be noted that there is one large difference between the poloidal standing mode
simulations presented here and the toroidal mode studies done previously (Damiano et al., 2007; Damiano
& Wright, 2008; Damiano & Johnson, 2012, 2013). In these latter efforts, there was substantial broadening
of the parallel current profile in the radial direction, which was due to the perpendicular Poynting flux
associated with the large parallel electric field S2 = −E1b3 (e.g., Damiano & Johnson, 2013) where b3 is the
azimuthal magnetic field perturbation associated with the toroidal standing mode. As apparent in Figures 2
and 7, there is no similar radial broadening in the poloidal examples presented here. This lack, however, is
simply because the magnetic field perturbation associated with the poloidal mode is in the radial direction

Figure 8. Distribution function at northern low-altitude boundary at t = 0.15TA for (a) m = 50, (b) m = 150, and (c)
m = 250.
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Figure 9. Component energies for (a) m = 50, (b) m = 150 eV, and (c) m = 250 eV. In all cases, the electron
temperature is 200 eV.

and the corresponding perpendicular Poynting flux would be in the azimuthal direction. This broadening is
outside the remit of our present 2-D model and will be addressed when we expand to consideration of 3-D
simulations. As in the 2-D case though, the effect of the broadening would further decrease the amplitude
of the parallel current and electron energization to what is apparent in these examples as more of the total
parallel current is being carried along adjacent field lines.

4. Conclusions
In this study, a 2-D hybrid gyrofluid-kinetic electron model in dipolar coordinates is used to study electron
acceleration in the parallel electric fields of poloidal standing modes in the Earth's magnetosphere. It was
found that, consistent with previous studies of toroidal standing modes, the electron energization increased
with increasing ambient electron temperature owing to mirror force effects. The resulting simulation ener-
gized electron populations formed ring distributions in velocity space. While the electron energization
increased, the net parallel current was seen to decrease because of the associated dissipation of wave energy.
In the limit of fixed electron temperature, but increasing azimuthal wave number, both the parallel current
and electron energization were seen to increase due to the narrowing of the flux tube in the azimuthal direc-
tion. Over the longer term though, the magnitude of the parallel current in the highest m case considered
decreased significantly because of the dissipation of wave energy inherent in the increased acceleration of
the electrons that occurred at earlier times.
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