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Abstract 

Software development effort estimating has notoriously been the Achilles heel of the 

software planning process. Accurately evaluating the effort required to accomplish a 

software change continues to be problematic, especially in Agile software development. 

IT organizations and project managers depend on estimation accuracy for planning 

software deliveries and cost determination. The purpose of this multiple case qualitative 

study was to identify strategies used by software development professionals in providing 

accurate effort estimations to stakeholders. The planning fallacy served as the study’s 

conceptual framework. The participants were 10 software development professionals who 

were actively engaged in delivering estimates of effort on software development requests 

in South Texas in the United States. Data were collected from 10 software development 

professionals in 5 different organizations. Additionally, 23 organizational documents 

were gathered and reviewed. Thematic analysis was used to identify codes and themes. 

Prominent themes were (a) defining and decomposing requirements, (b) referencing 

historical data, (c) identifying risks and unknowns, and (d) fostering communication, 

collaboration, and a consensus. A key recommendation is for software developers to 

ensure requirements are defined and decomposed by evaluating the request and breaking 

the request into manageable pieces to understand the effort required to complete the task. 

Implications for positive social change include improving morale, work-life balance, 

alignment of expectations, and software quality. 
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Section 1: Foundation of the Study 

Agile is a common approach to developing and maintaining software. The 

popularity of agile worldwide has increased significantly (Haines et al., 2017). However, 

software effort estimation is more challenging in agile projects due to changes in 

requirements and uncertainty experienced in the development process. Accurate estimates 

play a significant role in software development to identify cost and delivery schedules 

(Bilgaiyan et al., 2017). A software project's success relies on estimations that reflect 

accurate effort prediction (Bilgaiyan, Mishra, & Das, 2016). Accurate estimates increase 

the probability of project success; yet estimate accuracy remains an elusive target. 

Background of the Problem 

Software development teams have struggled to give stakeholders accurate 

development effort estimates, especially in the context of agile projects. The popularity 

of agile software development methodologies has increased dramatically worldwide since 

its inception (Haines, Idenudia, & Raisinghani, 2017). Software development 

professionals who use an agile development approach embrace changing requirements 

that often are not always fully understood in the initial development stage. Within this 

context of vague or changing requirements, the delivery of accurate software estimates 

can thus be problematic for organizations, stakeholders, and the development team 

(Bilgaiyan, Sagnika, Mishra, & Das, 2017). Software development groups are frequently 

required to give an estimate of effort at the beginning stages of product planning, before 

knowing the entire scope of the request or the product for which they are to create a 

solution (Osmanbegović, Suljić, & Agić, 2017). There are many types of estimate 
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strategies, such as expert judgment, algorithmic models, and nonalgorithmic models 

(Shekhar & Kumar, 2016). In this research, I examined estimation approaches and 

strategies that development groups use in establishing estimates to fulfill the expectations 

of the product stakeholders.  

Problem Statement 

In software development estimation, inaccuracies of effort and time are endemic 

(Shekhar & Kumar, 2016) and have severe effects on software development projects 

(Adnan & Afzal, 2017). Accurate forecasting of effort and duration required in software 

development projects during their initial stages of planning increases the probability of 

project success (Pospieszny, Czarnacka-Chrobot, & Kobylinski, 2018). It is not 

uncommon for software development cost overruns to average 30% (Løhre & Jørgensen, 

2016). Actual development effort can exceed initial estimations by as much as 250%, 

creating delays and surprises in software development projects (Dragicevic, Celar, & 

Turic, 2017). The general IT problem is the lack of accuracy in estimating software 

development effort. The specific IT problem is that some agile software development 

professionals lack strategies for providing accurate software development effort 

estimations for project managers. 

Purpose Statement 

The purpose of this qualitative multiple case study was to identify strategies that 

agile software development professionals use to provide project managers with accurate 

software development effort estimations. The study sample included software 

development professionals from five organizations who are responsible for producing 
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effort estimates for segments of the software development process. At the time of data 

collection, the professionals selected for this study used an agile methodology in new and 

maintenance software development projects undertaken by small- to medium-sized 

companies in South Texas. The potential positive social impact of providing accurate 

software development estimates is the possible improvement of the work-life balance of 

those involved in software development. A more accurate effort estimation can provide 

project managers with the ability to project realistic delivery schedules, thus improving 

customer satisfaction. Accurate estimations can also potentially improve product quality, 

lower stress levels and improve the work lives of those involved with the software 

development and delivery, and provide organizations with a more realistic time 

expectation of software delivery.  

Nature of the Study 

I chose the qualitative methodology using a multiple case design for this study. 

The qualitative approach gives a voice to the participants, their experiences, and 

subjective viewpoints (Yilmaz, 2013) and therefore was appropriate for eliciting a clear 

understanding of successful strategies in software development estimation. The 

qualitative research design used herein allowed for the exploration, examination, and 

identification of specific estimation strategies used by development teams to deliver 

accurate effort estimates successfully, resulting in the delivery of software development 

changes within time and budgetary commitments. Researchers use a quantitative study 

approach to determine causation or trends and the testing of a hypothesis through 

statistical analysis of collected numerical data (McCusker & Gunaydin, 2015). The 
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qualitative approach was not appropriate for the current study, as it was exploratory and 

not constructed to test a hypothesis using statistical methods. The mixed-methods study 

involves both a qualitative and quantitative approach that combines analysis of 

participants’ experiences and statistical testing. I did not select the mixed-methods 

approach, as my study did not contain a quantitative component 

I used a multiple case design to collect qualitative data from multiple individuals 

and organizations for comparison and analysis. The multiple case design can provide 

evidence that is more comprehensive than the information provided by a single case 

source (Ponelis, 2015). I sought to explore, examine, and identify strategies used by 

multiple software development groups. Studying a single team would not have provided 

sufficient data to answer the research question. I considered designs other than a case 

study but opted against using them. The ethnographic design is concerned with the 

examination, study, and understanding of a specific culture (Fayard & Van Maanen, 

2015). I did not choose the ethnographic approach because the focus of my study was not 

on addressing the cultural issues associated with estimation. The phenomenological 

design provides the researcher with a means to describe participants’ individual lived 

experiences (Ellis, 2016). Because I wanted to explore strategies rather than experiences, 

I opted against using the phenomenological design. Researchers use the narrative design 

to recount the story of the participants (McAlpine, 2016). This design was also 

inappropriate because this study did not involve the narration of a story. To elicit 

compelling evidence, data from multiple organizations were explored and examined, thus 

making the multiple case study an appropriate design for this research. 
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Research Question 

What are the strategies that agile software development teams use successfully to 

provide their project managers with accurate estimates of software development effort?  

Interview Questions 

1. What are the strategies that you utilized to provide software project managers with 

accurate software development effort estimates?  

2. What are the reasons that may cause or contribute to you or your team 

underestimating development effort? 

3. What are the reasons that may cause or contribute to you or your team overestimating 

development effort? 

4. Please describe the primary steps that you or your team use in the estimation process.   

5. What are some factors that you consider in the software development request in 

providing an estimate? 

6. What are some tools and techniques that you have found useful in producing accurate 

development effort estimates? 

7. Please describe the feedback (if any) that you receive from your managers regarding 

your estimations?  

8. What methods or processes do you find work best when proposing a development 

estimation?  

9. What additional information would you like to share regarding effective strategies in 

software development effort estimation? 
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Conceptual Framework 

In this study, I viewed the estimation accuracy of software development within 

the conceptual framework offered by the planning fallacy. The planning fallacy, 

identified in 1977 by Kahneman and Tversky, refers to a phenomenon where a prediction 

of how much time is needed to complete a task is typically optimistic. Predictors tend to 

underestimate the amount of time required to complete a task even if they are aware of 

previous estimation information (Buehler, Griffin, & Ross, 1994; Kahneman & Tversky, 

1977). Estimate inaccuracies can influence software delivery timelines (Shmueli & 

Ronen, 2017). Concerning the planning fallacy, estimate predictions may be optimistic 

because people do not consider risks and setbacks (Newby-Clark, Ross, Koehler, 

Buehler, & Griffin, 2000). Underestimates of software development effort because of the 

planning fallacy can have severe consequences for the success of project outcomes 

(Pospieszny et al., 2018). 

The purpose of this study was to identify estimation strategies used by software 

developers to provide accurate effort estimates in an agile development environment. 

Inaccurate completion times can have economic, social, and personal costs. According to 

the concept of the cone of uncertainty, software estimates created in the early stages of a 

project can underestimate actual final effort by as much as 40% (Dragicevic et al., 2017). 

I used the planning fallacy as a conceptual framework to understand the phenomenon 

whereby people typically rely on a limited number of heuristic principles to reduce the 

complex task of assessing probabilities and predicting values. Underestimating 
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development effort is harmful to projects, as insufficient time and resource allocations 

almost invariably result in unaccomplished commitments (Khuat & Le, 2016). 

Definition of Terms 

Cone of uncertainty: In the initial stages of agile development, details of the final 

solution and defined requirements tend to be unclear. As the project variability decreases, 

so too does uncertainty (Krstić, Skorup, & Lapčević, 2018).   

Fibonacci sequence: A series of numbers where each number is the sum of the 

previous two numbers—for instance, 1, 2, 3, 5, 8, 13, and 21 (Raslan, Darwish, & Hefny, 

2015). 

Fuzzy logic: A computational system that differs from traditional Boolean logic. 

Unlike the absoluteness of classical true and false, fuzzy logic provides for a degree of 

truth or falsehood to exist (Zadeh, 2015) 

Kalman filter: An estimating and tracking algorithm that uses multiple historical 

data points to estimate the future value that statistically minimizes error (Soni & Kohli, 

2017).  

Nonfunctional requirements: Software attributes such as security, performance, 

and quality requests (Usman, Börstler, & Petersen, 2017).  

Object-oriented: A widely accepted software development model (Rath, Acharya, 

& Satapathy, 2016). The object-oriented method of software development differs from a 

classical procedural approach (Rath et al., 2016). Objects are a combination of data and 

processes that correspond to real-life attributes that promotes code reuse (Saravanan et 

al., 2017). A class is the foundation of object-oriented design (Kukreja & Garg, 2017).  
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Stagewise development: A software development method conducted in stages: 

operational plan, operational specifications, coding specifications, component testing, 

assembly testing, and system evaluation (Misra, 2012).   

Use case model: A diagram in requirement analysis that describes the behavior 

and sequence of action performed (Usländer, 2016).  

Waterfall: A sequential, linear development approach (Stoica, Ghilic-Micu, 

Mircea, & Uscatu, 2016), sometimes referred to as traditional software development 

(Kotaiah & Khalil, 2017).  

Assumptions, Limitations, and Delimitations 

Exceptional circumstances and situations almost invariably affect research 

activity. The following assumptions, limitations, and delimitations identify conditions 

and events that influenced this qualitative study. According to Levitt, Motulsky, Wertz, 

Morrow, and Ponterotto (2016), the acknowledgment of these circumstances and 

situations provides integrity to a study.  

Assumptions 

Certain assumptions underlay this study. Assumptions are beliefs that are 

accepted as accurate or statements that are taken for granted (Yang, Liang, & Avgeriou, 

2018). The primary assumption in this study was that the participants would answer the 

interview questions as accurately and truthfully as possible. The second assumption was 

that the participants would have an in-depth understanding of the software effort 

estimation process. A third assumptionm was that the use of a multiple case qualitative 
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study approach would provide the needed data for the examination of accurate estimation 

strategies.  

Limitations 

Limitations refer to the potential weaknesses of a study. Busse, Kach, and Wagner 

(2017) defined limitations as imperfections of theory and methodology that do not 

question the validity of the findings of the study. Limitations of this study include 

unknown circumstances of the participants that may have biased their viewpoints and a 

limited number of participants interviewed. A limitation of a qualitative study is that the 

number of participants interviewed may not be sufficient to reach data saturation (Moser 

& Korstjens, 2018). This study was limited to the experiences and opinions of the 

participants gathered during interviews and may not be generalizable to all software 

development teams. Additionally, the study was limited to software development 

professionals in South Texas, which may limit the representability and findings of the 

study to the broader U.S. population.  

Delimitations 

Delimitations refer to the limitations set by the researcher to explicitly identify the 

boundaries of the research (Denscombe, 2013). The study was limited to small- to 

medium-sized organizations that develop software. A second delimitation was that this 

study only included members of a software development group who participate in the 

estimation process. Additionally, I restricted this study to software development groups 

within the area of South Texas. 
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Significance of the Study 

Contribution to Information Technology Practice 

The findings of this qualitative multiple case study may provide agile software 

development professionals with practical and proven strategies to deliver accurate 

estimates to product or project managers. Product and project managers ask developers to 

determine how long it will take to develop a software product. Successful strategies for a 

more predictive measure of software development effort may provide management with 

increased accuracy in delivery expectations, thus providing greater alignment with 

organizational budgets and customer expectations. The identified strategies may improve 

the accuracy of software development effort estimates in agile development teams. 

Realistic effort estimation processes may provide organizations with more accurate 

delivery expectations. The findings of this research may add knowledge to improve the 

IT process of software estimating and create a pathway for organizations to develop 

change. Improved estimation accuracy may add value to the software development 

practitioner, the project, and product managers, the IT organization, and stakeholders of 

the software product.  

Implications for Social Change 

If the research is successful in providing strategies that produce accurate effort 

estimations for software development delivery, it can potentially improve the lives of 

those engaged in the process of software estimation. Increased accuracy of software 

effort estimation could reduce the stress level of IT managers, project stakeholders, and 

software development professionals by providing more realistic time frames for the 
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delivery of software. Estimates that are more reflective of actual effort can also benefit 

development teams by improving morale, work-life balance, alignment of expectations, 

and software quality. Providing development managers and development teams with 

practical and effective strategies for accurate effort estimations may therefore engender 

positive social change for a variety of stakeholders. 

A Review of the Professional and Academic Literature 

The literature review for this study contains analysis and synthesis of journal 

articles about agile software development effort estimation and related topics. I have 

included additional information regarding agile development methods and some common 

agile estimation methods. Themes addressed in the literature review are (a) agile software 

development, (b) current research in software development estimations, (c) the planning 

fallacy and optimistic bias, and (d) supporting theories and contradictory theories. The 

themes were chosen to provide background information on agile software development, 

development approaches, and estimation methods and analysis of the selected conceptual 

framework, the planning fallacy. In reviewing the academic literature on software 

development estimation, it was evident that multiple approaches, models, and strategies 

exist, and accurate effort estimation remains problematic.  

The purpose of this qualitative multiple case study is to identify strategies that 

agile software development professionals use to provide project managers with accurate 

software development effort estimations. The goal of the literature review is to explore 

current strategies and methodologies in delivering software development effort estimates. 

The literature review contains articles gathered from ACM Digital Library, Business 
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Source Complete, IEEE Xplore Digital Library, ProQuest Central, SAGE Knowledge 

Journals, Science Direct, Taylor and Francis Online, Thoreau Multi Database Search, and 

Google Scholar. I used Ulrich to verify that the references in this study were peer 

reviewed. The study contains 263 references, of which 88% were peer reviewed and 207 

were published within 5 years of my expected graduation. The literature review includes 

174 articles, of which 168 (88%) were peer reviewed and 138 (79%) were published 

within 5 years of my expected graduation.  

Agile Software Development 

Agile is a common approach to developing software. The term agile was initially 

adopted in 2001 during a meeting of 17 supporters of a lightweight development process 

in Snowbird, Utah (Krstić et al., 2018), as a contrast to traditional plan-driven 

development (Abdalhamid & Mishra, 2017). The meeting resulted in the introduction of 

the Agile Manifesto, which includes 12 core values that guide the principles of agile 

software development (Stoica et al., 2016). The fundamental tenets of the Agile 

Manifesto ideology are that (a) individuals and interactions are valued over processes and 

tools, (b) working software is valued over comprehensive documentation, (c) 

collaboration with customers is more important than contract negotiation, and (d) 

responding to change rather than a defined a project plan (Coleman, 2016; Drury-Grogan, 

Conboy, & Acton, 2017). The agile approach to software development consists of self-

organized teams with a focus on collaboration and communication (Vallon, José, 

Prikladnicki, & Grechenig, 2018).  
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Agile provides flexibility not found in typical waterfall methodologies. Agile 

traditionally incorporates extensive user involvement in the development process and a 

light touch by management (Taylor, 2016), as well as short development cycles, 

continuous releases, and rapidly evolving requirements (Drury-Grogan et al., 2017). 

Agile software development is characteristically iterative, with incremental development 

cycles and close communication with customers and end users (Anooja & Rajawat, 

2017). The agile process has gained full acceptance among development teams in the 

management and construction of software.  

Agile software development methodologies. The evolution of agile software 

management is the result of challenges with legacy development methodologies such as 

stagewise, waterfall, and spiral. The popularity of agile software development 

methodologies has increased worldwide (Haines et al., 2017). The critical processes in 

agility are iterative, timebound cycles that accommodate change (Boby, Kadadevaramath, 

& Edinbarough, 2017) and enable development teams to manage uncertainty and 

unforeseeable changes (Dönmez & Grote, 2018). The most widely used agile 

development approaches are scrum, extreme programming, feature-driven development, 

kanban, and the crystal family of development methods (Brad, Birloi, Bratulescu, & 

Blaga, 2016). Agile provides an approach to solving the issues associated with the 

rigidity of legacy methodologies that hindered the benefits of flexible iterations.  

The agile development methodology embraces changing requirements that are 

often not fully understood when the project begins. Changing software requirements that 

are typically driven by the customer can adversely affect the quality of the final software 
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product (Baruah, 2015). Many organizations embrace the agile methodology in response 

to the demand for quick delivery, reduced costs, and an increase in project flexibility 

(Ebert & Paasivaara, 2017; Stoica et al., 2016). The popularity of the agile software 

development approach has reduced time to market, increased corporate competitive 

advantage, and resulted in a higher level of quality satisfaction (Haines et al., 2017). The 

agile approach is well suited for managing uncertainty in software development (Mirzaei 

& Mabin, 2017), and the process offers significant benefits that include knowledge 

learning, employee satisfaction, confidence from feedback, and scalability (Solinski & 

Petersen, 2016). The agile methodology addresses the need to provide working software 

to customers quickly and adapt to changing requirements.   

Scrum. The scrum development approach is the most popular agile method used 

in software development (Butt, 2016). The scrum methodology, developed by Schwaber 

and Sutherland (Azanha, Argoud, de Camargo, & Antoniolli, 2017; Krstić et al., 2018), 

was initially presented by Schwaber in 1995 at a conference in Austin, Texas 

(Ozierańska, Skomra, Kuchta, & Rola, 2016). Scrum utilizes incremental fixed 

timebound iterations in the construction of software (Ozierańska et al., 2016). The term 

scrum comes from the sport of rugby, where team members organize and collaborate to 

achieve the goal of winning the game (Azanha et al., 2017). The critical factors of scrum 

are transparency and visibility to everyone, inspection to detect problems in the early 

stages of development, and the ability to adjust through adaptation (Srivastava & Jain, 

2017).  
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The scrum development method uses sprints, which are timebound iterations in 

the construction and delivery of software. Sprints are typically 2 to 4 weeks in length 

(Kirmani, 2017a; Torrecilla-Salinas, Sedeño, Escalona, & Mejías, 2015). At the end of 

the sprint, the team is expected to provide a potentially shippable working model 

(Mirzaei & Mabin, 2017). The development goal, as well as the development team, 

should not change during a sprint, and the product owner or development team may 

redefine the scope as needed (Srivastava & Jain, 2017). The sprint team iterations (time 

length of the sprint) remain constant but can vary from team to team.  

Scrum has three essential elements: roles, artifacts, and events. The principal roles 

are the scrum master, the product owner, and the scrum development team (Hohl et al., 

2018; Kotaiah & Khalil, 2017; Munawar & Qureshi, 2015). The responsibility of the 

scrum master is to support the scrum team, ensuring the project achieves its goals, 

whereas the product owner is the expert on the business case, controls the backlog, and 

has the power to make decisions on behalf of the company (Munawar & Qureshi, 2015). 

The development team is responsible for the delivery and implementation of a releasable 

product at the end of each sprint (Srivastava & Jain, 2017). The development team 

usually consists of three to nine professionals responsible for delivering a functional 

product and has the authority to determine the necessary actions to achieve the objectives 

of each sprint (Azanha et al., 2017). The team defines and sets the goals before the 

beginning of the sprint.  

The activities (events) of scrum focus on the sprint, which is the heart of the 

scrum development approach. Sprints start with a sprint planning meeting that sets the 
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goals and guidelines of the iteration (Azanha et al., 2017). Each day during the sprint, the 

development team conducts a stand-up meeting to report the accomplishments of the 

team the day before, the plan for the current day, and any impediments that the team has 

encountered (Abdullah & Qureshi, 2018). The benefit of the stand-up meeting is to assess 

the current progress and mitigate any risks that may arise (Perkusich, Gorgônio, Almeida, 

& Perkusich, 2017). The stand-up meeting provides the team with the ability to 

communicate and share project knowledge, report on progress, and resolve issues that 

arise during the sprint.  

At the end of the sprint, the team conducts a review meeting to evaluate the 

accomplishments of the sprint. The sprint review meeting is a retrospective in which the 

team evaluates the sprint in terms of communication, resources, and processes to identify 

any potential areas for improvement (Srivastava & Jain, 2017). After each sprint, the 

team has the opportunity to share the positive and negative aspects to improve future 

sprints (Ahmed, Tayyab, Bhatti, Alzahrani, & Babar, 2017). The sprint retrospective is a 

“lessons learned” meeting to provide the team with what worked well and what did not.  

The sprint backlog and the product backlog are artifacts that list the items that 

provide value and represent the work requested. The sprint backlog is a list of items to be 

accomplished in the sprint that define the requested enhancements, requirements, and 

corrections the team commits to working in the specific iteration (Perkusich et al., 2017). 

The product backlog is a priority-ordered list of everything that is needed or requested to 

be accomplished in future sprints (Azanha et al., 2017; Srivastava & Jain, 2017). The 
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sprint backlog and the product backlog comprise all the requests and requirements the 

development team delivers to the customer. 

 The process of scrum starts by translating the customer’s requirements into the 

product backlog. The team holds the sprint planning meeting with the help of the product 

owner to determine the planned accomplishments of the sprint (Abdullah & Qureshi, 

2018). During the sprint meeting, the development team estimates the work to be 

accomplished (Kotaiah & Khalil, 2017; Ozierańska et al., 2016). The team transfers items 

planned for the sprint from the product backlog to the sprint backlog, and the team 

completes the items in the sprint backlog for the iteration delivery (Ahmed et al., 2017). 

The sprint and product backlogs are listings of items to be accomplishments as requested 

by the product owner.  

Extreme programming. Extreme programming (XP) is an agile development 

method that uses on-site customer collaboration, paired programming, and automated 

testing processes. XP is a widely used agile method that focuses on simplicity, internal 

communications, and customer feedback (Singh & Pandey, 2017). XP, which was 

presented by Beck in 1999, is one of the oldest of the agile methods (Anwer & Aftab, 

2017). According to Munawar and Qureshi (2015), the advantages of XP are short 

iteration cycles, direct communication with an on-site customer, and continuous 

integration and testing. The disadvantages are that the practice is minimal documentation 

and the method is not suited for projects that involve reengineering (Munawar & Qureshi, 

2015). According to Anwer and Aftab (2017), the XP method is challenging to use on 

large projects and projects of a critical nature. XP, although practiced before the concept 
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of agile was defined, is an agile development process.  

XP, much like scrum, uses iterative phases in the software development process. 

The first phase of XP is the initialization phase in which project team members gather 

requirements from customers that are directly involved with the team to determine project 

scope and cost (Anwer & Aftab, 2017). In the requirements gathering phase, the team 

uses story cards to document and describe the request and elicit dialogue with the 

customer (Baruah, 2015). In the second phase (analysis phase), the software team 

develops the architecture and iteration plan (Anwer & Aftab, 2017). Repeated cycles of 

code development and testing follow the requirements and analysis phase, and the code is 

integrated into a deliverable release once it achieves the functional request (Anwer & 

Aftab, 2017). Additionally, one of the critical distinctions in the XP development process 

is the concept of paired programming.  

Paired programming is a development approach in which two programmers sit 

together, one assuming the role of the driver and the other, the navigator. Paired 

programming is a standard practice in XP in which two people collaborate in the coding 

process (Hohl et al., 2018; Kotaiah & Khalil, 2017; Meyer, 2018). The driver sits at the 

keyboard to type the code while the navigator oversees the code input, watching for 

syntax errors and ensuring the program meets the required deliverable (Chen & Rea, 

2018). The programmer who is actively writing the code (driver) focuses on the 

completion of the current task (Chen & Rea, 2018). The navigator, who is overlooking 

the code writing, can judge the strategic direction of the work performed, offering ideas 

for improvement or potential future problems (Karthiekheyan, Ahmed, & Jayalakshmi, 
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2018). The approach uses two programmers to collaborate on a single code set, working 

together to complete a development request.  

Paired programming can have an advantage over developers working 

independently. In paired programming, the driver and the navigator often change roles 

throughout the project (Chen & Rea, 2018; Haines et al., 2017). The benefits of paired 

programming are constant code review and the brainstorming of approaches during the 

code’s development (Karthiekheyan et al., 2018). According to Chen and Rea (2018), 

programmers can quickly catch and resolve errors, thus producing better code using a 

collaborative approach. Additionally, pairing an expert programmer with an average or 

novice programmer provides mentorship to the novice (Chen & Rea, 2018). However, 

teaming individuals who have the same expertise can cause counterproductive work 

(Haines et al., 2017). Therefore, the benefits of paired programming can be more 

significant when developers have different skill levels or experience. 

Kanban. The process of kanban, associated with the Toyota production system, 

incorporates the Japanese philosophy of Muda. Muda is the avoidance or elimination of 

waste and the removal of activities that are not useful or do not provide value to the 

customer (Baseer, Reddy, & Bindu, 2015; Stoica et al., 2016). The kanban process was 

developed by Taiichi Ohno to provide the Toyota production system with a practical 

approach in specific production and market conditions and to maintain a smooth 

production flow to promote the concept of continuous improvement (Ahmad, Dennehy, 

Conboy, & Oivo, 2018). Kanban is a Japanese expression meaning signboard (Tanner & 

Dauane, 2017) and was designed as a flow control system in manufacturing in which 
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downstream process demand signals trigger upstream process activities (Abdullah & 

Qureshi, 2018). The kanban philosophy, although developed for the manufacturing sector 

to reduce waste in product production, has been applied to software development 

activities.  

Kanban includes a visual workflow on a board divided into columns. Teams use a 

kanban board to visualize the progress of work to facilitate product improvements, 

monitoring of processes, and effective management of the workflow (Abdullah & 

Qureshi, 2018; Tanner & Dauane, 2017). The purpose of the kanban board is to improve 

the workflow by supporting the principles of limiting work in progress, creating value 

throughout the process, increasing throughput, and embedding quality within the process 

(dos Santos, Beltrão, de Souza, & Travassos, 2018; Lei, Ganjeizadeh, Jayachandran, & 

Ozcan, 2017). Additionally, kanban boards provide a process to manage the workflow, 

balance throughput, and make processes explicit as work moves through the different 

states (Ahmad et al., 2018). Each state in the kanban process has a clearly defined entry 

and exit point and provides the team and management with a visual representation of 

progress.  

Work requests are defined in the kanban backlog to identify the work items the 

team needs to accomplish. In software development, stakeholders prioritize the requests 

regarding importance, urgency, or value (Tanner & Dauane, 2017). Features or requests 

are selected and placed on the board (Abdullah & Qureshi, 2018). Each column on the 

kanban board limits the amount of work in progress within the column or lane (Matharu, 

Mishra, Singh, & Upadhyay, 2015; Tanner & Dauane, 2017). Based on prioritization, 
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work items are pulled through the workflow using defined stages such as “to do,” “in 

progress,” and “done.” Work items are tasks pulled only when required (Matharu et al., 

2015). Each stage limits the number of items (work in progress) to avoid the potential for 

bottlenecks ( Abdullah & Qureshi, 2018; Dennehy & Conboy, 2017). Limiting work in 

progress restricts the number of ongoing activities to avoid an excess of initiated tasks 

and unfinished work (Matharu et al., 2015; Stoica et al., 2016). The Kanban method 

allows a team to respond to market changes, reduce waste, increase quality, and improve 

predictability. 

Feature-driven development. Feature-driven development (FDD) is a 

development model that focuses mainly on the design and build aspects of software 

development. FDD is a process-oriented software development methodology used to 

create business critical applications and systems (Kirmani, 2017a). Luca introduced the 

FDD model in 1997 (Sambare, 2017) with the idea of grouping software features by 

categories for development (Kotaiah & Khalil, 2017). FDD is an iterative and 

incremental approach to software development according to functionality valued by the 

client and with an emphasis on quality (Nawaz, Aftab, & Anwer, 2017). The 

development objectives are categorized and accomplished by feature groups.  

The FDD development process includes five activities that have a distinct entry 

and exit point. The activities are: develop an overall model, build a features list, plan by 

feature, design by feature, and build by feature (Nawaz et al., 2017). The FDD model 

focuses on the design and building processes emphasizing software quality aspects with 

accurate monitoring of the development project (Kirmani, 2017a). The distinction 
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between FDD and other development methods is that the stakeholders can track project 

progress by a feature design, and the team builds the product using a feature aspect 

(Baseer et al., 2015). In FDD, the team groups software features into categorized sets for 

development based on functionality rather than time-bound iterations (sprints).  

Planning in FDD is more extensive than that of many other agile methods. The 

first process in FDD is to develop an overall model that involves a discussion of the 

scope of the project, including the requirements of the stakeholders (Kotaiah & Khalil, 

2017) and a walkthrough with the team (Nawaz et al., 2017). Following the walkthrough, 

the team prepares a listing of features grouped into sets that are verified against business 

needs and prioritized for development (Nawaz et al., 2017). The plan by feature is the 

third process intended to delegate the selected features to the software developers (Nawaz 

et al., 2017). The design by feature activity follows the plan by feature process to 

determine what features the team can develop within a fixed period and includes 

outlining the class models (Nawaz et al., 2017). The final process is the construction of 

the features followed by a unit test; a feature is then pushed to the main product build 

once the feature is complete and unit tested. (Sambare, 2017). The FDD model defines 

the processes from the discussion and planning to the development work and finally to 

adding the change to the main releasable codebase.  

Adaptive software development. The adaptive software development (ASD) 

model, like most agile methods, assumes that change is inevitable. The ASD is a method 

that encourages incremental iterations using a prototyping model (Kirmani, 2017a). The 

ASD process model facilitates communication and planning, analysis, design and 
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development, and testing and deployment (Sadaf, Iqbal, Saba, & Mohsin, 2017). 

Software development teams use the ASD method to support a component based 

development approach that works well with large teams and safety critical projects. 

Introduced by Highsmith in 2000, ASD uses a speculate, collaborate, and learn cycle 

rather than the traditional plan, design, and build lifecycle (Hohl et al., 2018). The ASD 

model is one of the earlier agile approaches. 

Learning loops are a vital process in ASD. The learning cycle integrates learning 

loops to enhance collaboration in the goal of implementation (Hohl et al., 2018). During 

the speculate phase, the team gathers the requirements, and the development process 

begins with the schedule and the development objectives fixed (Al-Zewairi, Biltawi, 

Etaiwi, & Shaout, 2017). The development team works on several components 

concurrently, and the components are refined continuously in an iterative process 

(Kirmani, 2017a). However, the ASD approach does not provide for the identification of 

agile team members who participate in the analysis phase, the criteria for software 

requirements selection, or the criteria during the analysis phase (Sadaf et al., 2017). The 

ASD model uses timebound iterations, usually consisting of four to five-week sprints, 

and users participate in all iterations and face to face meetings (Kirmani, 2017a). Like 

most agile approaches, ASD does not put a strong emphasis on documentation. 

Crystal. The crystal methodologies are a lightweight and versatile software 

development family of methods. Team size and project priority are the principal 

characterizations of crystal methods (Sambare, 2017; Tarwani & Chug, 2016). The 

methods were developed initially by Cockburn and are considered a lightweight 
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development approach (Hohl et al., 2018) that promotes flexibility (Butt, 2016; Kulkarni, 

Padmanabham, Harshe, Baseer, & Patil, 2017). The crystal family of methods focuses on 

teamwork, flexibility, communication, and simplicity to improve processes (Kotaiah & 

Khalil, 2017).  

The crystal family is identified by color to indicate the type of development. The 

colors include: clear, yellow, orange, and red (Kirmani, 2017a; Kulkarni et al., 2017; 

Sambare, 2017), indicating factors such as the size of the team, the system criticality, and 

the priorities of the project (Fustik, 2017). Color represents the weight or size of the 

project; the darker the color, the larger the project (Saravanan et al., 2017). Alqudah and 

Razali (2017) stated that crystal orange denotes a project with around 40 developers, 

whereas crystal clear is more suitable for smaller projects with fewer developers. 

Additionally, crystal orange is more appropriate when a high degree of rigor is necessary, 

whereas clear is more flexible and lightweight (Alqudah & Razali, 2017). The color 

indicator of the method identifies the characteristics of the project and team and counter 

the one-size-fits-all ideals of other software development approaches.  

The crystal method family provides projects with a framework designed for 

development size and criticality. Crystal is one of the more adaptable methodologies 

(Fustik, 2017; Kotaiah & Khalil, 2017), recognizing that each project may require 

individual policies and processes to meet the uniqueness of the project (Fustik, 2017; 

Sambare, 2017). The principles of crystal are passive knowledge transfer, continuous 

delivery, frequent releases, and automated testing (Hohl et al., 2018). The crystal family 
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of methods arose from the need for an approach that was customizable to accommodate 

differences in projects. 

Dynamic system development method. The dynamic system development method 

(DSDM) grew out of the need to provide a standard for the rapid application development 

process (Kirmani, 2017a; Tarwani & Chug, 2016) before the term agile was coined (Brad 

et al., 2016). The DSDM method, introduced in 1994 (Kirmani, 2017a; Sadaf et al., 

2017), and according to Tarwani and Chug (2016), credit Van Bennekum with 

conceiving the development methodology. Like most agile methods, DSDM focuses on 

business value, active user involvement, frequent delivery, integration testing, and 

collaboration with stakeholders (Fustik, 2017). However, DSDM, unlike many agile 

methods, provides complete support throughout all life cycle phases (Kirmani, 2017a). 

The DSDM philosophy is that the team can deploy 80% of the system in 20% of the time 

(Kirmani, 2017a) with the possibility of rework and that development changes must be 

reversible (Fustik, 2017).  

Requirement priority determines the most critical functionalities to deliver first in 

DSDM. The requirements are prioritized and checked for feasibility (Baruah, 2015). 

Project requirements are prioritized based on the rules of must-have, should have if 

possible, could have but not critical, and will not deliver now but maybe later (Younas, 

Ghani, Jawawi, & Khan, 2016). DSDM has three phases: the pre-project, the project life 

cycle, and the post-project phase. The pre-project phase established the goals and 

priorities of the project (Fustik, 2017). In the project life cycle phases, the functional 

model, design, iteration, and implementation phases are determined (Fustik, 2017). The 
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post-project phase addresses functional efficiency and error correction (Fustik, 2017). 

The DSDM approach sets the time allotment and resources and adjusts the amount of 

functionality delivered accordingly (Kirmani, 2017a). 

Estimation of Effort in Software Development 

Estimation in software development is the process of approximating how much 

effort is required to accomplish a task. Estimation plays a significant role in software 

development to establish cost assessments and delivery schedules (Bilgaiyan et al., 2017). 

A software project's success relies on estimations that reflect accurate effort prediction 

(Bilgaiyan, Mishra, & Das, 2016). According to Rahikkala, Leppänen, Ruohonen, and 

Holvitie (2015), software projects that delivered expected results within budget and 

predicted time are the exception rather than the rule. Accurate effort estimations provide 

stakeholders with forecasting data for planning, budgeting, and project scheduling. 

Estimating effort in a software project continues to be problematic for development 

teams.  

Multiple factors contribute to inaccurate effort estimations. Factors that adversely 

affect software development effort estimation are the uncertainty of the effort required to 

complete the task, software size, estimator experience, inconsistent and incomplete data, 

the dependency of the environment, and frequent changes in requirements (Sehra, Brar, 

& Kaur, 2016). Tanveer (2017) concludes that estimation accuracy is dependent on the 

developer’s experience, complexity, and the impact of changes made to the underlying 

system. Additionally, estimation models perform differently in different environments 

and development project types (Sehra, Brar, Kaur, & Sehra, 2017). Considering multiple 
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factors, estimation of effort in software development can thus be difficult, and 

underestimation is problematic.  

Multiple factors affect software development estimation. Influences that affect 

estimation accuracy are software size, the team’s experience, the team's skill, the number 

of nonfunctional requirements, the distribution of the team geographically, and the level 

of communication provided by the customer (Usman et al., 2017). Sehra et al. (2016) 

asserted that factors that affect accurate estimation are: requirements uncertainty, 

software size, the experience of the estimator, incomplete data, and changes in 

requirements. Jørgensen (2014) stated that the accuracy of estimates improves through 

the use of local context, the use of historical estimation error intervals, the avoidance of 

misleading estimation information, the use of a checklist, the conducting of a group-

based approach, and avoidance of early estimation based on incomplete information. 

Multiple factors, both individually and collectively, adversely effect estimation.  

Providing accurate effort estimates in software development is problematic. 

Estimating effort in software development projects at the beginning of the lifecycle is 

more challenging due to the “cone of uncertainty” (Sehra et al., 2016). In the initial 

feasibility stage, actual effort and cost can exceed 250% more than the initial estimate 

(Dragicevic et al., 2017). Delaying the estimation until the requirement specification 

phase can reduce inaccuracy, thus providing a more realistic and accurate estimation 

(Sehra et al., 2016). However, estimations many times are requested before the 

elaboration of requirements. As a project progresses, uncertainty decreases as knowledge 

increases regarding the product (Arifin, Daengdej, & Khanh, 2017). Estimations are 
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predictions, and there is a level of uncertainty as each project is unique, and there are no 

two projects with the same requirements. 

Software effort estimation is more challenging in agile projects due to changes in 

requirements and uncertainty experienced in the development process. Rahikkala et al. 

(2015) identified two factors associated with estimates that positively influenced project 

success. The first factor was that senior management ensures that a software estimate 

relies on facts rather than guessing or opinion (Rahikkala et al., 2015). The second was 

that senior management recognizes that estimates are critical to organizational success 

(Rahikkala et al., 2015). Accurate estimates increase the probability of project success; 

yet estimate accuracy remains an elusive target. 

Agile estimation methods. There are two primary categories of software 

estimation methodologies. All estimation approaches are either algorithmic (parametric) 

or non-algorithmic (nonparametric) or a combination of the two (Idri, Amazal, & Abran, 

2015; Osmanbegović et al., 2017; Soni & Kohli, 2017). Algorithmic approaches utilize 

mathematical models or equations, whereas non-algorithmic do not (Khuat & Le, 2016). 

Estimating provides planners with project timelines and costs.  

There are multiple approaches used by development teams to provide estimates of 

effort. Shekhar and Kumar (2016) asserted that no single method in software 

development estimation is considered the best method, and they suggested using a 

combination of techniques to increase estimation accuracy. Shekhar and Kumar (2016) 

concluded that it is best to use non-algorithmic approaches such as an expert judgment 

for projects that have extensive known requirements. For projects with many unknowns, 
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the algorithmic approach is the more appropriate choice. However, estimations that use a 

combination of methods arrive at a more accurate estimate (Shekhar & Kumar, 2016).  

Cost estimation is essentially forecasting the expected time, effort, and workforce 

needed to complete the development of a software task or project (Bilgaiyan et al., 2017). 

Popular estimation methods used are estimation by analogy, expert judgment, function 

points, software sizing, and Bayesian methods (Bilgaiyan et al., 2016; Soni & Kohli, 

2017). Jørgensen (2014) asserts that estimates should use simple models, historical data, 

and should avoid misleading information. Additionally, Jørgensen (2014) stated that 

estimates could be improved by utilizing checklists, utilizing structured approaches, and 

avoiding early estimations.  

The philosophy of agile effort estimation is that the people doing the work 

perform the estimation to gain a more realistic assessment (Taylor, 2016). Prakash and 

Viswanathan (2017), Bilgaiyan et al. (2017), and Osman and Musa (2016) concurred that 

different estimation models are better suited to different development models. Distinct 

characteristics of successful agile estimating include collaboration with product owners, 

estimations accomplished by a team rather than an individual, and the use of story points 

for relative measures (Prakash & Viswanathan, 2017). In the early stages of development, 

obtaining refined details of the project may not be possible in an agile environment, 

making estimation problematic.    

Story points. Story points are a sizing technique used as a relative unit of measure 

for expressing the overall size of a user story or development effort. The utilization of 

story points is the most popular estimation approach for software sizing to measure the 
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effort needed to implement a user story (Choetkiertikul et al., 2018; Dragicevic et al., 

2017). The estimation method is a bottom-up approach and provides a measure of the 

complexity or quantity of work to produce (Jadhav, Shaga, & Thorat, 2017).  

There is no fixed formula for defining the effort or size in the utilization of story 

points (Osman & Musa, 2016). Story points commonly utilize the Fibonacci sequence to 

express relative size (Alostad, Abdullah, & Aali, 2017; Jadhav et al., 2017; Raslan et al., 

2015). The gaps between the sequences provide a higher degree of uncertainty in the 

level of effort for larger units of work. Essentially, the larger the effort (greater the size), 

the more likely the error in the estimate; thus, the higher the gap in the sequence (Raslan 

et al., 2015). Fox (2016) claimed that the Fibonacci sequence, when used as an estimation 

metric, is relatively unbiased. Usman et al. (2017) suggested an extended approach to 

story points by providing estimates by averaging three values; fastest, most practical, and 

maximum values to give a final estimate.  

Story points are relative values, can differ from team to team, and are numerical 

representations of complexity. The estimating approach (size value) is specific to each 

team and uses each team’s cumulative knowledge (Choetkiertikul et al., 2018).  The story 

point value can change from team to team depending on the baseline story in which they 

are relative too (Choetkiertikul et al., 2018; Soni & Kohli, 2017). Each development team 

uses story points on a different scale to establish a velocity over time (Ahmed et al., 

2017). Story points are relative measures rather than quantitative measures (Soni & 

Kohli, 2017). The accuracy of story points is subjective to the person or persons 

performing the estimation and derived from previous experience (Arifin et al., 2017). 
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Values are determined from previous efforts using a relative approach and differ from 

team to team.  

One of the critical success factors for story point estimation is that the 

development group estimates the stories as a team using the same scale. Once the story 

points are estimated, the values are translated into the team’s velocity to forecast future 

sprints, iterations, or efforts (Brad et al., 2016). Velocity represents the total of story 

points that the development team can deliver in a specific iteration (Torrecilla-Salinas et 

al., 2015), and is a useful predictor of the team's capabilities (Ahmed et al., 2017). Story 

points are independent of time units and are a successful and common approach in 

software development estimation (Zahraoui & Idrissi, 2015). Harzl (2017) indicated that 

there could be disadvantages to using story points as a critical factor in the success of 

story point estimation is a team’s shared experience. According to Harzl (2017), it is 

challenging to establish velocity in the initial iterations, as team members have not had 

experience working and estimating as a collective group and experience challenges in 

providing accurate estimates. The story pointing approach, although commonly used, is 

subject to error.  

T-shirt sizing. T-shirt sizing is an estimation approach that utilizes relative 

valuations. The estimation approach uses t-shirt sizes such as extra-small, small, medium, 

large, and extra-large (Alostad et al., 2017; Raslan et al., 2015). Similar to story points, 

the t-shirt sizing approach can differ from team to team and requires a common 

understanding of the estimated value selected (Alostad et al., 2017). The strategy works 

best when a team has estimated previous stories or work items as a group, and the method 
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can provide a measurement for large effort work items (Alostad et al., 2017; Raslan et al., 

2015). The t-shirt sizing technique can produce an early estimate to give the business a 

metric of complexity for determining the level of effort (McConnell, 2006). The early 

comparison allows stakeholders or requesters to determine if the effort required is worth 

the business value generated from the effort (McConnell, 2006). The t-shirt size 

estimation technique offers a simple alternative to executing a more complex estimation 

process.  

The advantages of t-shirt sizing are that as there are fewer values to select and the 

voting process can be conducted expeditiously. According to Harzl (2017), due to the 

abstract nature of the approach, t-shirt sizing does not suggest precision. However, with t-

shirt sizing, sizes are non-numerical, and the approach is simple and easily understood 

(Harzl, 2017). The t-shirt sizing method provides a nontechnical, initial estimation 

projection that is accurate enough to support effective project control (McConnell, 2006). 

The disadvantages in using the approach are that velocity is hard to measure 

(performance of the team over time), the scale lacks detail, there is no precise 

mathematical correlation between the sizes, and a numerical value to track effort actuals 

is lacking (Harzl, 2017). Thus, the absence of numerical values is problematic in 

establishing velocity.  

Expert judgment. Expert judgment in software effort estimation requires someone 

with previous experience in effort estimation who knows and understands the task under 

consideration to provide an approximation of effort. Expert judgment utilizes the 

knowledge of an expert and is a widely used strategy for software estimating (Shekhar & 
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Kumar, 2016). However, expert judgment can exhibit bias by the estimator and relies on 

the expert's previous experience on similar projects to generate a realistic estimate (Khuat 

& Le, 2016). Expert judgment comprises two approaches: effort-time and effort-size 

(Arifin et al., 2017). Effort-time is an absolute value method, such as person-days or 

person-hours; effort-size is a relative measure such as story points (Arifin et al., 2017) or 

t-shirt sizing. McConnell (2006) states that using a top-down approach that decomposes 

tasks into a granularity that is less than about two days enhances the accuracy and 

effectiveness of expert judgment. Large task estimation is prone to error and more 

challenging to estimate; thus, decomposition provides higher accuracy.  

Expert judgment is ta common estimation technique used in effort estimation in 

software development. Although there is high availability of commercial estimation tools 

and approaches, expert estimation remains the most widely used estimation methodology 

(Ivan & Despa, 2016; Shekhar & Kumar, 2016; Usman, Britto, Damm, & Börstler, 2018). 

Expert-based effort estimates result from quantitative intuition as experts seldom base 

estimates on explicit analytical argumentation (Jørgensen & Boehm, 2009). Expert 

judgment is a non-algorithmic technique and may be prone to error as estimations can be 

inconsistent, lack repeatability, and be overly dependent on human memory (Sehra et al., 

2017). Estimation inaccuracies can stem from over-optimism and over-reliance on 

accuracy due to over-confidence in the estimator’s ability to deliver accurate estimations.  

Delphi. The Delphi technique utilizes a consensus-based approach to estimating 

involving multiple experts. The experts selected for a Delphi approach have subject 

domain experience and specific application knowledge (Adnan & Afzal, 2017; Strasser, 
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2017). Experts conduct discussions in a structured group process designed to produce a 

consensus (Osman & Musa, 2016; Perkusich et al., 2017). The Delphi method of 

estimation in software development is the process whereby a group of experts identify the 

task to estimate, provide an estimation method, discuss the application of the method, and 

arrive at a consensus regarding the level of effort needed (Rai, Gupta, & Kumar, 2017; 

Strasser, 2017). The experts conduct the approach using multiple rounds of voting that 

provides results that can be evaluated and summarized (Lima, West, Winston, & Wood, 

2016). The experts may repeat the process of estimate revision until the experts reach a 

specific number of rounds, reach a consensus, or until the results are stable and the 

answer is satisfactory (Nguyen, & Nguyen, 2018; Prakash & Viswanathan, 2017). The 

Delphi approach to estimation makes available an estimate based on the collective 

agreement of experts.  

The Delphi approach utilizes expert assessments and involves the coordination of 

the team and elaboration of requirements for the members of the team to do their 

estimations anonymously. Estimations with a high level of variation are discussed further 

and re-evaluated (Prakash & Viswanathan, 2017; Strasser, 2017). The results are 

distributed to the group for further discussion after each round to reach an agreement and 

review the agreement for relevance (Bilgaiyan et al., 2016). The Delphi method captures 

factors from several experts and provides a defined practice in the assessment (Lee & 

Rothenberger, 2015). The Delphi approach is the collective assessment of experts to 

establish an agreed-upon estimation.  

COCOMO II. The COCOMO II model is an algorithmic approach to estimating 
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software development effort. COCOMO II uses size and numerical input measures 

regarding application points multiplied by constants that are empirically determined to 

provide estimations (Ivan & Despa, 2016). The use of company-specific calibration and 

historical data increase accuracy (Moharreri, Sapre, Ramanathan, & Ramnath, 2016). The 

COCOMO II model has the advantages of objectivity, repeatability, built-in sensitivity to 

development factors, and model calibration to previous projects and experiences 

(Osmanbegović et al., 2017). COCOMO II uses multiple factors for calibration and is 

most effective when using historical data.  

The algorithmic COCOMO II estimation model’s effectiveness relies on historical 

data to provide accurate estimations. Estimators calibrate the model using factors such as 

flexibility of the development, team cohesion, reuse, architecture, risk, platform 

experience, database size, the volatility of the platform, personnel continuity and 

experience, time constraints, complexity, and team capability (Boehm et al., 2000). An 

advantage of COCOMO II is that modification and customization of the model are 

straightforward (Prakash & Viswanathan, 2017). However, Prakash and Viswanathan 

(2017) also stated that the method becomes much less effective if historical data is not 

available. Additionally, the COCOMO II model is more suited to a procedural 

development paradigm than the agile development model (Kukreja & Garg, 2017; Rath et 

al., 2016).  

Bayesian network. Bayesian networks (BN) belong to the category of 

probabilistic graph models and are used to represent knowledge about uncertain domains 

(Perkusich et al., 2017). Bayesian networks represent a joint probability distribution over 
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a set of variables (Freire, Perkusich, Saraiva, Almeida, & Perkusich, 2018). Dragicevic et 

al. (2017) suggested that the BN model is a suitable estimation method in an agile 

software development methodology as it does not have an impact on agility and can be 

applied in an early planning phase successfully. The BN model is useful in making 

predictions and diagnostics with ambiguous data to determine the probability of an event 

(Dragicevic et al., 2017). Estimators use the method to incorporate causal factors to 

determine conditional probability is estimations. 

The BN is a model that describes probabilistic relationships between causally 

related variables. The advantages of a BN are suitability for small projects, and it 

provides results based on incomplete data sets (Zare F., Zare H., & Fallahnezhad, 2016). 

The BN model's additional advantages are the explicit treatment of uncertainty and 

support for decision analysis (Perkusich et al., 2017). The use of BN can be advantageous 

in effort estimation because probability distributions can be updated as new information 

becomes available, and estimation models are constructed using causal influences 

(Perkusich et al., 2017). Bayesian networks allow for the combining of historical data 

with expert opinion. 

Planning poker. Planning poker is a widely used estimation method for agile 

software development teams (Prakash & Viswanathan, 2017; Soni & Kohli, 2017; Usman 

et al., 2017). The estimation method uses a consensus approach to estimate development 

effort that minimizes peer pressure (Taylor, 2016) and is useful if historical data is not 

available (Anooja & Rajawat, 2017). The first step in planning poker is a domain expert 

explaining the user story to the team and providing clarification if requested (Lopez-
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Martinez, Ramirez-Noriega, Juarez-Ramirez, Licea, & Martinez-Ramirez, 2017; 

Torrecilla-Salinas et al., 2015). The next step is the creation by the team’s members of a 

private preliminary estimate followed by the display of their estimations to the entire 

team, typically using cards that represent a value (Torrecilla-Salinas et al., 2015). Team 

members explain the reasoning for estimations, and each member reflects on the other 

explanations (Miranda, 2017). Additional estimation rounds may be needed if estimates 

differ significantly (Miranda, 2017; Torrecilla-Salinas et al., 2015). The estimators that 

provide the highest and lowest values explain their reasoning, and the team continues 

with subsequent rounds until it reaches a consensus, and an agreed upon amount is 

determined (Torrecilla-Salinas et al., 2015; Vyas, Bohra, Lamba, & Vyas, 2018). 

Planning poker can consist of several rounds of discussion and re-estimation to reach 

consensus (Bilgaiyan et al., 2017; Choetkiertikul et al., 2018). Much like the Delphi 

method, developers use a collective forum in the planning poker technique, and open 

discussions provide a group-based agreement to the estimate.  

The estimation methodology is a team-based exercise used for assigning a relative 

estimate value to a requirement that expresses the level of effort required to deliver the 

specific feature. Planning poker traditionally uses the numerical sequence such as the 

Fibonacci sequence (Ramirez-Noriega, Juarez-Ramirez, Navarro, & Lopez-Martinez, 

2016). Planning poker is a standard estimation approach and requires expert opinion and 

analogy (Osman & Musa, 2016; Usman et al., 2017). Planning poker estimations are 

consensus-based and result in a value or size estimation of effort. 
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The planning poker method is most effective when an expert is engaged in the 

estimation and when the team has previous experience with similar tasks. Planning poker 

was introduced by Grenning (Rai et al., 2017) in 2002; the technique combines expert 

opinion, analogy, and disaggregation into a quick and reliable estimation method. The 

goal of planning poker is to arrive at an estimation that will withstand future scrutiny 

(Osman & Musa, 2016). Planning poker is an incremental team-based method that 

collectively analyzes requirements and determines an estimation (Dönmez & Grote, 

2018). The distinct difference between planning poker and Delphi is that not all group 

members in a planning poker session are required to be experts.  

Artificial neural networks. Artificial neural networks (ANN) are used as data 

analysis tools and are known for their learning and generalization ability (Shawky, Salwa, 

& El-Hafiz, 2016). ANN is a mathematical model (algorithmic) inspired by biology 

(Mittas, Papatheocharous, Angelis, & Andreou, 2015). Neural networks provide 

relationships between complex data through a learning phase (Rijwani & Jain, 2016). 

Types of neural networks used are general regression networks, polynomial neural 

networks, and probabilistic neural networks (Prakash & Viswanathan, 2017). ANN uses 

processing features called neurons, each having a mathematical function with specific 

inputs, a computational procedure, and outputs (Rijwani & Jain, 2016). According to 

Kaushik, Tayal, Yadav, and Kaur (2016), ANN models used in software estimation are 

the radial basis function network (RBFN) and function link artificial neural network 

(FLANN). The RBFN model offers a straightforward design, good generalizability, 

strong tolerance to noise, and learning ability (Kaushik et al., 2016). The FLANN method 



39 

 

is suited when data is nonlinear and is less complicated (Kaushik et al., 2016). Although 

ANN is considered an algorithmic process, the network itself is not an algorithm, but 

rather a framework of learning algorithms.  

ANN's principal characteristic is the ability to approximate nonlinear functions 

and is thus similar to traditional statistical techniques such as logical regression, 

statistical regression, and discriminant analysis (Mittas et al., 2015). The ANN method 

utilizes machine learning and pattern recognition for estimation and can discover 

relationships between the dependent and independent variables (Kaur, 2017). Artificial 

neural networks have gained popularity for software estimation prediction due to their 

ability to capture complex data and to disregard noise in the input data (Pospieszny et al., 

2018). ANN uses data from previous software projects to provide outputs by inference 

through learned data (Rijwani & Jain, 2016). The ANN design, inspired by the biological 

nervous system processes information using computational elements (nodes) operating 

through weighted inputs (layers) to provide accurate estimates (Bilgaiyan et al., 2017; 

Mittas et al., 2015). Additionally, the more considerable the amount of historical data, the 

more accurate the estimation; thus, the ANN is most effective in achieving accurate 

software development estimations when historical data is available (Naik & Nayak, 

2017).  

Function points. The function point (FP) method calculates an estimate using the 

parameters of inputs, outputs, inquiries, and files. The technique was introduced by 

Albrecht in 1979 (Hans & Gahlot, 2016) to measure the size of data processing systems 

from the end user’s point of view to determine an estimated development effort 
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(Abualkishik et al., 2017). FP's advantage is that estimators can calculate effort when a 

defined use case or in-depth system analysis is not available (Dewi, & Subriadi, 2017a). 

Estimators calculate function points by summing the number of internal logical files, 

external interface files, external inputs, external inquiries, and external outputs (Hans & 

Gahlot, 2016; Yoshigami, Tsunoda, Yamada, & Kusumoto, 2017). Function points are 

numerical values that measure software size determined from data processing types rather 

than from software development complexity.  

Prakash and Viswanathan (2017) stated that the FP method is appropriate to 

estimate size and cost but cannot estimate effort. Function points represent the amount of 

functionality released to the user by determining the data transactions, and operations that 

involve data crossing the boundaries of the application (Abualkishik et al., 2017). The FP 

method provides an estimation method that allows managers to project software size 

early in the project life cycle (Qi et al., 2017). It is independent of the technology used in 

the development of the software project (Farah-Stapleton, Auguston, & Giammarco, 

2016).  

COSMIC. To overcome some of the early issues with function point 

measurements, a group of experienced software measurement experts formed the 

Common Software Measurement International Consortium (COSMIC). The COSMIC 

standard defines rules and principles for measuring software's functional size 

(Almakadmeh, Al-Sarayreh, & Meridji, 2018). The COSMIC method differs from the 

traditional function point method, as the focus is on data movements such as input, 

output, and data storage that characterize most software development efforts (Di Martino, 
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Ferrucci, Gravino, & Sarro, 2016).  

The COSMIC method is a second-generation function point method proposed to 

overcome a few shortcomings of the function point method. The COSMIC process  

counts data movements classified into data entry and exit points, which are input-output 

movements, and read and write of data to storage (Almakadmeh et al., 2018). Each data 

movement is one COSMIC function point of size in a software application. COSMIC 

function points are the sum of the sizes of the functional processes (Abualkishik & 

Lavazza, 2018). The higher the number of data movements, the more significant is the 

size of the software.  

Use case points. Use case points (UCP) is a technique that utilizes a UML use 

case diagram to estimate the size. The UPC technique, inspired by the function points 

method, is an appropriate method to use in the early stages of software development 

(Azzeh & Nassif, 2016). Karner developed the technique in 1993 as an estimation 

method for object-oriented software (Shollig, Widodo, Sutanto, & Subriadi, 2016). Mehta 

and Kumari (2016) suggested that a technique such as the UCP estimation is more 

appropriate in object-oriented development than function point counting and COCOMO. 

The method calculates complexity based on use cases (Shollig et al., 2016) and thus 

differs from the calculation of data movements (function point) and historical data 

(COCOMO).  

Azzeh and Nassif (2016) state that the first step in using the UCP technique is to 

calculate the unadjusted actor's weight or complexity of interaction, such as simple, 

average, or complex. The second step is to classify the transaction using the same scheme 



42 

 

of simple, average, or complex (Azzeh & Nassif, 2016). Transactions are a response 

between an actor and the system. Finally, the transaction and complexity values are 

adjusted based on technical complexity and an environmental adjustment factor (Azzeh 

& Nassif, 2016). The basic UCP calculation is UCP = (UUCW + UAW) * TCF * ECT 

where UUCW is unadjusted use case weight, UAW is unadjusted actor weight, and TFC 

and ECF are technical complexity and environment factors respectively (Urbanek, 

Kolcavova, & Kuncar, 2017). 

 The UCP model has been used broadly in recent decades (Rath et al., 2016), and 

studies have indicated the method’s reliability (Dewi, & Subriadi, 2017b). However, 

according to Azzeh and Nassif (2016), the major disadvantage is that values are arbitrary 

in calculating software size, making it challenging to provide time-based estimations. 

Time-based effort and size are not directly proportional to each other (Rath et al., 2016). 

The UPC concept utilizes documented use cases in the determination of size. 

Conceptual Framework – The Planning Fallacy 

People making predictions tend to underestimate the time it will take to complete 

a task. Kahneman and Tversky (1977) identified the concept of the “planning fallacy,” a 

phenomenon where a prediction regarding how much time will be needed to complete a 

future task is usually optimistic. Kahneman and Tversky (1977) indicated that 

overconfidence increased with ignorance (Kahneman & Tversky, 1977). People's 

insensitivity to evidence quality (reliability of information available) and predictions 

based on small sample sizes contribute to overconfidence (Kahneman & Tversky, 1977). 
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Kahneman and Tversky (1977) further stated that the contributing factors to 

overconfidence were the assumption of normal conditions and anchoring.  

Previous research by Kahneman and Tversky (1973) stated that in making 

predictions, people do not appear to follow statistical results, but instead, they make 

predictions based on intuition. Additionally, in 1974, Tversky and Kahneman (1974) 

describe cognitive bias that stemmed from judgmental heuristics such as 

representativeness, availability of scenarios, and anchoring. People typically rely on a 

limited number of heuristic principles, which reduces the complex task of assessing 

probabilities and predicting estimation (Kahneman & Tversky, 1973). Kahneman and 

Tversky (1973) proposed that people have an insensitivity to the prior probability of 

outcomes, sample size, and a misconception of chance. People also have an insensitivity 

to random events that may affect the estimation and a perceived illusion of validity in 

providing estimates (Kahneman & Tversky, 1973). Thus, people provide estimates based 

on the assumption and do not consider possible events that may cause a potential delay.  

Two types of information are available when predicting tasks’ duration: singular 

and distributional (Kahneman & Tversky, 1977). Distributional is primarily a 

consideration of previous task performance, whereas singular focuses on the task itself 

(Kahneman & Tversky, 1977; Thomas & König, 2018). The planning fallacy is the result 

of underestimation as a consequence of neglecting or ignoring distributional data 

resulting in an error in prediction (Kahneman & Tversky, 1977). Neglect of distributional 

data could be the result of the perceived uniqueness of a project (Kahneman & Tversky, 

1977). Research conducted by Zhu, Li, Yang, and Xie (2019) concluded that an increased 
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focus on additional information (distribution) led to later predictions, but a focus on task 

content (singular) resulted in earlier predictions.  

Kahneman and Tversky (1977) identified three conclusions in describing the 

planning fallacy:  

1. Errors in judgment are many times more systematic than they are random.  

2. The presence of bias is frequent in both experts and non-experts.  

3. Judgments should be driven from a reflective assessment rather than from 

immediate impressions, although intuition from a knowledgeable professional 

is beneficial (Kahneman & Tversky, 1977).  

Additionally, Tversky and Kahneman (1974) demonstrated that it is common to 

adjust an estimate due to an anchoring effect. The establishment of an anchor can 

adversely influence an estimation prediction. Predictions are often based on an optimistic 

view of the duration of a previous task and are not adequately adjusted for the demands 

of a new task that is to be estimated (Tversky & Kahneman, 1974). The anchoring effect 

is the influence of initial information that influences the estimator's judgment, including 

information that may be irrelevant (Løhre & Jørgensen, 2016). Anchoring effects 

estimation as it has an influence on a judgment from an initial presented value.  

Buehler et al. (1994) explore the phenomena of the planning fallacy and explain 

why people underestimate task completion times. The evidence suggests that individuals 

believe that their project will proceed as planned even while knowing that a clear 

majority of projects run late (Buehler et al., 1994). People base predictions on a plan for 

carrying out a task and formulate their predictions on the assumption of positive events 
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occurring rather than adverse events (Wiese, Buehler, & Griffin, 2016). The absence of 

consideration of unforeseen events adversely affects the accuracy of estimates.  

Conclusions reached by Buehler et al. (1994) suggest that people make more 

realistic predictions when they use past experiences to inform their predictions 

(distributional). However, people also focus on the details of the specific case (singular) 

rather than distributed information about a related set of cases (Buehler et al., 1994; 

Tversky & Kahneman, 1974; Wiese et al., 2016). They tend to hold to a belief that their 

project will proceed as planned (singular) even knowing that a clear majority of previous 

projects (distributional) have faltered and run late (Thomas & König, 2018). Kahneman 

and Tversky (1973) identified three heuristics in making estimation judgments under 

uncertain conditions: judgments based on representativeness, availability of scenarios, 

and estimation adjustments based on anchors. In generating an estimate, people often 

have a perceived illusion of the time required to complete a task and a false sense of 

validity to their estimation.   

Over-optimism, resulting in underestimation, is an identified problem in the 

prediction of effort. Buehler, Peetz, and Griffin (2010) asserted that people are typically 

optimistic in their estimates and predict that they will finish projects earlier rather than 

later. Buehler et al. (2010) test their hypostasis on both closed and open-ended tasks to 

determine if predicted task completion times influenced actual completion times. The 

results indicate that making optimistic predictions may lead to finishing the task sooner 

(Buehler et al., 2010). Although over-optimism may result in expediting the completion 

of tasks, Buehler, Griffin, and MacDonald (1997) found that in both a laboratory and 
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field environment, that incentives to complete a task early increase the effects of the 

planning fallacy.  

The planning fallacy is the problematic phenomenon of time underestimation. 

Kahneman and Tversky (1973) described three judgmental heuristics: representativeness, 

availability, and anchoring, leading to bias in judgments. A firm reliance on judgmental 

heuristics precipitates inaccurate estimates in software development (Løhre & Jørgensen, 

2016). Shmueli, Pliskin, and Fink (2016) found that software developers tend to 

underestimate project effort in the time required for project completion, resulting in one 

of the most common reasons for project failure.  

According to Shepperd, Waters, Weinstein, and Klein  (2015), people tend to 

display excessive optimism in their predictions that is often quite unrealistically positive. 

In their research, Shepperd et al. (2015) identified two types of unrealistic optimism. The 

first type is unrealistic absolute optimism that refers to an unjustified belief that a more 

favorable outcome will occur even when quantitative data indicates otherwise (Shepperd 

et al., 2015). The second type of optimism is unrealistic comparative optimism, which 

refers to one’s outcome being more favorable than that of a peer (Shepperd et al., 2015).  

Accurate estimations in the planning phase of software development improve the 

likelihood of project success. Shmueli and Ronen (2017) noted that both software 

developers and managers are subject to the planning fallacy resulting in the tendency to 

plan additional work. Time underestimation and benefit overestimation occur during 

planning iterations due to the planning fallacy (Shmueli & Ronen, 2017). The planning 

fallacy phenomenon occurs when the individual is focusing on the inside view of a task 
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(singular) but not considering the data from an outside view of previous tasks 

(distributional) (Thomas & König, 2018). Additionally, even those aware of statistical 

regression have an inclined bias towards these heuristics in making judgments in a 

context of uncertainty (Kahneman & Tversky, 1973). 

The planning fallacy is the problematic phenomenon of time underestimation. 

Shmueli et al. (2016) found that software developers tend to underestimate project effort 

in the time required for project completion, resulting in one of the most common reasons 

for project failure. Time underestimation and benefit overestimation occur during 

planning iterations as a result of the planning fallacy (Shmueli & Ronen, 2017). The 

planning fallacy phenomenon occurs when the individual estimating the effort considers 

only the inside view of a task (singular) but does not consider the outside view  

(distributional) (Thomas & König, 2018). The distributional is essentially a previous task 

performance, whereas the singular focuses on the task itself.  

The findings of a study conducted by Shmueli et al. (2016) provide evidence of 

manifestations of the planning fallacy in software development projects. Shmueli et al. 

(2016) provide evidence of the planning fallacy in software development projects by 

identifying effort and time underestimation, scope overload, and over-requirements. They 

argue that scope overload and over-requirements are results of underestimation (Shmueli 

et al., 2016). The conclusions of the study suggest that although reference class 

forecasting and using a consultant positively influence scope overload and over-

requirements, there was little to no effect on underestimation  (Shmueli et al., 2016). The 

planning fallacy, a behavioral economic theory, advances the understanding of poor 



48 

 

planning in software development projects (Shmueli et al., 2016; Shmueli & Ronen, 

2017).  

Shmueli et al. (2016) describe two views for determining the future cost of 

software development: the outside and inside view. The outside and inside view 

correspond to the singular and distribution views described by Kahneman and Tversky 

(1977). The outside view is the consideration of past projects' experience and knowledge 

to reference similar cases (Shmueli et al., 2016). The inside view is the examination of 

information specific to the project or task and the uniqueness of the case at hand 

(Shmueli et al., 2016). An inside view is a bottom-up approach that discounts historical 

data, past experiences, and environmental factors that potentially affect the project (Pinto, 

2013). Although developers tend to estimate effort based on an inside view, the outside 

view provides a more accurate estimate (Shmueli et al., 2016).  

The inclusion of historical effort estimation information in future estimations give 

the potential for greater accuracy in software development estimating (Shmueli et al., 

2016). Jørgensen (2014) stated that the accuracy of estimates improves through the use of 

local context, historical information use, and the avoidance of early estimation based on 

incomplete information. When prompted to consider a task from an outside observer's 

perspective, people are more willing to consider obstacles that they may not otherwise 

have considered (Wiese et al., 2016). Additionally, the motivation for aggressive 

schedules and optimism of a high performing team can lead to underestimating the time 

needed to complete a project (Prater, Kirytopoulos, & Ma, 2017). Aggressive schedules 

and the neglect of an outside (distributional) view lead to inaccurate estimates.  
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Shmueli et al. (2016) examined the outside view approach in reducing behaviors 

associated with the planning fallacy in software development effort estimation and 

concluded that the inclusion of an outside view minimizes the problem of time 

underestimations, scope overload, and the over-requirements of software development. 

Utilizing the descriptive behavioral theory, Shmueli et al. (2016) concluded that 

knowledge of cognitive bias resulting from planning fallacy could mitigate estimation 

errors in the planning of software development projects. The results of the study showed 

that problems associated with time underestimation, scope overload, and over-

requirements are reduced but not eliminated by presenting reference information 

regarding past completion times (Shmueli et al., 2016). Additionally, outside consultants 

can reduce the planning fallacy effects by using an outside view (Shmueli et al., 2016; 

Shmueli & Ronen, 2017).  

Although many researchers have studied underestimation and effort over-

optimism, realistic effort estimation remains problematic (Jørgensen, 2016), as software 

developers are usually over-optimistic and underestimate the needed effort to accomplish 

a task (Dragicevic et al., 2017). Software development effort underestimations may result 

in cost overruns and cause customers to cancel projects, and project teams may be 

required to work without financial compensation (Kirmani, 2017b). Additionally, the 

quality of the product cannot be guaranteed (Qi et al., 2017). The effects of over-

optimism resulting from the planning fallacy phenomena are detrimental to the planning 

and estimating of software development effort. 
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Many software project estimations fall short of actual effort. Overwhelming 

evidence indicates that there is a tendency to underestimate software effort, on average of 

about 30% (Jørgensen, 2014). It is difficult to predict the size of a software project during 

the initial phases (Shida & Tsuda, 2017) due to incomplete or inaccurate requirements 

(Dragicevic et al., 2017). Resulting changes to requirements has a cascading effect on the 

software's cost and delivery time (Bilgaiyan et al., 2017). During the initial phases of 

software development, it is difficult to predict the project's size resulting from inaccurate, 

incomplete, and dynamic requirements due to changes that occur during the development 

cycle.  In consideration of the planning fallacy phenomena, incomplete or inaccurate 

requirements affect the reliability of distributional (outside view) data, thus making 

estimation potentially unreliable and accuracy problematic. 

The phenomenical effects of the planning fallacy are evident in software effort 

estimation. Researchers have identified contributing causes of estimation inaccuracies 

such as optimistic bias and the lack of or neglect of distributional information. A 

longitudinal case study conducted by Usman et al. (2018) concluded with the following 

observations about software effort estimation. First, underestimation is common and that 

teams with less experience produce higher estimation overruns (Usman et al., 2018). 

Usman et al. (2018) also stated that single-stage estimation approaches reduce accuracy, 

and the colocation of development group improves estimation accuracy. There are four 

primary causes of estimation inaccuracies in software development. Reasons are (a) 

optimistic assumptions, (b) unanticipated requirements, (c) a corporate culture that 

confuses targets with estimates, and (d) arbitrarily deadlines. Uncertainty exists in 



51 

 

software development estimation because of human differences, market forecasting, and 

value judgments (Arifin et al., 2017). Anooja and Rajawat (2017) suggested that factors 

such as improved estimation training and higher accuracy of information (requirements) 

provide positive effects on effort estimation. Conventional wisdom indicates that 

estimates improve as projects progress (Arifin et al., 2017). As projects progress, 

additional information (distributional) data become available, thus improving the 

estimation process. 

Team size effects estimation. Staats, Milkman, and Fox (2012) state that 

underestimation increases as a team size increases. The larger the team, the more likely 

the team will underestimate the tasks associated with a project primarily due to a rise in 

the loss of productivity due to extra process controls (Staats et al., 2012). Staats et al. 

(2012) state that the coordination complexity, diminished motivation of the team, and 

increased conflict within the team negatively affect productivity. Additionally, the 

increased overhead of team coordination negatively adds to underestimation.   

Mitigating the planning fallacy. According to Kahneman and Tversky (1977), 

there are five steps involved in mitigating the planning fallacy.  

1. The selection of a reference to identify a known outcome (Kahneman & 

Tversky, 1977)  

2. The assessment of the distribution of the reference class such as the range or 

average (Kahneman & Tversky, 1977)  

3. An intuitive estimation that distinguishes from other cases based on an 

expert’s singular information (Kahneman & Tversky, 1977)  
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4. An assessment of predictability or consideration of the potential accuracy of 

the estimation (Kahneman & Tversky, 1977)  

5. Correction for non-regressiveness in the event the intuitive estimate differs 

considerably, or predictability is judged as low (Kahneman & Tversky, 1977)  

Additionally, Buehler, Griffin, Lam, and Deslauriers (2012) demonstrated that 

third-person imagery has positive effects on reducing underestimation. The finding 

suggests that when people consider an estimation from a third person's perspective, 

optimistic bias is less likely due to the use of an underlying psychological process that 

invokes a neutral observer (Buehler et al., 2012).  

The planning fallacy and optimistic bias are observed phenomena in software 

effort estimation. Jørgensen (2004) states six estimation principles to reduce human 

estimation bias:  

1. Evaluate estimation accuracy, an increased perception of accuracy can 

lead to decreased estimation accuracy (Jørgensen, 2004).  

2. Avoid conflicting estimation goals, such as estimation for a bid or 

estimates based on best-case scenarios (Jørgensen, 2004). 

3. Request justification form estimators, estimators are typically not skilled 

in the discovery of estimation weaknesses (Jørgensen, 2004). 

4. Avoid information that is irrelevant or unreliable; utilize checklists. 

5. Use data from previous projects, apply analytics rather than memory, use 

distributional information (outside view) (Jørgensen, 2004). 
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6. Use estimators with expert domain background and a proven track record 

of accurate estimations (Jørgensen, 2004).    

Estimators can improve estimations by attending training on estimating. 

Shepperd, Mair, and Jørgensen (2018) conducted a study concluding that estimations 

provided by software development professionals that participated in a workshop reduced 

judgment bias. The study found that there are strong effects of anchoring in software 

effort estimations, de-biasing workshops are beneficial and reduce the variability in 

estimates (Shepperd et al., 2018). Moreover, the knowledge of bias and the understanding 

of strategies in reducing bias can improve the accuracy of estimates.  

Reviewing the estimations of other software developers has a positive effect on 

estimation. Jørgensen (2004) stated that reviewing other software developer’s estimates 

triggered reflection (distributional) on how much effort similar tasks required. 

Additionally, Jørgensen (2004) indicated that developers tend to rely on an inside view 

and their memory rather than background information such as distributional completion 

times for similar tasks. Estimation models that use historical data remove the potential 

bias from those that do not consider previous estimates on similar tasks. 

People make more realistic predictions when they reflect on previous experiences 

to inform their predictions. The outside view or reflection in prior experiences is usually 

more accurate as it bypasses political and cognitive bias (Fridgeirsson, 2016). People also 

focus on the details of the specific case rather than distributed information about a related 

set of cases (Buehler et al., 2010). An inside view leads to a narrow focus, thus 

disregarding additional information such as past experiences of similar tasks (Zhu et al., 
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2019), and most individuals and organizations tend to focus on the inside view 

(Flyvbjerg, 2006). The propensity to focus on an inside view results in the planning 

fallacy.  

Andersen, Samset, and Welde (2016) offered suggestions to improve estimations, 

including (a) transparency, (b) careful examination of estimations based on uncertainty 

analysis, (c) increased provisions for scope changes and unspecified contingencies, (d) 

the utilization of reference projects in creating estimates, (e) third-party review of 

estimates, and (f) attention to estimates formulated on incentives. Wiese et al. (2016) 

conducted a study on backward planning to counter optimistic bias. Wiese et al. (2016) 

described backward planning as starting a plan at the end and working through the 

required steps in reverse chronological order. Breaking large tasks into smaller subtasks 

highlights critical steps that are potentially overlooked otherwise (Wiese et al., 2016). 

The study conducted by Wiese et al. (2016) concluded that identifying obstacles is more 

apparent when using the backward planning approach and results in less optimistic 

predictions.  

Reference class forecasting is the outside view based on knowledge of the actual 

performance of referenced comparable projects. Flyvbjerg (2006) introduced the concept 

of reference class forecasting to improve the inaccuracy resulting from bias by 

considering the actual performance of similar projects, thereby bypassing the effects of 

optimistic bias and strategic misrepresentation. Flyvbjerg (2006) described three steps in 

reference class forecasting.  
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1. The identification of similar projects that are broad enough to be statistically 

meaningful and narrow enough to be comparable (Flyvbjerg, 2006)  

2. The establishment of a probability distribution within the reference class to 

add statistical meaning (Flyvbjerg, 2006).  

3. The estimator uses a comparison of a project with a reference class 

distribution to establish a more likely outcome for the specific project. The 

outside view provides a mechanism to bypass cognitive bias (Flyvbjerg, 

2006). 

Reference class forecasting attempts to bypass human bias by relying on historical 

data from similar past projects as a guideline for predicative estimations. An accepted 

mitigation strategy for optimistic bias is Flyvberg’s reference class forecasting that was 

developed and based on Kahneman and Tversky’s outside view (Prater et al., 2017). 

Reference class forecasting is the systematic method for using an outside view when 

creating forecasts of similar projects rather than focusing only on the project at hand 

(Fridgeirsson, 2016). Reference class forecasting has a positive effect on accurate 

estimations as it considers an outside distributional view.  

 Empirical testing supports the effectiveness of reference class forecasting in 

reducing time and cost overruns in large projects (Wiese et al., 2016). Reference class 

forecasting improves effort estimation accuracy in the initial stages of planning 

(Fridgeirsson, 2016). Shmueli et al. (2016) found that software effort estimators can 

mitigate the effects of the planning fallacy by using reference information about historical 

completion times and by having the estimator adopt the roles of a consultant, both of 
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which are outside views. The consideration of historical data is more likely to bypass a 

cognitive bias in decision making (Féris, Zwikael, & Gregor, 2017). However, learning 

from previous estimation mistakes does not reduce prediction bias when the current task 

differs from the previous task, although task similarity reduces bias (Thomas & König, 

2018). Accurate estimations using reference class forecasting requires task similarity. 

Flyvbjerg et al. (2018) claim that cost overrun (downstream effect) is a 

consequence of underestimation (upstream cause). Flyvbjerg et al. (2018) state that (a) 

utilization of reference class forecasting, (b) de-biasing estimations, (c) creating 

incentives that encourage teams to stay on budget, and (d) using a team with a proven 

track record of delivering within budget mitigate cost overrun. Sting, Loch, and 

Stempfhuber (2015) reported in their study of engineers and noted that presenting a 

visual cue (red card) when the engineer was having trouble reduced the potential time 

overage of a task. Although the red card approach does not mitigate the planning fallacy, 

it minimizes the phenomenon's effect (Sting et al., 2015). Engineers that request help 

when encountering an unknown, or experienced a risk that was unaccounted for, mitigate 

a potential delay in time.   

Additional Theories in Effort Estimation 

Anchors. The anchoring effect is the misprediction of tasks’ durations due to 

false memories regarding previous, similar tasks. As a result of the anchors' influence, 

subsequent judgments can be biased even when presented with a value that may not be 

relevant to the judgment in question (Løhre & Jørgensen, 2016). Anchoring can create 

artificial scheduling heuristics, as it acts as a stake in the ground and becomes the basis 



57 

 

from which initial estimates and subsequent modifications originate (Pinto, 2013). 

Anchoring is the perceived duration of a previous task that becomes a basis for 

establishing a prediction of a future task in which the future task prediction has not been 

appropriately adjusted based on differences in the future task (Thomas & König, 2018). 

Even professional expertise is not sufficient to avoid the anchoring effect, as the memory 

of the anchor comes to mind and often becomes automatically considered despite the 

source (Tomczak & Traczyk, 2017). In quantitative estimation, the anchoring effect is a 

phenomenon where an initial arbitrary number can affect subsequent numerical estimates. 

Although anchoring is typically related to numerical quantifiers, nonnumerical anchors 

have an adverse effect as well (Jørgensen, 2016).  

Lorko, Servátka, and Zhang (2019) evaluated the effects of anchoring on 

estimations and provide evidence that numerical anchors influence duration estimates and 

that anchors continue to persist if estimators do not receive feedback. Results of the study 

suggest that when estimators are isolated from potential biasing information, they review 

historical estimation information, and by making the estimators aware of estimation 

mistakes, the effects of anchoring are reduced (Lorko et al., 2019). Additionally, 

Shepperd et al. (2018) concluded that the anchoring had a significant adverse effect on 

software development estimation. However, providing training to estimators on the 

impact of bias suggest a reduction in the anchoring effect (Shepperd et al., 2018). 

Thomas and König (2018) propose that estimators can reduce anchoring when they 

consider performance on previous tasks and have experience completing previous similar 

tasks.   
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Subsequent tasks are affected by the anchoring of an initial task. A bias 

established in the first task can serve as an anchor for the tasks that follow (Roy, Burns, 

& Radzevick, 2019). Even when using anchored values that are not reasonable, the 

anchoring effect still exists (Tomczak & Traczyk, 2017). Additionally, Løhre and 

Jørgensen (2016) stated that anchors negatively affect the accuracy of software 

development estimation, even if the anchors are implausible or unrealistic. However, they 

also noted that software developers with more experience are affected less by anchoring  

(Løhre & Jørgensen, 2016).   

Optimism bias. Optimism bias is the tendency to underestimate or ignore the 

probability that an adverse event will occur. Kahneman and Tversky (1977) identified 

optimism bias as a  behavioral characteristic of underestimation. Prater et al. (2017) 

identified optimism bias as a significant cause of unrealistic project schedule 

development. Optimism bias is the belief that there are fewer project risks and an 

assumption of a more favorable outcome, even in the face of historical information that is 

contradictory (Pinto, 2013). Optimistic bias can result in underestimation of task effort as 

unforeseen events are not considered or acknowledged.  

Prater et al. (2017) state that optimism is, by its nature, a positive human trait that 

sets us apart from other species. Additionally, Prater et al. (2017) indicate that most 

research on optimistic bias concludes that reference class forecasting and the outside 

view are the most effective strategies for mitigating optimistic bias. People are prone to 

optimism and perceive that their future as more positive than another person (Polonioli, 

2016). Evidence suggests that task complexity increases; underestimation becomes more 
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apparent (Lévy-Garboua, Askari, & Gazel, 2018). Additionally, people learn to be 

overconfident faster than they learn their actual ability (Lévy-Garboua et al., 2018). 

People tend to be more optimistic than pessimistic. Lovallo and Kahneman (2003) 

state that the inclination for over-optimism stems from an exaggerated perception of our 

talents, a misunderstanding of the degree of control we possess, the downplaying of the 

possibility of uncontrolled events, and the understatement of the probability of risk. 

Additionally, Lovallo and Kahneman (2003) identify anchoring and organizational 

pressure promoting a sense of optimism. Mitigation strategies include the utilization of 

reference class information and forecasting using an outside view (Lovallo & Kahneman, 

2003). Francis-Smythe and Robertson (1999) state that there is evidence of a correlation 

between time management skills and an accurate estimation of effort. People who 

perceive themselves as good managers of time provide more accurate estimates than 

those who do not see themselves as good managers of time. 

Optimistic bias is more prevalent in the estimation of one’s effort. Many studies 

on human judgment prove that people are generally over-optimistic in predicting their 

performance (Jørgensen, 2004). Buehler et al. (1994) concluded that people have a 

propensity to underestimate their effort but not the effort of others. People tend to focus 

on plan-based scenarios rather than on past experiences (Buehler et al., 1994). They are 

likely to dismiss past poor performance under the belief that others caused previous 

problems and, therefore, do not warrant serious consideration (Buehler et al., 1994). 

Additionally, Yamini and Marathe (2018) claim that optimism bias can harm employee 
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job satisfaction and increase job-related stress because of unrealistic and prolonged 

completion times.  

Optimistic bias is a result of estimators having an overoptimistic view of essential 

project parameters. Wiese et al. (2016) conducted a study on backward planning as a 

strategy to counter optimistic bias. Backward planning involves starting a plan at the end 

and working through the required steps in reverse chronological order (Wiese et al., 

2016). Wiese et al. (2016) suggested breaking larger tasks into smaller subtasks to 

highlight critical steps that are otherwise potentially overlooked. The study concluded 

that people more readily identified obstacles when the backward planning approach is 

utilized and results in less optimistic predictions (Wiese et al., 2016). In an overview of 

agile software development methods, according to Osman and Musa (2016), combining 

estimation techniques may reduce optimism in the estimation of software effort. 

Overestimation of one’s abilities has a direct effect on early phase estimates. 

According to Andersen et al. (2016), initial estimates by the person requesting the project 

are prone to bias. Usman et al. (2018) conducted a longitudinal case study concluding 

that the underestimation as a result of optimistic bias is typical in both the software 

analysis phase and the quotation phase. Compounding the establishment of effort 

estimations, the development of software is not always straightforward. Thus, the bias in 

software development estimation can occur and cannot be prevented entirely (van Vliet & 

Tang, 2016). Optimistic bias is the phenomenon of focusing on the best-case scenario and 

not considering potential risks, unforeseen events, or setbacks.  

The hiding hand. The hiding hand is the phenomenon in which a person takes on 
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a project with little to no knowledge or consideration of future obstacles. The theory 

proposed by Hirschman (1967) claims that once a project is underway and encounters 

obstacles, the creative action occurs, and positive results emerge. The hiding hand 

suggests that estimators tend to be overly optimistic, and poor planning can make 

decision-makers believe that projected costs are lower than the actual cost (Hirschman, 

1967). However, underestimations increase creativity to overcome obstacles that are not 

planned or foreseen and to think out of the box, and resultingly, positive results are 

accidentally achieved (Ika, 2018). The principle of the hiding hand can benefit projects as 

over-optimism can promote creativity. 

Essentially, Hirschman (1967) stated that the hiding hand is the underestimation 

of both costs and benefits in project appraisals. Unexpected circumstances create acts of 

innovative problem-solving (Anheier, 2016). The hiding hand proposes that planners tend 

to be overly optimistic and believe themselves to be at less risk of experiencing negative 

consequences than are others (Ika & Söderlund, 2016). Hirschman (1967) proposed that 

the hiding hand is beneficial, as it stimulates creativity and problem-solving. Human 

ingenuity overcomes difficulties. It can often provide unexpected benefits by justifying 

projects that may otherwise not be undertaken had the early difficulties been better 

understood (Lepenies, 2018; Room, 2018). The hidden hand's principle concept is that 

optimism caused by ignorance of difficulty can lead to projects that otherwise might not 

have been started had the real challenges been known.    

Contradictory Theories 

Malevolent hiding hand. Flyvbjerg (2016) disputed Hirschman’s (1967) concept 
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of the hiding hand. Flyvbjerg (2016) argued that rather than a benevolent hiding hand, a 

malevolent hiding hand is more typical and pervasive. The malevolent hiding hand, as 

described by Flyvbjerg (2016, 2018), proposes that creativity does not overcome cost 

overruns and difficulties and that benefit overruns are much less prevalent than cost 

overruns. According to Flyvbjerg and Sunstein (2015), the driving forces of the 

malevolent hiding hand are ignorance, psychology, and power: ignorance of the 

knowledge of the problem faced; psychology regarding initial optimism; and deliberate 

underestimations to improve chances of project approval and funding (Flyvbjerg & 

Sunstein, 2015). The hiding hand is a phenomenon of unexpected circumstances invoking 

innovative problem solving (Hirschman, 1967). In contrast, the malevolent hiding hand is 

the knowledge of the potential of unforeseen circumstances yet disregards or hides the 

consequences (Anheier, 2016). Flyvbjerg (2016, 2018) stated that the hiding hand is less 

common than Hirschman theorized, and that optimism bias, cost underestimation, and 

benefit overestimation are more prevalent. Jørgensen (2014) indicated that 

underestimation is evident in competitive price markest as lower estimates are more 

likely to win contracts providing further evidence intentional estimation inaccuracies.  

Strategic misrepresentation principle. Flyvbjerg (2013) states that estimates in 

the initial stages of a project are the most critical in determining whether the project will 

proceed or not, and be successful. However, many times, forecasts of cost and benefit are 

highly inaccurate (Flyvbjerg, 2013). Flyvbjerg (2013) and Parent (2019) indicate that 

there are two causes of estimation inaccuracies: optimism bias resulting from the 

planning fallacy and strategic misrepresentation. The strategic misrepresentation 
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principle is an intentional underestimation of effort rather than unintentional optimistic 

bias. Flyvbjerg (2013) states that strategic misrepresentation is the deliberate 

misstatement of project planners' estimations by providing project stakeholders with 

estimates that are known to be incorrect. A study conducted by Naess, Andersen, 

Nicolaisen, and Strand (2015) interview respondents indicated that strategic 

misrepresentation is widespread and results from economic and political reasons. 

Additionally, multiple researchers have identified strategic misrepresentation as 

problematic in IT projects (Parent, 2019; Shmueli et al., 2016). According to Parent 

(2019), strategic misrepresentation in information technology projects stems from the 

fear that if project approvers knew the actual costs upfront, they would never approve the 

plan.  

The principle of strategic misrepresentation refers to the intentional incorrect 

calculation of facts in favor of political or personal interests. Flyvbjerg (2018) stated that 

there are often political motivations in the underestimation of projects regarding the 

strategic misrepresentation principle. Underestimation can be motivated to ensure 

funding for projects from top management (Pinto, 2013). This strategic underestimation 

is also the result of psychological, political, and economic factors  (Andersen et al., 

2016). Misrepresentation can occur when forecasters provide information that 

intentionally overestimates the benefits or underestimates the effort of a project 

(Fridgeirsson, 2016). The presence of strategic misrepresentation rather than optimistic 

bias is more common in projects where political pressure is high (Flyvbjerg, 2006). 

Planners and promoters underestimate costs and overestimate benefits to increase the 
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likelihood that the project will gain financial backing and approval. 

Parkinson’s Law. Deadlines can influence individual performance. Parkinson’s 

law is the phenomenon that work expands to fill the time that is available for its 

completion (Brodsky & Amabile, 2018; Jørgensen, 2014; Kim & Nembhard, 2018). The 

observed phenomenon of Parkinson’s law is that work rates increase as the remaining 

time shortens and that deadlines are known to increase productivity as the availability of 

time decreases (Izmailov, Korneva, & Kozhemiakin, 2016; Kim & Nembhard, 2018). 

Thus, when deadlines are further away, work speed is slower than work speed as the 

proximity to the deadline becomes closer (Kim & Nembhard, 2018; Kim J. E., 

Nembhard, & Kim J. H., 2016). Considering the phenomenon of Parkinson’s law, tasks 

are less likely to finish early and, more likely, to finish on time.  

In support of the concept of Parkinson’s law, two pitfalls may exist to completing 

a task early. The excess time may be used to gold plate or improve the product beyond 

what is requested or necessary (Izmailov et al., 2016). The second pitfall is that an 

overestimation may seem by the administration as excessive (Izmailov et al., 2016). 

Thus, workers would have no incentive to ensure that potential future overestimations are 

untouched or reevaluated (Izmailov et al., 2016). Brodsky and Amabile (2018) provide 

evidence indicating that the work pace increases when tasks have deadlines providing 

evidence of Parkinson’s law phenomenon. In the absence of deadlines or time pressure, 

people tend to work slower (Brodsky & Amabile, 2018). 

The effects of Parkinson’s law may result in tasks taking longer than expected. 

According to Zhang, Jia, and Diaz (2018), Parkinson’s law and the phenomena identified 
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as the student syndrome contribute to project delays and increased project costs. 

Jørgensen (2014) proposes that estimations may be harmful to a software development 

schedule and that postponing or eliminating estimates reduces the effect of Parkinson’s' 

law. Additionally, high estimates result is a loss of productivity of the development team 

(Jørgensen, 2014). Although overestimation or time buffers may offset schedule 

overruns, the result can be detrimental to optimized performance. 

Student syndrome. Project or task overruns can result from a phenomenon called 

the student syndrome. The student syndrome suggests that in the beginning phase of a 

task, urgency is less and gradually increases as the scheduled completion time gets near 

(Izmailov et al., 2016). Mirzaei and Mabin (2017) observed that there were three adverse 

effects of the student syndrome phenomena. First, due dates and milestones often needed 

to be extended (Mirzaei & Mabin, 2017). Second, as the due date or milestones 

approached, there is a surge in activity to complete it (Mirzaei & Mabin, 2017). Finally, 

once the person or team completes the activity or reach the milestone, there is a downturn 

in productive activity (Mirzaei & Mabin, 2017). According to Zhang et al. (2018), the 

possibility of early completion of tasks due to the wasting of disposable time allocated for 

the task’s completion is lost. The effects of the student syndrome, much like the effects of 

Parkinson's law, result in a task completed on time at best and often are delivered late. 

Groupthink. Estimations that are group-based can develop groupthink, which 

can have a negative result in estimates (Drury-Grogan et al., 2017). Groupthink occurs 

when group members strive for unanimity over their personal opinions, thus, altering the 

decision trajectory (Kakar, 2018; Riccobono, Bruccoleri, & Größler, 2016). Estimations 



66 

 

provided by group discussion likely focus on the success of completed tasks based 

primarily on optimism (Buehler, Messervey, & Griffin, 2005). Additionally, inaccurate 

estimates can result from the misconception of group consensus resulting from not 

considering the views of all team members (Drury-Grogan et al., 2017).  

Groupthink also results in the phenomena known as the Abilene paradox. The 

Abilene paradox refers to the problem in which each group member incorrectly believes 

that others in the group have a specific opinion, leading the group to a public agreement 

and private disagreement (Browne, Appan, Safi, & Mellarkod, 2018). Cunha, Moura, and 

Vasconcellos (2016) identified the Abilene paradox in software development groups and 

described the phenomena where groups make decisions that are contrary to the beliefs or 

desires of the individual members. The negative results of groupthink occur when the 

members override their personal opinion in favor of unanimity (Riccobono et al., 2016). 

The team consensus is not the result of choice, but rather the result of an implied decision 

by the team.    

Estimating travel time. Although people tend to underestimate the time required 

to accomplish a task, when it comes to estimating the time it takes to travel to a 

destination, they tend to overestimate. Tenenboim and Shiftan (2018) state that for travel 

times, people focus on a subset of times that include variability resulting from previous 

delays. Regarding the time it takes to travel, people generally remember longer times 

(Tenenboim & Shiftan, 2018). The study indicates that overestimation travel times were 

two and a half times more prevalent that underestimating travel times (Tenenboim & 

Shiftan, 2018). Although underestimation is a more typical human trait (Prater et al., 
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2017), in the estimation of travel times, overestimation is more the norm and is contrary 

to the planning fallacy phenomena. 

Transition and Summary 

Section 1 presents an introduction to the problem of accuracy in developing 

software development effort estimates. In the literature review, I have discussed some of 

the more common software development approaches and estimation methodologies. 

Additionally, I have addressed the planning fallacy, a phenomenon describing over-

optimism in task-time estimation. The purpose of this study is to explore strategies to 

improve effort estimations in software development. For this study, I have chosen a 

qualitative approach to answer the research questions of identifying effective estimation 

strategies. The planning fallacy provides the conceptual framework for this study to 

describing optimism bias and potential causes. The literature review discusses the issues 

of estimation inaccuracy in software development. This study explores strategies to 

reduce estimation error and provides the software development community with practical 

strategies to mitigate error inaccuracy. 

Section 2 describes the procedures and methods used in this study and justifies the 

selection of the research method. The next section identifies the researcher's role, a 

description of the criteria for participant selection, and a justification of the choice of the 

multiple case design. Additionally, section 2 discusses ethical research, the approach used 

to analyze the results, reliability, and validity of the findings. Section 3 describes the 

results of the study and conclusions drawn from the qualitative analysis of the collected 

data. 
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Section 2: The Project 

In Section 2, I present the reasons for selecting a multiple case qualitative study 

approach for this research. I restate the purpose, explain my role in the research process, 

and describe the population from which the sample was drawn. I justify the criteria for 

the selection of the sample population and the ethical considerations for the research. 

Finally, I describe the data collection technique, the organization and analysis of the data, 

and its reliability and validity. 

Purpose Statement 

The purpose of this qualitative multiple case study was to identify strategies that 

agile software development professionals use to provide project managers with accurate 

software development effort estimations. The study sample included software 

development professionals from five organizations who are responsible for producing 

effort estimates for segments of the software development process. At the time of data 

collection, the professionals selected for this study used an agile methodology in new and 

maintenance software development projects undertaken by small- to medium-sized 

companies in South Texas. The potential positive social impact of providing accurate 

software development estimates is the possible improvement of the work-life balance of 

those involved in software development. A more accurate effort estimation can provide 

project managers with the ability to project realistic delivery schedules, thus improving 

customer satisfaction. Accurate estimates can also potentially enhance the quality of the 

product, lower stress levels and improve the work lives of those involved with the 
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software development and delivery, and provide organizations with a more realistic time 

expectation of software delivery.  

Role of the Researcher 

As the researcher, my role was to recruit the participants for the study; conduct 

interviews and collect data; and examine, analyze, and present the findings. According to 

Yilmaz (2013), the role of the researcher in a qualitative study is to be objective in 

portraying the data, providing impartiality to the study and maintaining an outsider’s 

point of view. The researcher’s role also includes gathering data and developing an 

understanding of the phenomenon in the study (Starcher, Dzubinski, & Sanchez, 2018). 

Blalock (2018) asserted that the role of the researcher is a crucial part of qualitative 

research as it shapes the design and analysis of the study. Seixas, Smith, and Mitton 

(2018) state that the role of the researcher is to describe the reality of the participant and 

solicit an informative description of their experiences. I was personally involved as the 

interviewer for the study and conducted all of the participant interviews. In conducting 

research, it is essential, especially in data collection through interviews, to recognize the 

potential for bias and take appropriate steps to mitigate any prejudice (Yilmaz, 2013). My 

goal was to develop interview questions that would provide insight and reflect the issues 

of the research problem and to engage with the participants in such a manner as to 

acquire the information without affecting the results.  

I chose a semistructured interview as the method of acquiring data about the 

strategies used by the participants in estimating effort in software development. Brown 

and Danaher (2019) defined the semistructured interview as a data collection method 
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whereby the interviewer has a prepared topic and list of questions to ask but which 

provides the latitude to elicit open-ended responses from the participants to allow a 

conversation to develop that may not be anticipated. The semistructured interview 

process provides the researcher with a method to obtain the participants’ perspective and 

their experience regarding the research topic (McIntosh & Morse, 2015). Drury-Grogan 

et al. (2017) indicated that researchers commonly record semistructured interviews, 

follow up on insights derived during the interview, and transcribe the recording for 

analysis. I conducted and recorded the interviews and gathered the data while consciously 

trying to avoid the introduction of bias, personal beliefs, and any preconceptions about 

the study. Once I completed the interview process, I transcribed the recordings, looked 

for common trends and patterns in the data, and followed up on any information that may 

have required clarification. 

I recognize that my previous experience as a software development manager and 

project manager has the potential to inject bias into the study. I have worked with 

software development teams for over 15 years, and I selected the area because of my 

familiarity with the domain. Being aware of personal opinions and predispositions will 

help prevent bias in a study (Cypress, 2017; Fusch, Fusch, & Ness, 2018). Recognizing 

that previous personal experience could influence the interview process, I attempted to 

structure the research questions such that the questions would not lead the participants or 

influence their responses. Additionally, I did not have any prior relationships with the 

participants or with the organizations in which the participants worked. To reduce bias in 
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this study, I did not make the participants aware of my previous experience as a software 

development manager.  

Participation in the study was voluntary, and I protected the identity of the study 

participants and their organizations. I conducted this study in an ethical manner using the 

National Institutes of Health’s guidelines and principles for ethical research. The 

Institute’s guidelines include respect for subjects, establishment of human subject 

protections, the safeguarding of participants’ privacy and confidentiality, and provisions 

for full disclosure (National Institutes of Health, n.d.). Additionally, I adhered to the 

principle tenets of the Belmont Report: respect for persons, beneficence, and justice (The 

National Commission for the Protection of Human Subjects of Biomedical and 

Behavioral Research, 1979). I conducted this study as an independent observer, gathering 

data through interviews and documents. I recorded and transcribed verbatim the 

interviews conducted. Additionally, I documented any behavioral actions, participant 

reactions, and unconscious body responses of the participants during the interviews. 

The purpose of the interviews was to gain knowledge by exploring the 

experiences and perspectives of the participants. A well-developed interview protocol is 

an essential element in getting useful data (Ismail, Ismail, & Hamzah, 2018). An 

interview protocol provides the researcher with guidance to remain focused during the 

interview (Arsel, 2017). Arsel (2017) observed that an interview protocol offers control 

to the process and a framework for translating the research questions into a natural 

conversation. Additionally, an interview protocol minimizes digression during the 

interview (Arsel, 2017). According to Fusch et al. (2018), an interview protocol can 
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reduce bias and mitigate the interviewer’s personal opinion regarding the research topic 

in the data collection process. I used an interview protocol as a framework to maintain 

uniformity in my interview process, mitigate bias, and ensure the interview questions 

followed a consistent pattern. Use of an interview protocol allowed me to establish a 

consistent course of action and uniform procedures throughout the data collection 

process.    

Participants 

In a qualitative study, the researcher must determine the criteria for participant 

selection to meet the objectives of the study. Participant selection and identification are 

essential criteria in providing breadth, depth, and saliency for authentic analysis to give 

validity to the study (Saunders & Townsend, 2016). Windsong (2018) stated that 

qualitative researchers do not use random samples as there is a logical selection of 

participants and location based on a specific strategy. Qualitative interviewing requires 

careful selection of participants and ensuring the participants know about the topic to 

ensure rigor in the study (Starcher et al., 2018). Qualitative research participant selection 

involves seeking out participants who have explicit knowledge and experience of the 

phenomena under examination (Flannery, 2016). The participants in this study were 

software development professionals from small- to medium-sized companies who engage 

in providing effort estimation. The participants had at least five years’ experience 

working in a software development team either as a developer, manager, or project lead. 

The selected participants had familiarity with techniques for estimating effort and 

providing estimates considered by their project or program manager as accurate. 
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Inclusion in this study required confirmation of all participants’ knowledge, experience, 

and utilization of strategies in accurately estimating development efforts. 

I identified companies engaged in agile software development in South Texas 

through searches in my LinkedIn network. Ponelis (2015) and Stokes, Vandyk, Squires, 

Jacob, and Gifford (2019) identify that the use of personal networks as a valuable source 

for subject matter experts and research participants. Peticca-Harris, DeGama, and Elias  

(2016) indicate that a useful method to gain access to potential individuals for study 

participation is by contacting employees or managers of companies to assist in providing 

potential study candidates. I contacted the identified companies and requested permission 

to interview team members that are active in software development. Once I identified 

potential participants, I prescreened the candidates to affirm that they had estimation 

knowledge and have successfully used strategies in accurately estimating software 

development efforts. The participants answered “yes” to all the prescreen questions (see 

Appendix A) for inclusion in the study. I sent out invitation e-mails (see Appendix B) to 

candidates selected from the prescreening process to inform them of the purpose of the 

study. I contacted each selected participant by telephone. I confirmed their knowledge 

and experience in the estimation process and had strategies for accurately estimating 

effort for software development requests. Additionally, the participants selected have 

indicated that estimation accuracy is an essential element in software development 

planning, forecasting, and cost estimating. The participants affirmed that the project or 

program manager considers their estimation strategies as accurate.  
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Establishing rapport with the participants is crucial during the interview to create 

trust and to enable the respondent provide a rich and detailed response to the interview 

questions (McGrath, Palmgren, & Liljedahl, 2018). Arsel (2017) advises starting the 

interview dialog with warm-up questions such as “How has your day been” and “Tell me 

about yourself,” as well as sharing with the participants your personal story regarding the 

project to build rapport. Brown and Danaher (2019 suggest that the researcher establish 

an open dialog in the interview to develop a rapport with the participants and gain trust 

by showing a genuine interest in the participants’ opinions.  Additionally, using 

responsive listening techniques such as verbal and non-verbal cues to express assent build 

rapport (Brown & Danaher, 2019). I conducted the interviews face to face and through 

online meetings with the participants to establish a rapport to gain their trust. Once I 

established rapport with the participants, I began with a brief discussion of the study and 

confirmed the participants' consent. I allowed the participants to ask questions regarding 

the intent of the research and provided them with an opportunity to resolve any 

uncertainties about the interview questions or process. I discussed with each participant 

the confidentiality and protection of any identifying data that I may obtain to ensure their 

privacy and anonymity during and after the interview.  

The interview location for the participant was free of distraction and interruptions. 

Flannery (2016) indicated that the interview setting should be the natural setting in which 

the phenomena occur, and suggested that a relaxed environment will allow participants to 

feel at ease during the interview. Before conducting the interviews, I arranged to meet 

each participant to provide them with the study’s background. Each participant was 
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allowed to suggest a location or online communication application that they would find 

most comfortable. I conducted the interviews at a time indicated by the participants to not 

disrupt the participant’s work schedule.   

Research Method and Design 

This study's focus was to investigate strategies for estimating effort accurately in 

software development using a qualitative approach. In the initial stage of a study, the 

researcher should select the most appropriate method to adequately answer the research 

question  (Venkatesh, Brown, & Sullivan, 2016). A qualitative method can offer an 

understanding of organizational behavior (Jonsen, Fendt, & Point, 2018). The qualitative 

approach provides a powerful tool for the researcher to analyze content, team dynamics, 

and processes through the narrative of individuals (Köhler, Smith, & Bhakoo, 2018). This 

study utilized a qualitative multiple case design to address the research questions. In the 

following section, I will establish the reasoning that undergirds the study’s method and 

design choice.   

Method 

There are three types of research methods commonly employed in social sciences 

research: qualitative, quantitative, and mixed methods. Each has distinct features, 

benefits, and drawbacks. The qualitative approach provides experiences of the 

participants, an understanding of actions and events, and an interpretation of processes 

(Aagaard & Matthiesen, 2015). Researchers use a qualitative method to answer the 

question of “what,” “how.” or “why”’ (McCusker & Gunaydin, 2015). A core strength of 

qualitative research is the variety of approaches it permits, the types of data that can be 
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analyzed, the context of the data, and how it is treated or coded (Köhler et al., 2018). As 

this study explored strategies through the interpretation of the processes of the 

participants, I chose the qualitative method as the most appropriate approach as the 

objective of this research is to report on the “what,” “how,” and “why” of effective 

estimation strategies used by software development professionals. I selected a qualitative 

multiple case design to gain insight into effective estimation strategies that software 

development professionals use in providing accurate estimations of effort.  

Although I considered other research methods, a qualitative methodology was the 

most appropriate choice. Qualitative methods use natural language, interpretation, and 

human expression as data for analysis and discovery of findings (Levitt et al., 2016). A 

qualitative researcher's goal is to provide a clear and vivid portrayal of phenomena 

through the gathering and development of data (Levitt et al., 2016). According to Collins 

and Stockton (2018) and Müller and Klein (2019), the qualitative research process begins 

with the identification of the problem or phenomenon. Following the identification, the 

researcher identifies relevant literature and determines a conceptual framework, 

participant selection, the role of the researcher, and an appropriate analytical process 

(Collins & Stockton, 2018). Finally, the researcher presents the findings and concludes 

with a discussion that relates to and answers the initial research question (Collins & 

Stockton, 2018). The qualitative approach provides an appropriate method to answer the 

question of this research as I used interviews to gather data followed by a qualitative 

analysis of responses as they may apply to the research questions.  
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The study I conducted engaged participants to uncover successful strategies for 

accurate estimation. Starcher et al. (2018) stated that qualitative research does not begin 

with a theory, but instead constructs meaning through an understanding of the 

phenomenon under exploration. One of the advantages of qualitative inquiry is that the 

methodology provides a tool to capture participant perceptions of the phenomenon, and 

these perceptions are the reality of the perceiver (Starcher et al., 2018). Levitt et al. 

(2016) summarized the qualitative process as the development of meaning via the 

researcher's reflection and the creation of conclusions from the meaning. Kelly (2017) 

states that the qualitative method is often exploratory to investigate the participants' 

opinions and viewpoints. I selected the qualitative approach as I conducted interviews to 

explore and understand strategies based on the evidence gained from the participant 

interviews. The interviews captured the participants' perceptions, realities, and a clear 

description of the processes and strategies that they use to provide accurate effort 

estimates.   

An interview is a standard data collection process in qualitative research. It is 

uncommon for a qualitative researcher to conduct studies in a laboratory setting 

(Flannery, 2016). The researcher is the primary instrument in the data collection and 

interacts with the participant to construct an understanding through the gathered data 

(Starcher et al., 2018). The qualitative semi-structured interview method provides the 

researcher with tools to capture data in critical areas while still providing the flexibility to 

gain participants' personalities and perspectives (Barrett & Twycross, 2018). To 

understand effective strategies, I conducted semi-structured interviews to gain insight and 
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understand effective strategies that the participants detailed. I scheduled and conducted 

the interviews in an environment that was comfortable, familiar, and convenient for 

participants. 

I did not choose a quantitative method as the results of this research are inductive 

rather than deductive. Researchers select a quantitative method for the construction and 

identification of causally related entities, the establishment of correlations, and the 

utilization of numbers for the data material (Aagaard & Matthiesen, 2015). Quantitative 

research reaches conclusions deductively, whereas qualitative does so inductively (Kelly, 

2017; Starcher et al., 2018). Researchers use the quantitative research method to provide 

statistical generalization (Carminati, 2018) and to express the research findings using 

numbers (McCusker & Gunaydin, 2015; Starcher et al., 2018). Quantitative methods 

differ from the qualitative methods, which answer the question of “how” and “why,” 

whereas the quantitative approach answers the question of “how many” and “how much” 

(McCusker & Gunaydin, 2015). To uncover effective strategies, I asked the participants 

the question of “how” and, thus, chose not to use a quantitative method as it would not be 

an appropriate method to answer my research question. The quantitative approach was 

not a viable option to answer my research question as the data is descriptive rather than 

numerical. Additionally, my research question could not be answered by a statistical 

generalization.  

The purpose of this research was to uncover effective estimation strategies 

through an interview process, which did not involve causality or correlations. The 

research questions relating to effective estimation strategies required interviews for data 
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collection. In quantitative research, researchers know what they are looking for, and the 

participants usually are kept separate from the researchers (McCusker & Gunaydin, 

2015). The quantitative study begins with specific information and works towards a more 

general understanding to arrive eventually at a conclusion or explanation (Starcher et al., 

2018). My research began with a question to explore effective strategies, and I did not 

have more than a general preconception of results. Additionally, I had direct contact with 

the participants of this study. Therefore, I elected not to use a quantitative method for my 

research as the qualitative method would not have provided conclusions to answer the 

research question.  

A mixed-method approach combines quantitative and qualitative methods to 

analyze both narrative and numerical data (Venkatesh et al., 2016). The mixed-method 

approach is most commonly used by initially exploring the topic qualitatively, followed 

by a quantitative component, which is usually the primary research method (Green et al., 

2015; McCusker & Gunaydin, 2015). The mixed-method approach combines a 

qualitative dimension to provide a deep meaning and a quantitative aspect to provide a 

statistical analysis (McCusker & Gunaydin, 2015). Although this study presents 

qualitative descriptions through evidence gained in an interview, there was no 

quantitative numerical analysis of the participant’s description of effective effort 

estimation strategies. Therefore, since my study was inductive and exploratory, and did 

not contain a numerical or statistical component, the mixed method would not be an 

appropriate choice.  
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Research Design 

A qualitative researcher can select from multiple qualitative study designs: case 

study, ethnographical, narrative, and phenomenological. Although each study design has 

merit, I chose the multiple case as the most appropriate design to answer my research 

question. According to Stake (2006), researchers use multiple case designs to study 

phenomena in different environments. Awasthy (2015) posited that case studies cover the 

phenomenon and context of the characteristics of organizational processes. Additionally, 

the evidence in multiple case design is often considered more compelling and robust than 

a single case design (Yin, 2014). As this study will uncover effective strategies 

(processes) in different organizations (environments), I selected the multiple case study 

as my research design.  

Case studies are an appropriate design when the phenomenon is broad, and a 

holistic, in-depth investigation is needed (Dasgupta, 2015). Ponelis (2015) asserts that the 

case study designs are useful in applied disciplines to study processes, problems, or 

programs to understand the phenomena and improve domain practice. Researchers use 

case studies to gatherer participant interpretations, report on their constructed reality or 

knowledge obtained through the investigation (Yazan, 2015). The case study design and 

other qualitative designs do not attempt to manipulate the phenomena or the study 

participants, but instead evaluate the results of naturally occurring activities or processes 

(Dasgupta, 2015). Dasgupta (2015) also claims that the researcher must study the 

phenomenon in the context in which it occurs. I selected the multiple case design as my 

study observes, analyzes, and interprets participant responses but did not manipulate or 
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change them. My research examined various organizations (multiple cases) to identify 

effective software estimation strategies by investigating strategies and processes, as 

described by the participants.  

I selected a multiple case design to gain insight and understanding of effective 

estimation strategies. For both single case and multiple case designs, researchers use 

observations, interviews, interpretation, and coding as the most common procedural 

elements (Stake, 2006). According to Dasgupta (2015), researchers use a multiple case 

design to study and identify similarities and differences across many instances. 

Researchers use case studies to focus on individuals’ real-world perspectives regarding 

their home or work environment and their processes (Yin, 2014). Yin (2014) indicated 

that case studies provide answers to determine “how” and “why.” Green et al. (2015) 

suggest that more resources and time are required in multiple case studies, but may offer 

more useful context in various sites. I used numerous participants and organizations to 

gain various perspectives to identify similarities and differences to processes and 

strategies in providing accurate software development efforts.    

For this study, the process was to interview multiple participants from multiple 

organizations, interpret the results through a coding process, identify commonalities, and 

report on the findings from the data collected. The multiple case design provided data to 

understand and report on effective strategies in organizations’ estimation processes. 

Awasthy (2015) indicated that multiple case designs uncover the phenomenon and the 

context of essential characteristics of organizational processes. According to Llerena, 

Rodriguez, Castro, and Acuña (2019), the multiple case study is useful for extending the 
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information of the phenomenon, gathering more data than a single case, the examination 

of the phenomenon in numerous contexts, and addressing each case separately to describe 

conclusions for the research as a whole. Researchers use a multiple case design to draw 

conclusions based on similarities and differences across the cases (Dasgupta, 2015). I 

selected a multiple case design to identify estimation strategies from multiple 

organizations to conclude numerous perspectives. The multiple case design choice 

provided the data to gain an understanding of accurate estimation strategies, which makes 

the multiple case design the most appropriate option to answer my research question.  

In an ethnographic design, researchers observe the behavior and culture of 

participants within a group. The ethnographic design provides a tool for the researcher to 

interpret a group's shared values and beliefs through observation in which the researchers 

themselves are immersed (Creswell & Poth, 2018). Moser and Korstjens (2018) state that 

the ethnographic study is a descriptive and narrative account of a specific culture. 

Ethnography is the study of groups of people and cultures most commonly used by 

researchers in anthropological studies (Awasthy, 2015). This study did not investigate the 

culture of the participants or their shared values and beliefs. I focused the study on 

participants who are engaged in a professional domain and not selected based on their 

culture. Therefore, the ethnographic design would not be appropriate for addressing the 

research question of this study. 

The narrative design describes a story or explores the life of a participant. 

Creswell and Poth (2018) and McAlpine (2016) agree that a narrative design is used to 

collect stories and lived experiences of an individual. In the narrative inquiry, participants 
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are encouraged to tell a story about their lives through dialogue with the researcher 

(Barrett & Twycross, 2018). The focus of this study was to uncover strategies that 

required an understanding of the participants' processes and perspectives rather than their 

individual stories. This study is not concerned with the life stories or lived experiences of 

the participants, but rather with accurate and practical strategies that the participants use 

to estimate effort in software development. Thus, using a narrative approach would not 

answer my research question; therefore, I did not select it as the design.  

The phenomenological design describes the ordinary meaning of the experiences 

of several individuals. Although the participants' interpretation is essential to answering 

the research question, I did not choose the phenomenological design for this study. The 

phenomenological design expresses the lived experiences of a common phenomenon of 

the participants and the interpretation of the lives that they lead (Alase, 2017; Ellis, 

2016). The purpose of the study was to discover effective strategies and not how the 

participants experience daily life. The phenomenological approach differs from the case 

study design as a case study approach uses themes and categories. In contrast, the 

phenomenological design tells a story through the lived experiences of the participants 

(Alase, 2017). A phenomenological study describes a collective experience of the 

participants in sharing phenomena and concludes with the essence of “what” and “how” 

the participants experienced it (Creswell & Poth, 2018). Although my research question 

was answered by the participants describing “what” and “how” of estimation strategies, I 

did not use the phenomenological design approach as it was not the intention to 
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understand the shared or lived experiences of the participants, but instead to understand 

the strategies used by the participants in providing accurate estimates.  

Moser and Korstjens (2018), and Malterud, Siersma, and Guassora (2016) stated 

that the researcher obtains data saturation when no new analytical information is 

discovered. Boddy (2016) asserts that data saturation can only be achieved with two or 

more cases, as one single case is never enough. Boddy (2016) further states that a 

researcher can achieve data saturation with as little as six in-depth interviews. According 

to Fusch et al. (2018), the use of multiple sources of data enhances data saturation. The 

multiple case design was selected to explore and analyze effective estimation strategies 

from multiple individuals in various groups to understand the differences and similarities 

of the estimation strategies. To achieve saturation, I selected five organizations and 

interviewed two individuals from each organization to achieve data saturation. 

Additionally, I reviewed documents from each organization that provided data on 

estimation strategies. 

Population and Sampling 

The population selected for this research was software development professionals 

from multiple teams in multiple organizations located in South Texas. South Texas has 

three major cities, San Antonio, Austin, and Houston, each of which has many companies 

that employ internal teams to develop software for internal use. The United States 

Department of Labor reports that over 32,000 application software developers worked 

within San Antonio, Austin, and Houston areas in 2018 (“Bureau of Labor Statistics - 

Software Developers, Application,” 2019). In conducting research, it is essential to 
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identify participants who can provide depth, breadth, and quality of data for accurate 

analysis and reporting (Saunders & Townsend, 2016). Determining the sample size in 

qualitative research is based on the researcher's judgment, as too large a sample can affect 

the depth of a study, and too small of a sample may not produce data saturation ((Boddy, 

2016; Carminati, 2018). Boddy (2016) states that a sample size of six can be used to 

reach data saturation provided the researcher conducts in-depth interviews. Yin (2014) 

indicates that six to ten cases are sufficient to produce compelling evidence. The sample 

size of this study was 10 participants from multiple different development teams. Each 

participant had at least five years’ experience in estimating software development effort. 

Additional criteria for inclusion in this study are that the participants are currently in an 

active role in software development, the product that is under development requires 

estimating, and the participant has the knowledge of and is currently working with 

strategies that are effective in providing accurate estimates. This study is not trying to 

achieve certainty, but rather, it is exploratory.   

There are two primary types of sampling methods; probability and nonprobability 

(Rahi, 2017; Sarstedt, Bengart, Shaltoni, & Lehmann, 2018). Although probability 

sampling is a viable method for establishing a representation of a population (McCusker 

& Gunaydin, 2015; Sarstedt et al., 2018), I selected a nonprobability approach. 

Nonprobability sampling is a non-randomized intentional selection of participants based 

on subjective methods in the inclusion decision (Etikan, Musa, & Alkassim, 2016). A 

distinction of the probability sample approach is that each person has an equal chance of 

inclusion in the study (Rahi, 2017). My study reports solely on strategies that provide 
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accurate effort estimates rather than all strategies. Thus, I have chosen a nonprobability 

method as the best method for this research as I selected participants based on a 

predetermination that the participants meet the criteria of knowing and using an accurate 

estimation strategy.   

I have chosen the judgment or purposeful nonprobability method for this study. 

The judgment or purposeful approach allows researchers to use their judgment in 

selecting the participants (Rahi, 2017). The purposeful sampling selection method is 

based on the researcher's assumed judgment and expertise to select participants who are 

deemed appropriate and will provide data for analysis of the effect under study (Sarstedt 

et al., 2018). Purposeful sampling is the selection and intentional inclusion of participants 

with the knowledge and experience to assist in the analysis and interpretation process 

(Twining, Heller, Nussbaum, & Tsai, 2017). Tong and Dew (2016) state that a purposive 

sampling strategy is a deliberate choice of participants who can articulate perspectives 

pertinent to the research question. The purposeful sampling method involves selecting 

participants based on the knowledge of the researcher (Wilson, 2016). Before including a 

participant in the study, using a purposeful selection method, I conducted preliminary 

interviews (see Appendix A) to establish that the participants had knowledge of and are 

currently using an effective and accurate estimation strategy. The participants have to 

answer “yes” to all the preliminary questions listed in Appendix A to confirm that they 

align with my research question for inclusion in the study. As I have a background in 

software development and estimating the effort required to complete various goals, I also 

relied on my professional judgment to confirm the use of a successful estimation strategy.  
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The purpose of this study was to gain an understanding of effective and accurate 

strategies in software development effort estimation. I purposely selected participants that 

meet the qualification for inclusion to this study. Sarstedt et al. (2018) state that 

purposeful sampling is an appropriate selection method when the researcher analyzes 

results for an improved understanding rather than for the generalizability of results. 

Purposeful or judgment sampling is the deliberate choice of participants based on criteria 

or qualities the subjects possess (Etikan et al., 2016). Purposeful sampling is the selection 

of individuals who are well informed about the phenomena of interest and can 

communicate their experiences in a reflective manner (Etikan et al., 2016). I selected the 

purposeful expert sampling approach, as I used individuals who have a unique knowledge 

of estimation and currently use effective strategies. As the name implies, expert sampling 

is the selection of subject matter experts who have previous experience of the subject 

matter of the study ((Etikan et al., 2016).  Purposeful sampling allows the researcher to 

select participants to obtain a comprehensive understanding of the phenomenon with the 

expectation that each participant will provide substantial information to the study (Etikan 

et al., 2016). 

Additionally, purposeful sampling is selecting a limited number of participants 

who can provide an in-depth understanding of the phenomena for the researcher to report 

conclusions (Yilmaz, 2013). The participants chosen for this study were chosen based on 

the prequalification that each understands software estimation and uses accurate 

estimation strategies. I ensured that the participants meet the qualifications before 

interviewing to minimize the sample size while providing conclusive results using a 
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limited number of individuals. For this study, I interviewed ten qualified participants. 

According to Etikan et al. (2016), nonrandom purposive sampling does not need a set 

number of participants. Malterud et al. (2016) suggested that small sample sizes can be 

sufficient if (a) the aim of the study is narrow, (b) the characteristics of the participants 

are highly specific, (c) the researcher has a theoretical background, and (d) the researcher 

maintains active communication with the participants. However, the sample size must be 

evaluated throughout the research (Malterud et al., 2016). Carminati (2018) states that the 

sample size is essential to generalization, as too large a sample inhibits in-depth analysis 

while too small a sample does not support saturation or redundancy. A researcher cannot 

be sure the chosen sample is generalizable in nonprobability sampling (Wilson, 2016). 

Qualitative studies should consider the strength of the information and knowledge gained 

from the analysis rather than putting a strong emphasis on sample size (Malterud et al., 

2016). The selection of ten participants provided satisfactory results, as the research 

question is narrow. 

I carefully selected the participants based on predetermined criteria and will 

conduct an in-depth interview to collect a full perspective from each participant. This 

study did not attempt to generalize but instead provided me with insight into the usage 

and processes of effective and accurate estimation strategies. Additionally, I evaluated 

the sample size throughout the investigation to ensure that the data gathered provided 

insight and answered the research question adequately. 
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Ethical Research 

Before I collected data from the participants of this study, I gained the approval of 

the Walden University Institutional Review Board (IRB). The primary purpose of an IRB 

is to review the protocols and processes of the research to ensure that no harm comes to 

the participants, and sufficient measures are in place to minimize risk (Miracle, 2016). 

Alase (2017) further detailed the responsibility of the IRB to ensure that any devices, 

techniques, or strategies the researcher uses have the full consent of the research 

participants, and the IRB has approved for use. Additionally, the IRB determines if the 

risks and benefits are balanced, the recruitment strategies are fair, and the researcher has 

sought voluntary consent (Bracken-Roche, Bell, Macdonald, & Racine, 2017). This study 

met all legal and ethical requirements established by the Walden University IRB. The 

Walden University’s approval number for this study is 12-19-19-0421147.  

In addition to obtaining the Walden University IRB approval, I adhered to the 

standards outlined in the Belmont Report. Ethical research follows principles that the 

researcher should follow to protect the participants from harm. The Belmont Report 

defines ethical principles as respect for persons, benevolence, and justice (The National 

Commission for the Protection of Human Subjects of Biomedical and Behavioral 

Research, 1979). Miracle (2016) described the three principles of the Belmont Report as 

a guide for researchers in (a) respecting that people have the right to decide whether they 

want to participate, (b) doing no harm, and (d) treating all participants equally. 

Throughout this study, I ensured that no harm came to the participants by taking 

all safeguards regarding confidentiality. I provided equitable and fair treatment for 
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persons and organizations involved in this study. Additionally, I reminded each interview 

participant that the study's involvement was voluntary and that there was no financial or 

professional compensation for participation in the research. I informed each participant 

that they could withdraw from the study before the analysis phase of the study by 

contacting me through e-mail or phone. 

All the participants in the study consented both verbally and by signing a consent 

form. Brown and Danaher (2019) state that the consent form should be understandable, 

informative, and clear to the participant without being vague. Miracle (2016) suggests 

that a consent form should include the following components: a) purpose of the study, b) 

description of the research procedures, c) potential risks and potential benefits of the 

study, and d) an indication that participation is voluntary.  Arsel (2017) and Ponelis 

(2015) suggest that the interview should include a preliminary discussion to establish 

informed consent and that the researcher should inform the participant of any 

consequences of participation in addition to obtaining the participant’s signature on the 

consent form. The National Commission for the Protection of Human Subjects of 

Biomedical and Behavioral Research state in the Belmont Report that the informed 

consent should include a statement informing the participant that they may withdraw 

from the study (The National Commission for the Protection of Human Subjects of 

Biomedical and Behavioral Research, 1979). Before I began the interview, I discussed 

the study purpose with each participant, any potential risks, and reminded them that 

participation is voluntary. I verified that they understand the consent form and reiterate 
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that they may withdraw from the study at any time during the interview or through e-mail 

correspondence or phone call before to the analysis of the data.   

Arsel (2017) suggests requesting a signed consent form to ensure the participant 

understands the procedures and consequences of participation in the study to avoid any 

misunderstanding of involvement in the research. Miracle (2016) states that an informed 

consent document should include the purpose of the study, identification of procedures 

and risks, and a notice to the individual that participation is voluntary. The Belmont 

Report identifies three necessary items for informed consent: (a) the inclusion of 

information about the study; (b) the participants should fully comprehend the consent; 

and (c) the participants should understand that participation is voluntary (The National 

Commission for the Protection of Human Subjects of Biomedical and Behavioral 

Research, 1979). I requested that all the participants sign a consent form before the 

interview and verbally verify that they understood the consent, procedures for withdrawal 

and that they will receive no compensation for involvement in the study.  

  Throughout this study, I took precautions to preserve the privacy of the 

participants and the organizations that employ them. All information regarding any 

indication of the identity of any participant or any organization will be held and stored in 

an encrypted folder for five years. I am the only person who will know the identity of the 

participants and organizations in this study. At the end of the five years, I will delete the 

contents of the folder, and destroy all hard copy data about the individuals or 

organizations used in the study. Any data that I publish will not include any personally 

identifiable information or information that would identify the organizations that employ 
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them. The published study will only use codes or pseudonyms to identify the participants 

or organizations. Using pseudonyms for both the participants and the organization is a 

common practice in research (Allen & Wiles, 2016). Data indicating the participants’ 

gender, race, or any other information that would disclose the participant's identity should 

not be used in the study if that information is not relevant for the study (Allen & Wiles, 

2016). The study does not include names or the organization that employs them, but, 

instead, I identified them using pseudonyms such as participant 1, participant 2 and so on. 

Additionally, I will not publish any information that would indicate race, gender, or age.   

Before beginning the interviews, I informed each participant of the purpose of the 

study, that participation is voluntary, procedures for withdrawing, and that I will 

safeguard their identities. Arsel (2017) maintained two tenets for interviewing 

participants: to ensure that the participants understand that the answers to the questions, 

and for research and do no harm. I verbally discussed with each participant in the study 

the intent of the research, their right to opt-out of the study voluntarily, and their right to 

confidentiality under all circumstances. I informed each participant that there would not 

be any financial or professional compensation for participation. Additionally, I ensured 

that each participant fully understood and agreed to the involvement in the study and 

provided them with a copy of the consent form.     

I informed each participant that the data collected will not be used for any purpose 

other than the study. According to Starcher et al. (2018), recorded interviews should be 

transcribed verbatim to provide the researcher with analysis for a credible understanding 

of the studied phenomenon. I will hold the interview tapes and transcripts for five years 
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in a secured digital container, and no personal information on the data will identify the 

interviewees or their responses. After five years, I will delete all the interview records, 

recordings, and transcripts. Additionally, after five years, I will shred all field notes from 

this study and discard them. 

Data Collection 

In a qualitative study, researchers can collect data from many sources. Yin (2014) 

indicated that traditional sources of evidence are documentation, archival records, 

interviews, direct observations, participant observations, and physical artifacts. 

Qualitative research relies on three sources for data collection: observation, interviews, 

and documents (Kelly, 2017; Starcher et al., 2018). In the following sections, I describe 

the instrument I used, my data collection technique, and the method I employed for data 

organization.  

Data Collection Instruments 

I was the primary data collection instrument for this qualitative multiple case 

study. Starcher et al. (2018) and Babchuk (2019) state that in qualitative inquiry, the 

researcher is the primary data collection instrument. As I was the primary data collection 

instrument, I followed the interview protocol found in Appendix C to maintain 

consistency across the interviews that I conducted. Ismail et al. (2018) state that the 

utilization of an interview protocol increases the interview process's efficacy by ensuring 

the researcher attains comprehensive data within the allocated time. Ismail et al. (2018) 

further suggest that the researcher conduct a pilot interview to check the effectiveness of 

the interview protocol. Conducting a pilot interview provides the researcher with a 
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crucial test of the interview questions and gives the researcher interviewing practice 

(Majid, Othman, Mohamad, Lim, & Yusof, 2018).  I conducted a pilot interview to gauge 

the effectiveness of my interview protocol. Additionally, my pilot interview provided me 

with an indicator of the adequacy and completeness of the responses I would receive 

from the research participants.  

The primary data collection method for this study was semi-structured interviews. 

In semi-structured interviews, participants are free to respond to open-ended questions as 

they wish, and the researcher can ask supporting questions to explore deeper into the 

participant’s reasoning (McIntosh & Morse, 2015). Deterding and Waters (2018) define 

semi-structured interviews as open-ended questions that generally follow a logical order 

designed to create a dialog between the researcher and the participant. Open-ended 

research questions allow the responder to provide an answer that makes sense to them 

(Windsong, 2018). The principles of semi structured interviews are that the method helps 

a researcher to stay on topic, to construct data, and to guide the discussion (Starcher et al., 

2018). I selected the semi-structured interview data collection method as it allows the 

freedom to gain a deeper understanding of the participants perspective using follow-up 

questions while still maintaining a structure for the interview process. Additionally, the 

semi structured approach provides the participants with the opportunity to answer the 

interview questions based on their perspectives.   

I asked the participants semi-structured interview questions to explore the 

estimation strategies use by the participants as detailed in my interview protocol (see 

Appendix C). I used semi-structured interviews with pre-selected participants to produce 
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the data in this study. The semi-structured interview process provides the participant’s 

perspective on the research topic (McIntosh & Morse, 2015). Using the semi-structured 

interview process, I asked each participant the same questions in the same order to ensure 

consistency in the data collection interviews with the participants. I selected the semi-

structured methods to provide a structure for the interview process while giving me the 

freedom to gain a more in-depth insight using additional nonpredetermined questions.  

To enhance the study's reliability and validity, I reviewed company documents to 

supplement and support the information gained in the interview process. Brooks and 

Normore (2015) state that documents contain information previously established outside 

of the researcher's intervention and adds rigor to the study. Triangulation of the data, such 

as interview data and records or documents, help the researcher understand the 

circumstances (Ismail et al., 2018). Researchers achieve triangulation through participant 

interviews, document analysis, and direct observation (Babchuk, 2019; Fusch et al., 

2018). Once I completed the interview with the participant, I asked permission to 

examine any company documents related to the research topic to confirm the estimation 

strategy identified by the participant. In addition to participant interviews and document 

analysis, I collected field notes to enhance my data collection process.  

Throughout the research process, I maintained a reflective journal and field notes 

to capture personal thoughts, interpretations, and observations to aid in the 

documentation and analysis of contextual information. According to Zulfikar and 

Mujiburrahman ( 2018), a reflective journal is used to organize thinking and provide self-

evaluation opportunities. Researchers use reflective journals to examine their responses 
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to participants, consider the interview questions' effectiveness, and evaluate their 

responses to the data they collect (Orange, 2016).  Phillippi and Lauderdale (2018) 

suggest that interview field notes should include information regarding the setting, the 

overall demeanor of the participants noting any nonverbal behaviors, any deviations in 

the interview process, critical reflection after the interview, and notes regarding the 

interviewer's self-assessment regarding performance. Additionally, I continuously 

captured and reflected on the data collection process, interview approach, and personal 

interpretations to counter any potential bias. The field notes provided an additional data 

source, a more in-depth analysis, and a record of my interpretation of the findings.  

Data Collection Technique 

Once I received approval from the Walden University IRB, I conducted a pilot 

interview to confirm the adequacy of my interview protocol (see Appendix C), and I 

began the data collection process. The data collection process consisted of interviews and 

document analysis. The most common data collection methods in qualitative research are 

participant observations, interviews, and focus groups (Moser & Korstjens, 2018). The 

interview technique followed the protocol detailed in Appendix C, and I ensured that the 

location and setting were comfortable for the participants. The location of the study can 

affect the outcome of the study (Rimando, Brace, Namageyo-Funa, Parr, & Sealy, 2015). 

The first few minutes of an interview are critical for allowing the participant to be at ease 

and to feel that they can freely discuss the topic and tell their own experiences (Moser & 

Korstjens, 2018). I began the interview by introducing myself, reviewing the signed 

consent forms with the participants, and providing the participants with an opportunity to 
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ask questions or voice any concerns before the interview begins. Before beginning the 

interview questions, I ensured sure the participants were comfortable, receptive, and 

ready to be interviewed. 

There are advantages and disadvantages of using a semi-structured interview 

approach and analysis of organizational documents. The semi-structured interview 

process provides the researcher with a method to obtain the participants' perspective and 

experience regarding the research topic (McIntosh & Morse, 2015). The semi-structured 

interview allows the researcher to follow a listing of questions during an interview while 

enabling the interviewer the opportunity to elicit open responses to develop a deeper 

understanding of the perspective of the participant (Brown & Danaher, 2019). However, 

according to McIntosh and Morse (2015), the disadvantages of face-to-face interviews 

are participants may feel inhibited when asked to respond to sensitive questions.  

Additionally, an interviewer's physical presence may affect the participant's response, and 

conducting interviews is time-consuming and costly (McIntosh & Morse, 2015).  

Document analysis is the reviewing or evaluation of documents. The combination 

of interviews and document analysis contributes to the rigor of the research (Fusch et al., 

2018; Yilmaz, 2013). Organizational documents contain information developed without 

the researcher's participation or intervention (Brooks & Normore, 2015). However, 

Brooks and Normore (2015) indicate that documents can present individuals' or 

organizations' perspectives and may not represent the participants' perspective. For this 

study, I analyzed each organization's documents to support the data obtained in the 

interview process. 
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I explained to each participant that I would record the interview and transcribe the 

information to use for data analysis for the study. Recording the interview provides a 

method for the researcher to capture the information for later transcription (McGrath et 

al., 2018). Researchers use audio recordings to transcribe interviews verbatim for analysis 

(Cypress, 2017; McGrath et al., 2018; Starcher et al., 2018).  Following any questions 

that the participants may have, I started the formal interview process. I began the 

interview process by turning on my recording device, stating the date and identifying the 

participant as participant one, two, three, and so on.  

I reminded the participants that the recording, personal notes, and the 

transcription will not include any personally identifiable information and that I will 

maintain their anonymity and preserve confidentiality. Researchers should safeguard 

participants' responses to ensure that the published results do not disclose their identity or 

put them in a vulnerable situation (Arsel, 2017). The interviewer's primary task is to 

understand the meaning of the participant responses (Korstjens & Moser, 2018). The 

study was constructed to provide successful strategies used for effort estimation while not 

disclosing any information that would identify the participants or organizations. 

Additionally, it is essential to communicate to the participant how the researcher will 

maintain privacy and confidentiality as the level of trust between the researcher and 

participant affects the quality of results from an interview. (Brown & Danaher, 2019). I 

made the participants aware that I would ensure that personal information remains private 

and that any information discussed would not be shared with their organization, 

supervisor, or coworkers.  
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Interviewers should demonstrate that the responses the participant provides during 

the interview are understood. Positive responses acknowledge that the interviewer 

understands the responses through body language, response tokens, and the formulation 

and asking of the next questions (Roulston, 2018). According to Roulston (2018), body 

language and response tokens such as an interviewer interjecting “yes,” and “I am 

following” provide the interviewee with feedback indicating the interviewer understands 

the dialog. To gain additional information or to prompt a participant to expand on an 

answer, researchers can interject “tell me more about that” after the participant's response 

(Starcher et al., 2018). Fusch et al. (2018) state that follow-up and probing questions help 

the researcher maintain the direction of the interview and collect additional data to 

answer the research question. Roulston (2018) suggests repeating back to the interviewee 

the interviewer’s understanding as well as asking the next questions will provide the 

participant with a positive affirmation that the responses are understood. During the 

interview process, I ensured that participants understood the questions and that I 

understood their responses. I asked follow-up questions if I determined that a more 

vibrant response was required or that the participant did not answer the questions 

adequately enough for me to gain an understanding.  

I took field notes during the interviews. According to Barrett and Twycross 

(2018), field notes include a chronological log, an account of what the researcher 

observes, and an expanded interpretation of impressions from the interview. Field notes 

are a widely used approach to capturing contextual information and use in subsequent 

analyses and synthesis of the data collected (Phillippi & Lauderdale, 2018). Interviews 
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and field notes are the principal data sources in qualitative research (Moser & Korstjens, 

2018). I asked the interview questions in the exact order outlined in the interview 

protocol and allowed the participant to respond adequately before asking follow-up 

questions. I continued the interviews until the participants had answered all the questions.  

I limited the research questions such that the questions asked would elicit a 

response that answered my research question. Data collection can be adversely affected 

by the length of the interview process (Rimando et al., 2015). I completed the interviews 

within one hour. Following the interview questions, I asked the participants if there was 

any information they would like to share or any information they feel should be included 

in the study. I documented the additional participant comments and information that was 

relative to my research question in the field notes.  

I asked the participants if there was any company documentation that they can 

share relevant to the topic discussed. Chung (2019) states that the reliability of 

documentary evidence is higher than that of verbal evidence. Yin (2014), as well as 

Creswell and Poth (2018),  indicate that the use of documents is to corroborate and 

supplement interview data with other sources of data. After conducting the interviews, I 

request to see any documentation such as process and procedures documents, standard 

operating procedures, checklists, or guidelines used in estimating effort. I reviewed the 

documentation to ensure alignment with the participant’s responses and discuss any 

deviation that I identify.  I notated my document review observations in my field notes.  

I explained the concept of member checking and informed each of the participants 

that I would be contacting them by phone to discuss my interpretations of their interview 



101 

 

responses. The member checking process is critical to verify the accuracy of the content 

and understanding of the participant’s viewpoints (Candela, 2019; Yilmaz, 2013). 

Creswell and Poth (2018) define member checking as reviewing with the participant the 

accuracy of the researcher’s interpretation findings and as verifying that the participant 

answers are representative of their intended responses. Yin (2014) describes member 

checking as the corroboration of interpretations of the interview with the participant and 

to allow for new evidence to emerge not gained through the initial data collection. I 

requested time for a brief phone discussion of the interview to check for the accuracy of 

my interpretation of the interview and supporting documents. Participant verification 

provides a tool for member checking and allows the participant to confirm the dialog 

transcribed during the interview is as the participant intended. If the participant indicated 

that a change in a previous response was needed, I made the change and notated the 

change in my field notes. Additionally, I scheduled a time to contact the participant for 

review and confirmation of the amended material. 

I thanked each participant and confirmed that each participant had my contact 

number and e-mail should they have any questions or remember any additional 

information that they have not previously discussed that was relevant to the research 

topic. Following each interview, I transcribed the audio recording into separate Microsoft 

Word documents. Transcribing an interview verbatim provides the researcher with a 

credible understanding of the phenomenon studied (Starcher et al., 2018). I removed any 

information that would identify the participant, company, or development team members 

to ensure confidentiality.   
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Data Organization Techniques 

The data organization approach that I used for this study was to store recordings, 

field notes, and transcribed data on a secure folder on a personal secure Microsoft 

OneDrive cloud storage account. Babchuk (2019) stresses the importance of organizing 

data in a meaningful way and storing the data on a password-protected computer. Van 

Baalen (2018) suggests storing data on encrypted folders using strong passwords for 

digital security. I am the only person who has access to the protected folder, thus 

providing safeguards to protect the confidentiality of the participants and organizations. 

Surmiak ( 2018) defined research participants’ confidentiality as the nondisclosure of 

participant identifiable information unless they consent to the disclosure. I stored each 

participant interview recording, notes, and audio transcription in separate digital folders, 

indicating a unique identifier such as participant 1, participant 2, and so on to provided 

confidentiality. I stored each of the participant folders in a digital folder indicating their 

organizations such as organization 1, organization 2, ensuring the confidentiality of the 

organizations. I labeled each file associated with each participant to indicated participant 

number, organization number, and research artifact types, such as a transcript, recording, 

and note.   

I documented my feelings, understanding, and personal thoughts throughout the 

research project using a reflective journal. Levitt et al. (2016) suggested the use of a 

reflective journal to manage perspective. A reflective journal includes a researcher’s 

emotions, beliefs, and reasoning inferences (Bruno & Dell’Aversana, 2017). Researchers 

use reflective journals to promote validity, promote learning through the research 
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process, and provide evidence of transparency (Vicary, Young, & Hicks, 2017). 

Additionally, a reflective journal allowed me to review thoughts and observations that are 

otherwise not documented. A reflective journal provided a resource for the research 

progression, observations, and personal reflections, thoughts, and feelings throughout the 

process. 

I stored my field notes and reflective journal in a locked cabinet to ensure that 

only I can access the files. All the artifacts of the research are available only to me and 

protected from unauthorized access. I will store the participants' recordings, 

transcriptions, field notes, and encrypted identification information for five years. After 

five years, I will delete all participant information, recordings, transcripts, and shred field 

notes and reflective journals.  

Data Analysis Technique 

To answer my study question, I repeatedly searched the data I have collected until 

I achieved a meaningful answer to identify effective strategies in software development 

effort estimation. Tong and Dew (2016) state that the data analysis process is iterative 

and revelatory, and generally involves examining the data, categorizing and grouping 

similar concepts into themes to identify relationships and patterns. Babchuk (2019) states 

that the analysis should include verbatim phrases taken from the participants to capture 

the connotation of the line or text passage. For this study, I found meaningful information 

through the analysis of data collected from interviews and organizational documents 

related to effective strategies to estimate software development effort. I analyzed the data, 
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derived codes, and identified themes to discover effective estimation strategies in 

software development.  

According to Creswell and Poth (2018), a typical analysis approach for multiple 

case studies is to conduct a within-case analysis of individual cases, followed by a 

thematic cross case-analysis across multiple cases. A cross-case analysis is the 

examination of themes across cases to identify similarities and differences (Creswell & 

Poth, 2018). Yin (2014) defines cross-case analysis as the aggregation of findings across 

multiple cases. Researchers use a cross-case analysis to gain an understanding of 

common and unique features of multiple cases (Guetterman & Fetters, 2018). A cross-

case analysis enhances transferability and trustworthiness by comparing data across 

multiple cases. I analyzed each case to identify themes and concepts followed by a cross-

case analysis to identify similarities and differences to understand the phenomenon in a 

different context. I repeatedly reviewed my data to discover meaningful information to 

answer my research question. My data analysis focused on the discovery of similarities, 

differences, and correlation of effective strategies in software development effort 

estimation.   

I used methodological triangulation to analyze the data gained from company 

documents and participant interviews. Abdalla, Oliveira, Azevedo, and Gonzalez (2018) 

state that researchers use the methodological triangulation to obtain complete and 

detailed data by analyzing multiple data sources such as interviews, observations, and 

documents to understand a phenomenon. Researchers use the methodological 

triangulation process to avoid bias and view data from multiple perspectives (Fusch et al., 
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2018). Methodological triangulation overcomes weakness and bias that result from single 

method research, single data, single observer, and single theory research (Joslin & 

Müller, 2016). As my study is qualitative only (single method), I was the only 

interviewer (single observer), and my conceptual framework is the planning fallacy 

(single theory.) The use of the methodological triangulation adds validity thru a sound 

approach to my data analysis. I used multiple sources to provide data for this study, such 

as interviews, organizational documents, and participant observations during the 

interview process.  

The initial step in my data analysis was to review my research data repeatedly. I 

captured my thoughts in a reflective journal during my review process and made a note of 

any relevant themes, concepts, and similar or contrasting content. In analyzing qualitative 

data, the first step is to derive codes and identify essential words or phrases (McIntosh & 

Morse, 2015). Constructing categories or themes by grouping similar or closely related 

codes is the process of identifying similarities ((Babchuk, 2019). I repeated this process 

to identify meaningful information that was relevant to answering my research question. 

Additionally, I incorporate any new studies relevant to my findings after my proposal was 

accepted and before drawing my research conclusions.  

Deterding and Waters (2018) suggested the first step in examining the data in 

qualitative analysis is that the researcher should identify the main themes to determine a 

provisional idea of the emerging themes and explore themes indicated by previous 

literature. The second step is to note specific chunks of text in which the participant was 

particularly articulate and concise (Deterding & Waters, 2018). The third step is to use 
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qualitative data analysis software to explore the depth of the story, identify trends, and 

analyze potential negative cases that may limit the explanation (Deterding & Waters, 

2018). Reducing data from full transcripts to indexed extracts and finally to grouped 

analytic codes provides the researcher with uniformity and increases reliability and 

validity (Deterding & Waters, 2018). I followed the process of establishing themes, 

exploring relationships, identifying trends, and using induction to report the research 

findings and conclusion. 

I used NVivo, a Computer Assisted Qualitative Data Analysis Software 

(CAQDAS) application for the data analysis process. The primary advantages of using a 

CAQDAS software product are increased speed in handling large amounts of data, 

improved rigor, the identification of counts of phenomena, search for divergent cases, 

and the development of coding schemes (Cypress, 2019). Researchers use NVivo to 

reduce the workload in analyzing and structuring large amounts of data, searching for 

words or phrases, and to apply assigned codes to the text (Røddesnes, Faber, & Jensen, 

2019). NVivo provides multiple qualitative analysis functions such as sorting, filtering, 

assigning, and defining categories themes as well as data visualization (Phillips & Lu, 

2018).  I used NVivo to import each participant’s data, create nodes to develop a 

hierarchy to identify data between cases and within cases, conduct data exploration using 

the query command for similarities, matches, word frequency, and establish text patterns 

and keywords for code creation.  
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Reliability and Validity 

Reliability and validity are foundational elements of proper research. Cypress 

(2017) defined reliability as a principal factor of research reflected in the practices, 

process, analysis, and conclusions. Validity is the state in which the research is grounded, 

justifiable, relevant, meaningful, and conforming to quality principles (Cypress, 2017). 

There are four quality attributes for establishing validity and reliability for a qualitative 

study. A researcher establishes quality and reliability by dependability, credibility, 

transferability, and confirmability (Moser & Korstjens, 2018).  

Credibility 

Credibility is the quality of trust and believability of research and its internal 

validity determined by the plausibility of the information and interpretation of the views 

of the participants (Moser & Korstjens, 2018). Researchers establish credibility through 

triangulation and member checking (Moser & Korstjens, 2018; Tong & Dew, 2016). 

Cypress (2017) states that researchers obtain credibility through the accurate and truthful 

description of the participant’s experience, and member checking, which is the constant 

checking of data and interpretations with the participants interviewed. Additionally, 

Moser and Korstjens (2018) defined credibility as an accurate description of the 

phenomenon and generation of believable claims through the identification of the study 

design, sampling method, data collection methods, identification of limitations and 

delimitations, and reflexivity. Kelly (2017) states that qualitative research's credibility is 

gained through good quality interviewing procedures, accurate coding and analysis, 

transparent conclusions, and evidence that the reader can transfer to their situations. 
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Research is reliant on the researcher's ability and effort, and descriptive narratives of the 

participants to achieve credibility (Cypress, 2017). I used member checking and 

methodological triangulation to establish credibility for this study. Additionally, I ensured 

that any claims made were free of bias and were an accurate account of each participants' 

viewpoints.  

Researchers use member checking to ensure the reliability of their research. 

Member checking provides participants with an opportunity to correct misrepresentation 

or errors in the information gained during the interviews (Tong & Dew, 2016). Member 

checking is a commonly used procedure to share with the participant the data from their 

interview and the interpretations of the researcher to obtain the participant's feedback 

(Liao & Hitchcock, 2018). Candela (2019) stated that an additional benefit of member 

checking is that it helps the researcher capture the voice of the participant. After each 

interview, I transcribed the conversation and verified my findings with each participant to 

confirm correctness. Additionally, I discussed with the participants, my understanding of 

the strategies discussed to verify that information obtained from the interview dialog was 

accurate, and as the participants intended. I ensured methodological triangulation using 

interview transcripts, the review of organizational documents, and details noted during 

the interview process.  

Transferability  

Research transferability is the degree to which other researchers can transfer the 

results to other contexts with different respondents (Brooks & Normore, 2015; Moser & 

Korstjens, 2018), and other researchers can transfer the results to other settings (Shannon-
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Baker, 2016; Tong & Dew, 2016). Researchers establish transferability by providing full 

descriptions of the participant's experience, context, and behavior (Moser & Korstjens, 

2018). I captured detailed information from the study and a descriptive analysis of the 

research experience to validate transferability. Additionally, I documented the context, 

the interview setting, the participants’ descriptions, their nonverbal behaviors observed 

during this research, and any other information that may help other researchers replicate 

or extend the study.  

Dependability  

 I used member checking and triangulation to ensure dependability for my study.  

Xerri (2017) has stated that dependability and creditability increase through member 

checking and triangulation. Dependability is the stability of the study's findings over time 

and the fidelity of the data received from the study (Moser & Korstjens, 2018). 

Dependability is the consistency across the research methodology, data collection, and 

reporting of results to include transparency and verification of the research process (Tong 

& Dew, 2016). According to Lishner (2015), research trustworthiness and dependability 

increases when the researcher (a) promotes direct replication studies, (b) shares data 

when requested, and (c) adopts a truth-seeking mindset during the research process. I 

used member checking to ensure that my understanding and interpretation of the 

interview data was accurate. In addition to member checking, I triangulated the interview 

data with company documents when available to confirm the participant's strategies. 

Additionally, I adhered to my interview protocol to maintain consistency through my 

interview process. I kept a reflective journal detailing my data collection process, my 
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thoughts on data analysis, observations during the interview, and personal reflections 

throughout the research process.   

Confirmability 

Moser and Korstjens (2018) and Korstjens and Moser (2018)  noted that research 

confirmability involves confirmation of a study’s findings by independent researchers. 

Researchers establish confirmability and dependability by maintaining a reflexive journal 

to document thoughts and research notes that create an audit trail to document the 

collection, analysis, and interpretation of the data (Cypress, 2017). The study's results are 

grounded in data, and I ensured that my viewpoints and biases were identified and 

mitigated. Additionally, I maintained a reflective journal to capture personal thoughts and 

feelings during the interview process. I used NVivo to identify reoccurring themes to 

indicate data saturation. 

I used a semistructured interview with multiple members from multiple teams to 

gain data saturation. Fusch et al. (2018) state that the use of multiple sources of data 

enhances data saturation. According to Abdalla et al. (2018), researchers attain 

confirmability by ensuring that the conclusion drawn from the interviews comes from the 

experiences and ideas of the respondents. I provided member checking to promote 

confirmability. Additionally, throughout the research process, I remained transparent 

about my approach and findings. 

Transition and Summary 

In Section 2, I presented details of the research plan, my role as a researcher, the 

research design, and the data collection techniques for this study. Additionally, I have 
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provided processes to ensure reliability and to validate the study. Section 3 will include 

the research findings, implications for social change, suggestions for professional 

practice, and recommendations for future research followed by personal reflections on the 

research and my conclusions. 
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Section 3: Application to Professional Practice and Implications for Change 

The focus of this study was on exploring strategies used by software development 

professionals in providing effort estimations. This section includes (a) an overview of the 

study, (b) presentation of the findings, discussion of the study’s (c) application to 

professional practice and (d) implications for social change, (e) recommendations for 

actions, (f) suggestions for further study, and (g) personal reflections and a study 

conclusion.  

Overview of the Study 

The purpose of this qualitative multiple case study was to explore strategies used 

by software development professionals to provide project managers and product 

stakeholders with accurate effort estimates. The data came from interviews and 

documents within five different organizations located in South Texas. All the participants 

interviewed were actively involved in providing estimations. Each participant had at least 

five years of experience in delivering software development effort estimates, and each 

indicated that the strategies used were effective. My analysis of the data resulted in four 

themes that were common among the participants for achieving accurate effort 

estimations. Although the methods in providing estimates differed within the teams, the 

participants’ strategies to arrive at accurate estimates were common among the 

participants. 

Presentation of the Findings 

The main research question for this study was as follows: What are the strategies 

that agile software development teams use successfully to provide their project managers 
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with accurate estimates of software development effort? This section includes a summary 

and analysis of the results of the interviews and organizational documents identified, 

resulting in four main themes related to providing accurate software development effort 

estimates. Access to organizational documents allowed me to triangulate and validate the 

information obtained from the interviews. I conducted the interviews such that 

participants had the opportunity to share strategies that they found to be essential in 

providing estimations of effort in software development activities. After transcribing the 

interviews from all 10 participants, I imported the transcriptions into NVivo for analysis 

and coding. I imported the organization documents into NVivo for analysis and coding. 

Four emergent themes resulted from my analysis: (a) define and decompose 

requirements; (b) reference historical data; (c) identify risks and unknowns; and (d) foster 

communication, collaborations, and consensus. The participants discussed their strategies 

for helping project managers to plan delivery schedules, thus improving customer 

satisfaction. Additionally, accurate estimations can also enhance the quality of the 

product, lower stress levels, and improve the work lives of those involved with software 

development and delivery (Yamini & Marathe, 2018).   

The planning fallacy (Kahneman & Tversky, 1977) was the conceptual 

framework for the study. It is common for developers to underestimate effort estimations, 

which adversely affects planning, delivery schedules, and cost (Løhre & Jørgensen, 

2016). The themes identified provide strategies to mitigate the effects of the planning 

fallacy, potentially resulting in predictable schedules and higher accuracy in the planning 

of software development delivery.   
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Theme 1: Define and Decompose Requirements 

Defining and decomposing requirements was one of the prominent themes. The 

process of requirements definition is that the requested work item is sufficiently detailed, 

such that a developer or development team can accomplish the objectives of the request. 

Once the request is defined and understood, the developer or development team can 

provide an estimation. Each of the participants indicated that concise, descriptive, and 

well-written requirements are an effective strategy used to provide accurate estimates to 

stakeholders. Gaining a complete set of requirements in the initial discussion or 

evaluation of a request can be difficult. However, the level of detail in a requirement can 

influence the accuracy of effort for the request estimate. Understanding the requirements 

mitigates false hope to the requester when the team provides an estimation that may be 

too low. 

Requirements decomposition is a top-down approach used by development teams 

to identify the objectives of the requested deliverable (McConnell, 2006). Software 

development professionals decompose requirements into manageable pieces to 

understand the effort required to complete the task. Development teams use 

decomposition as a strategy to break the request down into steps or smaller items to 

provide a more realistic estimation. Developers decompose requirements to gain a 

granular view of the request. A more granular identification of the activities increases the 

accuracy of the estimation process through the identification of each step or task in the 

development request to deliver.  
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All 10 participants indicated that clear and concise requirements were critical 

elements to providing accurate estimations. Additionally, 15 of the 20 organization 

documents reviewed supported the theme of defining and decomposing requirements. 

Two of the documents I reviewed described a properly written requirement as a request 

that was complete, unambiguous, consistent, and testable. Eight of the 10 participants 

indicated that decomposition was a strategy used in providing estimations. After 

developers decomposed the story and estimated the identified items, they aggregated the 

values into a final estimation of effort for the request. Table 1 includes frequency 

information for Theme 1. 

Table 1 

 

Frequency of First Major Theme 

Major theme 
Participant 

count 

Participant 

references 

Document 

count 

Document 

references 

Define and  

decompose 

requirements 
10 65 15 34 

 

Each of the participants stressed the importance of detailed and complete 

requirements, and this concept aligned with findings from my literature review. Sehra et 

al. (2016) stated that requirement uncertainty affected estimation accuracy. Participant 6 

indicated that “so whether you are doing the estimation, or you are doing the 

development, without the full requirements, you really run into a problem.” Participant 3 

stated that “the biggest problem in providing an estimation was that the requirement was 

not fully fleshed out” and that “estimation accuracy was dependent on fully defined 

requirements.” Usman et al. (2018) identified unanticipated requirements as one of the 

four causes of inaccuracies in estimation. Jørgensen (2014) stated that estimation 
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improves though the avoidance of early estimations based on incomplete information. 

Participant 9 stated that “accurate estimation success was a result of understandable 

requirements.” Participant 9 also indicated that estimation accuracy improved when “the 

description of the story has success criteria and that the inclusion of testing steps in the 

story provided developers with an understanding of the functionality in order to better 

estimate.” Providing testing steps gives the developer criteria for acceptance from the 

perspective of the requester. When prompted to consider a task from the perspective of an 

outside observer, people are more willing to consider obstacles that they may not 

otherwise have considered (Wiese et al., 2016). 

Information obtained from organization documents supported the theme of define 

and decompose requirements. One of the organizational project documents stated that the 

“key activity of the product team is to identify the user request, break requirements down 

into small valuable stories, and identify clear and concise user acceptance tests and 

business rules for each story.” Wiese et al. (2016) suggested breaking large tasks into 

smaller subtasks highlights critical steps that may potentially be overlooked. Lévy-

Garboua et al. (2018) stated that there is evidence that suggests that as task complexity 

increases, underestimation becomes more apparent. Decomposition reduces complexity 

making the estimation process more reliable.  

Shmueli and Ronen (2017) noted that both software developers and managers are 

subject to the planning fallacy. Kahneman and Tversky (1977) indicated that 

overconfidence increased with a lack of knowledge resulting in an optimistic bias. One of 

the process and procedures documents reviewed provides instructions on defining the 



117 

 

requirements, including the persona of the requests, the specifics of the action to perform, 

and the expected results.  The document supplied instructions to identify minimal items 

in a requirement and the inclusion of traditional story-based dialog. “As a <type of user>, 

I want <perform some task>, so that I can <achieve some result>.” Developing a persona 

in a user request provides the development team with the action, actor, and system(s) 

affected, enhancing the knowledge the team gains regarding the request, thus providing 

the information to establish an accurate estimation.  

A team role and responsibility document I reviewed stated that before estimation 

and development, it is necessary to “ensuring the creation of technical user stories in 

support of the business requirements” and that “acceptance criteria defined upfront drives 

the development of the software.” The inclusion of success criteria identifies the end state 

of the request. I reviewed an SDLC document describing the development process as 

clearly defining the requirements before the estimation stage, “Complete and accurate 

requirements are desired at this stage and will result in a faster and more efficient 

development process.” Anooja and Rajawat (2017) suggested that factors such as 

improved estimation training and higher accuracy of information (requirements) improve 

estimation. Accurate and complete requirements provide software developers with the 

information to decompose the request into manageable tasks, thus improving the 

accuracy of estimates.  

My findings support the strategy of developing defined requirements and request 

decomposition to reduce the phenomena of the planning fallacy. Each of the participants 

stated that clearly define requirements were necessary for establishing an estimation, and 
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in my literature review, the theme was consistent. Tversky and Kahneman (1974) stated 

that predictions are often based on an optimistic view of the duration of a previous task, 

and estimators do not adequately adjust for the demands of a new task that is estimated. 

Additionally, the findings of a study conducted by Shmueli et al. (2016) provide evidence 

of manifestations of the planning fallacy in software development projects.  Clearly 

defined requirements reduce the ambiguity of a request and provide the estimator with 

reliable information to establish an estimation. Decomposition is the process of 

identifying the different aspects of delivering the solution and breaking them down into 

manageable items. It is difficult to predict the size of a software project during the initial 

phases (Shida & Tsuda, 2017) due to incomplete or inaccurate requirements. Sehra et al.  

(2016) point to inconsistent, incomplete, and unstable requirements as a factor in 

estimating software development effort. Once the requirements are identified and 

decomposed, the accuracy of estimates is improved. 

The data that I collected and reviewed provided evidence that requirements 

definition and decomposition are effective strategies to reduce the planning fallacy 

effects. As stated by Shmueli et al. (2016), decomposition reduced the impact of the 

planning fallacy. Decomposition is a strategy used by software developers to break a 

story down into manageable pieces. Eight of the 10 participants I interviewed indicated 

that an essential strategy in providing estimations was the decomposition of the request.  

Breaking large tasks into smaller subtasks highlights critical steps that are potentially 

overlooked otherwise (Wiese et al., 2016). According to (Lévy-Garboua et al., 2018), the 
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greater the complexity, the more difficult the estimation process. Decomposition reduces 

complexity, thus reducing the difficulty in estimating effort.  

According to Tversky and Kahneman (1974), the planning fallacy results from 

neglecting or ignoring distributional data. Jørgensen (2004) stated that top-down 

decomposition encourages the outside or distributional history-based thinking.  

Decomposition is a strategy that allows estimators to identify outside information 

(distributional) and provide estimations based on reflective assessment. Estimation 

strategies that use an outside view mitigate the effects of the planning fallacy (Kahneman 

& Tversky, 1973; Shmueli et al., 2016; Shmueli & Ronen, 2017; Thomas & König, 

2018).  McConnell (2006) suggests using an approach that decomposes tasks enhances 

the accuracy and effectiveness of the estimator's judgment. Estimating large tasks is 

prone to error; thus, decomposition provides higher accuracy. In consideration of the 

planning fallacy phenomena, incomplete or inaccurate requirements affect the reliability 

of distributional (outside view) data, thus making estimation potentially unreliable and 

accuracy problematic.  

Theme 2: Reference Historical Data  

Referencing historical data was a major theme that was prominent in my study. 

The use of historical data on previous development requests provides the estimator with 

quantitative and qualitative information regarding effort on previous similar tasks. Each 

participant indicated that if relevant historical data were available, they would reference it 

before providing an estimation. Historical data allows the developer to gauge the 

complexity of the request. Additionally, using historical information, the developer gains 
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a general idea of how much effort was required previously. Referenced historical data 

and information on previous work may alert the developer to potential challenges that 

may arise and act as a reference point to determine complexity. Referencing historical 

data provides the developer with lessons learned, past experiences, and previous nuances 

regarding a requested development item. Additionally, referencing historical data can 

help a developer identify unknowns or potential risks associated with a request. Table 2 

includes frequency information for Theme 2. 

Table 2 

 

Frequency of Second Major Theme 

Major theme 
Participant 

count 

Participant 

references 

Document 

count 

Document 

references 

Reference 

historical data 
10 25 6 12 

 

All ten of the participants indicated that referencing historical information was a 

strategy used in providing estimations. Participant 5 stated, "you do a look back of 

similar stuff that you've worked on in the past to help give you some identification of 

what the level of effort is going to be." Participant 5 further added that "based on 

historical context, is it an easy module, or is it a difficult module."  Participant 9 stated 

regarding the use of historical data that it was beneficial to "to look at past experiences 

with a similar problem and estimate on that." Participant 6 stated that developers "use 

previous estimates to estimate the project that we currently have."  

Referencing previous information regarding similar work acts as a point of 

reference to develop an estimation.  Participant 3 stated that their strategy in providing 

estimates was " using our past prior knowledge, we've got a database …so getting that 
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information, plugging it in, and using past experiences." Participant 8 indicated reviewing 

past similar requests helped the estimator determine complexity. Jørgensen (2004) stated 

that reviewing other software developers' estimations triggered reflection on the effort the 

task will require. People make more realistic predictions when they reflect on previous 

experiences to inform their forecasts. 

Five of the participants from three of the organizations indicated that the practice 

of retrospectives helped establish lessons learned in previous work. The development met 

team evaluates the iteration in terms of communication, resources, and processes to 

identify potential areas for improvement (Srivastava & Jain, 2017). All five organizations 

use a centralized data source or repository to maintain information regarding previous 

requests and estimations. Some of the tools identified were Jira, Rally, ServiceNow, and 

SharePoint. Participant 3 stated that “all of our communication is in Jira, so I feel like 

that's helpful in at least going back and figuring out our estimate” and “keeps our 

historical context in one place.” The inclusion of historical effort estimation information 

in future estimations gives greater accuracy in software development estimating (Shmueli 

et al., 2016). Participant 6 stated the centralized historical information provided the 

ability to  “look back on previous items that are similar so that you can kind of say, Well, 

A is similar to B, and A took me this amount of effort." Historical data consideration is 

more likely to bypass a cognitive bias in decision-making (Féris et al., 2017). Participant 

9 indicated for estimating, “It does help to have historical data to go by.” Regarding 

historical information, Participant 6 spoke on the benefits of historical data, “So that 

allows us to draw a baseline from that experience ... How can we leverage those to 
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estimate this project that we have currently?” In assessing the level of complexity and 

providing an estimate of effort, development teams benefit from historical information 

and previous estimation.  

The literature I reviewed supported the theme of referencing, capturing, and using 

historical information. Jørgensen (2014) stated that the accuracy of estimates improves 

through the use of local context, historical estimation error intervals, and the avoidance of 

misleading estimation information. Five of the participants use historical data to 

determine team velocity. Participant 9 indicated that the team used velocity "as sort of a 

budget" to provide planners with the ability to formulate projected delivery dates. 

Velocity represents the amount of work that the development team can deliver in a 

specific time iteration and is a useful predictor of the team's capabilities (Ahmed et al., 

2017; Torrecilla-Salinas et al.). Organizations calculate a team's velocity using previous 

team performance data to determine how much the team can accomplish in each 

timeframe. Participant 4 stated that" probably the biggest thing is we look at the velocity 

of our team [for planning purposes]." 

Flyvbjerg (2006) introduced the concept of reference class forecasting to improve 

estimate inaccuracy resulting from bias through considering the actual performance of 

comparable projects, thereby bypassing the effects of optimistic bias and strategic 

misrepresentation. Reference class forecasting is an attempt to avoid human bias by 

relying on historical data from similar past projects as a guideline for predicative 

estimations. Reference class forecasting is the outside view based on knowledge of the 

actual performance of referenced comparable projects. Six of the organizational 
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documents that I review supported the theme of referencing historical data. A change 

management document contained the following importance of capturing historical 

information: “Each change receives a post-implementation review such as a Lessons 

Learned or Retrospective. Less than successful changes receive a more extensive 

review.” 

Six organization documents supported the theme of referencing historical data and 

lessons learned. Team process documents indicate that the "PMO will schedule a brief 

meeting to discuss lessons learned with the project team." A project management process 

document stated that the project manager or project lead is required to "Collect and report 

on metrics on the team's performance over time." According to Srivastava and Jain 

(2017), areas of potential improvement result from retrospective meetings in which the 

team evaluates the sprint in terms of communication, resources, and processes. 

Additionally, a project process document stated that the project manager or team lead 

would "generate a post-project survey to capture things that went well during the project 

as well as things that could be improved for a similar project in the future." Information 

obtained from an SDLC stated that "KPIs provide the organization with trend analysis 

and identify opportunities for improvement, increased quality, and improved 

performance." Company-specific calibration and historical data increase accuracy in 

estimating (Moharreri et al., 2016). Additionally, Jørgensen (2014) stated that the 

accuracy of estimates improves through the use of local context and the use of historical 

estimation error intervals. 
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The theme identified correlates to the conceptual framework of this study, the 

planning fallacy. The planning fallacy phenomenon occurs when the individual is 

focusing on the inside view of a task (singular) but not considering the data from an 

outside perspective of previous tasks (distributional) (Thomas & König, 2018). 

Participant 4 stated that reflection on past estimations improved their estimation process, 

“looking back at history and trying to understand how we get closer [in estimates].” 

Distributional information is primarily a consideration of previous task performance, 

whereas singular focuses on the task itself (Kahneman & Tversky, 1977; Thomas & 

König, 2018). Using historical data and prior estimations as a reference are effective 

strategies used by development teams to mitigate the planning fallacy. According to 

Kahneman and Tversky (1977), the planning fallacy is the result of underestimation due 

to neglecting or ignoring distributional, causing an error in prediction. Development 

teams make decisions based on distributional information to increase the accuracy of the 

estimate.  

Buehler et al. (1994) suggest that people make more realistic predictions when 

using past experiences to inform their predictions (distributional). The outside view is 

considering past projects' experience and knowledge to reference similar cases (Shmueli 

et al., 2016). Each of the participants described the use of previous tasks as an effective 

strategy in providing estimations. Jørgensen (2004) states that data from past projects, the 

application of analytics rather than memory, and the use of distributional information 

(outside view) are strategies to mitigate the planning fallacy. The outside view or 

reflection on previous experiences is usually more accurate as it bypasses political and 
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cognitive bias (Fridgeirsson, 2016). Effective estimation strategies use historical data to 

mitigate potential bias and provide software effort estimators with data to give the 

stakeholders estimations that are more likely to reflect actual effort. The use of historical 

information (distributional) is an effective strategy used by development teams to 

mitigate the effects of the planning fallacy.  

Theme 3: Identify Potential Risks and Unknowns 

Identify risks and unknowns was a theme identified in my study. Risk 

identification is a standard project management consideration. However, in the context of 

software development effort estimating, risk can be developers working on new 

technology, the level of complexity of the module, the number of additional applications 

the system uses, or the developer’s familiarity with the module to modify. Additionally, 

within the context of Agile software development, teams can begin work with potential 

unknowns. All 10 participants indicated that they considered risks and unknowns when 

providing an estimation. Most of the estimation methods used considered risks and 

unknowns. Five organizational documents I reviewed addressed risk and potential 

unknowns in software development projects. Table 3 includes frequency information for 

Theme 3. 

Table 3 

 

Frequency of Third Major Theme 

Major theme 
Participant 

count 

Participant 

references 

Document 

count 

Document 

references 

Identify 

potential risks 

and unknowns 
10 51 5 15 
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Participant 3  stated that it was common that "there's some kind of random 

problem that doesn't work as expected" and that "in software, there are so many 

unknowns when it comes to any particular project." Participant 8 indicated, "One of the 

major things, and I am guilty of this, uncertainties lead to a lot of underestimating 

because we can only estimate what we know or what we foresee." Participant 1 stated 

that "if it involves cloud or a new technology that we're not familiar with, I have to give 

some additional time for research." Participant 4 indicated "some sort of subject matter 

expert or somebody that's got interest or experience in that area." can offset uncertainty.  

One of the organizational documents I reviewed included a Roles and 

Responsibilities guide, which provided information on the duties of a team lead, 

indicating that they are to “Help identify story dependencies, risks, and possible issues.” 

Additionally, team leads are to “Collaborate on ideas to address these risks early.” A 

change management document stated as one of the steps that “Identification of risks to 

contributing to better estimates of effort, quality of delivery, timeline, and the cost of 

change.” A software development policy and procedures guide stated that the “Risk 

evaluation process analysis should be used to determine high-level objectives, risk, cost, 

and benefits analysis.” 

Software development teams use different strategies to address risk in the 

estimation process. Two participants used T-shirt sizing, 5 participants used story points, 

2 participants indicated they used time estimates provided by experts, and 1 participant 

used a 3-point estimation approach to provide time estimates. Four of the participants 

noted they additionally used a combination of approaches. Shekhar and Kumar (2016) 
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stated that no single method in software development estimation is considered the best 

method and suggested using a combination of methods to increase estimation accuracy. 

Seven of the participants used relative sizing techniques to address risks and unknowns. 

Relative size measure provides an assessment of complexity rather than effort person-

hours.  

All five participants who used the story points method used a Fibonacci sequence 

in the story points approach (1,2,3,5,8,13). The gaps between the sequences provide for a 

higher degree of uncertainty in the level of effort for larger units of work (Alostad et al., 

Abdullah, & Aali, 2017; Jadhav et al., 2017; Raslan et al., 2015), the greater the 

complexity, the higher the level of uncertainty. Essentially, the larger the effort (greater 

the size), the more likely the error in the estimate; thus, the higher the gap in the sequence 

(Raslan et al., 2015). Story points are a sizing technique used as a relative unit of measure 

for expressing the overall size of a user story or development effort. Story points are 

relative measures rather than quantitative measures (Soni & Kohli, 2017). Two 

participants in the study used the T-Shirt sizing method of estimation: extra-small, small, 

medium, large, and extra-large. McConnell (2006) asserted that the t-shirt sizing 

technique could produce an early estimate to give the business a metric of complexity 

(size) for determining the level of effort.  

Effort-size is a relative measure such as story points, whereas effort-time is an 

absolute value method, such as person-days or person-hours (Arifin et al., 2017). In story 

pointing and t-shirt sizing, values indicate complexity and not a measure of time. The 

relative values can indicate the velocity of a team. Velocity is a measure of how much 
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complexity a team can address over time. Velocity represents the total of story points that 

the development team can deliver in a specific iteration (Torrecilla-Salinas et al., 2015), 

and is a useful predictor of the team's capabilities (Ahmed et al., 2017). 

The two participants that used the time or person-hours approach indicated that 

they would pad the estimate based on complexity. Padding is the adding of additional 

time to the estimate to account for uncertainty. The higher the complexity or more 

significant the unknown, the larger the padding. The participant that used the 3-point 

strategy stated that “ You can take the best-case scenario, the worst-case scenario, the 

most likely with the most weight being applied to the most likely scenario, you can take 

an average of it.” Usman et al. (2017) suggested providing estimates by averaging three 

values; fastest, most practical, and maximum values to give a final estimate. Osman and 

Musa (2016) concurred that different estimation methods are better suited to different 

development models.  

Concerning the planning fallacy, estimate predictions may be optimistic because 

people do not consider risks and setbacks (Newby-Clark et al., 2000). The participants 

evaluated uncertainty and unknowns in their methods of calculating estimations.  

Optimism bias is the belief that there are fewer project risks and an assumption of a more 

favorable outcome, even in the face of historical information that is contradictory (Pinto, 

2013). Underestimation, resulting in optimistic bias, is the lack of consideration of 

unforeseen circumstances. Optimistic bias can result in underestimation of task effort as 

unexpected events are not considered or acknowledged. Relative sizing, padding, and 
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three-point estimating are estimation strategies used by developers to offset uncertainty 

and risk.  

Theme 4: Communication, Collaboration, and Consensus 

Communication, collaboration, and a consensus was a prominent theme identified 

in my study. Commonly, more than one person is involved in the development of 

software. Typically, there are many contributors to a software development team in the 

delivery of a software product. Teams are more productive when they communicate and 

collaborate in the project. In providing a software development effort estimation, it is a 

common strategy to use the shared knowledge of the team. All 10 of the interviewed 

participants indicated that an essential strategy in providing accurate estimations was 

open communication and team collaboration. Six of the participants stated that it was 

standard practice for the team to discuss the work item and arrive at a team consensus on 

the estimation. Additionally, six participants stated that it was a common practice to have 

a team standup meeting every day as a communication strategy; the remaining four 

participants indicated that the team meets at least two times a week for a status reporting 

and discussion on the project under development.  

Nine organizational documents included information regarding the practice of 

effective and frequent communication as a standard event in software development. Eight 

of the organizations used a change management application such as Jira, Rally, or 

ServiceNow to provide timely visual indicators of project status and progress and capture 

requirements, estimations, and team communication.  Additionally, eight of the 

participants used online communication tools for messaging and video conferencing. 
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These tools included Slack, Zoom, and Microsoft Teams in addition to e-mail, and face to 

face discussions and team meetings. All 10 of the participants indicated that frequent 

communication with product owners and project managers was an essential strategy in 

maintaining schedules and commitments. Table 4 includes frequency information for 

Theme 4. 

Table 4 

 

Frequency of Four Major Theme 

Major theme 
Participant 

count 

Participant 

references 

Document 

count 

Document 

references 

Communication, 

collaboration 

and consensus 
10 52 9 25 

 

Teams collaborate and communicate to share information. Participant 6 stated that 

"having an established routine in meeting with the team and discussing status actually 

does benefit the team." Participant 6 went on to add that collaboration "help[ed] improve 

the estimations as well because you're able to get a little feedback here and there from 

your teammates and then figure out maybe something you didn't think of" was a common 

practice. Participant 4 indicated that the organization was supportive of "promoting good 

communication between team members." Additionally, participant 4 further stated that:  

My team gets together right before our sprints, and we really go through and look 

at what those tasks are. We all get together, and we look at what tasks we've got 

coming up and get input from those team members as to how much time we think 

that's going to take".  
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Communication, collaboration, and consensus are essential strategies used by teams to 

provide estimations, share knowledge, and gain valuable feedback.  

Five of the participants stated that they used a planning poker approach in the 

estimation process. According to Taylor (2016), the estimation method uses a consensus 

approach to estimate development effort that minimizes peer pressure. Planning poker 

can consist of several rounds of discussion and re-estimation to reach consensus 

(Bilgaiyan et al., 2017; Choetkiertikul et al., 2018). Participant 9 described their 

estimation process:  

The development lead or project manager presents the story, the requirements, 

and then we play Agile Poker. Every one of us provides a story point estimation 

on the requirement as presented. The person that estimates the lowest gives a 

reason why they estimated that as low as they did. Then the person that estimated 

the highest gives a reason why they estimated as high, and then a determination is 

agreed upon on what the levels should be. 

Participant 5 indicated that the team participated in online meetings to estimate stories: 

 'I will share the ticket, and we'll all review in Jira ... we've used a variety of 

planning poker tools, and to be honest with you, I find that the screen sharing with 

Jira to be the most effective. There are a few tools out there, but I generally prefer 

just sharing the ticket and reading it over, allow the developers to ask questions 

about it. Once those questions are answered, have everybody throw out a number 

either via Slack or type it into a Google sheet and then discuss why those 
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estimates are different and that the team will discuss and hash it out until we come 

to some sort of agreement. 

Participant 3 stated that during a group-based estimation session, "At that time, 

we have all developers in the team, anyone who's contributing to the project join the call 

and they chime in." Additionally, participant 3 went on to explain, "I think the task is 

going to be a medium task. So, anyone can challenge that to say why do you consider that 

as a medium, why not a smaller, why not a large." Jørgensen (2014) stated that the 

accuracy of estimates improves the conducting of a group-based approach.  Participant 1 

indicated that communication and collaboration with the business analyst was a standard 

practice "I think it all starts with getting involved early in the projects with the 

requirements, even in the requirements gathering. When a project starts, we're in constant 

communication with the business analyst, sharing dialogue back and forth.” Agile 

traditionally incorporates extensive user involvement in the development process (Taylor, 

2016). Participant 1 went on to further state “The team uses these sessions to discuss the 

requirements, potential solutions or approaches, and any questions or feedback for the 

user." The agile approach to software development consists of self-organized teams 

focusing on collaboration and communication (Vallon et al., 2018). 

An SDLC document I reviewed stated that communication with the stakeholders 

provided a strategy to define the work requested. The SDLC document contained the 

following statement:   

"Interview the business stakeholders to determine what business problem is to be 

addressed and to translate and document the stakeholder requirements and 
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preferences into language the technical development team can use to build a list of 

the specific features and deliverables of the solution."  

A software development procedure guide I reviewed indicated that the team lead or 

scrum master facilitated the communication protocols to ensure effectiveness. An 

organizational roles and responsibilities document instructed team leads to "Create an 

atmosphere that is collaborative, fun, challenging yet rewarding." Additionally, the 

document further stated that the team leader "Collaborates with the team and business 

users to ask questions, get clarification, provide input, share progress, provide timeline 

commitments and bring visibility to any daily impediments or issues that are standing in 

the way of performance." One of the Agile Manifesto tenets is that collaboration with 

customers is more important than contract negotiation (Coleman, 2016; Drury-Grogan et 

al., 2017).  

According to (Usman et al., 2017), a factor in software development estimation is 

the level of communication with the customer. All participants indicated that either direct 

communication or team leadership communication with the customer was standard 

practice. Jørgensen (2014) stated that the accuracy of estimates improves using a group-

based approach. Eight of the participants said that their team used group-based estimation 

strategies in their estimation process. Prakash and Viswanathan (2017) indicated that 

characteristics of successful agile estimating include collaboration with product owners, 

estimations accomplished by a team rather than an individual. 

Kahneman and Tversky (1977) indicated that judgments should be driven from a 

reflective assessment rather than from immediate impressions, although intuition from a 
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knowledgeable professional is beneficial. Teams use communication and collaboration to 

gain insight from other developers and provide a perspective beyond personal opinions. 

The planning fallacy phenomenon occurs when the individual is focusing on the inside 

view of a task (singular) but not considering the data from an outside perspective of 

previous tasks (distributional) (Thomas & König, 2018). A collaborative approach 

provides distribution knowledge that a single individual may not possess or consider. 

(Jørgensen, 2004). Team-based estimation sessions provide a forum for software teams to 

collectively evaluate the complexity level to arrive at a consensus on the estimation.  

Optimistic bias is more prevalent in the estimation of one’s effort. Many studies on 

human judgment prove that people are generally over-optimistic in predicting their 

performance (Jørgensen, 2004). People have a propensity to underestimate their effort but 

not others' effort (Buehler et al., 1994). Group based estimation strategies reduce 

optimistic bias as the estimation includes assessments from other developers and not 

decided singularly. Communication, collaboration, and consensus are strategies identified 

by the participants to provide accurate estimates by reducing the effects of the planning 

fallacy and personal optimistic bias.  

Applications to Professional Practice 

The specific IT problem that was the bases of this study is the lack of effective 

strategies used by software development professionals in providing accurate effort 

estimations for software development. Participant interviews and organizational 

documents provided data for analysis to uncover effective strategies used in the 

estimation process. There are a variety of different methods that teams use in determining 



135 

 

an estimate. However, the data resulting from my study suggests that there are common 

strategies used by software development professionals in determining accurate effort 

estimates. Although effort estimations are not exact, the results of this study conclude 

that there are common elements used by software development professionals in assessing 

the level of effort of a software development request. Using the information from the 

interviews and organizational documents, I identified four primary themes: define and 

decompose requirements, reference historical data, identify risks and unknowns, and 

communication collaborations, and consensus. As discussed by the participants and 

identified in organizational documents, these themes were essential elements in the 

strategies used and, when used in combination, allowed the estimators to provide 

estimations that aligned with actual effort values.  

IT organizations engaged in software development can use the results of this 

study to train and coach software teams in practical strategies to increase the accuracy of 

estimates that they provide. Organizations can encourage a culture that supports the 

developers with tools and processes that promote consideration of the strategies 

discussed. Software development estimation is an art rather than an exact science. Thus, 

strategies identified in this study can be supported by organizations to establish 

foundational elements in their estimation process. Additionally, the strategies discussed 

can serve as points of consideration when providing estimations. All four of the strategies 

identified and discussed in this study point to the need to consider distributional 

information when providing estimates. The use of distributional data, in addition to a 
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singular view of the task, gives the developer the information to make a more accurate 

assessment of the level of effort a request, thus providing a more reliable estimate.  

Organizations can use the findings from this study in establishing policies and 

procedures for their software development teams. The themes identified in this study 

could be adopted by organizations to support developers in the estimation process. The 

use of historical data, considerations of risk and unknowns, effective collaboration and 

communication, and that decomposition of the requirements are effective strategies in 

effort estimating. Organizations can support using these strategies by providing the 

development teams with the tools and training using the information gained in this study. 

This study's conclusions may better equip the estimators to provide project managers and 

stakeholders with more accurate estimates and more realistic timelines to predict a 

delivery schedule. Additionally, project managers have a more realistic timeline that is 

likely to be more reliable when answering the questions of “when will this be done.” 

Developers can use the strategies identified in this study to provide estimates that 

more closely align with actual time spent in the completion of a software development 

request. Software development professionals can use the strategies identified in this study 

to gain a more in-depth consideration of distributional information and its criticality in 

the estimation process. In the use of historical data, developers are more likely to provide 

more realistic effort estimations. Thus, project managers can have greater confidence in 

the accuracy of the estimates provided. Estimates that are more accurate increase product 

quality, customer satisfaction, work-life balance for the team, and give organizations a 

more realistic view of budgets, cost, and delivery planning. 
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Implications for Social Change 

Before beginning my data collection, my initial expectations for social change 

were that using effective estimation strategies would reduce the stress level of IT 

managers, project stakeholders, and software development professionals. Additionally, 

estimates that are more reflective of actual effort can benefit development teams by 

improving morale, work-life balance, alignment of expectations, and software quality. 

Beyond what I initially anticipated, I also found that development teams gained a higher 

level of personal satisfaction when they meet commitments and that discussing 

estimations gave teams a reason to collaborate more. Team collaboration promotes higher 

team satisfaction, engagement, and trust. The participants I spoke with seemed less 

anxious about providing estimations than I expected and had higher confidence in the 

estimates that they offered.   

Using the strategies discussed in this study reduced stress in the delivery process 

and gave the project managers a higher level of confidence in meeting organizational 

goals. Moral among the developers was high, and each described a sense of community 

and engagement with the other team members and organizational leadership. I gathered 

from the discussions that the project managers had a high level of trust in the estimates 

provided, thus gaining confidence in providing the stakeholders with realistic 

expectations of delivery. Additionally, increased communication and collaboration result 

in less stress to the developers, organization, and customers. I believe that estimations 

that are inaccurate lead to late projects. Late projects lead to unhappy customers, 

overworked staff, and reduce the quality of the delivered product. Using effective 
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strategies in effort estimating, developers and managers gain a higher level of confidence 

in the planning, cost forecasting, and an increase in the quality of software development 

changes giving customers and stakeholders a higher level of satisfaction. Accurate 

estimations provide the foundation of meeting product objectives and commitments.  

Positive social change can result from this study to improve the lives of those 

engaged in software estimation using effective strategies that produce accurate effort 

estimations for software development delivery. The implications for positive social 

change are that increased accuracy of software effort estimation could reduce the stress 

level of IT managers, project stakeholders, and software development professionals by 

providing more realistic timeframes for software delivery. The study may provide 

positive social changes, as estimates that are more reflective of actual effort can benefit 

development teams by improving morale, work-life balance, alignment of expectations, 

and software quality. The contributions made through this research may provide 

development managers and development teams with practical and effective strategies for 

accurate effort estimations. 

Recommendations for Action 

Software development professionals, team leads, and project managers should 

review and consider how their development teams incorporate the strategies identified in 

this study within their estimation process. Each of the identified themes provides building 

blocks to practical strategies in estimation. Underestimation is more problematic in 

software development as developers may provide estimates before having sufficient 

knowledge of the requested change. Additionally, the lack of historical information, an 
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evaluation of effort based solely on singular information, and the absence of risk analysis 

have adverse effects on the accuracy of estimates. The recommendations obtained from 

this study offer effective strategies to mitigate the impact of the planning fallacy and 

offset the causes of potential optimistic bias. The data from this study identify strategies 

used by software development teams in the estimation process and offer evidence that 

distributional data has a positive effect on the accuracy of estimates.   

Organizational leadership can adopt the suggestions of the study within their 

process and procedures documentation for effort estimation. Additionally, the 

organizations can provide training to estimators to ensure they are aware of the need for 

distributional data, collaboration, and understanding of risks in the estimation process. 

Additionally, organizational software development process and procedures documents 

can instruct practitioners in the value of decomposition in providing estimations. 

Organizations can structure their estimation practices to use a team-based collaborative 

approach in which multiple professionals have input. The team members discuss the 

estimates, and the teams reach a consensus on the final estimation.  

Recommendations for Further Study 

There are several recommendations for future research derived from the 

limitations indicated in this research. Additionally, I propose recommendations that arose 

from the findings of this research. This study was limited to ten participants in five 

organizations within the region of South Texas and may not be generalizable to all 

software development teams. The study was limited to small- to medium-sized 

organizations. The following are my recommendations for future research. The finding of 
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this study warrant exploration of strategies used by large corporations. Second, I 

recommend expanding the research to other geographical areas. Third, I would suggest 

performing the analysis using a larger sample size. Additionally, expanding the study to 

include organizations that do not have an effective strategy to determine if the themes 

identified exist or are absent.  

Future research may include quantitative data to evaluate levels of under or 

overestimation. Additionally, further research may consider the size of the team on the 

effectiveness of estimates. As well, future research may address the involvement of a 

product owner or business analyst in the accuracy of estimations. Additional research 

may investigate what type of methods organizations use to calculate or determine the 

level of effort in their estimation process. All the participants in my study were male. 

Although I did not feel having an equal gender distribution would affect my results, 

additional research may provide evidence to the contrary.   

Reflections 

 As a professional who has worked as a software engineer, software 

development manager, and as a project manager, I understand the need to provide 

estimations and that the estimates are as accurate as possible. I also know that delivering 

accurate estimations can be difficult, especially within the context of an Agile 

environment. Being involved in the process of estimating as well as the receiver of 

estimations, I understand the challenges. Estimates are not commitments, but rather, an 

approximation.  
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In accomplishing this study, I was surprised to discover that in my discussing the 

subject of estimation, many organizations I spoke with to determine eligibility for the 

research indicated that their approach was unsatisfactory. Some even stated that they had 

decided to abandon estimations due to the inaccuracy of estimates provided. I found this 

somewhat surprising as, without some type of estimate, planning, budgeting, and 

scheduling would be very problematic.  

All the participants in my study provide knowledge regarding effective strategies 

that they use in the estimation process. I felt that the semi-structured interview approach 

was practical as it allowed the participants to describe the effective estimation strategies 

they use. The interview questions and approach reduced the potential bias I made have 

had in the process of estimating. Before the interviews, I did think that the focus of the 

discussion would be on a specific method used by the participants. However, as I 

conducted my interviews, I began to understand that although practices and effort 

estimation methods may differ, the strategies used were common.  

Summary and Study Conclusions 

Estimating effort within the context of Agile software development is more 

problematic than traditional waterfall software development projects. However, the 

findings of this research point to common strategies that developers use to provide 

project managers and project planners with more accurate estimates. The strategies that 

have a positive effect on estimation are first, software requests should be detailed and 

decomposed such that the items identified to accomplish the task are adequately defined 

and broken down into manageable tasks. Accurately detailed requirements are essential in 
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decomposition, and decomposition provides an effective strategy for accurate estimating.  

Second, when determining an estimation, identifying the risk and unknowns involved in 

completing the request should be considered in the estimation process. Potential risks and 

unknowns can require additional effort not accounted for in an estimation, thus adversely 

affecting the accuracy of the estimate provided. Third, capturing data and information 

about the development request and making the data available enhances future estimations' 

accuracy. Using lessons learned and retrospectives provide needed feedback to improve 

the estimation process. Referencing previous information can highlight information to 

consider and evaluate before giving an estimate to enhance the accuracy of the estimation 

provided. Finally, communication and collaboration within the team in assessing the 

effort required to accomplish the task increases the accuracy in the evaluation of the 

effort. Involving the entire team in providing an estimate reduces the single mindset or 

bias of one individual and allows for the consideration of multiple viewpoints.  

Embracing, supporting, and establishing the strategies identified in this study 

provides a development team with more distributional data, outside views, opinions, and 

perspectives that may otherwise be overlooked or not considered. The information 

identified in this study provides strategies to mitigate the effects of the planning fallacy. 

Although estimation methods differ among organizations, there is a commonality in the 

strategies identified in this study to provide accurate estimations. The use and 

consideration of these strategies will likely benefit organizations, personnel, product 

quality, and quality of life for all those involved.  
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Appendix A: Participant Prescreen Questions 

1. Do you or your team provide software development effort estimates? 

2. How many years experience do you have providing software development effort 

estimates? 

3. Do you currently use an effort estimation strategy for software development 

changes that is considered accurate by the project managers or product managers?  

4. Is your effort estimation method a formal process? 
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Appendix B: Participant Invitation E-mail 

Kevin Roark 

Doctoral Candidate at Walden University 

Kevin.Roark@waldenu.edu 

[telephone number redacted] 

 

Date: 

 

Dear Participant 

 

I am a doctoral student at Walden University working on my doctoral project for 

completion of my doctoral degree. My study will be to explore the strategies used by 

agile software development professionals to provide software development project 

managers with accurate software development effort estimations.  

 

You have been selected as a potential participant in my study based on your knowledge 

and use of successful strategies in providing accurate estimations of software 

development effort. The study will require that I meet with you to conduct an interview 

and review non-proprietary information about estimation strategies you use. The data that 

I will report on and publish will not disclose any information that would uniquely identify 

you or your company. Participation in this study is voluntary and will include an 

interview that will last about one hour.  

 

Your consideration to participate in this study is appreciated. If you can participate, 

please respond to me at kevin.roark@waldenu.edu. Your participation in this study will 

help other software development professional and organizations to understand successful 

estimation strategies. The results of this study will provide effective estimation strategies 

in software development planning. 

 

Thank you for your consideration. Please feel free to reach out to me by email or phone 

should you have any questions.  

 

Sincerely 

Kevin Roark 

Walden University 

Doctoral Candidate 

[telephone number redacted] 
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Appendix C: Interview Protocol 

1. Introduce myself to the participant and describe my role as a researcher 

2. Briefly discuss the objectives of the study and why I selected them to interview 

3. Provide the participant the Informed Consent form to sign and discuss the purpose of 

informed consent. 

4. I will remind the participant that participation in the study is voluntary and the right 

to withdraw from the study by sending me an email before my member checking 

process. 

5. I will remind the participants that the recording, personal notes, and the transcription 

will not include any personally identifiable information and that I will maintain their 

anonymity and preserve their confidentiality. 

6. I will remind the participant that the interview will be recorded for transcription 

purposes. 

7. Ask the participant if they have any questions before the interview begins. 

8. Start the recording and begin asking the participant the interview questions in order. 

9. Ask the participant if there are any organization process or procedure documents that 

describe or detail relevant information regarding this study.  

10. Thank the participant for their participation in the study 

11. Inform the participant that I will be contacting them as a followup on my interview to 

ensure I have interpreted their interview data correctly.  
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