
Walden University Walden University

ScholarWorks ScholarWorks

Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies
Collection

2020

Strategies in Software Development Effort Estimation Strategies in Software Development Effort Estimation

Kevin R. Roark
Walden University

Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations

 Part of the Databases and Information Systems Commons

This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies
Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an
authorized administrator of ScholarWorks. For more information, please contact ScholarWorks@waldenu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Walden University

https://core.ac.uk/display/346462218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.waldenu.edu/
http://www.waldenu.edu/
https://scholarworks.waldenu.edu/
https://scholarworks.waldenu.edu/dissertations
https://scholarworks.waldenu.edu/dissanddoc
https://scholarworks.waldenu.edu/dissanddoc
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F9237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F9237&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ScholarWorks@waldenu.edu

Walden University

College of Management and Technology

This is to certify that the doctoral study by

Kevin Roark

has been found to be complete and satisfactory in all respects,

and that any and all revisions required by

the review committee have been made.

Review Committee

Dr. Steven Case, Committee Chairperson, Information Technology Faculty

Dr. Jose Feliciano, Committee Member, Information Technology Faculty

Dr. Gary Griffith, University Reviewer, Information Technology Faculty

Chief Academic Officer and Provost

Sue Subocz, Ph.D.

Walden University

2020

Abstract

Strategies in Software Development Effort Estimation

by

Kevin Roark

MS, Walden University, 2018

MS, Southeastern Oklahoma State University, 2004

BS, Southeastern Oklahoma State University, 2003

Doctoral Study Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Information Technology

Walden University

August 2020

Abstract

Software development effort estimating has notoriously been the Achilles heel of the

software planning process. Accurately evaluating the effort required to accomplish a

software change continues to be problematic, especially in Agile software development.

IT organizations and project managers depend on estimation accuracy for planning

software deliveries and cost determination. The purpose of this multiple case qualitative

study was to identify strategies used by software development professionals in providing

accurate effort estimations to stakeholders. The planning fallacy served as the study’s

conceptual framework. The participants were 10 software development professionals who

were actively engaged in delivering estimates of effort on software development requests

in South Texas in the United States. Data were collected from 10 software development

professionals in 5 different organizations. Additionally, 23 organizational documents

were gathered and reviewed. Thematic analysis was used to identify codes and themes.

Prominent themes were (a) defining and decomposing requirements, (b) referencing

historical data, (c) identifying risks and unknowns, and (d) fostering communication,

collaboration, and a consensus. A key recommendation is for software developers to

ensure requirements are defined and decomposed by evaluating the request and breaking

the request into manageable pieces to understand the effort required to complete the task.

Implications for positive social change include improving morale, work-life balance,

alignment of expectations, and software quality.

Strategies in Software Development Effort Estimation

by

Kevin Roark

MS, Walden University, 2018

MS, Southeastern Oklahoma State University, 2004

BS, Southeastern Oklahoma State University, 2003

Doctoral Study Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Information Technology

Walden University

August 2020

Dedication

I dedicate this study to my wife, Cecilia, who has been an inspiration for

perseverance, and to my son Sam, whom I have tried to exemplify perseverance.

Acknowledgments

I acknowledge and offer thanks to several people for their involvement,

contribution, and encouragement. Cecilia, Sam, Kathy, and Stephen supported my efforts

and encouraged me to complete my research. I hope, in return, you will gain inspiration

for my endeavor. Additionally, I offer my gratitude to my committee chair, Dr. Steven

Case, my second committee member, Dr. Jose Feliciano, and Dr. Gary Griffith, my

university research reviewer. You have challenged and encouraged me.

i

Table of Contents

List of Tables ... iv

Section 1: Foundation of the Study ..1

Background of the Problem ...1

Problem Statement ...2

Purpose Statement ..2

Nature of the Study ..3

Research Question ...5

Interview Questions .. 5

Conceptual Framework ..6

Definition of Terms..7

Assumptions, Limitations, and Delimitations ..8

Assumptions .. 8

Limitations .. 9

Delimitations ... 9

Significance of the Study ...10

Contribution to Information Technology Practice .. 10

Implications for Social Change ... 10

A Review of the Professional and Academic Literature ..11

Agile Software Development .. 12

Estimation of Effort in Software Development .. 26

Conceptual Framework – The Planning Fallacy ... 42

ii

Additional Theories in Effort Estimation ... 56

Contradictory Theories ... 61

Transition and Summary ..67

Section 2: The Project ..68

Purpose Statement ..68

Role of the Researcher ...69

Participants ...72

Research Method and Design ..75

Method .. 75

Research Design.. 80

Population and Sampling ...84

Ethical Research...89

Data Collection ..93

Data Collection Instruments ... 93

Data Collection Technique ... 96

Data Organization Techniques .. 102

Data Analysis Technique ...103

Reliability and Validity ..107

Credibility ... 107

Transferability ... 108

Dependability .. 109

Confirmability ... 110

iii

Transition and Summary ..110

Section 3: Application to Professional Practice and Implications for Change112

Overview of the Study ...112

Presentation of the Findings...112

Theme 1: Define and Decompose Requirements.. 114

Theme 2: Reference Historical Data ... 119

Theme 3: Identify Potential Risks and Unknowns ... 125

Theme 4: Communication, Collaboration, and Consensus 129

Applications to Professional Practice ..134

Implications for Social Change ..137

Recommendations for Action ..138

Recommendations for Further Study ...139

Reflections ...140

Summary and Study Conclusions ..141

References ..143

Appendix A: Participant Prescreen Questions ...181

Appendix B: Participant Invitation E-mail ..182

Appendix C: Interview Protocol ..183

iv

List of Tables

Table 1. Frequency of First Major Theme ...115

Table 2. Frequency of Second Major Theme ...120

Table 3. Frequency of Third Major Theme ...125

Table 4. Frequency of Four Major Theme ...130

1

Section 1: Foundation of the Study

Agile is a common approach to developing and maintaining software. The

popularity of agile worldwide has increased significantly (Haines et al., 2017). However,

software effort estimation is more challenging in agile projects due to changes in

requirements and uncertainty experienced in the development process. Accurate estimates

play a significant role in software development to identify cost and delivery schedules

(Bilgaiyan et al., 2017). A software project's success relies on estimations that reflect

accurate effort prediction (Bilgaiyan, Mishra, & Das, 2016). Accurate estimates increase

the probability of project success; yet estimate accuracy remains an elusive target.

Background of the Problem

Software development teams have struggled to give stakeholders accurate

development effort estimates, especially in the context of agile projects. The popularity

of agile software development methodologies has increased dramatically worldwide since

its inception (Haines, Idenudia, & Raisinghani, 2017). Software development

professionals who use an agile development approach embrace changing requirements

that often are not always fully understood in the initial development stage. Within this

context of vague or changing requirements, the delivery of accurate software estimates

can thus be problematic for organizations, stakeholders, and the development team

(Bilgaiyan, Sagnika, Mishra, & Das, 2017). Software development groups are frequently

required to give an estimate of effort at the beginning stages of product planning, before

knowing the entire scope of the request or the product for which they are to create a

solution (Osmanbegović, Suljić, & Agić, 2017). There are many types of estimate

2

strategies, such as expert judgment, algorithmic models, and nonalgorithmic models

(Shekhar & Kumar, 2016). In this research, I examined estimation approaches and

strategies that development groups use in establishing estimates to fulfill the expectations

of the product stakeholders.

Problem Statement

In software development estimation, inaccuracies of effort and time are endemic

(Shekhar & Kumar, 2016) and have severe effects on software development projects

(Adnan & Afzal, 2017). Accurate forecasting of effort and duration required in software

development projects during their initial stages of planning increases the probability of

project success (Pospieszny, Czarnacka-Chrobot, & Kobylinski, 2018). It is not

uncommon for software development cost overruns to average 30% (Løhre & Jørgensen,

2016). Actual development effort can exceed initial estimations by as much as 250%,

creating delays and surprises in software development projects (Dragicevic, Celar, &

Turic, 2017). The general IT problem is the lack of accuracy in estimating software

development effort. The specific IT problem is that some agile software development

professionals lack strategies for providing accurate software development effort

estimations for project managers.

Purpose Statement

The purpose of this qualitative multiple case study was to identify strategies that

agile software development professionals use to provide project managers with accurate

software development effort estimations. The study sample included software

development professionals from five organizations who are responsible for producing

3

effort estimates for segments of the software development process. At the time of data

collection, the professionals selected for this study used an agile methodology in new and

maintenance software development projects undertaken by small- to medium-sized

companies in South Texas. The potential positive social impact of providing accurate

software development estimates is the possible improvement of the work-life balance of

those involved in software development. A more accurate effort estimation can provide

project managers with the ability to project realistic delivery schedules, thus improving

customer satisfaction. Accurate estimations can also potentially improve product quality,

lower stress levels and improve the work lives of those involved with the software

development and delivery, and provide organizations with a more realistic time

expectation of software delivery.

Nature of the Study

I chose the qualitative methodology using a multiple case design for this study.

The qualitative approach gives a voice to the participants, their experiences, and

subjective viewpoints (Yilmaz, 2013) and therefore was appropriate for eliciting a clear

understanding of successful strategies in software development estimation. The

qualitative research design used herein allowed for the exploration, examination, and

identification of specific estimation strategies used by development teams to deliver

accurate effort estimates successfully, resulting in the delivery of software development

changes within time and budgetary commitments. Researchers use a quantitative study

approach to determine causation or trends and the testing of a hypothesis through

statistical analysis of collected numerical data (McCusker & Gunaydin, 2015). The

4

qualitative approach was not appropriate for the current study, as it was exploratory and

not constructed to test a hypothesis using statistical methods. The mixed-methods study

involves both a qualitative and quantitative approach that combines analysis of

participants’ experiences and statistical testing. I did not select the mixed-methods

approach, as my study did not contain a quantitative component

I used a multiple case design to collect qualitative data from multiple individuals

and organizations for comparison and analysis. The multiple case design can provide

evidence that is more comprehensive than the information provided by a single case

source (Ponelis, 2015). I sought to explore, examine, and identify strategies used by

multiple software development groups. Studying a single team would not have provided

sufficient data to answer the research question. I considered designs other than a case

study but opted against using them. The ethnographic design is concerned with the

examination, study, and understanding of a specific culture (Fayard & Van Maanen,

2015). I did not choose the ethnographic approach because the focus of my study was not

on addressing the cultural issues associated with estimation. The phenomenological

design provides the researcher with a means to describe participants’ individual lived

experiences (Ellis, 2016). Because I wanted to explore strategies rather than experiences,

I opted against using the phenomenological design. Researchers use the narrative design

to recount the story of the participants (McAlpine, 2016). This design was also

inappropriate because this study did not involve the narration of a story. To elicit

compelling evidence, data from multiple organizations were explored and examined, thus

making the multiple case study an appropriate design for this research.

5

Research Question

What are the strategies that agile software development teams use successfully to

provide their project managers with accurate estimates of software development effort?

Interview Questions

1. What are the strategies that you utilized to provide software project managers with

accurate software development effort estimates?

2. What are the reasons that may cause or contribute to you or your team

underestimating development effort?

3. What are the reasons that may cause or contribute to you or your team overestimating

development effort?

4. Please describe the primary steps that you or your team use in the estimation process.

5. What are some factors that you consider in the software development request in

providing an estimate?

6. What are some tools and techniques that you have found useful in producing accurate

development effort estimates?

7. Please describe the feedback (if any) that you receive from your managers regarding

your estimations?

8. What methods or processes do you find work best when proposing a development

estimation?

9. What additional information would you like to share regarding effective strategies in

software development effort estimation?

6

Conceptual Framework

In this study, I viewed the estimation accuracy of software development within

the conceptual framework offered by the planning fallacy. The planning fallacy,

identified in 1977 by Kahneman and Tversky, refers to a phenomenon where a prediction

of how much time is needed to complete a task is typically optimistic. Predictors tend to

underestimate the amount of time required to complete a task even if they are aware of

previous estimation information (Buehler, Griffin, & Ross, 1994; Kahneman & Tversky,

1977). Estimate inaccuracies can influence software delivery timelines (Shmueli &

Ronen, 2017). Concerning the planning fallacy, estimate predictions may be optimistic

because people do not consider risks and setbacks (Newby-Clark, Ross, Koehler,

Buehler, & Griffin, 2000). Underestimates of software development effort because of the

planning fallacy can have severe consequences for the success of project outcomes

(Pospieszny et al., 2018).

The purpose of this study was to identify estimation strategies used by software

developers to provide accurate effort estimates in an agile development environment.

Inaccurate completion times can have economic, social, and personal costs. According to

the concept of the cone of uncertainty, software estimates created in the early stages of a

project can underestimate actual final effort by as much as 40% (Dragicevic et al., 2017).

I used the planning fallacy as a conceptual framework to understand the phenomenon

whereby people typically rely on a limited number of heuristic principles to reduce the

complex task of assessing probabilities and predicting values. Underestimating

7

development effort is harmful to projects, as insufficient time and resource allocations

almost invariably result in unaccomplished commitments (Khuat & Le, 2016).

Definition of Terms

Cone of uncertainty: In the initial stages of agile development, details of the final

solution and defined requirements tend to be unclear. As the project variability decreases,

so too does uncertainty (Krstić, Skorup, & Lapčević, 2018).

Fibonacci sequence: A series of numbers where each number is the sum of the

previous two numbers—for instance, 1, 2, 3, 5, 8, 13, and 21 (Raslan, Darwish, & Hefny,

2015).

Fuzzy logic: A computational system that differs from traditional Boolean logic.

Unlike the absoluteness of classical true and false, fuzzy logic provides for a degree of

truth or falsehood to exist (Zadeh, 2015)

Kalman filter: An estimating and tracking algorithm that uses multiple historical

data points to estimate the future value that statistically minimizes error (Soni & Kohli,

2017).

Nonfunctional requirements: Software attributes such as security, performance,

and quality requests (Usman, Börstler, & Petersen, 2017).

Object-oriented: A widely accepted software development model (Rath, Acharya,

& Satapathy, 2016). The object-oriented method of software development differs from a

classical procedural approach (Rath et al., 2016). Objects are a combination of data and

processes that correspond to real-life attributes that promotes code reuse (Saravanan et

al., 2017). A class is the foundation of object-oriented design (Kukreja & Garg, 2017).

8

Stagewise development: A software development method conducted in stages:

operational plan, operational specifications, coding specifications, component testing,

assembly testing, and system evaluation (Misra, 2012).

Use case model: A diagram in requirement analysis that describes the behavior

and sequence of action performed (Usländer, 2016).

Waterfall: A sequential, linear development approach (Stoica, Ghilic-Micu,

Mircea, & Uscatu, 2016), sometimes referred to as traditional software development

(Kotaiah & Khalil, 2017).

Assumptions, Limitations, and Delimitations

Exceptional circumstances and situations almost invariably affect research

activity. The following assumptions, limitations, and delimitations identify conditions

and events that influenced this qualitative study. According to Levitt, Motulsky, Wertz,

Morrow, and Ponterotto (2016), the acknowledgment of these circumstances and

situations provides integrity to a study.

Assumptions

Certain assumptions underlay this study. Assumptions are beliefs that are

accepted as accurate or statements that are taken for granted (Yang, Liang, & Avgeriou,

2018). The primary assumption in this study was that the participants would answer the

interview questions as accurately and truthfully as possible. The second assumption was

that the participants would have an in-depth understanding of the software effort

estimation process. A third assumptionm was that the use of a multiple case qualitative

9

study approach would provide the needed data for the examination of accurate estimation

strategies.

Limitations

Limitations refer to the potential weaknesses of a study. Busse, Kach, and Wagner

(2017) defined limitations as imperfections of theory and methodology that do not

question the validity of the findings of the study. Limitations of this study include

unknown circumstances of the participants that may have biased their viewpoints and a

limited number of participants interviewed. A limitation of a qualitative study is that the

number of participants interviewed may not be sufficient to reach data saturation (Moser

& Korstjens, 2018). This study was limited to the experiences and opinions of the

participants gathered during interviews and may not be generalizable to all software

development teams. Additionally, the study was limited to software development

professionals in South Texas, which may limit the representability and findings of the

study to the broader U.S. population.

Delimitations

Delimitations refer to the limitations set by the researcher to explicitly identify the

boundaries of the research (Denscombe, 2013). The study was limited to small- to

medium-sized organizations that develop software. A second delimitation was that this

study only included members of a software development group who participate in the

estimation process. Additionally, I restricted this study to software development groups

within the area of South Texas.

10

Significance of the Study

Contribution to Information Technology Practice

The findings of this qualitative multiple case study may provide agile software

development professionals with practical and proven strategies to deliver accurate

estimates to product or project managers. Product and project managers ask developers to

determine how long it will take to develop a software product. Successful strategies for a

more predictive measure of software development effort may provide management with

increased accuracy in delivery expectations, thus providing greater alignment with

organizational budgets and customer expectations. The identified strategies may improve

the accuracy of software development effort estimates in agile development teams.

Realistic effort estimation processes may provide organizations with more accurate

delivery expectations. The findings of this research may add knowledge to improve the

IT process of software estimating and create a pathway for organizations to develop

change. Improved estimation accuracy may add value to the software development

practitioner, the project, and product managers, the IT organization, and stakeholders of

the software product.

Implications for Social Change

If the research is successful in providing strategies that produce accurate effort

estimations for software development delivery, it can potentially improve the lives of

those engaged in the process of software estimation. Increased accuracy of software

effort estimation could reduce the stress level of IT managers, project stakeholders, and

software development professionals by providing more realistic time frames for the

11

delivery of software. Estimates that are more reflective of actual effort can also benefit

development teams by improving morale, work-life balance, alignment of expectations,

and software quality. Providing development managers and development teams with

practical and effective strategies for accurate effort estimations may therefore engender

positive social change for a variety of stakeholders.

A Review of the Professional and Academic Literature

The literature review for this study contains analysis and synthesis of journal

articles about agile software development effort estimation and related topics. I have

included additional information regarding agile development methods and some common

agile estimation methods. Themes addressed in the literature review are (a) agile software

development, (b) current research in software development estimations, (c) the planning

fallacy and optimistic bias, and (d) supporting theories and contradictory theories. The

themes were chosen to provide background information on agile software development,

development approaches, and estimation methods and analysis of the selected conceptual

framework, the planning fallacy. In reviewing the academic literature on software

development estimation, it was evident that multiple approaches, models, and strategies

exist, and accurate effort estimation remains problematic.

The purpose of this qualitative multiple case study is to identify strategies that

agile software development professionals use to provide project managers with accurate

software development effort estimations. The goal of the literature review is to explore

current strategies and methodologies in delivering software development effort estimates.

The literature review contains articles gathered from ACM Digital Library, Business

12

Source Complete, IEEE Xplore Digital Library, ProQuest Central, SAGE Knowledge

Journals, Science Direct, Taylor and Francis Online, Thoreau Multi Database Search, and

Google Scholar. I used Ulrich to verify that the references in this study were peer

reviewed. The study contains 263 references, of which 88% were peer reviewed and 207

were published within 5 years of my expected graduation. The literature review includes

174 articles, of which 168 (88%) were peer reviewed and 138 (79%) were published

within 5 years of my expected graduation.

Agile Software Development

Agile is a common approach to developing software. The term agile was initially

adopted in 2001 during a meeting of 17 supporters of a lightweight development process

in Snowbird, Utah (Krstić et al., 2018), as a contrast to traditional plan-driven

development (Abdalhamid & Mishra, 2017). The meeting resulted in the introduction of

the Agile Manifesto, which includes 12 core values that guide the principles of agile

software development (Stoica et al., 2016). The fundamental tenets of the Agile

Manifesto ideology are that (a) individuals and interactions are valued over processes and

tools, (b) working software is valued over comprehensive documentation, (c)

collaboration with customers is more important than contract negotiation, and (d)

responding to change rather than a defined a project plan (Coleman, 2016; Drury-Grogan,

Conboy, & Acton, 2017). The agile approach to software development consists of self-

organized teams with a focus on collaboration and communication (Vallon, José,

Prikladnicki, & Grechenig, 2018).

13

Agile provides flexibility not found in typical waterfall methodologies. Agile

traditionally incorporates extensive user involvement in the development process and a

light touch by management (Taylor, 2016), as well as short development cycles,

continuous releases, and rapidly evolving requirements (Drury-Grogan et al., 2017).

Agile software development is characteristically iterative, with incremental development

cycles and close communication with customers and end users (Anooja & Rajawat,

2017). The agile process has gained full acceptance among development teams in the

management and construction of software.

Agile software development methodologies. The evolution of agile software

management is the result of challenges with legacy development methodologies such as

stagewise, waterfall, and spiral. The popularity of agile software development

methodologies has increased worldwide (Haines et al., 2017). The critical processes in

agility are iterative, timebound cycles that accommodate change (Boby, Kadadevaramath,

& Edinbarough, 2017) and enable development teams to manage uncertainty and

unforeseeable changes (Dönmez & Grote, 2018). The most widely used agile

development approaches are scrum, extreme programming, feature-driven development,

kanban, and the crystal family of development methods (Brad, Birloi, Bratulescu, &

Blaga, 2016). Agile provides an approach to solving the issues associated with the

rigidity of legacy methodologies that hindered the benefits of flexible iterations.

The agile development methodology embraces changing requirements that are

often not fully understood when the project begins. Changing software requirements that

are typically driven by the customer can adversely affect the quality of the final software

14

product (Baruah, 2015). Many organizations embrace the agile methodology in response

to the demand for quick delivery, reduced costs, and an increase in project flexibility

(Ebert & Paasivaara, 2017; Stoica et al., 2016). The popularity of the agile software

development approach has reduced time to market, increased corporate competitive

advantage, and resulted in a higher level of quality satisfaction (Haines et al., 2017). The

agile approach is well suited for managing uncertainty in software development (Mirzaei

& Mabin, 2017), and the process offers significant benefits that include knowledge

learning, employee satisfaction, confidence from feedback, and scalability (Solinski &

Petersen, 2016). The agile methodology addresses the need to provide working software

to customers quickly and adapt to changing requirements.

Scrum. The scrum development approach is the most popular agile method used

in software development (Butt, 2016). The scrum methodology, developed by Schwaber

and Sutherland (Azanha, Argoud, de Camargo, & Antoniolli, 2017; Krstić et al., 2018),

was initially presented by Schwaber in 1995 at a conference in Austin, Texas

(Ozierańska, Skomra, Kuchta, & Rola, 2016). Scrum utilizes incremental fixed

timebound iterations in the construction of software (Ozierańska et al., 2016). The term

scrum comes from the sport of rugby, where team members organize and collaborate to

achieve the goal of winning the game (Azanha et al., 2017). The critical factors of scrum

are transparency and visibility to everyone, inspection to detect problems in the early

stages of development, and the ability to adjust through adaptation (Srivastava & Jain,

2017).

15

The scrum development method uses sprints, which are timebound iterations in

the construction and delivery of software. Sprints are typically 2 to 4 weeks in length

(Kirmani, 2017a; Torrecilla-Salinas, Sedeño, Escalona, & Mejías, 2015). At the end of

the sprint, the team is expected to provide a potentially shippable working model

(Mirzaei & Mabin, 2017). The development goal, as well as the development team,

should not change during a sprint, and the product owner or development team may

redefine the scope as needed (Srivastava & Jain, 2017). The sprint team iterations (time

length of the sprint) remain constant but can vary from team to team.

Scrum has three essential elements: roles, artifacts, and events. The principal roles

are the scrum master, the product owner, and the scrum development team (Hohl et al.,

2018; Kotaiah & Khalil, 2017; Munawar & Qureshi, 2015). The responsibility of the

scrum master is to support the scrum team, ensuring the project achieves its goals,

whereas the product owner is the expert on the business case, controls the backlog, and

has the power to make decisions on behalf of the company (Munawar & Qureshi, 2015).

The development team is responsible for the delivery and implementation of a releasable

product at the end of each sprint (Srivastava & Jain, 2017). The development team

usually consists of three to nine professionals responsible for delivering a functional

product and has the authority to determine the necessary actions to achieve the objectives

of each sprint (Azanha et al., 2017). The team defines and sets the goals before the

beginning of the sprint.

The activities (events) of scrum focus on the sprint, which is the heart of the

scrum development approach. Sprints start with a sprint planning meeting that sets the

16

goals and guidelines of the iteration (Azanha et al., 2017). Each day during the sprint, the

development team conducts a stand-up meeting to report the accomplishments of the

team the day before, the plan for the current day, and any impediments that the team has

encountered (Abdullah & Qureshi, 2018). The benefit of the stand-up meeting is to assess

the current progress and mitigate any risks that may arise (Perkusich, Gorgônio, Almeida,

& Perkusich, 2017). The stand-up meeting provides the team with the ability to

communicate and share project knowledge, report on progress, and resolve issues that

arise during the sprint.

At the end of the sprint, the team conducts a review meeting to evaluate the

accomplishments of the sprint. The sprint review meeting is a retrospective in which the

team evaluates the sprint in terms of communication, resources, and processes to identify

any potential areas for improvement (Srivastava & Jain, 2017). After each sprint, the

team has the opportunity to share the positive and negative aspects to improve future

sprints (Ahmed, Tayyab, Bhatti, Alzahrani, & Babar, 2017). The sprint retrospective is a

“lessons learned” meeting to provide the team with what worked well and what did not.

The sprint backlog and the product backlog are artifacts that list the items that

provide value and represent the work requested. The sprint backlog is a list of items to be

accomplished in the sprint that define the requested enhancements, requirements, and

corrections the team commits to working in the specific iteration (Perkusich et al., 2017).

The product backlog is a priority-ordered list of everything that is needed or requested to

be accomplished in future sprints (Azanha et al., 2017; Srivastava & Jain, 2017). The

17

sprint backlog and the product backlog comprise all the requests and requirements the

development team delivers to the customer.

 The process of scrum starts by translating the customer’s requirements into the

product backlog. The team holds the sprint planning meeting with the help of the product

owner to determine the planned accomplishments of the sprint (Abdullah & Qureshi,

2018). During the sprint meeting, the development team estimates the work to be

accomplished (Kotaiah & Khalil, 2017; Ozierańska et al., 2016). The team transfers items

planned for the sprint from the product backlog to the sprint backlog, and the team

completes the items in the sprint backlog for the iteration delivery (Ahmed et al., 2017).

The sprint and product backlogs are listings of items to be accomplishments as requested

by the product owner.

Extreme programming. Extreme programming (XP) is an agile development

method that uses on-site customer collaboration, paired programming, and automated

testing processes. XP is a widely used agile method that focuses on simplicity, internal

communications, and customer feedback (Singh & Pandey, 2017). XP, which was

presented by Beck in 1999, is one of the oldest of the agile methods (Anwer & Aftab,

2017). According to Munawar and Qureshi (2015), the advantages of XP are short

iteration cycles, direct communication with an on-site customer, and continuous

integration and testing. The disadvantages are that the practice is minimal documentation

and the method is not suited for projects that involve reengineering (Munawar & Qureshi,

2015). According to Anwer and Aftab (2017), the XP method is challenging to use on

large projects and projects of a critical nature. XP, although practiced before the concept

18

of agile was defined, is an agile development process.

XP, much like scrum, uses iterative phases in the software development process.

The first phase of XP is the initialization phase in which project team members gather

requirements from customers that are directly involved with the team to determine project

scope and cost (Anwer & Aftab, 2017). In the requirements gathering phase, the team

uses story cards to document and describe the request and elicit dialogue with the

customer (Baruah, 2015). In the second phase (analysis phase), the software team

develops the architecture and iteration plan (Anwer & Aftab, 2017). Repeated cycles of

code development and testing follow the requirements and analysis phase, and the code is

integrated into a deliverable release once it achieves the functional request (Anwer &

Aftab, 2017). Additionally, one of the critical distinctions in the XP development process

is the concept of paired programming.

Paired programming is a development approach in which two programmers sit

together, one assuming the role of the driver and the other, the navigator. Paired

programming is a standard practice in XP in which two people collaborate in the coding

process (Hohl et al., 2018; Kotaiah & Khalil, 2017; Meyer, 2018). The driver sits at the

keyboard to type the code while the navigator oversees the code input, watching for

syntax errors and ensuring the program meets the required deliverable (Chen & Rea,

2018). The programmer who is actively writing the code (driver) focuses on the

completion of the current task (Chen & Rea, 2018). The navigator, who is overlooking

the code writing, can judge the strategic direction of the work performed, offering ideas

for improvement or potential future problems (Karthiekheyan, Ahmed, & Jayalakshmi,

19

2018). The approach uses two programmers to collaborate on a single code set, working

together to complete a development request.

Paired programming can have an advantage over developers working

independently. In paired programming, the driver and the navigator often change roles

throughout the project (Chen & Rea, 2018; Haines et al., 2017). The benefits of paired

programming are constant code review and the brainstorming of approaches during the

code’s development (Karthiekheyan et al., 2018). According to Chen and Rea (2018),

programmers can quickly catch and resolve errors, thus producing better code using a

collaborative approach. Additionally, pairing an expert programmer with an average or

novice programmer provides mentorship to the novice (Chen & Rea, 2018). However,

teaming individuals who have the same expertise can cause counterproductive work

(Haines et al., 2017). Therefore, the benefits of paired programming can be more

significant when developers have different skill levels or experience.

Kanban. The process of kanban, associated with the Toyota production system,

incorporates the Japanese philosophy of Muda. Muda is the avoidance or elimination of

waste and the removal of activities that are not useful or do not provide value to the

customer (Baseer, Reddy, & Bindu, 2015; Stoica et al., 2016). The kanban process was

developed by Taiichi Ohno to provide the Toyota production system with a practical

approach in specific production and market conditions and to maintain a smooth

production flow to promote the concept of continuous improvement (Ahmad, Dennehy,

Conboy, & Oivo, 2018). Kanban is a Japanese expression meaning signboard (Tanner &

Dauane, 2017) and was designed as a flow control system in manufacturing in which

20

downstream process demand signals trigger upstream process activities (Abdullah &

Qureshi, 2018). The kanban philosophy, although developed for the manufacturing sector

to reduce waste in product production, has been applied to software development

activities.

Kanban includes a visual workflow on a board divided into columns. Teams use a

kanban board to visualize the progress of work to facilitate product improvements,

monitoring of processes, and effective management of the workflow (Abdullah &

Qureshi, 2018; Tanner & Dauane, 2017). The purpose of the kanban board is to improve

the workflow by supporting the principles of limiting work in progress, creating value

throughout the process, increasing throughput, and embedding quality within the process

(dos Santos, Beltrão, de Souza, & Travassos, 2018; Lei, Ganjeizadeh, Jayachandran, &

Ozcan, 2017). Additionally, kanban boards provide a process to manage the workflow,

balance throughput, and make processes explicit as work moves through the different

states (Ahmad et al., 2018). Each state in the kanban process has a clearly defined entry

and exit point and provides the team and management with a visual representation of

progress.

Work requests are defined in the kanban backlog to identify the work items the

team needs to accomplish. In software development, stakeholders prioritize the requests

regarding importance, urgency, or value (Tanner & Dauane, 2017). Features or requests

are selected and placed on the board (Abdullah & Qureshi, 2018). Each column on the

kanban board limits the amount of work in progress within the column or lane (Matharu,

Mishra, Singh, & Upadhyay, 2015; Tanner & Dauane, 2017). Based on prioritization,

21

work items are pulled through the workflow using defined stages such as “to do,” “in

progress,” and “done.” Work items are tasks pulled only when required (Matharu et al.,

2015). Each stage limits the number of items (work in progress) to avoid the potential for

bottlenecks (Abdullah & Qureshi, 2018; Dennehy & Conboy, 2017). Limiting work in

progress restricts the number of ongoing activities to avoid an excess of initiated tasks

and unfinished work (Matharu et al., 2015; Stoica et al., 2016). The Kanban method

allows a team to respond to market changes, reduce waste, increase quality, and improve

predictability.

Feature-driven development. Feature-driven development (FDD) is a

development model that focuses mainly on the design and build aspects of software

development. FDD is a process-oriented software development methodology used to

create business critical applications and systems (Kirmani, 2017a). Luca introduced the

FDD model in 1997 (Sambare, 2017) with the idea of grouping software features by

categories for development (Kotaiah & Khalil, 2017). FDD is an iterative and

incremental approach to software development according to functionality valued by the

client and with an emphasis on quality (Nawaz, Aftab, & Anwer, 2017). The

development objectives are categorized and accomplished by feature groups.

The FDD development process includes five activities that have a distinct entry

and exit point. The activities are: develop an overall model, build a features list, plan by

feature, design by feature, and build by feature (Nawaz et al., 2017). The FDD model

focuses on the design and building processes emphasizing software quality aspects with

accurate monitoring of the development project (Kirmani, 2017a). The distinction

22

between FDD and other development methods is that the stakeholders can track project

progress by a feature design, and the team builds the product using a feature aspect

(Baseer et al., 2015). In FDD, the team groups software features into categorized sets for

development based on functionality rather than time-bound iterations (sprints).

Planning in FDD is more extensive than that of many other agile methods. The

first process in FDD is to develop an overall model that involves a discussion of the

scope of the project, including the requirements of the stakeholders (Kotaiah & Khalil,

2017) and a walkthrough with the team (Nawaz et al., 2017). Following the walkthrough,

the team prepares a listing of features grouped into sets that are verified against business

needs and prioritized for development (Nawaz et al., 2017). The plan by feature is the

third process intended to delegate the selected features to the software developers (Nawaz

et al., 2017). The design by feature activity follows the plan by feature process to

determine what features the team can develop within a fixed period and includes

outlining the class models (Nawaz et al., 2017). The final process is the construction of

the features followed by a unit test; a feature is then pushed to the main product build

once the feature is complete and unit tested. (Sambare, 2017). The FDD model defines

the processes from the discussion and planning to the development work and finally to

adding the change to the main releasable codebase.

Adaptive software development. The adaptive software development (ASD)

model, like most agile methods, assumes that change is inevitable. The ASD is a method

that encourages incremental iterations using a prototyping model (Kirmani, 2017a). The

ASD process model facilitates communication and planning, analysis, design and

23

development, and testing and deployment (Sadaf, Iqbal, Saba, & Mohsin, 2017).

Software development teams use the ASD method to support a component based

development approach that works well with large teams and safety critical projects.

Introduced by Highsmith in 2000, ASD uses a speculate, collaborate, and learn cycle

rather than the traditional plan, design, and build lifecycle (Hohl et al., 2018). The ASD

model is one of the earlier agile approaches.

Learning loops are a vital process in ASD. The learning cycle integrates learning

loops to enhance collaboration in the goal of implementation (Hohl et al., 2018). During

the speculate phase, the team gathers the requirements, and the development process

begins with the schedule and the development objectives fixed (Al-Zewairi, Biltawi,

Etaiwi, & Shaout, 2017). The development team works on several components

concurrently, and the components are refined continuously in an iterative process

(Kirmani, 2017a). However, the ASD approach does not provide for the identification of

agile team members who participate in the analysis phase, the criteria for software

requirements selection, or the criteria during the analysis phase (Sadaf et al., 2017). The

ASD model uses timebound iterations, usually consisting of four to five-week sprints,

and users participate in all iterations and face to face meetings (Kirmani, 2017a). Like

most agile approaches, ASD does not put a strong emphasis on documentation.

Crystal. The crystal methodologies are a lightweight and versatile software

development family of methods. Team size and project priority are the principal

characterizations of crystal methods (Sambare, 2017; Tarwani & Chug, 2016). The

methods were developed initially by Cockburn and are considered a lightweight

24

development approach (Hohl et al., 2018) that promotes flexibility (Butt, 2016; Kulkarni,

Padmanabham, Harshe, Baseer, & Patil, 2017). The crystal family of methods focuses on

teamwork, flexibility, communication, and simplicity to improve processes (Kotaiah &

Khalil, 2017).

The crystal family is identified by color to indicate the type of development. The

colors include: clear, yellow, orange, and red (Kirmani, 2017a; Kulkarni et al., 2017;

Sambare, 2017), indicating factors such as the size of the team, the system criticality, and

the priorities of the project (Fustik, 2017). Color represents the weight or size of the

project; the darker the color, the larger the project (Saravanan et al., 2017). Alqudah and

Razali (2017) stated that crystal orange denotes a project with around 40 developers,

whereas crystal clear is more suitable for smaller projects with fewer developers.

Additionally, crystal orange is more appropriate when a high degree of rigor is necessary,

whereas clear is more flexible and lightweight (Alqudah & Razali, 2017). The color

indicator of the method identifies the characteristics of the project and team and counter

the one-size-fits-all ideals of other software development approaches.

The crystal method family provides projects with a framework designed for

development size and criticality. Crystal is one of the more adaptable methodologies

(Fustik, 2017; Kotaiah & Khalil, 2017), recognizing that each project may require

individual policies and processes to meet the uniqueness of the project (Fustik, 2017;

Sambare, 2017). The principles of crystal are passive knowledge transfer, continuous

delivery, frequent releases, and automated testing (Hohl et al., 2018). The crystal family

25

of methods arose from the need for an approach that was customizable to accommodate

differences in projects.

Dynamic system development method. The dynamic system development method

(DSDM) grew out of the need to provide a standard for the rapid application development

process (Kirmani, 2017a; Tarwani & Chug, 2016) before the term agile was coined (Brad

et al., 2016). The DSDM method, introduced in 1994 (Kirmani, 2017a; Sadaf et al.,

2017), and according to Tarwani and Chug (2016), credit Van Bennekum with

conceiving the development methodology. Like most agile methods, DSDM focuses on

business value, active user involvement, frequent delivery, integration testing, and

collaboration with stakeholders (Fustik, 2017). However, DSDM, unlike many agile

methods, provides complete support throughout all life cycle phases (Kirmani, 2017a).

The DSDM philosophy is that the team can deploy 80% of the system in 20% of the time

(Kirmani, 2017a) with the possibility of rework and that development changes must be

reversible (Fustik, 2017).

Requirement priority determines the most critical functionalities to deliver first in

DSDM. The requirements are prioritized and checked for feasibility (Baruah, 2015).

Project requirements are prioritized based on the rules of must-have, should have if

possible, could have but not critical, and will not deliver now but maybe later (Younas,

Ghani, Jawawi, & Khan, 2016). DSDM has three phases: the pre-project, the project life

cycle, and the post-project phase. The pre-project phase established the goals and

priorities of the project (Fustik, 2017). In the project life cycle phases, the functional

model, design, iteration, and implementation phases are determined (Fustik, 2017). The

26

post-project phase addresses functional efficiency and error correction (Fustik, 2017).

The DSDM approach sets the time allotment and resources and adjusts the amount of

functionality delivered accordingly (Kirmani, 2017a).

Estimation of Effort in Software Development

Estimation in software development is the process of approximating how much

effort is required to accomplish a task. Estimation plays a significant role in software

development to establish cost assessments and delivery schedules (Bilgaiyan et al., 2017).

A software project's success relies on estimations that reflect accurate effort prediction

(Bilgaiyan, Mishra, & Das, 2016). According to Rahikkala, Leppänen, Ruohonen, and

Holvitie (2015), software projects that delivered expected results within budget and

predicted time are the exception rather than the rule. Accurate effort estimations provide

stakeholders with forecasting data for planning, budgeting, and project scheduling.

Estimating effort in a software project continues to be problematic for development

teams.

Multiple factors contribute to inaccurate effort estimations. Factors that adversely

affect software development effort estimation are the uncertainty of the effort required to

complete the task, software size, estimator experience, inconsistent and incomplete data,

the dependency of the environment, and frequent changes in requirements (Sehra, Brar,

& Kaur, 2016). Tanveer (2017) concludes that estimation accuracy is dependent on the

developer’s experience, complexity, and the impact of changes made to the underlying

system. Additionally, estimation models perform differently in different environments

and development project types (Sehra, Brar, Kaur, & Sehra, 2017). Considering multiple

27

factors, estimation of effort in software development can thus be difficult, and

underestimation is problematic.

Multiple factors affect software development estimation. Influences that affect

estimation accuracy are software size, the team’s experience, the team's skill, the number

of nonfunctional requirements, the distribution of the team geographically, and the level

of communication provided by the customer (Usman et al., 2017). Sehra et al. (2016)

asserted that factors that affect accurate estimation are: requirements uncertainty,

software size, the experience of the estimator, incomplete data, and changes in

requirements. Jørgensen (2014) stated that the accuracy of estimates improves through

the use of local context, the use of historical estimation error intervals, the avoidance of

misleading estimation information, the use of a checklist, the conducting of a group-

based approach, and avoidance of early estimation based on incomplete information.

Multiple factors, both individually and collectively, adversely effect estimation.

Providing accurate effort estimates in software development is problematic.

Estimating effort in software development projects at the beginning of the lifecycle is

more challenging due to the “cone of uncertainty” (Sehra et al., 2016). In the initial

feasibility stage, actual effort and cost can exceed 250% more than the initial estimate

(Dragicevic et al., 2017). Delaying the estimation until the requirement specification

phase can reduce inaccuracy, thus providing a more realistic and accurate estimation

(Sehra et al., 2016). However, estimations many times are requested before the

elaboration of requirements. As a project progresses, uncertainty decreases as knowledge

increases regarding the product (Arifin, Daengdej, & Khanh, 2017). Estimations are

28

predictions, and there is a level of uncertainty as each project is unique, and there are no

two projects with the same requirements.

Software effort estimation is more challenging in agile projects due to changes in

requirements and uncertainty experienced in the development process. Rahikkala et al.

(2015) identified two factors associated with estimates that positively influenced project

success. The first factor was that senior management ensures that a software estimate

relies on facts rather than guessing or opinion (Rahikkala et al., 2015). The second was

that senior management recognizes that estimates are critical to organizational success

(Rahikkala et al., 2015). Accurate estimates increase the probability of project success;

yet estimate accuracy remains an elusive target.

Agile estimation methods. There are two primary categories of software

estimation methodologies. All estimation approaches are either algorithmic (parametric)

or non-algorithmic (nonparametric) or a combination of the two (Idri, Amazal, & Abran,

2015; Osmanbegović et al., 2017; Soni & Kohli, 2017). Algorithmic approaches utilize

mathematical models or equations, whereas non-algorithmic do not (Khuat & Le, 2016).

Estimating provides planners with project timelines and costs.

There are multiple approaches used by development teams to provide estimates of

effort. Shekhar and Kumar (2016) asserted that no single method in software

development estimation is considered the best method, and they suggested using a

combination of techniques to increase estimation accuracy. Shekhar and Kumar (2016)

concluded that it is best to use non-algorithmic approaches such as an expert judgment

for projects that have extensive known requirements. For projects with many unknowns,

29

the algorithmic approach is the more appropriate choice. However, estimations that use a

combination of methods arrive at a more accurate estimate (Shekhar & Kumar, 2016).

Cost estimation is essentially forecasting the expected time, effort, and workforce

needed to complete the development of a software task or project (Bilgaiyan et al., 2017).

Popular estimation methods used are estimation by analogy, expert judgment, function

points, software sizing, and Bayesian methods (Bilgaiyan et al., 2016; Soni & Kohli,

2017). Jørgensen (2014) asserts that estimates should use simple models, historical data,

and should avoid misleading information. Additionally, Jørgensen (2014) stated that

estimates could be improved by utilizing checklists, utilizing structured approaches, and

avoiding early estimations.

The philosophy of agile effort estimation is that the people doing the work

perform the estimation to gain a more realistic assessment (Taylor, 2016). Prakash and

Viswanathan (2017), Bilgaiyan et al. (2017), and Osman and Musa (2016) concurred that

different estimation models are better suited to different development models. Distinct

characteristics of successful agile estimating include collaboration with product owners,

estimations accomplished by a team rather than an individual, and the use of story points

for relative measures (Prakash & Viswanathan, 2017). In the early stages of development,

obtaining refined details of the project may not be possible in an agile environment,

making estimation problematic.

Story points. Story points are a sizing technique used as a relative unit of measure

for expressing the overall size of a user story or development effort. The utilization of

story points is the most popular estimation approach for software sizing to measure the

30

effort needed to implement a user story (Choetkiertikul et al., 2018; Dragicevic et al.,

2017). The estimation method is a bottom-up approach and provides a measure of the

complexity or quantity of work to produce (Jadhav, Shaga, & Thorat, 2017).

There is no fixed formula for defining the effort or size in the utilization of story

points (Osman & Musa, 2016). Story points commonly utilize the Fibonacci sequence to

express relative size (Alostad, Abdullah, & Aali, 2017; Jadhav et al., 2017; Raslan et al.,

2015). The gaps between the sequences provide a higher degree of uncertainty in the

level of effort for larger units of work. Essentially, the larger the effort (greater the size),

the more likely the error in the estimate; thus, the higher the gap in the sequence (Raslan

et al., 2015). Fox (2016) claimed that the Fibonacci sequence, when used as an estimation

metric, is relatively unbiased. Usman et al. (2017) suggested an extended approach to

story points by providing estimates by averaging three values; fastest, most practical, and

maximum values to give a final estimate.

Story points are relative values, can differ from team to team, and are numerical

representations of complexity. The estimating approach (size value) is specific to each

team and uses each team’s cumulative knowledge (Choetkiertikul et al., 2018). The story

point value can change from team to team depending on the baseline story in which they

are relative too (Choetkiertikul et al., 2018; Soni & Kohli, 2017). Each development team

uses story points on a different scale to establish a velocity over time (Ahmed et al.,

2017). Story points are relative measures rather than quantitative measures (Soni &

Kohli, 2017). The accuracy of story points is subjective to the person or persons

performing the estimation and derived from previous experience (Arifin et al., 2017).

31

Values are determined from previous efforts using a relative approach and differ from

team to team.

One of the critical success factors for story point estimation is that the

development group estimates the stories as a team using the same scale. Once the story

points are estimated, the values are translated into the team’s velocity to forecast future

sprints, iterations, or efforts (Brad et al., 2016). Velocity represents the total of story

points that the development team can deliver in a specific iteration (Torrecilla-Salinas et

al., 2015), and is a useful predictor of the team's capabilities (Ahmed et al., 2017). Story

points are independent of time units and are a successful and common approach in

software development estimation (Zahraoui & Idrissi, 2015). Harzl (2017) indicated that

there could be disadvantages to using story points as a critical factor in the success of

story point estimation is a team’s shared experience. According to Harzl (2017), it is

challenging to establish velocity in the initial iterations, as team members have not had

experience working and estimating as a collective group and experience challenges in

providing accurate estimates. The story pointing approach, although commonly used, is

subject to error.

T-shirt sizing. T-shirt sizing is an estimation approach that utilizes relative

valuations. The estimation approach uses t-shirt sizes such as extra-small, small, medium,

large, and extra-large (Alostad et al., 2017; Raslan et al., 2015). Similar to story points,

the t-shirt sizing approach can differ from team to team and requires a common

understanding of the estimated value selected (Alostad et al., 2017). The strategy works

best when a team has estimated previous stories or work items as a group, and the method

32

can provide a measurement for large effort work items (Alostad et al., 2017; Raslan et al.,

2015). The t-shirt sizing technique can produce an early estimate to give the business a

metric of complexity for determining the level of effort (McConnell, 2006). The early

comparison allows stakeholders or requesters to determine if the effort required is worth

the business value generated from the effort (McConnell, 2006). The t-shirt size

estimation technique offers a simple alternative to executing a more complex estimation

process.

The advantages of t-shirt sizing are that as there are fewer values to select and the

voting process can be conducted expeditiously. According to Harzl (2017), due to the

abstract nature of the approach, t-shirt sizing does not suggest precision. However, with t-

shirt sizing, sizes are non-numerical, and the approach is simple and easily understood

(Harzl, 2017). The t-shirt sizing method provides a nontechnical, initial estimation

projection that is accurate enough to support effective project control (McConnell, 2006).

The disadvantages in using the approach are that velocity is hard to measure

(performance of the team over time), the scale lacks detail, there is no precise

mathematical correlation between the sizes, and a numerical value to track effort actuals

is lacking (Harzl, 2017). Thus, the absence of numerical values is problematic in

establishing velocity.

Expert judgment. Expert judgment in software effort estimation requires someone

with previous experience in effort estimation who knows and understands the task under

consideration to provide an approximation of effort. Expert judgment utilizes the

knowledge of an expert and is a widely used strategy for software estimating (Shekhar &

33

Kumar, 2016). However, expert judgment can exhibit bias by the estimator and relies on

the expert's previous experience on similar projects to generate a realistic estimate (Khuat

& Le, 2016). Expert judgment comprises two approaches: effort-time and effort-size

(Arifin et al., 2017). Effort-time is an absolute value method, such as person-days or

person-hours; effort-size is a relative measure such as story points (Arifin et al., 2017) or

t-shirt sizing. McConnell (2006) states that using a top-down approach that decomposes

tasks into a granularity that is less than about two days enhances the accuracy and

effectiveness of expert judgment. Large task estimation is prone to error and more

challenging to estimate; thus, decomposition provides higher accuracy.

Expert judgment is ta common estimation technique used in effort estimation in

software development. Although there is high availability of commercial estimation tools

and approaches, expert estimation remains the most widely used estimation methodology

(Ivan & Despa, 2016; Shekhar & Kumar, 2016; Usman, Britto, Damm, & Börstler, 2018).

Expert-based effort estimates result from quantitative intuition as experts seldom base

estimates on explicit analytical argumentation (Jørgensen & Boehm, 2009). Expert

judgment is a non-algorithmic technique and may be prone to error as estimations can be

inconsistent, lack repeatability, and be overly dependent on human memory (Sehra et al.,

2017). Estimation inaccuracies can stem from over-optimism and over-reliance on

accuracy due to over-confidence in the estimator’s ability to deliver accurate estimations.

Delphi. The Delphi technique utilizes a consensus-based approach to estimating

involving multiple experts. The experts selected for a Delphi approach have subject

domain experience and specific application knowledge (Adnan & Afzal, 2017; Strasser,

34

2017). Experts conduct discussions in a structured group process designed to produce a

consensus (Osman & Musa, 2016; Perkusich et al., 2017). The Delphi method of

estimation in software development is the process whereby a group of experts identify the

task to estimate, provide an estimation method, discuss the application of the method, and

arrive at a consensus regarding the level of effort needed (Rai, Gupta, & Kumar, 2017;

Strasser, 2017). The experts conduct the approach using multiple rounds of voting that

provides results that can be evaluated and summarized (Lima, West, Winston, & Wood,

2016). The experts may repeat the process of estimate revision until the experts reach a

specific number of rounds, reach a consensus, or until the results are stable and the

answer is satisfactory (Nguyen, & Nguyen, 2018; Prakash & Viswanathan, 2017). The

Delphi approach to estimation makes available an estimate based on the collective

agreement of experts.

The Delphi approach utilizes expert assessments and involves the coordination of

the team and elaboration of requirements for the members of the team to do their

estimations anonymously. Estimations with a high level of variation are discussed further

and re-evaluated (Prakash & Viswanathan, 2017; Strasser, 2017). The results are

distributed to the group for further discussion after each round to reach an agreement and

review the agreement for relevance (Bilgaiyan et al., 2016). The Delphi method captures

factors from several experts and provides a defined practice in the assessment (Lee &

Rothenberger, 2015). The Delphi approach is the collective assessment of experts to

establish an agreed-upon estimation.

COCOMO II. The COCOMO II model is an algorithmic approach to estimating

35

software development effort. COCOMO II uses size and numerical input measures

regarding application points multiplied by constants that are empirically determined to

provide estimations (Ivan & Despa, 2016). The use of company-specific calibration and

historical data increase accuracy (Moharreri, Sapre, Ramanathan, & Ramnath, 2016). The

COCOMO II model has the advantages of objectivity, repeatability, built-in sensitivity to

development factors, and model calibration to previous projects and experiences

(Osmanbegović et al., 2017). COCOMO II uses multiple factors for calibration and is

most effective when using historical data.

The algorithmic COCOMO II estimation model’s effectiveness relies on historical

data to provide accurate estimations. Estimators calibrate the model using factors such as

flexibility of the development, team cohesion, reuse, architecture, risk, platform

experience, database size, the volatility of the platform, personnel continuity and

experience, time constraints, complexity, and team capability (Boehm et al., 2000). An

advantage of COCOMO II is that modification and customization of the model are

straightforward (Prakash & Viswanathan, 2017). However, Prakash and Viswanathan

(2017) also stated that the method becomes much less effective if historical data is not

available. Additionally, the COCOMO II model is more suited to a procedural

development paradigm than the agile development model (Kukreja & Garg, 2017; Rath et

al., 2016).

Bayesian network. Bayesian networks (BN) belong to the category of

probabilistic graph models and are used to represent knowledge about uncertain domains

(Perkusich et al., 2017). Bayesian networks represent a joint probability distribution over

36

a set of variables (Freire, Perkusich, Saraiva, Almeida, & Perkusich, 2018). Dragicevic et

al. (2017) suggested that the BN model is a suitable estimation method in an agile

software development methodology as it does not have an impact on agility and can be

applied in an early planning phase successfully. The BN model is useful in making

predictions and diagnostics with ambiguous data to determine the probability of an event

(Dragicevic et al., 2017). Estimators use the method to incorporate causal factors to

determine conditional probability is estimations.

The BN is a model that describes probabilistic relationships between causally

related variables. The advantages of a BN are suitability for small projects, and it

provides results based on incomplete data sets (Zare F., Zare H., & Fallahnezhad, 2016).

The BN model's additional advantages are the explicit treatment of uncertainty and

support for decision analysis (Perkusich et al., 2017). The use of BN can be advantageous

in effort estimation because probability distributions can be updated as new information

becomes available, and estimation models are constructed using causal influences

(Perkusich et al., 2017). Bayesian networks allow for the combining of historical data

with expert opinion.

Planning poker. Planning poker is a widely used estimation method for agile

software development teams (Prakash & Viswanathan, 2017; Soni & Kohli, 2017; Usman

et al., 2017). The estimation method uses a consensus approach to estimate development

effort that minimizes peer pressure (Taylor, 2016) and is useful if historical data is not

available (Anooja & Rajawat, 2017). The first step in planning poker is a domain expert

explaining the user story to the team and providing clarification if requested (Lopez-

37

Martinez, Ramirez-Noriega, Juarez-Ramirez, Licea, & Martinez-Ramirez, 2017;

Torrecilla-Salinas et al., 2015). The next step is the creation by the team’s members of a

private preliminary estimate followed by the display of their estimations to the entire

team, typically using cards that represent a value (Torrecilla-Salinas et al., 2015). Team

members explain the reasoning for estimations, and each member reflects on the other

explanations (Miranda, 2017). Additional estimation rounds may be needed if estimates

differ significantly (Miranda, 2017; Torrecilla-Salinas et al., 2015). The estimators that

provide the highest and lowest values explain their reasoning, and the team continues

with subsequent rounds until it reaches a consensus, and an agreed upon amount is

determined (Torrecilla-Salinas et al., 2015; Vyas, Bohra, Lamba, & Vyas, 2018).

Planning poker can consist of several rounds of discussion and re-estimation to reach

consensus (Bilgaiyan et al., 2017; Choetkiertikul et al., 2018). Much like the Delphi

method, developers use a collective forum in the planning poker technique, and open

discussions provide a group-based agreement to the estimate.

The estimation methodology is a team-based exercise used for assigning a relative

estimate value to a requirement that expresses the level of effort required to deliver the

specific feature. Planning poker traditionally uses the numerical sequence such as the

Fibonacci sequence (Ramirez-Noriega, Juarez-Ramirez, Navarro, & Lopez-Martinez,

2016). Planning poker is a standard estimation approach and requires expert opinion and

analogy (Osman & Musa, 2016; Usman et al., 2017). Planning poker estimations are

consensus-based and result in a value or size estimation of effort.

38

The planning poker method is most effective when an expert is engaged in the

estimation and when the team has previous experience with similar tasks. Planning poker

was introduced by Grenning (Rai et al., 2017) in 2002; the technique combines expert

opinion, analogy, and disaggregation into a quick and reliable estimation method. The

goal of planning poker is to arrive at an estimation that will withstand future scrutiny

(Osman & Musa, 2016). Planning poker is an incremental team-based method that

collectively analyzes requirements and determines an estimation (Dönmez & Grote,

2018). The distinct difference between planning poker and Delphi is that not all group

members in a planning poker session are required to be experts.

Artificial neural networks. Artificial neural networks (ANN) are used as data

analysis tools and are known for their learning and generalization ability (Shawky, Salwa,

& El-Hafiz, 2016). ANN is a mathematical model (algorithmic) inspired by biology

(Mittas, Papatheocharous, Angelis, & Andreou, 2015). Neural networks provide

relationships between complex data through a learning phase (Rijwani & Jain, 2016).

Types of neural networks used are general regression networks, polynomial neural

networks, and probabilistic neural networks (Prakash & Viswanathan, 2017). ANN uses

processing features called neurons, each having a mathematical function with specific

inputs, a computational procedure, and outputs (Rijwani & Jain, 2016). According to

Kaushik, Tayal, Yadav, and Kaur (2016), ANN models used in software estimation are

the radial basis function network (RBFN) and function link artificial neural network

(FLANN). The RBFN model offers a straightforward design, good generalizability,

strong tolerance to noise, and learning ability (Kaushik et al., 2016). The FLANN method

39

is suited when data is nonlinear and is less complicated (Kaushik et al., 2016). Although

ANN is considered an algorithmic process, the network itself is not an algorithm, but

rather a framework of learning algorithms.

ANN's principal characteristic is the ability to approximate nonlinear functions

and is thus similar to traditional statistical techniques such as logical regression,

statistical regression, and discriminant analysis (Mittas et al., 2015). The ANN method

utilizes machine learning and pattern recognition for estimation and can discover

relationships between the dependent and independent variables (Kaur, 2017). Artificial

neural networks have gained popularity for software estimation prediction due to their

ability to capture complex data and to disregard noise in the input data (Pospieszny et al.,

2018). ANN uses data from previous software projects to provide outputs by inference

through learned data (Rijwani & Jain, 2016). The ANN design, inspired by the biological

nervous system processes information using computational elements (nodes) operating

through weighted inputs (layers) to provide accurate estimates (Bilgaiyan et al., 2017;

Mittas et al., 2015). Additionally, the more considerable the amount of historical data, the

more accurate the estimation; thus, the ANN is most effective in achieving accurate

software development estimations when historical data is available (Naik & Nayak,

2017).

Function points. The function point (FP) method calculates an estimate using the

parameters of inputs, outputs, inquiries, and files. The technique was introduced by

Albrecht in 1979 (Hans & Gahlot, 2016) to measure the size of data processing systems

from the end user’s point of view to determine an estimated development effort

40

(Abualkishik et al., 2017). FP's advantage is that estimators can calculate effort when a

defined use case or in-depth system analysis is not available (Dewi, & Subriadi, 2017a).

Estimators calculate function points by summing the number of internal logical files,

external interface files, external inputs, external inquiries, and external outputs (Hans &

Gahlot, 2016; Yoshigami, Tsunoda, Yamada, & Kusumoto, 2017). Function points are

numerical values that measure software size determined from data processing types rather

than from software development complexity.

Prakash and Viswanathan (2017) stated that the FP method is appropriate to

estimate size and cost but cannot estimate effort. Function points represent the amount of

functionality released to the user by determining the data transactions, and operations that

involve data crossing the boundaries of the application (Abualkishik et al., 2017). The FP

method provides an estimation method that allows managers to project software size

early in the project life cycle (Qi et al., 2017). It is independent of the technology used in

the development of the software project (Farah-Stapleton, Auguston, & Giammarco,

2016).

COSMIC. To overcome some of the early issues with function point

measurements, a group of experienced software measurement experts formed the

Common Software Measurement International Consortium (COSMIC). The COSMIC

standard defines rules and principles for measuring software's functional size

(Almakadmeh, Al-Sarayreh, & Meridji, 2018). The COSMIC method differs from the

traditional function point method, as the focus is on data movements such as input,

output, and data storage that characterize most software development efforts (Di Martino,

41

Ferrucci, Gravino, & Sarro, 2016).

The COSMIC method is a second-generation function point method proposed to

overcome a few shortcomings of the function point method. The COSMIC process

counts data movements classified into data entry and exit points, which are input-output

movements, and read and write of data to storage (Almakadmeh et al., 2018). Each data

movement is one COSMIC function point of size in a software application. COSMIC

function points are the sum of the sizes of the functional processes (Abualkishik &

Lavazza, 2018). The higher the number of data movements, the more significant is the

size of the software.

Use case points. Use case points (UCP) is a technique that utilizes a UML use

case diagram to estimate the size. The UPC technique, inspired by the function points

method, is an appropriate method to use in the early stages of software development

(Azzeh & Nassif, 2016). Karner developed the technique in 1993 as an estimation

method for object-oriented software (Shollig, Widodo, Sutanto, & Subriadi, 2016). Mehta

and Kumari (2016) suggested that a technique such as the UCP estimation is more

appropriate in object-oriented development than function point counting and COCOMO.

The method calculates complexity based on use cases (Shollig et al., 2016) and thus

differs from the calculation of data movements (function point) and historical data

(COCOMO).

Azzeh and Nassif (2016) state that the first step in using the UCP technique is to

calculate the unadjusted actor's weight or complexity of interaction, such as simple,

average, or complex. The second step is to classify the transaction using the same scheme

42

of simple, average, or complex (Azzeh & Nassif, 2016). Transactions are a response

between an actor and the system. Finally, the transaction and complexity values are

adjusted based on technical complexity and an environmental adjustment factor (Azzeh

& Nassif, 2016). The basic UCP calculation is UCP = (UUCW + UAW) * TCF * ECT

where UUCW is unadjusted use case weight, UAW is unadjusted actor weight, and TFC

and ECF are technical complexity and environment factors respectively (Urbanek,

Kolcavova, & Kuncar, 2017).

 The UCP model has been used broadly in recent decades (Rath et al., 2016), and

studies have indicated the method’s reliability (Dewi, & Subriadi, 2017b). However,

according to Azzeh and Nassif (2016), the major disadvantage is that values are arbitrary

in calculating software size, making it challenging to provide time-based estimations.

Time-based effort and size are not directly proportional to each other (Rath et al., 2016).

The UPC concept utilizes documented use cases in the determination of size.

Conceptual Framework – The Planning Fallacy

People making predictions tend to underestimate the time it will take to complete

a task. Kahneman and Tversky (1977) identified the concept of the “planning fallacy,” a

phenomenon where a prediction regarding how much time will be needed to complete a

future task is usually optimistic. Kahneman and Tversky (1977) indicated that

overconfidence increased with ignorance (Kahneman & Tversky, 1977). People's

insensitivity to evidence quality (reliability of information available) and predictions

based on small sample sizes contribute to overconfidence (Kahneman & Tversky, 1977).

43

Kahneman and Tversky (1977) further stated that the contributing factors to

overconfidence were the assumption of normal conditions and anchoring.

Previous research by Kahneman and Tversky (1973) stated that in making

predictions, people do not appear to follow statistical results, but instead, they make

predictions based on intuition. Additionally, in 1974, Tversky and Kahneman (1974)

describe cognitive bias that stemmed from judgmental heuristics such as

representativeness, availability of scenarios, and anchoring. People typically rely on a

limited number of heuristic principles, which reduces the complex task of assessing

probabilities and predicting estimation (Kahneman & Tversky, 1973). Kahneman and

Tversky (1973) proposed that people have an insensitivity to the prior probability of

outcomes, sample size, and a misconception of chance. People also have an insensitivity

to random events that may affect the estimation and a perceived illusion of validity in

providing estimates (Kahneman & Tversky, 1973). Thus, people provide estimates based

on the assumption and do not consider possible events that may cause a potential delay.

Two types of information are available when predicting tasks’ duration: singular

and distributional (Kahneman & Tversky, 1977). Distributional is primarily a

consideration of previous task performance, whereas singular focuses on the task itself

(Kahneman & Tversky, 1977; Thomas & König, 2018). The planning fallacy is the result

of underestimation as a consequence of neglecting or ignoring distributional data

resulting in an error in prediction (Kahneman & Tversky, 1977). Neglect of distributional

data could be the result of the perceived uniqueness of a project (Kahneman & Tversky,

1977). Research conducted by Zhu, Li, Yang, and Xie (2019) concluded that an increased

44

focus on additional information (distribution) led to later predictions, but a focus on task

content (singular) resulted in earlier predictions.

Kahneman and Tversky (1977) identified three conclusions in describing the

planning fallacy:

1. Errors in judgment are many times more systematic than they are random.

2. The presence of bias is frequent in both experts and non-experts.

3. Judgments should be driven from a reflective assessment rather than from

immediate impressions, although intuition from a knowledgeable professional

is beneficial (Kahneman & Tversky, 1977).

Additionally, Tversky and Kahneman (1974) demonstrated that it is common to

adjust an estimate due to an anchoring effect. The establishment of an anchor can

adversely influence an estimation prediction. Predictions are often based on an optimistic

view of the duration of a previous task and are not adequately adjusted for the demands

of a new task that is to be estimated (Tversky & Kahneman, 1974). The anchoring effect

is the influence of initial information that influences the estimator's judgment, including

information that may be irrelevant (Løhre & Jørgensen, 2016). Anchoring effects

estimation as it has an influence on a judgment from an initial presented value.

Buehler et al. (1994) explore the phenomena of the planning fallacy and explain

why people underestimate task completion times. The evidence suggests that individuals

believe that their project will proceed as planned even while knowing that a clear

majority of projects run late (Buehler et al., 1994). People base predictions on a plan for

carrying out a task and formulate their predictions on the assumption of positive events

45

occurring rather than adverse events (Wiese, Buehler, & Griffin, 2016). The absence of

consideration of unforeseen events adversely affects the accuracy of estimates.

Conclusions reached by Buehler et al. (1994) suggest that people make more

realistic predictions when they use past experiences to inform their predictions

(distributional). However, people also focus on the details of the specific case (singular)

rather than distributed information about a related set of cases (Buehler et al., 1994;

Tversky & Kahneman, 1974; Wiese et al., 2016). They tend to hold to a belief that their

project will proceed as planned (singular) even knowing that a clear majority of previous

projects (distributional) have faltered and run late (Thomas & König, 2018). Kahneman

and Tversky (1973) identified three heuristics in making estimation judgments under

uncertain conditions: judgments based on representativeness, availability of scenarios,

and estimation adjustments based on anchors. In generating an estimate, people often

have a perceived illusion of the time required to complete a task and a false sense of

validity to their estimation.

Over-optimism, resulting in underestimation, is an identified problem in the

prediction of effort. Buehler, Peetz, and Griffin (2010) asserted that people are typically

optimistic in their estimates and predict that they will finish projects earlier rather than

later. Buehler et al. (2010) test their hypostasis on both closed and open-ended tasks to

determine if predicted task completion times influenced actual completion times. The

results indicate that making optimistic predictions may lead to finishing the task sooner

(Buehler et al., 2010). Although over-optimism may result in expediting the completion

of tasks, Buehler, Griffin, and MacDonald (1997) found that in both a laboratory and

46

field environment, that incentives to complete a task early increase the effects of the

planning fallacy.

The planning fallacy is the problematic phenomenon of time underestimation.

Kahneman and Tversky (1973) described three judgmental heuristics: representativeness,

availability, and anchoring, leading to bias in judgments. A firm reliance on judgmental

heuristics precipitates inaccurate estimates in software development (Løhre & Jørgensen,

2016). Shmueli, Pliskin, and Fink (2016) found that software developers tend to

underestimate project effort in the time required for project completion, resulting in one

of the most common reasons for project failure.

According to Shepperd, Waters, Weinstein, and Klein (2015), people tend to

display excessive optimism in their predictions that is often quite unrealistically positive.

In their research, Shepperd et al. (2015) identified two types of unrealistic optimism. The

first type is unrealistic absolute optimism that refers to an unjustified belief that a more

favorable outcome will occur even when quantitative data indicates otherwise (Shepperd

et al., 2015). The second type of optimism is unrealistic comparative optimism, which

refers to one’s outcome being more favorable than that of a peer (Shepperd et al., 2015).

Accurate estimations in the planning phase of software development improve the

likelihood of project success. Shmueli and Ronen (2017) noted that both software

developers and managers are subject to the planning fallacy resulting in the tendency to

plan additional work. Time underestimation and benefit overestimation occur during

planning iterations due to the planning fallacy (Shmueli & Ronen, 2017). The planning

fallacy phenomenon occurs when the individual is focusing on the inside view of a task

47

(singular) but not considering the data from an outside view of previous tasks

(distributional) (Thomas & König, 2018). Additionally, even those aware of statistical

regression have an inclined bias towards these heuristics in making judgments in a

context of uncertainty (Kahneman & Tversky, 1973).

The planning fallacy is the problematic phenomenon of time underestimation.

Shmueli et al. (2016) found that software developers tend to underestimate project effort

in the time required for project completion, resulting in one of the most common reasons

for project failure. Time underestimation and benefit overestimation occur during

planning iterations as a result of the planning fallacy (Shmueli & Ronen, 2017). The

planning fallacy phenomenon occurs when the individual estimating the effort considers

only the inside view of a task (singular) but does not consider the outside view

(distributional) (Thomas & König, 2018). The distributional is essentially a previous task

performance, whereas the singular focuses on the task itself.

The findings of a study conducted by Shmueli et al. (2016) provide evidence of

manifestations of the planning fallacy in software development projects. Shmueli et al.

(2016) provide evidence of the planning fallacy in software development projects by

identifying effort and time underestimation, scope overload, and over-requirements. They

argue that scope overload and over-requirements are results of underestimation (Shmueli

et al., 2016). The conclusions of the study suggest that although reference class

forecasting and using a consultant positively influence scope overload and over-

requirements, there was little to no effect on underestimation (Shmueli et al., 2016). The

planning fallacy, a behavioral economic theory, advances the understanding of poor

48

planning in software development projects (Shmueli et al., 2016; Shmueli & Ronen,

2017).

Shmueli et al. (2016) describe two views for determining the future cost of

software development: the outside and inside view. The outside and inside view

correspond to the singular and distribution views described by Kahneman and Tversky

(1977). The outside view is the consideration of past projects' experience and knowledge

to reference similar cases (Shmueli et al., 2016). The inside view is the examination of

information specific to the project or task and the uniqueness of the case at hand

(Shmueli et al., 2016). An inside view is a bottom-up approach that discounts historical

data, past experiences, and environmental factors that potentially affect the project (Pinto,

2013). Although developers tend to estimate effort based on an inside view, the outside

view provides a more accurate estimate (Shmueli et al., 2016).

The inclusion of historical effort estimation information in future estimations give

the potential for greater accuracy in software development estimating (Shmueli et al.,

2016). Jørgensen (2014) stated that the accuracy of estimates improves through the use of

local context, historical information use, and the avoidance of early estimation based on

incomplete information. When prompted to consider a task from an outside observer's

perspective, people are more willing to consider obstacles that they may not otherwise

have considered (Wiese et al., 2016). Additionally, the motivation for aggressive

schedules and optimism of a high performing team can lead to underestimating the time

needed to complete a project (Prater, Kirytopoulos, & Ma, 2017). Aggressive schedules

and the neglect of an outside (distributional) view lead to inaccurate estimates.

49

Shmueli et al. (2016) examined the outside view approach in reducing behaviors

associated with the planning fallacy in software development effort estimation and

concluded that the inclusion of an outside view minimizes the problem of time

underestimations, scope overload, and the over-requirements of software development.

Utilizing the descriptive behavioral theory, Shmueli et al. (2016) concluded that

knowledge of cognitive bias resulting from planning fallacy could mitigate estimation

errors in the planning of software development projects. The results of the study showed

that problems associated with time underestimation, scope overload, and over-

requirements are reduced but not eliminated by presenting reference information

regarding past completion times (Shmueli et al., 2016). Additionally, outside consultants

can reduce the planning fallacy effects by using an outside view (Shmueli et al., 2016;

Shmueli & Ronen, 2017).

Although many researchers have studied underestimation and effort over-

optimism, realistic effort estimation remains problematic (Jørgensen, 2016), as software

developers are usually over-optimistic and underestimate the needed effort to accomplish

a task (Dragicevic et al., 2017). Software development effort underestimations may result

in cost overruns and cause customers to cancel projects, and project teams may be

required to work without financial compensation (Kirmani, 2017b). Additionally, the

quality of the product cannot be guaranteed (Qi et al., 2017). The effects of over-

optimism resulting from the planning fallacy phenomena are detrimental to the planning

and estimating of software development effort.

50

Many software project estimations fall short of actual effort. Overwhelming

evidence indicates that there is a tendency to underestimate software effort, on average of

about 30% (Jørgensen, 2014). It is difficult to predict the size of a software project during

the initial phases (Shida & Tsuda, 2017) due to incomplete or inaccurate requirements

(Dragicevic et al., 2017). Resulting changes to requirements has a cascading effect on the

software's cost and delivery time (Bilgaiyan et al., 2017). During the initial phases of

software development, it is difficult to predict the project's size resulting from inaccurate,

incomplete, and dynamic requirements due to changes that occur during the development

cycle. In consideration of the planning fallacy phenomena, incomplete or inaccurate

requirements affect the reliability of distributional (outside view) data, thus making

estimation potentially unreliable and accuracy problematic.

The phenomenical effects of the planning fallacy are evident in software effort

estimation. Researchers have identified contributing causes of estimation inaccuracies

such as optimistic bias and the lack of or neglect of distributional information. A

longitudinal case study conducted by Usman et al. (2018) concluded with the following

observations about software effort estimation. First, underestimation is common and that

teams with less experience produce higher estimation overruns (Usman et al., 2018).

Usman et al. (2018) also stated that single-stage estimation approaches reduce accuracy,

and the colocation of development group improves estimation accuracy. There are four

primary causes of estimation inaccuracies in software development. Reasons are (a)

optimistic assumptions, (b) unanticipated requirements, (c) a corporate culture that

confuses targets with estimates, and (d) arbitrarily deadlines. Uncertainty exists in

51

software development estimation because of human differences, market forecasting, and

value judgments (Arifin et al., 2017). Anooja and Rajawat (2017) suggested that factors

such as improved estimation training and higher accuracy of information (requirements)

provide positive effects on effort estimation. Conventional wisdom indicates that

estimates improve as projects progress (Arifin et al., 2017). As projects progress,

additional information (distributional) data become available, thus improving the

estimation process.

Team size effects estimation. Staats, Milkman, and Fox (2012) state that

underestimation increases as a team size increases. The larger the team, the more likely

the team will underestimate the tasks associated with a project primarily due to a rise in

the loss of productivity due to extra process controls (Staats et al., 2012). Staats et al.

(2012) state that the coordination complexity, diminished motivation of the team, and

increased conflict within the team negatively affect productivity. Additionally, the

increased overhead of team coordination negatively adds to underestimation.

Mitigating the planning fallacy. According to Kahneman and Tversky (1977),

there are five steps involved in mitigating the planning fallacy.

1. The selection of a reference to identify a known outcome (Kahneman &

Tversky, 1977)

2. The assessment of the distribution of the reference class such as the range or

average (Kahneman & Tversky, 1977)

3. An intuitive estimation that distinguishes from other cases based on an

expert’s singular information (Kahneman & Tversky, 1977)

52

4. An assessment of predictability or consideration of the potential accuracy of

the estimation (Kahneman & Tversky, 1977)

5. Correction for non-regressiveness in the event the intuitive estimate differs

considerably, or predictability is judged as low (Kahneman & Tversky, 1977)

Additionally, Buehler, Griffin, Lam, and Deslauriers (2012) demonstrated that

third-person imagery has positive effects on reducing underestimation. The finding

suggests that when people consider an estimation from a third person's perspective,

optimistic bias is less likely due to the use of an underlying psychological process that

invokes a neutral observer (Buehler et al., 2012).

The planning fallacy and optimistic bias are observed phenomena in software

effort estimation. Jørgensen (2004) states six estimation principles to reduce human

estimation bias:

1. Evaluate estimation accuracy, an increased perception of accuracy can

lead to decreased estimation accuracy (Jørgensen, 2004).

2. Avoid conflicting estimation goals, such as estimation for a bid or

estimates based on best-case scenarios (Jørgensen, 2004).

3. Request justification form estimators, estimators are typically not skilled

in the discovery of estimation weaknesses (Jørgensen, 2004).

4. Avoid information that is irrelevant or unreliable; utilize checklists.

5. Use data from previous projects, apply analytics rather than memory, use

distributional information (outside view) (Jørgensen, 2004).

53

6. Use estimators with expert domain background and a proven track record

of accurate estimations (Jørgensen, 2004).

Estimators can improve estimations by attending training on estimating.

Shepperd, Mair, and Jørgensen (2018) conducted a study concluding that estimations

provided by software development professionals that participated in a workshop reduced

judgment bias. The study found that there are strong effects of anchoring in software

effort estimations, de-biasing workshops are beneficial and reduce the variability in

estimates (Shepperd et al., 2018). Moreover, the knowledge of bias and the understanding

of strategies in reducing bias can improve the accuracy of estimates.

Reviewing the estimations of other software developers has a positive effect on

estimation. Jørgensen (2004) stated that reviewing other software developer’s estimates

triggered reflection (distributional) on how much effort similar tasks required.

Additionally, Jørgensen (2004) indicated that developers tend to rely on an inside view

and their memory rather than background information such as distributional completion

times for similar tasks. Estimation models that use historical data remove the potential

bias from those that do not consider previous estimates on similar tasks.

People make more realistic predictions when they reflect on previous experiences

to inform their predictions. The outside view or reflection in prior experiences is usually

more accurate as it bypasses political and cognitive bias (Fridgeirsson, 2016). People also

focus on the details of the specific case rather than distributed information about a related

set of cases (Buehler et al., 2010). An inside view leads to a narrow focus, thus

disregarding additional information such as past experiences of similar tasks (Zhu et al.,

54

2019), and most individuals and organizations tend to focus on the inside view

(Flyvbjerg, 2006). The propensity to focus on an inside view results in the planning

fallacy.

Andersen, Samset, and Welde (2016) offered suggestions to improve estimations,

including (a) transparency, (b) careful examination of estimations based on uncertainty

analysis, (c) increased provisions for scope changes and unspecified contingencies, (d)

the utilization of reference projects in creating estimates, (e) third-party review of

estimates, and (f) attention to estimates formulated on incentives. Wiese et al. (2016)

conducted a study on backward planning to counter optimistic bias. Wiese et al. (2016)

described backward planning as starting a plan at the end and working through the

required steps in reverse chronological order. Breaking large tasks into smaller subtasks

highlights critical steps that are potentially overlooked otherwise (Wiese et al., 2016).

The study conducted by Wiese et al. (2016) concluded that identifying obstacles is more

apparent when using the backward planning approach and results in less optimistic

predictions.

Reference class forecasting is the outside view based on knowledge of the actual

performance of referenced comparable projects. Flyvbjerg (2006) introduced the concept

of reference class forecasting to improve the inaccuracy resulting from bias by

considering the actual performance of similar projects, thereby bypassing the effects of

optimistic bias and strategic misrepresentation. Flyvbjerg (2006) described three steps in

reference class forecasting.

55

1. The identification of similar projects that are broad enough to be statistically

meaningful and narrow enough to be comparable (Flyvbjerg, 2006)

2. The establishment of a probability distribution within the reference class to

add statistical meaning (Flyvbjerg, 2006).

3. The estimator uses a comparison of a project with a reference class

distribution to establish a more likely outcome for the specific project. The

outside view provides a mechanism to bypass cognitive bias (Flyvbjerg,

2006).

Reference class forecasting attempts to bypass human bias by relying on historical

data from similar past projects as a guideline for predicative estimations. An accepted

mitigation strategy for optimistic bias is Flyvberg’s reference class forecasting that was

developed and based on Kahneman and Tversky’s outside view (Prater et al., 2017).

Reference class forecasting is the systematic method for using an outside view when

creating forecasts of similar projects rather than focusing only on the project at hand

(Fridgeirsson, 2016). Reference class forecasting has a positive effect on accurate

estimations as it considers an outside distributional view.

 Empirical testing supports the effectiveness of reference class forecasting in

reducing time and cost overruns in large projects (Wiese et al., 2016). Reference class

forecasting improves effort estimation accuracy in the initial stages of planning

(Fridgeirsson, 2016). Shmueli et al. (2016) found that software effort estimators can

mitigate the effects of the planning fallacy by using reference information about historical

completion times and by having the estimator adopt the roles of a consultant, both of

56

which are outside views. The consideration of historical data is more likely to bypass a

cognitive bias in decision making (Féris, Zwikael, & Gregor, 2017). However, learning

from previous estimation mistakes does not reduce prediction bias when the current task

differs from the previous task, although task similarity reduces bias (Thomas & König,

2018). Accurate estimations using reference class forecasting requires task similarity.

Flyvbjerg et al. (2018) claim that cost overrun (downstream effect) is a

consequence of underestimation (upstream cause). Flyvbjerg et al. (2018) state that (a)

utilization of reference class forecasting, (b) de-biasing estimations, (c) creating

incentives that encourage teams to stay on budget, and (d) using a team with a proven

track record of delivering within budget mitigate cost overrun. Sting, Loch, and

Stempfhuber (2015) reported in their study of engineers and noted that presenting a

visual cue (red card) when the engineer was having trouble reduced the potential time

overage of a task. Although the red card approach does not mitigate the planning fallacy,

it minimizes the phenomenon's effect (Sting et al., 2015). Engineers that request help

when encountering an unknown, or experienced a risk that was unaccounted for, mitigate

a potential delay in time.

Additional Theories in Effort Estimation

Anchors. The anchoring effect is the misprediction of tasks’ durations due to

false memories regarding previous, similar tasks. As a result of the anchors' influence,

subsequent judgments can be biased even when presented with a value that may not be

relevant to the judgment in question (Løhre & Jørgensen, 2016). Anchoring can create

artificial scheduling heuristics, as it acts as a stake in the ground and becomes the basis

57

from which initial estimates and subsequent modifications originate (Pinto, 2013).

Anchoring is the perceived duration of a previous task that becomes a basis for

establishing a prediction of a future task in which the future task prediction has not been

appropriately adjusted based on differences in the future task (Thomas & König, 2018).

Even professional expertise is not sufficient to avoid the anchoring effect, as the memory

of the anchor comes to mind and often becomes automatically considered despite the

source (Tomczak & Traczyk, 2017). In quantitative estimation, the anchoring effect is a

phenomenon where an initial arbitrary number can affect subsequent numerical estimates.

Although anchoring is typically related to numerical quantifiers, nonnumerical anchors

have an adverse effect as well (Jørgensen, 2016).

Lorko, Servátka, and Zhang (2019) evaluated the effects of anchoring on

estimations and provide evidence that numerical anchors influence duration estimates and

that anchors continue to persist if estimators do not receive feedback. Results of the study

suggest that when estimators are isolated from potential biasing information, they review

historical estimation information, and by making the estimators aware of estimation

mistakes, the effects of anchoring are reduced (Lorko et al., 2019). Additionally,

Shepperd et al. (2018) concluded that the anchoring had a significant adverse effect on

software development estimation. However, providing training to estimators on the

impact of bias suggest a reduction in the anchoring effect (Shepperd et al., 2018).

Thomas and König (2018) propose that estimators can reduce anchoring when they

consider performance on previous tasks and have experience completing previous similar

tasks.

58

Subsequent tasks are affected by the anchoring of an initial task. A bias

established in the first task can serve as an anchor for the tasks that follow (Roy, Burns,

& Radzevick, 2019). Even when using anchored values that are not reasonable, the

anchoring effect still exists (Tomczak & Traczyk, 2017). Additionally, Løhre and

Jørgensen (2016) stated that anchors negatively affect the accuracy of software

development estimation, even if the anchors are implausible or unrealistic. However, they

also noted that software developers with more experience are affected less by anchoring

(Løhre & Jørgensen, 2016).

Optimism bias. Optimism bias is the tendency to underestimate or ignore the

probability that an adverse event will occur. Kahneman and Tversky (1977) identified

optimism bias as a behavioral characteristic of underestimation. Prater et al. (2017)

identified optimism bias as a significant cause of unrealistic project schedule

development. Optimism bias is the belief that there are fewer project risks and an

assumption of a more favorable outcome, even in the face of historical information that is

contradictory (Pinto, 2013). Optimistic bias can result in underestimation of task effort as

unforeseen events are not considered or acknowledged.

Prater et al. (2017) state that optimism is, by its nature, a positive human trait that

sets us apart from other species. Additionally, Prater et al. (2017) indicate that most

research on optimistic bias concludes that reference class forecasting and the outside

view are the most effective strategies for mitigating optimistic bias. People are prone to

optimism and perceive that their future as more positive than another person (Polonioli,

2016). Evidence suggests that task complexity increases; underestimation becomes more

59

apparent (Lévy-Garboua, Askari, & Gazel, 2018). Additionally, people learn to be

overconfident faster than they learn their actual ability (Lévy-Garboua et al., 2018).

People tend to be more optimistic than pessimistic. Lovallo and Kahneman (2003)

state that the inclination for over-optimism stems from an exaggerated perception of our

talents, a misunderstanding of the degree of control we possess, the downplaying of the

possibility of uncontrolled events, and the understatement of the probability of risk.

Additionally, Lovallo and Kahneman (2003) identify anchoring and organizational

pressure promoting a sense of optimism. Mitigation strategies include the utilization of

reference class information and forecasting using an outside view (Lovallo & Kahneman,

2003). Francis-Smythe and Robertson (1999) state that there is evidence of a correlation

between time management skills and an accurate estimation of effort. People who

perceive themselves as good managers of time provide more accurate estimates than

those who do not see themselves as good managers of time.

Optimistic bias is more prevalent in the estimation of one’s effort. Many studies

on human judgment prove that people are generally over-optimistic in predicting their

performance (Jørgensen, 2004). Buehler et al. (1994) concluded that people have a

propensity to underestimate their effort but not the effort of others. People tend to focus

on plan-based scenarios rather than on past experiences (Buehler et al., 1994). They are

likely to dismiss past poor performance under the belief that others caused previous

problems and, therefore, do not warrant serious consideration (Buehler et al., 1994).

Additionally, Yamini and Marathe (2018) claim that optimism bias can harm employee

60

job satisfaction and increase job-related stress because of unrealistic and prolonged

completion times.

Optimistic bias is a result of estimators having an overoptimistic view of essential

project parameters. Wiese et al. (2016) conducted a study on backward planning as a

strategy to counter optimistic bias. Backward planning involves starting a plan at the end

and working through the required steps in reverse chronological order (Wiese et al.,

2016). Wiese et al. (2016) suggested breaking larger tasks into smaller subtasks to

highlight critical steps that are otherwise potentially overlooked. The study concluded

that people more readily identified obstacles when the backward planning approach is

utilized and results in less optimistic predictions (Wiese et al., 2016). In an overview of

agile software development methods, according to Osman and Musa (2016), combining

estimation techniques may reduce optimism in the estimation of software effort.

Overestimation of one’s abilities has a direct effect on early phase estimates.

According to Andersen et al. (2016), initial estimates by the person requesting the project

are prone to bias. Usman et al. (2018) conducted a longitudinal case study concluding

that the underestimation as a result of optimistic bias is typical in both the software

analysis phase and the quotation phase. Compounding the establishment of effort

estimations, the development of software is not always straightforward. Thus, the bias in

software development estimation can occur and cannot be prevented entirely (van Vliet &

Tang, 2016). Optimistic bias is the phenomenon of focusing on the best-case scenario and

not considering potential risks, unforeseen events, or setbacks.

The hiding hand. The hiding hand is the phenomenon in which a person takes on

61

a project with little to no knowledge or consideration of future obstacles. The theory

proposed by Hirschman (1967) claims that once a project is underway and encounters

obstacles, the creative action occurs, and positive results emerge. The hiding hand

suggests that estimators tend to be overly optimistic, and poor planning can make

decision-makers believe that projected costs are lower than the actual cost (Hirschman,

1967). However, underestimations increase creativity to overcome obstacles that are not

planned or foreseen and to think out of the box, and resultingly, positive results are

accidentally achieved (Ika, 2018). The principle of the hiding hand can benefit projects as

over-optimism can promote creativity.

Essentially, Hirschman (1967) stated that the hiding hand is the underestimation

of both costs and benefits in project appraisals. Unexpected circumstances create acts of

innovative problem-solving (Anheier, 2016). The hiding hand proposes that planners tend

to be overly optimistic and believe themselves to be at less risk of experiencing negative

consequences than are others (Ika & Söderlund, 2016). Hirschman (1967) proposed that

the hiding hand is beneficial, as it stimulates creativity and problem-solving. Human

ingenuity overcomes difficulties. It can often provide unexpected benefits by justifying

projects that may otherwise not be undertaken had the early difficulties been better

understood (Lepenies, 2018; Room, 2018). The hidden hand's principle concept is that

optimism caused by ignorance of difficulty can lead to projects that otherwise might not

have been started had the real challenges been known.

Contradictory Theories

Malevolent hiding hand. Flyvbjerg (2016) disputed Hirschman’s (1967) concept

62

of the hiding hand. Flyvbjerg (2016) argued that rather than a benevolent hiding hand, a

malevolent hiding hand is more typical and pervasive. The malevolent hiding hand, as

described by Flyvbjerg (2016, 2018), proposes that creativity does not overcome cost

overruns and difficulties and that benefit overruns are much less prevalent than cost

overruns. According to Flyvbjerg and Sunstein (2015), the driving forces of the

malevolent hiding hand are ignorance, psychology, and power: ignorance of the

knowledge of the problem faced; psychology regarding initial optimism; and deliberate

underestimations to improve chances of project approval and funding (Flyvbjerg &

Sunstein, 2015). The hiding hand is a phenomenon of unexpected circumstances invoking

innovative problem solving (Hirschman, 1967). In contrast, the malevolent hiding hand is

the knowledge of the potential of unforeseen circumstances yet disregards or hides the

consequences (Anheier, 2016). Flyvbjerg (2016, 2018) stated that the hiding hand is less

common than Hirschman theorized, and that optimism bias, cost underestimation, and

benefit overestimation are more prevalent. Jørgensen (2014) indicated that

underestimation is evident in competitive price markest as lower estimates are more

likely to win contracts providing further evidence intentional estimation inaccuracies.

Strategic misrepresentation principle. Flyvbjerg (2013) states that estimates in

the initial stages of a project are the most critical in determining whether the project will

proceed or not, and be successful. However, many times, forecasts of cost and benefit are

highly inaccurate (Flyvbjerg, 2013). Flyvbjerg (2013) and Parent (2019) indicate that

there are two causes of estimation inaccuracies: optimism bias resulting from the

planning fallacy and strategic misrepresentation. The strategic misrepresentation

63

principle is an intentional underestimation of effort rather than unintentional optimistic

bias. Flyvbjerg (2013) states that strategic misrepresentation is the deliberate

misstatement of project planners' estimations by providing project stakeholders with

estimates that are known to be incorrect. A study conducted by Naess, Andersen,

Nicolaisen, and Strand (2015) interview respondents indicated that strategic

misrepresentation is widespread and results from economic and political reasons.

Additionally, multiple researchers have identified strategic misrepresentation as

problematic in IT projects (Parent, 2019; Shmueli et al., 2016). According to Parent

(2019), strategic misrepresentation in information technology projects stems from the

fear that if project approvers knew the actual costs upfront, they would never approve the

plan.

The principle of strategic misrepresentation refers to the intentional incorrect

calculation of facts in favor of political or personal interests. Flyvbjerg (2018) stated that

there are often political motivations in the underestimation of projects regarding the

strategic misrepresentation principle. Underestimation can be motivated to ensure

funding for projects from top management (Pinto, 2013). This strategic underestimation

is also the result of psychological, political, and economic factors (Andersen et al.,

2016). Misrepresentation can occur when forecasters provide information that

intentionally overestimates the benefits or underestimates the effort of a project

(Fridgeirsson, 2016). The presence of strategic misrepresentation rather than optimistic

bias is more common in projects where political pressure is high (Flyvbjerg, 2006).

Planners and promoters underestimate costs and overestimate benefits to increase the

64

likelihood that the project will gain financial backing and approval.

Parkinson’s Law. Deadlines can influence individual performance. Parkinson’s

law is the phenomenon that work expands to fill the time that is available for its

completion (Brodsky & Amabile, 2018; Jørgensen, 2014; Kim & Nembhard, 2018). The

observed phenomenon of Parkinson’s law is that work rates increase as the remaining

time shortens and that deadlines are known to increase productivity as the availability of

time decreases (Izmailov, Korneva, & Kozhemiakin, 2016; Kim & Nembhard, 2018).

Thus, when deadlines are further away, work speed is slower than work speed as the

proximity to the deadline becomes closer (Kim & Nembhard, 2018; Kim J. E.,

Nembhard, & Kim J. H., 2016). Considering the phenomenon of Parkinson’s law, tasks

are less likely to finish early and, more likely, to finish on time.

In support of the concept of Parkinson’s law, two pitfalls may exist to completing

a task early. The excess time may be used to gold plate or improve the product beyond

what is requested or necessary (Izmailov et al., 2016). The second pitfall is that an

overestimation may seem by the administration as excessive (Izmailov et al., 2016).

Thus, workers would have no incentive to ensure that potential future overestimations are

untouched or reevaluated (Izmailov et al., 2016). Brodsky and Amabile (2018) provide

evidence indicating that the work pace increases when tasks have deadlines providing

evidence of Parkinson’s law phenomenon. In the absence of deadlines or time pressure,

people tend to work slower (Brodsky & Amabile, 2018).

The effects of Parkinson’s law may result in tasks taking longer than expected.

According to Zhang, Jia, and Diaz (2018), Parkinson’s law and the phenomena identified

65

as the student syndrome contribute to project delays and increased project costs.

Jørgensen (2014) proposes that estimations may be harmful to a software development

schedule and that postponing or eliminating estimates reduces the effect of Parkinson’s'

law. Additionally, high estimates result is a loss of productivity of the development team

(Jørgensen, 2014). Although overestimation or time buffers may offset schedule

overruns, the result can be detrimental to optimized performance.

Student syndrome. Project or task overruns can result from a phenomenon called

the student syndrome. The student syndrome suggests that in the beginning phase of a

task, urgency is less and gradually increases as the scheduled completion time gets near

(Izmailov et al., 2016). Mirzaei and Mabin (2017) observed that there were three adverse

effects of the student syndrome phenomena. First, due dates and milestones often needed

to be extended (Mirzaei & Mabin, 2017). Second, as the due date or milestones

approached, there is a surge in activity to complete it (Mirzaei & Mabin, 2017). Finally,

once the person or team completes the activity or reach the milestone, there is a downturn

in productive activity (Mirzaei & Mabin, 2017). According to Zhang et al. (2018), the

possibility of early completion of tasks due to the wasting of disposable time allocated for

the task’s completion is lost. The effects of the student syndrome, much like the effects of

Parkinson's law, result in a task completed on time at best and often are delivered late.

Groupthink. Estimations that are group-based can develop groupthink, which

can have a negative result in estimates (Drury-Grogan et al., 2017). Groupthink occurs

when group members strive for unanimity over their personal opinions, thus, altering the

decision trajectory (Kakar, 2018; Riccobono, Bruccoleri, & Größler, 2016). Estimations

66

provided by group discussion likely focus on the success of completed tasks based

primarily on optimism (Buehler, Messervey, & Griffin, 2005). Additionally, inaccurate

estimates can result from the misconception of group consensus resulting from not

considering the views of all team members (Drury-Grogan et al., 2017).

Groupthink also results in the phenomena known as the Abilene paradox. The

Abilene paradox refers to the problem in which each group member incorrectly believes

that others in the group have a specific opinion, leading the group to a public agreement

and private disagreement (Browne, Appan, Safi, & Mellarkod, 2018). Cunha, Moura, and

Vasconcellos (2016) identified the Abilene paradox in software development groups and

described the phenomena where groups make decisions that are contrary to the beliefs or

desires of the individual members. The negative results of groupthink occur when the

members override their personal opinion in favor of unanimity (Riccobono et al., 2016).

The team consensus is not the result of choice, but rather the result of an implied decision

by the team.

Estimating travel time. Although people tend to underestimate the time required

to accomplish a task, when it comes to estimating the time it takes to travel to a

destination, they tend to overestimate. Tenenboim and Shiftan (2018) state that for travel

times, people focus on a subset of times that include variability resulting from previous

delays. Regarding the time it takes to travel, people generally remember longer times

(Tenenboim & Shiftan, 2018). The study indicates that overestimation travel times were

two and a half times more prevalent that underestimating travel times (Tenenboim &

Shiftan, 2018). Although underestimation is a more typical human trait (Prater et al.,

67

2017), in the estimation of travel times, overestimation is more the norm and is contrary

to the planning fallacy phenomena.

Transition and Summary

Section 1 presents an introduction to the problem of accuracy in developing

software development effort estimates. In the literature review, I have discussed some of

the more common software development approaches and estimation methodologies.

Additionally, I have addressed the planning fallacy, a phenomenon describing over-

optimism in task-time estimation. The purpose of this study is to explore strategies to

improve effort estimations in software development. For this study, I have chosen a

qualitative approach to answer the research questions of identifying effective estimation

strategies. The planning fallacy provides the conceptual framework for this study to

describing optimism bias and potential causes. The literature review discusses the issues

of estimation inaccuracy in software development. This study explores strategies to

reduce estimation error and provides the software development community with practical

strategies to mitigate error inaccuracy.

Section 2 describes the procedures and methods used in this study and justifies the

selection of the research method. The next section identifies the researcher's role, a

description of the criteria for participant selection, and a justification of the choice of the

multiple case design. Additionally, section 2 discusses ethical research, the approach used

to analyze the results, reliability, and validity of the findings. Section 3 describes the

results of the study and conclusions drawn from the qualitative analysis of the collected

data.

68

Section 2: The Project

In Section 2, I present the reasons for selecting a multiple case qualitative study

approach for this research. I restate the purpose, explain my role in the research process,

and describe the population from which the sample was drawn. I justify the criteria for

the selection of the sample population and the ethical considerations for the research.

Finally, I describe the data collection technique, the organization and analysis of the data,

and its reliability and validity.

Purpose Statement

The purpose of this qualitative multiple case study was to identify strategies that

agile software development professionals use to provide project managers with accurate

software development effort estimations. The study sample included software

development professionals from five organizations who are responsible for producing

effort estimates for segments of the software development process. At the time of data

collection, the professionals selected for this study used an agile methodology in new and

maintenance software development projects undertaken by small- to medium-sized

companies in South Texas. The potential positive social impact of providing accurate

software development estimates is the possible improvement of the work-life balance of

those involved in software development. A more accurate effort estimation can provide

project managers with the ability to project realistic delivery schedules, thus improving

customer satisfaction. Accurate estimates can also potentially enhance the quality of the

product, lower stress levels and improve the work lives of those involved with the

69

software development and delivery, and provide organizations with a more realistic time

expectation of software delivery.

Role of the Researcher

As the researcher, my role was to recruit the participants for the study; conduct

interviews and collect data; and examine, analyze, and present the findings. According to

Yilmaz (2013), the role of the researcher in a qualitative study is to be objective in

portraying the data, providing impartiality to the study and maintaining an outsider’s

point of view. The researcher’s role also includes gathering data and developing an

understanding of the phenomenon in the study (Starcher, Dzubinski, & Sanchez, 2018).

Blalock (2018) asserted that the role of the researcher is a crucial part of qualitative

research as it shapes the design and analysis of the study. Seixas, Smith, and Mitton

(2018) state that the role of the researcher is to describe the reality of the participant and

solicit an informative description of their experiences. I was personally involved as the

interviewer for the study and conducted all of the participant interviews. In conducting

research, it is essential, especially in data collection through interviews, to recognize the

potential for bias and take appropriate steps to mitigate any prejudice (Yilmaz, 2013). My

goal was to develop interview questions that would provide insight and reflect the issues

of the research problem and to engage with the participants in such a manner as to

acquire the information without affecting the results.

I chose a semistructured interview as the method of acquiring data about the

strategies used by the participants in estimating effort in software development. Brown

and Danaher (2019) defined the semistructured interview as a data collection method

70

whereby the interviewer has a prepared topic and list of questions to ask but which

provides the latitude to elicit open-ended responses from the participants to allow a

conversation to develop that may not be anticipated. The semistructured interview

process provides the researcher with a method to obtain the participants’ perspective and

their experience regarding the research topic (McIntosh & Morse, 2015). Drury-Grogan

et al. (2017) indicated that researchers commonly record semistructured interviews,

follow up on insights derived during the interview, and transcribe the recording for

analysis. I conducted and recorded the interviews and gathered the data while consciously

trying to avoid the introduction of bias, personal beliefs, and any preconceptions about

the study. Once I completed the interview process, I transcribed the recordings, looked

for common trends and patterns in the data, and followed up on any information that may

have required clarification.

I recognize that my previous experience as a software development manager and

project manager has the potential to inject bias into the study. I have worked with

software development teams for over 15 years, and I selected the area because of my

familiarity with the domain. Being aware of personal opinions and predispositions will

help prevent bias in a study (Cypress, 2017; Fusch, Fusch, & Ness, 2018). Recognizing

that previous personal experience could influence the interview process, I attempted to

structure the research questions such that the questions would not lead the participants or

influence their responses. Additionally, I did not have any prior relationships with the

participants or with the organizations in which the participants worked. To reduce bias in

71

this study, I did not make the participants aware of my previous experience as a software

development manager.

Participation in the study was voluntary, and I protected the identity of the study

participants and their organizations. I conducted this study in an ethical manner using the

National Institutes of Health’s guidelines and principles for ethical research. The

Institute’s guidelines include respect for subjects, establishment of human subject

protections, the safeguarding of participants’ privacy and confidentiality, and provisions

for full disclosure (National Institutes of Health, n.d.). Additionally, I adhered to the

principle tenets of the Belmont Report: respect for persons, beneficence, and justice (The

National Commission for the Protection of Human Subjects of Biomedical and

Behavioral Research, 1979). I conducted this study as an independent observer, gathering

data through interviews and documents. I recorded and transcribed verbatim the

interviews conducted. Additionally, I documented any behavioral actions, participant

reactions, and unconscious body responses of the participants during the interviews.

The purpose of the interviews was to gain knowledge by exploring the

experiences and perspectives of the participants. A well-developed interview protocol is

an essential element in getting useful data (Ismail, Ismail, & Hamzah, 2018). An

interview protocol provides the researcher with guidance to remain focused during the

interview (Arsel, 2017). Arsel (2017) observed that an interview protocol offers control

to the process and a framework for translating the research questions into a natural

conversation. Additionally, an interview protocol minimizes digression during the

interview (Arsel, 2017). According to Fusch et al. (2018), an interview protocol can

72

reduce bias and mitigate the interviewer’s personal opinion regarding the research topic

in the data collection process. I used an interview protocol as a framework to maintain

uniformity in my interview process, mitigate bias, and ensure the interview questions

followed a consistent pattern. Use of an interview protocol allowed me to establish a

consistent course of action and uniform procedures throughout the data collection

process.

Participants

In a qualitative study, the researcher must determine the criteria for participant

selection to meet the objectives of the study. Participant selection and identification are

essential criteria in providing breadth, depth, and saliency for authentic analysis to give

validity to the study (Saunders & Townsend, 2016). Windsong (2018) stated that

qualitative researchers do not use random samples as there is a logical selection of

participants and location based on a specific strategy. Qualitative interviewing requires

careful selection of participants and ensuring the participants know about the topic to

ensure rigor in the study (Starcher et al., 2018). Qualitative research participant selection

involves seeking out participants who have explicit knowledge and experience of the

phenomena under examination (Flannery, 2016). The participants in this study were

software development professionals from small- to medium-sized companies who engage

in providing effort estimation. The participants had at least five years’ experience

working in a software development team either as a developer, manager, or project lead.

The selected participants had familiarity with techniques for estimating effort and

providing estimates considered by their project or program manager as accurate.

73

Inclusion in this study required confirmation of all participants’ knowledge, experience,

and utilization of strategies in accurately estimating development efforts.

I identified companies engaged in agile software development in South Texas

through searches in my LinkedIn network. Ponelis (2015) and Stokes, Vandyk, Squires,

Jacob, and Gifford (2019) identify that the use of personal networks as a valuable source

for subject matter experts and research participants. Peticca-Harris, DeGama, and Elias

(2016) indicate that a useful method to gain access to potential individuals for study

participation is by contacting employees or managers of companies to assist in providing

potential study candidates. I contacted the identified companies and requested permission

to interview team members that are active in software development. Once I identified

potential participants, I prescreened the candidates to affirm that they had estimation

knowledge and have successfully used strategies in accurately estimating software

development efforts. The participants answered “yes” to all the prescreen questions (see

Appendix A) for inclusion in the study. I sent out invitation e-mails (see Appendix B) to

candidates selected from the prescreening process to inform them of the purpose of the

study. I contacted each selected participant by telephone. I confirmed their knowledge

and experience in the estimation process and had strategies for accurately estimating

effort for software development requests. Additionally, the participants selected have

indicated that estimation accuracy is an essential element in software development

planning, forecasting, and cost estimating. The participants affirmed that the project or

program manager considers their estimation strategies as accurate.

74

Establishing rapport with the participants is crucial during the interview to create

trust and to enable the respondent provide a rich and detailed response to the interview

questions (McGrath, Palmgren, & Liljedahl, 2018). Arsel (2017) advises starting the

interview dialog with warm-up questions such as “How has your day been” and “Tell me

about yourself,” as well as sharing with the participants your personal story regarding the

project to build rapport. Brown and Danaher (2019 suggest that the researcher establish

an open dialog in the interview to develop a rapport with the participants and gain trust

by showing a genuine interest in the participants’ opinions. Additionally, using

responsive listening techniques such as verbal and non-verbal cues to express assent build

rapport (Brown & Danaher, 2019). I conducted the interviews face to face and through

online meetings with the participants to establish a rapport to gain their trust. Once I

established rapport with the participants, I began with a brief discussion of the study and

confirmed the participants' consent. I allowed the participants to ask questions regarding

the intent of the research and provided them with an opportunity to resolve any

uncertainties about the interview questions or process. I discussed with each participant

the confidentiality and protection of any identifying data that I may obtain to ensure their

privacy and anonymity during and after the interview.

The interview location for the participant was free of distraction and interruptions.

Flannery (2016) indicated that the interview setting should be the natural setting in which

the phenomena occur, and suggested that a relaxed environment will allow participants to

feel at ease during the interview. Before conducting the interviews, I arranged to meet

each participant to provide them with the study’s background. Each participant was

75

allowed to suggest a location or online communication application that they would find

most comfortable. I conducted the interviews at a time indicated by the participants to not

disrupt the participant’s work schedule.

Research Method and Design

This study's focus was to investigate strategies for estimating effort accurately in

software development using a qualitative approach. In the initial stage of a study, the

researcher should select the most appropriate method to adequately answer the research

question (Venkatesh, Brown, & Sullivan, 2016). A qualitative method can offer an

understanding of organizational behavior (Jonsen, Fendt, & Point, 2018). The qualitative

approach provides a powerful tool for the researcher to analyze content, team dynamics,

and processes through the narrative of individuals (Köhler, Smith, & Bhakoo, 2018). This

study utilized a qualitative multiple case design to address the research questions. In the

following section, I will establish the reasoning that undergirds the study’s method and

design choice.

Method

There are three types of research methods commonly employed in social sciences

research: qualitative, quantitative, and mixed methods. Each has distinct features,

benefits, and drawbacks. The qualitative approach provides experiences of the

participants, an understanding of actions and events, and an interpretation of processes

(Aagaard & Matthiesen, 2015). Researchers use a qualitative method to answer the

question of “what,” “how.” or “why”’ (McCusker & Gunaydin, 2015). A core strength of

qualitative research is the variety of approaches it permits, the types of data that can be

76

analyzed, the context of the data, and how it is treated or coded (Köhler et al., 2018). As

this study explored strategies through the interpretation of the processes of the

participants, I chose the qualitative method as the most appropriate approach as the

objective of this research is to report on the “what,” “how,” and “why” of effective

estimation strategies used by software development professionals. I selected a qualitative

multiple case design to gain insight into effective estimation strategies that software

development professionals use in providing accurate estimations of effort.

Although I considered other research methods, a qualitative methodology was the

most appropriate choice. Qualitative methods use natural language, interpretation, and

human expression as data for analysis and discovery of findings (Levitt et al., 2016). A

qualitative researcher's goal is to provide a clear and vivid portrayal of phenomena

through the gathering and development of data (Levitt et al., 2016). According to Collins

and Stockton (2018) and Müller and Klein (2019), the qualitative research process begins

with the identification of the problem or phenomenon. Following the identification, the

researcher identifies relevant literature and determines a conceptual framework,

participant selection, the role of the researcher, and an appropriate analytical process

(Collins & Stockton, 2018). Finally, the researcher presents the findings and concludes

with a discussion that relates to and answers the initial research question (Collins &

Stockton, 2018). The qualitative approach provides an appropriate method to answer the

question of this research as I used interviews to gather data followed by a qualitative

analysis of responses as they may apply to the research questions.

77

The study I conducted engaged participants to uncover successful strategies for

accurate estimation. Starcher et al. (2018) stated that qualitative research does not begin

with a theory, but instead constructs meaning through an understanding of the

phenomenon under exploration. One of the advantages of qualitative inquiry is that the

methodology provides a tool to capture participant perceptions of the phenomenon, and

these perceptions are the reality of the perceiver (Starcher et al., 2018). Levitt et al.

(2016) summarized the qualitative process as the development of meaning via the

researcher's reflection and the creation of conclusions from the meaning. Kelly (2017)

states that the qualitative method is often exploratory to investigate the participants'

opinions and viewpoints. I selected the qualitative approach as I conducted interviews to

explore and understand strategies based on the evidence gained from the participant

interviews. The interviews captured the participants' perceptions, realities, and a clear

description of the processes and strategies that they use to provide accurate effort

estimates.

An interview is a standard data collection process in qualitative research. It is

uncommon for a qualitative researcher to conduct studies in a laboratory setting

(Flannery, 2016). The researcher is the primary instrument in the data collection and

interacts with the participant to construct an understanding through the gathered data

(Starcher et al., 2018). The qualitative semi-structured interview method provides the

researcher with tools to capture data in critical areas while still providing the flexibility to

gain participants' personalities and perspectives (Barrett & Twycross, 2018). To

understand effective strategies, I conducted semi-structured interviews to gain insight and

78

understand effective strategies that the participants detailed. I scheduled and conducted

the interviews in an environment that was comfortable, familiar, and convenient for

participants.

I did not choose a quantitative method as the results of this research are inductive

rather than deductive. Researchers select a quantitative method for the construction and

identification of causally related entities, the establishment of correlations, and the

utilization of numbers for the data material (Aagaard & Matthiesen, 2015). Quantitative

research reaches conclusions deductively, whereas qualitative does so inductively (Kelly,

2017; Starcher et al., 2018). Researchers use the quantitative research method to provide

statistical generalization (Carminati, 2018) and to express the research findings using

numbers (McCusker & Gunaydin, 2015; Starcher et al., 2018). Quantitative methods

differ from the qualitative methods, which answer the question of “how” and “why,”

whereas the quantitative approach answers the question of “how many” and “how much”

(McCusker & Gunaydin, 2015). To uncover effective strategies, I asked the participants

the question of “how” and, thus, chose not to use a quantitative method as it would not be

an appropriate method to answer my research question. The quantitative approach was

not a viable option to answer my research question as the data is descriptive rather than

numerical. Additionally, my research question could not be answered by a statistical

generalization.

The purpose of this research was to uncover effective estimation strategies

through an interview process, which did not involve causality or correlations. The

research questions relating to effective estimation strategies required interviews for data

79

collection. In quantitative research, researchers know what they are looking for, and the

participants usually are kept separate from the researchers (McCusker & Gunaydin,

2015). The quantitative study begins with specific information and works towards a more

general understanding to arrive eventually at a conclusion or explanation (Starcher et al.,

2018). My research began with a question to explore effective strategies, and I did not

have more than a general preconception of results. Additionally, I had direct contact with

the participants of this study. Therefore, I elected not to use a quantitative method for my

research as the qualitative method would not have provided conclusions to answer the

research question.

A mixed-method approach combines quantitative and qualitative methods to

analyze both narrative and numerical data (Venkatesh et al., 2016). The mixed-method

approach is most commonly used by initially exploring the topic qualitatively, followed

by a quantitative component, which is usually the primary research method (Green et al.,

2015; McCusker & Gunaydin, 2015). The mixed-method approach combines a

qualitative dimension to provide a deep meaning and a quantitative aspect to provide a

statistical analysis (McCusker & Gunaydin, 2015). Although this study presents

qualitative descriptions through evidence gained in an interview, there was no

quantitative numerical analysis of the participant’s description of effective effort

estimation strategies. Therefore, since my study was inductive and exploratory, and did

not contain a numerical or statistical component, the mixed method would not be an

appropriate choice.

80

Research Design

A qualitative researcher can select from multiple qualitative study designs: case

study, ethnographical, narrative, and phenomenological. Although each study design has

merit, I chose the multiple case as the most appropriate design to answer my research

question. According to Stake (2006), researchers use multiple case designs to study

phenomena in different environments. Awasthy (2015) posited that case studies cover the

phenomenon and context of the characteristics of organizational processes. Additionally,

the evidence in multiple case design is often considered more compelling and robust than

a single case design (Yin, 2014). As this study will uncover effective strategies

(processes) in different organizations (environments), I selected the multiple case study

as my research design.

Case studies are an appropriate design when the phenomenon is broad, and a

holistic, in-depth investigation is needed (Dasgupta, 2015). Ponelis (2015) asserts that the

case study designs are useful in applied disciplines to study processes, problems, or

programs to understand the phenomena and improve domain practice. Researchers use

case studies to gatherer participant interpretations, report on their constructed reality or

knowledge obtained through the investigation (Yazan, 2015). The case study design and

other qualitative designs do not attempt to manipulate the phenomena or the study

participants, but instead evaluate the results of naturally occurring activities or processes

(Dasgupta, 2015). Dasgupta (2015) also claims that the researcher must study the

phenomenon in the context in which it occurs. I selected the multiple case design as my

study observes, analyzes, and interprets participant responses but did not manipulate or

81

change them. My research examined various organizations (multiple cases) to identify

effective software estimation strategies by investigating strategies and processes, as

described by the participants.

I selected a multiple case design to gain insight and understanding of effective

estimation strategies. For both single case and multiple case designs, researchers use

observations, interviews, interpretation, and coding as the most common procedural

elements (Stake, 2006). According to Dasgupta (2015), researchers use a multiple case

design to study and identify similarities and differences across many instances.

Researchers use case studies to focus on individuals’ real-world perspectives regarding

their home or work environment and their processes (Yin, 2014). Yin (2014) indicated

that case studies provide answers to determine “how” and “why.” Green et al. (2015)

suggest that more resources and time are required in multiple case studies, but may offer

more useful context in various sites. I used numerous participants and organizations to

gain various perspectives to identify similarities and differences to processes and

strategies in providing accurate software development efforts.

For this study, the process was to interview multiple participants from multiple

organizations, interpret the results through a coding process, identify commonalities, and

report on the findings from the data collected. The multiple case design provided data to

understand and report on effective strategies in organizations’ estimation processes.

Awasthy (2015) indicated that multiple case designs uncover the phenomenon and the

context of essential characteristics of organizational processes. According to Llerena,

Rodriguez, Castro, and Acuña (2019), the multiple case study is useful for extending the

82

information of the phenomenon, gathering more data than a single case, the examination

of the phenomenon in numerous contexts, and addressing each case separately to describe

conclusions for the research as a whole. Researchers use a multiple case design to draw

conclusions based on similarities and differences across the cases (Dasgupta, 2015). I

selected a multiple case design to identify estimation strategies from multiple

organizations to conclude numerous perspectives. The multiple case design choice

provided the data to gain an understanding of accurate estimation strategies, which makes

the multiple case design the most appropriate option to answer my research question.

In an ethnographic design, researchers observe the behavior and culture of

participants within a group. The ethnographic design provides a tool for the researcher to

interpret a group's shared values and beliefs through observation in which the researchers

themselves are immersed (Creswell & Poth, 2018). Moser and Korstjens (2018) state that

the ethnographic study is a descriptive and narrative account of a specific culture.

Ethnography is the study of groups of people and cultures most commonly used by

researchers in anthropological studies (Awasthy, 2015). This study did not investigate the

culture of the participants or their shared values and beliefs. I focused the study on

participants who are engaged in a professional domain and not selected based on their

culture. Therefore, the ethnographic design would not be appropriate for addressing the

research question of this study.

The narrative design describes a story or explores the life of a participant.

Creswell and Poth (2018) and McAlpine (2016) agree that a narrative design is used to

collect stories and lived experiences of an individual. In the narrative inquiry, participants

83

are encouraged to tell a story about their lives through dialogue with the researcher

(Barrett & Twycross, 2018). The focus of this study was to uncover strategies that

required an understanding of the participants' processes and perspectives rather than their

individual stories. This study is not concerned with the life stories or lived experiences of

the participants, but rather with accurate and practical strategies that the participants use

to estimate effort in software development. Thus, using a narrative approach would not

answer my research question; therefore, I did not select it as the design.

The phenomenological design describes the ordinary meaning of the experiences

of several individuals. Although the participants' interpretation is essential to answering

the research question, I did not choose the phenomenological design for this study. The

phenomenological design expresses the lived experiences of a common phenomenon of

the participants and the interpretation of the lives that they lead (Alase, 2017; Ellis,

2016). The purpose of the study was to discover effective strategies and not how the

participants experience daily life. The phenomenological approach differs from the case

study design as a case study approach uses themes and categories. In contrast, the

phenomenological design tells a story through the lived experiences of the participants

(Alase, 2017). A phenomenological study describes a collective experience of the

participants in sharing phenomena and concludes with the essence of “what” and “how”

the participants experienced it (Creswell & Poth, 2018). Although my research question

was answered by the participants describing “what” and “how” of estimation strategies, I

did not use the phenomenological design approach as it was not the intention to

84

understand the shared or lived experiences of the participants, but instead to understand

the strategies used by the participants in providing accurate estimates.

Moser and Korstjens (2018), and Malterud, Siersma, and Guassora (2016) stated

that the researcher obtains data saturation when no new analytical information is

discovered. Boddy (2016) asserts that data saturation can only be achieved with two or

more cases, as one single case is never enough. Boddy (2016) further states that a

researcher can achieve data saturation with as little as six in-depth interviews. According

to Fusch et al. (2018), the use of multiple sources of data enhances data saturation. The

multiple case design was selected to explore and analyze effective estimation strategies

from multiple individuals in various groups to understand the differences and similarities

of the estimation strategies. To achieve saturation, I selected five organizations and

interviewed two individuals from each organization to achieve data saturation.

Additionally, I reviewed documents from each organization that provided data on

estimation strategies.

Population and Sampling

The population selected for this research was software development professionals

from multiple teams in multiple organizations located in South Texas. South Texas has

three major cities, San Antonio, Austin, and Houston, each of which has many companies

that employ internal teams to develop software for internal use. The United States

Department of Labor reports that over 32,000 application software developers worked

within San Antonio, Austin, and Houston areas in 2018 (“Bureau of Labor Statistics -

Software Developers, Application,” 2019). In conducting research, it is essential to

85

identify participants who can provide depth, breadth, and quality of data for accurate

analysis and reporting (Saunders & Townsend, 2016). Determining the sample size in

qualitative research is based on the researcher's judgment, as too large a sample can affect

the depth of a study, and too small of a sample may not produce data saturation ((Boddy,

2016; Carminati, 2018). Boddy (2016) states that a sample size of six can be used to

reach data saturation provided the researcher conducts in-depth interviews. Yin (2014)

indicates that six to ten cases are sufficient to produce compelling evidence. The sample

size of this study was 10 participants from multiple different development teams. Each

participant had at least five years’ experience in estimating software development effort.

Additional criteria for inclusion in this study are that the participants are currently in an

active role in software development, the product that is under development requires

estimating, and the participant has the knowledge of and is currently working with

strategies that are effective in providing accurate estimates. This study is not trying to

achieve certainty, but rather, it is exploratory.

There are two primary types of sampling methods; probability and nonprobability

(Rahi, 2017; Sarstedt, Bengart, Shaltoni, & Lehmann, 2018). Although probability

sampling is a viable method for establishing a representation of a population (McCusker

& Gunaydin, 2015; Sarstedt et al., 2018), I selected a nonprobability approach.

Nonprobability sampling is a non-randomized intentional selection of participants based

on subjective methods in the inclusion decision (Etikan, Musa, & Alkassim, 2016). A

distinction of the probability sample approach is that each person has an equal chance of

inclusion in the study (Rahi, 2017). My study reports solely on strategies that provide

86

accurate effort estimates rather than all strategies. Thus, I have chosen a nonprobability

method as the best method for this research as I selected participants based on a

predetermination that the participants meet the criteria of knowing and using an accurate

estimation strategy.

I have chosen the judgment or purposeful nonprobability method for this study.

The judgment or purposeful approach allows researchers to use their judgment in

selecting the participants (Rahi, 2017). The purposeful sampling selection method is

based on the researcher's assumed judgment and expertise to select participants who are

deemed appropriate and will provide data for analysis of the effect under study (Sarstedt

et al., 2018). Purposeful sampling is the selection and intentional inclusion of participants

with the knowledge and experience to assist in the analysis and interpretation process

(Twining, Heller, Nussbaum, & Tsai, 2017). Tong and Dew (2016) state that a purposive

sampling strategy is a deliberate choice of participants who can articulate perspectives

pertinent to the research question. The purposeful sampling method involves selecting

participants based on the knowledge of the researcher (Wilson, 2016). Before including a

participant in the study, using a purposeful selection method, I conducted preliminary

interviews (see Appendix A) to establish that the participants had knowledge of and are

currently using an effective and accurate estimation strategy. The participants have to

answer “yes” to all the preliminary questions listed in Appendix A to confirm that they

align with my research question for inclusion in the study. As I have a background in

software development and estimating the effort required to complete various goals, I also

relied on my professional judgment to confirm the use of a successful estimation strategy.

87

The purpose of this study was to gain an understanding of effective and accurate

strategies in software development effort estimation. I purposely selected participants that

meet the qualification for inclusion to this study. Sarstedt et al. (2018) state that

purposeful sampling is an appropriate selection method when the researcher analyzes

results for an improved understanding rather than for the generalizability of results.

Purposeful or judgment sampling is the deliberate choice of participants based on criteria

or qualities the subjects possess (Etikan et al., 2016). Purposeful sampling is the selection

of individuals who are well informed about the phenomena of interest and can

communicate their experiences in a reflective manner (Etikan et al., 2016). I selected the

purposeful expert sampling approach, as I used individuals who have a unique knowledge

of estimation and currently use effective strategies. As the name implies, expert sampling

is the selection of subject matter experts who have previous experience of the subject

matter of the study ((Etikan et al., 2016). Purposeful sampling allows the researcher to

select participants to obtain a comprehensive understanding of the phenomenon with the

expectation that each participant will provide substantial information to the study (Etikan

et al., 2016).

Additionally, purposeful sampling is selecting a limited number of participants

who can provide an in-depth understanding of the phenomena for the researcher to report

conclusions (Yilmaz, 2013). The participants chosen for this study were chosen based on

the prequalification that each understands software estimation and uses accurate

estimation strategies. I ensured that the participants meet the qualifications before

interviewing to minimize the sample size while providing conclusive results using a

88

limited number of individuals. For this study, I interviewed ten qualified participants.

According to Etikan et al. (2016), nonrandom purposive sampling does not need a set

number of participants. Malterud et al. (2016) suggested that small sample sizes can be

sufficient if (a) the aim of the study is narrow, (b) the characteristics of the participants

are highly specific, (c) the researcher has a theoretical background, and (d) the researcher

maintains active communication with the participants. However, the sample size must be

evaluated throughout the research (Malterud et al., 2016). Carminati (2018) states that the

sample size is essential to generalization, as too large a sample inhibits in-depth analysis

while too small a sample does not support saturation or redundancy. A researcher cannot

be sure the chosen sample is generalizable in nonprobability sampling (Wilson, 2016).

Qualitative studies should consider the strength of the information and knowledge gained

from the analysis rather than putting a strong emphasis on sample size (Malterud et al.,

2016). The selection of ten participants provided satisfactory results, as the research

question is narrow.

I carefully selected the participants based on predetermined criteria and will

conduct an in-depth interview to collect a full perspective from each participant. This

study did not attempt to generalize but instead provided me with insight into the usage

and processes of effective and accurate estimation strategies. Additionally, I evaluated

the sample size throughout the investigation to ensure that the data gathered provided

insight and answered the research question adequately.

89

Ethical Research

Before I collected data from the participants of this study, I gained the approval of

the Walden University Institutional Review Board (IRB). The primary purpose of an IRB

is to review the protocols and processes of the research to ensure that no harm comes to

the participants, and sufficient measures are in place to minimize risk (Miracle, 2016).

Alase (2017) further detailed the responsibility of the IRB to ensure that any devices,

techniques, or strategies the researcher uses have the full consent of the research

participants, and the IRB has approved for use. Additionally, the IRB determines if the

risks and benefits are balanced, the recruitment strategies are fair, and the researcher has

sought voluntary consent (Bracken-Roche, Bell, Macdonald, & Racine, 2017). This study

met all legal and ethical requirements established by the Walden University IRB. The

Walden University’s approval number for this study is 12-19-19-0421147.

In addition to obtaining the Walden University IRB approval, I adhered to the

standards outlined in the Belmont Report. Ethical research follows principles that the

researcher should follow to protect the participants from harm. The Belmont Report

defines ethical principles as respect for persons, benevolence, and justice (The National

Commission for the Protection of Human Subjects of Biomedical and Behavioral

Research, 1979). Miracle (2016) described the three principles of the Belmont Report as

a guide for researchers in (a) respecting that people have the right to decide whether they

want to participate, (b) doing no harm, and (d) treating all participants equally.

Throughout this study, I ensured that no harm came to the participants by taking

all safeguards regarding confidentiality. I provided equitable and fair treatment for

90

persons and organizations involved in this study. Additionally, I reminded each interview

participant that the study's involvement was voluntary and that there was no financial or

professional compensation for participation in the research. I informed each participant

that they could withdraw from the study before the analysis phase of the study by

contacting me through e-mail or phone.

All the participants in the study consented both verbally and by signing a consent

form. Brown and Danaher (2019) state that the consent form should be understandable,

informative, and clear to the participant without being vague. Miracle (2016) suggests

that a consent form should include the following components: a) purpose of the study, b)

description of the research procedures, c) potential risks and potential benefits of the

study, and d) an indication that participation is voluntary. Arsel (2017) and Ponelis

(2015) suggest that the interview should include a preliminary discussion to establish

informed consent and that the researcher should inform the participant of any

consequences of participation in addition to obtaining the participant’s signature on the

consent form. The National Commission for the Protection of Human Subjects of

Biomedical and Behavioral Research state in the Belmont Report that the informed

consent should include a statement informing the participant that they may withdraw

from the study (The National Commission for the Protection of Human Subjects of

Biomedical and Behavioral Research, 1979). Before I began the interview, I discussed

the study purpose with each participant, any potential risks, and reminded them that

participation is voluntary. I verified that they understand the consent form and reiterate

91

that they may withdraw from the study at any time during the interview or through e-mail

correspondence or phone call before to the analysis of the data.

Arsel (2017) suggests requesting a signed consent form to ensure the participant

understands the procedures and consequences of participation in the study to avoid any

misunderstanding of involvement in the research. Miracle (2016) states that an informed

consent document should include the purpose of the study, identification of procedures

and risks, and a notice to the individual that participation is voluntary. The Belmont

Report identifies three necessary items for informed consent: (a) the inclusion of

information about the study; (b) the participants should fully comprehend the consent;

and (c) the participants should understand that participation is voluntary (The National

Commission for the Protection of Human Subjects of Biomedical and Behavioral

Research, 1979). I requested that all the participants sign a consent form before the

interview and verbally verify that they understood the consent, procedures for withdrawal

and that they will receive no compensation for involvement in the study.

 Throughout this study, I took precautions to preserve the privacy of the

participants and the organizations that employ them. All information regarding any

indication of the identity of any participant or any organization will be held and stored in

an encrypted folder for five years. I am the only person who will know the identity of the

participants and organizations in this study. At the end of the five years, I will delete the

contents of the folder, and destroy all hard copy data about the individuals or

organizations used in the study. Any data that I publish will not include any personally

identifiable information or information that would identify the organizations that employ

92

them. The published study will only use codes or pseudonyms to identify the participants

or organizations. Using pseudonyms for both the participants and the organization is a

common practice in research (Allen & Wiles, 2016). Data indicating the participants’

gender, race, or any other information that would disclose the participant's identity should

not be used in the study if that information is not relevant for the study (Allen & Wiles,

2016). The study does not include names or the organization that employs them, but,

instead, I identified them using pseudonyms such as participant 1, participant 2 and so on.

Additionally, I will not publish any information that would indicate race, gender, or age.

Before beginning the interviews, I informed each participant of the purpose of the

study, that participation is voluntary, procedures for withdrawing, and that I will

safeguard their identities. Arsel (2017) maintained two tenets for interviewing

participants: to ensure that the participants understand that the answers to the questions,

and for research and do no harm. I verbally discussed with each participant in the study

the intent of the research, their right to opt-out of the study voluntarily, and their right to

confidentiality under all circumstances. I informed each participant that there would not

be any financial or professional compensation for participation. Additionally, I ensured

that each participant fully understood and agreed to the involvement in the study and

provided them with a copy of the consent form.

I informed each participant that the data collected will not be used for any purpose

other than the study. According to Starcher et al. (2018), recorded interviews should be

transcribed verbatim to provide the researcher with analysis for a credible understanding

of the studied phenomenon. I will hold the interview tapes and transcripts for five years

93

in a secured digital container, and no personal information on the data will identify the

interviewees or their responses. After five years, I will delete all the interview records,

recordings, and transcripts. Additionally, after five years, I will shred all field notes from

this study and discard them.

Data Collection

In a qualitative study, researchers can collect data from many sources. Yin (2014)

indicated that traditional sources of evidence are documentation, archival records,

interviews, direct observations, participant observations, and physical artifacts.

Qualitative research relies on three sources for data collection: observation, interviews,

and documents (Kelly, 2017; Starcher et al., 2018). In the following sections, I describe

the instrument I used, my data collection technique, and the method I employed for data

organization.

Data Collection Instruments

I was the primary data collection instrument for this qualitative multiple case

study. Starcher et al. (2018) and Babchuk (2019) state that in qualitative inquiry, the

researcher is the primary data collection instrument. As I was the primary data collection

instrument, I followed the interview protocol found in Appendix C to maintain

consistency across the interviews that I conducted. Ismail et al. (2018) state that the

utilization of an interview protocol increases the interview process's efficacy by ensuring

the researcher attains comprehensive data within the allocated time. Ismail et al. (2018)

further suggest that the researcher conduct a pilot interview to check the effectiveness of

the interview protocol. Conducting a pilot interview provides the researcher with a

94

crucial test of the interview questions and gives the researcher interviewing practice

(Majid, Othman, Mohamad, Lim, & Yusof, 2018). I conducted a pilot interview to gauge

the effectiveness of my interview protocol. Additionally, my pilot interview provided me

with an indicator of the adequacy and completeness of the responses I would receive

from the research participants.

The primary data collection method for this study was semi-structured interviews.

In semi-structured interviews, participants are free to respond to open-ended questions as

they wish, and the researcher can ask supporting questions to explore deeper into the

participant’s reasoning (McIntosh & Morse, 2015). Deterding and Waters (2018) define

semi-structured interviews as open-ended questions that generally follow a logical order

designed to create a dialog between the researcher and the participant. Open-ended

research questions allow the responder to provide an answer that makes sense to them

(Windsong, 2018). The principles of semi structured interviews are that the method helps

a researcher to stay on topic, to construct data, and to guide the discussion (Starcher et al.,

2018). I selected the semi-structured interview data collection method as it allows the

freedom to gain a deeper understanding of the participants perspective using follow-up

questions while still maintaining a structure for the interview process. Additionally, the

semi structured approach provides the participants with the opportunity to answer the

interview questions based on their perspectives.

I asked the participants semi-structured interview questions to explore the

estimation strategies use by the participants as detailed in my interview protocol (see

Appendix C). I used semi-structured interviews with pre-selected participants to produce

95

the data in this study. The semi-structured interview process provides the participant’s

perspective on the research topic (McIntosh & Morse, 2015). Using the semi-structured

interview process, I asked each participant the same questions in the same order to ensure

consistency in the data collection interviews with the participants. I selected the semi-

structured methods to provide a structure for the interview process while giving me the

freedom to gain a more in-depth insight using additional nonpredetermined questions.

To enhance the study's reliability and validity, I reviewed company documents to

supplement and support the information gained in the interview process. Brooks and

Normore (2015) state that documents contain information previously established outside

of the researcher's intervention and adds rigor to the study. Triangulation of the data, such

as interview data and records or documents, help the researcher understand the

circumstances (Ismail et al., 2018). Researchers achieve triangulation through participant

interviews, document analysis, and direct observation (Babchuk, 2019; Fusch et al.,

2018). Once I completed the interview with the participant, I asked permission to

examine any company documents related to the research topic to confirm the estimation

strategy identified by the participant. In addition to participant interviews and document

analysis, I collected field notes to enhance my data collection process.

Throughout the research process, I maintained a reflective journal and field notes

to capture personal thoughts, interpretations, and observations to aid in the

documentation and analysis of contextual information. According to Zulfikar and

Mujiburrahman (2018), a reflective journal is used to organize thinking and provide self-

evaluation opportunities. Researchers use reflective journals to examine their responses

96

to participants, consider the interview questions' effectiveness, and evaluate their

responses to the data they collect (Orange, 2016). Phillippi and Lauderdale (2018)

suggest that interview field notes should include information regarding the setting, the

overall demeanor of the participants noting any nonverbal behaviors, any deviations in

the interview process, critical reflection after the interview, and notes regarding the

interviewer's self-assessment regarding performance. Additionally, I continuously

captured and reflected on the data collection process, interview approach, and personal

interpretations to counter any potential bias. The field notes provided an additional data

source, a more in-depth analysis, and a record of my interpretation of the findings.

Data Collection Technique

Once I received approval from the Walden University IRB, I conducted a pilot

interview to confirm the adequacy of my interview protocol (see Appendix C), and I

began the data collection process. The data collection process consisted of interviews and

document analysis. The most common data collection methods in qualitative research are

participant observations, interviews, and focus groups (Moser & Korstjens, 2018). The

interview technique followed the protocol detailed in Appendix C, and I ensured that the

location and setting were comfortable for the participants. The location of the study can

affect the outcome of the study (Rimando, Brace, Namageyo-Funa, Parr, & Sealy, 2015).

The first few minutes of an interview are critical for allowing the participant to be at ease

and to feel that they can freely discuss the topic and tell their own experiences (Moser &

Korstjens, 2018). I began the interview by introducing myself, reviewing the signed

consent forms with the participants, and providing the participants with an opportunity to

97

ask questions or voice any concerns before the interview begins. Before beginning the

interview questions, I ensured sure the participants were comfortable, receptive, and

ready to be interviewed.

There are advantages and disadvantages of using a semi-structured interview

approach and analysis of organizational documents. The semi-structured interview

process provides the researcher with a method to obtain the participants' perspective and

experience regarding the research topic (McIntosh & Morse, 2015). The semi-structured

interview allows the researcher to follow a listing of questions during an interview while

enabling the interviewer the opportunity to elicit open responses to develop a deeper

understanding of the perspective of the participant (Brown & Danaher, 2019). However,

according to McIntosh and Morse (2015), the disadvantages of face-to-face interviews

are participants may feel inhibited when asked to respond to sensitive questions.

Additionally, an interviewer's physical presence may affect the participant's response, and

conducting interviews is time-consuming and costly (McIntosh & Morse, 2015).

Document analysis is the reviewing or evaluation of documents. The combination

of interviews and document analysis contributes to the rigor of the research (Fusch et al.,

2018; Yilmaz, 2013). Organizational documents contain information developed without

the researcher's participation or intervention (Brooks & Normore, 2015). However,

Brooks and Normore (2015) indicate that documents can present individuals' or

organizations' perspectives and may not represent the participants' perspective. For this

study, I analyzed each organization's documents to support the data obtained in the

interview process.

98

I explained to each participant that I would record the interview and transcribe the

information to use for data analysis for the study. Recording the interview provides a

method for the researcher to capture the information for later transcription (McGrath et

al., 2018). Researchers use audio recordings to transcribe interviews verbatim for analysis

(Cypress, 2017; McGrath et al., 2018; Starcher et al., 2018). Following any questions

that the participants may have, I started the formal interview process. I began the

interview process by turning on my recording device, stating the date and identifying the

participant as participant one, two, three, and so on.

I reminded the participants that the recording, personal notes, and the

transcription will not include any personally identifiable information and that I will

maintain their anonymity and preserve confidentiality. Researchers should safeguard

participants' responses to ensure that the published results do not disclose their identity or

put them in a vulnerable situation (Arsel, 2017). The interviewer's primary task is to

understand the meaning of the participant responses (Korstjens & Moser, 2018). The

study was constructed to provide successful strategies used for effort estimation while not

disclosing any information that would identify the participants or organizations.

Additionally, it is essential to communicate to the participant how the researcher will

maintain privacy and confidentiality as the level of trust between the researcher and

participant affects the quality of results from an interview. (Brown & Danaher, 2019). I

made the participants aware that I would ensure that personal information remains private

and that any information discussed would not be shared with their organization,

supervisor, or coworkers.

99

Interviewers should demonstrate that the responses the participant provides during

the interview are understood. Positive responses acknowledge that the interviewer

understands the responses through body language, response tokens, and the formulation

and asking of the next questions (Roulston, 2018). According to Roulston (2018), body

language and response tokens such as an interviewer interjecting “yes,” and “I am

following” provide the interviewee with feedback indicating the interviewer understands

the dialog. To gain additional information or to prompt a participant to expand on an

answer, researchers can interject “tell me more about that” after the participant's response

(Starcher et al., 2018). Fusch et al. (2018) state that follow-up and probing questions help

the researcher maintain the direction of the interview and collect additional data to

answer the research question. Roulston (2018) suggests repeating back to the interviewee

the interviewer’s understanding as well as asking the next questions will provide the

participant with a positive affirmation that the responses are understood. During the

interview process, I ensured that participants understood the questions and that I

understood their responses. I asked follow-up questions if I determined that a more

vibrant response was required or that the participant did not answer the questions

adequately enough for me to gain an understanding.

I took field notes during the interviews. According to Barrett and Twycross

(2018), field notes include a chronological log, an account of what the researcher

observes, and an expanded interpretation of impressions from the interview. Field notes

are a widely used approach to capturing contextual information and use in subsequent

analyses and synthesis of the data collected (Phillippi & Lauderdale, 2018). Interviews

100

and field notes are the principal data sources in qualitative research (Moser & Korstjens,

2018). I asked the interview questions in the exact order outlined in the interview

protocol and allowed the participant to respond adequately before asking follow-up

questions. I continued the interviews until the participants had answered all the questions.

I limited the research questions such that the questions asked would elicit a

response that answered my research question. Data collection can be adversely affected

by the length of the interview process (Rimando et al., 2015). I completed the interviews

within one hour. Following the interview questions, I asked the participants if there was

any information they would like to share or any information they feel should be included

in the study. I documented the additional participant comments and information that was

relative to my research question in the field notes.

I asked the participants if there was any company documentation that they can

share relevant to the topic discussed. Chung (2019) states that the reliability of

documentary evidence is higher than that of verbal evidence. Yin (2014), as well as

Creswell and Poth (2018), indicate that the use of documents is to corroborate and

supplement interview data with other sources of data. After conducting the interviews, I

request to see any documentation such as process and procedures documents, standard

operating procedures, checklists, or guidelines used in estimating effort. I reviewed the

documentation to ensure alignment with the participant’s responses and discuss any

deviation that I identify. I notated my document review observations in my field notes.

I explained the concept of member checking and informed each of the participants

that I would be contacting them by phone to discuss my interpretations of their interview

101

responses. The member checking process is critical to verify the accuracy of the content

and understanding of the participant’s viewpoints (Candela, 2019; Yilmaz, 2013).

Creswell and Poth (2018) define member checking as reviewing with the participant the

accuracy of the researcher’s interpretation findings and as verifying that the participant

answers are representative of their intended responses. Yin (2014) describes member

checking as the corroboration of interpretations of the interview with the participant and

to allow for new evidence to emerge not gained through the initial data collection. I

requested time for a brief phone discussion of the interview to check for the accuracy of

my interpretation of the interview and supporting documents. Participant verification

provides a tool for member checking and allows the participant to confirm the dialog

transcribed during the interview is as the participant intended. If the participant indicated

that a change in a previous response was needed, I made the change and notated the

change in my field notes. Additionally, I scheduled a time to contact the participant for

review and confirmation of the amended material.

I thanked each participant and confirmed that each participant had my contact

number and e-mail should they have any questions or remember any additional

information that they have not previously discussed that was relevant to the research

topic. Following each interview, I transcribed the audio recording into separate Microsoft

Word documents. Transcribing an interview verbatim provides the researcher with a

credible understanding of the phenomenon studied (Starcher et al., 2018). I removed any

information that would identify the participant, company, or development team members

to ensure confidentiality.

102

Data Organization Techniques

The data organization approach that I used for this study was to store recordings,

field notes, and transcribed data on a secure folder on a personal secure Microsoft

OneDrive cloud storage account. Babchuk (2019) stresses the importance of organizing

data in a meaningful way and storing the data on a password-protected computer. Van

Baalen (2018) suggests storing data on encrypted folders using strong passwords for

digital security. I am the only person who has access to the protected folder, thus

providing safeguards to protect the confidentiality of the participants and organizations.

Surmiak (2018) defined research participants’ confidentiality as the nondisclosure of

participant identifiable information unless they consent to the disclosure. I stored each

participant interview recording, notes, and audio transcription in separate digital folders,

indicating a unique identifier such as participant 1, participant 2, and so on to provided

confidentiality. I stored each of the participant folders in a digital folder indicating their

organizations such as organization 1, organization 2, ensuring the confidentiality of the

organizations. I labeled each file associated with each participant to indicated participant

number, organization number, and research artifact types, such as a transcript, recording,

and note.

I documented my feelings, understanding, and personal thoughts throughout the

research project using a reflective journal. Levitt et al. (2016) suggested the use of a

reflective journal to manage perspective. A reflective journal includes a researcher’s

emotions, beliefs, and reasoning inferences (Bruno & Dell’Aversana, 2017). Researchers

use reflective journals to promote validity, promote learning through the research

103

process, and provide evidence of transparency (Vicary, Young, & Hicks, 2017).

Additionally, a reflective journal allowed me to review thoughts and observations that are

otherwise not documented. A reflective journal provided a resource for the research

progression, observations, and personal reflections, thoughts, and feelings throughout the

process.

I stored my field notes and reflective journal in a locked cabinet to ensure that

only I can access the files. All the artifacts of the research are available only to me and

protected from unauthorized access. I will store the participants' recordings,

transcriptions, field notes, and encrypted identification information for five years. After

five years, I will delete all participant information, recordings, transcripts, and shred field

notes and reflective journals.

Data Analysis Technique

To answer my study question, I repeatedly searched the data I have collected until

I achieved a meaningful answer to identify effective strategies in software development

effort estimation. Tong and Dew (2016) state that the data analysis process is iterative

and revelatory, and generally involves examining the data, categorizing and grouping

similar concepts into themes to identify relationships and patterns. Babchuk (2019) states

that the analysis should include verbatim phrases taken from the participants to capture

the connotation of the line or text passage. For this study, I found meaningful information

through the analysis of data collected from interviews and organizational documents

related to effective strategies to estimate software development effort. I analyzed the data,

104

derived codes, and identified themes to discover effective estimation strategies in

software development.

According to Creswell and Poth (2018), a typical analysis approach for multiple

case studies is to conduct a within-case analysis of individual cases, followed by a

thematic cross case-analysis across multiple cases. A cross-case analysis is the

examination of themes across cases to identify similarities and differences (Creswell &

Poth, 2018). Yin (2014) defines cross-case analysis as the aggregation of findings across

multiple cases. Researchers use a cross-case analysis to gain an understanding of

common and unique features of multiple cases (Guetterman & Fetters, 2018). A cross-

case analysis enhances transferability and trustworthiness by comparing data across

multiple cases. I analyzed each case to identify themes and concepts followed by a cross-

case analysis to identify similarities and differences to understand the phenomenon in a

different context. I repeatedly reviewed my data to discover meaningful information to

answer my research question. My data analysis focused on the discovery of similarities,

differences, and correlation of effective strategies in software development effort

estimation.

I used methodological triangulation to analyze the data gained from company

documents and participant interviews. Abdalla, Oliveira, Azevedo, and Gonzalez (2018)

state that researchers use the methodological triangulation to obtain complete and

detailed data by analyzing multiple data sources such as interviews, observations, and

documents to understand a phenomenon. Researchers use the methodological

triangulation process to avoid bias and view data from multiple perspectives (Fusch et al.,

105

2018). Methodological triangulation overcomes weakness and bias that result from single

method research, single data, single observer, and single theory research (Joslin &

Müller, 2016). As my study is qualitative only (single method), I was the only

interviewer (single observer), and my conceptual framework is the planning fallacy

(single theory.) The use of the methodological triangulation adds validity thru a sound

approach to my data analysis. I used multiple sources to provide data for this study, such

as interviews, organizational documents, and participant observations during the

interview process.

The initial step in my data analysis was to review my research data repeatedly. I

captured my thoughts in a reflective journal during my review process and made a note of

any relevant themes, concepts, and similar or contrasting content. In analyzing qualitative

data, the first step is to derive codes and identify essential words or phrases (McIntosh &

Morse, 2015). Constructing categories or themes by grouping similar or closely related

codes is the process of identifying similarities ((Babchuk, 2019). I repeated this process

to identify meaningful information that was relevant to answering my research question.

Additionally, I incorporate any new studies relevant to my findings after my proposal was

accepted and before drawing my research conclusions.

Deterding and Waters (2018) suggested the first step in examining the data in

qualitative analysis is that the researcher should identify the main themes to determine a

provisional idea of the emerging themes and explore themes indicated by previous

literature. The second step is to note specific chunks of text in which the participant was

particularly articulate and concise (Deterding & Waters, 2018). The third step is to use

106

qualitative data analysis software to explore the depth of the story, identify trends, and

analyze potential negative cases that may limit the explanation (Deterding & Waters,

2018). Reducing data from full transcripts to indexed extracts and finally to grouped

analytic codes provides the researcher with uniformity and increases reliability and

validity (Deterding & Waters, 2018). I followed the process of establishing themes,

exploring relationships, identifying trends, and using induction to report the research

findings and conclusion.

I used NVivo, a Computer Assisted Qualitative Data Analysis Software

(CAQDAS) application for the data analysis process. The primary advantages of using a

CAQDAS software product are increased speed in handling large amounts of data,

improved rigor, the identification of counts of phenomena, search for divergent cases,

and the development of coding schemes (Cypress, 2019). Researchers use NVivo to

reduce the workload in analyzing and structuring large amounts of data, searching for

words or phrases, and to apply assigned codes to the text (Røddesnes, Faber, & Jensen,

2019). NVivo provides multiple qualitative analysis functions such as sorting, filtering,

assigning, and defining categories themes as well as data visualization (Phillips & Lu,

2018). I used NVivo to import each participant’s data, create nodes to develop a

hierarchy to identify data between cases and within cases, conduct data exploration using

the query command for similarities, matches, word frequency, and establish text patterns

and keywords for code creation.

107

Reliability and Validity

Reliability and validity are foundational elements of proper research. Cypress

(2017) defined reliability as a principal factor of research reflected in the practices,

process, analysis, and conclusions. Validity is the state in which the research is grounded,

justifiable, relevant, meaningful, and conforming to quality principles (Cypress, 2017).

There are four quality attributes for establishing validity and reliability for a qualitative

study. A researcher establishes quality and reliability by dependability, credibility,

transferability, and confirmability (Moser & Korstjens, 2018).

Credibility

Credibility is the quality of trust and believability of research and its internal

validity determined by the plausibility of the information and interpretation of the views

of the participants (Moser & Korstjens, 2018). Researchers establish credibility through

triangulation and member checking (Moser & Korstjens, 2018; Tong & Dew, 2016).

Cypress (2017) states that researchers obtain credibility through the accurate and truthful

description of the participant’s experience, and member checking, which is the constant

checking of data and interpretations with the participants interviewed. Additionally,

Moser and Korstjens (2018) defined credibility as an accurate description of the

phenomenon and generation of believable claims through the identification of the study

design, sampling method, data collection methods, identification of limitations and

delimitations, and reflexivity. Kelly (2017) states that qualitative research's credibility is

gained through good quality interviewing procedures, accurate coding and analysis,

transparent conclusions, and evidence that the reader can transfer to their situations.

108

Research is reliant on the researcher's ability and effort, and descriptive narratives of the

participants to achieve credibility (Cypress, 2017). I used member checking and

methodological triangulation to establish credibility for this study. Additionally, I ensured

that any claims made were free of bias and were an accurate account of each participants'

viewpoints.

Researchers use member checking to ensure the reliability of their research.

Member checking provides participants with an opportunity to correct misrepresentation

or errors in the information gained during the interviews (Tong & Dew, 2016). Member

checking is a commonly used procedure to share with the participant the data from their

interview and the interpretations of the researcher to obtain the participant's feedback

(Liao & Hitchcock, 2018). Candela (2019) stated that an additional benefit of member

checking is that it helps the researcher capture the voice of the participant. After each

interview, I transcribed the conversation and verified my findings with each participant to

confirm correctness. Additionally, I discussed with the participants, my understanding of

the strategies discussed to verify that information obtained from the interview dialog was

accurate, and as the participants intended. I ensured methodological triangulation using

interview transcripts, the review of organizational documents, and details noted during

the interview process.

Transferability

Research transferability is the degree to which other researchers can transfer the

results to other contexts with different respondents (Brooks & Normore, 2015; Moser &

Korstjens, 2018), and other researchers can transfer the results to other settings (Shannon-

109

Baker, 2016; Tong & Dew, 2016). Researchers establish transferability by providing full

descriptions of the participant's experience, context, and behavior (Moser & Korstjens,

2018). I captured detailed information from the study and a descriptive analysis of the

research experience to validate transferability. Additionally, I documented the context,

the interview setting, the participants’ descriptions, their nonverbal behaviors observed

during this research, and any other information that may help other researchers replicate

or extend the study.

Dependability

 I used member checking and triangulation to ensure dependability for my study.

Xerri (2017) has stated that dependability and creditability increase through member

checking and triangulation. Dependability is the stability of the study's findings over time

and the fidelity of the data received from the study (Moser & Korstjens, 2018).

Dependability is the consistency across the research methodology, data collection, and

reporting of results to include transparency and verification of the research process (Tong

& Dew, 2016). According to Lishner (2015), research trustworthiness and dependability

increases when the researcher (a) promotes direct replication studies, (b) shares data

when requested, and (c) adopts a truth-seeking mindset during the research process. I

used member checking to ensure that my understanding and interpretation of the

interview data was accurate. In addition to member checking, I triangulated the interview

data with company documents when available to confirm the participant's strategies.

Additionally, I adhered to my interview protocol to maintain consistency through my

interview process. I kept a reflective journal detailing my data collection process, my

110

thoughts on data analysis, observations during the interview, and personal reflections

throughout the research process.

Confirmability

Moser and Korstjens (2018) and Korstjens and Moser (2018) noted that research

confirmability involves confirmation of a study’s findings by independent researchers.

Researchers establish confirmability and dependability by maintaining a reflexive journal

to document thoughts and research notes that create an audit trail to document the

collection, analysis, and interpretation of the data (Cypress, 2017). The study's results are

grounded in data, and I ensured that my viewpoints and biases were identified and

mitigated. Additionally, I maintained a reflective journal to capture personal thoughts and

feelings during the interview process. I used NVivo to identify reoccurring themes to

indicate data saturation.

I used a semistructured interview with multiple members from multiple teams to

gain data saturation. Fusch et al. (2018) state that the use of multiple sources of data

enhances data saturation. According to Abdalla et al. (2018), researchers attain

confirmability by ensuring that the conclusion drawn from the interviews comes from the

experiences and ideas of the respondents. I provided member checking to promote

confirmability. Additionally, throughout the research process, I remained transparent

about my approach and findings.

Transition and Summary

In Section 2, I presented details of the research plan, my role as a researcher, the

research design, and the data collection techniques for this study. Additionally, I have

111

provided processes to ensure reliability and to validate the study. Section 3 will include

the research findings, implications for social change, suggestions for professional

practice, and recommendations for future research followed by personal reflections on the

research and my conclusions.

112

Section 3: Application to Professional Practice and Implications for Change

The focus of this study was on exploring strategies used by software development

professionals in providing effort estimations. This section includes (a) an overview of the

study, (b) presentation of the findings, discussion of the study’s (c) application to

professional practice and (d) implications for social change, (e) recommendations for

actions, (f) suggestions for further study, and (g) personal reflections and a study

conclusion.

Overview of the Study

The purpose of this qualitative multiple case study was to explore strategies used

by software development professionals to provide project managers and product

stakeholders with accurate effort estimates. The data came from interviews and

documents within five different organizations located in South Texas. All the participants

interviewed were actively involved in providing estimations. Each participant had at least

five years of experience in delivering software development effort estimates, and each

indicated that the strategies used were effective. My analysis of the data resulted in four

themes that were common among the participants for achieving accurate effort

estimations. Although the methods in providing estimates differed within the teams, the

participants’ strategies to arrive at accurate estimates were common among the

participants.

Presentation of the Findings

The main research question for this study was as follows: What are the strategies

that agile software development teams use successfully to provide their project managers

113

with accurate estimates of software development effort? This section includes a summary

and analysis of the results of the interviews and organizational documents identified,

resulting in four main themes related to providing accurate software development effort

estimates. Access to organizational documents allowed me to triangulate and validate the

information obtained from the interviews. I conducted the interviews such that

participants had the opportunity to share strategies that they found to be essential in

providing estimations of effort in software development activities. After transcribing the

interviews from all 10 participants, I imported the transcriptions into NVivo for analysis

and coding. I imported the organization documents into NVivo for analysis and coding.

Four emergent themes resulted from my analysis: (a) define and decompose

requirements; (b) reference historical data; (c) identify risks and unknowns; and (d) foster

communication, collaborations, and consensus. The participants discussed their strategies

for helping project managers to plan delivery schedules, thus improving customer

satisfaction. Additionally, accurate estimations can also enhance the quality of the

product, lower stress levels, and improve the work lives of those involved with software

development and delivery (Yamini & Marathe, 2018).

The planning fallacy (Kahneman & Tversky, 1977) was the conceptual

framework for the study. It is common for developers to underestimate effort estimations,

which adversely affects planning, delivery schedules, and cost (Løhre & Jørgensen,

2016). The themes identified provide strategies to mitigate the effects of the planning

fallacy, potentially resulting in predictable schedules and higher accuracy in the planning

of software development delivery.

114

Theme 1: Define and Decompose Requirements

Defining and decomposing requirements was one of the prominent themes. The

process of requirements definition is that the requested work item is sufficiently detailed,

such that a developer or development team can accomplish the objectives of the request.

Once the request is defined and understood, the developer or development team can

provide an estimation. Each of the participants indicated that concise, descriptive, and

well-written requirements are an effective strategy used to provide accurate estimates to

stakeholders. Gaining a complete set of requirements in the initial discussion or

evaluation of a request can be difficult. However, the level of detail in a requirement can

influence the accuracy of effort for the request estimate. Understanding the requirements

mitigates false hope to the requester when the team provides an estimation that may be

too low.

Requirements decomposition is a top-down approach used by development teams

to identify the objectives of the requested deliverable (McConnell, 2006). Software

development professionals decompose requirements into manageable pieces to

understand the effort required to complete the task. Development teams use

decomposition as a strategy to break the request down into steps or smaller items to

provide a more realistic estimation. Developers decompose requirements to gain a

granular view of the request. A more granular identification of the activities increases the

accuracy of the estimation process through the identification of each step or task in the

development request to deliver.

115

All 10 participants indicated that clear and concise requirements were critical

elements to providing accurate estimations. Additionally, 15 of the 20 organization

documents reviewed supported the theme of defining and decomposing requirements.

Two of the documents I reviewed described a properly written requirement as a request

that was complete, unambiguous, consistent, and testable. Eight of the 10 participants

indicated that decomposition was a strategy used in providing estimations. After

developers decomposed the story and estimated the identified items, they aggregated the

values into a final estimation of effort for the request. Table 1 includes frequency

information for Theme 1.

Table 1

Frequency of First Major Theme

Major theme
Participant

count

Participant

references

Document

count

Document

references

Define and

decompose

requirements
10 65 15 34

Each of the participants stressed the importance of detailed and complete

requirements, and this concept aligned with findings from my literature review. Sehra et

al. (2016) stated that requirement uncertainty affected estimation accuracy. Participant 6

indicated that “so whether you are doing the estimation, or you are doing the

development, without the full requirements, you really run into a problem.” Participant 3

stated that “the biggest problem in providing an estimation was that the requirement was

not fully fleshed out” and that “estimation accuracy was dependent on fully defined

requirements.” Usman et al. (2018) identified unanticipated requirements as one of the

four causes of inaccuracies in estimation. Jørgensen (2014) stated that estimation

116

improves though the avoidance of early estimations based on incomplete information.

Participant 9 stated that “accurate estimation success was a result of understandable

requirements.” Participant 9 also indicated that estimation accuracy improved when “the

description of the story has success criteria and that the inclusion of testing steps in the

story provided developers with an understanding of the functionality in order to better

estimate.” Providing testing steps gives the developer criteria for acceptance from the

perspective of the requester. When prompted to consider a task from the perspective of an

outside observer, people are more willing to consider obstacles that they may not

otherwise have considered (Wiese et al., 2016).

Information obtained from organization documents supported the theme of define

and decompose requirements. One of the organizational project documents stated that the

“key activity of the product team is to identify the user request, break requirements down

into small valuable stories, and identify clear and concise user acceptance tests and

business rules for each story.” Wiese et al. (2016) suggested breaking large tasks into

smaller subtasks highlights critical steps that may potentially be overlooked. Lévy-

Garboua et al. (2018) stated that there is evidence that suggests that as task complexity

increases, underestimation becomes more apparent. Decomposition reduces complexity

making the estimation process more reliable.

Shmueli and Ronen (2017) noted that both software developers and managers are

subject to the planning fallacy. Kahneman and Tversky (1977) indicated that

overconfidence increased with a lack of knowledge resulting in an optimistic bias. One of

the process and procedures documents reviewed provides instructions on defining the

117

requirements, including the persona of the requests, the specifics of the action to perform,

and the expected results. The document supplied instructions to identify minimal items

in a requirement and the inclusion of traditional story-based dialog. “As a <type of user>,

I want <perform some task>, so that I can <achieve some result>.” Developing a persona

in a user request provides the development team with the action, actor, and system(s)

affected, enhancing the knowledge the team gains regarding the request, thus providing

the information to establish an accurate estimation.

A team role and responsibility document I reviewed stated that before estimation

and development, it is necessary to “ensuring the creation of technical user stories in

support of the business requirements” and that “acceptance criteria defined upfront drives

the development of the software.” The inclusion of success criteria identifies the end state

of the request. I reviewed an SDLC document describing the development process as

clearly defining the requirements before the estimation stage, “Complete and accurate

requirements are desired at this stage and will result in a faster and more efficient

development process.” Anooja and Rajawat (2017) suggested that factors such as

improved estimation training and higher accuracy of information (requirements) improve

estimation. Accurate and complete requirements provide software developers with the

information to decompose the request into manageable tasks, thus improving the

accuracy of estimates.

My findings support the strategy of developing defined requirements and request

decomposition to reduce the phenomena of the planning fallacy. Each of the participants

stated that clearly define requirements were necessary for establishing an estimation, and

118

in my literature review, the theme was consistent. Tversky and Kahneman (1974) stated

that predictions are often based on an optimistic view of the duration of a previous task,

and estimators do not adequately adjust for the demands of a new task that is estimated.

Additionally, the findings of a study conducted by Shmueli et al. (2016) provide evidence

of manifestations of the planning fallacy in software development projects. Clearly

defined requirements reduce the ambiguity of a request and provide the estimator with

reliable information to establish an estimation. Decomposition is the process of

identifying the different aspects of delivering the solution and breaking them down into

manageable items. It is difficult to predict the size of a software project during the initial

phases (Shida & Tsuda, 2017) due to incomplete or inaccurate requirements. Sehra et al.

(2016) point to inconsistent, incomplete, and unstable requirements as a factor in

estimating software development effort. Once the requirements are identified and

decomposed, the accuracy of estimates is improved.

The data that I collected and reviewed provided evidence that requirements

definition and decomposition are effective strategies to reduce the planning fallacy

effects. As stated by Shmueli et al. (2016), decomposition reduced the impact of the

planning fallacy. Decomposition is a strategy used by software developers to break a

story down into manageable pieces. Eight of the 10 participants I interviewed indicated

that an essential strategy in providing estimations was the decomposition of the request.

Breaking large tasks into smaller subtasks highlights critical steps that are potentially

overlooked otherwise (Wiese et al., 2016). According to (Lévy-Garboua et al., 2018), the

119

greater the complexity, the more difficult the estimation process. Decomposition reduces

complexity, thus reducing the difficulty in estimating effort.

According to Tversky and Kahneman (1974), the planning fallacy results from

neglecting or ignoring distributional data. Jørgensen (2004) stated that top-down

decomposition encourages the outside or distributional history-based thinking.

Decomposition is a strategy that allows estimators to identify outside information

(distributional) and provide estimations based on reflective assessment. Estimation

strategies that use an outside view mitigate the effects of the planning fallacy (Kahneman

& Tversky, 1973; Shmueli et al., 2016; Shmueli & Ronen, 2017; Thomas & König,

2018). McConnell (2006) suggests using an approach that decomposes tasks enhances

the accuracy and effectiveness of the estimator's judgment. Estimating large tasks is

prone to error; thus, decomposition provides higher accuracy. In consideration of the

planning fallacy phenomena, incomplete or inaccurate requirements affect the reliability

of distributional (outside view) data, thus making estimation potentially unreliable and

accuracy problematic.

Theme 2: Reference Historical Data

Referencing historical data was a major theme that was prominent in my study.

The use of historical data on previous development requests provides the estimator with

quantitative and qualitative information regarding effort on previous similar tasks. Each

participant indicated that if relevant historical data were available, they would reference it

before providing an estimation. Historical data allows the developer to gauge the

complexity of the request. Additionally, using historical information, the developer gains

120

a general idea of how much effort was required previously. Referenced historical data

and information on previous work may alert the developer to potential challenges that

may arise and act as a reference point to determine complexity. Referencing historical

data provides the developer with lessons learned, past experiences, and previous nuances

regarding a requested development item. Additionally, referencing historical data can

help a developer identify unknowns or potential risks associated with a request. Table 2

includes frequency information for Theme 2.

Table 2

Frequency of Second Major Theme

Major theme
Participant

count

Participant

references

Document

count

Document

references

Reference

historical data
10 25 6 12

All ten of the participants indicated that referencing historical information was a

strategy used in providing estimations. Participant 5 stated, "you do a look back of

similar stuff that you've worked on in the past to help give you some identification of

what the level of effort is going to be." Participant 5 further added that "based on

historical context, is it an easy module, or is it a difficult module." Participant 9 stated

regarding the use of historical data that it was beneficial to "to look at past experiences

with a similar problem and estimate on that." Participant 6 stated that developers "use

previous estimates to estimate the project that we currently have."

Referencing previous information regarding similar work acts as a point of

reference to develop an estimation. Participant 3 stated that their strategy in providing

estimates was " using our past prior knowledge, we've got a database …so getting that

121

information, plugging it in, and using past experiences." Participant 8 indicated reviewing

past similar requests helped the estimator determine complexity. Jørgensen (2004) stated

that reviewing other software developers' estimations triggered reflection on the effort the

task will require. People make more realistic predictions when they reflect on previous

experiences to inform their forecasts.

Five of the participants from three of the organizations indicated that the practice

of retrospectives helped establish lessons learned in previous work. The development met

team evaluates the iteration in terms of communication, resources, and processes to

identify potential areas for improvement (Srivastava & Jain, 2017). All five organizations

use a centralized data source or repository to maintain information regarding previous

requests and estimations. Some of the tools identified were Jira, Rally, ServiceNow, and

SharePoint. Participant 3 stated that “all of our communication is in Jira, so I feel like

that's helpful in at least going back and figuring out our estimate” and “keeps our

historical context in one place.” The inclusion of historical effort estimation information

in future estimations gives greater accuracy in software development estimating (Shmueli

et al., 2016). Participant 6 stated the centralized historical information provided the

ability to “look back on previous items that are similar so that you can kind of say, Well,

A is similar to B, and A took me this amount of effort." Historical data consideration is

more likely to bypass a cognitive bias in decision-making (Féris et al., 2017). Participant

9 indicated for estimating, “It does help to have historical data to go by.” Regarding

historical information, Participant 6 spoke on the benefits of historical data, “So that

allows us to draw a baseline from that experience ... How can we leverage those to

122

estimate this project that we have currently?” In assessing the level of complexity and

providing an estimate of effort, development teams benefit from historical information

and previous estimation.

The literature I reviewed supported the theme of referencing, capturing, and using

historical information. Jørgensen (2014) stated that the accuracy of estimates improves

through the use of local context, historical estimation error intervals, and the avoidance of

misleading estimation information. Five of the participants use historical data to

determine team velocity. Participant 9 indicated that the team used velocity "as sort of a

budget" to provide planners with the ability to formulate projected delivery dates.

Velocity represents the amount of work that the development team can deliver in a

specific time iteration and is a useful predictor of the team's capabilities (Ahmed et al.,

2017; Torrecilla-Salinas et al.). Organizations calculate a team's velocity using previous

team performance data to determine how much the team can accomplish in each

timeframe. Participant 4 stated that" probably the biggest thing is we look at the velocity

of our team [for planning purposes]."

Flyvbjerg (2006) introduced the concept of reference class forecasting to improve

estimate inaccuracy resulting from bias through considering the actual performance of

comparable projects, thereby bypassing the effects of optimistic bias and strategic

misrepresentation. Reference class forecasting is an attempt to avoid human bias by

relying on historical data from similar past projects as a guideline for predicative

estimations. Reference class forecasting is the outside view based on knowledge of the

actual performance of referenced comparable projects. Six of the organizational

123

documents that I review supported the theme of referencing historical data. A change

management document contained the following importance of capturing historical

information: “Each change receives a post-implementation review such as a Lessons

Learned or Retrospective. Less than successful changes receive a more extensive

review.”

Six organization documents supported the theme of referencing historical data and

lessons learned. Team process documents indicate that the "PMO will schedule a brief

meeting to discuss lessons learned with the project team." A project management process

document stated that the project manager or project lead is required to "Collect and report

on metrics on the team's performance over time." According to Srivastava and Jain

(2017), areas of potential improvement result from retrospective meetings in which the

team evaluates the sprint in terms of communication, resources, and processes.

Additionally, a project process document stated that the project manager or team lead

would "generate a post-project survey to capture things that went well during the project

as well as things that could be improved for a similar project in the future." Information

obtained from an SDLC stated that "KPIs provide the organization with trend analysis

and identify opportunities for improvement, increased quality, and improved

performance." Company-specific calibration and historical data increase accuracy in

estimating (Moharreri et al., 2016). Additionally, Jørgensen (2014) stated that the

accuracy of estimates improves through the use of local context and the use of historical

estimation error intervals.

124

The theme identified correlates to the conceptual framework of this study, the

planning fallacy. The planning fallacy phenomenon occurs when the individual is

focusing on the inside view of a task (singular) but not considering the data from an

outside perspective of previous tasks (distributional) (Thomas & König, 2018).

Participant 4 stated that reflection on past estimations improved their estimation process,

“looking back at history and trying to understand how we get closer [in estimates].”

Distributional information is primarily a consideration of previous task performance,

whereas singular focuses on the task itself (Kahneman & Tversky, 1977; Thomas &

König, 2018). Using historical data and prior estimations as a reference are effective

strategies used by development teams to mitigate the planning fallacy. According to

Kahneman and Tversky (1977), the planning fallacy is the result of underestimation due

to neglecting or ignoring distributional, causing an error in prediction. Development

teams make decisions based on distributional information to increase the accuracy of the

estimate.

Buehler et al. (1994) suggest that people make more realistic predictions when

using past experiences to inform their predictions (distributional). The outside view is

considering past projects' experience and knowledge to reference similar cases (Shmueli

et al., 2016). Each of the participants described the use of previous tasks as an effective

strategy in providing estimations. Jørgensen (2004) states that data from past projects, the

application of analytics rather than memory, and the use of distributional information

(outside view) are strategies to mitigate the planning fallacy. The outside view or

reflection on previous experiences is usually more accurate as it bypasses political and

125

cognitive bias (Fridgeirsson, 2016). Effective estimation strategies use historical data to

mitigate potential bias and provide software effort estimators with data to give the

stakeholders estimations that are more likely to reflect actual effort. The use of historical

information (distributional) is an effective strategy used by development teams to

mitigate the effects of the planning fallacy.

Theme 3: Identify Potential Risks and Unknowns

Identify risks and unknowns was a theme identified in my study. Risk

identification is a standard project management consideration. However, in the context of

software development effort estimating, risk can be developers working on new

technology, the level of complexity of the module, the number of additional applications

the system uses, or the developer’s familiarity with the module to modify. Additionally,

within the context of Agile software development, teams can begin work with potential

unknowns. All 10 participants indicated that they considered risks and unknowns when

providing an estimation. Most of the estimation methods used considered risks and

unknowns. Five organizational documents I reviewed addressed risk and potential

unknowns in software development projects. Table 3 includes frequency information for

Theme 3.

Table 3

Frequency of Third Major Theme

Major theme
Participant

count

Participant

references

Document

count

Document

references

Identify

potential risks

and unknowns
10 51 5 15

126

Participant 3 stated that it was common that "there's some kind of random

problem that doesn't work as expected" and that "in software, there are so many

unknowns when it comes to any particular project." Participant 8 indicated, "One of the

major things, and I am guilty of this, uncertainties lead to a lot of underestimating

because we can only estimate what we know or what we foresee." Participant 1 stated

that "if it involves cloud or a new technology that we're not familiar with, I have to give

some additional time for research." Participant 4 indicated "some sort of subject matter

expert or somebody that's got interest or experience in that area." can offset uncertainty.

One of the organizational documents I reviewed included a Roles and

Responsibilities guide, which provided information on the duties of a team lead,

indicating that they are to “Help identify story dependencies, risks, and possible issues.”

Additionally, team leads are to “Collaborate on ideas to address these risks early.” A

change management document stated as one of the steps that “Identification of risks to

contributing to better estimates of effort, quality of delivery, timeline, and the cost of

change.” A software development policy and procedures guide stated that the “Risk

evaluation process analysis should be used to determine high-level objectives, risk, cost,

and benefits analysis.”

Software development teams use different strategies to address risk in the

estimation process. Two participants used T-shirt sizing, 5 participants used story points,

2 participants indicated they used time estimates provided by experts, and 1 participant

used a 3-point estimation approach to provide time estimates. Four of the participants

noted they additionally used a combination of approaches. Shekhar and Kumar (2016)

127

stated that no single method in software development estimation is considered the best

method and suggested using a combination of methods to increase estimation accuracy.

Seven of the participants used relative sizing techniques to address risks and unknowns.

Relative size measure provides an assessment of complexity rather than effort person-

hours.

All five participants who used the story points method used a Fibonacci sequence

in the story points approach (1,2,3,5,8,13). The gaps between the sequences provide for a

higher degree of uncertainty in the level of effort for larger units of work (Alostad et al.,

Abdullah, & Aali, 2017; Jadhav et al., 2017; Raslan et al., 2015), the greater the

complexity, the higher the level of uncertainty. Essentially, the larger the effort (greater

the size), the more likely the error in the estimate; thus, the higher the gap in the sequence

(Raslan et al., 2015). Story points are a sizing technique used as a relative unit of measure

for expressing the overall size of a user story or development effort. Story points are

relative measures rather than quantitative measures (Soni & Kohli, 2017). Two

participants in the study used the T-Shirt sizing method of estimation: extra-small, small,

medium, large, and extra-large. McConnell (2006) asserted that the t-shirt sizing

technique could produce an early estimate to give the business a metric of complexity

(size) for determining the level of effort.

Effort-size is a relative measure such as story points, whereas effort-time is an

absolute value method, such as person-days or person-hours (Arifin et al., 2017). In story

pointing and t-shirt sizing, values indicate complexity and not a measure of time. The

relative values can indicate the velocity of a team. Velocity is a measure of how much

128

complexity a team can address over time. Velocity represents the total of story points that

the development team can deliver in a specific iteration (Torrecilla-Salinas et al., 2015),

and is a useful predictor of the team's capabilities (Ahmed et al., 2017).

The two participants that used the time or person-hours approach indicated that

they would pad the estimate based on complexity. Padding is the adding of additional

time to the estimate to account for uncertainty. The higher the complexity or more

significant the unknown, the larger the padding. The participant that used the 3-point

strategy stated that “ You can take the best-case scenario, the worst-case scenario, the

most likely with the most weight being applied to the most likely scenario, you can take

an average of it.” Usman et al. (2017) suggested providing estimates by averaging three

values; fastest, most practical, and maximum values to give a final estimate. Osman and

Musa (2016) concurred that different estimation methods are better suited to different

development models.

Concerning the planning fallacy, estimate predictions may be optimistic because

people do not consider risks and setbacks (Newby-Clark et al., 2000). The participants

evaluated uncertainty and unknowns in their methods of calculating estimations.

Optimism bias is the belief that there are fewer project risks and an assumption of a more

favorable outcome, even in the face of historical information that is contradictory (Pinto,

2013). Underestimation, resulting in optimistic bias, is the lack of consideration of

unforeseen circumstances. Optimistic bias can result in underestimation of task effort as

unexpected events are not considered or acknowledged. Relative sizing, padding, and

129

three-point estimating are estimation strategies used by developers to offset uncertainty

and risk.

Theme 4: Communication, Collaboration, and Consensus

Communication, collaboration, and a consensus was a prominent theme identified

in my study. Commonly, more than one person is involved in the development of

software. Typically, there are many contributors to a software development team in the

delivery of a software product. Teams are more productive when they communicate and

collaborate in the project. In providing a software development effort estimation, it is a

common strategy to use the shared knowledge of the team. All 10 of the interviewed

participants indicated that an essential strategy in providing accurate estimations was

open communication and team collaboration. Six of the participants stated that it was

standard practice for the team to discuss the work item and arrive at a team consensus on

the estimation. Additionally, six participants stated that it was a common practice to have

a team standup meeting every day as a communication strategy; the remaining four

participants indicated that the team meets at least two times a week for a status reporting

and discussion on the project under development.

Nine organizational documents included information regarding the practice of

effective and frequent communication as a standard event in software development. Eight

of the organizations used a change management application such as Jira, Rally, or

ServiceNow to provide timely visual indicators of project status and progress and capture

requirements, estimations, and team communication. Additionally, eight of the

participants used online communication tools for messaging and video conferencing.

130

These tools included Slack, Zoom, and Microsoft Teams in addition to e-mail, and face to

face discussions and team meetings. All 10 of the participants indicated that frequent

communication with product owners and project managers was an essential strategy in

maintaining schedules and commitments. Table 4 includes frequency information for

Theme 4.

Table 4

Frequency of Four Major Theme

Major theme
Participant

count

Participant

references

Document

count

Document

references

Communication,

collaboration

and consensus
10 52 9 25

Teams collaborate and communicate to share information. Participant 6 stated that

"having an established routine in meeting with the team and discussing status actually

does benefit the team." Participant 6 went on to add that collaboration "help[ed] improve

the estimations as well because you're able to get a little feedback here and there from

your teammates and then figure out maybe something you didn't think of" was a common

practice. Participant 4 indicated that the organization was supportive of "promoting good

communication between team members." Additionally, participant 4 further stated that:

My team gets together right before our sprints, and we really go through and look

at what those tasks are. We all get together, and we look at what tasks we've got

coming up and get input from those team members as to how much time we think

that's going to take".

131

Communication, collaboration, and consensus are essential strategies used by teams to

provide estimations, share knowledge, and gain valuable feedback.

Five of the participants stated that they used a planning poker approach in the

estimation process. According to Taylor (2016), the estimation method uses a consensus

approach to estimate development effort that minimizes peer pressure. Planning poker

can consist of several rounds of discussion and re-estimation to reach consensus

(Bilgaiyan et al., 2017; Choetkiertikul et al., 2018). Participant 9 described their

estimation process:

The development lead or project manager presents the story, the requirements,

and then we play Agile Poker. Every one of us provides a story point estimation

on the requirement as presented. The person that estimates the lowest gives a

reason why they estimated that as low as they did. Then the person that estimated

the highest gives a reason why they estimated as high, and then a determination is

agreed upon on what the levels should be.

Participant 5 indicated that the team participated in online meetings to estimate stories:

 'I will share the ticket, and we'll all review in Jira ... we've used a variety of

planning poker tools, and to be honest with you, I find that the screen sharing with

Jira to be the most effective. There are a few tools out there, but I generally prefer

just sharing the ticket and reading it over, allow the developers to ask questions

about it. Once those questions are answered, have everybody throw out a number

either via Slack or type it into a Google sheet and then discuss why those

132

estimates are different and that the team will discuss and hash it out until we come

to some sort of agreement.

Participant 3 stated that during a group-based estimation session, "At that time,

we have all developers in the team, anyone who's contributing to the project join the call

and they chime in." Additionally, participant 3 went on to explain, "I think the task is

going to be a medium task. So, anyone can challenge that to say why do you consider that

as a medium, why not a smaller, why not a large." Jørgensen (2014) stated that the

accuracy of estimates improves the conducting of a group-based approach. Participant 1

indicated that communication and collaboration with the business analyst was a standard

practice "I think it all starts with getting involved early in the projects with the

requirements, even in the requirements gathering. When a project starts, we're in constant

communication with the business analyst, sharing dialogue back and forth.” Agile

traditionally incorporates extensive user involvement in the development process (Taylor,

2016). Participant 1 went on to further state “The team uses these sessions to discuss the

requirements, potential solutions or approaches, and any questions or feedback for the

user." The agile approach to software development consists of self-organized teams

focusing on collaboration and communication (Vallon et al., 2018).

An SDLC document I reviewed stated that communication with the stakeholders

provided a strategy to define the work requested. The SDLC document contained the

following statement:

"Interview the business stakeholders to determine what business problem is to be

addressed and to translate and document the stakeholder requirements and

133

preferences into language the technical development team can use to build a list of

the specific features and deliverables of the solution."

A software development procedure guide I reviewed indicated that the team lead or

scrum master facilitated the communication protocols to ensure effectiveness. An

organizational roles and responsibilities document instructed team leads to "Create an

atmosphere that is collaborative, fun, challenging yet rewarding." Additionally, the

document further stated that the team leader "Collaborates with the team and business

users to ask questions, get clarification, provide input, share progress, provide timeline

commitments and bring visibility to any daily impediments or issues that are standing in

the way of performance." One of the Agile Manifesto tenets is that collaboration with

customers is more important than contract negotiation (Coleman, 2016; Drury-Grogan et

al., 2017).

According to (Usman et al., 2017), a factor in software development estimation is

the level of communication with the customer. All participants indicated that either direct

communication or team leadership communication with the customer was standard

practice. Jørgensen (2014) stated that the accuracy of estimates improves using a group-

based approach. Eight of the participants said that their team used group-based estimation

strategies in their estimation process. Prakash and Viswanathan (2017) indicated that

characteristics of successful agile estimating include collaboration with product owners,

estimations accomplished by a team rather than an individual.

Kahneman and Tversky (1977) indicated that judgments should be driven from a

reflective assessment rather than from immediate impressions, although intuition from a

134

knowledgeable professional is beneficial. Teams use communication and collaboration to

gain insight from other developers and provide a perspective beyond personal opinions.

The planning fallacy phenomenon occurs when the individual is focusing on the inside

view of a task (singular) but not considering the data from an outside perspective of

previous tasks (distributional) (Thomas & König, 2018). A collaborative approach

provides distribution knowledge that a single individual may not possess or consider.

(Jørgensen, 2004). Team-based estimation sessions provide a forum for software teams to

collectively evaluate the complexity level to arrive at a consensus on the estimation.

Optimistic bias is more prevalent in the estimation of one’s effort. Many studies on

human judgment prove that people are generally over-optimistic in predicting their

performance (Jørgensen, 2004). People have a propensity to underestimate their effort but

not others' effort (Buehler et al., 1994). Group based estimation strategies reduce

optimistic bias as the estimation includes assessments from other developers and not

decided singularly. Communication, collaboration, and consensus are strategies identified

by the participants to provide accurate estimates by reducing the effects of the planning

fallacy and personal optimistic bias.

Applications to Professional Practice

The specific IT problem that was the bases of this study is the lack of effective

strategies used by software development professionals in providing accurate effort

estimations for software development. Participant interviews and organizational

documents provided data for analysis to uncover effective strategies used in the

estimation process. There are a variety of different methods that teams use in determining

135

an estimate. However, the data resulting from my study suggests that there are common

strategies used by software development professionals in determining accurate effort

estimates. Although effort estimations are not exact, the results of this study conclude

that there are common elements used by software development professionals in assessing

the level of effort of a software development request. Using the information from the

interviews and organizational documents, I identified four primary themes: define and

decompose requirements, reference historical data, identify risks and unknowns, and

communication collaborations, and consensus. As discussed by the participants and

identified in organizational documents, these themes were essential elements in the

strategies used and, when used in combination, allowed the estimators to provide

estimations that aligned with actual effort values.

IT organizations engaged in software development can use the results of this

study to train and coach software teams in practical strategies to increase the accuracy of

estimates that they provide. Organizations can encourage a culture that supports the

developers with tools and processes that promote consideration of the strategies

discussed. Software development estimation is an art rather than an exact science. Thus,

strategies identified in this study can be supported by organizations to establish

foundational elements in their estimation process. Additionally, the strategies discussed

can serve as points of consideration when providing estimations. All four of the strategies

identified and discussed in this study point to the need to consider distributional

information when providing estimates. The use of distributional data, in addition to a

136

singular view of the task, gives the developer the information to make a more accurate

assessment of the level of effort a request, thus providing a more reliable estimate.

Organizations can use the findings from this study in establishing policies and

procedures for their software development teams. The themes identified in this study

could be adopted by organizations to support developers in the estimation process. The

use of historical data, considerations of risk and unknowns, effective collaboration and

communication, and that decomposition of the requirements are effective strategies in

effort estimating. Organizations can support using these strategies by providing the

development teams with the tools and training using the information gained in this study.

This study's conclusions may better equip the estimators to provide project managers and

stakeholders with more accurate estimates and more realistic timelines to predict a

delivery schedule. Additionally, project managers have a more realistic timeline that is

likely to be more reliable when answering the questions of “when will this be done.”

Developers can use the strategies identified in this study to provide estimates that

more closely align with actual time spent in the completion of a software development

request. Software development professionals can use the strategies identified in this study

to gain a more in-depth consideration of distributional information and its criticality in

the estimation process. In the use of historical data, developers are more likely to provide

more realistic effort estimations. Thus, project managers can have greater confidence in

the accuracy of the estimates provided. Estimates that are more accurate increase product

quality, customer satisfaction, work-life balance for the team, and give organizations a

more realistic view of budgets, cost, and delivery planning.

137

Implications for Social Change

Before beginning my data collection, my initial expectations for social change

were that using effective estimation strategies would reduce the stress level of IT

managers, project stakeholders, and software development professionals. Additionally,

estimates that are more reflective of actual effort can benefit development teams by

improving morale, work-life balance, alignment of expectations, and software quality.

Beyond what I initially anticipated, I also found that development teams gained a higher

level of personal satisfaction when they meet commitments and that discussing

estimations gave teams a reason to collaborate more. Team collaboration promotes higher

team satisfaction, engagement, and trust. The participants I spoke with seemed less

anxious about providing estimations than I expected and had higher confidence in the

estimates that they offered.

Using the strategies discussed in this study reduced stress in the delivery process

and gave the project managers a higher level of confidence in meeting organizational

goals. Moral among the developers was high, and each described a sense of community

and engagement with the other team members and organizational leadership. I gathered

from the discussions that the project managers had a high level of trust in the estimates

provided, thus gaining confidence in providing the stakeholders with realistic

expectations of delivery. Additionally, increased communication and collaboration result

in less stress to the developers, organization, and customers. I believe that estimations

that are inaccurate lead to late projects. Late projects lead to unhappy customers,

overworked staff, and reduce the quality of the delivered product. Using effective

138

strategies in effort estimating, developers and managers gain a higher level of confidence

in the planning, cost forecasting, and an increase in the quality of software development

changes giving customers and stakeholders a higher level of satisfaction. Accurate

estimations provide the foundation of meeting product objectives and commitments.

Positive social change can result from this study to improve the lives of those

engaged in software estimation using effective strategies that produce accurate effort

estimations for software development delivery. The implications for positive social

change are that increased accuracy of software effort estimation could reduce the stress

level of IT managers, project stakeholders, and software development professionals by

providing more realistic timeframes for software delivery. The study may provide

positive social changes, as estimates that are more reflective of actual effort can benefit

development teams by improving morale, work-life balance, alignment of expectations,

and software quality. The contributions made through this research may provide

development managers and development teams with practical and effective strategies for

accurate effort estimations.

Recommendations for Action

Software development professionals, team leads, and project managers should

review and consider how their development teams incorporate the strategies identified in

this study within their estimation process. Each of the identified themes provides building

blocks to practical strategies in estimation. Underestimation is more problematic in

software development as developers may provide estimates before having sufficient

knowledge of the requested change. Additionally, the lack of historical information, an

139

evaluation of effort based solely on singular information, and the absence of risk analysis

have adverse effects on the accuracy of estimates. The recommendations obtained from

this study offer effective strategies to mitigate the impact of the planning fallacy and

offset the causes of potential optimistic bias. The data from this study identify strategies

used by software development teams in the estimation process and offer evidence that

distributional data has a positive effect on the accuracy of estimates.

Organizational leadership can adopt the suggestions of the study within their

process and procedures documentation for effort estimation. Additionally, the

organizations can provide training to estimators to ensure they are aware of the need for

distributional data, collaboration, and understanding of risks in the estimation process.

Additionally, organizational software development process and procedures documents

can instruct practitioners in the value of decomposition in providing estimations.

Organizations can structure their estimation practices to use a team-based collaborative

approach in which multiple professionals have input. The team members discuss the

estimates, and the teams reach a consensus on the final estimation.

Recommendations for Further Study

There are several recommendations for future research derived from the

limitations indicated in this research. Additionally, I propose recommendations that arose

from the findings of this research. This study was limited to ten participants in five

organizations within the region of South Texas and may not be generalizable to all

software development teams. The study was limited to small- to medium-sized

organizations. The following are my recommendations for future research. The finding of

140

this study warrant exploration of strategies used by large corporations. Second, I

recommend expanding the research to other geographical areas. Third, I would suggest

performing the analysis using a larger sample size. Additionally, expanding the study to

include organizations that do not have an effective strategy to determine if the themes

identified exist or are absent.

Future research may include quantitative data to evaluate levels of under or

overestimation. Additionally, further research may consider the size of the team on the

effectiveness of estimates. As well, future research may address the involvement of a

product owner or business analyst in the accuracy of estimations. Additional research

may investigate what type of methods organizations use to calculate or determine the

level of effort in their estimation process. All the participants in my study were male.

Although I did not feel having an equal gender distribution would affect my results,

additional research may provide evidence to the contrary.

Reflections

 As a professional who has worked as a software engineer, software

development manager, and as a project manager, I understand the need to provide

estimations and that the estimates are as accurate as possible. I also know that delivering

accurate estimations can be difficult, especially within the context of an Agile

environment. Being involved in the process of estimating as well as the receiver of

estimations, I understand the challenges. Estimates are not commitments, but rather, an

approximation.

141

In accomplishing this study, I was surprised to discover that in my discussing the

subject of estimation, many organizations I spoke with to determine eligibility for the

research indicated that their approach was unsatisfactory. Some even stated that they had

decided to abandon estimations due to the inaccuracy of estimates provided. I found this

somewhat surprising as, without some type of estimate, planning, budgeting, and

scheduling would be very problematic.

All the participants in my study provide knowledge regarding effective strategies

that they use in the estimation process. I felt that the semi-structured interview approach

was practical as it allowed the participants to describe the effective estimation strategies

they use. The interview questions and approach reduced the potential bias I made have

had in the process of estimating. Before the interviews, I did think that the focus of the

discussion would be on a specific method used by the participants. However, as I

conducted my interviews, I began to understand that although practices and effort

estimation methods may differ, the strategies used were common.

Summary and Study Conclusions

Estimating effort within the context of Agile software development is more

problematic than traditional waterfall software development projects. However, the

findings of this research point to common strategies that developers use to provide

project managers and project planners with more accurate estimates. The strategies that

have a positive effect on estimation are first, software requests should be detailed and

decomposed such that the items identified to accomplish the task are adequately defined

and broken down into manageable tasks. Accurately detailed requirements are essential in

142

decomposition, and decomposition provides an effective strategy for accurate estimating.

Second, when determining an estimation, identifying the risk and unknowns involved in

completing the request should be considered in the estimation process. Potential risks and

unknowns can require additional effort not accounted for in an estimation, thus adversely

affecting the accuracy of the estimate provided. Third, capturing data and information

about the development request and making the data available enhances future estimations'

accuracy. Using lessons learned and retrospectives provide needed feedback to improve

the estimation process. Referencing previous information can highlight information to

consider and evaluate before giving an estimate to enhance the accuracy of the estimation

provided. Finally, communication and collaboration within the team in assessing the

effort required to accomplish the task increases the accuracy in the evaluation of the

effort. Involving the entire team in providing an estimate reduces the single mindset or

bias of one individual and allows for the consideration of multiple viewpoints.

Embracing, supporting, and establishing the strategies identified in this study

provides a development team with more distributional data, outside views, opinions, and

perspectives that may otherwise be overlooked or not considered. The information

identified in this study provides strategies to mitigate the effects of the planning fallacy.

Although estimation methods differ among organizations, there is a commonality in the

strategies identified in this study to provide accurate estimations. The use and

consideration of these strategies will likely benefit organizations, personnel, product

quality, and quality of life for all those involved.

143

References

Aagaard, J., & Matthiesen, N. (2015). Methods of materiality: Participant observation

and qualitative research in psychology. Qualitative Research in Psychology, 13(1),

33–46. https://doi.org/10.1080/14780887.2015.1090510

Abdalhamid, S., & Mishra, A. (2017). Adopting of agile methods in software

development organizations: Systematic mapping. TEM Journal, 6(4), 817–825.

https://doi.org/10.18421/TEM64-22

Abdalla, M. M., Oliveira, L. G. L., Azevedo, C. E. F., & Gonzalez, R. K. (2018). Quality

in qualitative organizational research: Types of triangulation as a methodological

alternative. Administração: Ensino e Pesquisa, 19(1), 66–98.

https://doi.org/10.13058/raep.2018.v19n1.578

Abdullah, A. A., & Qureshi, R. (2018). The proposed L-Scrumban methodology to

improve the efficiency of agile software development. International Journal of

Information Engineering and Electronic Business, 10(3), 23–35.

https://doi.org/10.5815/ijieeb.2018.03.04

Abualkishik, A. Z., Ferrucci, F., Gravino, C., Lavazza, L., Liu, G., Meli, R., & Robiolo,

G. (2017). A study on the statistical convertibility of IFPUG Function Point,

COSMIC Function Point and Simple Function Point. Information and Software

Technology, 86, 1–19. https://doi.org/10.1016/j.infsof.2017.02.005

Abualkishik, A. Z., & Lavazza, L. (2018). IFPUG function points to COSMIC function

points convertibility: A fine-grained statistical approach. Information and Software

Technology, 97(July 2017), 179–191. https://doi.org/10.1016/j.infsof.2018.01.012

144

Adnan, M., & Afzal, M. (2017). Ontology based multiagent effort estimation system for

scrum agile method. IEEE Access, 5, 25993–26005.

https://doi.org/10.1109/ACCESS.2017.2771257

Ahmad, M. O., Dennehy, D., Conboy, K., & Oivo, M. (2018). Kanban in software

engineering: A systematic mapping study. Journal of Systems and Software, 137,

96–113. https://doi.org/10.1016/j.jss.2017.11.045

Ahmed, A. R., Tayyab, M., Bhatti, S. N., Alzahrani, A. J., & Babar, M. I. (2017). Impact

of story point estimation on product using metrics in scrum development process.

International Journal of Advanced Computer Science and Applications, 8(4), 385–

391. https://doi.org/10.14569/IJACSA.2017.080452

Alase, A. (2017). The interpretative phenomenological analysis (IPA): A guide to a good

qualitative research approach. International Journal of Education and Literacy

Studies, 5(2), 9-19. https://doi.org/10.7575/aiac.ijels.v.5n.2p.9

Allen, R. E. S., & Wiles, J. L. (2016). A rose by any other name: Participants choosing

research pseudonyms. Qualitative Research in Psychology, 13(2), 149–165.

https://doi.org/10.1080/14780887.2015.1133746

Almakadmeh, K., Al-Sarayreh, K. T., & Meridji, K. (2018). A measurement model of the

functional size of software maintainability requirements. Journal of Theoretical and

Applied Information Technology, 96(12), 3829–3845. Retrieved from

https://www.jatit.org/

Alostad, J. M., Abdullah, L. R. A., & Aali, L. S. (2017). A Fuzzy based model for effort

estimation in scrum projects. International Journal of Advanced Computer Science

145

and Applications, 8(9), 270–277. Retrieved from www.ijacsa.thesai.org

Alqudah, M., & Razali, R. (2017). Key factors for selecting an Agile method: A

systematic literature review. International Journal on Advanced Science,

Engineering and Information Technology, 7(2), 526-537.

https://doi.org/10.18517/ijaseit.7.2.1830

Al-Zewairi, M., Biltawi, M., Etaiwi, W., & Shaout, A. (2017). Agile software

development methodologies: Survey of surveys. Journal of Computer and

Communications, 05(05), 74–97. https://doi.org/10.4236/jcc.2017.55007

Andersen, B., Samset, K., & Welde, M. (2016). Low estimates – high stakes:

Underestimation of costs at the front-end of projects. International Journal of

Managing Projects in Business, 9(1), 171–193. https://doi.org/10.1108/IJMPB-01-

2015-0008

Anheier, H. (2016). Of hiding hands and other ways of coping with uncertainty: A

commentary. Social Research, 83(4), 1005–1011. Retrieved from

https://www.muse.jhu.edu/article/649543

Anooja, A., & Rajawat, S. (2017). Comparative analysis of software cost-effort

estimation and agile in perspective of software development. International Journal

of Advanced Research in Computer Science, 8(8), 121–125.

https://doi.org/10.26483/ijarcs.v818.4666

Anwer, F., & Aftab, S. (2017). Latest customizations of XP: A systematic literature

review. International Journal of Modern Education and Computer Science, 9(12),

26–37. https://doi.org/10.5815/ijmecs.2017.12.04

146

Arifin, H. H., Daengdej, J., & Khanh, N. T. (2017). An empirical study of effort-size and

effort-time in expert-based estimations. Proceedings - 8th IEEE International

Workshop on Empirical Software Engineering in Practice, IWESEP 2017, 35–40.

https://doi.org/10.1109/IWESEP.2017.21

Arsel, Z. (2017). Asking questions with reflexive focus: A tutorial on designing and

conducting interviews. Journal of Consumer Research, 44(4), 939–948.

https://doi.org/10.1093/jcr/ucx096

Awasthy, R. (2015). Journey of doing quasi-ethnographic study in organizations

Beginning of My PhD Journey. Vision, 19(3).

https://doi.org/10.1177/0972262915593667

Azanha, A., Argoud, A. R. T. T., de Camargo Jr, J. B., & Antoniolli, P. D. (2017). Agile

project management with Scrum: A case study of a Brazilian pharmaceutical

company IT project. International Journal of Managing Projects in Business, 10(1),

121–142. https://doi.org/10.1108/IJMPB-06-2016-0054

Azzeh, M., & Nassif, A. B. (2016). A hybrid model for estimating software project effort

from use case points. Applied Soft Computing Journal, 49, 981–989.

https://doi.org/10.1016/j.asoc.2016.05.008

Babchuk, W. A. (2019). Fundamentals of qualitative analysis in family medicine. Family

Medicine and Community Health, 7(2), https://doi.org/10.1136/fmch-2018-000040

Barrett, D., & Twycross, A. (2018). Data collection in qualitative research. Evidence

Based Nursing, 21(3), 63–64. https://doi.org/10.1136/eb-2018-102939

Baruah, N. (2015). Requirement management in agile software environment. Procedia

147

Computer Science, 62(Scse), 81–83. https://doi.org/10.1016/j.procs.2015.08.414

Baseer, K. K., Reddy, A. R. M., & Bindu, C. S. (2015). A systematic survey on waterfall

vs. agile vs. lean. I-Manager’s Journal on Software Engineering, 9(3), 34–59.

Retrieved from

http://www.imanagerpublications.com/JournalIntroduction.aspx?journal=JournalonS

oftwareEngineering

Bilgaiyan, S., Mishra, S., & Das, M. (2016). A review of software cost estimation in agile

software development using soft computing techniques. 2016 2nd International

Conference on Computational Intelligence and Networks (CINE), 112–117.

https://doi.org/10.1109/CINE.2016.27

Bilgaiyan, S., Sagnika, S., Mishra, S., & Das, M. (2017). A systematic review on

software cost estimation in agile software development. Journal of Engineering

Science and Technology Review, 10(4), 51–64. https://doi.org/10.25103/jestr.104.08

Blalock, A. E. (2018). Incorporating Critical Qualitative Inquiry in Nonprofit

Management Education. Administrative Theory and Praxis, 40(1), 43–59.

https://doi.org/10.1080/10841806.2017.1420839

Boby, J. B., Kadadevaramath, R. S., & Edinbarough, I. A. (2017). Designing software

development processes to optimize multiple output performance characteristics.

Software Quality Professional, 19(4), 16–24. Retrieved from http://www.asq.org

Boddy, C. R. (2016). Sample size for qualitative research. Qualitative Market Research,

19(4), 426–432. https://doi.org/10.1108/QMR-06-2016-0053

Boehm, B., Abts, C., Brown, A. W., Chulani, S., Clark, B., Hoirowitz, E., … Steece, B.

148

(2000). Software cost estimation with Cocomo II. Upper Saddle River, NJ: Prentice

Hall PTR.

Bracken-Roche, D., Bell, E., Macdonald, M. E., & Racine, E. (2017). The concept of

“vulnerability” in research ethics: An in-depth analysis of policies and guidelines.

Health Research Policy and Systems, 15(1), 1–18. https://doi.org/10.1186/s12961-

016-0164-6

Brad, M. C., Birloi, F., Bratulescu, A., & Blaga, I. B. (2016). A comparative study of

agile project management software tools. Economy Informatics, 16(1), 27–39.

Retrieved from http://www.economyinformatics.ase.ro

Brodsky, A., & Amabile, T. M. (2018). The downside of downtime: The prevalence and

work pacing consequences of idle time at work. Journal of Applied Psychology,

103(5), 496–512. https://doi.org/10.1037/apl0000294

Brooks, J. S., & Normore, A. H. (2015). Qualitative research and educational leadership:

Essential dynamics to consider when designing and conducting studies.

International Journal of Educational Management, 29(7), 798–806.

https://doi.org/10.1108/IJEM-06-2015-0083

Brown, A., & Danaher, P. A. (2019). CHE Principles: facilitating authentic and dialogical

semi-structured interviews in educational research. International Journal of

Research and Method in Education, 42(1), 76–90.

https://doi.org/10.1080/1743727X.2017.1379987

Browne, G. J., Appan, R., Safi, R., & Mellarkod, V. (2018). Investigating illusions of

agreement in group requirements determination. Information and Management,

149

55(September 2016), 1071–1083. https://doi.org/10.1016/j.im.2018.05.013

Bruno, A., & Dell’Aversana, G. (2017). Reflective practice for psychology students: The

use of reflective journal feedback in higher education. Psychology Learning and

Teaching, 16(2), 248–260. https://doi.org/10.1177/1475725716686288

Buehler, R., Griffin, D., Lam, K. C. H., & Deslauriers, J. (2012). Perspectives on

prediction: Does third-person imagery improve task completion estimates?

Organizational Behavior and Human Decision Processes, 117(1), 138–149.

https://doi.org/10.1016/j.obhdp.2011.09.001

Buehler, R., Griffin, D., & MacDonald, H. (1997). The role of motivated reasoning in

optimistic time predictions. Personality and Social Psychology Bulletin, 23(3), 238–

247. https://doi.org/10.1177/0146167297233003

Buehler, R., Griffin, D., & Ross, M. (1994). Exploring the “planning fallacy”: Why

people underestimate their task completion times. Journal of Personality and Social

Psychology, 67(3), 366–381. https://doi.org/10.1037/0022-3514.67.3.366

Buehler, R., Messervey, D., & Griffin, D. (2005). Collaborative planning and prediction:

Does group discussion affect optimistic biases in time estimation? Organizational

Behavior and Human Decision Processes, 97(1), 47–63.

https://doi.org/10.1016/j.obhdp.2005.02.004

Buehler, R., Peetz, J., & Griffin, D. (2010). Finishing on time: When do predictions

influence completion times? Organizational Behavior and Human Decision

Processes, 111(1), 23–32. https://doi.org/10.1016/j.obhdp.2009.08.001

Bureau of Labor Statistics - Software Developers, Application. (2019). Retrieved June

150

25, 2019, from https://www.bls.gov/oes/current/oes151132.htm#st

Busse, C., Kach, A. P., & Wagner, S. M. (2017). Boundary conditions: What they are,

how to explore them, why we need them, and when to consider them.

Organizational Research Methods, 20(4), 574–609.

https://doi.org/10.1177/1094428116641191

Butt, S. A. (2016). Study of agile methodology with the cloud. Pacific Science Review B:

Humanities and Social Sciences, 2(1), 22–28.

https://doi.org/10.1016/j.psrb.2016.09.007

Candela, A. G. (2019). Exploring the function of member checking. The Qualitative

Report, 24(3), 3–24. Retrieved from https://nsuworks.nova.edu/tqr/vol24/iss3/14

Carminati, L. (2018). Generalizability in qualitative research: A tale of two traditions.

Qualitative Health Research, 28(13), 2094–2101.

https://doi.org/10.1177/1049732318788379

Chen, K., & Rea, A. (2018). Do pair programming approaches transcend coding?

Measuring agile attitudes in diverse information systems courses. Journal of

Information Systems Education, 29(2), 53–65. Retrieved from http://jise.org

Choetkiertikul, M., Dam, H. K., Tran, T., Pham, T. T. M., Ghose, A., & Menzies, T.

(2018). A deep learning model for estimating story points. IEEE Transactions on

Software Engineering, 14(8). https://doi.org/10.1109/TSE.2018.2792473

Chung, E. Y. (2019). Identifying evidence to define community-based rehabilitation

practice in China using a case study approach with multiple embedded case study

design. BMC Health Services Research, 19(1), 1–11.

151

https://doi.org/10.1186/s12913-018-3838-7

Coleman, G. (2016). Agile software development. Software Quality Professional, 19(1),

23–29. Retrieved from http://asq.org

Collins, C. S., & Stockton, C. M. (2018). The central role of theory in qualitative

research. International Journal of Qualitative Methods, 17(1), 1–10.

https://doi.org/10.1177/1609406918797475

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry & research design: Choosing

among five approaches (4th ed.). Thousand Oaks, CA: Sage Publications, Inc.

Cunha, J. A. O. G., Moura, H. P., & Vasconcellos, F. J. S. (2016). Decision-making in

Software Project Management: A Systematic Literature Review. Procedia Computer

Science, 100, 947–954. https://doi.org/10.1016/j.procs.2016.09.255

Cypress, B. S. (2017). Rigor or reliability and validity in qualitative research:

Perspectives, strategies, reconceptualization, and recommendations. Dimensions of

Critical Care Nursing, 36(4), 253–263.

https://doi.org/10.1097/DCC.0000000000000253

Cypress, B. S. (2019). Data analysis software in qualitative research. Dimensions of

Critical Care Nursing, 38(4), 213–220.

https://doi.org/10.1097/DCC.0000000000000363

Dasgupta, M. (2015). Exploring the relevance of case study research. Vision, 19(2).

https://doi.org/10.1177/0972262915575661

Dennehy, D., & Conboy, K. (2017). Going with the flow: An activity theory analysis of

flow techniques in software development. Journal of Systems and Software, 133,

152

160–173. https://doi.org/10.1016/j.jss.2016.10.003

Denscombe, M. (2013). The role of research proposals in business and management

education. International Journal of Management Education, 11(3), 142–149.

https://doi.org/10.1016/j.ijme.2013.03.001

Deterding, N. M., & Waters, M. C. (2018). Flexible coding of in-depth interviews: A

twenty-first-century approach. Sociological Methods and Research.

https://doi.org/10.1177/0049124118799377

Dewi, R. S., & Subriadi, A. P., (2017a). A modification complexity factor in function

points method for software cost estimation towards public service application.

Procedia Computer Science, 124, 415–422.

https://doi.org/10.1016/j.procs.2017.12.172

Dewi, R. S., & Subriadi, A. P. (2017b). A comparative study of software development

size estimation method: UCPabc vs function points. Procedia Computer Science,

124, 470–477. https://doi.org/10.1016/j.procs.2017.12.179

Di Martino, S., Ferrucci, F., Gravino, C., & Sarro, F. (2016). Web Effort Estimation:

Function Point Analysis vs. COSMIC. Information and Software Technology, 72,

90–109. https://doi.org/10.1016/j.infsof.2015.12.001

Dönmez, D., & Grote, G. (2018). Two sides of the same coin – how agile software

development teams approach uncertainty as threats and opportunities. Information

and Software Technology, 93, 94–111. https://doi.org/10.1016/j.infsof.2017.08.015

dos Santos, P. S. M., Beltrão, A. C., de Souza, B. P., & Travassos, G. H. (2018). On the

benefits and challenges of using kanban in software engineering: a structured

153

synthesis study. Journal of Software Engineering Research and Development, 6(1),

1–29. https://doi.org/10.1186/s40411-018-0057-1

Dragicevic, S., Celar, S., & Turic, M. (2017). Bayesian network model for task effort

estimation in agile software development. Journal of Systems and Software, 127,

109–119. https://doi.org/10.1016/j.jss.2017.01.027

Drury-Grogan, M. L., Conboy, K., & Acton, T. (2017). Examining decision

characteristics & challenges for agile software development. Journal of Systems and

Software, 131, 248–265. https://doi.org/10.1016/j.jss.2017.06.003

Ebert, C., & Paasivaara, M. (2017). Scaling agile. IEEE Software, 34(6), 98–103.

https://doi.org/10.1109/MS.2017.4121226

Ellis, P. (2016). The language of research (part 8): Phenomenological research. Wounds

UK, 12(1), 128–129. Retrieved from https://www.wounds-uk.com/

Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling

and purposive sampling. American Journal of Theoretical and Applied Statistics,

5(1), 30–44. https://doi.org/10.11648/j.ajtas.20160501.11

Farah-Stapleton, M., Auguston, M., & Giammarco, K. (2016). Executable behavioral

modeling of system and software architecture specifications to inform resourcing

decisions. Procedia Computer Science, 95, 48–57.

https://doi.org/10.1016/j.procs.2016.09.292

Fayard, A., & Van Maanen, J. (2015). Making culture visible: reflections on corporate

ethnography. Journal of Organizational Ethnography, 4(1), 4–27.

https://doi.org/10.1108/JOE-12-2014-0040

154

Féris, M. A. A., Zwikael, O., & Gregor, S. (2017). QPLAN: Decision support for

evaluating planning quality in software development projects. Decision Support

Systems, 96, 92–102. https://doi.org/10.1016/j.dss.2017.02.008

Flannery, M. (2016). Common perspectives in qualitative research. Oncology Nursing

Forum, 43(4), 517–518. https://doi.org/10.1188/16.ONF.517-518

Flyvbjerg, B. (2006). From Nobel Prize to project management: getting risks right.

Project Management Journal, 34(3), 5–15.

https://doi.org/10.1177/875697280603700302

Flyvbjerg, B. (2013). Quality control and due diligence in project management: Getting

decisions right by taking the outside view. International Journal of Project

Management, 31(5), 760–774. https://doi.org/10.1016/j.ijproman.2012.10.007

Flyvbjerg, B. (2016). The fallacy of beneficial ignorance: A test of Hirschman’s hiding

hand. World Development, 84, 176–189.

https://doi.org/10.1016/j.worlddev.2016.03.012

Flyvbjerg, B. (2018). Planning fallacy or hiding hand: Which is the better explanation?

World Development, 103, 383–386. https://doi.org/10.1016/j.worlddev.2017.10.002

Flyvbjerg, B., Ansar, A., Budzier, A., Buhl, S., Cantarelli, C., Garbuio, M., … van Wee,

B. (2018). Five things you should know about cost overrun. Transportation

Research Part A: Policy and Practice. https://doi.org/10.1016/j.tra.2018.07.013

Flyvbjerg, B., & Sunstein, C. R. (2015). The principle of the malevolent hiding hand; or,

the planning fallacy writ large. Social Research, 83(4).

https://doi.org/10.2139/ssrn.2654217

155

Fox, R. (2016). The true cost. Digital Library Perspectives, 32(4), 232–238.

https://doi.org/10.1108/DLP-07-2016-0018

Francis-Smythe, J. A., & Robertson, I. T. (1999). On the relationship between time

management and time estimation. British Journal of Psychology, 90(3), 333–347.

https://doi.org/10.1348/000712699161459

Freire, A., Perkusich, M., Saraiva, R., Almeida, H., & Perkusich, A. (2018). A Bayesian

networks-based approach to assess and improve the teamwork quality of agile

teams. Information and Software Technology, 100(March), 119–132.

https://doi.org/10.1016/j.infsof.2018.04.004

Fridgeirsson, T. V. (2016). Reference class forecasting in Icelandic transport

infrastructure projects. Transport Problems, 11(2), 103–115.

https://doi.org/10.20858/tp.2016.11.2.10

Fusch, P., Fusch, G. E., & Ness, L. R. (2018). Denzin ’s paradigm shift: Revisiting

triangulation in qualitative research. Journal of Social Science, 10(1), 19–32.

https://doi.org/10.5590/JOSC.2018.10.1.02

Fustik, V. (2017). The advantages of agile methodologies applied in the ICT

development projects. International Journal on Information Technologies &

Security, 9, 51–63. Retrieved from http://ijits-bg.com/

Green, C. A., Duan, N., Gibbons, R. D., Hoagwood, K. E., Palinkas, L. A., & Wisdom, J.

P. (2015). Approaches to Mixed Methods Dissemination and Implementation

Research: Methods, Strengths, Caveats, and Opportunities. Administration and

Policy in Mental Health and Mental Health Services Research, 42(5), 508–523.

156

https://doi.org/10.1007/s10488-014-0552-6

Guetterman, T. C., & Fetters, M. D. (2018). Two methodological approaches to the

integration of mixed methods and case study designs: A systematic review.

American Behavioral Scientist, 62(7), 900–918.

https://doi.org/10.1177/0002764218772641

Haines, T., Idenudia, E., & Raisinghani, M. S. (2017). The conceptual model for agile

tools and techniques. American Journal of Management, 17(2007), 77–88. Retrieved

from http://www.na-businesspress.com/ajmopen.html

Hans, A., & Gahlot, S. (2016). A review: Software metrics and effort estimation in aspect

software development program. International Journal of Advanced Research in

Computer Science, 7(1). Retrieved from www.ijarcs.info

Harzl, A. (2017). Can FOSS projects benefit from integrating Kanban: a case study.

Journal of Internet Services and Applications, 8(1). https://doi.org/10.1186/s13174-

017-0058-z

Hirschman, A. (1967). The principle of the hiding hand. The Public Interest, 6. Retrieved

from http://www.thepublicinterest.com

Hohl, P., Klünder, J., Bennekum, A. Van, Lockard, R., Gifford, J., Münch, J., …

Schneider, K. (2018). Back to the future: origins and directions of the “Agile

Manifesto” – views of the originators. Journal of Software Engineering Research

and Development. https://doi.org/10.1186/s40411-018-0059-z

Idri, A., Amazal, F. A., & Abran, A. (2015). Analogy-based software development effort

estimation: A systematic mapping and review. Information and Software

157

Technology, 58, 206–230. https://doi.org/10.1016/j.infsof.2014.07.013

Ika, L. A. (2018). Beneficial or detrimental ignorance: The straw man fallacy of

Flyvbjerg’s test of Hirschman’s hiding hand. World Development, 103, 369–382.

https://doi.org/10.1016/j.worlddev.2017.10.016

Ika, L. A., & Söderlund, J. (2016). Rethinking revisited: insights from an early rethinker.

International Journal of Managing Projects in Business, 9(4), 931–954.

https://doi.org/10.1108/IJMPB-05-2016-0041

Ismail, M., Ismail, R., & Hamzah, N. I. (2018). Interview protocol refinement: Fine-

tuning qualitative research interview questions for multi-racial populations in

Malaysia. The Qualitative Report, 23(11), 2700–2713. Retrieved from

http://nsuworks.nova.edu/tqr/

Ivan, I., & Despa, M. L. (2016). Estimating maintenance cost for web applications.

Informatica Economica, 20(4/2016), 62–75.

https://doi.org/10.12948/issn14531305/20.4.2016.06

Izmailov, A., Korneva, D., & Kozhemiakin, A. (2016). Effective project management

with theory of constraints. Procedia - Social and Behavioral Sciences, 229, 96–103.

https://doi.org/10.1016/j.sbspro.2016.07.118

Jadhav, S. K., Shaga, V., & Thorat, S. D. (2017). User stories for proposed web

application using agile. International Journal of Advanced Research in Computer

Science, 8(9), 570–574. https://doi.org//10.26483/ijarcs.v8i9.5148

Jonsen, K., Fendt, J., & Point, S. (2018). Convincing qualitative research: What

constitutes persuasive writing? Organizational Research Methods, 21(1), 30–67.

158

https://doi.org/10.1177/1094428117706533

Jørgensen, M. (2004). A review of studies on expert estimation of software development

effort. Journal of Systems and Software, 70(1–2), 37–60.

https://doi.org/10.1016/S0164-1212(02)00156-5

Jørgensen, M. (2014). What we do and don’t know about software development effort

estimation. Software, IEEE, 31(2), 37–40. https://doi.org/10.1109/MS.2014.49

Jørgensen, M. (2016). Unit effects in software project effort estimation: Work-hours

gives lower effort estimates than workdays. Journal of Systems and Software, 117,

274–281. https://doi.org/10.1016/j.jss.2016.03.048

Jørgensen, M., & Boehm, B. (2009). Software development effort estimation: Formal

models or expert judgement? IEEE Software. https://10.1109/MS.2009.47

Joslin, R., & Müller, R. (2016). Identifying interesting project phenomena using

philosophical and methodological triangulation. International Journal of Project

Management, 34(6), 1043–1056. https://doi.org/10.1016/j.ijproman.2016.05.005

Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological

Review, 80(4), 237–251. https://doi.org/10.1037/h0034747

Kahneman, D., & Tversky, A. (1977). Intuitive prediction: Biases and corrective

procedures. Science, 414–421. https://doi.org/10.1017/CBO9780511809477.031

Kakar, A. K. (2018). How do team conflicts impact knowledge sharing? Knowledge

Management Research and Practice, 16(1), 21–31.

https://doi.org/10.1080/14778238.2017.1401194

Karthiekheyan, K., Ahmed, I., & Jayalakshmi, J. (2018). Pair programming for software

159

engineering education: An empirical study. International Arab Journal of

Information Technology, 15(2), 246–255. Retrieved from

http://www.ijarcs.info/index.php/Ijarcs

Kaur, A. (2017). Comparison of maintenance activity for effort estimation in open source

software projects. International Journal of Advanced Research in Computer

Science, 8(5), 1535–1539. Retrieved from http://www.ijarcs.info/%0A

Kaushik, A., Tayal, D., Yadav, K., & Kaur, A. (2016). Integrating firefly algorithm in

artificial neural network models for accurate software cost predictions. Journal of

Software: Evolution and Process, 26(12), 1172–1192.

https://doi.org/10.1002/smr.1792

Kelly, K. (2017). A different type of lighting research – A qualitative methodology.

Lighting Research and Technology, 49(8), 933–942.

https://doi.org/10.1177/1477153516659901

Khuat, T. T., & Le, H. (2016). Optimizing parameters of software effort estimation

models using directed artificial bee colony algorithm. Informatica, 40, 427–436.

Retrieved from http://www.informatica.si/index.php/informatica

Kim, J. E., & Nembhard, D. A. (2018). Parametric empirical Bayes estimation of

individual time-pressure reactivity. International Journal of Production Research,

56(7), 2452–2463. https://doi.org/10.1080/00207543.2017.1380321

Kim, J. E., Nembhard, D. A., & Kim, J. H. (2016). The effects of group size and task

complexity on deadline reactivity. International Journal of Industrial Ergonomics,

56, 106–114. https://doi.org/10.1016/j.ergon.2016.09.011

160

Kirmani, M. (2017a). Agile methods for mobile application development: A comparative

analysis. International Journal of Advanced Research in Computer Science, 8(5).

Retrieved from http://www.ijarcs.info/index.php/Ijarcs

Kirmani, M. (2017b). Software effort estimation in early stages of software development:

A review. International Journal of Advanced Research in Computer Science, 8(5),

1155–1159. Retrieved from www.ijarcs.info

Köhler, T., Smith, A., & Bhakoo, V. (2018). Feature topic for ORM : “Templates in

qualitative research methods.” Organizational Research Methods, 22(1).

https://doi.org/10.1177/1094428118805165

Korstjens, I., & Moser, A. (2018). Series: Practical guidance to qualitative research. Part

4: Trustworthiness and publishing. European Journal of General Practice, 24(1),

120–124. https://doi.org/10.1080/13814788.2017.1375092

Kotaiah, B., & Khalil, M. A. (2017). Approaches for development of Software Projects:

Agile methodology. International Journal of Advanced Research in Computer

Science, 8(1), 6. Retrieved from http://www.scopus.com/inward/record.url?eid=2-

s2.0-84874327273&partnerID=tZOtx3y1

Krstić, M., Skorup, A., & Lapčević, G. (2018). Trends in agile innovation management.

International Review, (3–4), 58–70. https://doi.org/10.5937/intrev1804058k

Kukreja, N., & Garg, U. (2017). Effort estimation of object oriented system using

stochastic tree boosting technique. International Journal of Advanced Research in

Computer Science, 8(7), 91–96. https://doi.org/10.26483/ijarcs.v8i7.4246

Kulkarni, R. H., Padmanabham, P., Harshe, M., Baseer, K. K., & Patil, P. (2017).

161

Investigating agile adaptation for project development. International Journal of

Electrical and Computer Engineering, 7(3), 1278–1285.

https://doi.org/10.11591/ijece.v7i3.pp1278-1285

Lee, M. J., & Rothenberger, M. A. (2015). Effort estimation factors for corrective

software maintenance projects: A qualitative analysis of estimation criteria. Journal

of Information Technology Theory and Application, 16(2), 39–56. Retrieved from

http://aisel.aisnet.org/jitta/

Lei, H., Ganjeizadeh, F., Jayachandran, P. K., & Ozcan, P. (2017). A statistical analysis

of the effects of Scrum and Kanban on software development projects. Robotics and

Computer-Integrated Manufacturing, 43, 59–67.

https://doi.org/10.1016/j.rcim.2015.12.001

Lepenies, P. H. (2018). Statistical tests as a hindrance to understanding: What the

controversy around the “Hiding Hand” reveals about research in the social sciences

and conceals about project management. World Development, 103, 360–365.

https://doi.org/10.1016/j.worlddev.2017.10.017

Levitt, H. M., Motulsky, S. L., Wertz, F. J., Morrow, S. L., & Ponterotto, J. G. (2016).

Recommendations for designing and reviewing qualitative research in psychology.

Qualitative Psychology, 4(1), 2–22.

https://doi.org/http://dx.doi.org/10.1037/qup0000082

Lévy-Garboua, L., Askari, M., & Gazel, M. (2018). Confidence biases and learning

among intuitive Bayesians. Theory and Decision (Vol. 84). Springer US.

https://doi.org/10.1007/s11238-017-9612-1

162

Liao, H., & Hitchcock, J. (2018). Reported credibility techniques in higher education

evaluation studies that use qualitative methods: A research synthesis. Evaluation

and Program Planning, 68(March), 157–165.

https://doi.org/10.1016/j.evalprogplan.2018.03.005

Lima, J. E., West, G. B., Winston, B. E., & Wood, J. A. (2016). Measuring organizational

cultural intelligence. International Journal of Cross Cultural Management, 16(1), 9–

31. https://doi.org/10.1177/1470595815615625

Lishner, D. A. (2015). A concise set of core recommendations to improve the

dependability of psychological research. Review of General Psychology, 19(1), 52–

68. https://doi.org/10.1037/gpr0000028

Llerena, L., Rodriguez, N., Castro, J. W., & Acuña, S. T. (2019). Adapting usability

techniques for application in open source software: A multiple case study.

Information and Software Technology, 107(October 2018), 48–64.

https://doi.org/10.1016/j.infsof.2018.10.011

Løhre, E., & Jørgensen, M. (2016). Numerical anchors and their strong effects on

software development effort estimates. Journal of Systems and Software, 116, 49–

56. https://doi.org/10.1016/j.jss.2015.03.015

Lopez-Martinez, J., Ramirez-Noriega, A., Juarez-Ramirez, R., Licea, G., & Martinez-

Ramirez, Y. (2017). Analysis of Planning Poker Factors between University and

Enterprise. 2017 5th International Conference in Software Engineering Research

and Innovation (CONISOFT), 54–60.

https://doi.org/10.1109/CONISOFT.2017.00014

163

Lorko, M., Servátka, M., & Zhang, L. (2019). Anchoring in project duration estimation.

Journal of Economic Behavior and Organization, 162, 49–65.

https://doi.org/10.1016/j.jebo.2019.04.014

Lovallo, D., & Kahneman, D. (2003). Delusions of Success: How Optimism Undermines

Executives’ Decisions. Harvard Business Review, 81(7), 1–15. Retrieved from

 https://hbr.org/

Majid, M. A. A., Othman, M., Mohamad, S. F., Lim, S. A. H., & Yusof, A. (2018).

Piloting for interviews in qualitative research: Operationalization and lessons learnt.

International Journal of Academic Research in Business and Social Sciences, 7(4),

1073–1080. https://doi.org/10.6007/ijarbss/v7-i4/2916

Malterud, K., Siersma, V. D., & Guassora, A. D. (2016). Sample Size in Qualitative

Interview Studies: Guided by Information Power. Qualitative Health Research,

26(13), 1753–1760. https://doi.org/10.1177/1049732315617444

Matharu, G. S., Mishra, A., Singh, H., & Upadhyay, P. (2015). Empirical study of agile

software development methodologies. ACM SIGSOFT Software Engineering Notes,

40(1), 1–6. https://doi.org/10.1145/2693208.2693233

McAlpine, L. (2016). Why might you use narrative methodology? A story about

narrative. Eesti Haridusteaduste Ajakiri (Estonian Journal of Education), 4(1), 32–

57. https://doi.org/10.12697/eha.2016.4.1.02b

McConnell, S. (2006). Software Estimation: Demystifying the Black Art. Redmond WA:

Microsoft Press.

McCusker, K., & Gunaydin, S. (2015). Research using qualitative, quantitative or mixed

164

methods and choice based on the research. Perfusion, 30(7), 537–542.

https://doi.org/10.1177/0267659114559116

McGrath, C., Palmgren, P. J., & Liljedahl, M. (2018). Twelve tips for conducting

qualitative research interviews. Medical Teacher, 1–5.

https://doi.org/10.1080/0142159X.2018.1497149

McIntosh, M. J., & Morse, J. M. (2015). Situating and constructing diversity in semi-

structured interviews. Global Qualitative Nursing Research, 2, 233339361559767.

https://doi.org/10.1177/2333393615597674

Mehta, S., & Kumari, S. (2016). A tool to evaluate the performance of UCP.

International Journal of Engineering Science, 6(7), 8193–8198.

https://doi.org/10.4010/2016.1913

Meyer, B. (2018). Making Sense of Agile Methods. IEEE Software, 35(2), 91–94.

https://doi.org/10.1109/MS.2018.1661325

Miracle, V. A. (2016). The belmont report: The triple crown of research ethics.

Dimensions of Critical Care Nursing, 35(4), 223–228.

https://doi.org/10.1097/DCC.0000000000000186

Miranda, E. (2017). Documentless assessments using nominal group interviews. Software

Quality Professional, 19(2). Retrieved from http://www.asq.org/pub/sqp/

Mirzaei, M., & Mabin, V. (2017). Agile project management and public policy

development projects: A case study from New Zealand. New Zealand Journal of

Applied Business Research, 15(1), 59–76. Retrieved from

https://www.manukau.ac.nz/

165

Misra, S. (2012). Agile software development practices: evolution, principles, and

criticisms. International Journal of Quality & Reliability Management, 29(9), 972–

980. https://doi.org/10.1108/02656711211272863

Mittas, N., Papatheocharous, E., Angelis, L., & Andreou, A. S. (2015). Integrating non-

parametric models with linear components for producing software cost estimations.

Journal of Systems and Software, 99, 120–134.

https://doi.org/10.1016/j.jss.2014.09.025

Moharreri, K., Sapre, A. V., Ramanathan, J., & Ramnath, R. (2016). Cost-effective

supervised learning models for software effort estimation in agile environments.

2016 IEEE 40th Annual Computer Software and Applications Conference

(COMPSAC), 135–140. https://doi.org/10.1109/COMPSAC.2016.85

Moser, A., & Korstjens, I. (2018). Series: Practical guidance to qualitative research. Part

3: Sampling, data collection and analysis. European Journal of General Practice,

24(1), 9–18. https://doi.org/10.1080/13814788.2017.1375091

Müller, R., & Klein, G. (2019). Qualitative research submissions to Project Management

Journal. Project Management Journal, 50(1), 3–5.

https://doi.org/10.1177/8756972818817625

Munawar, H., & Qureshi, M. R. J. (2015). Measuring the effect of CMMI quality

standard on agile scrum model. International Journal of Information Engineering

and Electronic Business, 7(6), 46–52. https://doi.org/10.5815/ijieeb.2015.06.07

Naess, P., Andersen, J., Nicolaisen, M. S., & Strand, A. (2015). Forecasting inaccuracies:

A result of unexpected events, optimism bias, technical problems, or strategic

166

misrepresentation? Journal of Transport and Land Use, 8(3), 39–55.

https://doi.org/10.5198/jtlu.2015.719

Naik, P., & Nayak, S. (2017). Insights on research techniques towards cost estimation in

software design. International Journal of Electrical and Computer Engineering

(IJECE), 7(5), 2883. https://doi.org/10.11591/ijece.v7i5.pp2883-2894

National Institutes of Health. (n.d.). Guiding Principles for Ethical Research. Retrieved

January 19, 2019, from https://www.nih.gov/health-information/nih-clinical-

research-trials-you/guiding-principles-ethical-research

Nawaz, Z., Aftab, S., & Anwer, F. (2017). Simplified FDD process model. International

Journal of Modern Education and Computer Science, 9(9), 53–59.

https://doi.org/10.5815/ijmecs.2017.09.06

Newby-Clark, I. R., Ross, M., Koehler, D. J., Buehler, R., & Griffin, D. (2000). People

focus on optimistic scenarios and disregard pessimistic scenarios while predicting

task completion times. Journal of Experimental Psychology: Applied, 6(3), 171–

182. https://doi.org/10.1037/1076-898X.6.3.171

Nguyen, V. D., & Nguyen, N. T. (2018). Intelligent collectives: Theory, applications, and

research challenges. Cybernetics and Systems, 0(0), 1–19.

https://doi.org/10.1080/01969722.2017.1418254

Orange, A. (2016). Encouraging reflexive practices in doctoral students through research

journals. The Qualitative Report, 21(12), 2176. Retrieved from

http://www.nova.edu/ssss/QR/index.html

Osman, H., & Musa, M. (2016). A survey of agile software estimation methods.

167

International Journal of Computer Science and Telecommunications, 7(3), 38–42.

Retrieved from http://www.ijcst.org/Volume7/Issue3/p6_7_3.pdf

Osmanbegović, E., Suljić, M., & Agić, H. (2017). A review of estimation of software

products development cost. Ekonomski Vjesnik/Econviews-Review of Contemporary

Business, Entrepreneurship and Economic Issues, 3, 195–208. Retrieved from

https://hrcak.srce.hr/ojs/index.php/ekonomski-vjesnik/article/view/4108

Ozierańska, A., Skomra, A., Kuchta, D., & Rola, P. (2016). The critical factors of scrum

implementation in IT project – the case study. Journal of Economics and

Management, 25(3), 79–96. https://doi.org/10.22367/jem.2016.25.06

Parent, M. (2019). Unbiasing information technology decisions. Organizational

Dynamics. https://doi.org/10.1016/j.orgdyn.2019.02.001

Perkusich, M., Gorgônio, K. C., Almeida, H., & Perkusich, A. (2017). Assisting the

continuous improvement of scrum projects using metrics and bayesian networks.

Journal of Software: Evolution and Process, 29(6), 1–18.

https://doi.org/10.1002/smr.1835

Peticca-Harris, A., DeGama, N., & Elias, S. R. S. T. A. (2016). A dynamic process model

for finding informants and gaining access in qualitative research. Organizational

Research Methods, 19(3), 376–401. https://doi.org/10.1177/1094428116629218

Phillippi, J., & Lauderdale, J. (2018). A guide to field notes for qualitative research:

Context and conversation. Qualitative Health Research, 28(3), 381–388.

https://doi.org/10.1177/1049732317697102

Phillips, M., & Lu, J. (2018). A quick look at NVivo. Journal of Electronic Resources

168

Librarianship, 30(2), 104–106. https://doi.org/10.1080/1941126x.2018.1465535

Pinto, J. K. (2013). Lies, damned lies, and project plans: Recurring human errors that can

ruin the project planning process. Business Horizons, 56(5), 643–653.

https://doi.org/10.1016/j.bushor.2013.05.006

Polonioli, A. (2016). Adaptive rationality, biases, and the heterogeneity hypothesis.

Review of Philosophy and Psychology, 7(4), 787–803.

https://doi.org/10.1007/s13164-015-0281-0

Ponelis, S. R. (2015). Using interpretive qualitative case studies for exploratory research

in doctoral studies: A case of information systems research in small and medium

enterprises. International Journal of Doctoral Studies, 10, 535–550.

https://doi.org/10.28945/2339

Pospieszny, P., Czarnacka-Chrobot, B., & Kobylinski, A. (2018). An effective approach

for software project effort and duration estimation with machine learning

algorithms. Journal of Systems and Software, 137, 184–196.

https://doi.org/10.1016/j.jss.2017.11.066

Prakash, B., & Viswanathan, V. (2017). A survey on software estimation techniques in

traditional and agile development models. Indonesian Journal of Electrical

Engineering and Computer Science, 7(3), 867–876.

https://doi.org/10.11591/ijeecs.v7.i3.pp867-876

Prater, J., Kirytopoulos, K., & Ma, T. (2017). Optimism bias within the project

management context: A systematic quantitative literature review. International

Journal of Managing Projects in Business, 10(2), 370–385.

169

https://doi.org/10.1108/IJMPB-07-2016-0063

Qi, F., Jing, X. Y., Zhu, X., Xie, X., Xu, B., & Ying, S. (2017). Software effort

estimation based on open source projects: Case study of Github. Information and

Software Technology, 92, 145–157. https://doi.org/10.1016/j.infsof.2017.07.015

Rahi, S. (2017). Research design and methods: A systematic review of research

paradigms, sampling issues and instruments development. International Journal of

Economics & Management Sciences, 06(02). https://doi.org/10.4172/2162-

6359.1000403

Rahikkala, J., Leppänen, V., Ruohonen, J., & Holvitie, J. (2015). Top management

support in software cost estimation: A study of attitudes and practice in Finland.

International Journal of Managing Projects in Business, 8(3), 513–532.

https://doi.org/10.1108/IJMPB-11-2014-0076

Rai, A., Gupta, G. P., & Kumar, P. (2017). Estimation of software development efforts

using improved delphi technique: A novel approach. International Journal of

Applied Engineering Research, 12(12), 3228–3236. Retrieved from

http://www.ripublication.com/ijaer.htm

Ramirez-Noriega, A., Juarez-Ramirez, R., Navarro, R., & Lopez-Martinez, J. (2016).

Using Bayesian networks to obtain the task’s parameters for schedule planning in

scrum. Proceedings - 2016 4th International Conference in Software Engineering

Research and Innovation, CONISOFT 2016, (1), 167–174.

https://doi.org/10.1109/CONISOFT.2016.33

Raslan, A. T., Darwish, N. R., & Hefny, H. A. (2015). Towards a fuzzy based framework

170

for effort estimation in agile software development. International Journal of

Computer Science and Information Security, 13(1), 37. Retrieved from

http://search.proquest.com/openview/0ffd04c753ca702dbd632daf9f7ffb81/1?pq-

origsite=gscholar&cbl=616671

Rath, S. K., Acharya, B. P., & Satapathy, S. M. (2016). Early stage software effort

estimation using random forest technique based on use case points. IET Software,

10(1), 10–17. https://doi.org/10.1049/iet-sen.2014.0122

Riccobono, F., Bruccoleri, M., & Größler, A. (2016). Groupthink and project

performance: The influence of personal traits and interpersonal yies. Production and

Operations Management, 25(4), 609–629. https://doi.org/10.1111/poms.12431

Rijwani, P., & Jain, S. (2016). Enhanced Software Effort Estimation Using Multi Layered

Feed Forward Artificial Neural Network Technique. Procedia Computer Science,

89, 307–312. https://doi.org/10.1016/j.procs.2016.06.073

Rimando, M., Brace, A. M., Namageyo-Funa, A., Parr, T. L., & Sealy, D. A. (2015).

Data collection challenges and recommendations for early career researchers. The

Qualitative Report, 20(12), 2025–2036. Retrieved from

http://nsuworks.nova.edu/tqr/vol20/iss12/8

Røddesnes, S., Faber, H. C., & Jensen, M. R. (2019). NVivo courses in the library:

Working to create the library services of tomorrow, 11(1), 27–38. https://doi.org/

10.15845/noril.v11i1.2762

Room, G. (2018). The hiding hand: A rejoinder to Flyvbjerg on Hirschman. World

Development, 103, 366–368. https://doi.org/10.1016/j.worlddev.2017.10.015

171

Roulston, K. (2018). Qualitative interviewing and epistemics. Qualitative Research,

18(3), 322–341. https://doi.org/10.1177/1468794117721738

Roy, M. M., Burns, T., & Radzevick, J. R. (2019). Unpacking, summing and anchoring in

retrospective time estimation. Acta Psychologica, 192(November 2018), 153–162.

https://doi.org/10.1016/j.actpsy.2018.11.012

Sadaf, S., Iqbal, S., Saba, A., & Mohsin, M. M. (2017). An extended adaptive process

model for agile software development methodology. 2017 International Conference

on Intelligent Computing, Instrumentation and Control Technologies (ICICICT),

1373–1378. https://doi.org/10.1109/ICICICT1.2017.8342770

Sambare, T. (2017). Agility: The need of an hour for software industry. International

Journal of Advanced Research in Computer Science, 8(0976).

https://doi.org/http://dx.doi.org/10.26483/ijarcs.v8i9.4886

Saravanan, K., Floyd, R. W., Mcllroy, D., Morris, C., Boehm, B., Methodo, C., … North,

D. (2017). Systems development methodologies: Conceptual study. Indian Journal

of Scientific Research, 14(1), 27–37. Retrieved from http://www.ijsr.in

Sarstedt, M., Bengart, P., Shaltoni, A. M., & Lehmann, S. (2018). The use of sampling

methods in advertising research: a gap between theory and practice. International

Journal of Advertising, 37(4), 650–663.

https://doi.org/10.1080/02650487.2017.1348329

Saunders, M. N. K., & Townsend, K. (2016). Reporting and justifying the number of

interview participants in organization and workplace research. British Journal of

Management, 27(4), 836–852. https://doi.org/10.1111/1467-8551.12182

172

Sehra, S. K., Brar, Y. S., Kaur, N., & Sehra, S. S. (2017). Research patterns and trends in

software effort estimation. Information and Software Technology, 0, 1–21.

https://doi.org/10.1016/j.infsof.2017.06.002

Sehra, S. K., Brar, B. Y., & Kaur, N. (2016). Predominant factors influencing software

effort estimation. International Journal of Computer Science and Information

Security, 14(7), 107–110. Retrieved from https://sites.google.com/site/ijcsis/

Seixas, B. V., Smith, N., & Mitton, C. (2018). The Qualitative Descriptive Approach in

International Comparative Studies: Using Online Qualitative Surveys. International

Journal of Health Policy and Management, 7(9), 778–781.

https://doi.org/10.15171/ijhpm.2017.142

Shannon-Baker, P. (2016). Making paradigms meaningful in mixed methods research.

Journal of Mixed Methods Research, 10(4), 319–334.

https://doi.org/10.1177/1558689815575861

Shawky, D. M., Salwa, K., & El-Hafiz, A. (2016). Characterizing software development

method using metrics. Journal of Software: Evolution and Process, 28, 82–96.

https://doi.org/10.1002/smr.176

Shekhar, S., & Kumar, U. (2016). Review of various software cost estimation techniques.

International Journal of Computer Applications, 141(11), 31–34. Retrieved from

http://www.ijcaonline.org/

Shepperd, J. A., Waters, E. A., Weinstein, N. D., & Klein, W. M. P. (2015). A primer on

unrealistic optimism. Current Directions in Psychological Science, 24(3), 232–237.

https://doi.org/10.1177/0963721414568341

173

Shepperd, M., Mair, C., & Jørgensen, M. (2018). An experimental evaluation of a de-

biasing intervention for professional software developers. In Proceedings of the

ACM Symposium on Applied Computing (pp. 1510–1517).

https://doi.org/10.1145/3167132.3167293

Shida, T., & Tsuda, K. (2017). A study of software estimation factors extracted using

covariance structure analysis. Procedia Computer Science, 112, 1378–1387.

https://doi.org/10.1016/j.procs.2017.08.053

Shmueli, O., Pliskin, N., & Fink, L. (2016). Can the outside-view approach improve

planning decisions in software development projects? Information Systems Journal,

26(4), 395–418. https://doi.org/10.1111/isj.12091

Shmueli, O., & Ronen, B. (2017). Excessive software development: Practices and

penalties. International Journal of Project Management, 35(1), 13–27.

https://doi.org/10.1016/j.ijproman.2016.10.002

Shollig, Widodo, A. P., Sutanto, T., & Subriadi, A. P. (2016). A model to determine cost

estimation for software development projects of small and medium scales using use

case points. Journal of Theoretical and Applied Information Technology, 85(1), 1–8.

Retrieved from http://www.jatit.org

Singh, A., & Pandey, D. (2017). Implementation of requirement engineering in extreme

programming and scrum. International Journal of Advanced Research in Computer

Science, 8(5), 621–625. Retrieved from http://www.ijarcs.info/index.php/Ijarcs

Solinski, A., & Petersen, K. (2016). Prioritizing agile benefits and limitations in relation

to practice usage. Software Quality Journal, 24(2), 447–482.

174

https://doi.org/10.1007/s11219-014-9253-3

Soni, D., & Kohli, P. J. (2017). Cost estimation model for web applications using agile

software development methodology. Pertanika Journal of Science and Technology,

25(3), 931–938. Retrieved from http://www.pertanika.upm.edu.my/index%20-

%20JST.htm

Srivastava, P., & Jain, S. (2017). A leadership framework for distributed self-organized

scrum teams. Team Performance Management, 23(5–6), 293–314.

https://doi.org/10.1108/TPM-06-2016-0033

Staats, B. R., Milkman, K. L., & Fox, C. R. (2012). The team scaling fallacy:

Underestimating the declining efficiency of larger teams. Organizational Behavior

and Human Decision Processes, 118(2), 132–142.

https://doi.org/10.1016/j.obhdp.2012.03.002

Stake, R. (2006). Multiple Case Study Analysis. New York, NY: Guilford Press.

Retrieved from

https://books.google.com/books?hl=en&lr=&id=rQWT5aDHiZYC&oi=fnd&pg=PT

21&dq=Stake,+R.+E&ots=IGdSIyExzo&sig=q9JLy-

EhctE0cWwmz_rp8HOqUC4#v=onepage&q=Stake%2C R. E&f=false

Starcher, R. L., Dzubinski, L. M., & Sanchez, J. N. (2018). Rigorous missiological

research using qualitative inquiry. Missiology: An International Review, 46(1), 50–

66. https://doi.org/10.1177/0091829617741911

Sting, F. J., Loch, C. H., & Stempfhuber, D. (2015). Accelerating projects by

encouraging help. MIT Sloan Management Review, 56(3), 1–9. Retrieved from

175

http://sloanreview.mit.edu/

Stoica, M., Ghilic-Micu, B., Mircea, M., & Uscatu, C. (2016). Analyzing agile

development - from waterfall style to scrumban. Informatica Economica,

20(4/2016), 15–25. https://doi.org/10.12948/issn14531305/20.4.2016.02

Stokes, Y., Vandyk, A., Squires, J., Jacob, J. D., & Gifford, W. (2019). Using Facebook

and LinkedIn to recruit nurses for an online survey. Western Journal of Nursing

Research, 41(1), 96–110. https://doi.org/10.1177/0193945917740706

Strasser, A. (2017). Delphi method variants in information systems research: Taxonomy

development and application. Electronic Journal of Business Research Methods,

15(2), 120–133. Retrieved from http://www.ejbrm.com/index.htm

Surmiak, A. (2018). Confidentiality in qualitative research involving vulnerable

participants: Researchers’ perspectives. Forum Qualitative Sozialforschung, 19(3).

https://doi.org/10.17169/fqs-19.3.3099

Tanner, M., & Dauane, M. (2017). The use of Kanban to alleviate collaboration and

communication challenges of global software development. Issues in Informing

Science & Information Technology, 14, 177. Retrieved from

https://www.informingscience.org/Journals/IISIT/Overview

Tanveer, B. (2017). Guidelines for utilizing change impact analysis when estimating

effort in agile software development. In ACM (pp. 252–257).

https://doi.org/10.1145/3084226.3084284

Tarwani, S., & Chug, A. (2016). Agile Methodologies in Software Maintenance: A

Systematic Review. Informatica 40, 40, 421. Retrieved from

176

http://www.informatica.si/index.php/informatica/article/view/1182/927

Taylor, K. J. (2016). Adopting agile software development: the project manager

experience. Information Technology and People, 29(4), 670–687.

https://doi.org/10.1108/ITP-02-2014-0031

Tenenboim, E., & Shiftan, Y. (2018). Accuracy and bias of subjective travel time

estimates. Transportation, 45(3), 945–969. https://doi.org/10.1007/s11116-016-

9757-8

The National Commission for the Protection of Human Subjects of Biomedical and

Behavioral Research. (1979). The Belmont Report | HHS.gov. Retrieved February

20, 2019, from https://www.hhs.gov/ohrp/regulations-and-policy/belmont-

report/read-the-belmont-report/index.html

Thomas, K. E., & König, C. J. (2018). Knowledge of previous tasks: Task similarity

influences bias in task duration predictions. Frontiers in Psychology, 9(MAY), 1–

14. https://doi.org/10.3389/fpsyg.2018.00760

Tomczak, P., & Traczyk, J. (2017). The mechanism of non-numerical anchoring heuristic

based on magnitude priming: Is it just the basic anchoring effect in disguise? Polish

Psychological Bulletin, 48(3), 401–410. https://doi.org/10.1515/ppb-2017-0046

Tong, A., & Dew, M. A. (2016). Qualitative research in transplantation. Transplantation,

100(4), 710–712. https://doi.org/10.1097/tp.0000000000001117

Torrecilla-Salinas, C. J., Sedeño, J., Escalona, M. J., & Mejías, M. (2015). Estimating,

planning and managing Agile Web development projects under a value-based

perspective. Information and Software Technology, 61, 124–144.

177

https://doi.org/10.1016/j.infsof.2015.01.006

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases.

Science, 185(November), 0–2. https://doi.org/10.1080/10548400802156836

Twining, P., Heller, R. S., Nussbaum, M., & Tsai, C. C. (2017). Some guidance on

conducting and reporting qualitative studies. Computers and Education, 106, A1–

A9. https://doi.org/10.1016/j.compedu.2016.12.002

Urbanek, T., Kolcavova, A., & Kuncar, A. (2017). Inferring productivity factor for use

case point method. Annals of DAAAM and Proceedings of the International DAAAM

Symposium, 597–602. https://doi.org/10.2507/28th.daaam.proceedings.084

Usländer, T. (2016). Agile Service-oriented Analysis and Design of Industrial Internet

Applications. Procedia CIRP, 57, 219–223.

https://doi.org/10.1016/j.procir.2016.11.038

Usman, M., Börstler, J., & Petersen, K. (2017). An effort estimation taxonomy for agile

software development. International Journal of Software Engineering and

Knowledge Engineering, 27(04), 641–674.

https://doi.org/10.1142/S0218194017500243

Usman, M., Britto, R., Damm, L. O., & Börstler, J. (2018). Effort estimation in large-

scale software development: An industrial case study. Information and Software

Technology, 99(April 2017), 21–40. https://doi.org/10.1016/j.infsof.2018.02.009

Vallon, R., José, B., Prikladnicki, R., & Grechenig, T. (2018). Systematic literature

review on agile practices in global software development. Information and Software

Technology, 96(April 2017), 161–180. https://doi.org/10.1016/j.infsof.2017.12.004

178

van Baalen, S. (2018). ‘Google wants to know your location’: The ethical challenges of

fieldwork in the digital age. Research Ethics, 14(4), 1–17.

https://doi.org/10.1177/1747016117750312

van Vliet, H., & Tang, A. (2016). Decision making in software architecture. Journal of

Systems and Software, 117, 638–644. https://doi.org/10.1016/j.jss.2016.01.017

Venkatesh, V., Brown, S. A., & Sullivan, Y. W. (2016). Guidelines for conducting

mixed-methods research: An extension and illustration. Journal of the Association

for Information Systems, 17(7), 435–494. Retrieved from https://aisel.aisnet.org/jais/

Vicary, S., Young, A., & Hicks, S. (2017). A reflective journal as learning process and

contribution to quality and validity in interpretative phenomenological analysis.

Qualitative Social Work, 16(4), 550–565.

https://doi.org/10.1177/1473325016635244

Vyas, M., Bohra, A., Lamba, C. S., & Vyas, A. (2018). A Review on Software Cost and

Effort Estimation Techniques for Agile Development Process. International Journal

of Recent Research Aspects, 5(1), 1–5. Retrieved from https://www.ijrra.net/

Wiese, J., Buehler, R., & Griffin, D. (2016). Backward planning: Effects of planning

direction on predictions of task completion time. Judgment and Decision Making,

11(2), 147–167. Retrieved from http://journal.sjdm.org

Wilson, V. (2016). Research methods: sampling. Evidence Based Library and

Information Practice, 11(1). https://doi.org/10.18438/b8wc8n

Windsong, E. A. (2018). Incorporating intersectionality into research design: An example

using qualitative interviews. International Journal of Social Research Methodology,

179

21(2), 135–147. https://doi.org/10.1080/13645579.2016.1268361

Xerri, D. (2017). Two methodological challenges for teacher-researchers: Reflexivity and

trustworthiness. The Clearing House: A Journal of Educational Strategies, Issues

and Ideas, 91(1), 37–41. https://doi.org/10.1080/00098655.2017.1371549

Yamini, S., & Marathe, R. R. (2018). Mathematical model to mitigate planning fallacy

and to determine realistic delivery time. IIMB Management Review, 242–257.

https://doi.org/10.1016/j.iimb.2018.05.003

Yang, C., Liang, P., & Avgeriou, P. (2018). Assumptions and their management in

software development: A systematic mapping study. Information and Software

Technology, 94(December 2016), 82–110.

https://doi.org/10.1016/j.infsof.2017.10.003

Yazan, B. (2015). Three approaches to case study methods in education: Yin, Merriam,

and Stake. The Qualitative Report, 20(2), 134–152. Retrieved from

http://www.nova.edu/ssss/QR/QR20/2/yazan1.pdf

Yilmaz, K. (2013). Comparison of quantitative and qualitative research traditions:

epistemological, theoretical and methodological differences. European Journal of

Education, 48(2), 311–325. https://doi.org/doi:10.1111/ejed.12014

Yin, R. K. (2014). Case Study Research: Design & Methods (5th ed.). Thousand Oaks,

CA: Sage Publications. https://doi.org/10.1007/BF01103312

Yoshigami, K., Tsunoda, M., Yamada, Y., & Kusumoto, S. (2017). Should function point

elements be used to build prediction models? Proceedings - 8th IEEE International

Workshop on Empirical Software Engineering in Practice, IWESEP 2017, 41–46.

180

https://doi.org/10.1109/IWESEP.2017.18

Younas, M., Ghani, I., Jawawi, D. N. A., & Khan, M. M. (2016). A Framework for Agile

Development in Cloud Computing Environment ☆. Journal of Internet Computing

and Services (JICS), 17(5), 67–74. https://doi.org/10.7472/jksii.2016.17.5.67

Zadeh, L. A. (2015). Fuzzy logic - A personal perspective. Fuzzy Sets and Systems, 281,

4–20. https://doi.org/10.1016/j.fss.2015.05.009

Zahraoui, H., & Idrissi, M. A. J. (2015). Adjusting story points calculation in scrum effort

& time estimation. 2015 10th International Conference on Intelligent Systems:

Theories and Applications, SITA 2015. https://doi.org/10.1109/SITA.2015.7358400

Zare, F., Zare, H., & Fallahnezhad, M. S. (2016). Software effort estimation based on the

optimal Bayesian belief network. Applied Soft Computing Journal, 49, 968–980.

https://doi.org/10.1016/j.asoc.2016.08.004

Zhang, J., Jia, S., & Diaz, E. (2018). Dynamic monitoring and control of a critical chain

project based on phase buffer allocation. Journal of the Operational Research

Society, 69(12), 1966–1977. https://doi.org/10.1080/01605682.2017.1415641

Zhu, D., Li, X., Yang, S., & Xie, X. (2019). More accurate or less accurate: How does

maximization orientation affect task completion predictions? Personality and

Individual Differences, 137(April 2018), 173–183.

https://doi.org/10.1016/j.paid.2018.08.025

Zulfikar, T., & Mujiburrahman. (2018). Understanding own teaching: becoming

reflective teachers through reflective journals. Reflective Practice, 19(1), 13.

https://doi.org/10.1080/14623943.2017.1295933

181

Appendix A: Participant Prescreen Questions

1. Do you or your team provide software development effort estimates?

2. How many years experience do you have providing software development effort

estimates?

3. Do you currently use an effort estimation strategy for software development

changes that is considered accurate by the project managers or product managers?

4. Is your effort estimation method a formal process?

182

Appendix B: Participant Invitation E-mail

Kevin Roark

Doctoral Candidate at Walden University

Kevin.Roark@waldenu.edu

[telephone number redacted]

Date:

Dear Participant

I am a doctoral student at Walden University working on my doctoral project for

completion of my doctoral degree. My study will be to explore the strategies used by

agile software development professionals to provide software development project

managers with accurate software development effort estimations.

You have been selected as a potential participant in my study based on your knowledge

and use of successful strategies in providing accurate estimations of software

development effort. The study will require that I meet with you to conduct an interview

and review non-proprietary information about estimation strategies you use. The data that

I will report on and publish will not disclose any information that would uniquely identify

you or your company. Participation in this study is voluntary and will include an

interview that will last about one hour.

Your consideration to participate in this study is appreciated. If you can participate,

please respond to me at kevin.roark@waldenu.edu. Your participation in this study will

help other software development professional and organizations to understand successful

estimation strategies. The results of this study will provide effective estimation strategies

in software development planning.

Thank you for your consideration. Please feel free to reach out to me by email or phone

should you have any questions.

Sincerely

Kevin Roark

Walden University

Doctoral Candidate

[telephone number redacted]

183

Appendix C: Interview Protocol

1. Introduce myself to the participant and describe my role as a researcher

2. Briefly discuss the objectives of the study and why I selected them to interview

3. Provide the participant the Informed Consent form to sign and discuss the purpose of

informed consent.

4. I will remind the participant that participation in the study is voluntary and the right

to withdraw from the study by sending me an email before my member checking

process.

5. I will remind the participants that the recording, personal notes, and the transcription

will not include any personally identifiable information and that I will maintain their

anonymity and preserve their confidentiality.

6. I will remind the participant that the interview will be recorded for transcription

purposes.

7. Ask the participant if they have any questions before the interview begins.

8. Start the recording and begin asking the participant the interview questions in order.

9. Ask the participant if there are any organization process or procedure documents that

describe or detail relevant information regarding this study.

10. Thank the participant for their participation in the study

11. Inform the participant that I will be contacting them as a followup on my interview to

ensure I have interpreted their interview data correctly.

	Strategies in Software Development Effort Estimation
	Microsoft Word - 769354_pdfconv_911162_0A2830B4-E6D9-11EA-9417-D3AFD56E94E5.doc

