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ABSTRACT

NOVEL BAYESIAN METHODOLOGY FOR THE ANALYSIS OF
SINGLE-CELL RNA SEQUENCING DATA

Michael Sekula

April 10, 2020

With single-cell RNA sequencing (scRNA-seq) technology, researchers are able to gain

a better understanding of health and disease through the analysis of gene expression

data at the cellular-level; however, scRNA-seq data tend to have high proportions

of zero values, increased cell-to-cell variability, and overdispersion due to abnormally

large expression counts, which create new statistical problems that need to be ad-

dressed. This dissertation includes three research projects that propose Bayesian

methodology suitable for scRNA-seq analysis. In the first project, a hurdle model

for identifying differentially expressed genes across cell types in scRNA-seq data is

presented. This model incorporates a correlated random effects structure based on an

initial clustering of cells to capture the cell-to-cell variability within treatment groups

but can easily be adapted to an independent random effect structure if needed. A

sparse Bayesian factor model is introduced in the second project to uncover network

structures associated with genes in scRNA-seq data. Latent factors impact the gene

expression values for each cell and provide flexibility to account for the common fea-

tures of scRNA-seq. The third project expands upon this latent factor model to allow

for the comparison of networks across different treatment groups.
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CHAPTER 1

INTRODUCTION

For over a decade, RNA sequencing technologies have been instrumental in trans-

forming our knowledge and understanding of transcriptomes. The analysis of data

generated by these technologies has led to a plethora of novel biological findings

ranging from the discovery of new transcripts to the identification of genes associated

with specific diseases (Wang et al., 2009; Liu et al., 2015). Currently, RNA sequenc-

ing experiments fall into one of two categories: bulk RNA sequencing (RNA-seq)

or single-cell RNA sequencing (scRNA-seq). Traditional bulk RNA-seq experiments

examine transcript abundance measurements that have been averaged over popula-

tions of thousands, or even millions, of cells. In contrast, the more recent scRNA-seq

experiments examine gene expressions from individual cells. While bulk RNA-seq

studies have a longer history in the literature, scRNA-seq studies are rapidly gaining

attention among researchers today.

What makes the future of scRNA-seq so promising is the unprecedented op-

portunity to thoroughly investigate cellular functionality at the level of a single cell.

Diverse gene expression patterns in cell populations that have previously seemed

homogeneous are becoming exposed, allowing investigators to uncover solutions to

unanswered questions across various fields of biology (Shapiro et al., 2013; Fan et al.,

2015; Kanter and Kalisky, 2015). Nevertheless, the information collected from single-

cell sequencing does present new computational and statistical challenges. Several

intrinsic features of scRNA-seq data are not observed in bulk RNA-seq data (Figure
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1.1), and so many of the well-established methods used in bulk RNA-seq studies are

not suitable for scRNA-seq studies. Thus, in order to take full advantage of scRNA-

seq technologies, new statistical techniques need to be developed (Stegle et al., 2015;

Bacher and Kendziorski, 2016).

Perhaps the most distinct characteristic of data generated by scRNA-seq is

the abundance of zeros (Figure 1.1A). Specifically, the expression values of tran-

scripts often exhibit bimodal distributions (Figure 1.1B) such that a gene can have

high expression values for some cells but not be expressed in others (Shalek et al.,

2013; Kharchenko et al., 2014). Although these expression patterns are due in part

to technical variation and low concentrations of mRNA, they are also attributed

to true biological differences between populations (or even subpopulations) of cells

(Macaulay and Voet, 2014; Finak et al., 2015). Unimodal distributions typically used

for the analysis of bulk RNA-seq data fail to capture the complex structure of scRNA-

seq data, which bolsters the need for developing new methods specific to single-cell

analyses.

Another prominent feature of scRNA-seq data is the increased cell-to-cell vari-

ability (Figure 1.1C). Since information is being gathered from individual cells, dif-

ferences in gene expressions across a single cellular population can now be observed.

This means variation in scRNA-seq data can exist both between different groups of

cells and within the same cellular population (Huang, 2009; Buettner et al., 2015; Ko-

rthauer et al., 2016; Tirosh et al., 2016). Traditional bulk RNA-seq experiments often

mask this heterogeneity by averaging out the gene expression measurements, and for

that reason, bulk RNA-seq methods do not directly take the high cell-to-cell varia-

tion associated with scRNA-seq into consideration. Here, the need for new single-cell

analysis methods is again highlighted by the inability of bulk RNA-seq methods to

appropriately address the unique characteristics of scRNA-seq data.

Many of the tasks performed in bulk RNA-seq studies, such as detecting genes
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that are differentially expressed between different populations of cells or construct-

ing biological networks of genes within a population of cells, are also performed in

scRNA-seq studies. Moreover, there are some tasks, such as identifying subpopula-

tions of cells, that are unique to scRNA-seq experiments. Since bulk methods are not

appropriate for analyzing single-cell data, new analytic tools specific to scRNA-seq

are in high demand. The development of novel statistical techniques for the analysis

of scRNA-seq data is gaining much attention, and research in this area is moving

quickly. Some progress has already been made in this emerging area of research, but

numerous opportunities still exist for the development of new single-cell methodology.

1.1 Differential Expression of Single-cell RNA Sequencing Data

A commonly performed task in sequencing analysis is the identification of genes that

are differentially expressed (DE) across different populations of cells. Two of the most

commonly referenced methods that have been designed specifically for differential

expression analysis of scRNA-seq data are Single-Cell Differential Expression (SCDE;

Kharchenko et al., 2014) and Model-based Analysis of Single-cell Transcriptomics

(MAST; Finak et al., 2015). SCDE generates error models for each gene by using

a mixture of a low-level Poisson distribution and a negative binomial distribution.

The Poisson distribution is used to capture genes that are undetected across some

of the cells, and the negative binomial distribution is used to address overdispersed

expression counts commonly observed in sequencing data. MAST uses a two-part

generalized linear model (hurdle model) to analyze continuous scRNA-seq expression

levels, as opposed to analyzing discrete count values like SCDE. A logistic regression

is initially used to model the proportion of cells that express a given gene, thereby

addressing the overinflation of zeros observed in scRNA-seq data. Then, if a gene is

expressed within a cell, a Gaussian distribution models the transformed expression

level.
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More recently, several other methods for detecting DE genes in scRNA-seq

have also been proposed. The Beta-Poisson Single-Cell (BPSC) method in Vu et al.

(2016) uses a generalized linear model framework with a beta-Poisson mixture model

to compare mean expression values across cellular groups. Delmans and Hemberg

(2016) introduced the Discrete, Distributional method for Differential gene Expres-

sion (D3E), which also uses a beta-Poisson mixture model but compares gene expres-

sion distributions using either the Kolmogorov-Smirnov test, the Cramér-von Mises

test, or the likelihood ratio test. A zero-inflated negative binomial model is utilized

in DEsingle (Miao et al., 2018) to detect DE genes with likelihood ratio tests and

estimate proportions of true zeros and dropout zeros.

Surprisingly, despite the variety of methods designed for differential expression

analysis of scRNA-seq data, several studies have concluded that these methods do

not perform much better than the bulk RNA-seq methods (Jaakkola et al., 2017;

Miao and Zhang, 2016; Soneson and Robinson, 2018). Therefore, opportunities still

exist for developing new methodology that will significantly outperform the bulk

methods. In Chapter 2, a novel statistical model for high dimensional and zero-

inflated scRNA-seq count data is introduced to identify differentially expressed genes

across cell types. We adopt a hurdle model to address the overabundance of zeros

in scRNA-seq data, and employ a correlated random effects structure guided by an

initial supervised subpopulation clustering assignment to capture the observed cellular

variability within treatment groups of cells.

1.2 Network Inference from Single-cell Gene Expression Data

Another common task in sequencing analysis is the construction of networks of genes

with similar biological processes. These networks, which are often classified as ei-

ther gene co-expression networks (GCNs) or gene regulatory networks (GRNs), pro-

vide valuable insight into the functionality and mechanics of biological processes. In
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GCNs, the edges that connect nodes (genes) within the network are considered to be

“undirected” since they only indicate the relationships or dependencies between the

co-expression of genes, not the underlying cause of these associations. This makes

GCNs slightly different from GRNs, which connect nodes with directed edges that can

be used to infer casual relationships (De Smet and Marchal, 2010). Network analysis

is an important tool in the biomedical sciences because genes involved in the same

biological pathway or have similar functionality tend to also have similar expression

patterns (Eisen et al., 1998; Allocco et al., 2004). By examining GCNs and GRNs,

researchers can gain a better understanding of the relationships and interactions be-

tween sets of genes during different cellular functions and processes (Wolfe et al.,

2005; Hecker et al., 2009; Wang et al., 2016).

Interestingly, research in designing new methodology for scRNA-seq gene net-

working analysis has only recently been gaining attention in the literature. Lag-based

Expression Association for Pseudotime-series (LEAP; Specht and Li, 2016) is a GCN

method that determines gene co-expression by taking into account the possible lags

in time that can be caused by cells being in different time points of their cell cycles.

Introduced by Aibar et al. (2017), Single-Cell rEgulatory Network Inference and Clus-

tering (SCENIC) constructs GRNs by first detecting potential sets of co-expressed

genes within a population of cells and then performing a transcript factor enrichment

analysis to identify and score significantly enriched gene sets. The Single-Cell Or-

dinary Differentiation Equation (SCODE) algorithm from Matsumoto et al. (2017)

uses linear ordinary differentiation equations to obtain an optimized square matrix

that represents the regulatory relationships between transcription factors. Partial

Information Decomposition and Context (PIDC; Chan et al., 2017) is an information

theory based algorithm that utilizes partial information decomposition to identify

GRNs.

Like the DE methods for scRNA-seq, the current network methods for scRNA-
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seq do not outperform methods developed for bulk RNA-seq data (Chen and Mar,

2018). Thus, new network methods applicable to scRNA-seq data need to be devel-

oped. In Chapter 3, a sparse Bayesian latent factor model is presented to explore the

network structure associated with genes in a single population of cells. For a given

cell, a set of shared latent factors adjusts the expression value for each gene, thereby

accounting for the zero-inflation and overdispersion commonly observed in scRNA-seq

data. A network structure is then inferred from the common factors between pairs of

genes that impact their expressions.

1.3 Single-cell Differential Network Analysis

Methods for constructing GCNs and GRNs typically assume that the network struc-

ture is being explored within one population of cells such as a single tissue type,

environmental condition, or disease status. For some biological studies, however, it

may be of greater interest to compare structures from different cellular populations.

Different types of cells, or the same type of cell in different stages or conditions, may

carry out different functions, and by performing differential network analysis between

two (or more) gene-gene association or interaction networks, researchers can identify

the parts of the network that are affected by these biological differences.

Most methods for examining differences between gene network structures have

been developed in the context of microarray and bulk RNA-seq data. To our knowl-

edge, the literature related to methodology developed for scRNA-seq differential net-

work analysis is quite sparse. In fact, Chowdhury et al. (2019) provide an extensive

review on differential co-expression analysis of gene expression data that highlights

the need for more research in scRNA-seq methodolgy. The statistical framework de-

veloped by Gill et al. (2010) for microarray gene expression data was utilized in Wang

et al. (2017) to present proof-of-concept analyses for comparing network structures

constructed from scRNA-seq data. Chiu et al. (2018) introduced the scRNA-seq-based
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differential network (scdNet) analysis method to determine a sample size corrected

gene-gene correlation matrix for each cellular state and identify gene-gene pairs that

have significant changes between these states. The authors claim that scdNet is the

first tool for differential network analysis of scRNA-seq data.

In Chapter 4, we expand upon the network model proposed in Chapter 3 to ex-

amine differences in the underlying networks across two separate cellular populations.

Under this model, the parameters that influence the latent factors are treatment-

dependent to allow gene-gene co-expression calculations within each group of cells.

The gene network structures can then be compared by analyzing credible intervals of

the differences between the co-expressions of each group.

7



1.4 Figures

Figure 1.1: Comparisons between bulk RNA-seq and scRNA-seq data. (A) Proportion

of zeros boxplots from a bulk (bulk1) and a single-cell (sc1) dataset. For each type

of RNA-seq data, genes were sorted by their median expression values and groups

were formed based on percentiles. (B) Estimated number of modes for the expression

distributions of 1,000 randomly selected genes from three bulk and three scRNA-seq

datasets. (C) Log variance density plots for all of the genes in the datasets from B.

Densities were also created for the log variance of the scRNA-seq datasets when zeros

were removed to illustrate the variation across the non-zero expression values.
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CHAPTER 2

DETECTION OF DIFFERENTIALLY EXPRESSED GENES IN

DISCRETE SINGLE-CELL RNA SEQUENCING DATA USING A

HURDLE MODEL WITH CORRELATED RANDOM EFFECTS1

2.1 Introduction

Rapidly emerging advances in next-generation technology have pushed single-cell

analysis to the forefront of gene expression profiling experiments. Traditionally, tran-

scriptomic studies have examined transcript abundance measurements averaged over

bulk populations of thousands of cells. While bulk RNA sequencing (RNA-seq) mea-

surements have been valuable in countless studies, they often conceal cell-specific het-

erogeneity in expression signals that may be paramount to new biological findings.

Fortunately, with single-cell RNA sequencing (scRNA-seq), transcriptome data from

individual cells are now accessible, providing opportunities to investigate functional

states of cells, identify rare cell populations, and uncover diverse gene expression pat-

terns in seemingly homogeneous cell populations (Huang, 2009; Shapiro et al., 2013;

Buettner et al., 2015).

One of the most commonly performed tasks in transcriptome expression pro-

filing is the identification of genes that are differentially expressed (DE) across dif-

ferent biological conditions, treatment groups, or cell types. For consistency in this

1Reproduced with permission from “Detection of differentially expressed genes in discrete single-
cell RNA sequencing data using a hurdle model with correlated random effects” by Michael Sekula,
Jeremy Gaskins, and Susmita Datta, 2019. Biometrics. DOI:10.1111/biom.13074.
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manuscript, we will refer to the populations of cells being compared in a differen-

tial expression analysis as treatment groups. Several popular methods for differential

expression analysis of traditional bulk RNA-seq datasets currently exist, but these

methods fail to capture the intrinsic characteristics that differentiate scRNA-seq data.

The most prominent attribute of scRNA-seq is that a transcript can be moder-

ately or highly expressed in some of the individual cells but not detected in others, re-

sulting in a bimodal distribution of expression values (Shalek et al., 2013; Kharchenko

et al., 2014). This expression pattern is caused by the low starting amounts of mRNA

within each individual cell in combination with variation from biological and technical

sources (Macaulay and Voet, 2014; Finak et al., 2015). The unimodal distributions

used for the traditional differential expression analysis of RNA-seq data do not prop-

erly model this inherent bimodal structure of scRNA-seq data. In addition, cell-to-cell

variability in scRNA-seq has been shown to exist not only between different cellular

populations but also within the same population of cells (Huang, 2009; Buettner et al.,

2015). This observed heterogeneity is not directly addressed in traditional RNA-seq

differential expression methods.

Because scRNA-seq datasets exhibit properties different from bulk RNA-seq

datasets, new techniques for identifying DE genes specific to scRNA-seq data need to

be developed (Stegle et al., 2015; Bacher and Kendziorski, 2016). Two commonly used

methods that have been proposed to identify DE genes while taking into consideration

the intricate nature of scRNA-seq data are SCDE (Kharchenko et al., 2014) and

MAST (Finak et al., 2015). With the SCDE method, error models for each gene

are first modeled using a mixture of a negative binomial distribution (to account for

overdispersed expression counts from detected transcripts) and a low-level Poisson

distribution (to accommodate genes that are undetected across some of the cells).

Posterior probabilities of a given fold expression difference are then calculated to

test genes for differential expression between two subgroups of cells. MAST is a
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two-part generalized linear model (hurdle model) that analyzes continuous scRNA-

seq expression levels, rather than discrete count values. A logistic regression first

models the gene expression rate, and, conditioning on a cell expressing the given

gene, a Gaussian distribution models the transformed expression level. Differential

expression can then be tested using a likelihood ratio test.

In our view, a hurdle model structure (like MAST) is the best way to model

such data with an overabundance of zeros. The components of a hurdle model are

regression models (one for zero counts and one for expression values), which makes

parameter estimation fairly straightforward and computationally simple compared to

other types of methods. With a two component model, one can distinguish whether

differences between treatment groups come from differences in the proportion of zeros,

differences in actual expression, or both. Moreover, hurdle models are flexible and can

adjust for potential experimental bias, such as dropout or cell size, with the addition

of biological and/or technical covariates.

Rather than transforming the scRNA expression counts to continuous variables

(as required in MAST), we adopt the hurdle model approach to directly model the

discrete data. Consequently, we propose a mixed effect hurdle model for discrete

scRNA-seq gene expression counts to detect genes that are DE between different

treatment groups. The expression rate for a particular gene is first modeled with

logistic regression to account for the high proportion of zeros in scRNA-seq data,

and the expression count is then modeled with a zero-truncated negative binomial

regression, conditional on the gene actually being expressed. Besides using discrete

count data, another key difference between MAST and our proposed methodology is

the incorporation of cell heterogeneity in a supervised manner. We utilize a random

effects structure, guided by subpopulations of cells, to provide dependence across

genes within a cell and across cells of a subpopulation. Finally, the third major

difference between our method and MAST is that we implement a Bayesian approach
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to estimate model parameters.

This manuscript is organized as follows. We define the hurdle model and

introduce the structure of the correlated random effects (CRE) in Section 2.2. In

Section 2.3, we present the methods for estimating model parameters and determining

DE genes. Our proposed methodology is applied to both simulated and real data

in Section 2.4, where we also compare the performance of our methodology to the

performance of other commonly used methods for detecting DE genes. Finally, we

conclude with a brief discussion of our results in Section 2.5.

2.2 Methodology

2.2.1 Model Structure

Let Ygi be the expression count of gene g (g = 1, ..., G) in cell i (i = 1, ..., N), and Zgi

indicate whether the gene is expressed within the cell. With this definition, Zgi = 1

when Ygi > 0, and Zgi = 0 when Ygi = 0. Defining θgi = P (Zgi = 1), the indicator

variable Zgi follows Bernoulli(θgi), and the logistic model is defined as

logit(θgi) = βL0g +Xiβ
L
g + ωiζ

L
g , (2.1)

where Xi is a row from the design matrix consisting of a treatment group indicator

and any other covariates of interest, such as cell size or estimated dropout rate. In

Equation (2.1), we present the general case where Xi has more than one element,

hence βL
g is a vector of regression coefficients. Also, we use the superscript L on the

coefficients from the logistic model to distinguish them from the coefficients in the

zero-truncated negative binomial regression.

The random effect ωi for cell i is included in the model to account for additional

variability between cells and to induce correlation across genes. Depending on the

particular gene, cellular random effects may have more or less of a predictive influence,
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thus, we introduce a coefficient for the random effects ζLg to represent a gene specific

scaling factor for the random effects within the logistic regression component.

For the conditional expression counts, we define the negative binomial distri-

bution as

P (Ygi = y) =
Γ(y + φg)

y!Γ(φg)

(
µgi

µgi + φg

)y(
φg

µgi + φg

)φg
, y = 0, 1, . . . , (2.2)

where µgi, φg > 0. Under this set-up, E(Y ) = µgi and V ar(Y ) = µgi +
µ2gi
φg

, mak-

ing φg the overdispersion parameter. A modification to Equation (2.2) is needed to

account for conditioning on a non-zero expression count (Ygi > 0); therefore, the

zero-truncated negative binomial distribution is defined as

P (Ygi = y|Zgi = 1) =

Γ(y+φg)

y!Γ(φg)

(
µgi

µgi+φg

)y(
φg

µgi+φg

)φg
1−

(
φg

µgi+φg

)φg , y = 1, 2, . . . , . (2.3)

Using the distribution in (2.3), we have the following regression model for

conditional expression counts:

log(µgi) = βC0g +Xiβ
C
g + ωiζ

C
g . (2.4)

Here, the superscript C indicates the coefficients in the count model (zero-truncated

negative binomial regression). With this hurdle component, the regression coefficients

in (2.4) can be interpreted as approximately representing a multiplicative effect on the

expression count. Thus, if Xi1 is a dummy variable for the treatment indicator, βC1g

(the first element of vector βC
g ) would approximately represent the log-fold change.

The same random effect (ωi) used in the logistic model is also used here to control

dependence across genes and dependence with the logistic model. The coefficient of

the random effects ζCg is representative of a scaling factor for ωi per gene within the

13



truncated negative binomial regression component.

2.2.2 Correlated Random Effects

It has been observed that within defined treatment groups of scRNA-seq experiments

there exist subpopulations of cells with different expression patterns across different

genes (Huang, 2009; Buettner et al., 2015). In order to account for this observation,

we assume that the random effects of cells within a subpopulation are positively

correlated, but between subpopulations, the random effects are independent. We

refer to this model as CRE.

Before utilizing our CRE model, cells within each treatment group need to be

clustered separately to form K0 subpopulations in the control group and K1 subpop-

ulations in the treatment group. These subpopulation clusters can be identified with

a suitable scRNA-seq clustering algorithm and then applied to our model structure.

We must emphasize that our focus is not on how to perform a cluster analysis, but

rather on how the results from a cluster analysis are incorporated into our model.

Therefore, we assume that best practices (e.g., normalization, batch effect adjust-

ments, etc.) have been followed before clustering to avoid additional influence of any

biological and/or technical bias on the differential expression results.

Letting kt(i) indicate the cluster assignment for cell i in treatment t, we have

k0(i) and k1(i) representing the clusters/subpopulations within the control group and

treatment group, respectively. Using this notation, each cellular random effect ωi is

defined as the sum of two separate components: ωi = γt,kt(i)+ω∗i . Here, γt,k represents

the average random effect for the subpopulation k within treatment t, and ω∗i is the

individual cellular adjustment for cell i within the subpopulation. With each γt,k

following an independent and identically distributed (i.i.d.) Normal(0, σ2
t ) and each

ω∗i following an i.i.d. Normal(0, σ2
∗), the correlation, ρt, between cells within the same

subpopulation is then ρt =
σ2
t

σ2
t+σ2

∗
.
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We note that the random effect ωi enters into the model through the terms

ωiζ
L
g and ωiζ

C
g . As ωi, ζ

L
g , and ζCg are all estimated parameters, the individual ωi’s

are, therefore, scale-unidentified. However, the relative contribution of γt,kt(i) to ωi is

identifiable, as will be the correlation ρt. To facilitate interpretation, the estimated

ωi’s can be post hoc rescaled to have variance one.

For special cases, such as datasets with large numbers of cells, or situations

when an initial clustering is not preferred, the correlations between random effects can

be removed and one can simply assume that all of the random effects are independent

of each other. Under this assumption, each ωi simply follows an i.i.d. Normal(0, σ2).

We refer to this model choice as independent random effects (IRE).

2.3 Model Inference

2.3.1 Parameter Estimation

A Bayesian approach is utilized to estimate the parameters of our proposed model.

While a seemingly straight-forward technique for obtaining these parameter estimates

is Markov chain Monte Carlo (MCMC) sampling, it may take days of computational

time for this iterative process to generate enough samples to reasonably estimate our

model parameters on large scRNA-seq datasets. This makes an MCMC approach

impractical compared to the computational time of methods currently available for

identifying DE genes. If time is not a factor, researchers may still choose to utilize

full MCMC to obtain parameter estimates and model inference.

Instead of time-consuming MCMC, we use variational inference (VI) to ap-

proximate the posterior distribution and obtain parameter estimates more quickly.

VI has been recently proposed as a computationally faster alternative to MCMC for

solving Bayesian problems involving large data (Blei et al., 2017). Briefly, mean-field

variational Bayes approximates the usual posterior distribution p(Θ|y) with a distri-
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bution q(Θ) that assumes all components of Θ are independent, q(Θ) =
∏

j qj(Θj).

This leads to an optimization problem of finding the q(Θ) =
∏

j qj(Θj) that is closest

in Kullback-Leibler divergence to the true posterior.

Introduced by Kucukelbir et al. (2015), automatic differentiation variational

inference (ADVI) is a user-friendly method that automatically generates an algorithm

to solve this optimization problem. In essence, each qj(·) is assumed to be a normal

distribution on a suitable transformation of Θj. Optimizing the parameters of these

normal distributions is accomplished using a stochastic gradient ascent algorithm to

maximize the evidence lower bound (ELBO). Monte Carlo integration approximates

the expectations of the ELBO and automatic differentiation computes the gradi-

ents that are maximized. We implement the mean-field algorithm of ADVI in R (R

Core Team, 2018) through the package rstan (Stan Development Team, 2018). After

achieving convergence to the approximate posterior with rstan’s ADVI algorithm,

parameter samples are drawn independently from q(Θ) and provided to the user as

approximate posterior samples from p(Θ|y).

To complete the specification of our Bayesian model, we need prior distribu-

tions for the remaining parameters. The regression coefficients in both the logistic

regression and the zero-truncated negative binomial regression are given weakly infor-

mative Cauchy priors (Gelman et al., 2008). The intercept terms have Cauchy(0, 10)

priors, while the remaining coefficients have Cauchy(0, 2.5) priors. The lognormal

distribution is used as the prior for the overdispersion parameter φg, with the hyper-

parameters λ1and λ2 defined as

φg ∼ Lognormal(λ1, λ2),

λ1 ∼ Cauchy(0, 10),

λ2 ∼ Inverse Gamma(0.001, 0.001).
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Sensitivity analysis with the case study data (see Appendix D) indicates replacing the

λ2 prior with Inverse Gamma(1, 1) has little effect on the final differential expression

results. In addition, the variance parameters for the cellular random effects, σ2
t and σ2

∗,

have Inverse Gamma(1, 1) priors. By choosing this prior for the variance parameters,

the prior for ρt, the correlation between cells within the same cluster, is Beta(1, 1).

2.3.2 Testing for Differential Expression

Typically, the target of inference in scRNA-seq studies is to determine if genes from

two treatments are “differentially expressed” (DE), that is, they follow different dis-

tributions. In our modeling framework, the difference in the distributions between

treatments is controlled by the pair of regression coefficients βL1g and βC1g of the treat-

ment group indicator. A gene is considered to be DE if at least one of these parame-

ters is non-zero. That is, we need to test H0 : βL1g = βC1g = 0 against the alternative.

While we develop our model and estimate parameters under the Bayesian paradigm,

we choose to perform hypothesis testing under the standard frequentist framework as

most researchers are more familiar with this approach.

We define B̂g to be the two-dimensional vector consisting of the point estimates

of β̂L1g and β̂C1g (the treatment effect coefficients from the logistic and count models

for gene g), and let Vg represent the estimate of the covariance matrix, as determined

empirically from the posterior samples (provided as output by Stan) of these two

coefficients. Wang and Blei (2019) have established that the variational posterior

q(Θ) is asymptotically normal with a random mean centered at the true parameter

value. Thus, under the null hypothesis that βL1g = βC1g = 0, the test statistic Wg =

B̂g

T
V −1

g B̂g will asymptotically follow a chi-square distribution with two degrees of

freedom. If Wg is larger than the appropriate critical value, we reject H0 and conclude

that gene g is differentially expressed; a p-value can also be obtained.
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2.4 Applications

2.4.1 Simulation Studies

To evaluate performance, we applied our method to simulated data generated from

our proposed model. We considered scenarios when the true subpopulations had equal

sizes (same number of cells per subpopulation) and unequal sizes (different number

of cells per subpopulation). An additional simulation was run using data generated

with the Splat simulation design (Zappia et al., 2017) to evaluate the performance

of our models on data simulated from a structure that differs from our proposed

methodology. Small datasets (100 cells and 10,000 genes) were analyzed to illustrate

the feasibility of our methods, while larger datasets (1,000 cells and 10,000 genes) were

analyzed to demonstrate their practical utility. Details on these simulation designs

are available in the Appendix.

Two versions of the proposed hurdle model, the CRE model and the IRE

model, were evaluated under these different simulation scenarios. In our model ma-

trix, we included the treatment group indicator and the cellular detection rate (CDR)

as covariates. The CDR for cell i is the sample proportion of genes that have a non-

zero count,

CDRi =
1

G

G∑
g=1

Zgi , (2.5)

and has been presented by Finak et al. (2015) as an important source of variability

that captures variation due to biological and technical factors, such as cell volume

and dropout. Since our model does not inherently distinguish between true biological

zeros and technical zeros, including CDR as a covariate will help control for expression

differences due to these unwanted sources of variation. To demonstrate that the

addition of random effects actually improves upon a model that includes CDR, we

also tested our proposed methodology using only fixed effects (i.e., removing the ωiζg
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terms from (2.1) and (2.4)). We refer to this model as no random effects (NRE).

When applying the CRE model, clusters within each treatment group were as-

signed by the SNN-Cliq algorithm (Xu and Su, 2015) and the SC3 algorithm (Kiselev

et al., 2017). SNN-Cliq requires the number of nearest neighbors to find a clustering

structure, and so the number of nearest neighbors was set to the default value of three.

We also set the number of nearest neighbors to seven in the hurdle model simulations

to obtain fewer numbers of clusters within each treatment group. Since the Splat

simulation does not inherently create subpopulations, we only considered three near-

est neighbors. The SC3 algorithm, on the other hand, requires the number of clusters

to be specified. Therefore, we utilized SC3’s option to estimate the optimal number

of clusters for each treatment group in each simulated dataset. As an alternative

clustering option in the hurdle model simulations, we also estimated the model under

the true data-generating subpopulation assignments to gauge performance when the

actual clustering structure is known.

In addition to evaluating the performance of our methodology, we also compare

our proposed models to methods commonly used in the literature. The methods

for scRNA-seq differential expression of MAST and SCDE were examined in these

studies along with two methods designed for bulk RNA-seq differential expression:

edgeR (Robinson and Smyth, 2007) and DESeq2 (Love et al., 2014). The covariate of

CDR was also implimented in the model matrix for MAST as described in the MAST

package vignette for the MAIT data analysis (McDavid et al., 2019).

Instead of utilizing raw discrete counts, the two clustering algorithms and

MAST require continuous expression data. To that end, a trimmed mean of M-values

normalization was first applied to the simulated datasets to account for between-

sample bias, and the adjusted count values were then scaled to counts per million

with the edgeR package (2019), thereby accounting for differences in library size.

In this simulation analysis, 100 datasets were generated for all scenarios, and
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DE genes were determined at a false discovery rate (FDR) of 0.05 for each method.

We used the measures of true positive rate (TPR), false positive rate (FPR), observed

FDR, area under the receiver operating characteristic curve (AUC), and the number

of identified DE genes to compare methods. Summaries of these measures for all

simulations are provided in Table 2.1.

In all hurdle model simulations, the NRE model was unable to control FDR

at a nominal rate and had approximately twice the FDR as both CRE and IRE.

This result was observed even when the “true” subpopulation structures were sim-

ulated with different numbers of clusters and with higher within-cluster correlations

(Appendix A). Therefore, the addition of random effects to our methodology helps

control the FDR when underlying subpopulations exist. When comparing the random

effects models, CRE and IRE have similar performances in the smaller hurdle model

simulations, with CRE having slightly lower FDRs. However, this difference becomes

more evident in the larger datasets. Hence, the correlated random effects do a better

job at controlling the FDR to a nominal level than the independent random effects.

Moreover, the correlation structure of CRE is quite robust as the performance of this

method is generally unaffected by the initial clustering of cells within each treatment

group.

Even though the Splat design does not simulate a subpopulation structure,

CRE and IRE still obtain higher TPRs and larger numbers of detected DE genes

compared to NRE. Additionally, the Splat simulations demonstrate that bias is not

introduced if a clustering structure is input into CRE when the dataset does not

inherently have “true” subpopulations. In fact, the results from IRE and CRE are

nearly identical in the larger Splat simulation.

When comparing our methodology to the other methods for detecting DE

genes, CRE and IRE consistently identified large numbers of DE genes with high

power (TPR), and detected more DE genes than MAST across all simulations. The
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FDR of our models is well maintained at the nominal level (as is MAST), but SCDE

and the bulk methods consistently fail to control FDR. Regarding the AUC, our

method outperforms the competing approaches (both bulk and scRNA) across all

scenarios. Because it also relies on a hurdle model specification, we do note that

MAST is somewhat competitive in AUC when the data-generating mechanism is our

hurdle model. Nevertheless, MAST performed poorly in the Splat simulations as it

had the lowest AUC out of all the considered methods. These overall trends were

also observed when different subpopulation structures were simulated (Appendix A).

2.4.2 Case Studies

To further illustrate our proposed methods, we analyzed the mouse embryonic cell

(MEC) dataset (Islam et al., 2011), which contains expression counts of 92 single-cells

generated from two different cell types: 48 stem cells and 44 fibroblast cells. This

dataset was obtained from the Gene Expression Omnibus (GEO) database under

accession number GSE29087. Genes not expressed in at least 20% of the cells were

removed, leaving 7,912 genes in the analysis. SNN-Cliq with five nearest neighbors

was used to generate cluster assignments within each treatment group to form three

clusters within the stem cells and two clusters within the fibroblast cells for input

into our CRE model. It has been noted that if the number of nearest neighbors is

too large, clusters formed by SNN-Cliq may not be thoroughly separated, and if the

number of nearest neighbors is too small, a true cluster may be split into multiple

parts (Xu and Su, 2015). Based on visual inspections of different SNN-Cliq clustering

assignments, we determined that five nearest neighbors was a reasonable choice (not

too small, not too large) for clustering this particular dataset.

We also analyzed a Drop-seq dataset containing single-cell expressions of 2,000

human mammary epithelial cells (HMEC) expressing either exogenous wild type or

mutant histone H2B to demonstrate the utility and scalability of our methods on big
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data. Details of the Drop-seq procedure are provided in Appendix C. This dataset is

quite sparse, so we chose to filter out genes not expressed in at least 50 cells (2.5%

of the total cells), leaving a total of 3,139 genes in the analysis. Four cells from

the dataset were also removed because they had a library size of zero after gene

filtering. To define the random effect structure of CRE, we utilized SC3 to cluster

the 999 wild type cells into seven subpopulations and the 997 mutant cells into nine

subpopulations. These clustering results were taken from a previous cluster analysis

performed on this data by our research group (see Appendix C).

The differential expression methods used in the simulation studies, excluding

NRE, were run in R independently using a single core of a system with an Intel

Core i7 processor (3.5 GHz) and 8 GB of RAM. Based on the results in Table 2.2,

the computational time required for our methods is very reasonable for a Bayesian

analysis on datasets of these sizes. MCMC sampling would take days of running time

before obtaining enough samples for an appropriate analysis. While both CRE and

IRE take longer than the other methods on the smaller MEC dataset, they do scale

better, and are also faster, than SCDE and DESeq2 on the larger HMEC data.

In terms of the number of DE genes detected, CRE and IRE performed simi-

larly in the case studies, which is consistent with the simulation results. CRE iden-

tified 4,927 and 1,698 DE genes in the MEC and HMEC datasets, respectively, while

IRE identified 4,947 and 1,696 genes. The overlap of genes was also very high in

the case studies for these methods (4,808 in the MEC data, and 1,640 in the HMEC

data). Nevertheless, the simulation studies do show that CRE outperforms IRE in

terms of FDR, especially in larger datasets. For that reason, we focus the rest of our

discussion in this section on interpreting the CRE results.

Figure 2.1 displays the UpSet plots (Lex et al., 2014) for the intersection of

DE genes identified by the different methods in the MEC and HMEC analyses. Just

like the simulation studies, our method detects a larger number of DE genes than
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most methods in these case studies. In the MEC data, CRE detected the most DE

genes, and surprisingly, the other two scRNA-seq methods detected fewest DE genes.

CRE was second, only to edgeR, in the number of identified DE genes in the HMEC

dataset, while DESeq2 detected very few DE genes compared to the other methods.

As CRE identified a large number of unique DE genes in the MEC analysis

relative to the competing models, we further examined the 1,335 genes uniquely

identified as DE by CRE to determine if they have any biological relevancy. For

comparison purposes, we also examined the 293 genes identified only by edgeR and

the 172 genes detected only by DESeq2 (Appendix D). We found that the subset of

genes detected by CRE are associated with more clusters of enriched gene ontology

(GO) categories than the subsets of genes detected by the other two methods. Thus,

not only is CRE able to identify a larger number of DE genes, but these genes also

have roles in similar biological functions and processes.

From a statistical standpoint, our methodology determines DE genes by taking

into account the difference in the proportion of zeros between the two treatments as

well as the difference in the average counts conditional on the gene being expressed.

This is why the CRE model detects different genes than the other methods, particu-

larly in the MEC analysis. In Figure 2.2, we present the log2 fold change (log2FC)

against the log2 ratio of the proportion of zeros (log2PZ) for the top 500 genes de-

termined by each method in the MEC data.

Figure 2.2 highlights the ability of our methodology to incorporate both com-

ponents of the hurdle model (zero counts and expression values) when identifying

DE genes. Out of the top 500 genes identified by CRE, 433 of them had notable

differences in the number of zeros across groups as indicated by the absolute value

of the log2PZ being greater than one (i.e., one treatment group has more than twice

the number of zeros than the other). In addition, all but one of those genes also had

an absolute value of log2FC greater than one. Therefore, most of the top DE genes
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identified by CRE were not only different in terms of the number of zeros between

the stem and fibroblast cells, but also in terms of the expression values between the

treatment groups.

The other methods did not detect as many DE genes with notable differences

in the proportion of zeros between treatments. Out of all of the methods, MAST

detected the fewest number of genes with an absolute value of log2PZ greater than

one. This showcases the superiority of our model in the MEC analysis since MAST

also takes into account the differences in the proportion of zeros when determining

DE genes. Only 238 out of the top 500 genes identified by MAST had more than a

twofold difference in the proportion of zeros between treatments, whereas DESeq2,

edgeR, and SCDE identified 342, 331, and 290 genes that satisfied this criterion,

respectively.

Lastly, to demonstrate the role of the random effects in our methodology, we

ran an additional analysis of the MEC data with a model matrix that only included

the treatment group indicator covariate. This produced an estimate of ωi that is free

from potential feedback from the CDR covariate. We see from Figure 2.3A that the

estimates of the random effects within the same treatment subpopulation tend to have

similar values when CDR was not included in the model matrix. The estimated within

subpopulation variance was 0.40 while the between subpopulation variance was 14.13.

A majority of the random effect estimates for Subpopulation 1 in the stem cells and

Subpopulation 1 in the fibroblast cells were negative, whereas the estimates of the

random effects for the other subpopulations were mostly positive. When CDR was

included in the model (Figure 2.3B), there appeared to be less separation between

cluster/subpopulation means, as this information is now accounted for through CDR.

For these estimates, the within subpopulation variance was 0.91 and the between

subpopulation variance was 2.84.

In Figures 2.3C and 2.3D, the normalized random effects were plotted against

24



the normalized CDR to display the relationship between these two terms. With CDR

not included in the model matrix, the random effect estimates tended to be fairly

similar to their corresponding CDR counterparts. The linear association between

these terms suggests that they are able to capture similar cellular variability. When

CDR was included in the model, there is no longer a discernible trend between the

random effects and CDR, indicating that the random effects terms are accounting for

some secondary source of cellular variation beyond the fraction of genes expressed.

2.5 Discussion

In this manuscript, we have introduced a mixed effects hurdle model for detecting

genes that are DE between treatment groups of cells in discrete scRNA-seq data. The

hurdle model structure handles the abundance of zero counts typical of scRNA-seq,

while the CRE help account for the cell-to-cell heterogeneity that has been frequently

observed within treatment groups of cells. One may also choose to use our proposed

hurdle model with independent random effects for situations where clustering may not

be suitable. Both of our proposed models (CRE and IRE) outperformed two methods

developed for detecting DE genes in scRNA-seq data (MAST and SCDE) and two

methods designed for bulk RNA-seq data (edgeR and DESeq2) in the simulation

studies. We recommend using CRE over IRE when possible as it tends to have lower

FDRs.

Our proposed methodology is comparable in structure to that of MAST, de-

veloped by Finak et al. (2015), which is also a hurdle model but for continuous data.

We likewise incorporate the covariate of CDR (Equation (2.5)) into our model matrix

to help control for the expression differences due to unwanted sources of variation.

Nevertheless, our methodology is unique because it (1) analyzes discrete count data

rather than continuous data that has already been transformed, (2) incorporates a

novel correlated random effect structure to capture additional sources of variation, and
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(3) utilizes a Bayesian approach to parameter estimation. These three key differences

lead to the detection of more DE genes and higher TPRs and AUCs than MAST, as

illustrated in the simulation studies. The MEC data analysis also demonstrates that

our model can be more sensitive when detecting differences in the proportion of ze-

ros. Therefore, despite the similarities in motivation, our methodology demonstrates

superior performance over MAST.

We additionally note that we utilize a VI technique to quickly obtain samples of

parameter estimates from an approximate posterior distribution rather than a typical

MCMC sampling on the true posterior. However, there has been discussion in the

literature regarding the accuracy of variance estimates under mean-field variational

Bayes. Recently, Wang and Blei (2019) show that VI can recover the diagonal of

the concentration (inverse covariance) matrix, but since the off-diagonal elements of

concentration are set to zero, the marginal variances may be underestimated.

For this reason, some have argued that mean-field variation inference may

not produce appropriate testing conclusions (e.g., Kucukelbir et al., 2017). Alterna-

tive approaches include running full MCMC or estimating parameter variances by

bootstrapping treatment assignments (Chen et al., 2018), although both would be

enormously computationally expensive. However, based on our empirical work in

Section 2.4, we emphasize that we are able to accurately estimate the regression pa-

rameters in this context and that our hypothesis tests maintain the required FDR and

achieve higher power than the competing scRNA methods. Thus, we conclude that

our proposed methodology for detecting DE genes from single-cell RNA represents a

new and powerful strategy for this biologically important problem.

2.5.1 Software Availability

The R package that implements our proposed methodology is maintained at

github.com/mnsekula/scREhurdle.
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2.6 Tables and Figures

Hurdle model: Equal clusters (N = 100) Hurdle model: Equal clusters (N = 1000)

TPR FPR FDR AUC DE Genes TPR FPR FDR AUC DE Genes
CRE, SC3 0.682 0.010 0.046 0.958 1548 0.751 0.016 0.056 0.965 1746

CRE, NN=3 0.682 0.009 0.045 0.959 1547 0.752 0.015 0.058 0.966 1739
CRE, NN=7 0.682 0.010 0.046 0.958 1550 0.751 0.015 0.058 0.965 1741
CRE, TRUE 0.682 0.010 0.047 0.958 1551 0.752 0.016 0.059 0.965 1749

IRE 0.686 0.011 0.050 0.958 1564 0.754 0.026 0.078 0.960 1830
NRE 0.669 0.019 0.086 0.947 1591 0.745 0.047 0.168 0.942 1965

MAST 0.594 0.007 0.038 0.948 1337 0.693 0.008 0.039 0.962 1563
SCDE 0.126 0.094 0.200 0.646 974 0.308 0.280 0.396 0.601 2756

DESeq2 0.402 0.058 0.321 0.777 1304 0.426 0.084 0.394 0.767 1549
edgeR 0.396 0.073 0.377 0.764 1400 0.488 0.148 0.504 0.740 2161

Hurdle model: Unequal clusters (N = 100) Hurdle model: Unequal clusters (N = 1000)

TPR FPR FDR AUC DE Genes TPR FPR FDR AUC DE Genes
CRE, SC3 0.681 0.010 0.049 0.957 1550 0.572 0.017 0.074 0.924 1367

CRE, NN=3 0.680 0.010 0.049 0.957 1547 0.573 0.018 0.077 0.923 1372
CRE, NN=7 0.681 0.010 0.049 0.957 1550 0.573 0.018 0.079 0.923 1374
CRE, TRUE 0.681 0.010 0.049 0.957 1549 0.573 0.017 0.076 0.924 1365

IRE 0.684 0.011 0.051 0.957 1560 0.579 0.026 0.097 0.919 1444
NRE 0.669 0.023 0.097 0.945 1616 0.573 0.050 0.209 0.894 1610

MAST 0.587 0.007 0.038 0.947 1320 0.468 0.007 0.048 0.914 1066
SCDE 0.165 0.130 0.257 0.631 1353 0.364 0.343 0.554 0.545 3340

DESeq2 0.411 0.074 0.361 0.766 1442 0.378 0.151 0.549 0.684 1941
edgeR 0.407 0.087 0.406 0.754 1525 0.439 0.214 0.607 0.667 2543

Splat (N = 100) Splat (N = 1000)

TPR FPR FDR AUC DE Genes TPR FPR FDR AUC DE Genes
CRE, SC3 0.475 0.006 0.051 0.924 576 0.434 0.004 0.041 0.840 539

CRE, NN=3 0.475 0.006 0.052 0.923 576 0.434 0.004 0.041 0.841 540
IRE 0.501 0.008 0.063 0.923 615 0.434 0.004 0.041 0.841 540
NRE 0.404 0.007 0.063 0.910 497 0.373 0.003 0.031 0.828 459

MAST 0.220 0.002 0.032 0.879 274 0.287 0.003 0.037 0.795 355
SCDE 0.254 0.002 0.028 0.917 303 0.287 0.001 0.010 0.826 294

DESeq2 0.601 0.042 0.215 0.887 892 0.450 0.019 0.149 0.814 634
edgeR 0.740 0.076 0.297 0.911 1219 0.563 0.062 0.317 0.818 987

Table 2.1: Results of performance measures from simulation studies. The subpopula-

tion structure for the CRE model was input using either SC3, SNN-Cliq with 3 nearest

neighbors (NN=3), 7 nearest neighbors (NN=7), or the true simulated subpopulation

assignment (TRUE).

CRE IRE MAST SCDE DESeq2 edgeR
MEC data 38.4 40.1 1.2 23.6 0.8 0.1
HMEC data 77.6 69.7 2.3 107.9 392.8 0.9

Table 2.2: Running times (in minutes) of each method for each case study.
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Figure 2.1: UpSet plots of DE genes as determined by five different methods for both

the MEC and HMEC datasets. Numbers in parentheses represent the total number

of DE genes identified by the corresponding method. This figure appears in color in

the electronic version of this article.
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Figure 2.2: Scatterplots of the log2 proportion of zeros ratio (log2PZ) on the x-axis

and the log2 fold change (log2FC) on the y-axis for the top 500 most DE genes in

the MEC dataset as determined by the five different methods for detecting DE genes.

Ratios compare stem cells to fibroblast cells and the labels in each section of the plot

represent the number of genes in that section. This figure appears in color in the

electronic version of this article.
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Figure 2.3: Random effect estimates, ω̂i, for the cells in the MEC dataset with points

colored according to cluster assignments determined by SNN-Cliq. (A, B) Plots of

normalized ω̂i estimates by subpopulation kt(i) where t = 0 for stem cells (represented

by triangles) and t = 1 for fibroblast cells (represented by circles). (C, D) Plots of

normalized ω̂i estimates vs. normalized CDR. This figure appears in color in the

electronic version of this article, and color refers to that version.
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CHAPTER 3

A SPARSE BAYESIAN FACTOR MODEL FOR THE

CONSTRUCTION OF GENE CO-EXPRESSION NETWORKS

FROM SINGLE-CELL RNA SEQUENCING COUNT DATA

3.1 Background

Deriving co-expression networks from gene expression data is a primary goal in nu-

merous biological studies. These networks, which are commonly referred to as gene

co-expression networks (GCNs), are constructed by identifying pairs of genes that

have significant associations between their expression profiles across samples. Genes

are represented by nodes in GCNs and co-expression values are represented by edges

that connect pairs of nodes. These edges are undirected to indicate the relationships

or dependencies between genes, not the underlying cause of these associations. This

makes GCNs different from gene regulatory networks, which have directed edges to

infer casual relationships (De Smet and Marchal, 2010). As demonstrated in Eisen

et al. (1998), genes with similar expression patterns tend to be involved in similar

cellular processes and functions. Therefore, researchers are able to identify novel in-

teractions and relationships between genes by exploring GCNs (Wolfe et al., 2005;

Wang et al., 2016).

Many of the statistical methods for building GCNs have been developed for

analyzing data consisting of expression values averaged over bulk populations of cells,

such as microarray or bulk RNA sequencing; however, advancements in technology
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now allow researchers to obtain expressions at the level of a single cell. By gathering

information from individual cells, new opportunities to study cellular heterogeneity

are presented. This is of particular interest in GCNs since mapping gene expressions

across different states of cells can lead to a better understanding of the biological

mechanisms behind this heterogeneity (Fiers et al., 2018). Single-cell RNA sequencing

(scRNA-seq) provides new and exciting opportunities to examine biological processes

at a high resolution, yet at the same time, this data presents new statistical and com-

putational challenges (e.g., zero-inflation, high cell-to-cell variability, multimodality)

that have not been previously faced with bulk sample data (Bacher and Kendziorski,

2016). Therefore, network algorithms initially developed for bulk samples are often

not suitable for single cell analysis (Blencowe et al., 2019).

Some algorithms for network analysis in scRNA-seq data have been recently

proposed, but these methods fail to outperform general methods developed for bulk

sample data Chen and Mar (2018). To that end, we present a sparse hierarchical

Bayesian factor model to explore the network structure associated with genes. The

latent factors in our model adjust the gene expressions for each cell to help accom-

modate for the zero-inflated and overdispersed attributes of scRNA-seq data, and a

GCN structure is constructed by examining the shared factors between pairs of genes.

This manuscript is organized as follows. We define our proposed model and

GCN inference in Section 3.2. In Section 3.3, we apply our method to both simulated

and real data and also compare the performance of our methodology to the perfor-

mance of other network methods. Finally, we conclude with a brief summary in the

Section 3.4.
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3.2 Methods

3.2.1 Hierarchical Bayesian Factor Model

Let Ygi be the (count) expression for gene g (g = 1, . . . , G) in cell i (i = 1, . . . , N).

We assume each expression comes from the Poisson(µgi) distribution, where the mean

µgi is modeled through the representation

µgi = βg

F∏
f=1

exp
{
− φf

2
|αgf |

}
λ
αgf
if . (3.1)

Here, the parameter βg denotes the average expression for gene g. For each cell i,

there are F associated factors λi = {λi1, . . . , λiF} that impact the expression. These

factors are strictly positive and come from a Lognormal(0, φf ) distribution. We can

think of each factor as representing a distinct attribute (e.g., cell stage, pseudotime

point) that will only influence a specific set of related gene expressions. The exponent

of the fth factor λif is αgf ∈ {−1, 0, 1}, and by using this set of discrete exponents for

the factors, the expression for gene g is impacted only by the factors with αgf = −1

or 1. The adjustment term of exp{−φf
2
|αgf |} is included in Equation (3.1) to ensure

that E(Ygi) is equal to βg (after marginalizing out λi) regardless of the αgf values.

Our defined factor structure provides the flexibility required to account for the

typical cell-to-cell variability of scRNA-seq data. For a given f , λif is unique to each

cell and is only activated for a particular gene when αgf 6= 0. If the activated factors

λ
αgf
if for a given gene are much smaller than 1 (near zero), then µgi will be very small

and account for the high proportion of zeros typical of this data. Conversely, very large

values of the factors will increase µgi (relative to the baseline βg) and accommodate the

occasional extremely large count. We note here that Ygi follows a Poisson distribution

conditional on the λi terms. However, the variance of Ygi, marginal on λi, is equal

to βg + β2
g

(
exp{−φf |αgf |} − 1

)
. Thus, Ygi is conditionally Poisson but marginally
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overdispersed. So, despite the choice of Poisson for the distribution of the count, our

model is able to capture the high proportion of zeros and large variance typical of

scRNA data.

To finish specification of our Bayesian model, prior distributions for the remain-

ing parameters must be defined. We use a conditionally conjugate, non-informative

prior for the average expression of gene g, βg ∼ Gamma(0.001, 0.001). The hierarchi-

cal prior structure for the scale parameter of the factors is φf ∼ Lognormal(h1, h2),

where h1 ∼ Normal(0, 100) and h2 ∼ Inverse Gamma(1, 1). For the exponent pa-

rameters, the prior is |αgf | ∼ Bernoulli(θf ) with θf ∼ Beta(1, 1). Here, we define

P (αgf = 1) = P (αgf = −1) =
θf
2

. Consequently, P (αgf = 0) = 1−θf . The number of

associated factors F is often unknown, but one can fit multiple models with different

numbers of factors and choose the most suitable model based on a comparison of a

model selection statistic such as the Deviance Information Criterion (DIC) described

in Gelman et al. (2004). Throughout the manuscript, we will refer to our hierarchical

Bayesian factor model as HBFM.

3.2.2 Network Structure

Posterior samples for model parameters are obtained with the Markov chain Monte

Carlo (MCMC) algorithm defined later in Section 3.2.3. At each iteration of the

MCMC, a correlation matrix is computed based on the current set of parameters, and

we infer a GCN by examining the posterior distribution of this correlation matrix.

Under our proposed model, the sparse α = {αgf}(g,f) matrix imposes a crude network

structure on the gene expressions. Consider two genes g and g′, where g 6= g′. If

αgfαg′f 6= 0 for some f , the expressions Ygi and Yg′i are both impacted by the shared

factor λif . Conversely, if genes g and g′ have no shared factors (αgfαg′f = 0 for all

f), these genes are conditionally independent. To quantify the association between

gene g and gene g′, we examine the correlation (after marginalizing out λi) between
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the values of log(µgi) and log(µg′i).

We motivate our decision to use this specific correlation structure by consid-

ering the matrix Ã = ααT . The (g, g′) element of this G × G matrix provides of

a summation of the associated factors that are active in both genes g and g′ since

ãg,g′ =
∑F

f=1 αgfαg′f . When ãg,g′ > 0, the two genes have more factors with the same

association (i.e., αgf = αg′f = 1 or αgf = αg′f = −1) than factors with opposite

associations (i.e., αgf = 1 and αg′f = −1 or vice versa). Conversely, when ãg,g′ < 0,

the genes have more factors with opposite associations than factors with the same

association. If ãg,g′ = 0, then either no factors are in common between the genes or

the number of factors with the same association is equal to the number of factors

with opposite associations for those genes.

By recognizing that factors with a larger variance φf will have a greater influ-

ence on the joint expression, we can weigh the shared factors by their variance. In

fact, this weighted expression is exactly equal to the the covariance (marginally over

λi) between log(µgi) and log(µg′i),

Cov
[
log(µgi), log(µg′i)

]
=

F∑
f=1

φfαgfαg′f .

The active factors also increase the variance for log(µgi),

V ar
[
log(µgi)

]
=

F∑
f=1

φfα
2
gf ,

which is important when addressing the zeros and overdispersion of scRNA-seq data.

From these covariance and variance expressions, the correlation between log(µgi) and

log(µg′i) is defined as

35



Corr
[
log(µgi), log(µg′i)

]
= ρgg′ =

∑F
f=1 φfαgfαg′f√(∑F

f=1 φfα
2
gf

)(∑F
f=1 φfα

2
g′f

) . (3.2)

We illustrate the mechanics of this correlation structure by considering just one

factor f . If gene g and gene g′ have the same association with this given factor, the

correlation between log(µgi) and log(µg′i) is 1. When gene g has a positive association

with factor f and gene g′ has a negative association with factor f , the correlation

is −1. Additionally, if factor f is inactive for either of the genes, the correlation is

0. The significance of each correlation is determined by analyzing the the credible

interval (CI) of ρgg′ in the posterior distribution, as described in Section 3.2.4.

We note that each gene must have at least one active factor for our correlation

structure in Equation (3.2) to be defined since V ar
[
log(µgi)

]
is equal to 0 if all of

the factors are inactive. Utilizing the correlation structure (after marginalizing out

λi) between Ygi and Yg′i would avoid this issue, but the additional βg term in the

variance leads to a correlation structure dependent on the average expression for each

gene. For this reason, we do not focus on the correlation structure between Ygi and

Yg′i. Throughout, if (3.2) is 0
0
, we define this correlation as zero to match the zero

value for Corr(Ygi, Yg′i).

3.2.3 Model Inference

The posterior distribution for our hierarchical Bayesian model is complex, and so

MCMC is required for inference. For simplicity in our posterior distribution notations,

let ψgif =
∏

f ′ 6=f exp
{
− φf ′

2
|αgf ′ |

}
λ
αgf ′

if ′ . We utilize an MCMC sampler that iterates

through the following steps:

1. For g = 1, . . . , G, update

βg ∼ Gamma
(
0.001 +

∑N
i=1 ygi , 0.001 +

∑N
i=1

∏F
f=1 exp

{
− φf

2
|αgf |

}
λ
αgf
if

)
.
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2. For f = 1, . . . , F , update θf ∼ Beta
(
1 +

∑G
g=1|αgf | , 1 +G−

∑G
g=1|αgf |

)
.

3. For all g, f , sample αgf from a multinomial distribution with

p(αgf = 0| · · · ) = A
A+B+C

,

p(αgf = 1| · · · ) = B
A+B+C

,

p(αgf = −1| · · · ) = C
A+B+C

.

Here, A,B, and C are defined as

A = (1− θf )exp
{
− βg

∑N
i=1 ψgif

}
,

B =
( θf

2

)
exp
{
− βg

∑N
i=1 exp

{
− φf

2

}
λifψgif

}
,

C =
( θf

2

)
exp
{
− βg

∑N
i=1

exp{−
φf
2
}

λif
ψgif

}
.

4. Update h1 ∼ Normal( 1/h2
1/100+F/h2

∗
∑F

f=1 log(φf ), (1/100 + F/h2)−1).

5. Update h2 ∼ Inverse Gamma(F
2

+ 1,
∑F
f=1(log(φf )−h1)2

2
+ 1).

6. For f = 1, . . . , F , use a Metropolis-Hastings step to update φf . The posterior

distribution for φf is

p(φf | · · · ) ∝ φ
−N

2
−1

f exp
{
−
(
φf
2

∑G
g=1

∑N
i=1|αgf |ygi +

∑N
i=1 log(λif )2

2φf
+

(log(φf )−h1)2

2h2
+
∑G

g=1 βgexp
{
− φf

2
|αgf |

}∑N
i=1 λ

αgf
if ψgif

)}
.

We propose a candidate value for φ
(c)
f through a pseudo-random walk from

Lognormal(φf , σ
2) and accept this value with the usual Metropolis-Hastings

ratio. If factor f is not active for any gene (i.e.,
∑G

g=1|αgf | = 0), then update

φf from the Lognormal(h1, h2) prior.

7. For all i, f , use a Metropolis-Hastings step to update λif . By defining

κ =
∑G

g=1 ygiαgf ,

τ = 2
∑G

g=1 I(αgf = 1)βg exp
{
− φf

2

}
ψgif ,

χ = 2
∑G

g=1 I(αgf = −1)βg exp
{
− φf

2

}
ψgif ,
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where I(·) represents an indicator variable, the posterior distribution for λif is

p(λif | · · · ) ∝ λ κ−1
if exp

{
− 1

2

(
τλif + χ

λif
+

log(λif )2

φf

)}
.

This posterior has a similar appearance to a generalized inverse Gaussian (GIG)

distribution with an extra exponential term
( log(λif )2

φf

)
. To that end, we propose

a candidate value for λ
(c)
if from GIG(κ, bτ, bχ), where the multiplicative factor

of b on τ and χ is used to create thicker tails in the proposal distribution. For

our sampling scheme, we set b to 0.9. Acceptance of the candidate value is

determined by the typical Metropolis-Hastings rules. If τ = χ = 0, factor f is

not active and we update λif from the Lognormal(0, φf ) prior.

Due to the large number of model parameters and complexity of the posterior

distribution, it is possible for the MCMC sampler to get stuck exploring a local

mode of the posterior rather than exploring the entire posterior distribution. This

is particularly an issue with the one-at-a-time sampling for α, which does not allow

for large scale moves such as splitting or combining factors. To address this sampling

problem, we implement a stochastic EM approach (Celeux et al., 1996; Bhattacharya

and Dunson, 2011) to obtain initial values for our MCMC algorithm.

For the stochastic EM approach, we run the usual MCMC sampler but replace

sampling with optimization in several of the steps. Specifically, we optimize the

following steps of the sampler:

1. For g = 1, . . . , G, update βg to its conditional posterior mode.

3. For all g, f , select the value of αgf with the highest probability: p(αgf = 0| · · · ),

p(αgf = 1| · · · ), or p(αgf = −1| · · · ).

6. For f = 1, . . . , F , find φf that optimizes its respective conditional posterior dis-

tribution. In this step, we utilize the optimize function from the base packages

in R (R Core Team, 2018).
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After randomly selecting starting values and running an initial MCMC sam-

pling warm-up period, the stochastic EM approach is implemented for a number of

iterations (e.g., 2000 iterations) to ensure stabilization. Parameter estimates are then

calculated by averaging the samples generated from a final set of iterations (e.g., the

samples from the last 200 iterations). In the case of the discrete αgf parameters, we

select the value (either −1, 0, or 1) that has the highest frequency. The parameter

estimates from this stochastic EM approach are then input as the initial starting val-

ues of our MCMC sampler. We choose to run a number of MCMC chains (in parallel)

and implement the stochastic EM approach individually for each chain to produce

different initial starting values. For final parameter inference, the lowest perform-

ing chains (i.e., the chains with the lowest marginal likelihoods) are discarded from

analysis.

3.2.4 Network Inference

The association level network structure Ñ = {ñgg′}(g,g′) between genes is obtained

by analyzing the posterior of the correlation matrix defined in Equation (3.2). For

each (g, g′) element in the correlation matrix, M samples are used to calculate the

posterior mean ρ̂gg′ = 1
M

∑M
m=1 ρ

(m)
gg′ . This estimate provides a quantifiable value of

association between genes g and g′.

Since we are working in the Bayesian paradigm, we can examine the CI of the

posterior to determine whether or not genes g and g′ are associated with one another.

By choosing an appropriate level of significance α∗, two genes have a significant

association when zero is excluded from the 100(1 − α∗)% CI. A second method to

determine significant associations from the posterior samples of ρgg′ is to find the

smallest 100(1− a∗)% CI that includes 0. The corresponding a∗ value would indicate

the proportion of the posterior distribution outside of the smallest CI that includes

0. Hence, we can think of a∗ as an approximate “p-value” that can be used to rank
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correlations by significance.

3.3 Results

3.3.1 Datasets

To demonstrate the feasibility of our methodology, we generated simulated datasets

consistent with our proposed methodology structure. Each Ygi count was sampled

from Poisson(µgi), with µgi modeled from Equation (3.1). The βg parameters were

randomly sampled from Gamma(3,0.5) and the λif parameters were randomly sam-

pled from Lognormal(0, φf ).

For the network structures, we fixed the values of the α matrix. In each

dataset, we considered G = 50 genes and sorted them into ten groups of five (e.g.,

Group 1 consisted of genes 1 - 5, Group 2 consisted of genes 6 - 10), and all genes

within each factor group were assigned the same αgf values. In three of the datasets,

we considered the same network structure (Figure 3.1A) consisting of 350 “true”

edges using Fsim = 10 factors and varied the number of cells to be either N = 125

(Sim 1), N = 500 (Sim 3), or N = 1, 000 (Sim 5). In the other three datasets, we

utilized a network structure of Fsim = 15 factors to simulate expression values, which

created a network structure with 425 “true” edges (Figure 3.1C). Again, the number

of cells were set to either N = 125 (Sim 2), N = 500 (Sim 4), or N = 1, 000 (Sim

6). In order to define the correlation structures, the values of φf were fixed to be

either 0.2, 0.35, 0.5, 0.65, or 0.8. In the simulations with Fsim = 10, each fixed value

of φf was used twice (e.g., φ1 = φ2 = 0.2, φ3 = φ4 = 0.35) and in the simulation

with Fsim = 15, each fixed value was used three times (e.g., φ1 = φ2 = φ11 = 0.2,

φ3 = φ4 = φ12 = 0.35).

We also ran analyses on two real datasets to demonstrate the utility of our

method on real data. The expression counts for the mouse brain single-cell (MBSC)
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dataset from Zeisel et al. (2015) were downloaded from the Gene Expression Omnibus

(GEO) database under accession number GSE60361. For this analysis, we selected the

G = 48 known and novel genetic markers displayed in Figure S6 of the supplementary

materials of Zeisel et al. (2015) and cells with a library size of zero were removed,

leaving a total of N = 2, 946 cells in the dataset. The second dataset was obtained

from the GEO database under accession number GSE90975 and contains the gene

expressions from single-cell analysis of neurodegeneration in microglia cells of mice

(Tay et al., 2018). We considered all N = 944 cells and analyzed the G = 101

differentially expressed genes from Figure S1 of Tay et al. (2018). This second real

dataset is referred to as the mouse microglia cell (MMC) data.

3.3.2 Simulation Studies

Using the simulated data, we fit our proposed model (HBFM) by running the MCMC

sampling algorithm described in Section 3.2.3. The stochastic EM approach was run

for 2, 000 iterations, after an initial warm-up period of 100 iterations, and samples

from the last 200 iterations of this approach were used to obtain starting parameter

values for the MCMC sampler. We ran the MCMC sampler for 4, 000 iterations and

used the last 1, 000 iterations for inference.

Nine runs of HBFM were considered by selecting nine different choices for the

number of factors: F = 5, 8, 10, 12, 15, 18, 20, 22, and 25. For each choice of F ,

we ran eight separate MCMC sampling chains in R (R Core Team, 2018), and used

only the samples from the five chains with the highest average marginal likelihood

for inference. DIC was calculated using half the posterior variance of the deviance to

estimate the effective number of parameters Gelman et al. (2004), and the number

of factors F with the lowest DIC was selected as the “best” model choice. In the

cases where F = 25 was chosen as the “best” model, we ran an additional model

with F = 28 factors to ensure that the upper bound of our considered set was also
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the optimal choice for the number of factors. For each pair of genes g and g′ in the

“best” model, we tested for a significant relationship by using a 95% CI for ρgg′ .

To evaluate the performance of our model against other gene network methods,

we ran the single-cell co-expression model LEAP (Specht and Li, 2016) and the single-

cell regulatory network models of PIDC (Chan et al., 2017) and SCODE (Matsumoto

et al., 2017) on the simulated data. After creating a symmetric correlation matrix

with the LEAP package in R, a permutation analysis was then performed with this

package using a false discovery rate (FDR) of 5% to determine a cutoff for significant

correlation values. PIDC was implemented in Julia (Bezanson et al., 2017) using the

basic usage code available at https://github.com/Tchanders/NetworkInference.jl. For

SCODE, we ran the R code available at https://github.com/hmatsu1226/SCODE and

averaged the results of 50 separate trials using the same parameters as the example

code provided on the GitHub page. The methods of LEAP and SCODE utilize a

pseudotime estimation of the cells and the R package monocle (Trapnell et al., 2014)

was used for this estimation.

We also included three popular network methods originally developed for bulk

data in our simulation studies: partial correlation, Bayesian networks, and GENIE3

(Huynh-Thu et al., 2010). Partial correlation (PCORR) was implemented with the

R package ppcor (Kim, 2015) using the Spearman partial correlation coefficient. We

performed the Benjamini-Hochberg (Benjamini and Hochberg, 1995) procedure to

control for FDR and defined 5% as the threshold for significant correlation values.

Bayesian networks (BN) were constructed in R with the bnlearn package (Scutari,

2010). After learning a set of 1,000 bootstrap replicates with the hill-climbing algo-

rithm, the optimal network was created using model averaging (Scutari, 2010). The

analysis for GENIE3 was performed in R with the GENIE3 package using default

parameters.

The methods of PIDC, SCODE, and GENIE3 output a matrix of scores/weights
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to indicate how likely each gene-gene regulatory link is, but these methods do not

determine a cutoff score/weight for identifying significant associations. To be consis-

tent across the simulated datasets, we chose the threshold for PIDC, SCODE, and

GENIE3 such that the number of edges in the constructed network was equal to the

number of edges determined by our HBFM method. By matching the number of

edges to our method, we provide a direct comparison between these methods and

HBFM. In addition, SCODE and GENIE3 provide different scores/weights for the

different directions of edges in the network; therefore, we selected the directed edges

with the higher magnitude to quantify the strengths of the gene-gene associations for

these methods.

For each simulated dataset, we compared the significant gene-gene associa-

tions identified by each method to the “true” gene-gene associations created by the

simulated network structure. The measures of true positive rate (TPR), FDR, area

under the receiver operating characteristic curve (AUC), and number of significant

edges in the estimated network were used to compare methods. When calculating the

AUC, the regulatory link score/weight was used for PIDC, SCODE, and GENIE3,

the association strength was considered for BN, and for the remaining methods the

inverse of the adjusted p-value (inverse of the approximate “p-value” in HBFM) was

utilized. We note that selecting a different threshold for PIDC, SCODE, and GENIE3

may impact the TPR and FDR results since the number of edges in the constructed

network will change; however, the AUC results will remain unchanged by the thresh-

old choice. We found that the FDRs for SCODE and GENIE3 tend to remain fairly

stable across different threshold choices, and the FDR of PIDC tends to increase

as the threshold increases. The performances of the different network methods are

summarized in Table 3.1.

From the simulation results, we see that our methodology performs quite well

across the different scenarios, as HBFM has consistently high power and low FDRs.
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The heatmaps of estimated correlation structures produced by HBFM resemble the

“true” structure of the simulated datasets (Figure 3.1). Our model outperforms the

other methods across the TPR and AUC performance measures in these simulation

studies. In Sim 6, HBFM and PIDC perform very comparably when the number

of edges is the same. While PIDC has a slightly higher TPR and lower FDR at

this threshold, HBFM does have the higher AUC. The FDR of our method is also

reasonably controlled to a nominal level, especially compared to the FDRs of LEAP,

SCODE, GENIE3, and PCORR. While BN had lower FDRs than HBFM in some of

the simulations, it also identified the fewest number of edges and had lower TPR and

AUC than HBFM.

When using DIC as the criterion for our model selection, the best-fitting model

often contains more factors than the “true” simulated structure in the examples we’ve

considered so far. However, we note that the additional factors provide more opportu-

nities to explore different factor structures within the model during MCMC sampling.

For example, a single factor from a model with F = 10 may be split into several fac-

tors when using a model with F = 20. Therefore, it is not surprising that the “best”

model choices contain more factors than the “true” number of factors, Fsim, as these

models are more likely to explore the high regions of the posterior as they are less

likely to get stuck during sampling.

3.3.3 Case Studies

The same network methods described in Section 3.3.2 were applied to the two real

datasets. For each method, we constructed a network and obtained the top 100

most significant gene-gene pairs, out of the 1,128 possible pairs, for comparison in

the MBSC analysis and the top 500 most significant pairs, out of the 5,050 possible

pairs, for comparison in the MMC analysis (approximately the top 10% associations

for each dataset). From the nine different numbers of factors considered for HBFM,
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we selected F = 25 factors as the “best” choice for both the MBSC and MMC data

because this factor choice had the lowest DIC.

Since the “true” network structure of this real data is unknown, we constructed

three reference protein-protein interaction networks with the STRING database (Szk-

larczyk et al., 2014) for each dataset to compare across the different methods. These

reference networks were created by adjusting the threshold for the minimum required

interaction score between pairs of proteins: high confidence (minimum score of 0.700),

medium confidence (minimum score of 0.400), and low confidence (minimum score

of 0.150). STRING computes these scores by combining the probabilities of different

evidence sources (e.g., text mining, experiments, databases) and correcting for the

probability of observing the interactions by random chance (von Mering et al., 2005).

This is, of course, an imperfect reference as any method may detect novel interac-

tions that have not been previously published. Likewise, some entries in STRING

may represent published false positives. However, on average, the method produc-

ing the GCN most similar to the STRING reference set should be considered as the

network most consistent with biological literature.

The UpSet plots (Lex et al., 2014) for the intersection between the the top 100

associations in the MBSC dataset and the top 500 associations in the MMC dataset

identified by each network method is displayed in Figure 3.2. Interestingly, each

method identifies a number of unique associations with only 3 and 10 associations

in common among all seven methods in the MBSC and MMC datasets, respectively.

Table 3.2 displays the comparisons of the top associations from each method to the

reference networks. We see that HBFM has the highest number of associations in

common with each STRING reference network. This is particularly apparent in the

MMC dataset, where over 80% of the top 500 genes pairs detected by our method

matched with the STRING reference sets. Less than half of the top 500 gene pairs

from the other methods overlapped with the high and medium MMC reference sets.
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When comparing with the low MMC reference set, HBFM matched 94.8% of the top

500 identified gene pairs. PIDC had the second highest overlap with the low MMC

reference set matching only 64.8% of its top 500 gene pairs. Based on these results,

our methodology is able to identify more known protein-protein interactions in these

real datasets than the other network methods.

We also evaluated our HBFM model by creating 100 posterior predictive

datasets (PPDs; Gelman et al., 2004) from each chain of the MMC analysis (500

PPDs in total) and comparing the overdispersion and proportion of zeros in these

datasets to the overdispersion and proportion of zeros in the MMC dataset. Each

count Ygi of the PPDs was generated from Poisson(µgi), with µgi modeled from Equa-

tion (3.1) using parameter estimates (with the exception of the λi parameters) from

different iterations of the MCMC sampler. The λi values were drawn randomly from

Lognormal(0, φf ).

In Figure 3.3A, the log(variance) is plotted against the log(mean) across all

G = 101 genes for the real expressions in the MMC dataset and the estimated ex-

pressions from a single representative PPD. Both datasets display high cell-to-cell

variability, as expected of scRNA-seq data. In fact, even with the choice of Poisson

for the (conditional) distribution of the counts, the PPDs generated from the parame-

ters estimated from the MMC dataset tend to generate variability that is comparable

to the variability observed in the real data. We can see that many genes from the

PPD are overdispersed, especially those with log(means) greater than 1, as in the true

MMC data. From Figure 3.3B, the gene expression in the MMC data is zero-inflated

as the proportion of zero values for each gene ranged between 0 and 0.99. In the PPD,

the proportion of zeros for each gene tended to be only slightly lower than what was

observed in the real dataset. Nevertheless, the proportion of zero expressions were

still quite high and variable across the genes in the PPD.

To further evaluate the PPDs generated by HBFM, we selected nine genes from
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the MMC dataset that represent the 10th through 90th percentiles of average gene

expression and examined the log(variance/mean) and proportion of zeros of these

genes across all PPDs. Figure 3.4A illustrates that across the PPDs, the estimated

log(variance/mean) for most of the genes is greater than 0, indicating variances that

are larger than their corresponding means. Also, for a majority of these genes, the

true log(variance/mean) value is captured across the PPD estimates. The estimated

proportion of zeros for these genes across the PPDs also capture the true proportion

of zeros from the MMC dataset, as displayed in Figure 3.4B.

3.4 Discussion

In this manuscript, we have presented a hierarchical Bayesian factor model (which

we have referred to as HBFM) for constructing GCNs from scRNA-seq data. The

results from our simulation studies demonstrate that HBFM is able to identify true

co-expressions while maintaining a nominal FDR across different numbers of cells

and different network structures. Our case study analyses with the MBSC and MMC

datasets also demonstrate the practical use of HBFM for determining significant gene-

gene associations, as our model was able to detect more known protein-protein inter-

actions than the other network methods.

The number of genes (G) in the simulated and real datasets presented in this

manuscript is smaller than what is often considered for other scRNA-seq data prob-

lems, such as clustering cells/genes and detection of differentially expressed genes.

However, the use of a smaller pre-screened set of genes is common among other com-

plex network methods (Fiers et al., 2018; Delgado and Gómez-Vela, 2018). In part,

this is due to the GCN being determined by G ∗ (G− 1)/2 correlations, a quadratic

number of parameters, making it difficult to numerically and graphically communi-

cate results for large G. While constructing a GCN as an exploratory analysis from an

entire dataset is possible with our method, it may not be computationally practical.
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HBFM performs Bayesian inference via iterative MCMC, which can become compu-

tationally expensive as the number of genes (G) and number of cells (N) increase.

In light of these computational considerations, we typically recommend the user con-

sider some initial analysis such as clustering or differential expression to determine a

smaller set of genes, generally 100 or fewer, before using HBFM to estimate the GCN.

On a system with an Intel Core i7 processor (3.5 GHz) and 8 GB of RAM, the running

time for a single chain of HBFM with F = 25 factors was 32.7 hours for the MBSC

data (G = 48, N = 2, 946) and 22.1 hours for the MMC data (G = 101, N = 944).

In our methodology, the distribution of count values is defined to follow a

Poisson distribution, conditional on the latent factors λi. While we acknowledge

that the Negative Binomial distribution tends to be the preferred choice for modeling

overdispersed data, the latent factors of HBFM are random effects that help account

for the additional variability across samples. After marginalizing out λi, E(Ygi) = βg

and V ar(Ygi) = βg + β2
g

(
exp{−φf |αgf |} − 1

)
. As illustrated in the PPDs generated

from the real MMC data, HBFM is able to generate overdispersed and zero-inflated

data that is consistent with the features of the real data. Hence, the use of a Poisson

distribution is not a meaningful drawback.

We also note that the high resolution of scRNA-seq technology allows re-

searchers the opportunity to estimate “pseudotime” and obtain a temporal ordering

of cells (Trapnell et al., 2014; Street et al., 2018). The general idea is that at any

given time, a cell population will consist of cells that are at different stages of their

cell cycles, and cells in different stages will express different sets of genes. Our method

does not directly take pseudotime into account, but the latent factors (λi’s) are likely

to adapt and capture this contribution on the gene expression.
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3.4.1 Software Availability

The source code for implementing the HBFM model is available as an R package at

https://github.com/mnsekula/hbfm.
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3.5 Tables and Figures

Sim 1: N=125, Fsim=10 Sim 2: N=125, Fsim=15

TPR FDR AUC Edges TPR FDR AUC Edges
HBFM, F = 15 0.760 0.153 0.927 314 HBFM, F = 15 0.640 0.111 0.820 306

LEAP 0.386 0.378 0.705 217 LEAP 0.341 0.275 0.665 200
PIDC 0.634 0.293 0.821 314∗ PIDC 0.506 0.297 0.742 306∗

SCODE 0.229 0.745 0.550 314∗ SCODE 0.249 0.654 0.504 306∗

BN 0.206 0.077 0.682 78 BN 0.186 0.037 0.672 82
GENIE3 0.540 0.398 0.746 314∗ GENIE3 0.468 0.350 0.711 306∗

PCORR 0.123 0.566 0.599 99 PCORR 0.148 0.442 0.602 113

Sim 3: N=500, Fsim=10 Sim 4: N=500, Fsim=15

TPR FDR AUC Edges TPR FDR AUC Edges
HBFM, F = 25 0.889 0.034 0.984 322 HBFM, F = 25 0.704 0.029 0.929 308

LEAP 0.743 0.608 0.741 664 LEAP 0.402 0.305 0.696 246
PIDC 0.794 0.137 0.915 322∗ PIDC 0.621 0.143 0.866 308∗

SCODE 0.246 0.733 0.503 322∗ SCODE 0.226 0.688 0.575 308∗

BN 0.277 0.040 0.751 101 BN 0.212 0.032 0.716 93
GENIE3 0.554 0.398 0.754 322∗ GENIE3 0.466 0.357 0.729 308∗

PCORR 0.300 0.266 0.683 143 PCORR 0.261 0.327 0.624 165

Sim 5: N=1000, Fsim=10 Sim 6: N=1000, Fsim=15

TPR FDR AUC Edges TPR FDR AUC Edges
HBFM, F = 20 0.909 0.076 0.973 344 HBFM, F = 25 0.624 0.070 0.904 285

LEAP 0.780 0.550 0.804 606 LEAP 0.591 0.541 0.680 547
PIDC 0.857 0.128 0.954 344∗ PIDC 0.633 0.056 0.889 285∗

SCODE 0.269 0.727 0.496 344∗ SCODE 0.221 0.670 0.510 285∗

BN 0.323 0.050 0.793 119 BN 0.247 0.037 0.710 109
GENIE3 0.603 0.387 0.764 344∗ GENIE3 0.440 0.344 0.700 285∗

PCORR 0.403 0.291 0.720 199 PCORR 0.294 0.251 0.669 167

∗ Number of edges fixed to match HBFM.

Table 3.1: Results from simulation studies. The value of F for HBFM represents the

number of factors in the “best” model choice, as determined by DIC.
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MBSC reference set MMC reference set

High Medium Low High Medium Low
HBFM, F=25 10 23 39 416 446 474

LEAP 9 20 34 78 121 252
PIDC 7 17 38 151 197 324

SCODE 5 14 31 42 75 165
BN 3 16 36 162 208 319

GENIE3 4 14 37 99 142 290
PCORR 6 15 32 116 154 236

Reference total 42 116 322 697 897 1600

Table 3.2: The overlap between the top 100 gene-gene associations in the MBSC

dataset and the top 500 gene-gene associations in the MMC dataset for each network

method. Reference networks were created by the STRING database.
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Figure 3.1: (A) Heatmap of the “true” correlation structure in Sim 3 (F = 10, N =

500). (B) Heatmap of the estimated correlation structure in Sim 3 by HBFM and

F = 25 factors. (C) Heatmap of the “true” correlation structure in Sim 4 (F =

15, N = 500). (D) Heatmap of the estimated correlation structure in Sim 4 by

HBFM and F = 25 factors.
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Figure 3.2: (A) UpSet plot of the top 100 gene-gene associations as determined by

seven different methods for the MBSC dataset. (B) UpSet plot of the top 500 gene-

gene associations as determined by seven different methods for the MMC dataset.
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Figure 3.3: Example comparison between the MMC dataset and one representative

PPD generated by HBFM. (A) The log(variance) vs. log(mean) scatterplot for each

gene. (B) Boxplots of gene-specific proportion of zeros.
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Figure 3.4: Properties of PPD estimates from a sample of nine genes in the MMC

dataset. Genes were selected based on percentiles (10th through 90th) of average gene

expression. (A) Violin plots of estimated log(variance/mean) for each gene across all

PPDs. (B) Violin plots of estimated gene-specific proportion of zeros across all PPDs.

The blue stars represent the true values from the MMC dataset.
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CHAPTER 4

SINGLE-CELL DIFFERENTIAL NETWORK ANALYSIS WITH

SPARSE BAYESIAN FACTOR MODELS

4.1 Introduction

Gene network modeling has become essential to the understanding of complex biologi-

cal systems related to health and disease. These networks allow researchers to uncover

and interpret relationships and interactions between genes during different biological

processes (Blencowe et al., 2019). There are several popular methods for construct-

ing gene networks from microarray and bulk RNA sequencing data (Margolin et al.,

2006; Langfelder and Horvath, 2008; Huynh-Thu et al., 2010), and more recently,

methods for identifying gene networks from single-cell RNA sequencing (scRNA-seq)

data have also been proposed (Specht and Li, 2016; Chan et al., 2017; Matsumoto

et al., 2017) including our methodology for scRNA-seq gene network inference from

Chapter 3. Interestingly, the vast majority of these methods have focused only on

analyzing gene expressions from one cellular population, such as a single tissue type,

disease, or environmental condition.

Since biological systems are highly dynamic, there is also great interest in

performing differential network analysis to examine the changes in network struc-

ture under different biological settings. In the context of bulk population data (i.e.,

microarray and bulk RNA sequencing), efforts have been made to develop different

strategies for identifying differences between gene-gene networks. Some approaches

propose qualitative analyses through visual inspection of different network topologies
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(Caldana et al., 2011; Weston et al., 2011), while others rely on statistical tests to

determine differences across conditions (Choi and Kendziorski, 2009; Gill et al., 2010;

Fukushima, 2013). For scRNA-seq data, however, there has been very little research

in developing methods to compare gene networks from two (or more) biological con-

ditions. Wang et al. (2017) present several proof-of-concept analyses for comparing

network structures constructed from scRNA-seq data by utilizing a differential con-

nectivity test that was originally developed by Gill et al. (2010) for microarray gene

expression data. In Chiu et al. (2018), the scRNA-seq-based differential network (scd-

Net) analysis method is proposed to first determine a sample size corrected gene-gene

correlation matrix for each cellular state and then identify differential gene-gene pairs

across these states. The developers of scdNet state that, to their knowledge, their

method is the first tool for differential network analysis of scRNA-seq data.

In this work, we adapt our hierarchical Bayesian factor methodology for con-

structing gene co-expression networks (GCNs) from scRNA-seq data to explore dif-

ferences in the network structure across various cell groups due to different biological

conditions, cell types, cell stages, or other group choice. The key adjustment in this

new model is that the parameters that determine which factors are activated in a gene

are now treatment-dependent to allow for the calculation of gene-gene co-expression

within each treatment group. For simplicity, we consider a two-group setting and

refer to these groups as treatment and control, but our model can easily be extended

to a multiple group scenario, if necessary.

The rest of this manuscript is organized as follows. We define our proposed

model and inference for differential network analysis in Section 4.2. Results from

simulation studies are presented in Section 4.3 to demonstrate the performance of

our methodology. In Section 4.4, we conclude with a brief discussion on our results.
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4.2 Methods

4.2.1 Hierarchical Bayesian Factor Model for Two Treatment Groups

Let Ygi be the expression count of gene g (g = 1, . . . , G) in cell i (i = 1, . . . , N) for

treatment t ∈ {0, 1}. We define t = 0 as the control (reference) group and t = 1 as

the treatment group. Like our model in Chapter 3, we assume that each expression

comes from the Poisson(µgi) distribution, but here, we model the log-mean log(µgi)

through the representation

log(µgi) = βg + tiδg +
F∑
f=1

λifαgf ;ti −
{ F∑
f=1

α2
gf ;ti

2

}
. (4.1)

For notation purposes in Equation (4.1), ti indicates the treatment group (ti ∈ {0, 1})

for cell i. Marginally over λi, the parameter βg denotes the log-mean expression for

gene g in the control group and βg + δg is the log-mean expression for gene g in the

treatment group. Hence, δg represents the log-fold change in the expression for gene

g. For each cell i, there are F associated factors λi = {λi1, . . . , λiF} that impact the

expression. Each factor can be thought of as some unique cellular attribute (e.g., cell

stage, pseudotime point) that will only affect a specific set of related gene expressions.

Since we are defining our model on the log scale, we assume these factors come from

a Normal(0, 1) distribution.

The magnitude of the impact by factor f on gene g in treatment t is influenced

by the parameter αgf ;t ∈ R. With this setup, the expression for gene g in treatment t

is minimally impacted by factors with αgf ;t values close to 0 and greatly impacted by

factors with absolute values of αgf ;t much greater than 0. It is important to note that

the αgf ;t’s are treatment dependent to allow factors to impact the gene expressions

differently across the treatments. Clearly if αgf ;0 and αgf ;1 have similar values, then

factor f has a similar influence on the gene expression in both treatments. However,
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the more interesting case is when αgf ;0 and αgf ;1 have very different values, which

indicates a difference in the impact of factor f on gene g between the groups. By

examining the differences between the αt = {αgf ;t}(g,f) matrices, we can identify

differences between the gene networks of the treatment groups.

For most factors, we assume that the values of αgf ;0 and αgf ;1 in our model

will be similar. In other words, we anticipate that most factors will have a similar

impact on the genes within both groups. We also expect each factor f to impact

only a small number of genes, and so the αt matrices will be sparse. To that end, we

define the following hierarchy on the αgf ;t parameters:

αgf ;t ∼ Normal(α̃gf , κ
2
gf ;tτ

2
f ) , (4.2)

κgf ;t ∼ half-Cauchy(0, 1) ,

τf ∼ half-Cauchy(0, 1) ,

α̃gf ∼ Normal(0, ζ2) , (4.3)

ζ ∼ half-Cauchy(0, 1) .

Under this scheme, the horseshoe prior (Carvalho et al., 2009) placed on each αgf ;t

in Equation (4.2) will help shrink the values of αgf ;0 and αgf ;1 together. For a given

factor f , we define τf as the global shrinkage parameter and the κgf ;t’s as the local

shrinkage parameters. The global shrinkage parameter will pull the values of αgf ;0

and αgf ;1 towards α̃gf , while the treatment-dependent local shrinkage parameters

will allow some values to be much different than α̃gf . Thus, the κgf ;t’s can account

for any variability between the groups. Our model favors borrowing information

across treatments, so it should be efficient for factor-gene effects that are common.

Nevertheless, the horseshoe priors allow big differences to accommodate differences

between treatments.
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To achieve more sparsity, a horseshoe prior could also be placed on the α̃gf

parameters in Equation (4.3) to help shrink most of these values close to 0:

α̃gf ∼ Normal(0, ω2
gfζ

2) , (4.4)

ωgf ∼ half-Cauchy(0, 1) ,

ζ ∼ half-Cauchy(0, 1) .

Here, ζ is a global shrinkage parameter that will pull the values of α̃gf towards 0. In

Equation (4.4), we introduce local shrinkage parameters (ωgf ’s) to allow some of the

α̃gf values to be much different than 0. Therefore, the horseshoe priors on the αgf ;t

parameters (Equation (4.2)) will promote sparsity in the treatment difference and the

horseshoe priors on the α̃gf parameters (Equation (4.4)) will promote sparsity in the

underlying network.

The flexibility of our defined factor structure allows for the zero-inflation and

high cell-to-cell variability of scRNA-seq data. For a given f , λif is unique to each cell

and only affects a particular gene within a treatment when αgf ;t 6= 0. If the activated

factors λifαgf ;t for a given gene are highly negative, then µgi will be very small and

account for the high proportion of zeros typical of this data. Conversely, large positive

values of the factors will increase µgi (relative to the baseline of either exp{βg} for the

control group or exp{βg + δg} for the treatment group) and accommodate extremely

large counts. In Equation (4.1), the adjustment term of −
{∑F

f=1

α2
gf ;ti

2

}
is included

in our model to ensure that E(Ygi) in the control group is equal to exp{βg} and

E(Ygi) is equal to exp{βg + δg} for the treatment group (after marginalizing out λi)

regardless of the αgf ;t values. While we choose to let Ygi follow a Poisson distribution

conditional on the λi terms, the variance of Ygi, marginal on λi, is

V ar[Ygi] = exp{βg + tiδg}
[
1 + exp{βg + tiδg}

F∏
f=1

(
exp{α2

gf ;t} − 1
)]
. (4.5)
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Hence, Ygi is conditionally Poisson but marginally overdispersed.

To complete the specification of our Bayesian model, we define priors for the

average gene expression parameters as βg ∼ Normal(0, σ2
β) and δg ∼ Normal(0, σ2

δ ),

with standard deviation hyperparameters σβ and σδ from half-Cauchy(0, 1). Our

methodology does rely on fixed number of latent factors F , which unfortunately is

often unknown. Nevertheless, one can fit multiple models with different numbers of

factors and choose the most suitable model based on a comparison of a model selection

statistic such as the Deviance Information Criterion (DIC) described in Gelman et al.

(2004) or the Watanabe-Akaike Information Criterion (WAIC; Watanabe, 2010).

4.2.2 Network Structure and Inference

We use Hamiltonian Monte Carlo (Neal, 2011) from Stan (Stan Development Team,

2018) to generate samples from the posterior distributions for inference. At each it-

eration, a co-expression matrix for each treatment group is calculated based on the

current set of parameters. While the αt matrices in our model do impose a crude

network structure on the gene expressions for each treatment, the individual αgf ;t

parameters are non-identifiable, and so we cannot perform inference about these pa-

rameters directly. To that end, we consider the matrices At = αtα
T
t whose elements

are identifiable.

For a given treatment t, the (g, g′) element, where g 6= g′, of the G×G matrix

At provides a summation of impact by the associated factors that are active in both

genes g and g′ since At(g,g′) =
∑F

f=1 αgf ;tαg′f ;t. This expression also happens to be

equal to the covariance (after marginalizing out λi) between the values of log(µgi)

and log(µg′i) in treatment t,

Cov
[
log(µgi), log(µg′i)

]
=

F∑
f=1

αgf ;tαg′f ;t .

With the marginal variance for log(µgi) being
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V ar
[
log(µgi)

]
=

F∑
f=1

α2
gf ;t ,

the correlation between log(µgi) and log(µg′i) is defined as

Corr
[
log(µgi), log(µg′i)

]
= ρgg′;t =

∑F
f=1 αgf ;tαg′f ;t√(∑F

f=1 α
2
gf ;t

)(∑F
f=1 α

2
g′f ;t

) . (4.6)

We focus our interest on the marginal correlation of the log-means due to the simplistic

nature of the correlation structure and its reliance on only the αgf ;t parameters. As

displayed in Equation (4.5), the variance expression of Ygi includes a set of βg and

δg parameters that cannot be factored out, which means the correlation structure

between Ygi and Yg′i will depend on the average expression for each gene in each

treatment. For this reason, we do not utilize the correlation structure between Ygi

and Yg′i.

The gene-gene network structure Ñt = {ñgg′;t}(g,g′) within each treatment

group is obtained by analyzing the posterior of the correlation matrix defined in

Equation (4.6). To provide a quantifiable value of association between genes g and g′

within treatment t, M samples of each (g, g′) element in the correlation matrix are

used to calculate the posterior mean ρ̂gg′;t = 1
M

∑M
m=1 ρ

(m)
gg′;t . We can also examine

the credible interval (CI) of the posterior to determine whether or not genes g and

g′ are associated with one another within each treatment group, separately. For a

given level of significance α∗, two genes will have a significant association when zero is

excluded from the 100(1− α∗)% CI. To rank correlations by significance within each

treatment group, we determine the smallest 100(1− a∗)% CI that includes 0 for each

gene-gene pair. The corresponding a∗ value indicates the proportion of the posterior

distribution outside of the smallest CI that includes 0, which can be viewed as an

approximate “p-value”.
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When performing differential network analysis, we examine the CIs of the

difference between ρgg′;0 and ρgg′;1. If zero is excluded from the 100(1− α∗)% CI, the

difference between the treatment correlations for gene g and gene g′ is significant. An

approximate “p-value” can also be determined and used to rank the differences in

correlation between the treatment groups.

4.3 Results

In our simulation studies, we generated data consistent with our proposed factor

model structure for two treatment groups. Within each treatment t, the Ygi count

was sampled from Poisson(µgi), with log(µgi) modeled from Equation (4.1). The

parameters of βg, δg, and λif were all randomly sampled from Normal(0, 1), and we

fixed the values of αgf ;t to create different correlation structures for each treatment

(see Figure 4.1).

We considered G = 50 genes for each dataset, sorted them into ten groups of

five (e.g., Group 1 consisted of genes 1 - 5, Group 2 consisted of genes 6 - 10), and

assigned the same αgf ;t values to all of the genes within each gene group. In two of

the datasets (Sim 1 and Sim 2), we generated N0 = 250 cells in the control group

(t = 0) and N1 = 250 cells in the treatment group (t = 1) for a total of N = 500

cells, and in the other two datasets (Sim 3 and Sim 4), we doubled the number of

cells within each group for a total of N = 1, 000 cells. For the network structures,

Fsim = 10 factors were used to create 350 “true” edges in the control network and

325 “true” edges in the treatment network. In Sim 1 and Sim 3, a total of 250 edges

are considered to be different between the two groups and all of the common edges

have the same direction of correlation (SDC) between the genes pairs (Figures 4.1A

and 4.1B). In Sim 2 and Sim 4, some of the common edges have opposite directions

of correlation (ODC), which increases the “true” number of different edges between

the two groups to be 325 (Figures 4.1C and 4.1D).
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Two versions of our sparse Bayesian factor methodology were investigated in

the simulation studies. In our “base” model version, the priors defined in Equation

(4.2) and Equation (4.3) are placed on the αgf ;t and α̃gf parameters, respectively (i.e.,

we use horseshoe priors on the αgf ;t’s but not on the α̃gf ’s). We refer to this model

as Sparse Factor Model - Base Version (SFM-BV). For the second model version, the

prior on each α̃gf parameter in Equation (4.3) is replaced with the horseshoe prior

defined in Equation (4.4). We refer to this second model as Sparse Factor Model -

Additional HorseShoe (SFM-AHS).

Using the simulated data, we ran our proposed models in R (R Core Team,

2018) with the package rstan (Stan Development Team, 2018). Inference was per-

formed after combining the posterior samples from four parallel chains that were run

for a total of 2,000 iterations each, with a burn-in of 1,000 iterations. To investigate

whether the number of factors makes any impact on model performance, we ran both

models four separate times and input a different number of factors for each run: F =

5, 10 (the true number of factors), 15, and 20.

For each simulated dataset, we first used our models to test for a significant

relationship between each gene-gene pair in each treatment by using a 95% CI for

ρgg′;t. The significant gene-gene associations identified by SFM-BV and SFM-AHS

were compared to the “true” gene-gene associations, and the measures of true pos-

itive rate (TPR), false discovery rate (FDR), and area under the receiver operating

characteristic curve (AUC) were determined for the control network (t = 0) and the

treatment network (t = 1), separately. The results from the four considered choices of

F for our two models are presented in Table 4.1. In all of the simulated datasets, both

SFM-BV and SFM-AHS have high TPRs and AUCs when detecting significant gene-

gene associations within each treatment group. SFM-BV seems to achieve slightly

higher TPRs than SFM-AHS, particularly in the smaller datasets with N = 500 cells

(Sim 1 and Sim 2). When the input number of factors is greater than or equal to
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the true number of factors (i.e., F = 10, 15, or 20), the performances of both models

are relatively consistent across the different performance measures, and both models

control FDRs below 5%. While the choice of F = 5 factors tends to have the highest

TPRs, this choice of F also tends to have the highest FDRs.

To evaluate the performance of differential network analysis with SFM-BV and

SFM-AHS, we examined the 95% CIs of the difference between each ρgg′;0 and ρgg′;1

pair for each dataset. We also ran analyses with scdNet (Chiu et al., 2018) and the R

package DiffCorr (Fukushima, 2013) to compare our models against other methods.

In scdNet, a sample size adjustment transformation is first applied to the correlation

coefficients within each cellular group and then statistical inference is performed on

the differences in the transformed correlations across groups. The scdNet model is, to

the best of our knowledge, the only other differential network analysis tool currently

available for scRNA-seq. DiffCorr implements Fisher’s Z transformation to compare

correlations between two experimental conditions in the context of bulk population

data. Both scdNet and DiffCorr provide p-values to represent differential results for

each gene-gene pair. To control the FDR, DiffCorr utilizes the local false-discovery

rate approach from Strimmer (2008). For scdNet, we controlled the FDR with the

Benjamini-Hochberg (Benjamini and Hochberg, 1995) procedure. A threshold of 5%

was used to indicate significant differences with these methods.

We compared the significant differences between networks that were identified

by each method to the “true” differences between networks. The measures of TPR,

FDR, AUC, and the number of edges that were classified as significantly different

between networks by each method are displayed in Table 4.2. In addition, we provide

heatmaps to visually represent the “true” differences between treatment groups and

the significant differences detected by each method for Sim 3 (Figure 4.2) and Sim

4 (Figure 4.3). For our methodology, we found that WAIC was better at identifying

top performing models than DIC. Therefore, the number of factors F with the lowest
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WAIC was selected as the “best” model choice for each of our models and only the

results of the “best” model choice for both SFM-BV and SFM-AHS are presented for

each dataset.

From Table 4.2, we see that our differential network methodology performs

quite well in comparison to the other considered methods. Both SFM-BV and SFM-

AHS outperform DiffCorr in terms of all performance measures across all simulated

datasets. While scdNet tends to detect more significant edges between treatment

groups than the other methods, it also has the highest FDRs. Despite the higher

number of significant edges detected by scdNet, SFM-BV is still able to obtain higher

TPRs than scdNet in three out of the four simulations, while SFM-AHS obtains higher

TPRs than scdNet in two out of the four simulations. In all cases, both SFM-BV and

SFM-AHS have higher AUCs than scdNet while controlling the FDRs to a nominal

level. Also, the heatmaps in Figures 4.2 and 4.3 visually reinforce that our methods

can identify the “true” differential network structure more accurately than the other

two considered methods.

We note that the performances of SFM-BV and SFM-AHS are quite similar

across all performance measures in the larger simulated datasets with N = 1, 000 cells

(Sim 3 and Sim 4). However, for the datasets with N = 500 cells (Sim 1 and Sim 2),

SFM-BV tends to identify more significantly different edges and achieve higher TPRs

than SFM-AHS. Therefore, based on these simulation results, SFM-BV seems to be

the better model choice for our proposed differential network methodology.

4.4 Discussion

In this chapter, we have presented a two-group hierarchical Bayesian factor model

to perform differential network analysis from scRNA-seq data. This work extends

our hierarchical Bayesian factor model for constructing GCNs (Chapter 3) to include

continuous treatment-dependent parameters that determine the impact of the factors
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for each gene. In Chapter 3, our GCN model utilizes a single-treatment α matrix and

the elements of this matrix only take the values of -1, 0, or 1. While this definition is

useful for the interpretation of the factor-gene relationships (i.e., the expression for

gene g is impacted only by factors with |αgf | = 1 and not impacted by factors with

αgf = 0), we are not able to utilize Stan for parameter sampling because Stan cannot

support the use of discrete parameters. Also, the one-at-a-time sampling for the α

matrix does not allow for large scale moves such as splitting or combining factors and

so it is possible for our Markov chain Monte Carlo (MCMC) sampler to get stuck

exploring a local mode of the posterior.

Since the elements of the treatment-dependent αt matrices in our proposed

model for differential network analysis are continuous, we are able to use Stan for

sampling and avoid the problem of getting stuck exploring local modes. The use

of the Stan framework is particularly beneficial because Hamiltonian Monte Carlo

is more accurate and computationally efficient than other MCMC methods (Betan-

court, 2017) and the core code for Stan is written in the C++ language, making it

computationally faster than running MCMC sampling code completely in R. As a

future extension, we could also consider using Stan to perform variational inference

(like we did in Chapter 2), since variational inference tends to be much faster than

traditional MCMC techniques. We do note that we are not able to achieve exact

sparsity in the αt matrices because the αgf ;t parameters are continuous. However, we

have adopted a shrinkage approach and use horseshoe priors on the αgf ;t’s to handle

the expected sparsity.

For simplicity purposes, our methodology has been defined and examined un-

der a two-group situation, but it can be adjusted to fit a multiple group scenario. In

the general case, we can consider T number of treatments and represent the log(µgi)
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from Equation(4.1) in the general form:

log(µgi) = βg +
T−1∑
t=1

I(ti = t)δg;t +
F∑
f=1

λifαgf ;ti −
{ F∑
f=1

α2
gf ;ti

2

}
.

Here, the δg;t parameters depend on the treatment groups t ∈ {1, . . . , T−1} and I(ti =

t) is the indicator variable for cell i being in treatment group t. The construction

of gene-gene correlation structures will remain the same, but there will be T sets

of αgf ;t parameters that create T different networks to compare. When performing

differential network analysis, one can examine the CIs of the difference between ρgg′;t

and ρgg′;t′ for each pair of treatments t and t′ (t 6= t′).

The simulation studies in this manuscript demonstrate that our proposed

methodology is able to accurately identify true co-expression structures with two

treatment groups and detect differences between them. Both SFM-BV and SFM-AHS

outperform competing methods across these simulation studies, but we recommend

using SFM-BV because this model version tends to have higher TPRs when identi-

fying significantly different edges between networks. Based on these results and the

dearth of research in this area, we feel that our methodology serves as one of the first

steps in the development of approaches suitable for scRNA-seq differential network

analysis.
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4.5 Tables and Figures

Sim 1: SDC, N = 500

TPR0 FDR0 AUC0 TPR1 FDR1 AUC1

S
F
M

-B
V F = 5 0.977 0.132 0.986 0.994 0.146 0.999

F = 10 0.871 0.019 0.971 0.886 0.034 0.976
F = 15 0.871 0.007 0.973 0.874 0.027 0.974
F = 20 0.849 0.007 0.969 0.874 0.027 0.976

S
F
M

-A
H

S F = 5 0.954 0.100 0.992 0.985 0.221 0.980
F = 10 0.823 0.014 0.966 0.855 0.007 0.972
F = 15 0.797 0.000 0.950 0.883 0.007 0.971
F = 20 0.757 0.004 0.960 0.837 0.000 0.974

Sim 2: ODC, N = 500

TPR0 FDR0 AUC0 TPR1 FDR1 AUC1

S
F
M

-B
V F = 5 0.977 0.132 0.990 1.000 0.092 0.997

F = 10 0.889 0.019 0.988 0.831 0.022 0.987
F = 15 0.869 0.007 0.970 0.806 0.022 0.978
F = 20 0.863 0.007 0.971 0.797 0.023 0.975

S
F
M

-A
H

S F = 5 0.980 0.159 0.988 1.000 0.100 0.999
F = 10 0.786 0.018 0.948 0.775 0.016 0.971
F = 15 0.843 0.013 0.964 0.769 0.020 0.972
F = 20 0.786 0.000 0.956 0.735 0.016 0.965

Sim 3: SDC, N = 1,000

TPR0 FDR0 AUC0 TPR1 FDR1 AUC1

S
F
M

-B
V F = 5 0.940 0.466 0.900 1.000 0.260 0.994

F = 10 0.949 0.035 0.988 0.975 0.019 0.999
F = 15 0.934 0.027 0.986 0.972 0.006 0.999
F = 20 0.943 0.029 0.988 0.960 0.006 0.999

S
F
M

-A
H

S F = 5 0.937 0.438 0.916 1.000 0.162 1.000
F = 10 0.949 0.012 0.989 0.938 0.000 0.998
F = 15 0.929 0.050 0.979 0.982 0.000 1.000
F = 20 0.929 0.009 0.984 0.948 0.003 0.998

Sim 4: ODC, N = 1,000

TPR0 FDR0 AUC0 TPR1 FDR1 AUC1

S
F
M

-B
V F = 5 0.937 0.407 0.920 1.000 0.024 1.000

F = 10 0.954 0.023 0.993 0.972 0.009 0.999
F = 15 0.949 0.021 0.991 0.923 0.007 0.996
F = 20 0.943 0.021 0.988 0.920 0.007 0.998

S
F
M

-A
H

S F = 5 0.937 0.417 0.920 1.000 0.033 1.000
F = 10 0.937 0.018 0.981 0.935 0.000 0.997
F = 15 0.931 0.015 0.984 0.932 0.000 0.999
F = 20 0.934 0.015 0.988 0.914 0.000 0.993

Table 4.1: Performance measures for the identification of significant gene-gene as-

sociations by our proposed differential network methods (SFM-BV and SFM-AHS)

with different numbers of factors (F ) across four simulated datasets. TPR, FDR, and

AUC were calculated separately for each treatment group and the subscripts denote

the treatment group of the corresponding network: control = 0, treatment = 1.
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Sim 1: SDC, N = 500, EdgesTrueD = 250

TPRD FDRD AUCD EdgesD
SFM-BV, F = 20 0.452 0.017 0.814 115

SFM-AHS, F = 20 0.096 0.000 0.758 24
DiffCorr 0.020 0.167 0.693 6
scdNet 0.206 0.518 0.641 139

Sim 2: ODC, N = 500, EdgesTrueD = 325

TPRD FDRD AUCD EdgesD
SFM-BV, F = 15 0.671 0.022 0.926 223

SFM-AHS, F = 20 0.584 0.010 0.910 192
DiffCorr 0.538 0.038 0.900 182
scdNet 0.462 0.407 0.758 253

Sim 3: SDC, N = 1,000, EdgesTrueD = 250

TPRD FDRD AUCD EdgesD
SFM-BV, F = 15 0.552 0.021 0.943 141

SFM-AHS, F = 20 0.532 0.036 0.901 138
DiffCorr 0.268 0.163 0.836 80
scdNet 0.560 0.378 0.819 225

Sim 4: ODC, N = 1,000, EdgesTrueD = 325

TPRD FDRD AUCD EdgesD
SFM-BV, F = 10 0.806 0.022 0.988 268

SFM-AHS, F = 20 0.843 0.011 0.976 277
DiffCorr 0.646 0.041 0.957 219
scdNet 0.717 0.272 0.850 320

Table 4.2: Comparison of the “true” differences between networks and the estimated

differences between networks in the simulation studies for each differential network

method. The subscript of “D” is used to denote network differences.
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Figure 4.1: Heatmaps of “true” correlation structures for treatment and control

groups in simulation studies. (A,B) In Sim 1 and Sim 3, all shared edges between the

two groups have the same direction of correlation (SDC). (C,D) In Sim 2 and Sim

4, some shared edges between the two groups have opposite directions of correlation

(ODC).
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Figure 4.2: Heatmaps of the “true” differences between treatment correlation struc-

tures in Sim 3 (top) and the significant treatment differences identified by SFM-BV

with F = 15, SFM-AHS with F = 20, DiffCorr, and scdNet. The colored cells indicate

differences in gene-gene associations across the treatment and control groups.
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Figure 4.3: Heatmaps of the “true” differences between treatment correlation struc-

tures in Sim 4 (top) and the significant treatment differences identified by SFM-BV

with F = 10, SFM-AHS with F = 20, DiffCorr, and scdNet. The colored cells indicate

differences in gene-gene associations across the treatment and control groups.
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CHAPTER 5

SUMMARY AND FURTHER EXTENSIONS

In this dissertation, we have presented three Bayesian approaches developed specifi-

cally for single-cell RNA sequencing (scRNA-seq) analyses. We first defined a hurdle

model for identifying differentially expressed genes across cell types in scRNA-seq data

in Chapter 2. Through several different analyses with both simulated data and real

data, we were able to demonstrate the feasibility and practical utility of our approach

in comparison to alternative methods. Then, in Chapter 3, a sparse Bayesian factor

model was introduced to detect gene-gene network structures from scRNA-seq data.

We highlighted our model’s ability to identify true co-expressions while maintaining

nominal false discovery rates across different numbers of cells and different network

structures in both simulated and real data analyses. Finally, Chapter 4 expanded

upon our sparse Bayesian factor model to examine the differences between networks

of different treatment groups. Again, we were able to establish our methodology’s

superiority over other comparable methods through simulation studies.

These research projects provide significant steps toward the application of

Bayesian solutions to the statistical challenges posed by the characteristics of scRNA-

seq data. With that being said, we note several further extensions and developments

that are worth considering. For our network methodology in Chapters 3 and 4, a

natural extension would be to place a shrinkage prior on the factor loadings, similar to

the approach used in Bhattacharya and Dunson (2011). This would ultimately remove

the guesswork involved in choosing the number of factors F by allowing, in theory,
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the use of infinitely many factors in our models. Factors with a higher index f will

tend to have smaller variances and, therefore, have smaller overall effects. As another

extension, we could combine differential expression (DE) analysis into our differential

network model from Chapter 4 by performing posterior inference on the log-fold

change parameter δg. Since this model framework utilizes covariance information

between groups, we anticipate achieving higher power and greater efficiency when

detecting differentially expressed genes.

Scalability is perhaps one of the biggest obstacles to overcome when using

Bayesian methodology for high-dimensional scRNA-seq data. Incorporating compu-

tationally efficient and scalable algorithms from the existing literature to our proposed

network methodology, like we have done with variational inference for our DE model

in Chapter 2, will allow for analyses of larger gene sets. This will be particularly useful

because Lichtblau et al. (2017) have demonstrated that in the context of bulk pop-

ulation data, differential network algorithms can outperform differential expression

methods in terms of identifying the genes that play key roles in biological processes.

Utilizing a faster programming language (e.g., MATLAB or Julia) could also help re-

duce the amount of running time required for computationally expensive techniques

like Markov chain Monte Carlo sampling.
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APPENDIX A

HURDLE MODEL SIMULATION DETAILS

Simulated datasets were generated from the hurdle model set-up described in the

Methodology section of the main manuscript. For each small simulation, N = 100

cells were assigned to two different treatment groups: 50 cells allocated to treatment

0 (control) and 50 cells allocated to treatment 1. The cells were further clustered into

ten total subpopulations, such that the cells within each treatment group were evenly

divided into five subpopulations (ten cells in each subpopulation). In the unequal

subpopulation scenario, the five subpopulations consisted of 15, 12, 10, 8, and 5 cells,

respectively. We chose the number of clusters within each treatment to reflect the

number of clusters observed in previous scRNA-seq studies (Patel et al., 2014; Tirosh

et al., 2016) while also including a sufficient number of cells per cluster to reasonably

estimate the correlated random effect parameters within the model. For the larger

simulations, N = 1,000 cells were considered and the number of cells within each

treatment and subpopulation were scaled by a factor of 10.

Letting kt(i) represent the subpopulation of cell i within treatment t, the ran-

dom effect ωi for each cell was determined by ωi = γt,kt(i)+ω
∗
i . The ω∗i ’s were randomly

generated from Normal(0, σ2
∗), with σ2

∗ = 0.7. For the unequal simulations, the ω∗i ’s

from the smallest subpopulation (5 or 50 cells) were drawn from a normal distribu-

tion with a smaller variance (σ2
∗ = 0.6) and the ω∗i ’s from the largest subpopulation

(15 or 150 cells) were were drawn from a normal distribution with a larger variance

(σ2
∗ = 0.8). To enforce some separation of the random effects between subpopulation
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clusters, the γt,k’s within each treatment were randomly assigned one of five values

without replacement: −2σt, −σt, 0, σt, and 2σt. In this notation, the true value

of σt represents a scale parameter (not the standard deviation) that determines the

separation between subpopulations. Table A.1 lists the values for σ2
t and σ2

∗ used in

the simulations.

In the simulation scheme described above, a data-generating design matrix X

consisting only of the treatment indicator was used. The first 1,250 genes, out of G

= 10,000 genes, were set to be significantly different for the logistic regression part of

the hurdle model (βL1g was either -1.5 or 1.5 in the small simulations and either -0.5

or 0.5 in the large simulations), while the remaining genes had βL1g = 0. The other

coefficients in the model (βL0g and ζLg ) were simulated based on the results from the

mouse embryonic cell (MEC) data (Islam et al., 2011). In the large simulations, some

methods had TPRs and AUCs near 1 when the values of the significant βL1g’s were set

to ±1.5. Therefore, we decreased the treatment effect to help expose the differences

between methods.

An overlap of 250 differentially expressed (DE) genes between the logistic

regression and the truncated negative binomial regression were considered. Thus,

genes numbered 1,000 − 2,250 in the dataset were set to be significantly different for

the zero-truncated negative binomial part of the hurdle model (βC1g was either -1.5 or

1.5 in the small simulations and either -0.5 or 0.5 in the large simulations), while the

remaining genes had βC1g = 0. The other coefficients in the model (βC0g and ζCg ) were

again simulated based on the results from the MEC data.

Following our proposed methodology, a G × N zero-one matrix Z was first

generated from Bernoulli(θgi) for each combination of g and i. The probability of

success θgi was determined from Equation (2.1) in the main manuscript using the

coefficients, random effects, and model matrix described above. A G×N count matrix

Y was then generated, such that Ygi = 0 if Zgi = 0, and Ygi > 0 if Zgi = 1. The count
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values for Ygi > 0 were simulated from Truncated Negative Binomial(µgi, φg) defined

in Equation (2.3) of the main manuscript. Here, µgi was calculated from Equation

(2.4) using the coefficients, random effects, and model matrix described above. The

overdispersion parameter φg was generated from Lognormal(λ1, λ2) with the estimates

of λ1 and λ2 coming from the MEC data. Finally, genes expressed in less than 20%

of all cells were removed from analysis. After data generation, CDR was calculated

and added into the design matrix before model estimation.

For each simulation scenario, 100 datasets were generated and the DE genes

were determined at a false discovery rate (FDR) of 0.05 for each method. SCDE uses

the Holm (1979) procedure to adjust Z-scores, while all other methods utilize the

Benjamini and Hochberg (1995) procedure to control for FDR. The measures of true

positive rate (TPR), false positive rate (FPR), observed FDR, area under the receiver

operating characteristic curve (AUC), and number of identified DE genes were used

to compare methods.

In addition to the simulations discussed in the manuscript, another small sam-

ple size simulation (N = 100) was considered by changing the number of subpop-

ulations per treatment group. In one scenario, a total of four subpopulations were

simulated such that the cells within each treatment group were evenly divided into two

subpopulations (twenty-five cells in each cluster). The γt,k’s within each treatment

were randomly assigned either −0.5σt or 0.5σt without replacement. In the other

scenario, a total of sixteen subpopulations were simulated. We increased the number

of cells per treatment group to be 56 in order to evenly divide the cells in each treat-

ment into eight clusters of seven cells each, and the γt,k’s within each treatment were

randomly assigned one of nine values without replacement: −2.4σt, −1.8σt, −1.2σt,

−0.6σt, 0, 0.6σt, 1.2σt, 1.8σt, and 2.4σt. The results from these two variations are

provided in Table A.2.

We also created variation in the small hurdle model simulations by increasing
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the amount of information supplied by the subpopulations. In these simulations we

considered equal cluster sizes and set σ2
∗ = 0.3 and σ2

0 = σ2
1 = 0.7. Here, the use

of a smaller σ2
∗ value creates a larger within subpopulation correlation. Simulated

datasets were generated with two, five, and eight subpopulations per treatment, and

the results are displayed in Table A.3.

The overall results from these variations were generally similar to those already

presented in Section 2.4.1 of the main manuscript. The “2 clusters per treatment”

scenarios were the only small sample size, hurdle model simulations where the bulk

method of DESeq2 selected more DE genes than CRE and IRE. However, this is due

to the much higher FDR in DESeq2, which also leads to worse AUC performance

than our proposal.
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σ2
∗ σ2

0 σ2
1

Equal Cluster Size Simulations 0.7 0.3 0.3
Unequal Cluster Size Simulations 0.8/0.7/0.6 0.3 0.3

Table A.1: Variance terms for γt,k and ω∗i in the hurdle model simulation studies.

Hurdle model: 2 equal clusters per treatment

TPR FPR FDR AUC DE Genes
CRE, SC3 0.701 0.009 0.044 0.963 1577

CRE, NN=3 0.700 0.009 0.044 0.963 1577
CRE, NN=7 0.700 0.009 0.044 0.963 1576
CRE, TRUE 0.700 0.009 0.044 0.963 1576

IRE 0.704 0.010 0.043 0.962 1591
NRE 0.694 0.014 0.062 0.958 1595
MAST 0.619 0.006 0.033 0.955 1378
SCDE 0.155 0.088 0.263 0.663 985
DESeq2 0.445 0.118 0.415 0.750 1834
edgeR 0.409 0.062 0.323 0.781 1336

Hurdle model: 8 equal clusters per treatment

TPR FPR FDR AUC DE Genes
CRE, SC3 0.722 0.010 0.046 0.965 1637

CRE, NN=3 0.723 0.010 0.045 0.965 1638
CRE, NN=7 0.722 0.010 0.045 0.965 1635
CRE, TRUE 0.722 0.010 0.045 0.965 1635

IRE 0.726 0.010 0.047 0.965 1646
NRE 0.711 0.024 0.098 0.952 1711
MAST 0.643 0.007 0.037 0.957 1443
SCDE 0.174 0.013 0.276 0.627 1340
DESeq2 0.436 0.088 0.394 0.765 1594
edgeR 0.436 0.071 0.342 0.780 1468

Table A.2: Additional results of performance measures from the hurdle model simu-

lation structure with two and eight simulated subpopulations per treatment.
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Hurdle model: 2 clusters per treatment, high correlation

TPR FPR FDR AUC DE Genes
CRE, SC3 0.713 0.009 0.042 0.965 1595

CRE, NN=3 0.713 0.009 0.041 0.965 1595
CRE, NN=7 0.713 0.009 0.041 0.965 1594
CRE, TRUE 0.714 0.009 0.042 0.965 1597

IRE 0.716 0.010 0.045 0.965 1609
NRE 0.713 0.010 0.048 0.964 1606
MAST 0.636 0.006 0.032 0.958 1409
SCDE 0.180 0.064 0.377 0.686 861
DESeq2 0.490 0.202 0.500 0.715 2545
edgeR 0.401 0.030 0.197 0.811 1078

Hurdle model: 5 clusters per treatment, high correlation

TPR FPR FDR AUC DE Genes
CRE, SC3 0.663 0.009 0.043 0.955 1506

CRE, NN=3 0.663 0.009 0.043 0.955 1506
CRE, NN=7 0.663 0.009 0.043 0.955 1504
CRE, TRUE 0.663 0.009 0.043 0.955 1506

IRE 0.667 0.010 0.048 0.954 1524
NRE 0.647 0.015 0.074 0.945 1522
MAST 0.568 0.006 0.037 0.944 1281
SCDE 0.031 0.008 0.066 0.677 126
DESeq2 0.380 0.048 0.298 0.778 1183
edgeR 0.360 0.053 0.335 0.768 1181

Hurdle model: 8 clusters per treatment, high correlation

TPR FPR FDR AUC DE Genes
CRE, SC3 0.701 0.010 0.047 0.959 1596

CRE, NN=3 0.701 0.010 0.048 0.959 1599
CRE, NN=7 0.701 0.010 0.047 0.959 1598
CRE, TRUE 0.702 0.010 0.047 0.959 1597

IRE 0.704 0.010 0.048 0.960 1606
NRE 0.686 0.021 0.092 0.948 1647
MAST 0.611 0.007 0.040 0.949 1381
SCDE 0.048 0.014 0.134 0.657 207
DESeq2 0.425 0.075 0.361 0.770 1480
edgeR 0.408 0.075 0.378 0.761 1447

Table A.3: Additional results of performance measures from the hurdle model sim-

ulation structure with high within subpopulation correlation for two, five, and eight

subpopulations per treatment.
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APPENDIX B

SPLAT SIMULATION DETAILS

The Splat scheme (Zappia et al., 2017) simulates count expression values from a

gamma-Poisson distribution that is modified to vary the library sizes across cells and

impose a mean-variance trend such that highly expressed genes are less variable than

lowly expressed genes. This simulation structure also provides options for including

abnormally high expression levels (outlier genes), high proportions of zeros (dropout),

and additional technical variation (batch effects). For simulating differential expres-

sion between treatment groups of cells, Splat generates multiplicative factors from

a lognormal distribution and applies them to the mean expression values of the re-

spective genes in one of the treatment groups. Genes not simulated to be DE have

multiplicative factors set to one.

A total of 100 small datasets (100 cells and 10,000 genes) and 100 larger

datasets (1,000 cells and 10,000 genes) were generated with the splatSimulateGroups

function from the Splatter R package (Zappia et al., 2017). The probability of a gene

being DE was set to 0.1, and cells had equal probabilities of being assigned to one of

two groups. We considered additional technical variation by setting the batch effect

argument such that half of the cells belonged in one batch and the other half belonged

in another batch. Dropout and outlier genes were also incorporated into the Splat

simulation design.

The location parameters for the lognormal distributions of the batch effects

factor and differential expression factor were both set to 2, while the scale parameters
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for both factors set to their default values of 0.1 and 0.4, respectively. Again, in the

larger datasets we observed very high TPRs and AUCs (nearly 1) for some of the

methods when the expression factor was set to 2. Therefore, to help differentiate the

methods in the larger Splat datasets, the differential expression factor was reduced

to 0.5. Values for the remaining parameters of the splatSimulateGroups function not

already mentioned above were estimated from the MEC data, and genes that were

not expressed in at least 20% of the cells were removed from analysis.

In addition to using trimmed mean of M-values normalization and scaling the

adjusted counts to counts per million for the clustering algorithms, as described in

Section 2.4 of the main manuscript, we also applied the mutual nearest neighbors

(MNN) correction (Haghverdi et al., 2018) to adjust for batch effects. The MNN

method is available in the scran R package (Lun et al., 2016).

Since we focus on how the results from a clustering analysis can be incorporated

into our model, not on how to perform a cluster analysis, we do assume that some

consideration for potential bias has been taken when processing the data for cluster-

ing. Therefore, we included the MNN adjustment to remove any bias the simulated

batch effects may impose during clustering. However, to keep the Splat simulation

analyses consistent across all methods, we did not apply the MNN adjustment to the

data analyzed with MAST since we did not adjust any of the other models for batch

effects.
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APPENDIX C

HMEC DROP-SEQ DETAILS

This dataset was generously provided to us by researchers at the University of Florida

Health Cancer Center. To measure the cell-to-cell variability of gene expression in

a mammalian cell line, Drop-seq was used to perform single cell expression analysis

on MCF10A human mammary epithelial cells (HMEC) expressing either exogenous

wild type or mutant histone H2B. Each sample included 10% mouse 3T3 cells to

assist in determining the doublet rate and ambient RNA barcode noise. The Drop-

seq apparatus was constructed in house according to published protocols (Macosko

et al., 2015) with a microfluidic co-flow device purchased from Nanoshift (Emeryville,

CA).

Briefly, 1,000 cells were encapsulated in droplets with companion bar coded

primer-coated microparticles. After cell lysis, cDNA libraries were prepared by hy-

bridization of mRNA to primer beads and reverse transcriptase treatment with Max-

ima H Minus RT (ThermoFisher) to produce single-cell transcriptomes attached to

microparticles (STAMPS) and amplified with Kapa HiFi Hotstart ReadyMix. The

cDNA library was tagmented with Nextara XT to produce pools high throughput

sequencing on a NextSeq 500 (Illumina) with a 75 bp flow cell.

A cluster analysis was performed on this data to examine the variability within

potential subpopulations of cells. In brief, the SC3 algorithm (Kiselev et al., 2017) was

utilized to initially estimate an “optimal” number of clusters within each cell type.

A visual inspection was then imposed to ensure that each cluster had a reasonable
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number of cells (at least 1% of the total number of cells). Based on this analysis, the

wild type cells were clustered into seven subpopulations and the mutant cells were

clustered into nine subpopulations.
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APPENDIX D

ADDITIONAL MEC ANALYSES

Sensitivity Analysis

To evaluate the choice of Inverse Gamma(0.001, 0.001) as the prior on λ2, we ran an

additional analysis on the MEC data after changing this prior to Inverse Gamma(1, 1)

in our models. With the new prior, CRE detected 4,933 DE genes compared to the

4,927 DE genes in the original analysis. The overlap of genes was 4,926. For the IRE

model, both versions identified exactly 4,947 DE genes, with 100% overlap. Based on

these results, the prior choice for λ2 seems to be relatively innocuous.

DAVID Functional Annotation Clustering

The Database for Annotation, Visualization, and Integrated Discovery, better known

as DAVID (Huang et al., 2009a,b), was utilized to help determine the biological

relevance of genes identified as being DE in the MEC analysis. Clusters of gene

ontology (GO) categories for different subsets of genes were created with the DAVID

functional annotation clustering tool. An Enrichment Score is calculated by DAVID

for each cluster to help identify clusters that are involved in more enriched (important)

biological roles. Each Enrichment Score is determined by the geometric mean of the

modified Fisher Exact p-values for all annotation terms that belong to a given cluster.

A negative log base 10 transformation is applied on each geometric mean to emphasize

that this measurement is a relative score, rather than an exact value. Thus, a higher
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score indicates that the genes annotated to the GO categories within the cluster are

involved in more enriched roles.

It has been recommended that more attention should be given to groups with

scores greater than or equal to 1.3 (Huang et al., 2009b). An Enrichment Score of

1.3 corresponds to clusters with a geometric mean of 10−1.3 = 0.05. We used this

threshold of 1.3 to classify clusters as enriched. Additionally, we made special note

of the clusters with Enrichment Scores greater than or equal to 4 (i.e., the geometric

mean of p-values is 10−4 or less) by classifying them as highly enriched.

We examined the 1,335 genes in the MEC analysis that were detected by CRE

and undetected in the other methods to help evaluate the biological relevance of these

new discoveries. For comparison, we also analyzed the genes uniquely identified by

only DESeq2 and only edgeR. These methods were chosen as a comparison because

they detected the second (293) and third (172) highest number of unique DE genes.

The scRNA-seq methods of SCDE and MAST only detected 7 and 2 unique genes,

respectively.

A total of five GO category clusters were considered to be highly enriched in

the analysis of genes identified only CRE, and twenty additional clusters had scores

greater than 1.3. Categories of RNA splicing, mRNA processing, and spliceosomal

complex were clustered together and had the highest Enrichment Score of 10.62. The

cluster containing GO categories of relating to cell-cell adhesion had the second high-

est Enrichment Score (7.13) and the cluster containing categories related to DNA

binding and transcription both had the third highest Enrichment Score (7.10). GO

categories of cell cycle, mitotic nuclear division, and cell division were clustered to-

gether had an Enrichment Score of 4.73. Lastly, the fifth most highly enriched cluster

had an Enrichment Score of 4.51 and included categories relating to ligase activity

and protein ubiquitination.

In comparison, the genes detected only by DESeq2 had one highly enriched GO
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category cluster and five clusters with scores greater than 1.3. The highly enriched

cluster had an Enrichment Score of 4.63 and contained categories related to RNA

binding. The genes identified only by edgeR did not have any highly enriched GO

clusters, but did have two clusters with a score greater than 1.3.

Naturally, we would expect the genes detected by our CRE model to form more

clusters simply because there are more of them, but the fact that five of GO category

clusters were highly enriched and twenty more had Enrichment Scores greater than

1.3 suggests that many of these genes have similarities in their biological roles. The

subset of 989 genes in common among all methods except for MAST did form ten

GO clusters with Enrichment Scores greater than 1.3, but none of them had a score

greater than 4. Additionally, the 1,148 genes in common among CRE, DESeq2, and

edgeR formed fourteen GO clusters with scores greater than 1.3 with two of those

clusters being highly enriched. Therefore, based on the comparison to these larger

subsets, our CRE method is not only able to identify a larger number of DE genes,

but these genes are also annotated to similar and important biological functions and

processes.
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