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ABSTRACT

GRIDHUB: A GRID-BASED, HIGH-DENSITY MATERIAL HANDLING

SYSTEM

Gang Hao

August 15, 2019

In the past twenty years, the share of e-commerce has increased (FRED,

2019). Since more and more activities, such as picking and sorting customers’

orders, are done in warehouses, high efficiency warehouses are in demand.

Furthermore, the efficiency of warehouses is related to customer satisfaction (Colla

and Lapoule, 2012). Storage systems are key components in warehouses, which are

related to the efficiency of warehouse operations. In this dissertation, we address an

automatic puzzle-based storage system under decentralized control. We call this

system GridHub.

GridHub meets standards of Industry 4.0 (Lasi et al., 2014), and it features

high throughput with parallel order processing.

In the first part of this research, we describe a GridHub which can handle

unit-sized items; that is, one box only occupies one conveyor module. The GridHub

is capable of moving boxes in all cardinal directions. It can complete multiple

material handling tasks, such as sorting, sequencing, retrieving, and storing without

changing the control algorithms. To move the active boxes to their targets, we

developed a decentralized control algorithm to arrange box movements. The

algorithms are executed by conveyor modules cyclically, and all actions in the

execution process are one iteration of the algorithm. There are three phases in one

iteration (assess, negotiation and convey), and several steps consist of one phase.

iv



The conveyor modules execute the algorithm simultaneously and synchronize at

every step. The goal of the control algorithms is to move active boxes into their

immediate destinations, and the key idea of the algorithm is to move away other

boxes for the active boxes through message passing process.

Negotiation behaviors are patterns of action generated by the conveyor

modules while executing the algorithms. We describe these behaviors and explain

how they affect the transfer process of active boxes. Some of those behaviors and

other actions, which can prevent the transferring processes of boxes, are listed and

discussed. These actions are related to deadlock and livelock in the GridHub. We

prove that GridHub is deadlock free, and it is also livelock free under certain

conditions.

In the second part of this research, we extend the unit-sized GridHub by

enabling it to handle non-unit-sized boxes meaning every box can occupy more than

one conveyor module. We name the new GridHub the NU GridHub. The control

algorithms of the NU GridHub are developed based on the unit-sized GridHub’s

algorithms by adding new rules. Performance of the NU GridHub is also measured

and discussed.

GridHub is the first grid-based material handling system to offer four-way

movement of stored items with a rich set of material handling task – storage,

retrieval, sorting, and sequencing. GridHub is also the first grid-based system to

implement a decentralized control algorithm based on “nested attempts,” a feature

the guarantee deadlock free operation. Finally, the NU GridHub is the first

grid-based solution to handle bigger boxes, which have not been done for a

grid-based system under the virtual aisle method.

v
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the past twenty years, the share of e-commerce retailers in the total retail

market sale has increased (see Figure 1).
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Figure 1: Share of sales of e-commerce in the total sales (Data source: FRED). The

y-axis indicates the market share of e-commerce in the total retail market sales, and

the unit is %. The x-axis is the date (first date of every month from 1999-10-01 to

2019-04-01).

Because goods are usually shipped to customers from warehouses or

distribution centers directly, and customers expect to have short preparation time

for their orders (Colla and Lapoule, 2012), high efficient warehouses are necessary

1



for customer satisfaction. Hence, highly efficient warehouses are related to the

retailer’s success.

A storage system is a material handling system used to store goods in a

warehouse. Most of the operations of a warehouse are completed by, or inside, a

storage system. Hence, well designed storage systems are necessary for efficient

warehousing. The conventional storage systems, which are are well developed and

optimized, have been used by the industry for decades (Figure 2).

(a) Racks (Massey Rack, 2017). (b) Flow rack (CLARK Associate MH.

Inc., 2017).

(c) Mezzanine

storage (mezzaninestoragesystems101,

2014).

(d) Automated storage and retrieval

system (ASRS) (Vanderlande, 2017).

Figure 2: Examples of conventional storage systems.

However, these systems face multiple challenges in the era of e-commerce,

such as:
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• Picking and sorting orders in pallet racks or mezzanines needing a long travel

time; Processing customer orders in a flow rack requires more workers, and high

picking accuracy is hard to achieve.

• If a warehouse is required to have a high utilization rate, the upper bound of a

pallet rack’s utilization rate is around 2
3 ; Flow racks have to store a single SKU

in each slot, and the re-configuration for a flow rack is difficult.

Industry 4.0 (Lasi et al., 2014) is new concept set that emphasizes building

connections among all entities and decentralized decision making in a industrial

system, such as a manufacturing system or a material handling system. The

benefits of connections and decentralization are flexibility and efficiency. For

example, a storage system can be expanded with small changes over a short time

period, or a system is able to process multiple orders with different requirements.

A grid-based system is an automated storage system that consists of multiple

pieces of homogeneous transportation equipment or multiple modules, such as

conveyors or Autonomous Guided Vehicles (AGVs). Modules of a grid-based system

have to meet the following requirements:

• The modules are identical, which means that they both have the same

hardware and software.

• They can either consist of a grid-like layout, or the items they are handling can

consist of a grid-like layout.

• Every module can connect with some other modules electronically.

• Instead of a single controller to order every module where to move the stored

items, each of the modules can decide its movement individually by

communicating with other modules.

The grid-based systems consists of identical modules. These modules are

called FlexConveyors (see Figure 3). Multiple conveyors can comprise a

grid(Figure 4). A top-view abstract representation of this system is in Figure 5.
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Figure 3: FlexConveyor (an individual module) (Uludaǧ, 2012). A FlexConveyor is

able to receive an item from any side, and it can also move the item to any side.

The rollers of a FlexConveyor move an item in one pair of opposite directions, and

the belts move the item in the other pair of directions.

Figure 4: Grid-based system (Gue, 2014). Items on these conveyors are in two

categories: requested items, which need to be moved out of the system or transferred

to certain locations in the system, are displayed in blue; stored items are in yellow.
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Figure 5: Grid-based system schematic diagram. The black squares represent the

requested items; the grey squares are used to represent stored items; the white

squares indicate empty conveyors.

Based on previous works, grid-based systems are capable of doing one or

multiple of the following tasks.

• Storage: systems receive items and store them for long periods.

• Retrieving: systems move requested items out of any locations that are used for

releasing items.

• Sortation: systems move requested items out of the system through specific

locations.

• Sequencing: systems move requested items out of the system in certain

sequences.

The grid-based system can process multiple parallel orders, and it is easy to

setup these systems. To control these systems, two concepts, which are path

reservation and virtual aisle, are developed (detailed explanations are in Chapter 2).

However, some questions arise:

1. In these systems, requested items can be moved only in one direction or a pair

of opposite directions. Is there a method to move requested items in four
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directions?

2. If a group of items is requested to be released at a certain location with certain

sequences, how do we form this problem and how do we solve it?

3. If a bigger item is stored in a grid-based system, how do we move it? For

example, is this possible to introduce a 2 ×1 item or a 3 ×3 item into the

system and move it to required locations with decentralized control?

4. How do we verify the control algorithms of a new grid-based system?

1.2 Objects and structure of this research

To answer these questions, we develop an improved grid-based system called

“GridHub” (Figure 6), which consists of a grid of identical square conveyors

(Figure 3). GridHub is capable of doing all the material handling tasks we

mentioned – storage, retrieval, sorting, and sequencing. It also allows items to move

in and out a all four sides. Like other grid-based algorithms, GridHub implements

decentralized control, but using a novel “nested negotiation rule” that guarantees

deadlock free operation.

We divide the research into two parts, based on whether a GridHub can

handle non-unit-sized items. In the first part, we design a GridHub that is able to

receive and release unit-sized items on all four edges. Items can be received released

at any specific locations around the GridHub. In the second part, we modify

GridHub for transferring non-unit-sized items, and we also explore system

performance.
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Figure 6: An analog of the GridHub with requested item moving in four directions.

The grey tiles are conveyors, and boxes are the yellow cubes. A white triangle on

the boxes indicates the direction to move the requested boxes.

1.3 Dissertation organization

The rest of the dissertation is organized as follows: Chapter 2 reviews

literature and summarizes the related background. We explain terminologies of the

grid-based system first, then existing grid-based systems are reviewed. In the second

part of this chapter, related background, such as controlling deadlock solutions, are

summarized. In Chapter 3, the system descriptions of unit-sized GridHub are

presented first. Then, we explain the control algorithms. In Chapter 4, system

behaviors, deadlock, and livelock in the unit-sized GridHub are discussed. We prove

that unit-sized GridHub is deadlock free. It is also livelock free under specific

conditions. In Chapter 5, we show the performance of the unit-sized GridHub. In
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this chapter, we explain how the simulation model is built and how to conduct

experiments. The experiment results are then displayed and discussed. In

Chapter 6, we extend the unit-sized GridHub to handle non-unit-sized items. The

performance of the extended system is also measured and discussed. In Chapter 7

we list contributions and make conclusions.
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CHAPTER 2

LITERATURE REVIEW

2.1 Terminology

Conveyors and the items carried by them were usually considered a whole

“conveyor module” in a grid-based system’s description (Gue et al., 2014; Uludaǧ,

2014; Seibold, 2015). A module’s state describes whether the conveyor module holds

a box, or what kind (requested or nor) of box it holds. For example, a conveyor

carries a box that is requested to be moved out, which also means that the conveyor

module’s state is “requested.” In Figure 7, every module is in one of the three

states: requested (in black), stored (in grey) or empty (in white).

Directions are used to describe stored item movements or locations in

grid-based systems. Previous research (Gue et al., 2014; Uludaǧ, 2014; Seibold,

2015) used map directions (see Figure 7). In these systems, the North-south (NS)

directions were the directions to move the requested items. The East-west (EW)

directions were the directions to move stored items for the requested items. A

schematic diagram of a grid-based system, such as Figure 7, is similar to a

representation of a cellular automaton. Hence, grid-based systems can be modeled

as cellular automatons. Von Neumann and Moore introduced two types of

neighborhoods for a cellular automaton, respectively (Figure 8). Arbitrary

neighborhoods are also defined to build the relationships among cells (Krühn et al.,

2010) (Figure 8c).
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Figure 7: Schematic diagram of a grid-based system. The grey tiles are conveyors,

and boxes are the yellow cubes. A white triangle on the boxes indicates the

direction to move the requested boxes.

(a) Von Neumann. (b) Moore. (c) Arbitrary.

Figure 8: Neighborhood types of cellular automaton (Grey cells are the black cells’

neighbors according to the neighborhood indicated).

Existing grid-based systems used the Von Neumann neighborhood to

establish connections among conveyor modules (Gue et al., 2014; Uludaǧ, 2014;
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Seibold, 2015), and the names of a conveyor’s neighbors are: the north neighbor, the

south neighbor, the east neighbor and the west neighbor. The example of these

neighbors are displayed for the black conveyor in Figure 7.

Communication activities among a conveyor and its neighbors are called

messages passing or negotiation. All of the conveyor modules in a certain grid-based

system have the same negotiation protocol. The conveyor modules follow the

protocol to make decisions in the negotiation process.

We call the process of executing an entire negotiation protocol an “iteration”

or a “cycle.” For any stored item in a grid based system, it can move from a

conveyor to the neighbor of this conveyor in one iteration. Hence, the number of

iterations required to complete some task is usually used to measure time spent in a

grid-based system. For example, if a requested item is moved during 3 iterations

and stays on a conveyor for 2 iterations before it has been moved out of a system,

we can use 5 iterations to measure the time spent moving this item out.

An iteration is divided into multiple phases or steps. For example, Gue et al.

(2014) and Uludaǧ (2014) divided an iteration into three phases: assess, negotiate

and convey. In the assess phase, an item’s information is updated and evaluated; in

the negotiate phase, conveyors communicate with their neighbors to generate the

transportation instruction. in the convey phase, conveyors execute the

transportation instructions. Furthermore, every phase can be divided into several

steps. For example, the negotiate phase of the GridStore system was divided into a

“north-south” negotiation step and an “east-west” negotiation step (Gue et al.,

2014). To illustrate the negotiation process, an “east-west” negotiation example is

displayed from top to bottom in Figure 9.
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Figure 9: Example of negotiation among conveyors (Gue et al., 2014). In this case,

the most left conveyor has committed to move its box to south. Its east neighbor,

and the other conveyor are both marked with “R,” which indicating they have

“east-west” requests. In Figure 9a, the grey conveyors with “R R” marks are sending

“request” messages to their east and west neighbors. In Figure 9b, while one request

message is being passed, the other message responds with a “willing” message that

is sent to the source of the request messages. In Figure 9c, a commit message is sent

by replying to the will message. In Figure 9d, as a result of negotiation, the 2nd and

3rd conveyor (from left) commit to move their boxes to the right.
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2.1.1 Existing grid-based systems

FlexConveyor FlexConveyor consists of identical square conveyors similar to the

conventional conveyor systems (see Figure 10a). Every conveyor unit communicates

with the components attached to it. Mayer (2009) presented the technical details of

the FlexConveyor module and developed the control algorithms. The system layout

is easy to change, and no modification to the control algorithms is required during

the changes. Furthermore, most of the grid-based systems used or proposed the use

of similar conveyors developed by Mayer (2009).

GridStore The GridStore (Gue et al., 2014) system was designed to store and

retrieve unit-sized items. The items enter from the north side of the system, and

depart on the south side (see Figure 10b). Both of the requested and replenishing

items are only being moved to the south direction. The locations and sequences of

releasing requested items are not specified. A study on the effects of failed

conveyors in a GridStore system was conducted by Furmans et al. (2013), and the

result confirmed the system’s robustness.

(a) FlexConveyor system (Mayer, 2009). (b) GridStore (Gue, 2014).

Figure 10: Existing grid-based systems (part 1).

GridSequence The GridSequence (Gue et al., 2012) system was developed based

on the GridStore system to sequence cartons. When the system is running, a group
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of cartons assigned sequences entered the system from the north side in a random

order. Cartons are only requested toward the south direction to the preset locations

on the grid. After sequencing operations are finished, all cartons leave the system

on the east edge in a preset sequence.

GridPick GridPick (Uludaǧ, 2014), which was designed as an order picking

system, was another extension of the GridStore. The south side or both the south

and north side can be used as picking faces. Boxes in this system are moved to the

picking faces and are returned to the system after picking is finished. The orders

could be picked at any locations on the picking faces. While the system is running,

only two batches of boxes’ picking sequences are set. For example, in Figure 11a,

the boxes in blue are the requested boxes, and the worker can pick orders from these

boxes when they are moved to the edges.

(a) GridPick (Uludaǧ, 2014). (b) GridSequence (Gue et al., 2012).

Figure 11: Existing grid-based systems (part 2).

GridSorter GridSorter (Seibold et al., 2013) was designed for sorting boxes. It is

not necessary for the system’s shape to be rectangular. The entrances and exits of

boxes are set at different locations on the edges of the grid. The GridSorter moves

boxes to the preset departure locations along “reserved” paths that are found by

negotiations among conveyors. (Seibold et al., 2013) adopted FlexConveyor
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controlling for GridSorter. Dominik et al. (2016) extended GridSorter to move

non-unit-sized items. Seibold (2015) implemented “logical time,” which is a concept

related to distributed computer systems, in the decentralized control algorithms of

the GridSorter. As a result, the absence of deadlock and livelock could be proven.

GridFlow AGV This system was designed to control AGVs in a storage

space (Schwab, 2015). Hence, unlike other grid-based systems, the stored items are

moved by AGVs instead of conveyors. In this system, goods are placed on pallets,

and AGVs run under them (see Figure 12a).

(a) GridFlow AGV (Schwab, 2015). (b) GridSorter (Seibold, 2015).

Figure 12: Existing grid-based systems (part 3).

2.1.2 Other material handling systems with similar features

Some other storage systems have features similar to grid-based systems, such

as high storage density or decentralized control.

Puzzle-based storage systems A puzzle-based storage system is a type of

high-density storage system. The layout of a puzzle-based system is similar to the

layout of a N-puzzle game (see Figure 13a). Gue and Kim (2007) described an order

retrieval method for a puzzle-based storage system. In the puzzle-based system, an

empty space is called an “escort.” In the retrieval process, the escort must be moved

to the location that is adjacent to the requested item in order for the item to be
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moved.

Kota et al. (2015) conducted an analytical study about the retrieval time of a

puzzle-based storage system. In the research, the authors assumed the locations of

escorts are uncertain, and accounted the time to “move” escorts to desired locations

into the retrieval time. Mirzaei et al. (2014) modeled the retrieval process of

puzzle-based storage systems. They considered a square, puzzle-based storage area

with different dimensions and calculated the average time for moving one or two

loads out of the system. Zaerpour et al. (2010) presented an optimal configuration

for a puzzle-based storage system, which was later explored in the fresh food

industry (Zaerpour et al., 2015). The policy for operating this system was divided

into “dedicated lane” and “shared lane.” The dedicated lane system was similar to

flow racks because the same SKUs were stored in the same lanes. The shared lane

policy did not require the same SKU in the same lanes, so space utilization was

increased. However, the authors pointed out that to move the requested items out,

the process of moving the items in front of the requested item increased the

complexity of the operation.

Yalcin et al. (2019) developed methods to retrieve requested items from a

puzzle based storage system with multiple escorts. The method organized escorts to

different locations in order to perform the requested item’s non-stop movement.

Shirazi (2018) implemented decentralized control in a puzzle-based storage

system. The author claims that the system can move up to three requested items

simultaneously and release them to any specific locations on any system border.

Shirazi also mentions deadlock, and provides a method to solve deadlock when

deadlock occurs.
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(a) Schematic of a puzzle-based

storage system.

(b) An example of proposed puzzle-based

system (Agile System Inc., 2017).

Figure 13: Puzzle based storage systems. In the left figure, the black square

indicates a requested item, and lower left corner is the I/O place.

Cellular warehouse Sakao et al. (1996) developed an automatic material

handling system, the earliest grid-like system known so far (see Figure 14a). The

system consists of a group of homogeneous “cells.” The cell is a machine with an

individual CPU that can communicate with and move items to its “adjoining” cells.

The exits and entrances are assigned to some cells that can be at any border of the

system. The cells communicate through message passing. In every cell’s controller,

a message buffer is used to store messages received. The controller of a cell selects

the most important messages from the buffer to read and initiates actions based on

pre-loaded rules. Tests of the system were conducted by simulation and prototypes.

The system features easy re-configuration, and possibilities of handling broken cells

were confirmed via these tests.

Hama et al. (2002) developed a distributed control method to coordinate

autonomous tables (see Figure 14b) in a cellular-like field for desired configurations.

These tables can communicate with their neighbors and enter the state of active or

inactive. Each of these tables are controlled by its own behavior functions, and an

Artificial Neural Nework (ANN) is employed to generate the behavior functions.

The training of the tables starts with solving smaller N-puzzle problems to bigger
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N-puzzle problems.

(a) Cellular warehouse proposed by Sakao

et al. (1996).

(b) Cellular Warehouse proposed by Hama

et al. (2002).

Figure 14: Cellular warehouses.

Flexible transportation system Fukuda et al. (2000) and Takagawa et al.

(2003) worked on systems called “flexible transportation system,” which also

features decentralized control. The systems’ layouts are similar to grid-based

systems, and Takagawa et al. stated that some of the modules locations could be

changed autonomously according to tasks completed. The modules in these systems

can communicate with each other through messages. A major difference is that the

authors applied methods of machine learning to guide the units in routing.

Modular warehouse Sittivijan (2015) developed a storage system called

“modular warehouse” under hybrid controlling. Both centralized and decentralized

methods were used by the author. The inside layout of a modular warehouse is

similar to a grid-based system. There are several entrances or exits to the rectangle

warehouse, and the stored items are moved by results of negotiations.

Cognitive conveyor A cognitive conveyor system was designed to move and sort

items in different dimensions (Overmeyer et al., 2010). The size of a cognitive

conveyor is small, and these conveyors are omnidirectional (see Figure 15a). The

design of cognitive conveyor was completed by Overmeyer et al. (2010). Krühn

et al. (2013) described a control method by modeling the system as a Cellular
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Automaton. Routes of the items are usually planned prior to actual movements

through a decentralized negotiation process (Krühn et al., 2013).

Firvida et al. (2018) introduces an omnidirectional route planning method in

a conveyor system, similar to the cognitive conveyor. The author also states that

more work such as deadlock avoid methods were under development.

Smart surface Another study called smart surface was presented by Boutoustous

et al. (2010) to sort items based on their shapes. This system consists of a rectangle

board and multiple small scaled control units (see Figure 15b). Each of these units

has its own sensor and actuator. The sensor can detect whether the control unit is

pressed by the parts. The system is modeled as a Cellular Automaton, and the

shape of the part is recognized by the control unit under a decentralized method.

After shape recognition, some of the actuators lower one edge of the board, so the

item can slide to this edge. For example, to move the “H” shaped item to the left

side in Figure 15b, actuators on the left side open valves and lowers the board on the

left side, then the item is slid to the left, and this completes the sorting operation.

(a) Cognitive conveyors (Krühn et al.,

2010).

(b) Smart surface (Boutoustous et al.,

2010).

Figure 15: Other material handling systems that are similar to grid-based systems.
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The existing Grid-Based systems are also compared (see Table 1), and we

summarized according to their functions.

TABLE 1: Comparison of current Grid-Based systems.

System Functions
Release at

Specific location

Release in

specific sequence
Item size

GridStore
Store,

retrieve
no no unit

GridSequence
Sequence,

sort
yes yes unit

GridPick
Store,

retrieve
no yes unit

GridSorter Sort yes no multiple

GridFlow AGV
Store,

sort
yes no unit

Cognitive

conveyors
Sort yes no multiple

2.2 The control methods of grid-based systems

The grid-based systems are under decentralized control. First, we introduce

the concept of control and compare the differences between the centralized and

decentralized control. Second, since there are two distinct method of controlling a

grid-based system, we explain these methods. Then, because deadlock and livelock

must be considered when designing a grid-based system, we explain methods to

solve deadlock and livelock for grid-based systems. Finally, we review the existing

methods to handle non-unit-sized items in grid-based or similar systems.

The state of a system is the information used to describe the system at a

fixed time point. For a grid-based system, the system state is the configuration of

the system. For example, Figure 7 shows a system configuration that includes items’

locations and conveyor module states (empty, store or requested), and this
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configuration is one of the system’s states.

Control is a process where a system takes inputs and generates outputs as

desired behaviors according to some rules (Cassandras and Lafortune, 2008). In the

control process, several states transition may occur, and these transitions are called

events. A system’s states are usually used as the inputs and outputs (Cassandras

and Lafortune, 2008). A state transition diagram is a useful tool to represent the

control process (Figure 16). Controlling a grid-based system is taking a state

(configuration or layout) as an input, and generating transportation orders based on

a conveyors rule set to move some items to their targets.

1 2 3

a b

cd
Figure 16: Example of state transition diagram. The nodes represent states; arches

or edges indicate the state transition paths; the letters on the arches are the events

which trigger the transitions.

2.2.1 Control architecture and system modeling

The control architecture was divided into three classes: centralized,

hierarchical and decentralized. Mayer (2009) gave an intuitive summary of these

control architectures. Centralized control has one supervisor or controller; hence all

of the inputs for the control process are collected by this controller, and outputs are

generated from this controller or supervisor. However, decentralized control

architecture has more than one supervisor or controller (Cassandras and Lafortune,

2008).

Another architecture, the “distributed control,” was referred to by many

researchers, such as Scattolini (2009). Scattolini (2009) also gave the differences of

distributed and decentralized control. Based on the description, the grid-based

systems are under distributed control. Because these two terms are always mixed up
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by the community today, we use “decentralized control” in our research to maintain

consistency.

For a centralized controlled system, if the control rules are designed properly,

the output would be desired. As the input gets more and more complex, the

controller of a centralized system takes longer to generate output. For the individual

controller of a decentralized system, it does not need to collect all of the input

information; hence, its computation load is reduced. However, in the case of lacking

necessary information, desired output is hard to obtain. Furthermore, a

decentralized system is more susceptible to deadlock or livelock states.

The control architectures described above are in Figure 17

Controller Controller1

Controller2 Controller3

Controller1

Controller2

Controller3

Figure 17: Control architectures (The figures are drawn by descriptions of (Mayer,

2009), (Cassandras and Lafortune, 2008)), and Scattolini (2009). From left to right:

centralized control architecture, hierarchical control architecture, and decentralized

control architecture.

Agent-based modeling is a system modeling tool. Jennings et al. (1998)

defined an agent as a computer system featured “situatedness,” “autonomy” and

“flexibility,” meaning that an agent can automatically interact with both the

environment and other agents (Jennings et al., 1998). The environment was the

other object in the system in addition to an agent, such as, other agents, physical

environment, etc. (Wooldridge and Jennings, 1995). If a system is modeled as an

agent, the system can be called agent-based system, or a multi-agent system, when

it consists of more than one agent (Jennings et al., 1998).
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The agent-based system is an intuitive tool to model the grid-based system.

Hence, Uludaǧ (2014) and Seibold (2015) modeled the grid-based system as a

multi-agent system and obtained the estimated system performance. In these

models, every conveyor module was modeled as an agent. the other objects such as

the neighbors of a conveyor were considered the environment.

2.2.2 Methods of designing control algorithm

All of the existing grid-based systems are distinguished according to the

method of designing control algorithms. Schwab (2015) gave a taxonomy of the

grid-based systems on system control perspective; Seibold (2015) divided two

categories of grid-based systems based the routing methods. We update the

summary of the design methods as follows.

The path reservation method The objective of the path reservation is to find

moving paths for items by communicating with conveyors. FlexConveyor (Mayer,

2009), GridSorter (Seibold, 2015) and Cognitive Conveyor (Krühn et al., 2013) used

this method. Routing algorithms, such as the IDA* algorithm, were adapted to the

decentralized system (Seibold, 2015). Messages are categorized as “path request

messages” and “confirmation messages.” The path request messages are used to find

a moving path from start conveyors to destination conveyors; confirmation messages

are sent from the destination conveyors to reserve transportation paths. The route

planned by these methods is always toward the items’ targets.

Seibold (2015) summarized works which used the path reservation method

into two categories, “time independent” and “time window based.” In works which

used the first category, modules were reserved for items to pass through. When an

item had been passed, the module was available again. For the second category, the

future time of each conveyor was divided into several windows, and each item only

occupied one time window.

The virtual aisle method This method is to find an empty conveyor or make an

aisle and move the requested items forward. Gue and Furmans (2011) introduced

this method. This work was extended to the GridStore (Gue et al., 2014) system
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later. This method is similar to the method of moving “escort” in a puzzle-based

storage system (Gue and Kim, 2007). In a grid-based system, to move a requested

item forward, an empty conveyor (escort) has to be in front of the requested item.

There are two cases to move a box forward (Figure 18 to 19).

Figure 18: Case 1 of moving the requested items using the virtual aisle method: an

empty conveyor is in front of a requested conveyor module. The movement can be

completed in one iteration via north-south negotiation.
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Figure 19: Case 2 of moving the requested items using the virtual aisle method: the

empty conveyor is not directly face the requested module. East-west negotiations

are used to “exchange” the empty conveyor’s location in order to transform this case

into the first case. Hence, at least two iterations are needed to complete the

movements, and it is harder to finish these movements than the first one.

Routes selection is simple in the virtual aisle method. The shortest distance

to move an item in a grid is the Manhattan Distance (Figure 20).

Figure 20: The shortest routes of moving requested items. Move a requested item

along the Manhattan route. Both of the paths marked are the shortest moving

paths. Suppose the target of the requested item is the lower left corner of the grid.
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Figure 21: Scenario of waiting. One of the above requested items has to wait for the

other one to move away. Suppose the target of the requested item is the lower left

corner of the grid.

In summary, the path reservation method is offline path planning (Shiller,

2015) because the path is fixed before physical movements start. In contrast, the

virtual aisle method is on-line path planning (Shiller, 2015) because there is no

transportation path planned before the item starts to move. These methods both

have advantages.

• In the system applying the path reservation method, the transfer time of an

item is known as soon as its route has been fixed. The length or transportation

time of this route is optimal or near optimal. Furthermore, Seibold (2015)

pointed out that for a grid-based system with narrowed shape, such as the

FlexConveyor, the path reservation method could find actual routes in a

resource limited scenario. The other advantage of this method is that the shape

of the system does not need to be rectangular. In other words, the routing

method fits in multiple layouts.

• The virtual aisle method allows non-requested items to stay in a system for a

long period; hence more space is utilized than in the path reservation method.

The other advantage of the virtual aisle method is that the system can process

external requests instantly. There is no waiting time for planning paths.
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2.2.3 Deadlock and livelock in grid-based systems

Deadlock and livelock are crucial issues that have to be avoided in grid-based

systems. Deadlock occurs when a system can not transition to other

states (Cassandras and Lafortune, 2008) (see Figure 22 as an example).

1 2 3

4 5 6

7 8 9

a

b

c d

Figure 22: Deadlock: a system cannot change to any other states. State 2 , 3 and 4

are deadlock states.

In a deadlocked grid-based system, it is impossible to move items, so the

transfer task can not be finished (Figure 23).
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Figure 23: Example of deadlock in a grid-based system. Suppose the black module’s

box is requested to move south. According to existing methods of negotiation that

follow the virtual aisle method, there is no way to move the requested box forward.

Hence, this is a deadlock case in a grid-based system.

Livelock occurs when a system continually changes among a set of fixed

states in a fixed pattern, and it is impossible for the system to transition to any

other state (Cassandras and Lafortune, 2008) (see Figure 24).
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1 2 3

4 5 6

7 8 9

Figure 24: Livelock: a system changes among certain states forever. The system in

this figure keeps transitioning among states 8 −5 −2 −1 −4 −7 and never

transition to any other states.

When a grid-based system is in a livelock state, items are moving among

certain conveyors in a sequence, and these movements never progress the transfer

process (Figure 25).
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(a) Layout 1 (b) Layout 2

Figure 25: Examples of livelock in a grid-based system. The system switches layout

between the above two, and the requested items never make progress.

From a computer science perspective, Coffman et al. (1971) concluded that

four conditions, which are (1) mutually exclusive, (2) hold and wait, (3) no

preemption, (4)circular wait, have to be met together to cause deadlock in computer

systems; Mayer (2009) pointed out that in a grid-based system:

• Each conveyor can only hold at most one item (the “mutually exclusive”

condition is met).

• Each conveyor has to wait for another conveyor to accept the holding item (the

“hold and wait,” and the “no preemption” conditions are met).

The only way to prevent deadlock is to prevent the system from meeting the last

condition.

Seibold (2015) defined system liveness as all requested items being moved to

their target locations, which can be either inside or outside of the system. In other

words, a grid-based system’s liveness is absence of deadlock and livelock.
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2.2.3.1 Review of methods to handle deadlock and livelock in

grid-based systems

Seibold (2015) summarized four strategies to handle deadlock and livelock:

ignore, detect-solve, avoid and prevent. According to the state transition diagram in

Figure 22 and 24, the ideas to address deadlock and livelock in grid-based systems

can also be divided into two categories. The first category is to prevent the system

entering the deadlock or livelock states; the second category is to detect and solve

these problems when encountered.

Prevention If explicit conditions for deadlock and livelock free are known, control

methods can be designed to make the system meet these conditions (Figure 26).

Mayer (2009), Seibold (2015), Gue et al. (2014), and Uludaǧ (2014) used this idea

to solve deadlock and livelock.

Mayer (2009) used a method called deadlock tokens to prevent overlapped

reservations. In a circle layout of the FlexConveyor, when a conveyor is available to

receive an item, it sends a “deadlock token” to the next conveyor in the planned

transportation route. Then, the available conveyor becomes blocked and ignored

any other request for entering. This process is repeated by all conveyors up to the

destination of an item in order to locate an available path. In complex layouts of

the FlexConveyor, such as overlapped circles, checking for transfer requests from the

opposite or perpendicular directions on the overlapped conveyors, while reserving

routes, is necessary to avoid deadlock.

In the GridSorter system, the process of moving an item among multiple

conveyors requires multiple resources in a distributed computing system. Seibold

(2015) implemented the concept of logical time in the GridSorter’s routing. When

conveyors are reserving paths for moving items, different items on the same

conveyor have a unique “logical time stamp,” and the logical clock of each conveyor

only advances when a transfer task is completed. The author proved that the

system is deadlock free. Furthermore, since the path reservation method never

generates backtrack paths, livelock is impossible in GridSorter.
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In the GridStore system, all items are requested in a fixed direction (the

south side of the system), and task assignments that requested any item to the

north did not exist; hence, livelock never occurred in this system. The authors also

proved that if there was at least one empty conveyor in every row of conveyors, the

system is deadlock free (Gue et al., 2014). This is because the requested conveyor

modules can always find empty space in every row to move items forward, even if

they need to wait for other requested modules. Hence, to prevent a deadlock state,

the system has to leave at least one empty module in each row. To accomplish this

objective, the system assigns every replenishing item a target row, which equals a

departed item’s start row. For example, if a newly departed item’s start row is 4 ,

then a newly arrived item assigns its target row to 4 , and this item has to move to

row 4 . As a result, the number of items assigned to the row is constant.

By the same principle, the GridSequence system also keeps an empty

conveyor assigned to each row to avoid deadlock (see Figure 11b). There is no

opposite request direction, and the items’ routes are always moving toward their

targets directly, so livelock is impossible.

The GridPick system used a method called “balancing” to reach the states

that satisfied the deadlock free conditions defined for GridStore. The balancing idea

is to move an item between two adjacent rows, while a requested item is moving

between these two rows. The purpose is to keep the number of items in each row

constant, which is the requirement of remaining deadlock free in GridStore. The

north requested items are also defined by having higher priorities than the south

requested items; hence, no south moving items cannot block the north moving items.

The author modeled the system by Petri Nets, and proved that the GridPick system

was deadlock free with dimensions (in unit of conveyors) of: 3 ×3 , 3 ×4 , 3 ×5 ,

4 ×3 , 5 ×3 and 4 ×4 . The additional condition is that the number of requested

items in the system had to be less than or equal to 2c−1 (c is the number of

columns in the GridPick system) (Uludaǧ, 2014). For preventing livelock, though

replenishing items move in the opposite direction of requested items, the routes of

the items always move to their targets directly. Hence, livelock is impossible.

32



1 2 3

4 5 6

7 8 9

a

b

c d

Figure 26: Deadlock and livelock solution 1: prevent entering some states. If events

a, b, c, and d are known to cause deadlock, deadlock can be solved by preventing

these events from occurring.

Detect and solve If the explicit conditions of deadlock or livelock free are not

known, methods to detect them are necessary, and the methods to solve them are

also required to keep the system alive (Figure 27).

GridFlow AGV used this idea to handle deadlock and livelock cases.

Deadlock and livelock are detected, and then they are solved based on the rankings

of AGVs. The deadlock cases are defined as cases where the AGVs blocked each

other. To solve the deadlock, these cases are detected first. The highest ranking

AGV in a blocked area sends messages to lower ranking AGVs to ask them wait in

their positions or backup to create space for it. Livelock had two cases. The first

case is an AGV carrying a load between two locations; the second case is an empty

AGV moving between two locations. Both of these cases also need to be detected

first, then the AGVs with lower ranks are asked to wait until the highest ranking

AGV move away from the livelock area.
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Figure 27: Deadlock and livelock solution 2: exit the deadlock or livelock states

after detect. When the system is in deadlock states 2 , 3 and 4 , events, such as e, f ,

g and h are triggered to transition the system out of these states.

2.2.3.2 Deadlock and livelock in systems using on-line path planning

All of the existing on-line path planning grid-based systems require empty

space to move requested item to their targets. All of these systems use message

passing as the method to arrange movements for all items. Based on Coffman

et al.’s definitions and the explanations of (Mayer, 2009) and Seibold (2015),

deadlock in a grid-based system that uses on-line path planning, is caused by failure

of find empty modules. Livelock in these systems is not encountered thus far.

In GridHub, requested items can be moved all four directions, which means

that the system has more complex states, and message passing is more difficult.

There are also more possibilities for livelock. Algorithms of the unit-sized GridHub

make deadlock impossible, and these algorithms are described in Chapter 3. Proof

that the system is deadlock free, and the discussion of livelock are detailed in

Chapter 4.
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2.2.4 Handling non unit-sized items in grid-based systems

Handling non-unit-sized items is one of our research objectives. The key is to

develop a method of organizing conveyors handling an individual item. Methods of

grouping conveyors or organizing the conveyors’ communication activities have been

developed in the above systems.

Organizing conveyors by tree structure Dominik et al. (2016) developed a

non-unit-sized GridSorter. A tree structure was formed to build relationships among

conveyors that were occupied by the same item (Figure 28). In the path reserving

process, which inherited the path reserve method of Seibold et al., communication

among the coordinator conveyor and helper conveyors was based on the tree

structure.

Figure 28: Grouping conveyors by building a direct tree ((Dominik et al., 2016)).

The upper right conveyor (the shaded one) is set as a “coordinator module;” the

other conveyors with the same item are set to “helper” modules. When the

conveyors are looking for paths, request messages are sent from the coordinator

conveyor to helper conveyor (right to left, or up to down). The replied messages are

sent in the opposite direction.

Recognize part by add matrix Boutoustous et al. (2010) described a method

to recognize an item’s shape for smart surface (Figure 29).
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Figure 29: Process of shape detected by matrix adding (Boutoustous et al., 2010).

First, each of the units in the smart surface generate a zero matrix, which has the

same dimension as the smart surface. If a sensor detects pressure, it changes the

element of the zero matrix, which matches its actual location, from 0 to 1 (The red

square represents that the elements in the matrices are equal to 1 ). Second, units of

the smart surface send the matrices to each other. Every unit adds the received

matrices to obtain a binary matrix. After all of the matrices are shared, every

conveyor knows the shape of the item on the board.

Group conveyors according to neighborhoods Krühn et al. (2010) modeled

the system by cellular automaton to group the omnidirectional conveyors. Every

conveyor in the system was considered a cell, and it was set to have both the Von

Neumann and Moore neighborhoods. Every conveyor has sensors to detect whether
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it is occupied; if yes, the item’s ID is known. Each of the occupied conveyors uses

the item’s ID to communicate with its neighbors. First, Von Neumann neighbors

explore. If the Von Neumann neighbors have no items detected during the

exploration process, then the Moore neighbors communicate to build relationships.

In summary, though Dominik et al. (2016) and Krühn et al. (2010) developed

a method to organize negotiations of conveyors, this method was based on the path

reservation method and few details were described. The other work only provided a

method to recognize an item. In a GridHub, the non-unit-sized items must be

moved in all four directions. More detailed and sophisticated methods are

demanded in order to organize conveyors.

2.3 Conclude the research gap

The research activities of grid-based systems are intensive. Several grid-based

systems with different functions have been developed in the last decade. However,

the following gaps exist the research.

• The existing grid-based systems were designed for specific tasks, and no system

has the capability to finish storing, sorting, sequencing and retrieving

operations together.

• No method has been developed to transfer requested items in all four cardinal

directions for the virtual aisle method (on-line).

• Little to no literature exists about handling non-unit-sized items in grid-based

systems.

• Deadlock and livelock conditions for the more complex grid-based systems,

controlled by the online path planning method, have not been explored.

We address these gaps in the following chapters.
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CHAPTER 3

DESCRIPTION OF UNIT-SIZED GRIDHUB

3.1 GridHub system description

Consider a grid of unit-sized conveyors, each capable of conveying in four

cardinal directions (Figure 30). We assume each conveyor ci (i ∈ N, such as c1 in

Figure 30) knows its location in the grid.

21 3 4
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3

21 3 4
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76 85

Up 
(U)

Right 
(R)

Down 
(D)

Left 
(L)

Figure 30: GridHub system layout. Directions of movements or locations in

GridHub are “up,” “down,” “left,” and “right” from the reader’s point of view.

Conveyors with numbers are gates, which are used to receive and release boxes, but

not to store them. The system edges consist of these gates. The shaded conveyors,

which are inside the gates, make up the system border.

Departure information of a box indicates when and where to release a box by

setting the box’s departure edge, departure gate, and departure sequence. Departure
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sequence refers to the order of departure, not to the time. For example, a group of

boxes are set leave at a specific gate in a sequence. In this group, a box with

departure sequence 3 may depart only after the box with departure sequence 2, but

it may depart at any time thereafter. When departure information is assigned to a

box, it becomes a working box. The conveyor associated with the final destination is

the target. If it is not possible to move a working box to its target in a straight

path, we define one or more intermediate targets at the corners of a path.

An expected path of a working box is the shortest path to move the box from

its current conveyor through its intermediate targets to the final destination. In a

grid, there can be many shortest paths, so we choose the two having one turn,

unless there is a direct path without turns.

Moving a box to its target or intermediate target requires a transfer task

with the box’s target or intermediate targets and the direction of movement toward

the next target. If other boxes need to be moved to their neighbors in order to move

a working box, a temporary transfer task is assigned to each interfering box. A

temporary transfer task includes the moving direction and the neighbor to which

the box will be moved. The temporary transfer task is complete after the box is

moved. An active box or temporary active box has a transfer or temporary transfer

task assigned. The next conveyor to which an active box will be moved is the

immediate destination. To summarize, only a working box has a target or

intermediate target(s); and only an active box or temporary active box has an

immediate destination. As we will see, a working box can be active or inactive (e.g.,

it might go inactive to avoid a deadlock). Figure 31 uses an example to illustrate

the above concepts.
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Figure 31: Target, intermediate targets and immediate destination of a box. Let the

departure edge of c1 ’s box be the left edge. Its departure gate is the left neighbor of

c4 , so the target of c1 is c4 .

Because c1 cannot move its box to the target in a straight path, we have to assign

two transfer tasks sequentially. Suppose one of the expected paths of this box is

along the two arrows in the figure.

Then the first transfer task is to move the box to the left border, with intermediate

target c3 . The immediate destination of the box is c2 , but because c2 is occupied, a

temporary transfer task is assigned to c2 ’s up neighbor to receive c2 ’s box. The

immediate destination of this task is c2 ’s up neighbor, and the moving direction is

up.

For presentation purposes, we consider the conveyor and the box as an entire

“conveyor module,” which is also an individual agent from the system modeling

perspective (Gue et al., 2014; Uludaǧ, 2014; Seibold, 2015). Hence, every conveyor

with a box takes on the attribute of the box: active conveyor module, temporary

active conveyor module, and working conveyor module. An active conveyor or

empty module are expressed as ca
i or ce

i respectively.
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3.1.1 Conveyor states and representations of states

The state space of a conveyor module is defined by its box’s category and

movement confirmations (the term “movement confirmation” will be explained in

Section 3.2.2). The names, transitions of these states, are displayed in Figure 32.

Conveyor state representations are in Table 2.

Box moves out

Empty WITHOUT 
movement confirma�on

Empty with 
movement confirma�on

Occupied WITHOUT
movement confirma�on

(Occupied)
Temporary Ac�ve

Ac�ve WITHOUT 
movement confirma�on

Ac�ve with 
movement confirma�on

Movement 
confirma�on is given

Movement 
confirma�on is given

Box moves in
Movement 

confirma�on is given

Movement 
confirma�on is given

Box moves in

Box arrives its target, 
intermediate target, 

or muted

Transfer 
task assigned

Figure 32: States of a conveyor module in GridHub. The arrows show the events

that trigger these transitions;
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TABLE 2: Conveyor module and state representation (the pointing directions of the

triangles indicate the active directions).

Empty

Occupied

Empty with movement confirmation

Temporary active

Active without movement confirmation

Active with movement confirmation

3.1.2 GridHub software architecture

We divide GridHub software into multiple layers, each performing certain

functions or activities, and the information that is obtained externally is processed

sequentially among these layers (Figure 33). When a conveyor module executes

programs in the movement negotiation layer, it can only communicate with its

physical neighbors. When a conveyor module runs programs in other layers, it can

communicate with all other conveyor modules and with external entities. For

example, when a conveyor module receives an external request, it can broadcast to

all conveyors in the shared management layer. The methods of communication and

sharing information among other conveyors is beyond the scope of this dissertation.
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The structure in Figure 33 separates the methods of moving active boxes from the

material handling task at hand (sort, sequence, retrieve, etc.), which allows

developers to design new material handling methods without having to rethink

“how conveyors get things done.”

External En��es, such as WMS or operators

Shared management layer

Transfer task assign layer

Movement nego�a�on layer

Info: external request  received  and processed

Info: box’ s departure informa�on generated 

Info: box target generated
Ac�on: box moves to its immediate des�na�on

Ac�on: box arrives at its target

Ac�on: working box released

Figure 33: GridHub system architecture. The arrows on the left indicate information

flows; arrows on the right show actions performed as responses to the information.

For example, the external requests are processed by the “shared management” layer

and translated into transfer tasks. As responses to these external requests, some

boxes are moved to their targets.

3.2 GridHub control algorithms

Like the existing grid-based system, such as GridStore (Gue et al., 2014) or

GridPick (Uludaǧ, 2014), an iteration in GridHub is comprised of three phases:

assess, negotiate, and convey. During each phase, every conveyor module executes

several steps of the algorithms sequentially and synchronizes at each step; in other

words, only after all modules complete their actions in one step, can they proceed to

the next one all together.
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3.2.1 Assess phase

In the assess phase, conveyor modules communicate with external entities

and execute functions not related to moving boxes. Activities in this phase are

completed by the shared management layer and the transfer task assignment layer

(Figure 33).

3.2.1.1 Terminologies of assess phase

Before explaining the algorithm, we introduce two important concepts.

Higher priority directions GridHub’s ability to move active boxes in all

directions means active boxes might compete for space (Figure 34).

𝑐"#
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Figure 34: Example of conflicts. ca
1 and ca

3 conflict to move into ce
2 ; ca

4 and ca
5 need

one of the other modules to move their active box out of the way.

The solution is: all conveyor modules randomly choose one direction from a

pair of opposite directions in every iteration, and every module has the same

knowledge of the priority directions. Thus, in every iteration, all movements in the

selected directions have higher priority. For example, if the higher priority directions

are left and up in the case shown by Figure 34, ca
3 and ca

5 have priority. Since there

are two pairs of opposite directions in GridHub, the higher priority directions

include two directions, for instance, left and down. Thus, every active module has

to choose a matched higher priority direction based on their own active directions.
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For example, the matched higher priority direction for an active conveyor module

with the left active direction is either right or left.

Limitation of task re-assignment Before an active box arrives at its target or

intermediate target, the action of removing its transfer task is called muting. If its

box is moved away after muting, with a temporary transfer task, we call the box

muted and moved. Because departure information is not removed from muted boxes,

the same or different transfer tasks can be re-assigned in a future iteration, which

we call re-activation. When a box is muted or muted and moved, we avoid livelock

by restricting the conveyor to re-assign the transfer task, but this can only occur if

there are no restrictions of task re-assignment in this direction and the directions

perpendicular to it (An example of task assignment restriction is in Figure 35).

𝑐"

R

𝑐# X

Figure 35: Example of task re-assignment (to left, up, and down) restriction. The

box’s target is c2 , so a transfer task toward left or up needs be to assigned in order

to move the box into its target. If the box of c1 has been moved from c1 ’s left

neighbor in the previous iteration, before the limitation of re-assignment tasks has

been removed, c1 cannot re-assign a transfer task toward the left, up, or down.

3.2.1.2 Steps in the assess phase

Step 1: Evaluate box location First, every conveyor module receiving an

active box from its neighbor compares the box’s target or intermediate target to its
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own location. If they match, the module removes the transfer task from the box.

Second, all conveyor modules choose and update the higher priority

directions in the current iteration simultaneously. There are several methods the

conveyor modules use to communicate with each other and decide the higher

priority directions. In this dissertation, we do not describe the details of these

methods. We assume the conveyor modules can accomplish these methods. One

method used during the simulation models is described in Chapter 5.

Step 2: Update information among all conveyor modules Conveyor

modules share information with each other and communicate with external entities,

such as the WMS.

Step 3: Assign transfer tasks For a working conveyor module located inside

the grid, a transfer task (output task) is assigned based on one of its expected paths

(see Figure 36); for a conveyor module holds newly arrived box, a transfer task

(input task) is to move the box into the system (Figure 37). Both of the input and

output tasks can be assigned when there is no restriction of task re-assignment in

the required direction.

𝑐" 𝑐#

𝑐$ 𝑐%

Path 1

Path 2

Figure 36: Expected paths of a working box from its original locations to its target.
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Figure 37: Transfer tasks to move a box into the system. Because c1 is located on

the right edge, it needs to assign a transfer task (input task) to its box, which is “to

move its box to its left neighbor.”

3.2.2 Negotiate phase

In this phase, the goal of the control algorithms is to move every active box

to its immediate destination by arranging box movements via message passing. The

conveyor modules’ communication activities, which are related to arranging box

movements, are negotiation. Negotiations are completed in the bottom layer, as

shown in Figure 33.

3.2.2.1 Terminologies of negotiate phase

Box movements have two types, which are similar to box movements in

GridStore (Gue et al., 2014) and GridPick (Uludaǧ, 2014). The first type is single

movement of a box, which means a conveyor module moves its box to one of its

neighbors (ca
4 in Figure 38). The second type of box movement is tandem or group

movement, which means a group of consecutive conveyor modules moving their

boxes in one direction (ca
1 and ca

2 in Figure 38). A group of movement is not

necessarily formed by active modules only, for example, c6 and c7 in Figure 38).
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Figure 38: Examples of single and tandem box movements. ca
4 ’s box movement in

Figure 38 is single movement. ca
1 moves its box to ca

2 , and ca
2 moves its box to ce

3 , so

ca
1 and ca

2 form a tandem or group movement. c6 and c7 also form tandem

movement.

Furthermore, every conveyor module is restricted to move its box to one of its

neighbors in one iteration, which is similar to other grid-based systems. GridHub

has a puzzle-like layout, so either single or tandem movements of boxes must occur

in straight lines, in one iteration.

Negotiation messages are pieces of information generated and passed by

conveyor modules. There are three types of messages: seek, confirm, and fail.

Message content includes passing directions and the id of the conveyor module that

initiated the message. In Table 3, different colored arrows are used to indicate the

types of messages.

TABLE 3: Message operation symbols. The directions of the arrows are the message

passing directions.

Type of message Seek Confirm Fail

Symbol

When a conveyor module receives a message, it buffers the message first. The
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conveyor module processes every message in its buffer according to the sequence it

receives them (earliest first). A conveyor module processes different messages

following specific negotiation rules, which are described later in this section. The

above process is similar to the “mailbox” concept in operating systems (Tanenbaum

and Bos, 2015), and it is also similar to the process of dealing with received

messages described by Sakao et al.. However, the communications of “ask states”

are not done in the way described above, meaning every conveyor can obtain its

neighbors’ states and related information instantly.

Actions are made by the conveyor module after processing every message,

and these actions are performed before processing the next message. For example:

• After a conveyor module processes a seek message, it either (1) passes the

message in the passing direction, (2) replies “confirm” to the sender, or (3)

replies “fail” to the sender.

• After a conveyor module processes a confirm or fail message, it passes the

message in the direction opposite the seek message’s passing direction.

If a seek message is confirmed, it is successful; otherwise, it fails.

3.2.2.2 The algorithm design ideas

If the immediate destination of an active module is available, the active

module can move its box to the immediate destination directly. If the immediate

destination of that module is unavailable, the active conveyor module attempts to

find empty modules and to arrange one, or more box movements in order to make

the immediate destination available in a future iterations. We divide the possible

locations of empty conveyor modules into four categories based on the active

module’s location (see Figure 39 and 40 for examples).
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Figure 39: Empty module location categories 1 to 3. Category 1: the immediate

destination of the active conveyor module. Category 2: the column or row the

immediate destination is located. Category 3: the conveyor modules that are not

located in the same column and row of this active module.

4 44 4

44 4

44 44 4

𝑐"#

Figure 40: Empty module location categories 4.

Category 4: the conveyor modules that cannot be accessed by the paths designed

for the first three categories in Figure 39.

If empty cell ce
1 ’s location is in regions 2 to 4, the possible paths of seek

messages passed from ca
1 to ce

1 are displayed in Figure 41. When the active module

can only find empty cells located from category 2 to 4, several iterations are needed
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to move an active box into its immediate destination. When an empty module’s

location belongs to category 1, its active box can be directly moved to its immediate

destination (the least number of iterations). However, when an empty module’s

location belongs to category 4, the highest number of iterations is needed, because

three extra iterations have to be completed to “switch” the location of an empty

module from category 4 to category 1. In order to reduce the time required to move

active boxes, we set every active module to attempt to move its box in the easiest

way first, and perform the harder ones later only if the easier one is not successful.

There are four attempts for every active module, and we name and put them into a

set {N1 ,N2 ,N3 ,N4}. An arbitrary attempt can be written as Ni (i ∈ {1 ,2 ,3 ,4}).

The target of each attempt is to move one or a group of boxes to an empty module

located in one category. So N1 to N4 are set to search for empty modules in

categories 1 to 4 respectively. In these attempts, N1 is expected to take the least

number of iterations to move an active box to its immediate destination, and N4

consumes the highest number of iterations.

𝑐"#

𝑐"#

𝑐"#

𝑐"$

Figure 41: Possible seek paths from an active module to empty modules that belong

to different categories.

When N1 and N4 act, they search empty modules and arrange box

movements. These actions are similar, so they could be guided by similar

algorithms. Therefore, we may not need to develop two stand alone algorithms for
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the actions in these attempts. To further explore this observation, we deconstruct

N2 , N3 , and N4 into components, finding that more actions can be guided by

similar algorithms. Then we introduce the concept of a “nested attempt;” where

each component of an attempt is called a nested attempt. The nest relationship is

written as Ni(Nj) (i, j ∈ {1 ,2 ,3 ,4}, j > i), which means that Ni is nested in Nj . If

we describe one attempt nested in different attempts simultaneously, we use the

notation Ni([Nj ,Nk ]) (i, j,k ∈ {1 ,2 ,3 ,4}, j > i,k > i,j 6= k). For example,

N1 ([N2 ,N3 ]) are used to describe a N1 nested in a N2 or a N3 .

The attempts after deconstruction are shown in Figure 42 and 45. All

non-nested attempts are initiated by active conveyor modules, for example ca
1 in

these figures. An N1 does not have a nested attempt (Figure 42).

𝑐"#
𝑁"

Figure 42: Seek message sending paths of N1 . ca
1 send seek message directly to its

left neighbor.

An N2 has a pair of nested N1 (N2 ) that have opposite seek message passing

directions (Figure 43). One of these N1 (N2 ) is initiated first, and the other N1 (N2 )

is initiated after a fail message of the first N1 (N2 ) arrives at the original conveyor

module. Furthermore, an active conveyor module initiates an attempt and randomly

selects the sequences of message passing directions for all nested attempts, storing

them in the seek message of the attempt. Other modules that initiate nested

attempts obtain the message passing directions from the message, because the
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message’s content is copied when passed.
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Figure 43: Seek messages sending paths of N2 and N1 (N2 ). ca
1 selects the up

direction as the first message passing direction that initiates N1 (N2 ). Then, c2

initiates the first N1 (N2 ) to the up direction. If N1 (N2 ) fails, c2 initiates another

N1 (N2 ) to the down direction.

An N3 has several nested N2 (N3 ) (Figure 44). Some of the N2 (N3 ) pass

their seek messages in one direction first. If conveyor modules reply with fail

messages to these seek messages, the other set of N2 (N3 ) are initiated by the same

conveyor module (for example c2 in Figure 44) in the opposite direction. Each of

these N2 (N3 ) also starts a pair of N1 (N3 ). When some conveyor modules reply with

fail messages to each pair of these N1 (N3 ), the conveyor module that initiates them

to pass a seek message of N2 (N3 ) to the next conveyor module to initiate another

pair of N1 (N3 ).

A N4 has two nested N3 (N4 ) (Figure 45). One N3 (N4 ) proceeds in one

direction first. If this N3 (N4 ) fails, the other N3 (N4 ) is initiated by the same

conveyor module in the opposite direction. The message passing pattern of the

N3 (N4 ) is the same as N3 ’s.
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Figure 44: Seek message sending paths of N3 , N1 (N3 ), and N2 (N3 ). ca
1 randomly

selects left as the message passing direction for the first N1 (N3 ). Then c3 or c4

initiates N1 (N3 ) to the left direction, first. If the pair of N1 (N3 ) initiated by c3 fail,

then c3 passes a seek message of N2 (N3 ) to its up neighbor to initiate another pair

of N1 (N3 ).

𝑐"#𝑁%

𝑁&
𝑁'
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Figure 45: Seek messages sending paths of N4 , N1 (N4 ), N2 (N4 ) and N3 (N4 ).

From the Figure 42 to 45, we find that all box movements are arranged by

N1 or N1 ([N2 ,N3 ,N4 ]). Additionally, we discover: the directions of the movements

arranged by N1 or N1 (N3 ) are in or opposite to the active direction of ca
1 ; the

directions of the movements arranged by N1 (N2 ) and N1 (N4 ), which are also
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initiated by ca
1 , are perpendicular to the active direction of ca

1 . If active conveyors

that have perpendicular active directions perform their attempts together, a conflict

can result (see Figure 46). To solve this problem, we set the active conveyor

modules with left and right active directions initiated every Ni prior to the active

conveyor modules that have up and down active directions. In other words, in every

step, only one type of attempt can be initiated by active conveyor modules that

have opposite active directions, and only the movements that have opposite moving

directions attempt to be arranged simultaneously. When a conveyor module is asked

to move its box to a pair of opposite directions simultaneously, we apply the higher

priority directions rule to solve this conflict. In summary, there are 8 steps for

locating empty conveyor modules in the negotiate phase. They proceed in the

sequence displayed by Table 4.

𝑐"#

𝑐$#

𝑐%&

𝑐'&

𝑐(

Figure 46: Example of perpendicular movements confusion. Suppose ca
1 and ca

2

initiate N2 together. When the both N1 (N2 ) find empty modules (ce
2 and ce

3

respectively), the conveyor module (c5 ) that passes both seek messages must resolve

its moving direction.

3.2.2.3 Steps of the negotiate phase

In step 0 of the negotiate phase, every empty conveyor module that has

conflicts with other modules sends a signal to mute its neighbor on the matched
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higher priority direction of the current iteration. Consequently, the active module

which active direction has lower priority is muted (Figure 47). For every active

conveyor module that has conflicts with other modules, if its active direction is the

same as the matched higher priority direction, it mutes its neighbor that is on its

active direction. When an active conveyor is muted in this step, a restriction of task

re-assignment on its active direction will be added in the convey phase.

𝑐"#

𝑐$%

𝑐&%

𝑐'% 𝑐(%

(a) Conflicts

𝑐"#𝑐$%

𝑐&#

𝑐'#

𝑐(#

(b) After conflicts are soloved.

Figure 47: Conflicts and after solving conflict. ca
1 and ca

3 conflict to move into ce
2 ;

ca
4 and ca

5 need one of the other modules to move their active box out of the way.

Let the higher priority direction are down and right. ca
3 and ca

5 are muted, because

their active directions do not have higher priority.

The remaining algorithms of the negotiate phase are executed in the sequence

defined in Table 4. The message passing patterns for every attempt and nested

attempt are illustrated in Figure 42 and 45. When an active module that has

initiated an attempt receives a fail or confirm message it has completed one step of

the control algorithms.
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TABLE 4: Sequence of initiating attempts.

Step Number Attempt
Active direction of the conveyor module

that initiates the attempt

1 N1 left and right

2 N1 up and down

3 N2 left and right

4 N2 up and down

5 N3 left and right

6 N3 up and down

7 N4 left and right

8 N4 up and down

3.2.2.4 Glossary of negotiation rules

The major content of these algorithms in the negotiate phase is summarized

in the negotiation rules. In the remaining parts of this dissertation, the rules are

named in the format of at(at).stage.number . The “stage” describes messages’

process stage, which includes the message types: g (initialization of messages); s

(processing seek messages); c (processing confirm messages); f (processing fail

messages). The numbers are used to distinguish the rules for the same attempt. For

example, N1 .s.01 is the first (01 ) rule of attempt N1 when processing seek messages

(s). Some of the negotiation rules may be applied to different attempts. We will

write the attempts together, such as, [N2 ,N3 ].s.01 for both of the N2 and N3

attempts applied to the same rule.

We describe the negotiation rules according to attempts and stages, and we

use a flowchart to describe most of the negotiation rules. When a conveyor module

starts processing a message, it begins checking its states and additional information

at one of these nodes (left side of a flow chart). Then, it follows the arrows and

checks the message content, which is shown at the top of the chart. A decision or

process result is in one of the rectangular nodes on the right hand side.
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TABLE 5: Notations for additional conditions of a conveyor module in flowcharts.

Notation Explanation

BO(+), BO(-)
The conveyor module is at (+), or is not at (-)

the system border

EA(+), EA(-)
The module’s active direction (if applicable)

has(+), or not have (-) higher priority

N1C(+), N1C(+)
The module’s movement confirmation is (+), or is not (-)

made by N1

WNR(+), WNR(-)
The module is (+), or is not (-)

waiting for response of a nested attempt

ANC(+), ANC(-)
All of the nested attempts initiated by this module

are (+) completed, or are not (-) completed

EC(+), EC(-)
The module’s movement confirmation’s direction

has (+), or does not have (-) higher priority

OC(+), OC(-)
The module is (-), or is not (-)

the module initiates the attempt
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TABLE 6: Actions or decisions of a module for processing a message.

Types of messages Actions or decisions

Seek

0: do nothing

1: pass the message

2: reply a confirm message

3: reply a fail message

4: initiate nested attempts

Confirm

0: do nothing

1: pass the message

2: mark confirmations

3: change the modules states to temporary active

(for N1 and miN1([N2,N3,N4]) only)

4: pass the confirm message of the nested attempt

Fail
0: do nothing

1: pass the message

4: restart the same attempt in the opposite direction

3.2.2.5 Rules of initiating attempts

To initiate N1 to N4 at every active conveyor module, the active module has

to meet one condition: there are no active confirmations from the previous

attempts. For example, an active module cannot initiate N3 if it has confirmations

of N1 or N2 .

[N2 ,N3 ,N4 ].g.01 : The rules to initiate N2 to N4 are listed as follows.

1. A conveyor module in the “active without movement confirmation” state can

initiate N2 to N4 , if it has no other confirmations from all previous attempts

(Figure 48).

2. A conveyor module in the “empty with movement confirmation” state can

initiate N2 to N4 , if it meets the following conditions: It has confirmations of

N1 and it is not the target or intermediate target of the box moving to it. And,
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except the confirmation of N1 , it has no other confirmations from all of the

previous attempts (Figure 48).

𝑐"#

𝑐$#𝑐%&

Figure 48: Example of [N2 ,N3 ,N4 ].g.01 . Since there is no other confirmations on

ca
1 , then it can initiate future attempts, but ca

3 cannot initiate further attempts

because it has already confirmed the box’s left movement. Suppose ca
3 ’s active

direction is left, and ce
2 is not the target or intermediate target of ca

3 ’s box. When

ce
2 has no other confirmations except the confirmation of N1 to move ca

3 ’s box, then

ce
2 can initiate N2 to N4 .

From step 3 to step 8, an empty conveyor module with movement

confirmation can also initiate N2 to N4 , when it meets the conditions in rule

[N2 ,N3 ,N4 ].g.01 . The benefit of empty conveyor modules initiating attempts is

that they form non-breaking “visual aisles” for active boxes. This idea was used in

the GridStore, GridPick, and GridSequence systems. In GridHub, we still

implement this idea, and name it forward attempts. Furthermore, the forward

attempts are optional in the control algorithms, so they can be enabled or disabled.

Every conveyor module that initiates N2 to N4 is considered an active

conveyor module. The active direction of this kind of empty module is the

movement direction it confirms, and its immediate destination is its neighbor, which

is in the active direction. For example, ca
1 and c2 in Figure 48 are both considered
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active conveyor modules. Their active directions are both left, and their immediate

destinations are their left neighbors respectively.

3.2.2.6 Rules to process seek message of N1 and N1 ([N2 ,N3 ,N4 ])
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Figure 49: Rules of processing N1 and N1 ([N2 ,N3 ,N4 ])’s seek messages.

61



𝑐"#

𝑐$# 𝑐%#

𝑐&#𝑐'#

Figure 50: Examples of rules for processing N1 and N1 ([N2 ,N3 ,N4 ])’s seek

messages (part 1). The seek messages initiated by ca
1 and ca

4 fail according to

[N1 ,N1 ([N2 ,N3 ,N4 ])].s.02 and [N1 ,N1 ([N2 ,N3 ,N4 ])].s.03 respectively. The seek

messages from ca
2 and ca

3 can be passed due to [N1 ,N1 ([N2 ,N3 ,N4 ])].s.03 .
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Figure 51: Examples of rules for processing N1 and N1 ([N2 ,N3 ,N4 ])’s seek messages

(part 2). ca
8 replies with a confirm message according to [N1 ,N1 ([N2 ,N3 ,N4 ])].s.01 .

Both c3 and ca
6 cannot pass seek messages ([N1 ,N1 ([N2 ,N3 ,N4 ])].s.04 ).
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Figure 52: Examples of rules for processing N1 and N1 ([N2 ,N3 ,N4 ])’s seek

messages (part 3). ca
1 triggers its left neighbor to initiate N1 (N2 ). The two conveyor

modules in “occupied without movement confirmation” states pass the seek message

according to rule [N1 ,N1 ([N2 ,N3 ,N4 ])].s.02 . ce
6 replies to the seek message with a

confirm message according to rule [N1 ,N1 ([N2 ,N3 ,N4 ])].s.01 . Because ce
7 is in the

“empty with movement confirmation” state, it replies fail to the seek message

initiated by ca
3 ([N1 ,N1 ([N2 ,N3 ,N4 ])].s.01 ). ca

5 initiates the seek message that is

passed by ca
4 . ce

8 responds with a confirm message. The passing is according to

[N1 ,N1 ([N2 ,N3 ,N4 ])].s.04 , and the replying is according to

[N1 ,N1 ([N2 ,N3 ,N4 ])].s.01 . The reason is that the existing confirmation is marked

by messages belongs to N1 .
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Figure 53: Examples of rules for processing N1 and N1 ([N2 ,N3 ,N4 ])’s seek messages

(part 4). ca
3 initiates a seek message with perpendicular direction to ca

1 ’s active

direction. ca
1 replies with a fail message according to [N1 ,N1 ([N2 ,N3 ,N4 ])].s.03 . ca

4

replies with a fail message to the seek message initiated by ca
2 , when the matched

higher priority direction is “down” ([N1 ,N1 ([N2 ,N3 ,N4 ])].s.03 ).
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Figure 54: Examples of rules for processing N1 and N1 ([N2 ,N3 ,N4 ])’s seek

messages (part 4). ca
1 passes ca

2 ’s seek message ([N1 ,N1 ([N2 ,N3 ,N4 ])].s.03 ). c4

responds with a fail message to the seek message because c4 is located at the system

border ([N1 ,N1 ([N2 ,N3 ,N4 ])].s.02 ). ca
2 replies with a fail message to ca

3 ’s seek

message, when the current matched higher priority direction is “down”

([N1 ,N1 ([N2 ,N3 ,N4 ])].s.03 .
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3.2.2.7 Rules to process confirm message of N1 and N1 ([N2 ,N3 ,N4 ])
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Occupied WITHOUT movement 
confirma�on; OR(+)

Temporary ac�ve; EC(+); OR(-)

Temporary ac�ve; EC(+); OR(+)

Temporary ac�ve; EC(-); OR(-)

Temporary ac�ve; EC(-); OR(+)

Ac�ve WITHOUT movement 
confirma�on; EC(+); OR(-)

Ac�ve WITHOUT movement 
confirma�on; EC(+); OR(+)

Ac�ve WITHOUT movement 
confirma�on; EC(-); OR(-)

Ac�ve WITHOUT movement 
confirma�on; EC(-); OR(+)

Ac�ve WITH movement 
confirma�on; EC(+); OR(-)

Ac�ve WITH movement 
confirma�on; EC(+); OR(+)

Ac�ve WITH movement 
confirma�on; EC(-); OR(-)

Ac�ve WITH movement 
confirma�on; EC(-); OR(+)

Message passing direc�on 
to ac�ve direc�on/

confirma�on direc�on
A�empt

1, 2, 3N1([N2, N3, N4])

1, 2, 3, 4N1([N2, N3, N4])

1

4

N1([N2, N3, N4])

N1([N2, N3, N4])

1, 2, 3

2, 3, 4

N1([N2, N3, N4])

N1([N2, N3, N4])

1, 2Same

2

2, 4

Same N1

N1([N2, N3, N4])

1, 2, 3

2, 3, 4

Opposite

N1([N2, N3, N4])Opposite

1, 2Same

1, 2, 4

2Same

N1([N2, N3, N4])

N1

Opposite

1, 2, 3

0

N1([N2, N3, N4])

N1

Opposite

2, 3, 4

0

N1([N2, N3, N4])

N1

[N
1,

 N
1(

[N
2,

 N
3,

 N
4]

)].
c.

01
[N

1,
 N

1(
[N

2,
 N

3,
 N

4]
)].

c.
02

[N
1,

 N
1(

[N
2,

 N
3,

 N
4]

)].
c.

03
[N

1,
 N

1(
[N

2,
 N

3,
 N

4]
)].

c.
04

Same

Same

Same

Same

Occupied WITHOUT movement 
confirma�on; OR(-)

Occupied WITHOUT movement 
confirma�on; OR(+)

Temporary ac�ve; EC(+); OR(-)

Temporary ac�ve; EC(+); OR(+)

Temporary ac�ve; EC(-); OR(-)

Temporary ac�ve; EC(-); OR(+)

Ac�ve WITHOUT movement 
confirma�on; EC(+); OR(-)

Ac�ve WITHOUT movement 
confirma�on; EC(+); OR(+)

Ac�ve WITHOUT movement 
confirma�on; EC(-); OR(-)

Ac�ve WITHOUT movement 
confirma�on; EC(-); OR(+)

Ac�ve WITH movement 
confirma�on; EC(+); OR(-)

Ac�ve WITH movement 
confirma�on; EC(+); OR(+)

Ac�ve WITH movement 
confirma�on; EC(-); OR(-)

Ac�ve WITH movement 
confirma�on; EC(-); OR(+)

Figure 55: Rules of processing N1 and N1 ([N2 ,N3 ,N4 ])’s confirm messages.
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Figure 56: The examples of rules of processing N1 and N1 ([N2 ,N3 ,N4 ])’s confirm

messages. Let the matched higher priority direction be left. According to

[N1 ,N1 ([N2 ,N3 ,N4 ])].c.02 , when modules pass a confirm message to ca
3 , conveyor

modules located between c5 and c6 cannot mark movement confirmations. When ca
8

processes ca
7 ’s confirm message, it marks movement confirmation

([N1 ,N1 ([N2 ,N3 ,N4 ])].c.03 ).
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3.2.2.8 Rules to process fail message of N1 and N1 ([N2 ,N3 ,N4 ])

A�empt

1

0

4

N1

N1([N2, N3, N4])

1

0

4

N1

N1([N2, N3, N4])

1

0

4

N1

N1([N2, N3, N4])

1

0

4

N1

N1([N2, N3, N4])

[N
1,

 N
1(

[N
2,

 N
3,

 N
4]

)].
f.0

1

Empty WITHOUT movement 
confirma�on; OC(-)

Empty WITHOUT movement 
confirma�on; OC(+)

Occupied or Temporary Ac�ve; OC(-)

Occupied or Temporary Ac�ve; OC(+)

Ac�ve WITHOUT movement 
confirma�on; OC(-)

Ac�ve WITHOUT movement 
confirma�on; OC(+)

Ac�ve WITH movement confirma�on; 
OC(-)

Ac�ve WITH movement confirma�on; 
OC(-)

A�empt

1

0

4

N1

N1([N2, N3, N4])

1

0

4

N1

N1([N2, N3, N4])

1

0

4

N1

N1([N2, N3, N4])

1

0

4

N1

N1([N2, N3, N4])

[N
1,

 N
1(

[N
2,

 N
3,

 N
4]

)].
f.0

1

Empty WITHOUT movement 
confirma�on; OC(-)

Empty WITHOUT movement 
confirma�on; OC(+)

Occupied or Temporary Ac�ve; OC(-)

Occupied or Temporary Ac�ve; OC(+)

Ac�ve WITHOUT movement 
confirma�on; OC(-)

Ac�ve WITHOUT movement 
confirma�on; OC(+)

Ac�ve WITH movement confirma�on; 
OC(-)

Ac�ve WITH movement confirma�on; 
OC(-)

Figure 57: Rules of processing N1 and N1 ([N2 ,N3 ,N4 ])’s fail messages.

𝑐"#
𝑐$

Figure 58: The examples of rules of processing N1 and N1 ([N2 ,N3 ,N4 ])’s fail

messages. A N1 (N2 )’s fail message is passed to the original conveyor module (c2 )

which passes the N2 ’s fail message to the active module ca
1 .
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3.2.2.9 Rules to process seek message of N2 and N2 ([N3 ,N4 ])

3

3

4

3

1

Message passing direc�on 
to ac�ve direc�on/

confirma�on direc�on
A�empt

3

N2([N3, N4])
N2

1

3

N2([N3, N4])
N2

1

3

N2([N3, N4])
N2

3

4

Perpendicular, opposite

Same N2

N2([N3, N4])

Perpendicular, opposite

Same
N2

N2([N3, N4])

N2

N2([N3, N4])

3

1

1Same

N2

N2([N3, N4])

Perpendicular, opposite

3

1N2([N3, N4])

N2

[N
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 N
2(

[N
3,

 N
4]

)].
s.
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[N

2,
 N

2(
[N

3,
 N

4]
)].

s.
02

[N
2,

 N
2(

[N
3,

 N
4]

)].
s.

03
[N

2,
 N

2(
[N

3,
 N

4]
)].

s.
04

Empty WITHOUT movement 
confirma�on

Empty WITH movement 
confirma�on

Occupied; WNR(-); ANC(-); BO(-) 

Occupied; WNR(-); ANC(-); BO(+)

Occupied; WNR(-); ANC(+); BO(-)

Occupied; WNR(-); ANC(+); BO(+)

Occupied; WNR(+); BO(-)

Occupied; WNR(+); BO(+)

Ac�ve WITHOUT movement 
confirma�on; WNR(-); ANC(-); 

BO(-)

Ac�ve WITHOUT movement 
confirma�on; WNR(-); ANC(-); 

BO(+)

Ac�ve WITHOUT movement 
confirma�on; WNR(+); BO(-)

Ac�ve WITHOUT movement 
confirma�on; WNR(+); BO(+)

Ac�ve WITHOUT movement 
confirma�on; WNR(-); ANC(+); 

BO(+)

Ac�ve WITHOUT movement 
confirma�on; WNR(-); ANC(+); 

BO(-)

Temporary ac�ve; BO(-)

Temporary ac�ve; BO(+)

Ac�ve WITH movement 
confirma�on; BO(-)

Ac�ve WITH movement 
confirma�on; BO(+)

3

3

4

3

1

Message passing direc�on 
to ac�ve direc�on/

confirma�on direc�on
A�empt

3

N2([N3, N4])
N2

1

3

N2([N3, N4])
N2

1

3

N2([N3, N4])
N2

3

4

Perpendicular, opposite

Same N2

N2([N3, N4])

Perpendicular, opposite

Same
N2

N2([N3, N4])

N2

N2([N3, N4])

3

1

1Same

N2

N2([N3, N4])

Perpendicular, opposite

3

1N2([N3, N4])

N2

[N
2,

 N
2(

[N
3,

 N
4]

)].
s.

01
[N

2,
 N

2(
[N

3,
 N

4]
)].

s.
02

[N
2,

 N
2(

[N
3,

 N
4]

)].
s.

03
[N

2,
 N

2(
[N

3,
 N

4]
)].

s.
04

Empty WITHOUT movement 
confirma�on

Empty WITH movement 
confirma�on

Occupied; WNR(-); ANC(-); BO(-) 

Occupied; WNR(-); ANC(-); BO(+)

Occupied; WNR(-); ANC(+); BO(-)

Occupied; WNR(-); ANC(+); BO(+)

Occupied; WNR(+); BO(-)

Occupied; WNR(+); BO(+)

Ac�ve WITHOUT movement 
confirma�on; WNR(-); ANC(-); 

BO(-)

Ac�ve WITHOUT movement 
confirma�on; WNR(-); ANC(-); 

BO(+)

Ac�ve WITHOUT movement 
confirma�on; WNR(+); BO(-)

Ac�ve WITHOUT movement 
confirma�on; WNR(+); BO(+)

Ac�ve WITHOUT movement 
confirma�on; WNR(-); ANC(+); 

BO(+)

Ac�ve WITHOUT movement 
confirma�on; WNR(-); ANC(+); 

BO(-)

Temporary ac�ve; BO(-)

Temporary ac�ve; BO(+)

Ac�ve WITH movement 
confirma�on; BO(-)

Ac�ve WITH movement 
confirma�on; BO(+)

Figure 59: Rules of processing N2 and N2 ([N3 ,N4 ])’s seek messages.
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Figure 60: Examples of rules of processing N2 and N2 ([N3 ,N4 ])’s seek messages

(part 1). After processing the seek message from ca
2 , ca

1 initiates N1 (N3 ) because

the message belongs to N2 (N3 ), but not N2 ([N2 ,N2 ([N3 ,N4 ])].s.03 ). Because ca
4 is

in the “active with movement confirmation” state, it passes N2 (N3 )’s seek message

([N2 ,N2 ([N3 ,N4 ])].s.04 ). The same actions are repeated by ca
7 , but ce

9 has to reply

with a fail message because it is in the “empty with out movement confirmation”

state. Suppose c10 does not succeed in one set of N2 (N3 ). Since it is at the system

border, it replies with a fail message to N2 (N3 )’s seek message, whose passing

direction is up ([N2 ,N2 ([N3 ,N4 ])].s.02 ).
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Figure 61: Examples of rules of processing N2 and N2 ([N3 ,N4 ])’s seek messages

(part 2). ca
1 initiates N2 ’s seek message and passes this message to its left neighbor.

That module starts N1 (N2 ) based on [N2 ,N2 ([N3 ,N4 ])].s.02 . ca
1 fails N2 ’s seek

message because its active direction is the same as the message’s passing direction

([N2 ,N2 ([N3 ,N4 ])].s.03 ).
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Figure 62: Examples of rules of processing N2 and N2 ([N3 ,N4 ])’s seek messages

(part 3). ce
3 replies with a fail message to the seek message from ca

2 because it gives

confirmation to receive ca
1 ’s box in a previous step ([N2 ,N2 ([N3 ,N4 ])].s.02 ). Both

ca
4 and ca

5 initiate N2 ’s seek messages. Suppose c6 receives and processes the

message from ca
5 first. When c6 processes the message from ca

4 , it replies with a fail

message because it is waiting for the response of a N1 (N2 ) message

([N2 ,N2 ([N3 ,N4 ])].s.02 ).
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3.2.2.10 Rules to process confirm message of N2 and N2 ([N3 ,N4 ])

A�empt

1

2

4

N2

N2([N3, N4])

1

2

4

N2

N2([N3, N4])

1

2

4

N2

N2([N3, N4])

1

2

4

N2

N2([N3, N4])

[N
2,

 N
2(

[N
3,

 N
4]

)].
c.

01

Empty WITHOUT movement 
confirma�on; OC(-)

Empty WITHOUT movement 
confirma�on; OC(+)

Occupied or Temporary Ac�ve; OC(-)

Occupied or Temporary Ac�ve; OC(+)

Ac�ve WITHOUT movement 
confirma�on; OC(-)

Ac�ve WITHOUT movement 
confirma�on; OC(+)

Ac�ve WITH movement confirma�on; 
OC(-)

Ac�ve WITH movement confirma�on; 
OC(+)

Figure 63: Rules of processing N2 and N2 ([N3 ,N4 ])’s confirm messages.
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Figure 64: The examples of rules of processing N2 and N2 ([N3 ,N4 ])’s confirm

messages. After ce
4 replies to the seek message from ca

1 , box movements are

arranged. c3 sends N2 (N3 )’s confirm message to c2 . Then c2 sends N3 ’s confirm

messages to ca
1 .
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3.2.2.11 Rules to process fail message of N2 and N2 ([N3 ,N4 ])

A�empt

1

0

4

N2

N2([N3, N4])

1

0

4

N2

N2([N3, N4])

1

0

4

N2

N2([N3, N4])

1

0

4

N2

N2([N3, N4])

[N
2,

 N
2(

[N
3,

 N
4]

)].
f.0

1

Empty WITHOUT movement 
confirma�on; OC(-)

Empty WITHOUT movement 
confirma�on; OC(+)

Occupied or Temporary Ac�ve; OC(-)

Occupied or Temporary Ac�ve; OC(+)

Ac�ve WITHOUT movement 
confirma�on; OC(-)

Ac�ve WITHOUT movement 
confirma�on; OC(+)

Ac�ve WITH movement confirma�on; 
OC(-)

Ac�ve WITH movement confirma�on; 
OC(+)

Figure 65: Rules of processing N2 and N2 ([N3 ,N4 ])’s fails messages.

Other negotiation rules are simple or have similar procedures to the above

rules, so we put them in Appendix 7.4.2). The examples shown above to pass

messages can be used as references for the additional negotiation rules.

3.2.3 Convey phase

To move a box, a conveyor module has to be in the state of “active with

movement confirmation” or “temporary active.” While a box is being moved, box

information such as its transfer task is copied to its immediate destination. Then,

the restriction of task re-assignment is also updated by increasing the counter of

restrictions if they are not expired.

After GridHub executes activities in this phase, the whole iteration of control

algorithms is completed, and the system enters a new iteration, continuing to move

boxes to their targets or intermediate targets.
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3.3 Examples of an entire iteration and a running system

The first example (see Figure 66 to 69) shows message interactions of

GridHub’s complete iteration. In this case, the only empty module’s location

belongs to category 4 (see Figure 39 and 40 for details). Hence, the first three

attempts fail, but N4 is successful.

𝑐"#

Figure 66: First example: N1 ’s example. This N1 is failed directly by ca
1 ’s left

neighbor according to [N1 ,N1 ([N2 ,N3 ,N4 ])].s.02 .

𝑐"#

Figure 67: First example: N2 ’s example. N1 is initiated by ca
1 , two N1 (N2 ) are

initiated by ca
1 ’s left neighbor sequentially. Because the no empty modules are find,

N1 (N2 ) and N2 fail.
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Figure 68: First example: N3 ’s example. N1 (N3 ) searches empty modules in every

row except the row ca
1 is located.

𝑐"#

Figure 69: First example: N4 ’s example. Finally, N1 (N4 ) finds an empty module

and arrange box movements. In the next iteration, the empty module’s location can

be searched by N1 (N3 ).

The second example (see Figure 70 to 72) uses snapshots from simulation

directly. The targets of the two working boxes are the upper-left corner and

upper-right corner respectively.
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Figure 70: Second example: snapshots of a running simulation for GridHub

(iteration 1). In the beginning of the iteration, the two conveyor modules that hold

these boxes are both in “active without movement” states. The upper active module

finds an empty module category 2 via N2 ; the lower active module finds an empty

module category 4 via N4 . (Colors - directions: blue - right, green - left, yellow - up,

pink - down.)
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Figure 71: Second example: snapshots of a running simulation for GridHub

(iteration 2). After previous negotiations, the empty module’s locations are

“switched.” The upper active module can move its box to its immediate destination

directly; Because the forward attempt is enabled, the upper active module also

iniates N2 and N3 , and the N3 is successful. The lower active module initiates N1

to N3 . (Colors - directions: blue - right, green - left, yellow - up, pink - down.)
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Figure 72: Second example: snapshots of a running simulation for GridHub

(iteration 3). The active modules find empty modules category 2 respectively.

(Colors - directions: blue - right, green - left, yellow - up, pink - down.)
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CHAPTER 4

DEADLOCK and LIVELOCK

There are several pathological behaviors in GridHub. These behaviors can

cause deadlock, livelock, and affect the transferring processes of active boxes. In this

chapter, we review these behaviors and the related concepts first then we explore

the deadlock and livelock in GridHub.

After an active conveyor runs the algorithms in the negotiate phase, there are

three possible results: it is muted or muted and moved, it successfully completes an

attempt, or it fails all attempts. The reason of failure is a block, which if left

unresolved results in a system deadlock. Except the blocks, the other patterns of

activities, are negotiation behaviors or behaviors of GridHub.

4.1 Preliminary consideration

4.1.1 Notations

An arbitrary GridHub is expressed as GH . The directions in GridHub are

defined as “left,” “right,” “up,” and “down” from the reader’s point of view. Any

conveyor module in a GridHub is denoted as ci (i ∈ N), and the set of all conveyors

is C . When a GridHub is modeled by a grid graph, the graph can also be written as

GH (V ,E). The conveyor modules are represented by the vertices V , and E is the

set of edges (neighborhoods) among any two conveyor modules. To remain

consistent, let V = C , and every element of V be expressed by the same symbol,

such as ci . Additional notations are listed in Table 7. Additionally, when an empty

module initiates N2 , N3 , and N4 if the forward attempt is enabled in GridHub, it is

also considered an active conveyor module and expressed as ca
i .
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TABLE 7: Notations to describe GridHub (i ∈ N).

Notations Explanation

Dr = {L,R,U ,D} Set of directions in GridHub

x, y A conveyor module’s location in GH , which

is recorded by the column and row it locates

ca
i , ce

i Active, empty conveyor module

dr , dr(⊥), dr(‖) Element of Dr , perpendicular, opposite but parallel direction

dNi (dNi ∈ Dr) Seek message passing direction of Ni

adci or adca
i

Active direction of an active conveyor module

C , C e, C a Set of all, empty, active conveyor modules

M e, M a The number of empty, active modules in GH

M e
min Lower limitation of the empty conveyor modules

M a
max Upper limitation of the active conveyor modules

rpdr Limitation to re-activate a conveyor module on dr

nidr Counted time limits

to re-activate conveyor module on dr

t, ti Time in GridHub that is counted by iteration

4.1.2 Potential paths of successful attempts

Some of the negotiation behaviors are related to the concept “potential

paths,” so we explain this concept first.

When there is one attempt in a GridHub, a confirmation message is passed

back to the active conveyor module which initiated the attempt. Consequently, a

group box movements is arranged along the path of passing the confirmation

message. There are also potential movements along the same path in future

iterations (Figure 73a to 73b).
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(a) Iteration 1.

𝑐"#

(b) Iteration 3.

Figure 73: Examples of box movements. In iteration 1, ca
1 initiates an N2 attempt,

and this attempt finds ce
2 . After the N2 completed in the last iteration, the active

box moves into its immediate destination by N1 in iteration 3,. In these three

iterations, box movements are arranged along the paths (shown in Figure 74, which

are used to pass seek and confirmation messages.

The message passing path used to pass the successful seek messages and

confirmation messages is called one potential path of movements or potential path. A

potential path is recorded in a 4 -tuple Pk = {Nh , ca
i , ce

j , Vk} (h, i, j, k ∈ N): Nh is

the attempt which the confirmation message belongs to, and we also say that Nh

“generates” or “makes” Pk , or Pk is made by Nh ; ca
i is the active conveyor module

that initiated Ni , so we can also say that ca
i makes Pk . ce

j is the empty conveyor

module that replies with the confirmation message to Nh ; The set of vertices of a

potential path of Pk (except ca
i and ce

j ) is Vk . In this dissertation, all of the

potential paths are represented by orange arrows. The arrows are pointing to the

ce
j . Because some attempts have nested attempts, a potential path made by these

attempts can be divided into several parts based on which nested attempts the

messages belong to (Figure 74).
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Figure 74: Potential path example. P1 is made by N2 , and an N1 (N2 ) nests in this

N2 , so this N2 has two parts. After decomposing N2 , P1 ,1 is made by N1 (N2 ), and

P1 ,2 is generated by N2 .

Conveyor modules covered by P1 ,1 have to move their boxes in the current

iteration (see Figure 73a). Hence, the part of a potential path that is made by N1

or N1 ([N2 ,N3 ,N4 ]) is called the movement part of this potential path (Figure 75).
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Figure 75: Example of movement part of a potential path. P1 ,1 and P1 ,2 are made

by N2 and N1 respectively. P1 ,2 is the movement part.

The potential paths are made by different attempts, and these attempts may

be initiated sequentially. We use level of a potential path to distinguish the potential
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paths made by different attempts. The level of a potential paths is written as lPk .

The higher level potential paths are made earlier than the lower level potential

paths (Figure 76). The complete levels of potential paths are listed in Table 8.

TABLE 8: Levels of attempts and Pk .

Active Direction of module Attempts lPk

L or R N1 8

U or D N1 7

L or R N1 (N2 ) 6

U or D N1 (N2 ) 5

L or R N1 (N3 ) 4

U or D N1 (N3 ) 3

L or R N1 (N4 ) 2

U or D N1 (N4 ) 1

𝑐"#

𝑃"

𝑐%# 𝑐"&
𝑃%

Figure 76: Examples of levels of different Pk . P3 has higher level than P2 .

When the location of an empty module changes, the potential paths that are

generated by the same active conveyor modules could be changed over a series of

iterations. When there are no other paths to be made, the levels of these potential

path change from low to high (Figure 77a to 77d), and this pattern is the ideal way
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of changing potential paths. The active boxes progress their transferring processes

in this pattern. However, the negotiation behaviors generated by conveyor modules

do not let the potential paths change in the ideal way, and the details are in

Section 4.3.

𝑐"# 𝑐$%

(a) iteration 1, lPk = 2

𝑐"#

𝑐$%

(b) iteration 2, lPk = 4

𝑐"#

𝑐$%

(c) iteration 3, lPk = 6

𝑐"#𝑐$%

(d) iteration 4, lPk = 8

Figure 77: Potential path changes over iterations.
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4.2 Blocks in GridHub

A Block in GH is the case that one conveyor module replies with a fail

message to a seek message which is initiated by the other module in one iteration of

GridHub. In other words, a seek message is “blocked” by another conveyor module.

We describe a block in a 3 -tuple Be,h = {N b
i ,ca

j ,cb
k} (e ∈ N indicates types of blocks,

and h, i, j,k ∈ N), where

• N b
i is the attempt to which the blocked seek message belongs. For example,

when a seek message of N1 (N2 ) is blocked, it means the nested N1 seek

message is blocked;

• ca
j is the active conveyor module initiating N b

i ; and

• cb
k is the blocking conveyor module that replies with a fail message to the

blocked seek message.

After any elements of a block change, then the block changes to a new block,

or the block disappears. Every Be,h may have a corresponding solution that can

make Be,h disappear. The solution is called as Re,h .

4.2.1 List of blocks and solutions

Blocks occur when seek messages receive fail messages. We organize the

blocks according to all of the failed actions in the negotiation rules (see Figure 78).

However, we do not account for the failed actions caused by completing all nested

attempts (“ANC(+)” in the flowcharts); other failed actions caused them. For

example, the module that initiates N1 (N2 ) has to reply N2 with a fail message after

the two nested attempts fail.
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N4.s.01

[N3, N3(N4)].s.01

[N3, N3(N4)].s.02

[N3, N3(N4)].s.03

[N3, N3(N4)].s.04

[N2, N2([N3, N4])].s.01

[N2, N2([N3, N4])].s.02

[N2, N2([N3, N4])].s.03

[N2, N2([N3, N4])].s.04

[N1, N1([N2, N3, N4])].s.01

[N1, N1([N2, N3, N4])].s.02

[N1, N1([N2, N3, N4])].s.03

[N1, N1([N2, N3, N4])].s.04

B1

B9

B2

B3

B4

B5

B6

B7

B8

B10

Figure 78: Block and rule relationship. The blocks that are related to N1 or

N1 ([N2 ,N3 ,N4 ]) are colored in grey. The rules that are related to N1 or

N1 ([N2 ,N3 ,N4 ]) are in different colors.

B1 ,h cb
k ’s state is active or active with movement confirmation. It replies with a

fail message to a seek message of N2 , N3 and N4 due to cb
k ’s active direction being

the same as the seek messages’ passing direction (see rule [N2 ,N2 ([N3 ,N4 ])].s.03 ,

[N2 ,N2 ([N3 ,N4 ])].s.04 , [N3 ,N3 (N4 )].s.03 , [N3 ,N3 (N4 )].s.04 , and N4 .s.01 for

details).

R1 ,h : cb
k can also initiate attempts to move its own box. When cb

k can move

boxes, the other conveyor modules that are “behind” it can also move their boxes

after the N1 is successful.

B2 ,h cb
k ’s state is temporary active, active with or without movement confirmation,

or occupied. When it is waiting for response of the other N1 (N2 )’s seek message, or

it has a movement confirmation, it replies with a fail message to the seek message of
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N2 (see [N2 ,N2 ([N3 ,N4 ])].s.02 , [N2 ,N2 ([N3 ,N4 ])].s.03 , [N2 ,N2 ([N3 ,N4 ])].s.04 for

details).

R2 ,h : This block case will disappear after cb
k moves its box out, or there is no

other seek message waiting for response.

B3 ,h cb
k ’s state is empty with or without movement confirmation. It replies with a

fail to all of the seek messages except [N1 ,N1 ([N2 ,N3 ,N4 ])] (see rule

[N2 ,N2 ([N3 ,N4 ])].s.01 , [N3 ,N3 (N4 )].s.01 , and N4 .s.01 for details).

R3 ,h : after a box moves to cb
k and changes its state to occupied, then the

block disappears.

B4 ,h cb
k ’s state is occupied. It blocks a seek message of N1 initiated by ca

i

according to [N1 ,N1 ([N2 ,N3 ,N4 ]).s.02 ].

R4 ,h : ca
i can also access other empty modules via N2 , N3 , or N4 . An

example is in Figure 79.

𝑐"# 𝑐$%𝑐&'

(a) B4 ,1 . cb
2 blocks N1 that is initiated

by ca
1 .

𝑐"# 𝑐$%𝑐&'

𝑃&

(b) R4 ,1 . ca
1 can use attempt N4 to

access ce
3 , and the potential path is P1 .

Figure 79: B4 ,1 and R4 ,1 .

B5 ,h cb
k ’s state is active without movement confirmation. It blocks a seek message

of N1 ([N2 ,N4 ]) initiated by ca
j , when cb

k ’s active direction is perpendicular to the
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message passing direction (see [N1 ,N1 ([N2 ,N3 ,N4 ])].s.03 for details).

R5 ,h : let the empty module which is going be reached by the blocked seek

message [N1 ,N1 ([N2 ,N3 ,N4 ])].s.01 in B5 ,h to be ce
l . Another seek message of

N1 (N3 ) initiated by cb
k can also reach ce

l in the same iteration or in later iterations.

After cb
k moves its box, the block disappears. An example is in Figure 80.

𝑐"#

𝑐$%

𝑐&'

(a) B5 ,1 . cb
2 blocks N1 (N2 ) that is

initiated by ca
1 and passed toward ce

3 .

𝑐"#

𝑐$%

𝑐&'

𝑃$

(b) R5 ,1 . cb
2 can access ce

3 by N1 (N3 )

later, and the potential path is P1 .

Figure 80: B5 ,1 and R5 ,1 .

B6 ,h cb
k ’s state is active with movement confirmation or temporary active. It

blocks a seek message of N1 ([N2 ,N3 ,N4 ]) which is initiated by ca
j , because it has

movement confirmation perpendicular to the message passing direction. The rule

that makes this block is [N1 ,N1 ([N2 ,N3 ,N4 ])].s.04 .

R6 ,h : after the movement of cb
k ’s box is completed, the block disappears.

B7 ,h cb
k ’s state is active with or without movement confirmation, or temporary

active. It blocks a seek message of N1 ([N2 ,N3 ,N4 ]) initiated by ca
j , when the seek

message’s passing direction is opposite to its active direction, and the message

passing direction has lower priority than cb
k ’s active direction. The rule according to

is [N1 ,N1 ([N2 ,N3 ,N4 ])].s.03 and [N1 ,N1 ([N2 ,N3 ,N4 ])].s.04

R7 ,h : If there is no movement confirmation of cb
k , the block disappears in the
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later iterations when the seek message’s passing direction has higher priority than

cb
k ’s active direction; if cb

k has movement confirmation, then the block disappears

after cb
k moves its box.

B8 ,h cb
k ’s state is active with movement confirmation, or temporary active. It

blocks a seek message of N1 ([N2 ,N3 ,N4 ]) initiated by ca
j , if the confirmation is not

marked by N1 and the confirmation direction is as the same as the message passing

direction (see [N1 ,N1 ([N2 ,N3 ,N4 ])].s.04 ).

R8 ,h : after cb
k completes its box’s movement, the block disappears.

B9 ,h cb
k ’ state is empty with movement confirmation. It replies with a fail message

to a seek message of N1 or N1 ([N2 ,N3 ,N4 ]) when the message passing direction is

different than the confirmation direction. It can also reply with a fail message to the

seek message of N1 ([N2 ,N3 ,N4 ]) in the same message passing direction when its

confirmation is not made by N1 . The rule is [N1 ,N1 ([N2 ,N3 ,N4 ])].s.01

R9 ,h : the block case will disappear after the movement of cb
k completes.

B10 ,h When cb
i is occupied and located at one of the system borders, cb

k can reply

with a fail messages to all of the seek messages of N2 , N2 ([N3 ,N4 ]), N3 , N3 (N4 ),

N4 , N1 , N1 ([N2 ,N3 ,N4 ]). All rules related to system border conditions can cause

this block. An example of this block is in Figure 81.

R10 ,h : the reason of this block to occur is that other active modules have

“used” empty modules. Hence, when the other active module moves out of the

system, ca
j eventually has chance to find an empty module.
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Figure 81: B10 ,1 . Both cb
2 and cb

3 can reached by the seek messages of N1 (N2 ).

They have to reply with fail messages because they are on the system border.

4.2.2 Starvation of empty conveyor modules

In B10 ,h , the reason of it is that no empty conveyor modules are available, so

we also call this case temporary starvation. B10 ,h always occurs at the end of a

process to pass a seek message. Because we have shown that B10 ,h is temporary, we

consider it a fact and omit to mention it in the deadlock discussion in Section 4.4.

To reduce occurrence of temporary starvation, we have to either increase the

number of empty conveyor modules (effects are discussed in Chapter 5), or use other

attempts to arrange box movements into other empty conveyor modules, or wait for

the active modules that using the empty modules move away.

4.3 Negotiation behaviors in GridHub

When there is only one active, and one or more empty conveyor modules, in a

GridHub, the active conveyor module either transfers its box to the box’s immediate

destination, or tries to change the location of empty modules by arranging the box’s

movements. In every iteration, the movements of the boxes are necessary, so the

transfer process keeps making progress even when the active box is waiting for space

to move. The scenario described above is the ideal case to move an active box.

However, it is not always possible to have exactly one active conveyor module in a
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GridHub. Below we describe the negotiation behaviors among active modules and

how active boxes’ transferring processes are affected by them.

4.3.1 List of negotiation behaviors

All of the negotiation behaviors listed below are related to two conveyor

modules. First, these two conveyors form a behavior. The conveyor module that

makes an attempt to affect the other module is called the generator or the maker

conveyor module of the behavior. The conveyor module affected by a behavior is

called the included conveyor module.

Direct mute When two active conveyor modules have opposite active directions

and face each other, one must be muted according the negotiation rules. Then, they

form the behavior of direct mute (Figure 82). The conveyor module that is directly

muted may not move its box.

𝑐"# 𝑐$#

Figure 82: Direct Mute example. Suppose pd = L, then ca
2 is muted. We can also

state that ca
1 makes the mute behavior directly, and ca

2 includes a direct mute.

Indirect mute When an active conveyor module that has no movement

confirmations and confirms a movement of opposite moving directions to the active

direction, it is indirect muted (Figure 83).
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Figure 83: Indirect mute example. ca
1 makes a potential path, and it indirectly

mutes ca
2 , or ca

2 includes an indirect mute behavior. ca
2 must move its box in the

current iteration.

Cross mute When an active conveyor module has no movement confirmations

and it confirms a movement to a direction which is perpendicular with its active

direction, this active conveyor module is cross muted (Figure 84).

𝑐"#

𝑐$%

𝑐&%

Figure 84: Cross mute example. A potential path is made by ca
1 , and ca

2 is crossly

muted. ca
2 must move its box in the current iteration.

Indirect push If an active box does not have any movement confirmations or

confirmations of successful attempts but it confirms movements of other attempts
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(N2 to N4 ) along its active direction, this conveyor module is in an indirect push

case (Figure 85).

𝑐"#

𝑐$%

𝑐&%

Figure 85: Indirect push example. ca
2 does not have any movement confirmations. A

potential path made by ca
1 covers ca

2 , then ca
2 includes an indirect push behavior. ca

2

must move its box in the current iteration.

Overlapping of potential paths When two or more potential paths share

movement parts, these potential paths are overlapped. According to the negotiation

rule ([N1 ,N1 ([N2 ,N3 ,N4 ])].s.04 ), only potential paths with level 1 or 2 can be

overlapped by other potential paths with any levels (Figure 86).
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Figure 86: Overlapping examples. The potential path made by ca
2 is overlapped by

the path made by ca
1 . Both of these paths are generated by attempt N1 , and levels

are 2 . The path made by ca
5 is also overlapped by the path made by ca

4 , but the

path made by ca
4 has level 4 .

Fake confirmation potential paths made by N1 or N1 ([N2 ,N3 ,N4 ]) In

Figure 87, P1 and P4 are potential paths made by ca
1 and ca

3 respectively. Now

suppose the matched higher priority direction in this iteration is up(U ). When c5 ,

c6 , and c7 pass the confirmation messages, some confirmations in the opposite

direction are already marked. Then, either of the following processes are possible,

and they are called fake confirmations.

• While c5 , c6 , and c7 are passing confirmation message back to ca
1 , these three

conveyor modules have confirmed to move down; according to rule

[N1 ,N1 ([N2 ,N3 ,N4 ])].c.02 and [N1 ,N1 ([N2 ,N3 ,N4 ])].c.04 , the down

movement confirmations of these conveyor modules are removed before marking

the up movement confirmations.

• While c5 , c6 , and c7 are passing a confirmation message back to ca
3 , these three

conveyor modules have confirmed to move up; according to the same rule, no

down movement confirmations can be placed on these conveyor modules.

• Some of c5 , c6 , and c7 have confirmed to move down, but some have confirmed

to move up. The first two processes are performed by these three conveyor
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modules according to which direction they have confirmed to move their boxes.

𝑐"#

𝑐$

𝑐%

𝑐&#

𝑐'(

𝑐)(
𝑃'

𝑃&
𝑐+

Figure 87: Fake confirmation examples.

Overwriting of potential paths made by [N2 ,N3 ,N4 ] When an active

conveyor module has a confirmation of [N2 ,N3 ,N4 ], one N1 ([N2 ,N3 ,N4 ]) is made

by another active conveyor module which arranges movement for it. Then this

active conveyor module’s potential path is overwriting. In other words, the moving

part of another potential path covers this active conveyor module. There are two

cases of this behavior (See Figure 88 and 89).
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Figure 88: The same direction overwriting. P2 is overwritten by another potential

path; the movement direction of ca
2 ’s box after P2 being overwritten is the same as

its active direction.

𝑐"# 𝑐$#

𝑐%&

𝑐'& 𝑃%

𝑃'

Figure 89: The different direction overwriting. The movement direction of ca
2 ’s box

after P2 being overwritten is different from its active direction. Furthermore, ca
2 may

also be muted by these behaviors, and ca
2 must move its box in the current iteration.

4.3.2 Negotiation behaviors and transfer process

In GridHub, the Manhattan distance is the shortest distance from one

conveyor module to another. The shortest distance to move a box from one

conveyor to another is calculated by the number of iterations, following one
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Manhattan path without any stops. However, it is almost impossible to move an

active box to its target in the shortest time. The first reason is that GridHub is a

high density storage system. Like other puzzle-based storage systems, the active box

has to wait for other box movements to change the locations of empty conveyor

modules. The other reason is the behaviors listed above delay the transfer process.

Several behaviors that can delay the transfer process of an active box include:

direct mute, cross mute, indirect mute, overwriting potential paths to different

directions (See Figure 89), and fake confirmation. The fake confirmation cannot

change the location of an empty conveyor module as desired, and other b()ehaviors

mute the active boxes.

The overlap of potential paths, indirect push, and the overwriting of potential

paths in the same direction (see Figure 88) are the activities that prevent the delay

of transfer process.

4.4 Deadlock

We list one observation of deadlock in the grid-based system in Chapter 2. In

GridHub, if an empty conveyor replies with confirmation message to a seek message,

box movements must be arranged. Since no loop routes are created for active boxes,

eventually, active boxes can be transferred to their targets. If a seek message cannot

receive a confirmation message, a fail message is its response. Then, deadlock is

possible. We have summarized the failure cases of passing seeking messages as

“blocks.” In this section, we give the definition of deadlock according to blocks, and

then we show that GridHub is deadlock free by proof that there will never be an

indefinite block.

It is easy to imagine pathological cases in which GridHub will deadlock, but

we exclude these cases by assumption (Figure 90). To avoid these cases in

Figure 90, we make two important assumptions:

1. No new working boxes are generated, and,

2. No new entered boxes.
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Figure 90: One example of GridHub without the assumptions. Suppose the new

boxes are being added to the system; ca
1 to ca

5 keep moving their boxes out of the

system, but ca
6 cannot move its box.

There are two categories of deadlock—global and local. The global deadlock

case of GH is that at least one blocks exist and prevent all active boxes’ transferring

processes, and these blocks continue indefinitely.

For every active conveyor module, we also check whether the attempts it

initiates cannot succeed forever. A Local deadlock in occurs when any block is

present and it continues indefinitely, while other active boxes’ transferring processes

are not prevented.

Based on these definitions, we have two methods (Lemma 4.1 and 4.2) to

judge whether GH is in a deadlock conidtions. The proofs follow directly from the

definitions.

Lemma 4.1. GH is free of global deadlock iff at least one Be,i can be resolved.

Lemma 4.2. GH is free of local deadlock when every existing block can be resolved.

Then, we try to find whether GH is free of the both deadlock cases using

induction. First, we consider the simplest case.

Lemma 4.3. In a GridHub GH , if M a = 1 and M e = 1 , then GH is global deadlock

free and local deadlock free.
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Proof. Let the active conveyor module is ca
j and adca

j
= R, let the empty module be

ce
l .

When M e = 1 , according to the negotiation rules for N1 through N4 , all of

the conveyor modules in GH can be reached by at least one seek message of N1 or

N1 ([N2 ,N3 ,N4 ]) initiated by the ca
j .

The set of conveyor modules which can be reached by the seek messages of

N1 , N1 (N2 ), N1 (N3 ) and N1 (N2 ) are V1 = {ca
j }, V2 = {c|x = x ,y 6= y},

V3 = {c|x 6= x ,y 6= y}, and N4 is V4 = {c|xneqx ,y = y} respectively. If

C s = {ci |ci /∈ C a,ci /∈ C e}, and V1 ∩V2 ∩V3 ∩V4 = V ′ ⊇ C s, we can conclude that

all of conveyor modules except ca
j , ce

l can be reached by one or more seek messages

of N1 , N1 (N2 ), N1 (N3 ) and N1 (N2 ). According to rule [N1 ,N1 ([N2 ,N3 ,N4 ])].s.01 ,

when a seek message is passed to ce
l , it replies confirm message.

Apply Lemma 4.1, GH is global deadlock free; Apply Lemma 4.2, GH is local

deadlock free.

For the other cases (when adca
i

= L, adca
i

= U or adca
i

= D), the same

conclusion can be obtained by the reasoning steps above.

The next step is checking all of the possible blocks and conclude that all of

the possible blocks or combination of blocks cases can disappear.

Lemma 4.4. For an empty conveyor module ce
l in GH , if at least one message is

intended to be sent to it, and these messages are blocked before they arrive, the

blocks are always possible to be resolved.

Proof. When some seek messages of some attempts are intended to be sent to ce
l , a

blocking conveyors replies with fail messages before the arrive at ce
l . These block

cases described above can be B1 ,h , B2 ,h , B4 ,h , B5 ,h , B6 ,h , B7 ,h , and B8 ,h .

Let the blocking conveyor in these blocks be cb
k , and the active conveyor

module in these blocks be ca
j . Except B4 ,h and B5 ,h , the reasons of the above blocks

are either some of the cb
k have movement confirmations or the message passing

direction of the blocked messages do not have higher priority. Hence, those blocks
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will disappear after the confirmed movements are accomplished or the message

passing directions have higher priority.

In the case of B4 ,h , the ca
j can access other empty conveyor modules in other

attempts (see R4 ,h for details) However, the seek messages of other attempts can be

in block cases of B1 ,h , B2 ,h , B3 ,h , B5 ,h , B6 ,h , B7 ,h , B8 ,h , B9 ,h . Except B5 ,h , the

above blocks can disappear after movements are complete or the blocked messages

passing directions have higher priority.

In the case of B5 ,h , the cb
k of this block can send a seek message of N1 (N3 ) in

the same iteration or future iterations (see the example in Figure 80b). However, all

of the seek messages of N3 can be in block cases of B1 ,h , B2 ,h , B3 ,h , B6 ,h , B7 ,h ,

B8 ,h , B9 ,h . These blocks can disappear after movements are completed or the

blocked messages passing directions have higher priority.

Lemma 4.5. When an empty module ce
l is the blocking conveyor module of some

Be,h , these blocks are always possible to disappears.

Proof. ce
h could be the blocking conveyor of B3 ,h and B9 ,h . The reason of these

blocks are either cb
k is empty, or cb

k has movement confirmation. After a box moves

to cb
k or the confirmed movement is completed, the blocks are resolved.

Lemma 4.6. In GH , when M e ≥ 1 and M a ≥ 2 , if ca
j is the blocking conveyor

modules of one or more Be,h , these blocks can always be resolved.

Proof. When ca
j is the blocking conveyor module of these blocks, the possible blocks

cases are B1 ,h , B2 ,h , B5 ,h to B8 ,h . Except B5 ,h , the reason of above blocks are either

some of the cb
k have confirmed movements or the blocked messages passing directions

do not have higher priority. These blocks will disappear after the confirmed

movements are done or the message passing directions have higher priority.

For B5 ,h , let ce
l be the empty conveyor module, which the blocked seek

message is going to reach, then ca
j can send a seek message of N1 (N3 ) to reach the

ce
l and arrange group of box movements. However, all of the seek messages of N3

can be in block cases of B1 ,h , B2 ,h , B3 ,h , B6 ,h , B7 ,h , B8 ,h , B9 ,h . The reason of
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above blocks are either some of the cb
k have confirmed movements or the blocked

messages passing directions do not have higher priority. These blocks will disappear

after the confirmed movements are done or the message passing directions have

higher priority

Lemma 4.7. In GH , when M e ≥ 1 and M a ≥ 2 , if ca
j is the conveyor module that

initiates N b
i in Be,h , Be,h can always be resolved.

Proof. When ca
j is original conveyor modules of these blocks, ca

j can be in all of the

cases. Besides B5 ,h , the blocks will disappear after the confirmed movements are

done or the messages passing directions have higher priority.

For B5 ,h , let ce
l is the conveyor module which the blocked seek message is

going to reach, then ca
j can send a seek message of N1 (N3 ) to reach ce

l and arrange

box movements. However, all of the seek messages of N3 can be in the block cases of

B1 ,h , B2 ,h , B3 ,h , B6 ,h , B7 ,h , B8 ,h , and B9 ,h . The reason of above blocks are either

some of the cb
k have confirmed movements or the blocked messages passing directions

do not have higher priority. These blocks will disappear after the confirmed

movements are done or the messages passing directions have higher priority

Finally, based on the lemmas, we prove that GH is free of both the local and

global deadlock.

Theorem 4.8. GH is globally deadlock free when |C | ≥ 2 , M a ≥ 1 and M e ≥ 1 .

Proof. Proof by induction on both M e and M a.

When M e = 1 and M a = 1 , apply Lemma 4.3 directly, and the proof is done.

When M e = 1 and M a > 1 : Suppose GH is global deadlock free when

M a = |C a|−1 (a ≥ 2 ) and M e = 1 . Except ca
0 , the other active modules’ locations

are fixed in an iteration. Several scenarios are possible after fixing the location of ca
0 :

1. ca
0 is not the blocking conveyor of any other Be,h , GH keeps global deadlock

free.

102



2. ca
0 is a blocking conveyor in at least one Be,h , and the blocked seek messages is

intended to be sent to ce
l . Apply Lemma 4.4 and Lemma 4.1, then GH is global

deadlock free.

3. ca
0 is the conveyor module, which initiates the blocked seek messages, in at least

one Be,h , and the blocked seek messages is intended to be sent to ce
l . Apply

Lemma 4.4 and Lemma 4.1, then GH is still global deadlock free.

When M e > 1 and M a = |C a|: Suppose GH is global deadlock free When

M e = |C e|−1 (|C e| ≥ 2 ) and M a = |C a| (M a ≥ 2 ). Except ce
0 , the other empty

modules’ locations are fixed in an iteration. Following scenarios are possible after

fixing the location of ce
0 :

1. If some seek messages are intended to be sent to ce
0 , and these attempts are

blocked. Apply Lemma 4.4 and Lemma 4.1, then GH is still global deadlock

free.

2. ce
0 is the blocking conveyor in some Be,h . Apply Lemma 4.5 and Lemma 4.1,

then GH is still global deadlock free

3. ce
0 does not in both of the scenarios above, no new blocks appear. Apply

Lemma 4.1, and the GH is still global deadlock free.

Theorem 4.9. GH is local deadlock free when |C | ≥ 2 , M a ≥ 1 and M e ≥ 1 .

Proof. Proof by induction on both M e and M a.

When M a = 1 and M e = 1 , apply Lemma 4.3 directly, and the proof is done.

When M e = 1 and M a ≥ 2 : Suppose GH is local deadlock free when M e = 1

and M a = |C a|−1 . Except ca
0 , the other active modules’ locations are fixed in an

iteration. Several scenarios are possible after fixing the location of ca
0 :

1. ca
0 is not the blocking conveyor module of any other Be,h , there is no new

blocks appears. Apply Lemma 4.2 and GH keeps local deadlock free.

2. ca
0 is a blocking conveyor module of at least one Be,h . Apply Lemma 4.6 and

Lemma 4.2, then GH is still local deadlock free.
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3. ca
0 is the conveyor module initiates the blocked seek message of one Be,h . Apply

Lemma 4.7 and Lemma 4.2, then GH is local deadlock free.

When M e > 1 and M a = |C a|: Suppose GH is local deadlock free when

M e = |C e|−1 and M a = |C a|. Except ce
0 , the other empty modules’ locations are

fixed in one iteration. Several scenarios are possible after locate ce
0 .

1. If some seek messages are intended to be sent to ce
0 , and these attempts are

blocked. Apply Lemma 4.7 and Lemma 4.2, then GH is still local deadlock free.

2. ce
0 becomes blocking conveyors in some Be,h . Apply Lemma 4.5 and

Lemma 4.2, then GH is still local deadlock free

3. ce
0 does not in both of the scenarios above, no new blocks appears. Apply

Lemma 4.2, and the GH is still global deadlock free.

4.5 Livelock

In this section, we first define livelock and prove the necessary condition to

cause livelock in GridHub. Then, we examine the scenarios where mute and the

activation of active conveyor modules can cause livelock. We prove that a GridHub

is conditional livelock free. Finally, we discuss livelock in GridHub when limitations

of active conveyor modules are higher. The methods used to reduce livelock risks

are also described.

4.5.1 Introduction of livelock

The term “livelock” comes from research in computer network routing

(Toueg, 1980; Gravano et al., 1994). However, those livelock problems are not

comparable to livelock in the grid-based systems, because there are no buffers for

boxes in every conveyor module. In published works of the other grid-based

systems, the livelock processes were also discussed (see Chapter 2). Schwab (2015)

studied livelock in the AGV system. Livelock was the case that some modules in the

system performed endless “circling movements.” Seibold (2015) defines livelock in
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material handling systems as items which repeat movements but which cannot not

be moved to their targets.

In GridHub, livelock can also occur. The livelock in GridHub is that an

active conveyor having the same successful attempt repeatly, but its later attempt is

prevented. The following actions can prevent the transfer process of active boxes.

First, the blocks can prevent the transfer process of active boxes, but these have

been shown to be temporary. Second, “fake confirmation” behavior can prevent the

transfer process, but it is also temporary. The actions that can permanently prevent

the transfer processes of active boxes are the behaviors that include mute activities.

Additionally, when a conveyor has these behaviors, it will re-activate in future

iterations. Then, mute and the re-activation can be considered together as mute and

re-activation behaviors. The make conveyor module mutes the included conveyor

module in the mute behaviors, and the included conveyor will re-activate in future

iteration. When this behavior is not repeatable, the transfer processes of active

boxes are only temporarily prevented. Hence, the only possible factor to prevent the

transferring process is repeatable mute and reactivation behaviors. The term

“repeatable” in this dissertation means one mute and activation behavior occurs at

the same location in GridHub.

In the rest of this discussion, we use the same assumptions as in the deadlock

discussion. We prove that repeatable mute and re-activation behaviors are the

necessary conditions to prevent the transfer processes of active boxes.

Theorem 4.10. If there are no repeatable mute and re-activation behaviors in

GridHub, the process of transferring active boxes cannot be prevented indefinitely

and there is no livelock.

Proof. Proof by contradiction. In GH , suppose there are no repeatable mute and

re-activation behaviors and at least one active box’s transferring process is

prevented indefinitely. Let ca
i be the conveyor module that holds this box. Because

there is no deadlock, ca
i can make successful attempts. The way to indefinitely

prevent ca
i ’s box transfer process is to repeat the following steps sequentially:
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1. At t, ca
i makes a potential path Pi .

2. At t ′ > t, ca
i cannot make a higher level Pi .

The reason ca
i cannot make a higher level Pi is that there exists at least one

potential path, such as Pj (lPj > lPi) that is made by another active conveyor ca
j at

t ′.

At t, ca
j cannot be at the same location or its state cannot be active;

otherwise, Pj is made at t instead of t ′. The causes of ca
j which make Pj at t ′ are:

• When ca
j ’s box is moved from the other conveyor modules before t ′. In this

case, ca
i ’s box is moved to its target, and it cannot permanently prevent ca

i to

make Pi .

• ca
j re-activates due to a mute behavior at t0 < t, and this mute and

re-activation is repeatable which prevents the transferring process of ca
i ’s box

permanently. This contradicts the assumption that there are no mute and

re-activation behaviors.

4.5.2 Scenarios of the mute and re-activation behaviors

We summarize the possible scenarios of mute and re-activation behaviors

before further discussing livelock. Additionally, when a conveyor module is muted in

one scenario, it may be re-activated in different scenarios, so the scenarios of mute

and re-activation behaviors are summarized respectively.

A mute scenario is βi (i ∈ N). Let ca
i be the active conveyor module to be

muted (included conveyor module), and ca
j be the conveyor module (make conveyor

module) that initiates the attempt which mutes ca
i .

• β1 : ca
i is directly muted by ca

j (see Section 4.3.1), but its box is not moved in

the current iteration.

• β2 : ca
i is directly muted, and its box is moved along a potential path Pj that is

generated by a N1 (N2 ). The N1 (N2 ) is initiated by ca
j . In this scenario, the

active direction of ca
i is opposite of the adca

j
.
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• β3 : ca
i is indirectly muted or overwritten by a potential path. The potential

path that makes the mute or overwriting behavior is Pj , and it is generated by

a N1 (N2 ). The N1 (N2 ) is initiated by ca
j . ca

i ’s active direction is perpendicular

to adca
j
, and its active direction is opposite to dN1 (N2 ).

• β4 : ca
i is muted or overwritten by a potential path. The potential path that

makes the mute or overwriting behavior is Pj , and it is generated by a N1 (N3 ).

The N1 (N3 ) is initiated by ca
j . ca

i ’s active direction can be either perpendicular

or opposite to adca
j
, and its active direction can be either opposite or

perpendicular to dN1 (N3 ).

• β5 : ca
i is indirectly muted or overwritten by a potential path. The potential

path that makes the mute or overwriting behavior is Pj , and it is generated by

a N1 (N4 ). N1 (N4 ) is initiated by ca
j . ca

i ’s active direction is perpendicular to

adca
j
, and its active direction is opposite to dN1 (N4 ).

• β6 , β7 , and β8 : ca
i is directly muted by ca

j , and its box is moved along Pj that

is generated by a N1 (N2 ), N1 (N3 ), and N1 (N4 ) respectively. These attempts

are initiated by an active conveyor other than ca
j respectively.

Furthermore, because the negotiations proceed simultaneously, a muted

conveyor module can also mute other conveyor modules (Figure 91b and 91a).
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(a) ca
1 and ca

2 mute each other.
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(b) ca
1 mutes ca

2 , ca
2 mutes ca

3 , and ca
3

mutes ca
1 .

Figure 91: Connected mute scenarios (mute each other, and serial of mute).

There are two re-activation scenarios, and they are expressed as γj (i ∈ N).

• γ1 : re-activation when the nidr > rpdr . In this scenario, the muted box stops at

a conveyor module before it is re-activated.

• γ2 : re-activation of conveyor modules when the nidr ≤ rpdr . This scenario can

occur when a conveyor module is cross muted, when the movements are toward

their target or after the boxes are muted and moved. Other attempts in the

future iteration move the box toward their targets.

4.5.3 Absence of livelock in GridHub

To check whether GridHub is livelock free, we categorize GridHub by the

upper limitation of the number of active conveyor modules (M a
max). We then check

all possible mute and re-activation scenarios to find whether GridHub is livelock free.

4.5.3.1 GH with M a
max = 2 and M e

min ≥ 2

Theorem 4.11. If a GH has: M a
max = 2 , M e

min ≥ 2 , and rpdr = 4 or rpdr = 6 , it is

livelock-free.

108



Proof. Let the two possible active conveyor modules in GH be ca
1 and ca

2 . When

there are no mute or re-activation behaviors, there is certainly no repeatable mute

and re-activation behaviors, and the GH is livelock free. When ca
1 is the included

conveyor module of β1 , it must be moved. This scenario cannot exist in GH with

M a
max = 2 and M e

min ≥ 2 . When ca
1 is the included conveyor module of β6 , β7 or β8

respectively, because the third active module is needed, this scenario does not exist

when GH has M a
max = 2 and M e

min ≥ 2 . When ca
1 and ca

2 mute each other (see

Figure 91b), one can re-activate earlier because rpdr is different for different

conveyor modules at different times. Consequently, the location of ca
2 or ca

1 can

change, and the mute scenario cannot repeat.

When ca
1 is the included conveyor module of β2 , ca

2 ’s box changes location

after ca
1 is directly muted and moved at t = 1 . Let M e

min = 2 :

1. If ca
2 ’s box moves slowest, the new location of its box is displayed in Figure 93a

or Figure 93b, when ca
1 is re-activated in γ1 .

2. ca
2 ’s location is displayed in Figure 92b, when ca

1 is re-activated in γ2

𝑐"#

𝑐$%𝑐&%

𝑃$

(a) t = 1 .

𝑐"# 𝑐$%

𝑐&%

(b) t = 2 .

Figure 92: β2 , γ1 or γ2 (part 1).
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Figure 93: β2 , γ1 or γ2 (part 2).

When ca
1 is the included conveyor module of β3 , ca

2 ’s box changes location

after ca
1 is directly muted and moved at t = 1 . Let M e

min = 2 :

1. If ca
2 ’s box moves slowest, the new locations of its box is displayed in

Figure 95a or Figure 95b, when ca
1 is re-activated in γ1 .

2. Because there are only two active modules, and dN1 (N2 ) = adca
1
(‖), γ2 is

impossible.

𝑐"#

𝑐$%

𝑐&%

𝑃$

Figure 94: β3 and γ1 (part 1). When t = 1 .
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Figure 95: β3 and γ1 (part 2).

When ca
1 is the included conveyor module of β4 , except when these two

modules mute each other, ca
2 ’s box changes location after ca

1 is muted and moved at

t = 1 Let M e
min = 2 :

1. If ca
2 ’s box moves slowest, the new location of its box is displayed in Figure 97a

or Figure 97b, when ca
1 is re-activated in γ1 .

2. ca
2 ’s location is displayed in Figure 96b, when ca

1 is re-activated in γ2
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Figure 96: β4 , γ1 or γ2 (part 1).
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Figure 97: β4 , γ1 or γ2 (part 2).

When ca
1 is the included conveyor module of β5 , ca

2 ’s box changes location

after ca
1 is indirectly muted and moved at t = 1 . Let M e

min = 2 :

1. If ca
2 ’s box moves slowest, the new location of its box is displayed in Figure 99a

or Figure 99b, when ca
1 is re-activated in γ1 .
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2. Because there are only two active modules, and dN1 (N2 ) = adca
1
(‖), γ2 is

impossible.

𝑐"#𝑐$%

𝑐&%𝑃$

Figure 98: β5 and γ1 (part 1). t = 1 .
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(b) t = 8 .

Figure 99: β5 and γ1 (part 2).

For both of the re-activation scenarios related to β2 , β3 , β5 and the other

possibilities of β4 , the second empty conveyor module can be in any other location

in GH . Both ca
1 and ca

2 can make new potential paths and make the mute of ca
1 not

repeatable.
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Let M e
min > 2 in the above scenarios. ca

2 ’s box can be moved to a farther

location than those mentioned above. Additionally, the active conveyor modules

have more than one chance to make potential paths, meaning repeatable mute

behaviors cannot occur.

After checking the scenarios of mute and re-activation, we conclude that

there is no repeatable mute and re-activation.

From Theorem 4.11, we can show a corollary between any mute and

re-activation scenarios.

Theorem 4.12. For any scenarios of mute and re-activation, when all of the following

conditions are true, the same mute and re-activation behaviors cannot be repeated.

1. The conveyor module that mutes other conveyor modules changes its location.

2. The conveyor module also makes progress in the transfer process.

3. There are enough empty conveyor modules for every active conveyor module to

make at least one alternative potential path in every iteration.

Proof. Proof by checking all of the mute and re-activation scenarios.

In scenario β2 , β3 , β4 , or β5 , the impossibility of repeatable mute and

re-activation behaviors were shown when proving Theorem 4.11.

In scenario β1 , β6 , β7 , and β8 , in order to cause repeatable mute and

re-activation behaviors, another active conveyor module is needed. There are three

possibilities:

1. The third active conveyor does not initiate attempts to move the muted box;

the result is the same as β2 , β3 , β4 , and β5 ’s.

2. The third active conveyor initiates an attempt to move the muted box, but in

either γ1 or γ2 , the mute and re-activation is not repeatable.

3. The third active conveyor initiates an attempt to move the muted box to a

location, and the mute behaviors can occur again in the new location. Because

the active conveyor changes its location, and it progresses in its transfer

process, even when the conveyor module holds the same box is muted again,
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the active conveyor can still move to its target. After its box arrives at its

target, the mute and re-activation does repeat.

4.5.3.2 GH with M a
max = 3 and M e

min ≥ 3

Theorem 4.13. GH is livelock free when it meets these conditions: M a
max = 3 ,

M e
min ≥ 3 , rpdr = 4 or rpdr = 6 .

Proof. There are three active conveyor modules in GH . Let the active conveyor

modules in GH be ca
1 , ca

2 , and ca
3 .

When there are no mute and re-activation behaviors, there are certainly no

repeatable mute and re-activation behaviors. Then GH is livelock free.

When only two active modules are included in any mute and re-activation

behaviors, the problem is reduced to GH with M a
max = 2 . Apply Theorem 4.11,

then GH is livelock free.

When all of the three active modules are included in three mute scenarios,

these three active conveyor modules must mute in a series (see Figure 91a as

example). Since the value of rpdr can be different for different modules, when one of

them re-activates earlier, and the number of empty conveyors is enough, the

location of this active module can be changed based on the negotiation rule. In this

case, apply Theorem 4.12 to show that GH is livelock free.

When all three active modules are included in two mute scenarios, two

possibilities exist:

1. There is a series of mutes: ca
1 mutes ca

2 , ca
2 mutes ca

3 , but ca
1 is not muted. Due

to there being enough empty conveyor modules, ca
1 can change its box

locations. Also, since the value of rpdr can be different for different modules,

when one of them re-activates earlier, the location of this module can be

changed because there are enough empty modules.

2. The other conveyor module mutes two conveyor modules. For example, ca
1

mutes ca
2 and ca

3 . ca
1 can proceed with the transferring processes and change

the location of its active box.
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In the above possibilities, apply Theorem 4.12 to show that GH is livelock free.

4.5.3.3 GH with M a
max = 4 and M e

min ≥ 4

Theorem 4.14. GH is livelock free when it meets these conditions: M a
max = 4 ,

M e
min ≥ 4 , rpdr = 4 or rpdr = 6 .

Proof. There are four active conveyor modules in GH . Let the active conveyor

modules in GH be ca
1 , ca

2 , ca
3 , and ca

4 . When there are no mute and re-activation

behaviors, there are certainly no repeatable mute and re-activation behaviors, and

the GH is livelock free. When only two active conveyor modules are involved in any

mute and re-activation behaviors, the problem is reduced to GH with M a
max = 2 , in

which case the GH is livelock free (Theorem 4.11). When there are only three active

conveyor modules included in any mute and re-activation behaviors, the problem is

reduced to GH with M a
max = 3 . Apply Theorem 4.13, then GH is livelock free.

When all four modules are involved in two mute scenarios, two possibilities

exist:

1. One pair of active conveyor modules mute each other. Since the value of rpdr

can be different for different modules, when one of them re-activates early, the

location of this module can change.

2. Two modules are muted by the other two respectively. Since the other two can

still proceed with their transferring processes, the locations of the two active

boxes can be changed.

In both possibilities, apply Theorem 4.12 to show GH is livelock free.

When all four modules are involved in three mute scenarios, the following

possibilities exist:

1. If two active conveyor modules mute each other, the other active module is

muted by the fourth active module. Since the value of rpdr can be different for

different modules, when one of them re-activates early, the location of this one

can be changed, while the other active conveyor module can process its

transferring process and change its location.
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2. If a series of mute scenarios make three conveyor modules become muted, the

other conveyor module is not muted. For example, ca
1 mutes ca

2 , ca
2 mutes ca

3 ,

ca
3 mutes ca

4 , but ca
1 keeps active. In the above case, ca

1 can move its box so the

box location changes.

3. If three conveyor modules are muted together by the other conveyor module,

then the remaining active conveyor module can proceed with its transferring

process and change the location of its active box.

In the above possibilities, apply Theorem 4.12 to show GH is livelock free.

When all four modules are included in four mute scenarios, two possibilities

exist:

1. If two pairs of active conveyor modules mute each other in scenario β3 , for each

pair of muted modules, when one of them re-activates early, the location of its

active box changes.

2. If a series of mutes exist, for example, ca
1 mutes ca

2 , ca
2 mutes ca

3 , ca
3 mutes ca

4 ,

and ca
4 mutes ca

1 , when active module re-activates early, the location of this

module can be changed.

In the above possibilities, apply Theorem 4.12 to show that GH is livelock free.

4.5.3.4 GH with M a
max > 4 and M e

min > 4

In this case, it is hard to infer whether or not the locations of active boxes

can be changed. Hence, GH may not meet the conditions of Theorem 4.12. In other

words, an active module which mutes other modules, may not able to move their

boxes due to waiting on each other.

4.5.4 Method to reduce livelock risks in GridHub

In other grid-based systems, livelock is either proven to be impossible or are

solved by another method. For example, Seibold (2015) stated that the boxes’

routes in the GridSorter were never circular, so livelock could not occur. Schwab

(2015) implemented a detect-solve procedure to detect the livelock process first,

solving the livelock based on the priorities of AGVs.
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In GridHubs, which we have proven to be livelock free because of mute and

re-activation behaviors, the risk of livelock always exists. The number of active

conveyor modules may have to be reduced in order to remove or reduce the risk of

livelock in GridHub. There are two approaches:

1. Limit the task assignment or the departure information assignment directly.

2. Increase the values of rpdr , in order to make the muted conveyor “silent” for a

longer period and reduce the number of active modules. The effect of increasing

the length of time is shown in Section 5. From the measured data, this method

is ineffective in reducing the number of active conveyor modules.
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CHAPTER 5

SYSTEM PERFORMANCE OF UNIT-SIZED GRIDHUB

5.1 Simulation modeling

We run simulations to test GridHub’s control algorithms and measure system

performance.

5.1.1 Simulation model building in AnyLogic

The AnyLogic is a simulation platform that provides discrete-event and

agent-based methods. In GridHub, every conveyor module is an agent that

synchronizes at each step when executing control algorithms. Additionally,

AnyLogic supports customized programming in Java, which enables the user to test

complex logic. Hence, AnyLogic is an effective tool to test GridHub’s control

algorithms and measure system performance.

In AnyLogic, the “main” agent is unique and created by the platform

automatically. The main agent contains all code related to the simulation setting

activities. We create a box agent which contains only methods of generating

animations and recording data, and a conveyor agent to represent the conveyor

module and its the control algorithms. Populations of the box and conveyor agents

are added into the main agent. The simulation model then runs the main agent’s

code.

5.1.1.1 Gates and simulation running sequence

We specify one or a set of gates for a working or newly arrived box, entering

or leaving the system and call these gates input gate(s) or output gate(s). A box

enters the system through an available input gate(s). A working box exits the

system through an output gate(s), which we call target.

A box must be non-working before it is assigned departure information. In
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each simulation, every non-working box is randomly selected to assign departure

information. Furthermore, working boxes that have the same departure information

can be divided into one or more cluster(s). For example, suppose there are 10 boxes

assigned to gate 2 on the left edge of a GridHub. We can divide 10 boxes into one

cluster; we can also divide them into two clusters (5 boxes each). We describe more

about box clustering later.

We implement the “CONWIP” principle in the GridHubs used for algorithm

and performance testing. Similar principles are also used in the GridStore (Gue

et al., 2014). In these GridHubs, working boxes remain constant. The detailed

process is:

1. When a working box reaches its target and leaves the system at t, another box

enters the system in iteration t +1 .

2. Simultaneously, the GridHub receives an external request and translates it to

departure information matching the exiting box’s at t. Departure information

depends on operational modes explained in Section 5.2.

5.1.1.2 Methods of executing GridHub’s algorithms in AnyLogic

In AnyLogic, the “event” utility performs actions occurring at fixed intervals

in the simulation (Figure 100). Events then trigger each step of the control

algorithm, and we make these events repeat in fixed intervals.

Time𝑡"

Step 1 assess phase of 𝑐"

Step 1 assess phase of 𝑐$

Step 1 assess phase of 𝑐%

Step 1 assess phase of 𝑐&

Step 1 assess phase of 𝑐'

Step 1 assess phase of 𝑐(

Step 2 assess phase of 𝑐"

Step 2 assess phase of 𝑐$

Step 2 assess phase of 𝑐%

Step 2 assess phase of 𝑐&

Step 2 assess phase of 𝑐'

Step 2 assess phase of 𝑐(

𝑡$

Step 2 negotiate phase of 𝑐"

Step 2 negotiate phase of 𝑐$

Step 2 negotiate phase of 𝑐%

Step 2 negotiate phase of 𝑐&

Step 2 negotiate phase of 𝑐'

Step 2 negotiate phase of 𝑐(

𝑡)

…………
…….

…………
…….

…………
…….

Figure 100: Events and time to occur in AnyLogic. An event triggers each conveyor

module to execute actions.
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We also use the “dynamic event” to simulate message passing and processing

activities. A conveyor agent schedules a dynamic event with its neighbor in order to

send and process the message (Figure 101).

Time𝑡"

𝑐$	process message 1

𝑐&	process message 2

𝑐"	process message 3 

𝑡& 𝑡'

…………
…….

…………
…….

…………
…….

𝑐(	process message 1

𝑐)	process message 2

…………
…….

…………
…….

…………
…….

Figure 101: Dynamic events, scheduling relationship and occur time in AnyLogic.

c3 processes message 1 at t1 . Suppose the decision of c3 is to pass the message to

c4 . c3 schedules a dynamic event for c4 at t2 . Then, c4 executes the actions defined

by that dynamic event at t2 . The difference of t1 and t2 equals the time of passing

and buffering messages.

We have stated that there may be many methods for deciding the higher

priority directions in every iteration. In AnyLogic, the main agent makes this

decision through the following process: First, the main agent stores and shuffles all

possible combinations of the higher priority directions in a Java Collection

(ArrayList). Then, the main agent chooses the first element of the collection and

broadcasts this selection to all conveyor modules.

5.1.2 Determine warm-up period and replications

We determine the warm-up periods using Welch’s method (Mahajan and

Ingalls, 2004). Replications of simulations are required to insure accurate output

(system throughput). To determine the number of replications needed, we

use M.Law (2015)’s equation,

ti−1 , 1−α/2 ∗
√

S2 (n)
i

|X | < γ′
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.

The number of replications is n, the average throughput is X ; the standard

deviation is S ; and ti−1 , 1−α/2 is the critical t-value when the degree of freedom is

i−1 . If the confidence level is p, then γ′ = 1−p
1+1−p . In this case, we use 95%

confidence level, and γ′ = 1−0 .05
1+1−0 .05 = 0 .0476 .

5.2 Factors affect the system performance

When designing or installing a GridHub, some questions need to be

answered, such the aspect ratio. These questions are factors that affect GridHub’s

performance. We list these factors first then run a series of simulations to test the

system performance.

Operational modes The following operational modes are described according to

the material handling tasks described in Chapter 1. Every cluster of boxes can be

set to have different operational modes. However, we only set the GridHub in one of

the below modes.

m1: In this mode, GridHub performs retrieving tasks. External requests have

to specify the edge from which to retrieve the boxes. Hence, the departure

information of a working box includes which edge the box will leave. Output gates

can be any gate located at the departure edge. Input gates are all gates at the four

edges meaning that a newly arrived box can enter the system at any gate on any

edge.

m2: In this mode, GridHub performs sorting tasks. External requests have to

specify a gate for a working box to leave. All gates on the four edges are input gates.

m3: In this mode, GridHub performs sequencing tasks. Compared to m1, the

box departure sequence is given to the boxes in the same box cluster. Gate

assignments are the same as m1.

m4: In this mode, GridHub performs sorting and sequencing tasks.

Compared to m2, the box departure sequence is given to the boxes in the same box

cluster. Gate assignments are the same as m2.
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Number of working boxes The number of working boxes in GridHub depends

on the number of working boxes in a cluster. We assume the numbers of working

boxes in every cluster equals (xwk). Hence, if the number of clusters is fixed, we can

use xwk to express the number of working boxes.

Aspect ratio This factor indicates the shape of GridHub. We use the following

equation to calculate the aspect ratio:

xasp = number of columns (edges are excluded)
number of rows (edges are excluded)

.

Options for choosing expect paths In Chapter 3, we find two expect paths for

each working box moving to its target. Based on expect paths, any of the following

four methods can guide a working conveyor module to assign a transfer task

(Figure 102 shows examples):

• op1: A box moves to the same column or row as its departure gate, then moves

to its target.

• op2: A box moves to a location close to its departure gate, and then it moves

to face its departure gate to exit.

• op3: A box moves left or right, and then it moves up or down.

• op4: A box moves up or down, and then it moves left or right.
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Figure 102: Example of expect paths selection. c1 and c2 choose op1 or op2, while

they are trying to assign transfer tasks along Path 1 or Path 2. If unable to assign

tasks along the initially chosen path (1 or 2), they choose the other. Using op3, all

boxes try to move left first, then up or down. Using op4, all boxes try to move up or

down first, then left.

Forward attempt In Chapter 3, to initiate N2 , N3 , and N4 , we describe rules of

“forward attempt” for conveyor modules in the “empty with movement

confirmation” state. Whether the forward attempt is disabled or enabled, system

throughput is measured.

Period between mute and re-activation In Chapter 4, we discuss mute and

re-activation behaviors. We use the variable rpdr to indicate the time between the

mute and re-activation of an active conveyor module. Increasing rpdr may affect the

number of active boxes, and in turn, system throughput.

Number of empty conveyor modules In a GridHub with more empty

modules, active modules can move their boxes to their immediate destinations

easily; however, the utilization rate is lower. To express the number of empty

modules, we use xemp, and then measure whether it increases the transferring speed

of active boxes.
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5.3 Experiments and results

We conduct the following experiments to investigate the GridHub’s

performance. We run each experiment setting 50 replications. In every replication,

the simulation runs 8000 iterations. The first 800 iterations are the warm-up

period.

5.3.1 Operational modes and system performance

5.3.1.1 Settings

In these experiments, GridHub has 100 conveyor modules (excluding the

edges) and gates located at each edge (Figure 103).

Figure 103: GridHub used for test performance and operational modes, conveyor

modules used as gates are shaded.

Additionally, we use op1 to choose expect paths; The forward attempt is
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enabled; rpdr = (4 ,6 ), xemp = 20 , and xwk = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10}. There are

two gates at every edge with locations and operational modes shown in Table 9.

Every gate is assigned one cluster of boxes. When the departure locations are not

specified, we assign every cluster of boxes to one edge.

TABLE 9: Experiment setup and Operational modes.

Mode name Tasks Output Gate locations
Specific

departure sequence

m1 Retrieving Any gate on one edge -

m2 Sortation Center gates of one edge -

m2c Sortation Corner gates of one edge -

m3 Sequence Any gate on one edge yes

m4 Sequence, sort Center gates of one edge yes

m4c Sequence, sort Center gates of one edge yes

5.3.1.2 Discussion

The average system throughput is plotted in Figure 104.

Under m1, working boxes do not have intermediate targets. As the number of

working boxes increases, tandem movements of active boxes are more easily formed.

Thus, the throughput increases. Under m2, a working box may have intermediate

targets, so its expect path is longer than an expect path under m1. Consequently,

throughput decreases under m2. m4 is comprised of m2 and m3’s activities, so when

the number of working boxes increases, throughput decreases.

For effects of the gate locations, if the gates are centrally located under m2,

active boxes having perpendicular active directions do not wait for each other to

move forward. Under m4, competition for empty modules increases near the gates

because when larger sequence boxes arrive earlier, they must make space for the

smaller sequence boxes.
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Figure 104: Average system throughput for different operational modes. The y-axis

shows the average system throughput counted by “the number of boxes released in

every iteration.” The x-axis is the number of working boxes (xwk times the number

of gates used) in the system.

Because there are multiple working boxes and system storage density is high,

it is impossible to move a working box along its expect path without deviation. The

length of a working box’s expect path is divided by the iterations required to move

it out, and we call this the efficiency of transferring a working box. The average

efficiency of all working boxes in every operational mode is shown in Figure 105.

Since m1 does not require the working boxes to leave at specific locations, a

box can exit any location at its departure edge. Thus, the box’s expect path length

is shorter. As the number of working boxes increases under m1, tandem movements

of active boxes have shorter expect paths, resulting in higher efficiency (see

Figure 105). In contrast, m3 restricts working boxes leaving the system by blocking

transfer task assignment. This means working boxes increase while active boxes

cannot. Hence, m3’s efficiency is not effected by the number of working boxes (see
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Figure 105).

m1

m3

m2

m2c

m4

m4c

20 40 60 80

0.1

0.2

0.3

0.4

0.5

Figure 105: Average box transfer efficiency for different operational modes. The

y-axis shows the average box transfer efficiency. The x-axis is the number of

working boxes (xwk times the number of gates used) in the system.

5.3.2 Aspect ratios and options for choosing expect paths

5.3.2.1 Settings

All of the shaded gates in Figure 103 are used as output gates for the rest

experiments in this chapter. We only choose m2 to run the rest experiments. The

reasons are:

• Under m2, box transfer processes are purely dependent on how the negotiations

work. Under m3 and m4, transfer task assignments also affect the box transfer

process.

• Under m2, there is also a greater chance active conveyor modules will be muted

and re-activated, which m1 does not account for.
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The experiments are conducted with settings in Table 10, and the forward

attempts are enabled.

TABLE 10: Settings of experiment on aspect ratios and options for choosing expect

paths.

Setting Name xwk xasp Expect path

E1 1 {0 .16 ,0 .25 ,1 ,4 ,6 .25} {1 ,2 ,3 ,4}

E2 2 {0 .16 ,0 .25 ,1 ,4 ,6 .25} {1 ,2 ,3 ,4}

E3 3 {0 .16 ,0 .25 ,1 ,4 ,6 .25} {1 ,2 ,3 ,4}

5.3.2.2 Discussion

We measure the result by system throughput (see Figure 106).
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Figure 106: Average system throughput when aspect ratio and expect routes are

changed. The y-axis shows the average system throughput counted by “the number

of boxes released in every iteration.” The group of lines from left to right are for the

case that the number of working boxes equals 16 , 32 , and 48 (or xwk changes from

1 to 3 ); the dots on each line represent when the aspect ratio is changed from 0 .25

to 6 .25 . In the legend, “EP” represents the expect path selection from 1 to 4 shows

in Figure 102.

We use 3-way ANOVA to check whether aspect ratios, options for choosing

expect path, and xwk significantly affect throughput. From Table 11, we conclude all

factors and their interactions are significant. We also conduct a TukeyHSD test for

detailed comparisons (See Appendix 7.4.2).

According to GridHub’s control algorithm, active boxes with left and right

active directions proceed before the active boxes with up and down active directions.

According to the options for choosing expect path, when the GridHub’s aspect ratio

is small, modules assign left and right transfer tasks first. Thus, we achieve higher

throughput by moving active boxes left and right. When the aspect ratio grows, the

effect is opposite. Furthermore, with an aspect ratio close to 1 , the average length
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of working boxes’ expect paths shortens, resulting in increased throughput.

TABLE 11: ANOVA results of the experiments on aspect ratios and options for

choosing expect paths (output from R).

Factors Df Sum Sq Mean Sq F value Pr(> F)

xasp 4 16.57 4.142 6.651e+04 <2e-16

ExpectPath 3 0.25 0.082 1.312e+03 <2e-16

xwk 2 32.32 16.161 2.595e+05 <2e-16

xasp:ExpectPath 12 0.08 0.007 1.106e+02 <2e-16

xasp:xwk 8 0.23 0.029 4.709e+02 <2e-16

xasp:xwk 6 0.02 0.003 5.224e+01 <2e-16

xasp:ExpectPath:xwk 24 0.01 0.000 7.394e+00 <2e-16

Residuals 2940 0.18 0.000

5.3.3 Number of empty conveyor modules and limitation of task

assignments

5.3.3.1 Settings

All of the shaded gates in Figure 103 are used as output gates. Experiment

settings are in Table 12. The sets in the table are: EMP = {16 ,24 ,32 ,40 ,48} and

RP = {(4 ,6 ),(12 ,14 ),(20 ,22 ),(28 ,30 ),(36 ,38 )}.

TABLE 12: Settings for the experiment on the number of empty conveyor modules

and limitation of task assignments.

Setting name xwk Forward attempt xemp rpdr

E1 1 Yes xemp ∈ EMP rpdr ∈ RP

E2 1 NO xemp ∈ EMP rpdr ∈ RP

E3 2 Yes xemp ∈ EMP rpdr ∈ RP

E4 2 NO xemp ∈ EMP rpdr ∈ RP

E5 3 Yes xemp ∈ EMP rpdr ∈ RP

E6 3 NO xemp ∈ EMP rpdr ∈ RP
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5.3.3.2 Result and discussion

The system performance is displayed in Figure 107. First, we conclude that

enabling forward attempts can increase the system throughput. Second, the

increased number of empty modules can increase the system throughput. Third,

when rpdr ’s values increase, the system throughput is also affected: This effect is

most obvious when the xwk is higher, and this occurs when more active boxes are

muted, and there is less competition for empty modules. Consequently, the system

throughput increases slightly. When xwk is low, increasing rpdr has negative effects

on the system throughput because working boxes are muted even when they can

find empty modules. When xemp is higher, empty modules are wasted. However,

changing rpdr ’s values does not effect throughput more than changing the number of

empty modules.
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Figure 107: Average system throughput of experiment on the number of empty

conveyor modules and limitation of task assignments. The y-axis shows the average

system throughput counted by “the number of boxes released in every iteration.”

The group of lines from left to right are for the case that rpdr changes in the

sequence shows in RP; the dots on each line represent when the number of empty

modules is changed from 16 to 48 . In the legend, “+” means that forward attempt

is enabled; the number indicates the value of xwk .

In Figure 108, the number of active conveyor modules (not counting the

edges) is displayed. First, this value is not greatly affected by enabling forward

attempts. Second, the increased number of empty conveyors reduces interaction

between active conveyors. Thus, when an active conveyor module is muted, the

possibility of its re-activation in γ1 is greater. On the other hand, fewer empty

conveyor modules increase the likelihood that the muted active conveyor modules

will be re-activated in γ2 . Hence, the number of active conveyor modules is lower

when there are fewer empty modules.
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Figure 108: Average number of active conveyor modules per iteration. The y-axis

shows the average number of active conveyor modules. The group of lines from left

to right are for the case that rpdr changes in the sequence shows in RP; the dots on

each line represent when the number of empty modules is changed from 16 to 48 .

In the legend, “+” means that forward attempt is enabled; the number indicates the

value of xwk .

5.3.4 Negotiation behaviors and transfer processes of active boxes

5.3.4.1 Settings

We use the same settings in the last experiment by fixing rp to 4 or 6 and

disabling forward attempt. The only changing variables are xwk = 1 ,2 ,3 . So we

only consider the negotiation behaviors and the transferring process of active boxes.

5.3.4.2 Results and discussion

All factors that affect GridHub’s performance alter the transportation

process of every active boxes. When a GridHub is fixed and the active boxes are

moved in and out quickly, the throughput is higher. The transportation process of

active boxes can be divided into consecutive iterations. Except the iterations where
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the active module moves the box to its immediate destination, additional iterations

are in the following categories:

• The iterations where the active conveyor module receives confirmation of N2 ,

N3 , and N4 . In this iteration, although the box stops at the conveyor module,

the transferring process is progressing.

• The iterations where the active conveyor module fails all four attempts.

• The iterations where the module is muted by the negotiation behaviors which

are explained in Section 4.3.

We show statistical results of the negotiation behaviors and the transferring

process of active boxes. The data is collected while the simulation is running: First,

the number of iterations it takes to move a working box in and out of the system is

recorded. Second, when active conveyor modules hold these boxes, the number of

negotiation behaviors they make or include are counted and recorded. Additionally,

the forward attempt is disabled because the behaviors cannot be recorded

accurately when enabled. As we have seen, the value of rpdr does not greatly affect

the system performance, so we only use rpdr = (4 ,6 ). The notations of the recorded

data are listed in Table 13.
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TABLE 13: Notations of negotiation behaviors’ records.

Notations Explanation

y Number of iterations taken to move the box in and out of the system.

x1 Number of iterations where all attempts fail.

x2 Number of iterations where some of N2 , N4 and N4 are successful.

x3 Times of the module when it is directly muted.

x4 Times of the module when it is indirectly muted.

x5 Times of the module when it is crossly muted and moved toward

the box’s target.

x6 Times of the module when it is crossly muted and moved beyond

the box’s target.

x7 Times of the module when it is indirectly pushed.

x8 Times of the module when its potential path is overwritten

opposite to its active direction

x9 Times of the module when its potential path is overwritten

crossly toward the box’s target

x10 Times of the module when its potential path is crossly

overwritten beyond the box’s target

x11 Times of the module when its potential path is overwritten

in its active direction

x12 Times of the module when its potential path overlaps

other paths in N1

x13 Times of the module when its potential path overlaps

other paths in N1 ([N2 ,N3 ,N4 ]).

x14 Times of the module when its potential path has fake confirmations

The average numbers of negotiation behaviors on every box are plotted in

Figure 109. First, as the number of empty modules increases, these negotiation

behaviors occur less often. Second, a higher number of working boxes means a

higher number of active conveyor modules. The more active modules the system
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generates, the more negotiation behaviors. The only exception is the direct mute

behaviors which increase slightly when the number of empty modules increases.

When GridHub is being emptied, active boxes have a greater chance of facing each

other, which is the cause of muting behaviors.
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Figure 109: Average occurrence of negotiation behaviors of an individual box. The

y-axis show the average occurrence of negotiation behaviors of an individual box.

The group of lines from left to right are for the case that xwk changes from 1 to 3 ;

The dots on each line represent when the number of empty modules is changed from

16 to 48 . The variables in the legend are explained in Table 13.

To verify how the negotiation behaviors affect the transferring process of

active boxes, the data of negotiation behaviors is categorized by the box clusters. In

other word, we gather the data from boxes which leave at the same gate. Then, we

run linear regressions on every cluster’s data. In Section 4.3.2, we state that some

negotiation behaviors do not delay the transferring processes of active boxes. Their

effect cannot be seen in the result of the regression model. Hence, we only include

negotiation behaviors that delay the transferring process in the regression models.

The raw data of x4 , x5 and x8 , x9 are also combined before running the model
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(x46 = x4 + x6 , x810 = x8 + x10 ), because both of them cause the same delay.

y = c0 + c1x1 + c2x2 + c3x3 + c46x46 + c5x5 + c810x810 + c9x9 + c14x14

A sample of the coefficients and adjusted R-square are displayed in Table 14.

Based on the coefficients, all of the muted activities have positive effects on

increasing the length of transferring, which means they can delay the transferring of

process. Additionally, we have extra 239 regression results based on the experiment

settings and departure gates of boxes. We omit these result here. If the reader need

to read the result, please contact the author.

TABLE 14: Samples of regression result. The experiment settings are: xwk = 1 , and

xemp = 16 . The data is collected from the upper left corner gate of the left edge.

Variables Estimate Std. Error t-value Pr(>|t|)

(Intercept) 4.213831351 0.158807708 26.53417396 1.29E-149

x1 1.363541065 0.024669446 55.27246287 0

x2 1.649634454 0.015254744 108.1391138 0

x3 7.519686015 0.122179489 61.54622228 0

x46 8.795853765 0.080180133 109.7011622 0

x5 1.478583312 0.269020143 5.496180672 3.98E-08

x810 9.207924756 0.154512154 59.59353041 0

x9 0.951490659 0.239842568 3.967146735 7.33E-05

x14 2.943257252 0.730400117 4.029650576 5.63E-05

Adjusted R square 0.923302353

5.4 Conclusion

We have examine several factors affecting the performance of GridHub by

measuring the system throughput.

First, the operational modes affect the transfer task assignments, and then

the system throughput changes after the transfer task assignments change.
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If the operational modes are fixed to m2, the aspect ratios and expect path

selections can both affect the system throughput. When xasp = 1 results the highest

throughput in most of the situations. The guide of expect paths can also affect

system performance, but its effect is weaker than the aspect ratio.

If fix all factors above, we found that the empty number of conveyor modules,

the limitations of task re-assignment, and the forward attempt can change the

system performance. Enabling the forward attempt is good for higher throughput;

increasing the number of empty modules results higher throughput, but reduces the

space utilization; increasing the limitation of task re-assignment has better effects

when the number of working boxes is high.

The transferring processes of active boxes reflects the system throughput.

These processes are interfered by the occurrences of negotiation behaviors, and the

system settings affect the occurrences of the behaviors.
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CHAPTER 6

GRIDHUB FOR NON-UNIT-SIZED BOXES

The flexibility and high throughput of GridHub enables it to handle various

applications. For example, GridHub is capable of working as the π-hub of the

Physical Internet (Montreuil, 2011; Meller et al., 2013; Ballot et al., 2012). In

regular warehouses, GridHub can be used as an automatic storage and retrieval

system. However, in many practical applications or conceptual systems, such as

warehouses or the Physical Internet, cartons or π-containers (Montreuil, 2011) have

different sizes. If we make every conveyor module in GridHub capable of handling

one storage item, then this would make the required conveyor module very large

(see Figure 110), which waste significant space.
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Figure 110: Using one type of big conveyor to fit boxes with different sizes.

We modify the GridHub algorithm to accommodate non-unit-sized boxes. We

refer to this new system as NU GridHub (GridHub which can only handle unit-sized

boxes is called GridHub or unit-sized GridHub). In the unit-sized GridHub, one

conveyor module can only hold one box, and one box only occupies one conveyor

module. In NU GridHub, one box may occupy multiple conveyor modules.

Additionally, similar to the unit-sized GridHub, the entire NU GridHub is assumed

to be a rectangle, and the boxes in NU GridHub are rectangular (Figure 111). In

this chapter, we describe NU GridHub, its control algorithms, and its system

performance.
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Figure 111: Example of a NU GridHub. The white triangles indicate the boxes’

active directions.

6.1 Description of NU GridHub

NU GridHub also consists of identical square conveyors, that can

communicate and move boxes to their four neighbors. The system architecture of

NU GridHub is the same as the unit-sized GridHub’s, but NU GridHub is capable

of moving both unit-sized and non-unit-sized boxes.

6.1.1 Box sizes and organization of conveyor modules

Boxes in NU GridHub have different sizes, and they can occupy more than

one conveyor. We use bi to represent an individual box, and the size of a box by two

numbers x×y. Variable x is the number of conveyor modules the box occupies

counted along horizontally axis; y is the number of conveyor modules along the

vertical axis (See examples in Figure 112).
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Figure 112: Examples of boxes in NU GridHub. The sizes of b1 to b5 are 2 ×3 ,

2 ×2 , 1 ×3 , 3 ×1 , and 1 ×1 respectively.

Conveyor modules occupied by the same box are called a group in this

chapter. Since a box can be expressed as bi , we call the group of conveyors under bi

“bi ’s group,” or use bi to indicate the group directly. To organize every group of

conveyor modules occupied by a single box, relationships among these conveyor

modules have to be established based on the conveyors’ neighborhoods. This

relationship is called the master-slave relation of conveyor modules.

If every conveyor module that is in a group is considered a vertex in a graph,

we can use two tree structures to describe the relationships of the conveyor module

group. These structures are similar to those described by Dominik et al. (2016), but

we define two trees, and they have more functions. We use the example in

Figure 113 to further illustrate this structure. Some special cases of the tree

structure are in Figure 114.
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Figure 113: General example of tree structure. The first tree structure is named S1 .

S1 ’s root is the upper-left conveyor module (c1 ) covered by the box. We call this

conveyor module the upper-left root master (MULr). A module’s slave in this

structure is “upper-left horizontal slave” (SULH ) or “upper-left vertical slave”

(SULV ).

We name the second tree structure S2 . S2 is rooted at the lower-right conveyor

module (c9 ). This conveyor module is the down-right root master (MDRr). A

module’s slave in this structure is “down-right horizontal slave” (SDRH ) or

“down-right vertical slave” (SDRV ).

The details of the master-slave relationship are in Table 15.
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Figure 114: Special examples of tree structure. c1 is the MULr , and c2 is the

MDRr ; two conveyor modules can be the same conveyor module, such as the 1 ×1

box in Figure 113.

In Figure 113 and 114, the purple arrows represent the details of S1 and S2 .

In S1 , when a purple arrow points away from one conveyor module (for example c2

in Figure 113) to another conveyor module (for example c3 in Figure 113), it means

that c2 is c3 ’s master, and c3 is c2 ’s master. More details are listed in Table 15.

Additionally, we use purple arrows to indicate message passing activities in this

relationship.
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TABLE 15: Details of the master-slave relationship using the group in Figure 113 as

an example.

Conveyor MUL SULH SULV MDR SDRH SDRV

c1 itself c2 c4 c4 no no

c2 c1 c3 c5 c5 no no

c3 c2 no c6 c6 no no

c4 c1 no c7 c7 no c1

c5 c2 no c8 c8 no c2

c6 c3 no c9 c9 no c3

c7 c4 no no c8 no c4

c8 c5 no no c9 c7 c5

c9 c6 no no itself c8 c6

6.1.1.1 Forward face

The forward face is a group of conveyor modules covered by one edge of a

box. The size of a forward face is the number of conveyor modules it covers, which

is equal to the x or y value. Every group of conveyors has four forward faces, which

is up, down, left and right (See example in Figure 115).

MULr leads the activities of all conveyor modules in the left and up forward

faces; MDRr leads the activities of all conveyor modules in the down and right

forward faces; Hence, we call MULr the corresponding master of the up and left

direction; MDRr is the corresponding master of the down and right direction. When

a negotiation message is passed by a group of conveyors, the corresponding master

MULr or MDRr passes the message first. For example in Figure 115, when the

group passes a message to the right, c9 passes to its right neighbor c18 first. Every

master module also asks its slave module to repeat the same message passing

activities: c9 also ask c6 to pass a copy of the same message to c17 , and c6 does the

same. The message in this case is duplicated along one forward face. Hence, this

forward face is the corresponding forward face, which is in a message passing
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direction, when we describe passing messages.

The corresponding side of a forward face or corresponding side is the set of

neighbor modules of the forward face, but they are not the members of the conveyor

group. When a group of conveyors tries to move a box, all modules of the

corresponding side have to be in empty without movement state (see Figure 115).

𝑐"𝑐# 𝑐$ 𝑐#%

𝑐&𝑐' 𝑐( 𝑐##
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𝑐""𝑐#( 𝑐#+ 𝑐"$

𝑐"#

Figure 115: Forward face example. {c3 ,c6 ,c9} is the right forward face of the left

box, and this forward face’s size is 3 ; the up forward face of the group, which is

covered by the 1 ×2 box, is c13 ; the left or right forward faces of the 1 ×2 box are

both {c13 ,c14}; c19 are the left, right, up, and down forward face of the “group”

under the 1 ×1 box.

{c10 ,c11 ,c12} are the corresponding side of the right forward face of the 3 ×3 box’s

group. When arranging the box to move right, they have to be empty with out any

confirmations.

6.1.1.2 Building procedures of the tree structures

The process of building the relationships are represented in Figure 116

to 119. The build process starts at MULr , and S1 is built earlier than S2 . When a

box enters the system or it moves to a new destination, MULr starts to perform this

procedure.
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Figure 116: Steps of building S1 (part 1). The building process starts at MULr .

While connecting conveyor modules, the box information is also spread among these

conveyors.
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Figure 117: Steps of building S1 (part 2). The build process continues until all

conveyor modules underneath a box are connected.
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Figure 118: Steps of building S2 (part 1). The building process starts at MDRr .
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𝑐%𝑐& 𝑐'

𝑐(𝑐) 𝑐*

(a)

𝑐"𝑐# 𝑐$

𝑐%𝑐& 𝑐'

𝑐(𝑐) 𝑐*

(b)

Figure 119: Steps of building S2 (part 2).

6.1.1.3 Use cases of S1 and S2

S1 and S2 are used to share information and pass messages with the group of

conveyor modules occupied by a single box.
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Case 1 In this case, the group of conveyor modules is preparing to move a box.

All of the box’s information, which is stored in every member of the group except

MULr , is cleared sequentially in S1 . When moving the box, MULr orders group

members to move. MULr keeps all of the box’s information and transfer tasks. At

the new conveyor module, new relationships are built by the methods described

previously.

Case 2 In this case, the group of conveyor modules share their box’s information

or transfer tasks with the other members in the group (Figure 120a).

𝑐"𝑐# 𝑐$

𝑐%𝑐& 𝑐'

𝑐(𝑐) 𝑐*

(a) Report information changes.

𝑐"𝑐# 𝑐$

𝑐%𝑐& 𝑐'

𝑐(𝑐) 𝑐*

(b) Distribute information changes.

Figure 120: Example of use case 2. When c6 needs to make changes in the box’s

transfer task, c6 reports updates via S1 back to MULr along the purple arrows.

After the changes is reported, MULr distributes the updated information to every

member through S1 along the arrows.

Case 3 In this case, the group of conveyor modules process a negotiation message

(See Figure 121 and 122 for examples). We call the entire process in this example

the report-execution process.
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𝑐"𝑐# 𝑐$

𝑐%𝑐& 𝑐'

𝑐(𝑐) 𝑐*

(a) Report the received negotiation

message.

𝑐"𝑐# 𝑐$

𝑐%𝑐& 𝑐'

𝑐(𝑐) 𝑐*

(b) Execute the decisions.

Figure 121: Example of use case 3 (report and executing). When a seek message

having a right passing direction is received by c7 , it reports the message to MULr

(c1 ) through S1 . The negotiation message is processed at MULr . Suppose the

decision is to pass the seek message, the seek message is delivered to MDRr

according to the message’s passing direction.
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𝑐"𝑐# 𝑐$

𝑐%𝑐& 𝑐'

𝑐(𝑐) 𝑐*

(a) c9 starts duplicating the activities.

𝑐"𝑐# 𝑐$

𝑐%𝑐& 𝑐'

𝑐(𝑐) 𝑐*

(b) Continue to duplicating.

Figure 122: Example of use case 3 (duplication of passing messages). MDRr (c9 )

leads all conveyor modules in the forward face to pass the messages, which is the

process of duplicating messages.

6.1.2 Adjacent types of forward faces

In the unit-sized GridHub, when two boxes are held by two neighboring

conveyor modules, these two boxes face each other. A negotiation message passes

from one conveyor module to its neighboring conveyor module completely, which

means no other conveyor module can receive the message. In NU GridHub, the

above scenario is not always true. To avoid mistakes and to simplify the negotiation

procedure, we classify the case when two or more boxes are adjacency to each other.

We call this adjacency types of a forward face.

Clear: a forward face’s adjacency type is clear if it meets this condition: the

corresponding side of the forward face is completely empty with no movement

confirmation (Figure 123).
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𝑏"

Figure 123: Clear: all forward faces’ adjacency types of b1 in are clear.

Empty confirm: a forward face’s adjacency type is empty confirm if the

conveyor modules in the corresponding side of a forward face are completely empty

with movement confirmations in perpendicular direction(Figure 124).

𝑏"

𝑏#

Figure 124: Empty confirm adjacent type: one module in the corresponding side of

b1 ’s right forward face is empty, but this conveyor module has an up movement

confirmation. Then, the adjacency type of b1 ’s right forward face is empty confirm.

Straight: a forward face’s adjacency type is straight if the corresponding side

of a forward face belongs completely to another group of conveyor modules which

hold an entire box, and the two boxes have the same sized forward faces
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(Figure 125). Furthermore, the adjacency types of the forward faces, which belongs

to two neighbored unit-sized boxes, are both straight.

𝑏"

𝑏#

Figure 125: Straight adjacent type: the adjacency type of b1 ’s right forward face

and b2 ’s left forward face are straight.

Semi-straight: a forward face’s adjacency type is semi-straight if a pair of two

contacted forward faces have different sizes, and one of forward face’s neighbors

belong to the same group of conveyors that carries another box (Figure 126).

𝑏"

𝑏#

Figure 126: Semi-straight adjacent type: the adjacency type of b1 ’s right forward

face and b2 ’s left forward face are semi-straight.

Lapped: a forward face’s adjacency type is lapped if one or more of forward
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face’s neighbors do not belong to the same group of conveyors that carries another

box (Figure ??).

𝑏"

𝑏#

Figure 127: Lapped: the adjacency type of b1 ’s right forward face and b2 ’s left

forward face are lapped.

A more complex example is in Figure 128.

𝑏"

𝑏#

𝑏$

Figure 128: Mixed adjacency types: the adjacency type of b1 ’s right forward face

and b2 ’s left forward face are lapped, but the adjacency type of b3 ’s left forward

face is semi-straight.

The conveyor module on the forward face detects its adjacency type in every

iteration, and the adjacency type may be updated during the negotiation. While the
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negotiation is in process and there is a need to change adjacency types, the conveyor

module receiving the change request sends a message to the root master module

which leads the forward face. When the root master receives the request, it replies

with a message along the forward face, and it also reports to MULr using S1 .

There are many methods to detect the adjacency type of a forward face. We

briefly described one method in this dissertation: First, MULr and MDRr send

messages along the forward faces together (see Figure 129a). Second, based on the

information of the neighbors of every forward face, the messages record different

“votes.” Third, the module at the other end of a forward face decides the adjacency

type by vote counting. Finally, the result is marked at every conveyor module of the

forward face and reported to MULr via S1 (see Figure 129b).

𝑏"

𝑏#

(a) Collect information.

𝑏"

𝑏#

(b) Mark the adjacency type

Figure 129: Steps of one method to detect adjacency types. First, pass message to

collect the related information of every member of every forward face. Then, mark

the adjacency type at every conveyor, and report to MULr .

6.1.3 Storing and comparing of negotiation messages

In NU GridHub, conveyor modules can change the negotiation message’s

content while they are processing messages, and these messages may be duplicated

when they are passed by the modules of a forward face. Consequently, the conveyor
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modules can produce different versions of messages. Processing multiple versions of

messages may cause problems. Hence, the conveyor modules have to record and

compare the content of negotiation messages.

To store and compare messages, the class of a message is defined according to

the nested attempts which the message belongs. The details of a message class are

in Table 15, and examples are in Figure 130, In every conveyor module, based on

the classes, types (seek, confirm, and fail), and the current passing direction of

messages, several buffers are established to store the content of messages being

processed. Furthermore, the current passing direction of messages is the passing

direction of a message when it is saved to a buffer.

TABLE 16: Definition of message classes.

Class Nested Attempts

1 N1 or N1 ([N2 ,N3 ,N4 )

2 N2 or N2 ([N3 ,N4 )

3 N3 or N3 (N3 )

4 N4

𝑐"𝑏$

𝑏"

𝑐$%

Figure 130: Example of class 1 and 2 message. when a seek message of N2 is

initiated by the group containing ca
1 , its class is 2 . When the message is processed

by the group, which c2 is in, then its class is 1 because c2 processes N1 (N2 ).
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Additionally, every negotiation confirmation at every conveyor module

associates with the negotiation message which triggers the conveyor module to mark

the confirmation, and the message is stored in a specific buffer. Besides the buffer to

store the messages that mark confirmations, the following special buffers also exist

in every conveyor module:

• Buffers of messages mark fake confirmations.

• Buffers of messages with a potential paths of (N1 or N1 ([N2 ,N3 ,N4 ])) are

overwritten.

• Buffers of messages with potential paths of (N1 ) are overlapped.

All buffers at every conveyor module are cleared to empty at the end of each

iteration.

When a conveyor stores a message into a buffer, a conveyor finds the buffer

based on the message’s class, type and current passing direction. Then, the

conveyor module copies the entire content of the message into the buffer. For

example, ca
1 in Figure 130 stores the seek message, which is class 2 , seek, and right,

to a buffer; c2 in Figure 130 stores the seek message, which is identifiable to a buffer

as class 1 , seek, and down.

The property of a negotiation message includes the following attributes in the

message’s content:

• The original active conveyor module that initiates messages.

• The attempt belongs to (N1 to N4 ).

• The current and historical message passing direction. For example, the

historical passing direction of the message (N1 (N2 )) in Figure 130 is the right

(passing direction of N2 which the N1 (N2 ) nests in).

In NU GridHub, the fingerprint of messages are only defined for messages

belonging to class of 1 , which has the additional attributes:

• Message property
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• Groups of conveyor modules which have passed this message, and every MULr

of these groups is not in the same row or column of the MULr , which last

passes the class 1 message. Additionally, while a class 1 message is being

passed, the ID of the MULr , which meets the above condition, needs to be

assigned to the message.

• The conveyor module group, which last processed this message.

• The group of conveyor modules, which initiate the N1 or N1 ([N2 ,N3 ,N4 ]).

The purpose of comparing negotiation messages is to decide whether the

same or a similar copy of a message has been processed before. The comparison is

based on the messages’ properties or fingerprints, and a comparison’s result in a

Boolean (yes or no). For example, in Figure 130, suppose another seek message is

being processed by ca
1 , ca

1 finds a seek message buffer based on the message’s class

and current passing direction. Let us assume the message being processed has class

2 , and its current passing direction is right. Then, ca
1 compared all the stored

messages to the properties of the message that is being processed. If the message

being processed also belongs to attempt N2 , but the original active conveyor module

is different than the message displayed in Figure 130, then they do not have the

same properties.

6.1.4 Special rules of attempts

Based on the negotiation rule of the unit-sized GridHub, there are special

rules for NU GridHub:

Forward face sizes and forward attempts If the active box has a forward face

with a size greater than 1 , then no forward attempt is allowed (See the example in

Figure 131 for details). Though we have methods to solve the confusion in in

Figure 131, this confusion increases the complexity of processing messages. Hence,

we disable forward attempts in this case.
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𝑐"

𝑐#

Figure 131: Example of restricting forward attempt. Let the group of conveyor

modules carrying b1 confirms a right movement in N1 . In this case, the

corresponding side of the right forward face does not initiate a forward attempt.

Otherwise, the negotiation messages initiated by these empty conveyor modules may

have different content, and other groups of conveyor modules may be confused. For

example, if c1 and c2 initiate two N2 respectively, and N1 (N2 ) have different

passing directions, then the modules that process both of these messages are

confused.

N1 and tandem movements active boxes In a unit-sized GridHub, N1 only

arranges single or tandem movements of active boxes. This is the major difference

of N1 and N1 ([N2 ,N3 ,N4 ]). In NU GridHub, N1 can arrange the movements of

non-active boxes. The reason to add this rule is to increase the transfer speed of

active boxes or to avoid live-locks in NU GridHub. Example is in Figure 132.
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𝑏# 𝑏$

Figure 132: Bigger forward face can arrange movements of non active boxes in N1 .

The active box (b1 ) randomly decides whether to move the non-active box in N1 ,

but the 2 ×1 box (b3 ) never allows this type of movement to right.

Movement restriction of initiating N1 ([N2 ,N3 ,N4 ]) To solve this problem

shows in Figure 133, we recall the movement restriction to assign transfer tasks. In

this case, we only check whether the box is moved from one direction, but do not

try to arrange movement in the opposite direction. Additionally, this restriction is

only effective when the corresponding forward face’s size is greater than 1 . When

groups of conveyor modules pass N2 or N2 ([N3 ,N4 ]), they judge the size of the

corresponding forward face and decide whether to change the content of the

negotiation message. After the content of the message is changed, the conveyor

module that initiates N1 ([N2 ,N3 ,N4 ]) knows whether to implement this rule.
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(a) Layout 1

𝑏"

𝑏#

(b) Layout 2

Figure 133: The sense of cyclically moving a box in a NU GridHub. The group of

conveyor modules may cyclically move b1 in front of b2 in a N1 ([N2 ,N3 ,N4 ])

(repeat switching between Layout 1 and Layout 2).

If the restriction is implemented, the box will try to move up in the next iteration

instead of moving down.

Check adjacency type before passing message When passing seek messages

of different attempts, the MULr of a conveyor module group decides whether to

pass or reply fail, according to the adjacency type of the corresponding forward face.

First, when a seek message of the other attempts (N2 to N4 ) are being

processed by a group of modules:

• If the corresponding forward face’s adjacency type is clear, straight, or

semi-straight, the conveyor module group can pass the message.

• If the corresponding forward face’s adjacency type is empty with confirmation

or is lapped, every member of the forward face can pass the message only when

the destination of the message is occupied.

Second, when a seek message of seek message of N1 or N1 ([N2 ,N3 ,N4 ]) are

being processed by a group of modules:
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• If the corresponding forward face’s adjacency type is clear, straight, or

semi-straight, the conveyor module group can pass the message.

• If the corresponding forward face’s adjacency type is empty with confirmation,

the conveyor module group cannot pass the message.

• If corresponding forward face’s adjacency type is lapped (see Figure 134).

𝑏"

𝑏#

𝑏$

Figure 134: Example of pass seek message when the forward faces’ adjacency types

are lapped. Suppose b1 ’s group initiates a N1 that allows tandem movements.

Groups b2 or b3 can pass the seek message only when the vertical distance between

b2 or b3 ’s MULr and b1 ’s MULr is less than two times b1 ’s right forward faces. For

seek messages that have different passing directions, the condition is symmetric.

Backtrack confirms or fails When a group of conveyors passes a confirm or fail

message of N1 or N1 ([N2 ,N3 ,N4 ]), MULr needs to initiate a backtrack message to

change related information to the empty conveyor on the “back” of the message

passing direction.

After an empty module processes a backtrack confirmation message:

1. It checks whether the seek message in the buffer with the same property has

been processed. If not, it does nothing; else,

2. it follows the same rule as the unit-sized GridHub to judge whether to mark

confirmation. If no not, it does nothing; else,
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3. it marks confirmation, stores the backtrack confirmation message and sends

messages to the perpendicular neighbors to ask them to change their forward

faces’ adjacency type to “empty confirm.”

After an empty module processes a backtrack fail message:

1. It checks whether the seek message in the buffer with the same property has

been processed. If not, it does nothing; else,

2. it checks whether there are confirmations placed;

• If not, it sends messages to the perpendicular neighbors to ask them to

change their forward faces’ adjacency types to “empty confirm.”

• If so, it performs the above actions, and it tries to remove the confirmation

by comparing the property of stored confirmation messages to the

backtrack messages.

Example is in Figure 135: when a fail message is passed to b1 ’s group, steps

of backtrack fail are proceeded sequentially.
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(a) Step 1
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(b) Step 2
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𝑏#

(c) Step 3

Figure 135: Steps of passing backtrack fail messages.

Remove wrong confirms When a fail message of N1 or N1 ([N2 ,N3 ,N4 ]) is

processed at any MULr , the new fail messages are created and passed back to the

original group of conveyor modules. This process only occurs for the messages

stored in the special buffers having the same message passing direction. Fail

messages having the opposite passing directions to messages in the seeking buffers

are also created for all messages.
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6.1.5 Passing negotiation messages

We list the procedure of passing negotiation messages, using the concepts

explained above.

6.1.5.1 Passing seek messages of [N1 ,N1 ([N2 ,N3 ,N4 ])]

The empty module follows the same rule as the unit-sized GridHub to decide

whether to reply a confirm or fail message when processing a seek message. After

the empty module decides to reply with a confirm, the steps are the same as when it

process a backtrack confirm message.

When a seek message is received by any member of a group conveyor module,

the message is reported through S1 to MULr (see use case 3 in Section 6.1.1). All of

the decisions are made by MULr . Besides the rules defined for the unit-sized

GridHub, it also needs to:

1. Check the adjacency types and movement restrictions to decide whether to pass

the message. If the check result is not, it replies fail; else,

2. Check whether there are processed fail messages with the same properties. If

the check result is yes, it replies fail; else,

3. Check whether the processed seek messages have the same fingerprint. If yes, it

does nothing; if not, it passes the message following the execute procedure (see

use case 3 in Section 6.1.1). The seek message also needs to be put into the

corresponding message buffer.

6.1.5.2 Passing confirm messages of [N1 ,N1 ([N2 ,N3 ,N4 ])]

When any member of a group of conveyor modules receives a confirm

message, it reports the message through S1 to MULr . Besides the rules defined for

the unit-sized GridHub, it also needs to (steps also in Figure 136):

1. Check whether there are processed seek messages with the same properties. If

no, it does nothing; else,

2. Check whether there are fail process messages with the same properties. If yes,

it stops passing the confirm message and starts to “remove wrong confirms.” if
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no, the following possibilities exist:

• Check whether there are processed confirm messages with the the same

fingerprint. If yes, it does nothing. If not, it marks confirmation and stores

this message as “confirm by message.” Then, it passes the confirm

message, sends backtrack confirms, and also stores the message to a

corresponding buffer.

• Check whether there are confirmed messages being overwritten, the

process of “removing wrong confirms” also needs to be started. This

confirm message is recorded by overwriting other messages.

• If the confirm message makes fake confirmations, it also needs to be

recorded.

Pocessed seek 
messages with the 
same proper�es.

Pass 
message 
to MUL_r

Do nothingNO

Processed fail 
messages with the 
same proper�es

YES

Stop process the confirm message, and 
perform remove wrong confirmYES

Processed confirm 
messages with the 
same proper�es

NO YES Do nothing

NO

1. Marks confirma�on and stores this 
message as “confirm by message.”
2. Passes the confirm message
3. Sends backtrack confirm
4. Check whether there are confirmed 
messages being overwri�en, the process 
of ``removing wrong confirms'' also needs 
to be started. This confirm message is 
recorded by overwri�ng other messages
5. If the confirm message makes fake 
confirma�ons, it also needs to be 
recorded

Pocessed seek 
messages with the 
same proper�es.

Pass 
message 
to MUL_r

Do nothingNO

Processed fail 
messages with the 
same proper�es

YES

Stop process the confirm message, and 
perform remove wrong confirmYES

Processed confirm 
messages with the 
same proper�es

NO YES Do nothing

NO

1. Marks confirma�on and stores this 
message as “confirm by message.”
2. Passes the confirm message
3. Sends backtrack confirm
4. Check whether there are confirmed 
messages being overwri�en, the process 
of ``removing wrong confirms'' also needs 
to be started. This confirm message is 
recorded by overwri�ng other messages
5. If the confirm message makes fake 
confirma�ons, it also needs to be 
recorded

Figure 136: Actions to passing a confirm message of [N1 ,N1 ([N2 ,N3 ,N4 ])].

6.1.5.3 Passing fail messages of [N1 ,N1 ([N2 ,N3 ,N4 ])]

When a fail message is received by any member of a group (when the

conveyor module is occupied), the message is reported through S1 to MULr .

167



Besides the rule defined for the unit-sized GridHub, it also needs to:

1. Check whether there are processed seek messages with the same property. If

not, it does nothing; else,

2. Check whether there are processed fail messages that have the same fingerprint.

If yes, it does nothing; else,

3. Check whether there are processed confirm messages that have the the same

property. If yes, it clears confirmations marked with the confirm by a message

with the same property. Then, it starts the process of “remove wrong

confirms,” and passes the fail message; if no, it just passes the fail message.

Every conveyor module can only remove negotiation confirmations by

processing fail messages. Since every confirmation mark is associated with the

message which triggers the module to mark it, the conveyor module has to ensure

that the fail message has the same property as the message that marks the

confirmation before removing the confirmation.

6.1.5.4 Examples of passing messages of [N1 ,N1 ([N2 ,N3 ,N4 ])]

One example of passing confirm and fail messages is in Figure 137 to

Figure 139. In these examples, while fail messages are generated or sent, activities

of removing wrong confirmations are performed. These message passing activities

are not shown in the figures.
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Figure 137: Example of passing seek messages. The seek message initiated by b1

arrives at c2 later than the seek message initiated by b3 . Hence, both the fail and

confirm messages are passed to MULr of b2 . It is possible for MULr of b2 to process

either one first.
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𝑏$

Figure 138: If process the fail message first. If the MULr of b2 processes the fail

message first, the confirm message will not pass because the fail message with the

same properties is stored in the buffer. The MULr of b2 also triggers backtrack for

the fail message.
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Figure 139: If process the confirm message first. If the MULr of b2 processes the

confirm message first, the fail message can be passed following the confirm message.

The fail message also removes confirmations because the confirm messages with

same properties are stored in the buffer. The MULr of b2 also triggers backtrack for

both confirm and fail messages.

6.1.5.5 Passing negotiation messages of other attempts

When a negotiation message is received by any occupied member of a group

of conveyor modules, the message is reported through S1 to MULr . Besides the rule

defined for the unit-sized GridHub, it also needs to:

1. Check whether there are processed messages with the same property. If yes, it

does nothing; if no,

2. It passes the message and records the message to buffer.

When the seek message is duplicated along the forward face, the rules are

described above. When an empty conveyor receives a negotiation message, the rules

are the same as the unit-sized GridHub’s.

6.2 System Performance

The way of measuring the performance of NU GridHub is different than the

method used by the unit-sized GridHub. In NU GridHub, the number of boxes is
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much smaller in the unit-sized GridHub. The storage density is lower too. Hence,

considering the number of working boxes and empty conveyors is not helpful when

exploring the system performance.

Since NU GridHub can hold boxes with different sizes, there are many

combinations of box sizes. For example, there are 10 boxes in a NU GridHub. In

these 10 boxes, 5 of them have size 3 ×1 , and the other 5 boxes have size 2 ×2 . If

we consider more various sizes of boxes, the above combination have more cases,

which even closes infinite. In order to measure the relationships between these two

factors and the system throughput, we consider some of these combinations with

different system setups.

6.2.1 Experiment setups

We use a NU GridHub with 12 rows and 12 columns (excluding the system

edges). NU GridHub used for experiments is displayed in Figure 140. The gates are

placed on the edges of the system. For any group of conveyor modules, if the

conveyor module holds a box assigned departure information, the MULr faces the

gate directly. For instance, the box in Figure 140 leaves at gate 4 on the down edge,

and its MULr is in the same column of the gate.

The experiments are all run by simulations in AnyLogic. We use the

“CONWIP” (Gue et al., 2014) rule to operate the system: When a box is assigned

to one gate and leaves the system, another box is randomly selected to be assigned

for departure information, leaving at the same gate. Each of the settings in Table 17

is run for 8000 iterations for every replication, with the first 800 iterations marked

as the warm-up period. Every setting in this table is replicated 50 times.
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Figure 140: NU GridHub used for experiments.
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TABLE 17: Experiment settings.

Name Box sizes
Number

of boxes
Density Gates used

E1 1 ×2 36 0 .5 4, 8

E2 2 ×1 36 0 .5 4, 8

E3 2 ×2 18 0 .5 4, 8

E4 2 ×2 , 2 ×1 , 1 ×2 , 1 ×1 36 0 .5625 4, 8

E5 3 ×2 8 0 .5 4, 7

E6 2 ×3 8 0 .5 4, 7

E7 3 ×3 8 0 .5 4, 7

E8 3 ×3 , 3 ×2 , 2 ×3 , 3 ×1 , 1 ×3 ,

2 ×2 , 1 ×2 , 2 ×1

16 0 .4861 4, 7

6.2.2 Results

The throughput (boxes released from every gate) of different settings is in

Figure 141 and 142.
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Figure 141: Throughput (the total number of boxes leave) of gates when the

maximum size of boxes is 2 ×2 . Each column represents a gate’s throughput. The

columns are gathers by the sizes of boxes in system (from left to right): 1 ×2 ,

2 ×1 , 2 ×2 , and mixed sizes (1 ×1 , 1 ×2 , 2 ×1 , 2 ×2 ).
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Figure 142: Throughput (the total number of boxes leave) of gates when the

maximum size of boxes is 3 ×3 . Each column represents a gate’s throughput. The

columns are gathers by the sizes of boxes in system (from left to right): 2 ×3 , 3 ×2 ,

3 ×3 , and mixed sizes (1 ×2 , 2 ×1 , 2 ×2 , 1 ×3 , 3 ×1 , 2 ×3 , 3 ×2 , and 3 ×3 ).

For the mixed cases (s4 and s8), the average transferring time (measured by

the number of iterations) of same sized boxes are displayed in Figure 143 and 144.
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Figure 143: The average retrieval time of boxes with different sizes (part 1). Each

column represents retrieval time of one box size (from left to right): 1 ×1 , 1 ×2 ,

2 ×1 , 2 ×2 .
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Figure 144: The average retrieval time of boxes with different sizes (part 2). Each

column represents retrieval time of one box size (from left to right): 1 ×2 , 2 ×1 ,

2 ×2 , 1 ×3 , 3 ×1 , 2 ×3 , 3 ×2 , and 3 ×3 .

The results suggest that the throughput of every gate is not equal. Even for a

pair of gates with the same location on a pair of edges, they do not have equal

throughput. For example, the gates on the left edge may have lower throughput

than the gates on the right edges. The reason is the messages, which have different

passing directions, take different times to reach a MULr in a group. Consequently,

the MULr always processes the messages in one direction before processing the

messages in the opposite direction. This effect is obvious when a group of modules

process a message to start N1 ([N2 ,N3 ,N4 ]). One example is in Figure 145.
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Figure 145: Message processing sequence. b1 and b3 are active. When both try to

initiate N2 at MULr of b2 , the seek message from b3 is always received earlier than

the seek message from b1 . Consequently, boxes with left active direction may move

faster than the boxes with the right direction. In Figure 141, when there is only

2 ×2 box, then the gates on the left edges have higher throughput than the gates

on the right edges.

Either b1 or b3 has to wait at least 2 iterations to move their immediate

destinations.

The first reason the boxes move slower than unit-sized boxes is the time it

takes to clear their immediate destination (see Figure 145). The second reason for

slow transfer speed is that more empty conveyor modules are needed to arrange the

movement of boxes (Figure 146). We summarize the following necessary conditions

for moving one or multiple boxes. These two conditions are very hard to meet in

NU GridHub, which reduce the throughput dramatically.

• There are no factors that can make any MULr reply with a fail message to a

seek message of N1 or N1 ([N2 ,N3 ,N4 ]).

• For the forward faces in the moving direction, the empty corresponding sides

have to be available.
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Figure 146: Examples of empty conveyors needed to move a line of boxes. To move

the group of boxes, c1 to c5 have to be available.

Additionally, it is very difficult to find deadlock and livelock-free conditions

for NU GridHub, but we have not encountered any of these problems when we run

hundreds of simulation replications.
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CHAPTER 7

CONCLUSIONS AND CONTRIBUTIONS

7.1 Conclusions

The unit-sized GridHub’s control algorithms are message passing based. All

messages are processed from the message buffer according to the conveyor’s current

state. To solve the competitions of empty modules among active modules, we

introduce priority directions, and the sequencing of different attempts.

When an active conveyor module successfully finds an empty conveyor,

through any attempt of negotiation, box movements can be arranged. The failed

negotiations are summarized as blocks. We have proven that no blocks can ever

persist in the GridHub, and the GridHub is deadlock free.

Conveyor modules perform other patterns of actions, and these actions are

the negotiation behaviors. The negotiation behaviors can affect system

performance, which include mute activities related to livelock. We examine several

special cases of the GridHub and conclude that they are livelock free. For the other

GridHubs, livelock risks are explained, and we list the methods to reduce the risks.

The performance of the GridHub is measured by the system throughput

(boxes released per iteration), which is affected by several factors. The number of

working boxes and the number of empty modules greatly affect the system

throughput. We also measured the occurrence of negotiation behaviors, and show

that they affect the active boxes’ transferring process.

We extend the unit-sized GridHub to the NU GridHub. The NU GridHub is

capable of transferring unit-sized boxes also. In the NU GridHub, the conveyor

modules can build relationships to hold NU boxes, and process negotiations with

additional negotiation methods.

When handling NU boxes, the performance of the NU GridHub is lower than
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the unit-sized GridHub, and the system throughput of every gate may differ due to

the message passing sequence. More empty modules are required to move boxes

which occupy the same number of conveyor modules.

7.2 Contributions

7.2.1 Moving boxes in four directions

This is the first method that enables GridHub to transfer active boxes in four

directions, following the virtual aisle method.

Grid-based systems using the virtual aisle method seek empty spaces to

change locations and move requested items. The GridStore, GridPick, and

GridSequence were all designed to accomplish these activities. When we use this

method to categorize empty modules’ locations, we discover that control algorithms

in GridStore and GridSequence only search and change empty modules’ locations in

category 1 and 2; GridPick provides another method to search and change empty

modules located in category 3, but the method is limited. We develop GridHub

based on the existing systems and introduce a new method for comprehensive

searches in order to find empty modules in the grid. We also introduce priority

directions and muting to solve conflicts that occur during the search process.

GridPick and GridSequence inherit the core algorithms of GridStore. In their

control algorithms, methods were added to “mark” requested items, such as the

“balancing” methods in GridPick. However, GridStore’s control algorithms are still

used to arrange box movements. Hence, the GridStore’ control algorithms are

movement management methods. We use this idea to develop GridHub’s control

algorithms, which are comprehensive movement management methods. This

becomes the foundation for GridHub’s architecture.

7.2.2 Decoupling material handling tasks and box movements

We introduce a new architecture for GridHub, which can separate the control

algorithms of box movements and specific material handling tasks.

In existing grid-based systems, control algorithms are designed to address

specific material handling tasks. In GridHub, control algorithms only address box
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movement, indicated by transfer tasks. We translate material handling tasks into

transfer tasks. Consequently, transfer tasks are the only input for GridHub’s control

algorithms.

With this architecture, GridHub can be easily modified and extended for

future use. For example, we can sort a cluster of boxes in a GridHub, while another

cluster of boxes is retrieved. We can also hold the transfer task assignment for

working boxes to improve transfer efficiency.

7.2.3 Moving non-unit-sized boxes

We also develop a tree-like structure to organize conveyor modules that hold

a single box and provide methods to share information, pass messages, and manage

box movements. In order to pass messages and manage box movements, we create

methods of storing and comparing historical messages. Modules can use these

methods to track details of negotiation and make precise decisions.

7.3 Potential applications

GridHub provides a framework for organizing identical modules and

managing their physical movements in a grid-layout material handling system. The

architecture and control algorithms of GridHub are described on an abstract level.

To communicate, every module buffers and processes the messages it receives

sequentially. Hence, GridHub makes proper decisions when processing messages in

different sequences. This framework can be easily adapted for different material

handling scenarios.

For instance, this framework can be adapted for a storage or sorting system

in a warehouse. Additionally, GridHubs can be stacked to build a multi-level storage

system. The NU GridHub is also an ideal solution for Physical Internet Hubs. We

consider every conveyor module a space for mobile objects, such as AGVs, so this

framework can manage their movements.
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7.4 Limitations and future extension

7.4.1 Limitations

Limitations on a hardware-level should be noted. First, methods for

synchronizing conveyor modules have to be developed. In theory, this goal has been

met, but more work is required at a hardware-level. Additional hardware-level

development is necessary for communication methods among modules, for instance,

a “cloud” or “peer to peer” method. Third, a module’s negotiation requires message

passing methods at a hardware-level.

Livelock also requires additional research. We can prove that GridHub is

livelock free in certain cases, but more work is needed to understand how to avoid

livelock in the general case. For the same reason, it is difficult to obtain analytical

results of the box transferring process. Hence, we need different approaches to

accomplish these goals.

7.4.2 Future extensions

Every research topic has endless questions. Though this work has made the

above contributions, some extensions may be possible. One of the future extensions

could be the job of converting working boxes to active boxes, such as when to

convert a working box to an active box. Because we have shown the number of

active boxes can affect system performance, limiting the conveyor modules to the

assignment of transfer tasks could control the number of active boxes in the system.

Thus, the system performance could be changed.

AnyLogic does not implement modern day computing power, and it only

allows users to run simulations on its own platform. Thus, we need faster simulation

methods and cross-platfrom libraries to simulate a multi-agent system, like

GridHub.

Since we have only considered rectangular grids, the negotiation methods

could also be extended to cases where a grid has arbitrary shape. For example, in

warehouses, storage systems have to be built around pillars, so “holes” may exist in

a grid. Negotiation methods have to be developed to find empty conveyor modules
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in the grids, in this case.
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APPENDIX

Appendix: Additional flowcharts of processing negotiation messages
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Figure 147: Rules of processing N3 and N3 (N4 )’s seek messages.
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Figure 148: Rules of processing N3 and N3 (N4 )’s confirm messages.
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Figure 149: Rules of processing N3 and N3 (N4 )’s fail messages.
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Figure 150: Rules of processing of N4 ’s seek messages.
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Figure 151: Rules of processing N4 ’s confirm messages.
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OC(+)

Figure 152: Rules of processing N4 ’s fail messages.
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Appendix: Results of ANOVA

The TukeyHSD test result does not include the interactions among different

factors and levels.

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = SystemThroughput ~ AspectRatio
* ExpectPath * x_wk, data = clean_final)

AspectRatio
diff lwr upr p adj

2-1 0.07602894 0.07478529 0.07727258 0
3-1 0.21497176 0.21372812 0.21621540 0
4-1 0.10304398 0.10180034 0.10428763 0
5-1 0.02938241 0.02813876 0.03062605 0
3-2 0.13894282 0.13769918 0.14018647 0
4-2 0.02701505 0.02577140 0.02825869 0
5-2 -0.04664653 -0.04789017 -0.04540288 0
4-3 -0.11192778 -0.11317142 -0.11068413 0
5-3 -0.18558935 -0.18683300 -0.18434571 0
5-4 -0.07366157 -0.07490522 -0.07241793 0

ExpectPath
diff lwr upr p adj

2-1 0.016766852 0.0157192874 1.781442e-02 0.0000000
3-1 0.018224630 0.0171770651 1.927219e-02 0.0000000
4-1 -0.001080926 -0.0021284904 -3.336145e-05 0.0400988
3-2 0.001457778 0.0004102133 2.505342e-03 0.0020010
4-2 -0.017847778 -0.0188953423 -1.680021e-02 0.0000000
4-3 -0.019305556 -0.0203531200 -1.825799e-02 0.0000000

x_wk
diff lwr upr p adj

2-1 0.16125514 0.16042755 0.16208273 0
3-1 0.25086306 0.25003546 0.25169065 0
3-2 0.08960792 0.08878032 0.09043551 0

196



CURRICULUM VITAE

Gang Hao

Department of Industrial Engineering

University of Louisville, Louisville, KY 40292

M.S., University of Nebraska-Lincoln, 2011

B.Eng., Nanjing Forestry University, 2008

197


	GridHub: a grid-based, high-density material handling system.
	Recommended Citation

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	 INTRODUCTION
	Motivation
	Objects and structure of this research
	Dissertation organization

	 LITERATURE REVIEW
	Terminology
	Existing grid-based systems
	Other material handling systems with similar features

	The control methods of grid-based systems
	Control architecture and system modeling
	Methods of designing control algorithm
	Deadlock and livelock in grid-based systems
	Handling non unit-sized items in grid-based systems

	Conclude the research gap

	 DESCRIPTION OF UNIT-SIZED GRIDHUB
	GridHub system description
	Conveyor states and representations of states
	GridHub software architecture

	GridHub control algorithms
	Assess phase
	Negotiate phase
	Convey phase

	Examples of an entire iteration and a running system

	 DEADLOCK and LIVELOCK
	Preliminary consideration
	Notations
	Potential paths of successful attempts

	Blocks in GridHub
	List of blocks and solutions
	Starvation of empty conveyor modules

	Negotiation behaviors in GridHub
	List of negotiation behaviors
	Negotiation behaviors and transfer process

	Deadlock
	Livelock
	Introduction of livelock
	Scenarios of the mute and re-activation behaviors
	Absence of livelock in GridHub
	Method to reduce livelock risks in GridHub


	 SYSTEM PERFORMANCE OF UNIT-SIZED GRIDHUB
	Simulation modeling
	Simulation model building in AnyLogic
	Determine warm-up period and replications

	Factors affect the system performance
	Experiments and results
	Operational modes and system performance
	Aspect ratios and options for choosing expect paths
	Number of empty conveyor modules and limitation of task assignments
	Negotiation behaviors and transfer processes of active boxes

	Conclusion

	 GRIDHUB FOR NON-UNIT-SIZED BOXES
	Description of NU GridHub
	Box sizes and organization of conveyor modules
	Adjacent types of forward faces
	Storing and comparing of negotiation messages
	Special rules of attempts
	Passing negotiation messages

	System Performance
	Experiment setups
	Results


	 CONCLUSIONS and CONTRIBUTIONS
	Conclusions
	Contributions
	Moving boxes in four directions
	Decoupling material handling tasks and box movements
	Moving non-unit-sized boxes

	Potential applications
	Limitations and future extension
	Limitations
	Future extensions


	REFERENCES
	CURRICULUM VITAE

	pbs@ARFix@1: 
	pbs@ARFix@2: 
	pbs@ARFix@3: 
	pbs@ARFix@4: 
	pbs@ARFix@5: 
	pbs@ARFix@6: 
	pbs@ARFix@7: 
	pbs@ARFix@8: 
	pbs@ARFix@9: 
	pbs@ARFix@10: 
	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 
	pbs@ARFix@23: 
	pbs@ARFix@24: 
	pbs@ARFix@25: 
	pbs@ARFix@26: 
	pbs@ARFix@27: 
	pbs@ARFix@28: 
	pbs@ARFix@29: 
	pbs@ARFix@30: 
	pbs@ARFix@31: 
	pbs@ARFix@32: 
	pbs@ARFix@33: 
	pbs@ARFix@34: 
	pbs@ARFix@35: 
	pbs@ARFix@36: 
	pbs@ARFix@37: 
	pbs@ARFix@38: 
	pbs@ARFix@39: 
	pbs@ARFix@40: 
	pbs@ARFix@41: 
	pbs@ARFix@42: 
	pbs@ARFix@43: 
	pbs@ARFix@44: 
	pbs@ARFix@45: 
	pbs@ARFix@46: 
	pbs@ARFix@47: 
	pbs@ARFix@48: 
	pbs@ARFix@49: 
	pbs@ARFix@50: 
	pbs@ARFix@51: 
	pbs@ARFix@52: 
	pbs@ARFix@53: 
	pbs@ARFix@54: 
	pbs@ARFix@55: 
	pbs@ARFix@56: 
	pbs@ARFix@57: 
	pbs@ARFix@58: 
	pbs@ARFix@59: 
	pbs@ARFix@60: 
	pbs@ARFix@61: 
	pbs@ARFix@62: 
	pbs@ARFix@63: 
	pbs@ARFix@64: 
	pbs@ARFix@65: 
	pbs@ARFix@66: 
	pbs@ARFix@67: 
	pbs@ARFix@68: 
	pbs@ARFix@69: 
	pbs@ARFix@70: 
	pbs@ARFix@71: 
	pbs@ARFix@72: 
	pbs@ARFix@73: 
	pbs@ARFix@74: 
	pbs@ARFix@75: 
	pbs@ARFix@76: 
	pbs@ARFix@77: 
	pbs@ARFix@78: 
	pbs@ARFix@79: 
	pbs@ARFix@80: 
	pbs@ARFix@81: 
	pbs@ARFix@82: 
	pbs@ARFix@83: 
	pbs@ARFix@84: 
	pbs@ARFix@85: 
	pbs@ARFix@86: 
	pbs@ARFix@87: 
	pbs@ARFix@88: 
	pbs@ARFix@89: 
	pbs@ARFix@90: 
	pbs@ARFix@91: 
	pbs@ARFix@92: 
	pbs@ARFix@93: 
	pbs@ARFix@94: 
	pbs@ARFix@95: 
	pbs@ARFix@96: 
	pbs@ARFix@97: 
	pbs@ARFix@98: 
	pbs@ARFix@99: 
	pbs@ARFix@100: 
	pbs@ARFix@101: 
	pbs@ARFix@102: 
	pbs@ARFix@103: 
	pbs@ARFix@104: 
	pbs@ARFix@105: 
	pbs@ARFix@106: 
	pbs@ARFix@107: 
	pbs@ARFix@108: 
	pbs@ARFix@109: 
	pbs@ARFix@110: 
	pbs@ARFix@111: 
	pbs@ARFix@112: 
	pbs@ARFix@113: 
	pbs@ARFix@114: 
	pbs@ARFix@115: 
	pbs@ARFix@116: 
	pbs@ARFix@117: 
	pbs@ARFix@118: 
	pbs@ARFix@119: 
	pbs@ARFix@120: 
	pbs@ARFix@121: 
	pbs@ARFix@122: 
	pbs@ARFix@123: 
	pbs@ARFix@124: 
	pbs@ARFix@125: 
	pbs@ARFix@126: 
	pbs@ARFix@127: 
	pbs@ARFix@128: 
	pbs@ARFix@129: 
	pbs@ARFix@130: 
	pbs@ARFix@131: 
	pbs@ARFix@132: 
	pbs@ARFix@133: 
	pbs@ARFix@134: 
	pbs@ARFix@135: 
	pbs@ARFix@136: 
	pbs@ARFix@137: 
	pbs@ARFix@138: 
	pbs@ARFix@139: 
	pbs@ARFix@140: 
	pbs@ARFix@141: 
	pbs@ARFix@142: 
	pbs@ARFix@143: 
	pbs@ARFix@144: 
	pbs@ARFix@145: 
	pbs@ARFix@146: 
	pbs@ARFix@147: 
	pbs@ARFix@148: 
	pbs@ARFix@149: 
	pbs@ARFix@150: 
	pbs@ARFix@151: 
	pbs@ARFix@152: 
	pbs@ARFix@153: 
	pbs@ARFix@154: 
	pbs@ARFix@155: 
	pbs@ARFix@156: 
	pbs@ARFix@157: 
	pbs@ARFix@158: 
	pbs@ARFix@159: 
	pbs@ARFix@160: 
	pbs@ARFix@161: 
	pbs@ARFix@162: 
	pbs@ARFix@163: 
	pbs@ARFix@164: 
	pbs@ARFix@165: 
	pbs@ARFix@166: 
	pbs@ARFix@167: 
	pbs@ARFix@168: 
	pbs@ARFix@169: 
	pbs@ARFix@170: 
	pbs@ARFix@171: 
	pbs@ARFix@172: 
	pbs@ARFix@173: 
	pbs@ARFix@174: 
	pbs@ARFix@175: 
	pbs@ARFix@176: 
	pbs@ARFix@177: 
	pbs@ARFix@178: 
	pbs@ARFix@179: 
	pbs@ARFix@180: 
	pbs@ARFix@181: 
	pbs@ARFix@182: 
	pbs@ARFix@183: 
	pbs@ARFix@184: 
	pbs@ARFix@185: 
	pbs@ARFix@186: 
	pbs@ARFix@187: 
	pbs@ARFix@188: 
	pbs@ARFix@189: 
	pbs@ARFix@190: 
	pbs@ARFix@191: 
	pbs@ARFix@192: 
	pbs@ARFix@193: 
	pbs@ARFix@194: 
	pbs@ARFix@195: 
	pbs@ARFix@196: 
	pbs@ARFix@197: 
	pbs@ARFix@198: 
	pbs@ARFix@199: 
	pbs@ARFix@200: 
	pbs@ARFix@201: 
	pbs@ARFix@202: 
	pbs@ARFix@203: 
	pbs@ARFix@204: 
	pbs@ARFix@205: 
	pbs@ARFix@206: 
	pbs@ARFix@207: 
	pbs@ARFix@208: 
	pbs@ARFix@209: 
	pbs@ARFix@210: 
	pbs@ARFix@211: 
	pbs@ARFix@212: 
	pbs@ARFix@213: 


