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ABSTRACT

JOINT LOCATION AND INVENTORY MODELS AND ALGORITHMS FOR

DEPLOYMENT OF HYBRID ELECTRIC VEHICLE CHARGING STATIONS

Jie Zhang

April 24, 2020

This thesis describes a study of a novel concept of hybrid electric vehicle

charging stations in which two types of services are offered: battery swapping and

fast level-3 DC charging. The battery swapping and fast-charging service are

modeled by using the M/G/s/s model and the M/G/s/∞ model, respectively. In

particular, we focus on the operations of joint battery swapping and fast charging

services, develop four joint locations and inventory models: two for the deployment

of battery swapping service, two for the deployment of hybrid electric vehicle

charging service. The first model for each deployment system considers a

service-level constraint for battery swapping and hybrid charging service, whereas

the second for each deployment system considers total sojourn time in stations. The

objective of all four models is to minimize total facility setup cost plus battery and

supercharger purchasing cost. The service level, which is calculated by the Erlang

loss function, depends on the stockout probability for batteries with enough state of

charge (SOC) for the battery swapping service and the risk of running out of

superchargers for the quick charging service. The total sojourn time is defined as

the sum of the service time and the waiting time in the station. Metaheuristic

algorithms using a Tabu search are developed to tackle the proposed nonlinear

mixed-integer optimization model. Computational results on randomly generated
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instances and on a real-world case comprised of 714,000 households show the

efficacy of proposed models and algorithms.
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CHAPTER 1

INTRODUCTION

Greenhouse-gas emissions from conventional internal-combustion-engine

vehicles (ICEVs) make a major contribution to global climate change [1, 2]. One

solution is the large-scale adoption of electric vehicles (EVs) [3], which offer

numerous benefits. First, EVs are more eco-friendly because they significantly

reduce greenhouse-gas emissions mainly carbon dioxide (CO2) from ICEVs. EVs

produce much less noise pollution and cost less to drive than ICEVs. In the U.S.,

the end-user cost of EVs is 2 to 3 cents per mile, compared with 13 cents per mile

for ICEVs [2]. Third, EV batteries can potentially feed electricity into the grid

during the peak-electricity-use time to help level the load of the power grid. This

so-called “vehicle-to-grid” technology may reduce the number of new power plants

required, thus saving generation costs and reducing the overall environmental

footprint. Finally, EVs can help reduce the reliance of the U.S. on imported

petroleum and thereby increase energy security.

On the other hand, several obstacles hinder the mass adoption of EVs.

Unlike ICEVs, which can be refueled in a matter of minutes, recharging EVs

requires more sophisticated equipment and usually takes a much longer time. Even

more challenging is the driving range of a fully charged EV, which is shorter than

that of an ICEV with a full tank. For example, the Nissan Leaf, which is the

best-selling battery electric vehicle in the U.S., offers a range of only 150 to 226

miles with a full battery charge but requires between 0.75 to 35 hours to recharge,

depending on the charging voltage [4]. Furthermore, the number of EV chargers in

the public domain, such as parking lots, office buildings, shopping areas, and

highway rest areas, is far less than the number of gas stations. Overall, slow
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charging speed, short driving range, and inadequate access to charging points

constitute major obstacles to mass adoption of EVs.

To overcome these challenges, the Israeli company Better Place has proposed

a new infrastructure scheme called a “battery-swap station” as a complimentary

charging method. A battery-swap station (BSS) allows an EV to replace a depleted

battery with a fully charged battery in a matter of minutes. The station then moves

the depleted battery into a stockroom to charge it using a smoother and more

eco-friendly current. In this business model, batteries are owned by the charging

service provider and leased to end-users. Such a business model can help users avoid

the risks associated with deteriorating battery performance and can easily detect

battery defects [5]. It also lowers EV selling costs because the cost of a battery

accounts for about one-third of the value of an EV [6]. In addition, the charging

service provider can charge end-users based on battery use [2]. During the 2008

Summer Olympics, such a battery swapping system was implemented for 50 electric

shuttle buses in Beijing. In the summer of 2013, Tesla re-demonstrated the BSS

concept on a much larger scale than Battery Place [7]. At the demonstration event,

the new Tesla BSS completed the battery-swap process in just 90 s, even faster than

the conventional gas refueling process.

Recognizing the benefits of battery swapping, this dissertation proposes the

concept of a hybrid EV charging station that consists of two types of services:

battery swapping and fast level-3 DC charging. Under this concept, the first choice

for battery recharging is to swap the battery, and the second choice is fast DC

charging (the second choice comes into play when the hybrid charging station is out

of fully charged batteries). The advantages of such a hybrid charging facility include

the guarantee of fully charged batteries and the fast overall recharging time,

regardless of the recharging method used for a particular EV.

Although the battery swapping concept offers convenience to EV users,

charging service providers must overcome some unprecedented challenges to make it

a reality. The service provider must decide not only the BSS locations but also the

number of batteries that each BSS should hold. In fact, Avci et al. [8] suggest that
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the number of batteries far exceeds the number of EVs deployed under some service

level. Unfortunately, EV batteries are expensive, so for the BSS business model to

work, battery inventory must be efficiently managed, with a high customer service

level. In addition, travel patterns and demands vary from one region to another, so

BSS locations must correlate with inventory decisions. Given these complexities

involving battery swapping services and stations, we study herein new models that

simultaneously consider BSS location, battery inventory (i.e., stock level for fully

charged spare batteries),, and queueing for battery charging.

In particular, we study two types of BSSs. The first type offers only a battery

swapping service, whereas the second type offers not only a battery swapping

service but also fast on-site level-3 DC charging (a.k.a. “supercharging”) as a

complimentary service when the battery inventory is insufficient to swap out the

batteries of incoming EVs. Two types of service-level constraints are considered.

The first type considers the service level for stations by ensuring that the stockout

probabilities of both batteries and superchargers do not exceed a certain threshold.

The second type of service-level constraint ensures that the total sojourn time in

EV stations does not exceed a pre-determined time. In all models, the objective is

to minimize total cost, which comprises facility fixed costs and procurement costs

for spare batteries for the first type of EV station, plus purchasing costs for

superchargers for the second type of EV station.

This dissertation makes a three-fold contribution. First, it investigates a joint

location and inventory allocation model with two types of battery services by using

two criteria: service level and total sojourn time in stations. Under the assumption

that in the near future, electric vehicle penetration rate will be much greater and

there will be enough EVs that will cause charging delay, we use the Erlang loss and

Erlang queueing models to study the operations of EV charging stations. Second,

we consider two types of stations in real-world operations: a BSS that only offers a

battery-swap service and a hybrid charging station that offers an on-site charging

service in addition to a battery swapping service. The proposed location-inventory

models achieve three performance goals: guaranteed state of charge (SOC) for all

3



spare batteries, ensured customer service quality, and controlled load for the

electricity grid. Third, because the joint battery-swap and supercharge service

network models are mixed-integer program with nonlinear chance constraints, we

develop metaheuristic algorithms that uses using Tabu search for efficient solutions.

Extensive computational study provides valuable managerial insights for real-world

EV charging services.

The remainder of this dissertation is organized as follows: Chapter 2 reviews

the literature on estimate of EV charging demand, design of battery swapping

station, facility location, and inventory control with service level. Chapter 3

describes two joint location and inventory models for the basic BSS system, and

Chapter 4 presents the two models for the novel joint battery swapping and

supercharing statation system. Finally, chapter 5reports the computational results,

including a real-world case study, and Section 6 concludes the study.
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CHAPTER 2

LITERATURE REVIEW

We divide the literature on modeling and simulation of EV charging

infrastructure into five categories: estimation of EV charging demand, design of

infrastructure for BSSs, general facility location, inventory control with service-level

constraints, and joint inventory and location models.

2.1 Estimate of EV Charging Demand

A proper estimate of EV charging demand is essential as input to design the

EV charging infrastructure. Therefore, we begin by reviewing ways to estimate EV

charging demand. Jung et al. [9] studied the problem of locating taxi charging

stations in Seoul, South Korea. They divided the city into 560 centroids and

randomly generated point-to-point (i.e., centroid-to-centroid) travel demand by

using a spatially uniform distribution. They set the average EV range to 70 miles

on highways and 80 miles in city traffic. Each EV started with a random initial

SOC and obtained a recharge when the battery range was consumed. Arias et al.

[10] used cluster analysis to classify different traffic patterns based on various

factors such as vehicle type, battery technology, battery capacity, and initial battery

SOC. By assuming that each EV starts to search for a charging service when its

SOC reached 20%, they converted traffic volume to charging demand over 24 hour

periods. Hosseini et al. [11] considered the refueling-location problem and captured

the EV flow on a network by using pre-defined origin-destination pairs. First, trips

with origin-destination distances exceeding half of the battery range were included

in the study. Second, an expended network with nodes along the trips was formed

to catch EVs that could not finish their trip without charging under the given SOC
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assumptions. Xu et al. [12] collected data from nearly 500 private and commercial

EV charging and driving activities from February 2011 to January 2013. The data

include SOC (%), GPS location, and the corresponding clock time for each trip or

charging activity. Given these data, they calculated the average distance driven per

day, the average distance between charges, the average number of charges per day,

and the average SOC (%). All these statistics were used in a mixed logit model that

produced a charging-location preference for each EV trip. They then aggregated all

trips by location to get the EV charging demand for each location. Majidpour et al.

[13] collected charging activity from the customer end and from chargers at the

University of California, Los Angeles campus from December 7, 2011 to February

28, 2014. To forecast the charging load, they use four machine learning techniques:

time-weighted dot-product-based nearest neighbor, modified pattern sequence

forecasting, support vector regression, and random forest. Of these four machine

learning methods, modified pattern sequence forecasting had the lowest symmetric

mean absolute percent error (6.28%). Pevec et al. [14] studied EV charging demand

by using business data from a charging-infrastructure provider in the Netherlands.

The study clusters the existing charging stations into several charging zones. By

using the number of places of interest, charging time, and charging day as

independent variables and EV charging demands in each charging zone as the

dependent variable, the study used multiple linear regression and XGboost to

predict the charging demand of 1765 charging stations. The study concluded that

the use of XGboost leads to better performance with a mean absolute error of 0.03.

2.2 Design of Electric Vehicle battery swapping Station

Many studies on BSSs focus on their impact on the existing power grid.

Wang et al. [15] studied an optimization model to maximize the net income by

determining the optimal BSS locations and sizes for EV charging power demand

from three different customer types: the fixed customer, the habitual customer, and

the random customer. They also used as service constraint the service radius of a

single BSS, but did not include a service level of incoming EVs. Pan et al. [16] used
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a two-stage stochastic programming model to locate BSSs and obtain the number of

batteries in each station to meet power demand. In Pan’s model, the first-stage

model minimizes setup cost and battery purchasing cost, whereas the second-stage

model minimizes travel distance, unmet demand penalty cost for EV drivers, and the

cost of generating and shedding loads for the power grid. However, this two-stage

model considered EV charging demand as deterministic data. Finally, Widrick et al.

[17] tackled a BSS management problem to determine the optimal policy for vehicle

to grid and grid to vehicle to maximize the expected total profit over a fixed time.

Other studies focused on the operation and service for BSSs. For example,

Sun et al. [18] studied the optimal strategy for battery purchasing and charging for

BSSs by using the dynamic fluid model to approximate the stochastic demand. They

also developed a two-stage operational model to study the capital cost associated

with batteries, the cost of waiting in charging queues, weekly total demand, and

BSS energy price. Sun et al. [19] used an expanded network to formulate arrival

demand and calculate battery inventory and BSS location. Raviv [20] studied the

scheduling problem for charging spare batteries in BSSs by using a continuous and

K-piecewise linear function as a penalty function to optimize a combined measure

of service level and cost. Their results show that the first-in-first-out policy for

charging batteries generates fewer penalties for fixed charging capacity and

time-varying price. In addition, to assign charging time and volume to batteries,

they viewed the battery-charging process as a demand-supply model. Mak et al. [2]

studied BSS-infrastructure planning by using paths and subpaths to model the EV

charging demand. They also used a combination of the first-in-first-out policy and a

fixed charging-time duration to replenish battery SOC in the model.

Service availability and queuing network for single BSSs have also been

studied in the past. For example, Lu et al. [21] proposed an index called the

“availability of battery swapping service per day,” which is the percent of EVs that

can charge their battery in a day. This index evaluates the serviceability of a single

BSS. Tan et al. [7] simulated the charging process as a Markov chain and used the

steady-state probability to determine the blocking probability. Similarly, Yudai and
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Osamu [22] modeled the battery recharging process in three stages: waiting,

recharging, and fully charged. They then used the queueing theory to calculate the

number of batteries that a station should hold. Avci et al. [23] studied the BSS

business model and its pricing, adoption, management, and environmental impact.

Finally, Jamian et al. [24] used an artificial-bee-colony algorithm to determine the

optimal placement and sizing of battery swapping stations by minimizing the total

power loss as the objective function.

Other studies used maximum flow capture of alternative-fuel vehicles to

determine BSS size and location. Hodgson [25] introduced the flow-capturing

location-allocation model in which the number of vehicles on a specific road is

considered as origin-to-destination flow, and BSSs are located to capture maximize

flow. Kuby and Lim [26] expand the flow capture model to make it suitable for

alternative-fuel vehicles by considering vehicle range and possible remaining range.

In Kuby’s model, every origin-to-destination pair joins different nodes, which can be

origin, intermediate, or destination nodes, and these nodes can form different

combinations of site stations on the path that vehicles take to complete trips. The

model first chooses optimal combinations of nodes for alternative-fuel vehicles of a

given range, and then uses these combinations to locate stations to maximize trips

that require refueling.

Unlike the maximum-flow-capturing model, Wang et al. [27] designed a

facility-location model to reduce setup cost for fast-refueling stations such as BSSs.

Instead of capturing maximum trip flow like Kuby’s study, Wang et al. focused on

the amount of fuel or power vehicles have left to calculate the refueling requirements

at each node to reach the next node in trips. Armstrong [28] then extended Wang’s

model by introducing charging rate, charging time, and multiple types of charging

stations. In Armstrong’s study, instead of being fully charged, batteries need only

be sufficiently recharged to reach the next node, which saves vehicle waiting time in

stations. Furthermore, Armstrong’s model considers multiple types of chargers with

various charging rates and times. Lu et al. [29] also used Kuby’s model as a basis

and added queuing theory to limit the time vehicles have to wait in stations. They
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used captured flow as arrival rate and Little’s law to determine the average waiting

time in a station, and then used a genetic algorithm to locate stations.

Other studies focused on how EV-driver preference impacts BSS location.

Sweda and Klabjan [30] used an agent-based simulation model to strategically

deploy charging stations by identifying charging-station coverage, driver

inconvenience, and driver vehicle preference. Finally, Chen et al. [31] developed a

mixed-integer model to minimize the walking distance between charging stations

while satisfying demand in Seattle, USA.

2.3 Facility Location

Given that determining optimal locations for BSSs is an example of the

classic facility-location problem, we now review the literature on location models.

Erlebacher & Meller [32] used a continuous inventory-location model in a

rectangular region. The study first determined the optimal number of distribution

centers by using the Karush-Kuhn-Tucker condition and then calculated the

location of distribution centers by applying a heuristic algorithm to determine the

upper and lower bound of inventory and facilities cost.

More closely related to our models are the facility-location problems with

service level constraint. We first review works on the optimal facility-location

problem with type-I inventory-service-level constraints. Note that, when integrating

service level, most location models become nonlinear integer programming

problems, which are often solved by applying Lagrangian decomposition. Miranda

et al. [33] studied warehouse location in response to stochastic demand for a given

service level. They modeled customer demand as a normal random variable, used

type-I service level as a parameter to determine the safety stock level, and finally

used Lagrangian decomposition to solve the model. Sourirajan et al. [34] considered

the lead time consisting of three parts: waiting to be shipped, shipping, and

unloading. They also used Lagrangian decomposition to compute warehouse

location and to assign warehouses to customers. Aghezzaf [35] studied warehouse

location with uncertain demands by first developing a location model with fixed
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demand, and then extending the model to different uncertain-demand scenarios (but

without considering demand distribution). Finally, Aghezzaf solved the model by

applying Lagrangian decomposition and robust optimization. Nozick [36] introduced

two Lagrangian-decomposition-based heuristics: allocations and decoupling

relaxations. By dualizing allocation and coupling constraints on the location and

allocation variables, respectively, Nozick constructed lower bounds at each iteration

of Lagrangian relaxation. After obtaining the upper bounds via a greedy heuristic,

both relaxation methods yielded satisfactory gaps between the lower and upper

bounds. When solving for a nonlinear service constraint, many studies have used

linear approximations. For example, Nozick et al. [37] modeled service level more

explicitly when the probability of demand exceeded inventory, and they used linear

regression to linearize the probability function, which was integrated into the

warehouse-location model. Candas & Kutanoglu [38] linearized a nonlinear

time-based service constraint in their model by tabulating potential fill rates for

demand and stock levels at the first stage, following which they introduced other

binary variables to apply a table look-up process.

Some publications directly address the variance of stochastic demand in the

facility-location problem. For example, Daskin et al. [39] designed a

location-inventory model to minimize the sum of facility setup cost, inventory

transportation cost, and holding cost. The model assumes normal random demand

and uses the ( Q, r) policy to calculate the inventory each facility should hold

during the order lead time. By assuming a fixed variance-to-mean ratio, the model

reduces the number of nonlinear terms and assigns demand nodes to the facilities

that are opened in the given nodes. Shen et al. [40] developed a location

risk-pooling model. In this model, some retailers serve as distribution centers and

hold inventory calculated by using the economic order quantity model. They

reconstructed the model as a set-covering model and discussed solutions to two

cases: a constant variance-to-mean ratio and zero variance for demand. Romeijn et

al. [41] studied a single-red distribution-center multi-retailer system that took

optimal replenishment intervals of both distribution centers and retailers into
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consideration in terms of inventory holding cost and used standard deviation of

demand to obtain safety stock. However, they did not consider inventory cost in

transportation (i.e., pipeline cost).

Some papers considered the multi-echelon inventory-location problem. Mak

& Shen [42] studied the two-echelon inventory-location problem and addressed not

only the location of distribution centers but also inventory levels at plants and

in-transit inventory holding cost. By getting an upper bound for in-plant inventory

and fixing inventory in distribution to possible values in each iteration, the study

used Lagrangian procedures to obtain an optimal customer assignment. You &

Grossmann [43] studied the design of integrated multi-echelon supply chains. They

proposed “net lead time,” which is defined as the difference between the

replenishment lead time of a node, and then guaranteed a service time to its

successor node. Like many similar studies, the random demand is modeled as a

normal random variable, and safety stock is calculated based on the standard

deviation.

Simulation is another approach for location-inventory models. Ridlehoover

[44] used Monte Carlo simulation and risk analysis to solve the facility-location

problem. He used a p-median model to choose 30 locations out of 297 candidate

locations to minimize the total weighted travel distance of customers in the first

stage. In the second stage, he used four types of distributions: normal, uniform,

custom, and lognormal to simulate four characteristics of facilities’ annual worth:

initial investment, annual cost, annual benefit, and interest rates, respectively.

Based on the result of the simulation, he chose facility locations in descending order

of revenue received to get maximum annual worth. Fu [45] outlined computer

simulation methods and software for quantitative variables and parameters in a

supply chain field. Lim et al. [46] studied supply chain replenishment policies by

using a simulation approach in which a mathematical model is first used to obtain

facility capacities by minimizing supply chain costs. They then consider four

replenishment policies: build to order, build to plan, continuous, and periodic. By

comparing total operational cost from the simulation of each replenishment with the
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results of an analysis of variance, they conclude that a periodic policy is the best

policy.

Service level is another factor to consider when planning location and

allocation. Karratas & Yak [47] studied the problem of locating emergency service

systems with a backup service level. The study used the p-median location problem

to allocate the backup facility first, and then used a discrete event simulation model

to maximize facility use by reducing customer travel and wait time.

Petrovic et al. [48], however, considered uncertainty not only from customers

but also from the supply side. The study models a serial link of all facilities in the

supply chain and sets demand with upper and lower bounds based on experience

and subjective judgment from managers rather than on a probability distribution

from past records. By increasing the safety stock level, the model compensates for

uncertainty due to external suppliers.

2.4 Inventory Control with Service Level

BSS services require that adequate spare batteries be in stock. When an EV

swaps a battery on site, batteries held at the swapping station are either fully or

near fully charged and ready for swapping. Because batteries take a significant

amount of time to charge, sufficient charged batteries must be ready while depleted

batteries are being charged. This operation is similar to inventory control in the

production and service industries that ensures sufficient stock to ensure a certain

service level. Thus, we review in this section the studies on inventory control.

In the inventory-control literature, many have argued that back-order cost is

not a good measure to capture all consequential costs caused by inventory shortage

(see, e.g., Ouyang et al. [49]), so service-level constraint has been considered by

many researchers. The literature review in this section also considers

inventory-control policies with service-level constraints. Aardal et al. [50] used the

(Q, r) stock-control system and calculated the order time points and lot sizes

simultaneously with a service-level constraint to study the relationship between

shortage cost and service level. The paper presents two different measurements of

12



service: the fraction of demand covered from stock and the average number of

shortages per year.

Some researchers studied type-II service level (i.e., fill rate) for inventory

control. Heijden [51] studied multi-echelon divergent network inventory with fill-rate

constraints. Assuming all demand is satisfied only at the end stock points, he

developed an optimization model to determine optimal order-up-to-level inventory,

mean inventory, and time-averaged inventory at both stock points and in the

pipeline. He used a Gamma distribution to approximate the relationship between

the order-up-to-inventory level and the fill rate of each stock point. Finally, he used

a heuristic algorithm to find a near-optimal solution for the multi-echelon inventory

network. Sculli & Wu [52] studied stock control with two suppliers and normal lead

times. They created a table of mean and standard deviations with numerical

integration for the normally distributed lead time during which the next order will

arrive.

Janssens et al. [53] used the expected shortage per replenishment cycle

(ESPRC), which is the expectation value of the difference between demand and

safety stock, as the service level in the linear programming for an inventory

management decision problem. The study mainly focused on minimizing safety

stock with a certain ESPRC constraint, whereas information about demand (i.e.,

the demand distribution) in the lead time was unknown. They first used the

claim-size distribution proposed by Goovaerts [54] to get the upper and lower

bounds for the demand parameters and then used the new vendor model to obtain

the desired inventory policy. Cole [55] used the same service-level measurement to

design a production-distribution network. The study used a piecewise linear system

to approximate the nonlinear relationship between the safety factor, which is part of

the safety stock calculation, and the expected amount of the unit normal variable

that exceeds the safety factor.
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2.5 Joint Inventory-location Model

The fifth category of the relevant literature involves the joint

inventory-location model. Shahabi et al. [56] studied this problem for warehouses

and plants. Their study not only models the daily demand and the demand for

product lead time as a normal distribution but also considers the correlation

coefficient between daily demands of certain products at different retailers and uses

probability of stockout as a service-level measurement. Tapia-Ubeda et al. [57]

studied the inventory-location problem with stochastic inventory constraints. Their

study considered transportation costs between warehouses and customers and used

a Benders decomposition to solve the nonlinear and non-convex mathematical

model. Dai et al. [58] used fuzzy constraints to define the service level for perishable

items and implemented a genetic algorithm plus a hybrid harmony search to obtain

the optimal location and inventory for warehouses. Puga et al. [59] considered a

two-level supply chain network and used different lead times between central plants

and distribution centers and between distribution centers and retailers. Due to the

nonlinearity and non-convexity of the formulation, the study proposes a heuristic

algorithm to determine the facility locations. Amrir-Aref et al. [60] studied the

multi-sourcing inventory-location problem by splitting it into two stages. The first

stage determines the distribution locations by maximizing the expected revenue,

whereas the second stage used the linear approximation of the (s, S) policy to

obtain the optimal inventory of distribution centers over months. Diabat et al. [61]

studied the joint inventory-location problem by considering consumption demand as

a Markov transition process and calculated the expected amount of reorders, lost

sales, and inventory by using Markov queueing theory. The study used simulated

annealing and a direct search method to solve the problem. Zheng et al. [62]

integrated item routing into the inventory-location problem and used generalized

Benders decomposition to reduce the problem dimensions and reduce computational

time. Hiassat et al. [63] studied the location-inventory-routing problem with

perishable products by considering the perish time period and used a genetic
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algorithm to determine the warehouse location, inventory, and routing plan that

minimized total cost.

2.6 Summary of Literature

Although the battery-swap service for charging EVs is a relatively new field,

it shares many similarities with operations for facility location, demand allocation,

and inventory control with a service level. Therefore, existing research in these areas

can be useful. Many previous studies also focused on the unique operations

associated with BSSs, including their impact on the grid, battery charging

scheduling, EV-adoption patterns, or queueing models for a single station. In the

supply chain and inventory control area, studies have considered how inventory

control affects service levels. By defining different service levels and lead time in the

supply chain, many studies furnish optimal assignments for components in the

supply chain at minimal cost while maintaining service level. The model we propose

herein integrates queueing theories into the supply chain area, which means that the

service provider can stock the minimal number of batteries required to cover a given

percent of incoming demand, with each battery having the desired SOC (e.g., 80%).

15



CHAPTER 3

JOINT FACILITY LOCATION AND INVENTORY MODELS FOR

BATTERY SWAPPING STATION SERVICES

3.1 Introduction

In this chapter, we consider the joint location and inventory models for BSS

services for EVs. BSS locations and the stock of fully charged batteries at these

locations will be determined by the pre-defined service level and the total sojourn

time (i.e., service time plus waiting time) in the BSS queue, if any.

Figure 1. Battery swapping station with priority queue.

Figure 1 shows a flow chart describing how an EV is serviced at a BSS. Given

an incoming EV, the BSS first checks that a spare battery with sufficient SOC is in

stock and ready to swap. If so, the batteries are swapped. The depleted battery is

then charged in the charging bay and then deposited in the stockroom to be

swapped into a subsequent EV. After swapping batteries, the current EV exits the

BSS.

If no spare battery is available to swap, the BSS blocks the EV directly or

asks the EV to wait until a battery is available to swap, depends on whether there is
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a waiting area.

Although typical inventory control analysis is used for operational purposes,

the strategic nature of the decision means that, in this dissertation, the inventory of

spare batteries with desired SOC serves to plan the capacity of BSSs in a given

charging network. Thus, our intent is not to make the tactical or operational-level

inventory decisions but rather to minimize the total cost, which consists of the fixed

operating cost for a BSS and the cost of purchasing batteries. We consider in

particular a network of BSSs, in contrast with some publications that consider

single BSSs (see, e.g., Ref. [7]). The model also considers the service-level constraint

or the total sojourn time constraint, whereby we specify the probability of stockout

or total sojourn time for an EV to obtain a fully charged battery within a

pre-specified threshold time for the entire network of BSSs.

The problem at hand is closely related to the classic facility-location model

(see, e.g., Ref. [64]), whereby a facility is opened in a candidate location only when

the location has positive activity. In this study, we open a BSS in candidate

locations where demand exists for fully charged batteries. The aspect of capacity

planning in the proposed model will determine the proper number of fully charged

batteries needed at open locations.

As mentioned previously, the existing literature on designing BSSs or

EV-charging infrastructure does not consider waiting queues and associated queuing

characteristics for EVs when making location decisions. The model proposed herein

uses stochastic queuing theory (assuming Poisson arrival and exponential service

time) and the Erlang loss function [65] to calculate the steady-state stockout

probability for fully charged batteries at BSS locations. It also uses the Erlang

queueing function [65] to calculate the stead-state total sojourn time at BSS

locations. These constraints determine, in part, the optimal battery capacities for

BSSs. Furthermore, including such service-level or total service time constraints also

ensures that all batteries charged or swapped at these BSSs have a SOC at above a

pre-determined threshold level (e.g., 80% SOC).

The two joint inventory-location models with the service-level constraint and
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with the total sojourn time constraint are presented in the subsequent sections in

this chapter.

3.2 Research Contribution

Considerable research efforts have been devoted over the last five years to the

areas of battery swapping and charging stations. However, most location models for

designing the BSS network infrastructure do not incorporate a queueing model or

the SOC for decisions involving battery-inventory purchasing. As a consequence,

the number of customers lost because of insufficient SOC-ready batteries, which has

a huge impact on service quality, has not been studied. Nevertheless, in other

domains, queueing has been proven to affect the location decision. For example,

Wang et al. [66] studied how customer waiting time affects the location decisions for

automatic teller machines. Brandeau et al. [67] studied how stochastic queueing

affects the location decisions for facilities in a plane with rectilinear distances. In

the present study, we consider unique factors for queueing at BSSs, such as charging

time, SOC, the probability of rejecting or queueing customers, etc. and build a

location model accordingly.

This research contributes to the design of EV-charging infrastructure in the

following two areas:

1. We develop two integrated BSS inventory-location models. The first model

requires each BSS to have enough batteries with at least 80% SOC; otherwise,

the EV leaves the station. The second model incorporates a pre-determined

maximum sojourn time that an EV can spend for a battery swap. In both

models, we combine the inventory-location model with queueing theory to

gain insight into the operational services of a BSS. The goal is to determine

the number of batteries required at each BSS and the locations of the BSSs.

2. We use the Erlang function as a nonlinear constraint in both models

mentioned above. Decision variables are embedded in both power and factorial

functions, which make it challenging for applications to large-scale problems.
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Heuristic algorithms are developed for the models, and two heuristic methods

provide an original means to incorporate the Erlang function into an

optimization model in other applications.

3.3 Notation

We use the following notation in both proposed models:

TABLE 1. Sets and indices.

j ∈ J Set of potential locations for BSSs

i ∈ I Set of EV traffic analysis zone (TAZ) demands for BSSs

TABLE 2. Parameters and indices.

λi EV arrival rate in TAZ i

Fj Setup cost of candidate charging stations j

µb Battery recharge rate in the charging bay

Fb Purchase cost of per battery

γ Overall allowable stockout probability

Wmax Maximum allowable sojourn time in a BSS

τ Battery swapping time in a BSS

θi Demand rate during lead time of batteries charging in TAZ i

Pj Power capacity at candidate location j

Pb Power required for charging a battery in charging bay

dij A binary parameter equals 1 if customer zone i is

in a certain battery range of candidate location j or 0 otherwise

TABLE 3. Decision variables.
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xj Whether location j is chosen

sj Base stock level of battery inventory at station j

θj EV arrival rate at station j during lead time for charging batteries

yij Binary variable equal to 1 if customer i is assigned to candidate location j

λj Aggregate arrival rate at station j

Bj Probability of battery stockout at station j

Cj Probability of queueing at station j

3.4 Modeling EV Arrival and Battery Charging Service Using M/G/s/s

This section explains our approach for modeling the arrival pattern for EVs

and the battery charging process as per the M/G/s/s model. The arrival of EVs in

stations is assumed to follow a Poisson distribution, whereas the battery-charging

process follows a general distribution.

3.4.1 Model and data analysis

We consider the following process for EVs arriving at a single BSS. Each EV

arrives at random at the BSS and obtains an immediate battery swap only if spare

batteries with the minimum-required SOC (e.g., 80%) are available. To

appropriately model arrival and charging service distribution, we make several

important assumptions:

• Arrivals: The arrival process involves two assumptions: First, EV arrivals

at each BSS occur independently. Second, the arrival rate is constant, so the

average time between arrivals is the inverse of the arrival rate. In essence, these two

assumptions allow us to model the arrival process as a Poisson process, as has is

widely done in the literature (see, e.g., Tan et al. [7] and Mak et al. [2]).

• Charging process: The charging process is assumed to follow a general

distribution. The charging process is defined as charging a battery from empty to

the desired SOC, which can require anywhere from a half-hour to over a day [4],

depending on the desired SOC. Many studies use different distributions for the
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charging process [2, 68]. In this study, we model the charging process as a general

distribution. In reality, charging time may have significant variance because the

process of unloading batteries from incoming EVs differ for different EVs, which

prevents the charging time from being described by a specific distribution.

Consequently, the general distribution is judged to be the best way to describe the

charging process.

• Battery inventory: In this model, battery inventory is a decision variable

that is subject to a service-level constraint. As described previously, an incoming

EV is serviced only if a battery is available with desired SOC; otherwise, the EV is

blocked by the BSS or has to queue, depending on the business model. Therefore,

the capacity of a BSS is determined by its battery inventory.

Given these assumptions, the operations of a BSS may be modeled as an

M/G/s/s queueing model. Figure 2 shows a transition diagram for the M/G/s/s

queueing model. This model is a special case of the M/G/K queueing model, where

arrivals are Markovian and service time follows a general distribution. The M/G/K

model accurately predicts the number of customers in a service queueing service and

has been applied in a variety of fields with similar queueing patterns, including

single-warehouse inventory control [69], single-server systems [70], and clinical

planning [71].

Figure 2. The M/G/s/s queueing model.

3.4.2 The Erlang loss model

The service level of a BSS is defined as the probability that the inventory of

batteries with at least 80% SOC can meet the demand of arriving EVs. Therefore,

21



the battery service time in a BSS is the time required to charge a battery to 80%

SOC. The service level in station j is estimated based on the availability of spare

batteries upon the arrival of an EV. In the literature, the Erlang loss model gives a

closed formula for calculating the stockout probability:

B(θj, sj) = Pr{Oj > sj} =
θ
sj
j /sj!

sj∑
k=0

(θkj /k!)

,

where θj is the demand for spare batteries (i.e., the arrival rate) at station j during

the service time, and sj is the base stock level of spare batteries at station j. Here,

service time is defined as the time interval from when the empty battery is removed

from the EV to when said battery is charged to at least 80% SOC. The function

describes, as a function of time, the probability that incoming demand Oj exceeds

inventory sj. Let Nb be the number of batteries recharging in the charging bay. The

expectation of Nb can be estimated as

E[Nb] =
s∑

k=0

kPr{Nb = k} =
λb
µb

(1− Pr{Nb = s}]) = θ(1−B(s)).

For a given level of charge, E[Nb] allows us to determine the average power required

for the charging bay.

The Erlang loss function was first formulated as an M/M/s/0 queue by

Erlang [72] in 1917 to address the probability of the number of busy lines in

telephone trunk groups. Because the model is insensitive, it is also used in M/G/s/s

model [73, 74]. The Erlang loss function has also been used to predict the number

of customers lost, such as to estimate the probability of losing patients in an

emergency department [75], for deploying ambulances [76], designing an operating

theater and intensive-care unit [77], etc. However, the Erlang loss function has been

used as a testing or evaluation tool rather than as a decision function. In the

present research, however, the Erlang loss function is contained in the model. In

this study, determining the number of batteries a BSS should hold for a certain

service level is closely related to issues of resource capacity in service systems, such

as server centers, in which service levels are determined by the number of servers a

center is allocated [78, 79].
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Before using the Erlang loss function, we introduce its important properties.

Lemma 1. To ensure numerical stability, the Erlang loss function can be calculated

by its inverse; namely,

B(θj, sj) =


1, sj = 0

1

1+
θj
sj

1
B(θj ,sj−1)

, sj = 1, 2, 3, . . . .

Proof. (See Ref. [80].) To show the recursion for the reciprocal, we denote the

reciprocal the Erlang loss function as R(θ, s) = 1
B(θ,s)

and S(s) =
k=s∑
k=0

θk/k!. Then,

R(s) =
S(s)

θs/s!
=
S(s− 1) + θs/s!

θs/s!
=
sR(s− 1, θ)

θ
+ 1.

Lemma 2. B(θ, s) increases monotonically with θ.

Proof. To prove that the Erlang loss function increases with θ, we first take the

partial derivative with respect to θ:

∂B(θ, s)

∂θ
= B(θ, s)

[s
θ
− 1 +B(θ, s)

]
.

By Little’s law, we get the number EN of EV in the system:

EN = θ(1−B(θ, s)).

Furthermore, because we block all waiting EVs out of the system, the available

inventory is always greater than or equal to the number of EVs in the system:

s ≥ EN . Thus, we have B(θ, s) ≥ max{0, 1− s
θ
}, so ∂B(θ,s)

∂θ
≥ 0.

Lemma 3. B(θ, s) decreases monotonically with s.

Proof. To show that the Erlang function decreases with s, we have

B(θ, s− 1)−B(θ, s) = B(s− 1){1− θ/[s+ θB(θ, s− 1)]} > 0

because

B(θ, s− 1) ≥ max{0, 1− (s− 1)/θ} ≥ max{0, 1− s/θ}.
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These three lemmas of the Erlang loss function are crucial for solving our

models. Lemma 1 offers a practical means of computing the Erlang loss function by

avoiding calculation of the factorial function, which poses a computational challenge

when s > 170. Conversely, Lemmas 2 and 3 show the relationship between arrival

rate, battery base stock level, and service level, which we use to develop our

algorithms.

3.4.3 The Erlang queueing model

We also consider another BSS service model, which allows EVs to wait for

battery charging if no battery with the desired SOC is available for immediate

swapping. In this business model, we want to ensure that the sojourn time of EVs

in BSSs is shorter than a pre-determined value. To determine the sojourn time in a

BSS, we first calculate the probability that EVs are obliged to wait in a BSS.

According to the Erlang queueing model, this probability can be calculated as

follows:

C(θj, sj) =

θsj
s!(1−θj/s)

s−1∑
k=0

θkj
k!

+
θsj

s!(1−θj/s)

, if sj > θj.

The time that an EV spends in a BSS is the sum of the waiting time Wq and the

actual battery swapping time τ . The waiting time Wq can be calculated as

Wq =
1

µb(sj − θj)
.

Therefore, the EV sojourn time in a BSS is

W =
Cj(sj)

µb(sj − θj)
+ τ.

The expected number of batteries being charged can be expressed as

EN = θ.

Similarly to the Erlang loss function, we now introduce the important properties of

the Erlang queueing function:
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Lemma 4. The Erlang queueing function can be calculated by the inverse function

of the Erlang loss function; namely,

C(θ, s) =
1

R(θ, s)−R(θ, s− 1)
.

See Ref. [80].

Lemma 5. C(θ, s) increases monotonically with θ. See Ref. [80].

Lemma 6. C(θ, s) decreases monotonically with s. See Ref. [80].

These lemmas will help us solve the models containing the Erlang queueing

functions.

3.5 The Mathematical Models

We design two models for BSS services. The first model considers the optimal

BSS location and battery inventory problem subject to service-level constraints. In

this model, an EV can obtain an immediate battery swap if a battery with the

desired SOC is available; otherwise, the EV is blocked by the BSS. In other words,

there is no waiting area. This model is called “optimal location and inventory for

BSS with service-level constraints” (OLIBSS-SL). The second model considers the

optimal BSS location and battery-inventory problem subject to the total

sojourn-time constraint. In this model, an EV can queue if no spare battery is

available for an immediate swap. This model is called the “optimal location and

inventory model for BSS with service time constraint” (OLIBSS-ST).

3.5.1 Optimal location and inventory for BSS with service-level constraints

We consider the OLIBSS-SL model as a coverage model consisting of a set of

candidate locations and a set of traffic-analysis zones (TAZs). Without loss of

generality, we assume that customers are willing to use a BSS only if the

customer-BSS distance is less than a certain percentage of the battery drive range.

We also assume that in the near future EV penetration rate will be high enough
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that there will be delays for charging service. Therefore, Poisson process can be

used to model the EV charging demand arrival. Let I be the number of TAZs and J

be the number of candidate BSS locations. A binary parameter dij is introduced to

indicate whether a BSS is w ithin a pre-defined battery range of customer sites for

i = 1, 2, . . . , I, and j = 1, 2, . . . , J . Each EV arrives at a BSS according to the

Poisson process, and the arrivals are independent. In this model, we determine

where BSSs should be placed, which TAZs are assigned to a station, and how many

spare batteries should be held at an opened station. The goal is to minimize the

setup cost for opening stations and the battery-procurement cost subject to a

stockout probability requirement. The OLIBSS-SL model is formulated as follows:

(OLIBSS-SL) min
J∑
j=1

(Fjxj + Fbsj), (1)

s.t.
∑
j

yij = 1 ∀ i, (2)

yij ≤ dijxj ∀ i, j, (3)

θj = λj/µb ∀ j, (4)

λj =
∑
i

yijλi ∀ j, (5)

Bj(sj) ≤ γ ∀ j, (6)

Bj(sj) =
θ
sj
j /sj!

sj∑
k=0

(θkj /k!)

∀ j, (7)

Pbθj(1−Bj(sj)) ≤ Pj ∀ j, (8)

sj ≤Mxj ∀ j, (9)

sj ∈ Z+ ∀ j, (10)

xj ∈ {0, 1} ∀ j, (11)

yij ∈ {0, 1} ∀ j. (12)

In the OLIBSS-SL model, the objective function (1) serves to minimize the total

setup and battery cost. Constraint (2) states that each TAZ must be covered by one

station. Constraint (3) sets the maximum allowed distance (e.g., 10% of the driving
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range of an EV) from a TAZ to an assigned BSS. Constraint (4) calculates the

expected EV arrivals at station j during a battery-recharge cycle in the charging

bay. Constraint (5) aggregates the EV arrival rate at a BSS over all assigned TAZs.

Constraint (6) defines the service-level requirement (i.e., the battery stockout

probability), which cannot exceed a pre-specified level (i.e., γ = 0.05). Constraint

(7) is the Erlang loss formula for the stockout probability. Constraint (8) states that

the power use at any station should not exceed grid capacity. Constraint (9) ensures

that no battery is placed at a station unless the station is open. Constraints

(10)-(12) specify the decision-variable types for s, xj, and yij, respectively. In

Section 3.6, we propose a metaheuristic algorithm to efficiently solve this model.

3.5.2 Optimal location and inventory model for battery swapping station with

service-time constraint

The OLIBSS-ST model only involves the battery swapping service. Instead of

a probability-based service-level constraint, this model requires that the total
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sojourn time for an EV at a station not exceed a pre-defined threshold:

(OLIBSS-ST) min
J∑
j=1

(Fjxj + Fbsj), (13)

s.t.
∑
j

yij = 1 ∀ i, (14)

yij ≤ dijxj ∀ i, j, (15)

θj = λj/µb ∀ j, (16)

λj =
∑
i

yijλi ∀ j, (17)

Cj(sj)

µb(sj − θj)
+ τ ≤ Wmax ∀ j, (18)

θsj
s!(1−θj/s)

s−1∑
k=0

θkj
k!

+
θsj

s!(1−θj/s)

= Cj(sj) ∀ j, (19)

Pbθj ≤ Pj ∀ j, (20)

sj ≤Mxj ∀ j, (21)

sj ∈ Z+ ∀ j, (22)

xj ∈ {0, 1} ∀ j, (23)

yij ∈ {0, 1} ∀ j. (24)

In the OLIBSS-ST model, constraint (18) defines the total sojourn time

requirement, which cannot exceed a pre-specified level (i.e., Wmax = 15 minutes).

Constraint (19) is the Erlang queueing formula for the queueing probability.

Constraint (20) states that the power consumption at any station should not exceed

grid capacity. All other constraints and the objective function are the same as for

the OLIBSS-SL model.

3.6 Solution Approaches

The Erlang function is computationally challenging because the decision

variable sj is embedded in the power and factorial functions. In fact, many

off-the-shelf solvers generally cannot compute values for such highly nonlinear
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functions, let alone provide a global optimal solution for the optimization problem.

Therefore, for these two models, we first study the mathematical properties of the

problem, namely, the relationship between the arrival rate, the inventory necessary,

the stockout probability, and the queueing probability. Subsequently, we develop

heuristic methods to obtain quality solutions for the models.

3.6.1 Relationship between sj and θj

As discussed previously, the OLIBSS-SL model has a constraint to ensure

that the stockout probability does not exceed a threshold value, while the

OLIBSS-ST model ensures that the total sojourn time does not exceed a threshold

value. Note that both the stockout probability and the total sojourn time are

monotonically decreasing functions of the battery inventory s. Consequently, given

an open BSS, the total battery cost is minimized by storing the minimum number of

batteries to satisfy the threshold value for either model. The results show that

• for a given stockout probability or a given maximum sojourn time, the

number of batteries needed increases essentially linearly with EV arrival rate.

We validate the above observation by using a two-step procedure. First, for a

given stockout probability γ, we calculate the required battery inventory s(θ) by

incrementing s in steps of 1 until B(s) < γ. Second, we perform a regression

analysis between the variable θ and the resulting s(θ) obtained in the first step.

Figure 3 shows that the desired number of batteries increases almost nearly with the

arrival rate for the Erlang loss function, and Figure 4 shows that the desired number

of batteries increases nearly linearly with arrival rate for the Erlang queueing

function. Tables 4 and 5 reveal that the linear relationships have a rather high R2,

thus validating our observation. This observation is significant because it not only

simplifies the nonlinear chance constraint but also leads to the following theorem

and our subsequent heuristic algorithms.

TABLE 4. Results of linear regression test for Erlang loss function.
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γ Intercept Slope p-value adj R2

0.01 20.84 1.00681 0.0001 1

0.1 7.21524 0.9014 0.0001 1

0.2 4.04018 0.8003 0.0001 1

0.3 2.64934 0.70016 0.0001 1

Figure 3. Inventory required for different arrival rates for target γ.

TABLE 5. Results of linear regression test for Erlang queueing function.

Wmax Intercept Slope p-value adj R2

10 min 6.676 1.043 0.0001 1

15 min 5.519 1.028 0.0001 1

20 min 4.822 1.021 0.0001 1

25 min 4.245 1.017 0.0001 1

30 min 3.977 1.013 0.0001 1
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Figure 4. Inventory required for different arrival rates for target Wmax.

Theorem 1. The optimal location and allocation strategy assigns EV customers to

an existing BSS first before opening a new BSS.

Proof. The linear relationship between s and θ can be written as s = aθ + b. We

consider two feasible strategies: The first strategy assigns all I EV charging-demand

coverage areas to a single BSS with the total cost of z1 = F1 + Fb(
∑I

i=1 aθi + b).

The second strategy assigns m coverage areas to one BSS and assigns the remaining

I −m coverage areas to a second BSS. Thus, its associated cost is

z2 = F1 + Fb(
∑m

i=1 aθi + b) + F2 + Fb(
∑I

i=m+1 aθi + b). Hence, we have

z1−z2 = F1+Fb

(
I∑
i

aθi + b

)
−

[
F1 + Fb

(
m∑
i=1

aθi + b

)
+ F2 + Fb

(
I∑

i=m+1

aθi + b

)]
≤ 0.

This indicates that z1 ≤ z2, so the first strategy is optimal.

Given the optimal customer allocation policy, the next step is to determine

which candidate locations should be assigned a BSS.
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The objective function in the model has two terms: setup cost and

battery-purchasing cost. We design a metaheuristic algorithm containing subroutine

algorithms (1) through (4) to solve for a quality solution. Figure 5 shows the flow

chart of the overall metaheuristic

Figure 5. The flow chart of the metaheuristic for the OLIBSS-SL and the OLIBSS-ST

models

3.6.2 A metaheuristic algorithm for the OLIBSS-SL and the OLIBSS-ST models

Given the optimal number of batteries for each location, we determine the

optimal location-allocation plan by following the principles of the location-covering

model. To maintain the desired service level or sojourn-time level, an important

step in the BSS location-allocation decision is to convert the power capacity to the

number of EVs that a station can handle. For a given service-level threshold and a

power capacity Pj at station j, the process of converting the power capacity to the

allowable EV arrival rate for the models is given in Algorithm 1. In both models,

based on Lemmas 3 and 6, the algorithm increases the number of spare batteries

until the desired service-level or sojourn-time constraint is satisfied.
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Algorithm 1 λ̄j = MaxArrival(Pj, γ, or Wmax)// the maximal rate of EV arrivals

feasible at station j

INITIALIZE P = 0, and λ̄j = µb

If it is the OLIBSS-SL model then

repeat

a. increase s (from s = 1) until B(
λ̄j
µd
, s) ≤ γ using Eq. (7)

b. Update P by using constraint (8) for the OLIBSS-SL model or (20) for the

OLIBSS-ST model

c. λ̄j = λ̄j + µb

until P ≥ Pj

else if it is the OLIBSS-ST model

λ̄j = bPj
Pb
c

return λ̄j

By using the maximal arrive rate λ̄j for each candidate station, as

determined by Algorithm 1, we compute the maximum number Nj of TAZs that can

be assigned to station j because constraint (2) requires all TAZs be covered. To

minimize the total setup cost, the optimal solution should open the fewest possible

stations, with each serving the maximum possible number of TAZs. Algorithm 2

below first sorts all TAZs that can be covered by station j in ascending order of

their EV arrival rates λj. It then chooses the first Nj TAZs from the sorted list until

reaching the maximum arrival rate λ̄j; thus, Nj is returned as the maximum number

of zones that station j can cover. Note that we use the sorted list to determine Nj,

but not the final assignment of TAZs ( Nj or fewer) to station j. The latter is

determined by Algorithm 3.
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Algorithm 2 Nj = MaxZones(λ̄j)// the maximal number of TAZs covered by station

j

INITIALIZE λj = 0

Sj = the set of TAZs that can be covered by station j (i.e., dij = 1); they are

sorted in ascending order by the arrival rate λi. Let i be the index for all TAZs in

the ordered set.

for i = 1 to |Sj| do

λj = λj + λi ∀ λi ∈ Sj
If λj > λ̄j break;

end for

return i

By using the maximum number of TAZs that station j can cover, Algorithm

3 actually allocates the TAZs to the station by enumerating all combinations of Nj

TAZs and choosing the one that yields the maximum arrival rate for the station.

Algorithm 3 ( ~yij, ~xj)=Assign( Nj, λ̄j)//Assigning TAZs to station j

Let T 1
j , T

2
j , . . . , T

K
j be K sets of TAZs such that |T kj | = Nj and dij = 1 for all i ∈ T kj

and for k =1, 2, . . . , K.

Let λkj,1, λ
k
j,2, . . . , λ

k
j,Nj

be the arrival rates at all Nj stations in the kth set.

Let k∗ = arg maxk{
Nj∑
l=1

λkj,l|
Nj∑
l=1

λkj,l ≤ λ̄j}

Assign and return yij = 1 for all i ∈ T k∗j

Once the assignment of TAZs to a candidate station j is completed, the

allocation of batteries is obtained by Algorithm 4. As mentioned previously, to

minimize the objective function, the least number of batteries is preferred provided

the service-level or sojourn-time constraint is satisfied.
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Algorithm 4 s∗j = Configure(Pj, λj)//Number of batteries at Station j

repeat

Increase s (from s = 1)

until

constraint (6) is met for the OLIBSS-SL model or constraint (18) is met for the

OBLIBSS-ST model

return s∗j

Algorithm 5 below integrates Algorithms 1–4 to provide a heuristic solution

to models. Particularly, Algorithm 5 first uses Algorithms 1 and 2 to calculate the

maximum number of TAZs that a candidate station is capable of covering, then uses

Algorithm 3 to assign TAZs to all opened stations and finally determines the

number of spare batteries for each station.
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Algorithm 5 A heuristic algorithm

INITIALIZE I∗ = ∅, J∗ = ∅, flag( j) = false for all j

// Open the must-open stations and assign TAZs to them

Identify the TAZs that can be covered by only one candidate station, i.e.,

I∗ ← {i|∃ j : dij = 1, dij′ = 0,∀ j′ 6= j} and

J∗ ← {j|∃ i : dij = 1, dij′ = 0,∀ j′ 6= j}

Update xj, yij, and Pj

while |I∗| 6= |I| do

if J∗ 6= ∅ then

for all j ∈ J∗ and flag(j) = false do

i. Calculate λ̄j = MaxArrival(Pj, γ or Wmax) and Nj = MaxZones(λ̄j)

ii. Calculate( ~yij, ~xj) = Assign(Nj, λ̄j)

iii. Calculate( s∗j) = Configure( ~yij, ~xj)

iv. flag( j) = true and update I∗

end for

end if

if J∗ = ∅ or flag(j) =true ∀j ∈ J∗ then

i. Open a new station at location j∗ = arg maxj∈J\J∗{Nj}. If a tie exits, then

select the station with the lower setup cost.

ii. Update J∗ = J∗ ∪ j∗

end if

end while

Since the Erlang loss constraint and the Erlang queuing constraint are

nonlinear, we use a Tabu search to further improve the solution from Algorithm 5.

In particular, the Tabu search in Algorithm 6 reassigns TAZs to different stations

with the promise of potentially closing some stations, thus minimizing the total cost.

The Tabu search, first created by Glover [81], is a metaheuristic search

36



method that, to escape from local optima, finds the best solution in a defined

neighborhood at every iteration. A Tabu list is used to track all historical solutions

for higher efficiency. In particular, we consider the following two types of

neighborhood functions:

• Substitution: Randomly select two unopened candidate stations. If the

total setup cost of the two stations is less than that of an opened station, then open

these two stations and re-assign TAZs to them and to the other opened stations.

This neighborhood function is motivated by the fact that the priority in Algorithm

5 is given to stations’ with a maximum number Nj of zones, not to the setup cost.

• Consolidation: Randomly select a number of TAZs covered by a currently

opened station j. Move the TAZs to another opened station provided the power

capacity is not violated. This neighborhood function can reduce the number of

batteries required in station j and possibly the total cost.

Algorithm 6 A Tabu search algorithm

INITIALIZE Tabu list Γ = ∅, maximum iteration L, neighborhood size N , iteration

index l = 1, and initial solution ~w = ( ~yij, ~xj, ~sj). Set the optimal solution as w∗ = w

and the optimal cost as Z∗ = Z(w).

while l ≤ L do

Initialize neighborhood list N

while Tabu list Γ is not full and the neighborhood list N is not full do

Randomly choose either the substitution or consolidation neighborhood func-

tion to create a new solution w′.

if w′ is not on the Tabu list then

1) Add w′ to the neighborhood list.

2) Calculate the total cost for the neighborhood solution w′, Z(w′).

3) If Z(w′) < Z∗, then w∗ = w′ and add w′ to the Tabu list.

end if

end while

l = l + 1

end while
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3.7 An Illustrative Example for the Metaheuristic Method

We now implement the algorithm for the OLIBSSL model by using an

example with six TAZs and three candidate-station locations. The data in Table 6

include information on dij, the power capacity and setup cost for each candidate

station, and the EV arrival rate in each TAZ. We set γ = 0.2 in the numerical

experiment. First, we use Algorithm 1 to calculate the maximum EV arrivals each

candidate location can potentially serve. As a result, λ̄1 = 21.875, λ̄2 = 20.31, and

λ̄4 = 25. Next, we apply Algorithms 2 and 3 to calculate the maximum number of

TAZs covered by each station and further find that Station 1 covers four TAZs: 1, 3,

4, and 6; Station 2 covers three TAZs: 2, 4, and 6; and Station 3 covers three TAZs:

2, 3, 6, and 1. Since Stations 1 and 3 can serve three TAZs whereas Station 1 has a

lower setup cost, we opt to open Station 1 first. Subsequently, we assign TAZs 1, 3,

4, and 6 to Station 1. Next, we need to cover TAZs 2 and 5. Realizing that both

Stations 2 and 3 can cover TAZs 2 and 5, but that Station 3 has lower setup cost,

we open Station 3 as the second service facility. After the assignment is completed,

we further determine the optimal quantity of batteries. Station 1 is expected to

serve 18 EVs per hour; therefore, by Lemmas 1 and 2, s1 = 61 batteries with the

total cost of $427 000 and total power of 576.94 kW, which corresponds to γ = 0.19.

The same process is repeated for Station 3. After applying the Tabu search we

obtain the final solution, where Station 1 has 61 batteries and Station 3 has 58

batteries, and the total network cost is $1.58 million.

TABLE 6. Data for TAZs and candidate locations.
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TAZ/station j = 1 j = 2 j = 3 λi (EV/hour)

i = 1 1 0 1 6

i = 2 0 1 1 8

i = 3 1 0 1 3

i = 4 1 1 0 4

i = 5 0 1 1 9

i = 6 1 1 1 5

Power capacity Pj (kW) 700 650 800

Setup cost Fj (×$1, 000) 300 500 450
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CHAPTER 4

JOINT FACILITY LOCATION AND INVENTORY MODELS FOR

NOVEL HYBRID CHARGING STATION

4.1 Introduction

This chapter considers the joint location and inventory models for novel

hybrid charging station (HCS) services for EVs. Decisions regarding the location of

HCSs and the stock of fully charged spare batteries and the number of superchargers

at these locations is determined based on the pre-defined service level and total

sojourn time (service time plus waiting time) in the HCS queue (if a queue exists).

The second business model has a supercharging area where empty batteries

are charged very rapidly. In this model, the EV tries to obtain an immediate battery

swap for a charged battery; otherwise it avails itself of the onsite supercharging

service. Therefore, each EV leaves the station either with a swapped battery or a

battery charged by a supercharger. Figure 6 shows the business model, which can be

treated as a two-stage priority queueing network that combines a swapping queue

and a supercharging queue. We developed two mathematical models: The first

model has service-level constraints that are specified as the probability of stockout

and queueing for the battery swapping and supercharging services, respectively. The

second model has a pre-defined sojourn time for each EV in the station, regardless

of whether the battery swapping or supercharging service constraint is active.
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Figure 6. Novel hybrid charging station.

Figure 6 shows a flow chart describing how an EV is serviced at a HCS. When a

HCS has an incoming EV, it first checks if a spare battery with sufficient SOC is in

stock and ready to swap. If so, the batteries are swapped. The depleted battery will

be charged in the charging bay and moved to the stockroom when fully charged,

making it ready to swap for the next incoming EV. The EV that has finished

swapping batteries then exits the BSS. If no spare battery is available to swap, the

EV is sent to the on-site supercharger to receive the rapid-charging service.

4.2 Research Contribution

This model takes an early step to model and design an EV service network

that offers both battery swapping and supercharging services. The study takes into

account the demand uncertainty, range anxiety, service-level commitment, sojourn

time, and electricity-grid constraints. We jointly optimize the station location, the

stock of spare batteries, and the number of superchargers in an established station.

The objective is to minimize the overall cost of the EV service infrastructure, which

is comprised of the facility infrastructure, battery inventory, and supercharger

installation.

We developed two models to tackle two types of desired services. The first

model considers two different service levels for the network. For the battery-swap

process, we use the battery stockout probability, whereas, for the supercharging

process, we use the probability of having to wait for an available supercharger. The
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second model considers the total sojourn time for EVs in stations. The

contributions of this paper are summarized as follows:

1. To the best of our knowledge, this research constitutes the first effort to

investigate a joint location- and inventory-allocation model with two types of

battery service. A station offering both battery swap and fast onboard charging is

more realistic because an EV driver can use an alternative energy solution in case of

battery stockout.

2. The operation of a HCS station is characterized as a two-stage Erlang

priority queue with the battery-swap step preceding the supercharging step. Thus,

the proposed planning model achieves three performance goals: guaranteed SOC for

all spare batteries, ensured customer service quality, and controlled load to the

electricity grid.

3. Since the proposed planning model is a nonlinear and mixed-integer

optimization model, we develop a metaheuristic algorithm using a Tabu search to

solve it efficiently. An extensive computational study provides valuable managerial

insights for managing real-world EV charging and service operations.

4.3 Notation

We use the following notation in both proposed models:

TABLE 7. Sets and indices.

j ∈ J Set of potential locations for BSSs

i ∈ I Set of TAZ demand for BSSs

TABLE 8. Parameters and indices.
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λi EV arrival rate in TAZ i

Fj Setup cost of candidate charging station j

µb Battery recharge rate in charging bay

µd Battery recharge rate in supercharger

Fb Purchase cost per battery

Fd Purchase cost per supercharger

γ Overall allowable stockout probability

β Overall allowable queueing probability

Wmax Maximum allowable sojourn time in BSS

τ battery swapping time in BSS

θi Demand rate during lead time for battery charging in TAZ i

Pj Power capacity at candidate location j

Pb Power required for charging a battery in charging bay

Pd Power required for charging a battery using supercharger

dij Binary parameter equal to 1 if customer zone i is

in a certain battery range of candidate location j or equal to 0 otherwise

TABLE 9. Decision variables.

xj Whether location j is chosen.

sj Base stock level of battery inventory at station j.

mj Number of superchargers in station j.

θj Arrival rate at station j during lead time for battery charging.

φj Expected EV arrivals during a supercharging cycle.

yij Binary variable equal to 1 if customer i is assigned to candidate location j

λj Aggregate arrival rate at station j

Bj Probability of battery stockout at station j

Cj Probability of queueing at station j.

Wj Total sojourn time at station j.
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4.4 Modeling EV Supercharging Service Using M/G/s/∞

In this section, we find the appropriate data distribution to describe the EV

arrival pattern and queueing model for the EV queueing pattern in the station.

Specifically, we describe the battery swapping process by using an M/G/s/s model

and use the Erlang loss function to describe the process. The on-site supercharging

service is described by using an M/G/s/∞ model and we use the Erlang queue

function to describe the process. We also study how the power consumption of these

two charging processes impacts the power grid.

4.4.1 Model and data analysis

We consider the following EV arrival scenario for a single HCS: EVs

randomly arrive at the given HCS and obtain an immediate battery swap only if

spare batteries with a minimum SOC (e.g., 80%) are available; otherwise, the EV

goes to the on-site supercharging service to recharge its battery. In addition to the

assumptions given in Section 3.4.1, we make another important assumption for

supercharging service:

Supercharging queue. The arriving EV is directed to the supercharging queue

if the stockroom has no spare battery. A supercharger uses the fast level-3 DC

charging technology with an output power of up to 80 kW. Let λd be the EV arrival

rate at the supercharging queue, then

λd = λjBj.

This result is due to the fact that all EVs blocked in the swapping queue

move to the superchargers. Since 0 < B(s) ≤ 1, we have λd ≤ λb. Let m be the

number of installed superchargers in the station. The supercharging process can be

modeled as an M/G/s/∞ queue, and the transition diagram is given in Figure 7.

44



Figure 7. The M/G/s/∞ queueing model.

The M/M/s/∞ system is also referred to as the Erlang queueing model in Section

3.4.3 because it accommodates a queue when all superchargers are busy. The

number of EVs in the supercharging queue is the sum of the number Nq of vehicles

waiting in the queue and the number Nc undergoing DC charging. The expected

values can be obtained, respectively, as follows:

E[Nq] =
φC(m, s)

m− φ
,

E[Nc] =
λbB(s)

µd
.

For batteries, the difference between charging in the charging bay versus

charging by supercharging is mainly the charging rate. A supercharger uses 480 V

level-3 charging technology with a power of up to 80 kW. Conversely, a charging bay

used for recharging depleted swapped batteries uses level-2 charging technology,

which uses medium voltage and power to preserve battery life.

4.4.2 Electric power demand

Let Pb be the power used to recharge a depleted battery in the charging bay

and Pd be the power used to recharge a depleted battery using a supercharger. The

total power Ps used by a station is then the sum of the power used in the charging

bay and that used by the superchargers:

Ps = PbE[Nb] + PdE[Nc] =
λb
µb
Pb + λbB(s)

(
Pd
µd
− Pb
µb

)
= Pbθ(1−B(s)) + φPd.

Given Pb and Pd, the average power used by a station depends on the arrival

θ and the number s of batteries in the charging bay but is independent of the
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number m of superchargers. Because λb is an exogenous variable, we present the

following properties to characterize the relation between s and Ps:

Theorem 2. If Pdµb > Pbµd, then Ps decreases monotonically with s. If

Pdµb < Pbµd, then Ps increases monotonically with s.

Proof. From the equation for Ps, if Pdµb < Pbµd, then Pdµb − Pbµd < 0. According

to Lemma 3, B(s) decreases monotonically with s, so Ps increases monotonically

with s. Similarly, if Pdµb > Pbµd, then Pdµb − Pbµd > 0. Given that B(s) decreases

monotonically with s, Ps must decrease monotonically with s.

Theorem 3. If Pdµb = Pbµd, i.e., the charging bay and the superchargers use the

same charging technology, then the two-stage priority queuing network reduces to a

single M/G/s/∞ queue.

Proof. If the charging bay uses the same charge technology as the superchargers,

the time to charge a battery is identical for both processes. When an arriving EV is

blocked due to a shortage of spare batteries, it will prefer to wait for the next

available spare battery instead of using superchargers because the expected waiting

time in the swap queue will not exceed the time to complete the supercharging

process. Since superchargers are no longer used, the service process is reduced to an

M/G/s/∞ queue.

4.5 The Mathematical Model

This section presents two models for HCS services. The first model

pre-defines as service target the probability of battery stockout and the probability

of queueing for superchargers, whereas the second model pre-defines as service

target the total sojourn time in stations.

4.5.1 Optimal location and inventory for hybrid charging station with service-level

constraints

We now present a network design model in which all stations can exchange

batteries and supercharge at the same time. The OLIHCS-SL model minimizes the
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total infrastructure cost subject to power capacity, probability of battery stockout,

and queueing for supercharging:

(OLIHCS-SL) min
J∑
j=1

(Fjxj + Fbsj + Fdmj), (25)

s.t.
∑
j

yij = 1 ∀ i, (26)

yij ≤ dijxj ∀ i, j, (27)

θj = λj/µb ∀ j, (28)

λj =
∑
i

yijλi ∀ j, (29)

Bj(sj) ≤ γ ∀ j, (30)

Bj(sj) =
θ
sj
j /sj!

sj∑
k=0

(θkj /k!)

∀ j, (31)

φj = Bj(sj)λj/µd ∀ j, (32)

Cj(mj) ≤ β ∀ j, (33)

φmj
m!(1−φj/m)

m−1∑
k=0

φkj
k!

+
φmj

m!(1−φj/m)

= Cj(mj) ∀ j, (34)

Pbθj(1−Bj(sj)) + φjPd ≤ Pj ∀ j, (35)

sj ≤Mxj ∀ j, (36)

sj ∈ Z+ ∀ j, (37)

mj ∈ Z+ ∀ j, (38)

xj ∈ {0, 1} ∀ j, (39)

yij ∈ {0, 1} ∀ j. (40)

In the OLIHCS-SL model, the objective function (25) is comprised of station

setup, battery, and supercharger-procurement costs. In addition to xj and sj, the

new decision variable mj is the number of superchargers in station j. Constraint

(26) states that each customer zone must be covered by one station. Constraint (27)

sets the maximum allowed distance from a customer zone to an assigned BSS.
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Constraint (28) calculates the expected EV arrivals at station j during a battery

recharge cycle in the charging bay. Constraint (29) aggregates the EV arrival rate at

a BSS over all assigned TAZs. Constraint (30) defines the service-level requirement

(i.e., battery stockout probability) and ensures that it does not exceed a

pre-specified level (i.e., γ = 0.05). Constraint (31) is the Erlang loss formula for

calculating the stockout probability. Constraint (32) calculates the average number

of vehicles directed to the supercharging bay due to a shortage of fully charged

batteries. Constraint (33) states that the probability of an EV waiting for a

supercharger must not exceed a pre-specified threshold (e.g., β = 0.05). Constraint

(34) is the Erlang queueing formula to calculate the probability of waiting.

Constraint (35) states that the power consumed at any station should not exceed

the grid capacity. Constraint (36) ensures that no battery is placed at a station

unless the station is open. Finally, constraints (37)–(40) specify the

decision-variable types for sj, xj, mj, and yij, respectively.

4.5.2 Optimal location and inventory for hybrid charging station with service time

constraints

The OLIHCS-ST model is similar to the OLIHCS-SL model except that it

replaces the probability-based service-level constraint with the total sojourn-time
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constraint, so that the latter does not exceed a pre-defined threshold value:

(OLIHCS-ST) min
J∑
j=1

(Fjxj + Fbsj + Fdmj), (41)

s.t.
∑
j

yij = 1 ∀ i, (42)

yij ≤ dijxj ∀ i, j, (43)

θj = λj/µb ∀ j, (44)

λj =
∑
i

yijλi ∀ j, (45)

Bj(sj) =
θ
sj
j /sj!

sj∑
k=0

(θkj /k!)

∀ j, (46)

φj = Bj(sj)λj/µd ∀ j, (47)

φmj
m!(1−φj/m)

m−1∑
k=0

φkj
k!

+
φmj

m!(1−φj/m)

= Cj(mj) ∀ j, (48)

Wmax ≥
Cj(mj)Bj(sj)

µd(mj − φj)
+
Bj(sj)

µd
+ (1−Bj)τ ∀j, (49)

Pbθj(1−Bj(sj)) + φjPd ≤ Pj ∀ j, (50)

sj ≤Mxj ∀ j, (51)

sj ∈ Z+ ∀ j, (52)

mj ∈ Z+ ∀ j, (53)

xj ∈ {0, 1} ∀ j, (54)

yij ∈ {0, 1} ∀ j. (55)

In the OLIHCS-ST model, constraint (49) defines the total sojourn-time

requirement and ensures that it does not exceed a pre-specified level. All other

constraints and the objective function are the same as for the OLIHCS-SL model.
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4.6 Solution Approaches

The Erlang function is computationally challenging because the decision

variables sj and mj are embedded in power and factorial functions. In fact, many

off-the-shelf solvers generally cannot compute values for such highly nonlinear

functions, let alone provide a global optimal solution for the optimization problem.

Therefore, we develop a heuristic method based on the lemmas in Sections 3.4.2 for

fast solutions.

4.6.1 The metaheuristic solution method

The heuristic algorithm is based on the optimal customer allocation policy

from Section 3.6.1. Its goal is to determine which candidate location should be

chosen to open a station.

The objective function in the model has only three items: setup cost, battery

procurement cost, and supercharger-procurement cost. We design a metaheuristic

algorithm containing subroutine algorithms (7) through (10) to solve for a quality

solution. Figure ?? shows the flow chart of the overall metaheuristic.

Figure 8. The flow chart of the metaheuristic for the OLIHCS-SL and the OLICHS-ST

models
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4.6.2 A metaheuristic algorithm for the OLIHCS-SL and the OLIHCS-ST models

To maintain the desired service target, an important step in the HCS

location-allocation decision is to convert power capacity to the number of EVs that

a station can handle. For a given service-level threshold and Pj at station j,

Algorithm 7 gives the process of converting the power capacity to deal with the

maximum allowable EV arrival rate for the models. Based on Lemmas 3 and 6, the

algorithm increases the number of spare batteries and the number of superchargers

until it meets the desired service level. The process repeats by increasing λj until

the power capacity of station j is violated.

Algorithm 7 λ̄j = MaxArrival(Pj,γ, β or Wmax)// the maximal EV arrivals feasible

for station j

INITIALIZE P = 0 and λ̄j = µb

repeat

a. If using model OLIHCS-SL, then

1. Increase s (from s = 1) until B(
λ̄j
µd
, s) ≤ γ by using Eq. (30)

2. Increase m (from m = 1) until C(φj,m) ≤ β by using Eq. (33)

else if using model OLIHCS-ST, then

Increase s (from s = 1) and m (from m = 1) until satisfying constraint (49)

c. Update P by using constraint (35) for OLIHCS-SL and (35) for OLIHCS-ST

d. λ̄j = λ̄j + µb

until P ≥ Pj

return λ̄j

By using the maximal arrive rate of each candidate station λ̄j determined by

Algorithm 7, we compute the maximum number Nj of TAZs that can be assigned to

station j. This is because constraints (26) and (42) require that all TAZs be

covered. To minimize total setup cost, the optimal solution opts to open the fewest

possible stations, with each station serving as many TAZs as possible. Algorithm 8

below first sorts all TAZs that can be covered by station j in ascending order of

their EV arrival rates λj. It then chooses the first Nj TAZs in the sorted list until
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the maximum arrival rate λ̄j is reached; thus Nj is returned as the maximum

number of zones that station j can cover. Note that we use a sorted list to

determine Nj, not the final assignment of (Nj or fewer) TAZs to station j. The

latter is determined by Algorithm 8.

Algorithm 8 Nj = MaxZones(λ̄j)// the maximal number of TAZs covered by station

j

INITIALIZE λj = 0

Sj = the set of TAZs that can be covered by station j (i.e., dij = 1); these are

sorted by arrival rate λi in ascending order. Let i be the index for all TAZs in the

ordered set.

for i = 1 to |Sj| do

λj = λj + λi

If λj > λ̄j break;

end for

return i

By using the maximum number of TAZs that station j can cover, Algorithm

9 actually allocates the TAZs to the station by enumerating all combinations of Nj

TAZs and choosing the combination that yields the maximum arrival rate for the

station.

Algorithm 9 ( ~yij, ~xj)=Assign(Nj, λ̄j)// Assignment of TAZs to station j

Let T 1
j , T

2
j , . . . , T

K
j be K sets of TAZs such that |T kj | = Nj and dij = 1 for all

i ∈ T kj , for k =1, 2, . . . , K

Let λkj,1, λ
k
j,2, . . . , λ

k
j,Nj

be the arrival rates at all Nj stations in the kth set.

Let k∗ = arg maxk{
Nj∑
l=1

λkj,l|
Nj∑
l=1

λkj,l ≤ λ̄j}

Assign and return yij = 1 for all i ∈ T k∗j

Once the assignment of TAZs to candidate station j is completed, the

allocation of batteries and superchargers are obtained by Algorithm 10. As

mentioned previously, to minimize the objective function, the least number of
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batteries and superchargers are preferred so long as the service-level constraints are

met. On the other hand, since increasing the number of spare batteries reduces the

required superchargers, it is perhaps advantageous to overachieve the service level γ

in an effort to reduce m to 1, provided the power constraint is not violated since the

cost of installing a supercharger is greater than that of purchasing a spare battery.

Algorithm 10 (s∗j ,m
∗
j)=Configure(Pj, λj)//Number of batteries and superchargers

at station j

a. Increase s (from s = 1) and increase m (from m = 1) until the service level is

met

b. Update power usage P using Eq. (35) for the OLIHCS-SL model or Eq. (50)

for the OLIHCS-ST model

c. s∗j = s, m∗j = m and calculate total cost z∗ = Fbs+ Fdm

repeat

i. Increase battery s = s+ 1, and calculate m so that constraint (33) is satisfied

for the OLIHCS-SL model or constraint (49) is satisfied for the OLIHCS-ST

model

ii. Calculate total cost z′ = Fbs + Fdm and update P by using Eq. (35) for the

OLIHCS-SL model or Eq. (50) for the OLIHCS-ST model

iii. if z′ < z∗, then z∗ = z′′, s∗j = s, and m∗j = m

until m = 1 or P > Pj

return s∗j and m∗j

Algorithm 11 below integrates Algorithms 7–10 to provide a heuristic

solution to the models. Note that the solution can be obtained by simply removing

the procedures related to determining the optimal number of superchargers from

Algorithm 11. In particular, Algorithm 11 first uses Algorithms 7 and 8 to calculate

the maximum number of TAZs that a candidate station is capable of covering, then

uses Algorithm 9 to assign TAZs to all opened stations, and finally determines the

numbers of spare batteries and superchargers for each station.
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Algorithm 11 A heuristic algorithm

INITIALIZE I∗ = ∅, J∗ = ∅, flag(j) = false for all j

// Open those must-open stations and assign TAZs to them

Identify those TAZs that can be covered by only one candidate station, i.e.,

I∗ ← {i|∃ j : dij = 1, dij′ = 0∀ j′ 6= j} and

J∗ ← {j|∃ i : dij = 1, dij′ = 0∀ j′ 6= j}

Update xj, yij and Pj

while |I∗| 6= |I| do

if J∗ 6= ∅ then

for all j ∈ J∗ and flag(j) = false do

i. Calculate λ̄j = MaxArrival(Pj, γ, β, or Wmax) and Nj = MaxZones(λ̄j)

ii. Calculate ( ~yij, ~xj) = Assign(Nj, λ̄j)

iii. Calculate (s∗j ,m
∗
j) = Configure( ~yij, ~xj)

iv. flag(j) = true and update I∗

end for

end if

if J∗ = ∅ or flag(j) =true ∀j ∈ J∗ then

i. Open a new station at location j∗ = arg maxj∈J\J∗{Nj}. If there is a tie,

then the station with the lower setup cost is selected.

ii. Update J∗ = J∗ ∪ j∗

end if

end while

Since the Erlang loss constraint and the Erlang queuing constraint are

nonlinear, we use Tabu search to further improve the solution from Algorithm 11.

In particular, the Tabu search in Algorithm 12 reassigns TAZs to different stations

with the promise of potentially closing some stations, thus minimizing the total

cost. The Tabu search, first created by Glover [81], is a metaheuristic search method
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that finds the best solution in a defined neighborhood at every iteration to escape

from local optima.

A Tabu list is used to track all historical solutions for higher efficiency. In

particular, we consider the following two types of neighborhood functions:

Substitution: Randomly select two unopened candidate stations. If the total

setup cost of the two stations is less than that of an opened station, then open these

two stations and re-assign the TAZs to them and to other opened stations. This

neighborhood function is motivated by the fact that Algorithm 5 gives the priority

to stations based on the’ maximum number Nj of zones, not on the setup cost.

Consolidation: Randomly select a number of TAZs covered by a currently

opened station j. Move the TAZs to another opened station provided the power

capacity is not violated. This neighborhood function can reduce the number of

batteries required in station j and possibly the total cost.

Algorithm 12 Algorithm 6: A Tabu search algorithm

INITIALIZE Tabu list Γ = ∅, maximum iteration is L, neighborhood size is N ,

iteration index l = 1 and initial solution ~w = ( ~yij, ~xj, ~sj, ~mj). Set the optimal

solution to w∗ = w and the optimal cost to Z∗ = Z(w).

while l ≤ L do

Initialize neighborhood list N

while Tabu list Γ is not full and neighborhood list N is not full do

Randomly choose either the substitution or consolidation neighborhood func-

tion to create a new solution w′.

if w′ is not on the Tabu list then

1) Add w′ to the neighborhood list.

2) Calculate the total cost for the neighborhood solution w′, Z(w′).

3) If Z(w′) < Z∗, then w∗ = w′ and add w′ to the Tabu list.

end if

end while

l = l + 1

end while
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4.7 An illustrative example for the metaheuristic method

We illustrate the implementation of algorithms for the OLIHCS-SL model by

using an example with six TAZs and three candidate-station locations. The data in

Table 10 include information on dij, the power capacity and setup cost for each

candidate station, and EV arrival rate in each TAZ. We set γ = 0.2 and β = 0.2 in

the numerical experiment. We first use Algorithm 7 to calculate the maximum EV

arrivals that each candidate location can potentially serve. As a result, λ̄1 = 17.75,

λ̄2 = 16.75, and λ̄4 = 20.5. Next, we apply Algorithms 8 and 9 to calculate the

maximum number of TAZs covered by each station and furthermore find that

Station 1 covers TAZs 3, 4, and 6; Station 2 covers TAZs 4 and 6; and Station 3

covers TAZs 3, 6, and 1. Since Stations 1 and 3 can serve three TAZs whereas

Station 1 has a lower setup cost, we opt to open Station 1 first. Subsequently, we

assign TAZs 1, 4, and 6 to Station 1. Next, we need to cover TAZs 2, 3, and 5.

Realizing Station 2 is only able to cover TAZs 1 and 2 whereas Station 3 can cover

TAZs 2, 3, and 5, we open Station 3 as the second service facility. After the

assignment is completed, we further determine the optimal quantity of batteries and

superchargers. Station 1 is expected to serve 15 EVs per hour, so by Lemmas 1 and

4, s1 = 52 batteries and m1 = 4 superchargers with the total cost of $544 000 and

total power of 585.78 kW, which corresponds to γ = 0.19 and β = 0.07. We then

continue increasing s1 until either the power exceeds the given capacity or m1 drops

to 1. Finally, among all potential configurations, s1 = 53 and m1 = 3 yield the

lowest cost of $506 000 with a power demand of 586.74 kW (below the capacity).

This solution yields the actual service levels of γ = 0.18 and β = 0.18. The same

process is repeated for Station 3. After applying the Tabu search we obtain the final

solution, where Station 1 has 53 batteries and three superchargers, and Station 3

has 57 batteries and three superchargers, and the total network cost is $1.79 million.

TABLE 10. Data for TAZs and candidate-station locations.
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TAZ\Station j = 1 j = 2 j = 3 λi (EV/hour)

i = 1 1 0 1 6

i = 2 0 1 1 8

i = 3 1 0 1 3

i = 4 1 1 0 4

i = 5 0 1 1 9

i = 6 1 1 1 5

Power capacity Pj (kW) 700 650 800

Setup cost Fj (×$1, 000) 300 500 450
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CHAPTER 5

COMPUTATIONAL RESULTS

In this section, we discuss results from our numerical experiments for the four

models proposed in Chapters 3 and 4.

5.1 EV Charging-Demand Forecasting

We consider the EV charging demand in an area of interest. Each area is

divided into small TAZs. We used an expanded network construction to estimate

the EV charging demand in each TAZ. Each EV trip that can be served by a

sequence of BSSs can be represented by a path on the expanded network. The path

is obtained by solving a shortest-path problem whose formulation contains

constraints that ensure that the trips can be accomplished without exhausting the

battery. In this study, instead of completely exhausting a battery, an EV goes to a

station before its battery reaches a minimum acceptable level. The distance covered

by an EV between a given initial SOC and when its battery reaches a minimum

acceptable level is defined as the allowable driving range.

In the original network, each node stands for a candidate location for setting

up BSSs. Figure 9 illustrates an example with a single path q whose visited nodes

are N q = {A,B,C,D}. The arcs between nodes connect these nodes together. The

set of arcs on path q is Aq = {(A,B), (B,C), (C,D)}. Each trip of an EV has an

original and final TAZ, and multiple intermediate TAZs through which it passes.

The extended network approach is described as follows:
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Algorithm 13 Expanded network

Step 1: Add a dummy source node before the origin node A and connect the source

node to A. Add a dummy sink node after the destination D and connect it to D.

Step 2: Connect the source node to any other node that the EV can reach with its

initial SOC.

Step 3: Connect the sink node to any other node for which the distance is within

allowable driving range.

Step 4: Connect the nodes between the source and sink to any other node for which

the distance is within allowable driving range.

In the expanded network, each arc indicates a path with a battery-swap

service. Each arc combination indicates that an EV can finish the trip without

exhausting the battery.

First, each EV chooses the shortest distance possible to finish the trip.

Second, a linear relationship exists between power consumption and driving

distance. Third, all traveling EVs must gain access to a charging station before

their battery reaches a minimum acceptable level (e.g., 30% SOC).

EV charging demand in a single TAZ is defined as the number of EVs in the

given TAZ with batteries at the minimum acceptable charge level (so they need to

access a charging station). To illustrate the trip model, we consider an EV with a

full battery range of 100 miles. Suppose that the EV has a trip that passes through

four TAZs. Assuming that power consumption is linear in travel distance, the EV

loses 1% SOC per mile and depletes its battery when it travels 100 miles. An EV

must find a station when the SOC drops to 25% (i.e., the remaining battery range is

25 miles) and its initial SOC is 50%. It then needs to charge at node A before

passing node B, because we cannot deplete the battery when it arrives in the

station. After charging at node A, it will have a sufficient SOC to travel to node C

and arrive at its destination node D. The result of such a trip is shown in Figure 9.
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Figure 9. Four-node trip by an EV.

The indices for the shortest path in the expanded network is given below.

TABLE 11. Sets and indices

j ∈ J, i ∈ I Set of TAZs

q ∈ Q Set of EV trips

TABLE 12. Parameters and indices.

Dij Distance between TAZ i to j

Mq TAZ in which trip q starts

Nq TAZ in which trip q ends

CR Distance an EV can travel after charging service

Sq Distance an EV can travel with its initial SOC

TABLE 13. Decision variables.

xqi,j Binary variable equals to 1 if trip q travels from TAZ i and

is charged at TAZ j or 0 otherwise

dj EV charging demand at TAZ j
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minZ =
∑
i,j,q

(xqi,j ×Dij) (56)

s.t.
∑
j

xqi,j −
∑
j

xqj,i =


1 i = Mq

−1 i = Nq ∀ q, i

0 i 6= Mq, Nq,

(57)

∑
j

xqi,jDi,j ≤ Sq i = Mq ∀ q, (58)

∑
j

xqi,jDi,j ≤ CR i 6= Mq ∀ q, i, (59)

∑
i,q

xqi,j = dj j 6= Mq ∀ i, j. (60)

The objective (56) is to minimize the distance and the number of stops each trip

has to make. Constraint (57) is the flow-balance constraint. Constraint (58) states

that, when an EV starts a trip, it has to ensure that the trip will not deplete its

initial SOC. Constraint (59) states that, as an EV passes through intermediate

TAZs, it must look for a station at a total distance less than CR, which is a

pre-defined parameter that gives the allowable range. Constraint (60) calculates the

EV charging demand of each TAZ.

TABLE 14. An example distance table.

Distance 1 2 3

1 0 96 67

2 96 0 57

3 67 57 0

For example, Table 14 is the distance table for an example with five trips and three

TAZs. Let the range of the EV be CR = 120 miles, the initial SOC of each trip

Sq ∼ U(60, 120), Mq 6= Nq ∼ U(1, 3). We use CPLEX to solve the model. The result

is shown in Table 15.

TABLE 15. The result of EV charging-demand forecasting example.
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Trip No. Start range Start TAZ End TAZ Distance to travel Intermediate TAZ

1 114 3 1 67 N/A

2 97 3 2 57 N/A

3 60 2 3 57 N/A

4 94 2 1 96 2

5 81 1 2 96 1

In this example, Trips 1–3 have sufficient battery charge to finish the trips.

However, Trips 4 and 5 have to swap batteries or obtain a charging service to finish

the trips. Therefore, TAZs 4 and 5 each have one EV charging demand in this case.

TABLE 16. Charging topologies.

Level Location Voltage and current Approx. time to charge

1 Residential 110 V, 15 A 18 Hours

2 Residential/public 220 V, 15–30 A 3–6 Hours

3 Commercial 480 V, 167 A 20–50 minutes

5.2 Settings of Other Parameters in the Four Models

To calculate the stockout and queueing probability by using the Erlang loss

and queueing functions, we need the average service or charging times. Table 16

displays three charging levels and their charging times. In our experiment, we

assume that the empty batteries taken out of the EV have less than a level-2 charge

because type 1 is too slow and is commonly used for residential, whereas type 3

requires more investment in infrastructure and has a smaller EV market share.

For each experiment associated with each of the four models, various

operational conditions are considered, such as EV arrival rate, service level, and the

probability of waiting for superchargers. We test the algorithm for the five different

design sets given in Table 17. In each experiment, a total of 50 instances with ten

for each set are randomly generated from the EV charging-demand generation

model, as described in Section 5.1. Each set has its distinct network size of locations
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and TAZs. For instance, Set 5 has 200 candidate-station locations and 1000 TAZs.

Note that the ratio is defined as the number of TAZs divided by the number of

candidate locations. The proposed algorithm was coded in Python with the Numpy

plug-in. All tests were run on an Acer V3-372T with a 2.3 GHz dual-core I5

processor and 8 GB of RAM.

TABLE 17. Network size of five experimental sets.

.

Set Number of locations Number of TAZs Ratio

1 5 10 2

2 10 20 2

3 20 50 2.5

4 50 200 4

5 200 1000 5

A Nissan Leaf with a 24 kW h battery is the object of our experiment. Its

average charging time is τc = 4 hours for the swapped batteries, and τg = 0.5 hour if

using a supercharger. The corresponding charge rates are µb = 1/τc = 0.25

batteries/hour and µd = 1/τg = 2 EV/hour, respectively. Other parameters in the

models are Fj ∼ U($200 000, $500 000), Fb = $7, 000, Fd=$45,000, Pj ∼ U(600 kW,

800 kW), λi ∼ U(1, 2) in units of EV/hour, and dij ∈ {1, 0}. battery swapping time

is set to 6 minutes. Furthermore, for the OLIBSS-SL model, γ ∈ {0.01, 0.05, 0.1,

0.15, 0.2} is tested. For the OLIHCS-SL model, γ, β ∈ {0.05, 0.1, 0.15, 0.2}, a total

of 16 scenarios is tested. For the OLIBSS-ST model and the OLIHCS-ST model,

Wmax ∈ {10 min., 15 min., 20 min., 25 min., 30 min.} is tested.

5.3 Numerical Results for the OLIBSS-SL Model

Table 18 shows the average results for 50 randomly generated instances in five

sets for the OLIBSS-SL model when γ = 0.2. The number in each cell is the average

result over 10 instances in each set. When the network size increases, the numbers

of required charging stations and total number of batteries both increase. The

average number of batteries per station increases from 21.8 to 77.4. Second, when
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the network size increases, the average number of batteries per station increases as

well. But when the size increases to the level as in Set 3 and above, the average

number of batteries per station stabilizes around 75 because the power constraint

becomes a binding constraint that prevents the station from serving more EVs.

TABLE 18. Average results of the OLIBSS-SL model with γ = 0.2.

Set Network cost (×$106) Average # of BSS Average # of batteries Average # of batteries per station

1 1.2668 2.5 52.6 21.8

2 1.6009 2.9 98.6 35.1

3 3.8955 5 368.8 73.8

4 9.5916 12.3 931.7 75.8

5 47.292 60 4645.6 77.4

TABLE 19. Total cost (×$1, 000) and number of stations with various γ.

Set γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.15 γ = 0.2

1 1465.6 (2.5) 1385.8 (2.5) 1337.5 (2.5) 1299.7 (2.5) 1266.8 (2.5)

2 1936.2 (2.9) 1805.3 (2.9) 1720.6 (2.9) 1656.2 (2.9) 1600.9 (2.9)

3 5299.7 (6.1) 4845.6 (6) 4524.9 (5.8) 4173 (5.2) 3895.5 (5)

4 13359.1 (15.5) 12097.7 (14.4) 11136.8 (13.8) 10346.2 (13.1) 9591.6 (12.3)

5 66007.2 (75.6) 59800.4 (72) 54822.4 (68.4) 50937.6 (64) 47292 (60)
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Figure 10. Total network-infrastructure cost as a function of γ.

Table 19 shows the cost and number of stations (in parentheses) with service levels

incremented by 5%. Figure 10 shows the network total cost as a function of γ. The

results show that higher service levels require higher total network-infrastructure

cost. Two elements contribute to the higher cost: First, higher service level requires

more battery inventory for stations to guarantee that incoming EVs have a good

chance to obtain a fully charged battery for swapping. Second, higher service levels

require swapping stations to increase power consumption but, since the power

capacity of stations is fixed, more battery swapping stations will have to open to

serve all the EVs in the network, which in turn will increase the total network

facility setup cost.

Figure 11 shows the percent total cost increase as a function of γ. The results

suggest that, for small network size (i.e., Sets 1 and 2), total network cost increases

steadily with service level. For example, for Set 1, the total cost increases by 2.6%

from γ = 0.2 to 0.15 and 2.91% from 0.15 to 0.1. But when network size is medium

to large (i.e., Sets 3–5), the total cost increment does not follow a specific pattern

since the setup cost starts to have an impact. The total cost of Set 3 increases by

8.43% from γ = 0.15 to 0.1 but increases only by 7.09% from γ = 0.1 to 0.05.

Second, Sets 1 and 2 have an average of 2.5 and 2.9 stations to open each case

across all γ. Sets 3–5 have more stations to open when the service level increases.

For instance, Set 3 contains only five stations when γ = 0.2 but the number

increases to 5.2 and 5.8 for γ = 0.15 and 0.1, respectively. The increase occurs

because the power capacity of a single station prevents it from serving more EVs in

its area. Therefore, more stations are needed to serve the other EVs in the network.
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Figure 11. Percent change in total network infrastructure cost as a function of γ.

5.4 Numerical Results for the OLIBSS-ST Model

The same 50 instances with 10 for each set are used to test the OLIBSS-ST

model. For Wmax = 10 minutes, Table 20 summarizes the results for the

infrastructure cost, the number of charging stations, and the battery quantity for

five sets. The decimal values result from averaging ten instances in each set. As

expected, the number of BSSs required and the battery inventory both increase as

the network size increases. From Sets 1 to 5, the average number of batteries per

station increases from 30.91 to 83.21, respectively.

TABLE 20. Average results for the OLIBSS-ST model for Wmax = 10 minutes.
Set Network cost (×$106) Average No. of BSSs Average No. of batteries Average No. of batteries per station

1 1.4215 2.5 74.7 30.91

2 1.8676 2.9 136.7 48.575

3 5114.1 6.1 503.8 82.71

4 1.28828 15.3 1273.7 83.28

5 6.3790 76.4 6356 83.21
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Figure 12. Aggregated arrival rate in stations for various Wmax of Set 4.

Figure 12 shows a boxplot of the aggregated arrivals across all stations, averaged

over 10 instances for Set 4. The results suggest that Wmax does not affect the

aggregate arrival rate in the stations. This result occurs because, for Set 4,

regardless of any change in Wmax, the total power capacity in constraint (18) is the

binding constraint and produces the dominant effect on the aggregate arrival rate of

EVs.

TABLE 21. Total cost (×$1, 000) and number of stations for various Wmax.

Set 10 min. 15 min. 20 min. 25 min. 30 min. No. of stations

1 1421.5 1392.8 1378.8 1366.9 1364.8 2.5

2 1867.6 1822.8 1804.6 1788.5 1779.4 2.9

3 5114.1 4986.1 4944 4902 4859.3 6.1

4 12882.8 12562.2 12455.1 12348 12240.9 15.3

5 63790 62194 61662 61130 60598 76.4
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Figure 13. Total cost (×$1, 000) and number of stations as a function of Wmax.

Table 21 and Figure 13 show how the total network infrastructure cost changes

when Wmax varies from 10 to 30 minutes with five-minute increments. The costs

from Sets 1 to 4 are much less than the cost from Set 5, which makes Sets 1 to 4

appear to be constant in Figure 13. Figure 15 shows the percent change in battery

inventory as a function of Wmax. A relatively large increment in battery inventory

occurs when Wmax drops from 15 to 10 minutes. For instance, battery inventory in

Set 4 increases only by 1.29% when Wmax drops from 20 to 15 minutes, but the

inventory increases by 3.7% when Wmax drops from 15 to 10 minutes. As shown in

Figure 14, the percent of the incremental cost of the infrastructure also grows

steadily as Wmax decreases, which is attributed to the fact that battery-inventory

cost accounts for a major part of infrastructure expenses.
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Figure 14. Percent change in cost for the OLIBSS-ST model as a function of Wmax.

Figure 15. Percent change in battery inventory for the OLIBSS-ST model as a func-

tion of Wmax.
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5.5 Numerical Results for the OLIHCS-SL Model

We also tested the OLIHCS-SL model by using the 50 randomly generated

instances. Table 22 displays the averaged results for γ = 0.2 and β = 0.2. The

results show that, as network size increases, the average cost, number of batteries,

and number of charging stations all increase. Also, because the cost of

supercharging is much greater than the cost of batteries, the optimal solution

exceeds the threshold value for γ so that fewer EVs need superchargers, thus

lowering the overall cost. In contrast, the optimal solution would meet the threshold

value of 0.1 for β. Therefore, in contrast with the results given in Table 18, the

OLIHCS-SL model uses more batteries (e.g., 52.6 vs. 58.9 for Set 1 and 4645.6 vs.

4916.8 for Set 2). Note that the increase in the number of batteries and extra

superchargers requires more power. Therefore, given a fixed power capacity at any

given station, the optimal solution tends to open more stations to cover all EVs in

the area. As with the solutions of the OLIHCS-SL model when network size

becomes large, the numbers of batteries and chargers per station stabilize because

power capacity becomes a binding constraint.

TABLE 22. Averaged results for the OLIHCS-SL model (γ = 0.2, β = 0.2).

Set 1 2 3 4 5

Average cost (×$1000) 1463.9 1910.6 5175.3 13048.2 64446.4

No. of stations 2.5 2.9 6 15 74.8

No. of batteries 58.9 106.2 392.8 980.7 4916.8

No. of batteries per station 24.4 37.7 65.4 64.4 65.7

No. of superchargers 3.4 5.7 19.1 50.8 249.2

No. of superchargers per station 1.4 2.0 3.18 3.3 3.3

Battery stockout probability 0.12 0.13 0.15 0.15 0.15

Waiting probability at supercharger 0.17 0.18 0.17 0.16 0.16

Table 23 shows the results of a sensitivity analysis of the OLIHCS-SL model

in which γ and β are varied. With the highest service level for both battery

swapping and supercharging, the network has the highest (γ = 0.05, β = 0.05) total

infrastructure cost. Furthermore, for fixed battery stockout probability γ (queueing

probability β), lower queueing probability β (battery stockout probability γ) causes

higher total cost because it requires more superchargers (battery inventory) to

guarantee that the service level is met. In addition, by fixing γ, the total cost may
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not necessarily increase linearly in β. This appears in Figure 16 when γ is set to

0.05. In addition, the combination of low β and high γ costs more than the

combination of high β and low γ. For example, Set 3 costs 5499.4 when γ = 0.1 and

β = 0.05, which is more expensive than the total cost of 5443.5 when γ = 0.05 and

β = 0.1. In addition, when secondary superchargers exist in a charging station,

increasing γ has less effect on the required number of charging stations because the

superchargers can serve as a buffer. This is evinced by comparing Tables 10 and 8.

For example, for Set 4, when γ drops from 0.2 to 0.05, the average number of

stations increases only by 0.4 under the OLIHCS-SL model. However, under the

OLIBSS-SL model, the average number of stations increases by 3.2.

TABLE 23. Sensitivity analysis of cost of the OLIHCS-SL model (×1000) and number

of stations for various γ and β.

γ = 0.05 γ = 0.1

Set β = 0.05 β = 0.1 β = 0.15 β = 0.2 β = 0.05 β = 0.1 β = 0.15 β = 0.2

1 1556.3 (2.5) 1522.8 (2.5) 1508.1 (2.5) 1501.8 (2.5) 1543 (2.5) 1511.9 (2.5) 1495.1 (2.5) 1481.8 (2.5)

2 2047.6 (2.9) 2010.8 (2.9) 1918.6 (2.9) 1958.9 (2.9) 2023.7 (2.9) 1986.1 (2.9) 1962.6 (2.9) 1939.3 (2.9)

3 5530 (6.1) 5443.5 (6.1) 5436.9 (6.1) 5400.5 (6.1) 5499.4 (6.1) 5388.2 (6.1) 5319 (6.1) 5252 (6.1)

4 13942 (15.4) 13718.9 (15.4) 13709.3 (15.4) 13619 (15.4) 13847.3 (15.4) 13595.5 (15.4) 13410.1 (15.4) 13235.9 (15.4)

5 69006.4 (76.8) 67898.8 (76.8) 67852 (76.8) 67431.6 (76.8) 68491.2 (76) 67114.8 (76) 66299.6 (76) 65497.6 (76)

γ = 0.15 γ = 0.2

Set β = 0.05 β = 0.1 β = 0.15 β = 0.2 β = 0.05 β = 0.1 β = 0.15 β = 0.2

1 1537.7 (2.5) 1505.2 (2.5) 1483.9 (2.5) 1470.6 (2.5) 1537.3 (2.5) 1501.4 (2.5) 1480.7 (2.5) 1463.9 (2.5)

2 2020.6 (2.9) 1974 (2.9) 1939.4 (2.9) 1921.3 (2.9) 2020.6 (2.9) 1969.7 (2.9) 1936.4 (2.9) 1910.6 (2.9)

3 5469.8 (6) 5342.9 (6) 5251.4 (6) 5197.1 (6) 5474 (6) 5337.5 (6) 5238.1 (6) 5175.3 (6)

4 13839.3 (15.1) 13492.6 (15.1) 13271.9 (15.1) 13117.3 (15.1) 13796.5 (15) 13450.1 (15) 13180.2 (15) 13048.2 (15)

5 68277.6 (74.8) 66714 (74.8) 65568.4 (74.8) 64636 (74.8) 68270 (74.8) 66438 (74.8) 65211.2 (74.8) 64446.4 (74.8)
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Figure 16. Total cost as a function of β and γ of Set 4 .

5.6 Numerical Results for the OLIHCS-ST Model

The OLIHCS-ST model was also tested with the same 50 instances. Table 24

shows the averaged results for Wmax = 10 minutes. As expected, when the network

size increases, the average cost, battery inventory, and number of charging stations

all increase. Second, only one supercharger is required for each station for

Wmax = 10 minutes. In our setting, the supercharger needs half an hour to recharge

the 24 kW h battery, so the number of EVs being supercharged should be minimal

in this circumstance. In other words, the OLIHCS-ST model prioritizes battery

swapping over supercharging. Third, compared with the result of the OLIBSS-ST

model (see Table 20) the number of spare batteries inventory is smaller. For

instance, in Set 5 the number of batteries is 76.29 as per the OLIHCS-ST model as

opposed to 83.21 as per the OLIBSS-ST model. This result is attributed to the

superchargers, which can replace certain spare batteries while keeping the same

service level.

TABLE 24. Averaged results for the OLIHCS-ST model with Wmax = 10 minutes.

72



Set 1 2 3 4 5

Average cost (×$1000) 1452.1 1880.5 5091.1 12822.3 63506.8

No. of stations 2.5 2.9 6.1 15.3 76.4

No. of batteries 63 119.9 461.3 1166.7 5824.4

No. of batteries per station 26.13 42.7 75.74 76.29 76.29

No. of superchargers 2.5 2.9 6.1 15.3 76.4

No. of superchargers per station 1 1 1 1 1

Battery stockout probability 0.08 0.07 0.06 0.06 0.06

Waiting probability at supercharger 0.24 0.35 0.52 0.52 0.52

Figure 17. Aggregated arrival rate in stations for various Wmax of Set 4.

Figure 17 shows a boxplot of the aggregated arrivals across all stations, averaged

over 10 instances in Set 4. The results suggest that Wmax does not affect the

aggregate arrival rate in all stations, as is the case for the OLIBSS-ST model. As

Wmax increases, more EVs are sent to the supercharging service. The secondary

charging service serves as a buffer for the queue.

TABLE 25. Total cost (×$1, 000) and number of stations for various Wmax.
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Set 10 min. 15 min. 20 min. 25 min. 30 min. No. of stations

1 1452.1 1403.8 1378.8 1365.9 1345.9 2.5

2 1880.5 1813.7 1778.4 1752.8 1730.2 2.9

3 5091.1 4896.6 4786.3 4698.8 4616.1 6.1

4 12822.3 12330.3 12047.7 11832.6 11623.4 15.3

5 63506.8 61054 59658.8 58568.8 57536 76.4

Table 25 shows the results of a sensitivity analysis on optimal total costs with

Wmax varied from 10 to 30 minutes. Two relatively-larger-cost increments occur

when the allowable system time decreases from 30 to 25 minutes and from 15 to 10

minutes, respectively. For example, in Set 4 the total cost increases by 1.8% and by

4% when Wmax drops from 30 to 25 minutes and from 15 to 10 minutes,

respectively. These results are similar to those of the OLIBSS-ST model shown in

Figure 14. Table 26 and Figure 18 show the average battery inventory each set as a

function of system time. The number of batteries decreases as the allowable system

time increases. When the sojourn-time constraint decreases from 30 to 25 minutes,

the number of batteries increases significantly. For example, the number of batteries

required in stations for Set 3 increases by 32.92% (as opposed to 35.78% and 36.02%

for Sets 4 and 5, respectively).

TABLE 26. Average number of batteries for various Wmax.
Set 10 min. 15 min. 20 min. 25 min. 30 min.

Average

number of

batteries

Average

number of

batteries

per station

Average

number of

batteries

Average

number of

batteries

per station

Average

number of

batteries

Average

number of

batteries

per station

Average

number of

batteries

Average

number of

batteries

per station

Average

number of

batteries

Average

number of

batteries

per station

1 63 25.2 56.1 22.4 47.4 19 44.9 18 36.9 14.8

2 119.9 41.3 106.5 36.7 88.6 30.6 79.8 27.5 65 22.4

3 461.3 75.6 394.3 64.6 337.4 55.3 270.9 44.4 203.8 33.4

4 1166.7 76.2 994.2 65 843.9 55.1 689.1 45 507.5 33.2

5 5824.4 76.2 4920 65 4220.4 55.2 3460.4 45.3 2544 33.3
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Figure 18. Average number of batteries for various Wmax.

Table 27 and Figure 19 show the number of superchargers per station for various

Wmax. The number of superchargers decreases as Wmax decreases because

superchargers need 30 minutes to finish the charging process. A huge increase in

superchargers occurs when Wmax goes from 10 to 15 minutes. For example, the

number of superchargers increases by 100%, 103.92%, and 106.28% when Wmax

increases from 10 to 15 minutes for Sets 3–5, respectively.

TABLE 27. Average number of superchargers for various Wmax.

Set 10 min. 15 min. 20 min. 25 min. 30 min.

Average

number of

superchargers

Average

number of

superchargers

per station

Average

number of

superchargers

Average

number of

superchargers

per station

Average

number of

superchargers

Average

number of

superchargers

per station

Average

number of

superchargers

Average

number of

superchargers

per station

Average

number of

superchargers

Average

number of

superchargers

per station

1 2.5 1 2.5 1 3.3 1.3 3.4 1.4 4.2 1.7

2 2.9 1 3.5 1.2 5.5 1.9 6.3 2.2 8.1 2.8

3 6.1 1 12.2 2 18.6 3 27 4.4 35.6 5.9

4 15.3 1 31.2 2 48.3 3.2 67.6 4.4 91.2 6

5 76.4 1 157.6 2 240.4 3.2 334.4 4.4 454 6
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Figure 19. Average number of superchargers as a function of Wmax.

5.7 Case Study for Mid-Ohio Region

We apply the proposed OLIHCS-SL model, OLIHCS-ST model, and

metaheuristic algorithm to a case study of the central Ohio regional network

available through the Mid-Ohio Regional Planning Commission

(http://www.morpc.org). The data involve 714 000 households, 2 million light-duty

vehicles in seven counties, and 2.5 million personal trips in 2015. We use 3.3% EV

penetration rate as suggested in Ref. [82]. As illustrated in Table 28, each data

entry is a tour consisting of at least one trip. Each trip has a designated origin and

destination TAZ with known distance. For example, the table displays a direct trip

for household 1 traveling from TAZ 1 to 4 and an indirect trip for household 2

traveling from TAZ 14 to 27 with an intermediate stop at TAZ 30. Furthermore,

because the case study focuses on siting charging stations with easy accessibility, we

choose as candidate locations nonresidential areas such as retail stores, shopping

malls, office complexes, and gas stations along the highway.
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TABLE 28. Sample data for case study (note: i, k, and l are TAZ indices).

Household No. Start TAZ i End TAZ l Intermediate stop (TAZ No.) Distance from i to l Distance from i to k Distance from k to l

1 1 4 13

2 14 27 30 19 15 21

3 36 79 45 12 6 7

The EV charging-demand forecasting method in Section 5.1 is used to

estimate the EV arrival rate λi for each TAZ. Figure 20(a) shows a boxplot for the

calculated arrival rates for all TAZs in the case study. These results suggest that,

for most TAZs, the arrival rate λi is 1–4 vehicles/hour. Conversely, Kuby and Lim

[26] conclude that about 83.4% of alternative-fuel drivers refill their vehicle when

the energy source is less than 3/8 of full capacity. Therefore, all tours with a

distance exceeding 5/8 of the full battery range could translate into a potential

charging demand at the destination. In general, it is reasonable to assume that EVs

may have some energy left in their batteries before finding a service station—our

experiment sets this buffer at 1/8 of the full battery capacity. Therefore, the

maximum allowable range in this case study is 2/8 of the full battery range. Similar

to the randomly generated test instances, the Nissan Leaf is again considered in the

case study and the maximum allowable range is 30 miles (or 48 km) for the 24 kW h

battery.
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Figure 20. Results for Mid-Ohio case with the OLIHCS-SL model.

We ran the OLIHCS-SL model on the Mid-Ohio case with γ = 0.2 and β = 0.2

Figures 20(b)–20(d) show the results for arrival rates covered at all open stations,

the number of batteries, and the number of superchargers, respectively. In

particular, we run two scenarios: one with a baseline power capacity and another

with a doubled power capacity. The model suggests opening 112 stations in the

baseline case, which decreases to 57 stations under the doubled-power-capacity case.

Furthermore, Figure 20(b) shows the distribution of the responsible arrival rates for

all 112 stations under the baseline capacity with an average of 18 EVs per hour.

Under the doubled capacity, the average EV arrival rate is approximately 34 cars per

hour. Conversely, for the baseline case, Figure 20(c) shows the battery inventories

for all stations, with most stations having 55–75 batteries in stock. When the power

capacity is doubled, the average battery inventory is about 118 batteries. Finally,

Figure 20(d) suggests that the majority of stations with three superchargers

installed needs to increase to six superchargers when the power capacity is doubled.
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We also ran the OLIBSS-ST model on the Mid-Ohio case for Wmax = 10

minutes. The results suggest opening 128 stations in the baseline case, which

decreases to 64 stations for the doubled-power-capacity case. The average EV

arrival rate is approximately 17 EVs per hour for the baseline case and 34 EVs per

hour for the doubled-power-capacity case. The numbers of batteries and chargers

per station are 72.4 and 1, respectively, for the baseline case. When the power

capacity is doubled, the numbers of batteries and chargers per station increase to

134.9 and 2, respectively.

Figure 21. Results for Mid-Ohio case with the OLIHCS-SL model.

Figure 21(a) shows the map of all 112 opened stations under the baseline-capacity

case. The darker colors represent a greater arrival rate for the given TAZ. The

results show that most stations are placed in the Columbus metropolitan area

(rectangular boxes with solid lines). In addition, Figure 21(a) reveals three satellite

areas (rectangular boxes with dashed lines), each of which contains two to three

stations. In particular, the area with the highest EV arrival rates is marked with a

star. An expanded view of this area around the Columbus airport is shown in

Figure 21(b). This area accepts 110 EVs per hour from 27 TAZs. As a result, six

stations are established, as shown in Figure 21(b). These stations meet the demand

from EV arrival rates of 17, 18, 20, 18, 18, and 19 EV/hour by using 61, 66, 74, 66,

66, and 70 batteries, respectively. In addition, each of the six stations has three
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superchargers installed. The OLIBSS-ST model sets up one more station to meet

the demand from EV arrival rates of 15, 17, 18, 19, 18, 18, and 19 EV/hour by

using 64, 72, 76, 80, 76, 76, and 80 batteries, respectively. Each of these seven

stations has one supercharger installed.

TABLE 29. Results for the OLIHCS-SL model for various charging rates.

Scenario γ β Stations Average sjs Average mjs Cost ($1,000)

Baseline

µb = 0.25

Pb = 10 kW

1 0.2 0.2 112 64.8 3.0 96,103

2 0.2 0.1 112 64.6 3.9 100,482

3 0.1 0.2 113 73.2 2.2 98,935

4 0.1 0.1 113 75.6 2.4 101,850

µb = 0.5

Pb = 20 kW

1 0.2 0.2 112 36.7 2.7 71,157

2 0.2 0.1 112 37.2 3.1 73,565

3 0.1 0.2 113 40.8 1.8 71,386

4 0.1 0.1 113 43.7 1.8 73,680

µb = 1

Pb = 40 kW

1 0.2 0.2 112 24.3 1.8 59,709

2 0.2 0.1 112 25.6 2 61,736

3 0.1 0.2 113 24.0 1.2 60,177

4 0.1 0.1 113 25.4 1.3 61,793

Finally, we project the technological changes for increased charging rate µb for

level-2 chargers for swapped batteries and investigate how the increase in µb affects

the numbers of stations opened, the number of spare batteries, and the number of

superchargers installed. Three station-configuration scenarios are created: µb = 0.25

(baseline), µb = 0.5, and µb = 1. For each scenario, we vary both γ and β from 0.1

to 0.2, for a total of four combinations. Table 29 shows that increasing µb has

minimal effect on the number of stations opened, which remains at 112 or 113 for

the entire service network. The average number decreases for both spare batteries

and superchargers, which results in a lower total cost. Finally, of the four

combinations, (γ, β) = (0.2, 0.2) and (γ, β) = (0.1, 0.1) yield the lowest and highest

total cost, respectively, and the costs for (γ, β) = (0.2, 0.1) and (γ, β) = (0.1, 0.2) are
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in the middle with (γ, β) = (0.2, 0.1) being higher. The latter happens because more

superchargers need to be installed for smaller β, thus leading to higher cost.

TABLE 30. Results for the OLIHCS-ST model for various charging rates.

Scenario Wmax Stations Average sjs Average mjs Cost($1,000)

Baseline

µb = 0.25

Pb = 10 kW

1 10 128 73 1 106,876

2 15 128 62 2 102,780

3 20 128 53.2 2.9 100,492

4 25 128 43.6 4.2 98,792

5 30 128 31.8 5.6 96,283

µb = 0.5

Pb = 20 kW

1 10 128 39.4 1 76,832

2 15 128 37.5 1 75,068

3 20 128 36.9 1 74,508

4 25 128 36.5 1 74,172

5 30 128 36.1 1 73,813

µb = 1

Pb = 40 kW

1 10 128 22.2 1 61,376

2 15 128 20.9 1 60,228

3 20 128 20.2 1 59,612

4 25 128 20.2 1 59,612

5 30 128 20.2 1 59,612

The same projection was made for the OLIHCS-ST model. For each charging rate

given above, Wmax is set at four levels: 10, 15, 20, and 25 minutes. The results

shown in Table 30 are similar to those of Table 29; that is, 128 stations remain open

for all scenarios, and the number of batteries and the total network cost decrease as

µb increases. In particular, when the battery charging rate starts to catch up with

the charging rate of superchargers, the cost advantage of batteries makes stations

allocate more batteries than superchargers, which ultimately reduces the number of

superchargers to one per station. Finally, when µb = 1, changing from Wmax = 20

minutes to Wmax = 25 minutes does not affect the configuration of stations because

the time difference is trivial compared with the total time an EV spends in the

charging stations.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

In this dissertation, we establish and verify that the process for swapping EV

batteries follows an M/G/s/s and M/G/s/∞ queueing model and we use the Erlang

function to combine queuing theory and inventory control. To reduce EV-range

anxiety, two types of novel battery service stations are proposed for EVs. The first

type of station offers only a battery swapping service. Two models, the optimal

location and inventory model for BSSs with service-level constraint (OLIBSS-SL)

and the optimal location and inventory model for BSSs with service time constraint

(OLIBSS-ST), are formulated to study (i) station location and battery inventory for

target service levels and (ii) total sojourn-time constraints, respectively. Both

models minimize the total infrastructure cost and battery procurement cost. The

second type of battery service station offers not only a battery swapping service but

also an on-site supercharging service. As for the second battery service station, we

construct an optimal location and inventory model for a battery swapping and

supercharging stations with service-level constraint (OLIHCS-SL) and an optimal

location and inventory model for battery swapping and supercharging stations with

service time constraint (OLIHCS-ST) to study service level and total sojourn-time

constraints.

All proposed models minimize total infrastructure cost, battery cost, and

supercharger cost. By studying the mathematical properties of the Erlang function,

we develop heuristic algorithms to solve the four proposed models. The Erlang

function is a nonlinear function with decision variables embedded in complicated

factorial and power-law functions. Traditional solvers are thus unable to solve these

problems or give global optimal solutions, which prevents the Erlang function from
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being applied to large-scale applications. The proposed algorithms can significantly

simplify the model and save computational time. For the second type of

battery-service station, we construct a case study based on vehicle displacement

data from the Mid-Ohio region. Given that the data are based on TAZs, we

construct a shortest-path problem to estimate the EV-charging demand for each

TAZ. The proposed models and algorithms are then used for other service providers

who wish to take queueing effect into consideration for decisions regarding where to

locate battery-service stations. As a result, the heuristic algorithms solve the

proposed models more rapidly and give more accurate results.
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