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ABSTRACT 

Advancements in big data enabled management practices inspire logistics 

companies to study deeper into their transportation operations with a data driven 

approach. One such question asks: How can a logistics firm identify high-cost customers 

in their service network? In the presence of rich data on routes involving many 

customers, this thesis develops a framework to allocate a route cost among customers that 

the route serves, where each route is associated with multiple route features related to the 

transportation cost. Cost is allocated using the proportional allocation approach in 

combination with the random forest method in machine learning. First, this framework 

ensembles random forest regression models to determine the importance values of all 

route features. Next, the importance values of route features are used to allocate cost 

among customers. Finally, posterior analysis identifies customers in a route or in general 

that are most costly to serve.  Several additional analyses are performed to show potential 

uses of this cost allocation output. Results of the framework and analyses on three 

simulated case and two industry cases show the validity of the model and the potential for 

actionable operational analysis and changes.
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I. INTRODUCTION 
 
 

In the area of transportation and logistics planning there exists the long-standing 

problem of how to best allocate costs among customers on a route, stemming from both 

academic and practical interests.  For example, in fundamental research from 1984, Samet, 

et al. (1984) studied the application of cost allocation to the transportation problem using 

Auman-Shapley Prices, an allocation method rooted in game theory. Driving the interest 

in this cost allocation problem is route optimization. Minimizing route costs has been used 

as a common objective in most industry-focused and well-studied vehicle routing problem 

(VRP) (e.g., Psaraftis, et al., 2016). In the latter, although minimizing the overall costs on 

routes has been widely adopted and used as standard practice in logistics planning (e.g., 

(Desrochers, et al., 1992) and (Fabri and Recht, 2006 )), the understanding of individual 

customers’ contribution to the overall route cost is disproportionally understudied. 

Nevertheless, knowledge of individual customer cost and thus profitability is not only 

critical to management but has become accessible in this data era. The availability of, 

perhaps even real-time granular route data such as order sizes, time windows, and other 

real-time route and customer specific characteristics has allowed and motivated companies 

to mine deeper into their cost at the customer level instead of the overall cost.  Hence, the 

current thesis attempts to address this gap in the literature, with the aim to provide 

methodological guidance towards customer-centered cost analysis practices.  

 In particular, this research will focus on developing a model to fairly allocate costs 

to customers on the same route. It is envisioned that such a model will be of great value to 

not only companies in transportation logistics, but others in related fields such as energy 

markets, airlines, and telecommunications. Of particular importance to the proposed 
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methodology and models is the ease of usage by potential industry users, who would rely 

on the actionable model results for developing management solutions and making business 

decisions.  

In the literature, there are two main streams of research on cost allocation in 

transportation. One stream studies allocation using the Shapley value. Relevant literature 

such as Dror (1990) and Frisk et al. (2010) uses this value along with game theory 

principles to allocate costs among cooperating players in a “game”, or a route in the case 

of this thesis. This method, although theoretically sound, lacks the ability to deal with 

practical scale and complex features in today’s logistics industry.  The second stream 

studies proportional allocation models including works such as Fishburn and Pollak (1983), 

Sun, et al. (2016); and Dror (1990). Compared to the first method, the proportional 

allocation method is easier to implement in practice and produces results that can be 

interpreted by management; however, the fairness of the output depends greatly on the 

parameters used to make the allocation. 

Therefore, the current thesis focuses on the proportional allocation method due to 

the simplicity in interpreting the results but expands on current research by integrating 

machine learning techniques to develop a data-driven model for fair cost allocation. 

Machine learning models such as decision tree regressors and random forest regressors are 

studied as methods to produce inputs to the proportional cost allocation method.  

In addition to the cost allocation model, the development of a decision support 

system (DSS) to utilize the results of the model is also presented in this thesis.  

Management overseeing business decisions requires actionable results. This thesis will 

expand on the cost allocation model to discuss potential data transformations that can be 
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integrated with a management centered DSS. The goal of this DSS is to analyze historic 

customer-based decisions to make improvements to managerial decision-making processes 

in the future. Specifically, this thesis intends to expand on the allocation model to develop 

an analysis to isolate high-performing and low-performing customers. 

The thesis will continue as follows. It will first review pertinent literature in Section 

II. Section III will define the problem statement of this thesis including a descriptive 

overview of the proposed methodology and models. Section IV will present the proposed 

integrated prediction and cost allocation framework. This will include the development of 

a machine learning model used by the subsequent cost allocation algorithm. It will also 

elaborate on the integration of a decision support system using outputs of the allocation 

algorithm. Section V will follow with the computational results of several simulated and 

industry cases. It will detail the data preparation methods, the performance of the machine 

learning model, and the results of several DSS analyses. The thesis will conclude with 

Section VI summarizing findings and pointing to future research.
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II. LITERATURE REVIEW 
 
 

The literature review will introduce works related to cost allocation (CA) in the 

transportation and logistics field. It will focus on two main streams: Shapley value 

allocation and proportional allocation. They are the most widely used, traditional CA 

methods according to a survey paper by Guajardo and Rönnqvist (2016) on CA in 

collaborative transportation. 

A. Shapley Allocation 
 

The first stream of literature is Shapley allocation. Using game theory, Shapley 

developed a formula to assign a value to each player in a game based on their expected 

marginal contribution to their coalition. (Shapley, 1953) Shapley allocation is rooted in 

cooperative game theory where players enter a coalition so that all players benefit from 

participating. In the case of a transportation problem, the customers (players) enter a route 

(coalition), where the total coalition cost must be “efficiently” distributed among the 

players. Additionally, the allocation ensures that the cost allocated to a player is less than 

the cost they would incur outside of the coalition or in a different coalition. This 

methodology assumes that the players can make the decision to enter or leave the coalition.  

 In this stream of research, Engevall et. Al study applied Shapley allocation, also in 

a cooperative game setting, to a traveling salesman problem at an oil and gas company to 

allocate costs to customers on a tour (1998). Vanovermeire et al. use the Shapley value to 

allocate costs among a horizontal alliance composed of three partners to show increased 

flexibility (2014a). Agarwal and Ergun, instead of analyzing a given customer network, 

consider an optimal design of a coalition use Shapley value allocation (2010). The 
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allocation scheme is a parameter in the optimal design of a collaborative coalition of carrier 

alliances in liner shipping. In fact, using the Shapley allocation in designing coalition is of 

interest to many other researchers as well. Cruijssen et al. use a Shapley allocation 

procedure to design a methodology to create more synergistic shipping coalitions and 

applies the procedure to the Dutch grocery transportation sector (2010). Vanovermeire et 

al. develop a combined operational plan and cost allocation method for a generalized 

collaborative bundling problem to satisfy all agents by planning on-time deliveries and 

ensuring balanced profits (2014b). Zakharov and Shchegryaev develop a cost minimization 

model for a VRP considering the customer cost distribution described by the Shapley value 

(2015). Krajewska et al. analyze horizontal cooperation among cost centers in a freight 

forwarding company to show that cooperation can reduce overall transportation costs using 

Shapley cost allocation (2008). Computationally, it is shown that Shapley methods are 

complex and expensive.  Further, Shapley allocation-based methods often require 

assumptions that relax practical business considerations.  

Finally, Shapley allocation is also applied to other topics.  For example, Fiestras-

Janeiro et al. develop a methodology based on Shapley allocation to distribute order cost 

among agents who place joint orders based on an EOQ model in a joint inventory and 

transportation problem (2012).  In an environmental application, Petrosjan and Zaccour 

study the allocation of pollution reduction costs among cooperating countries using 

Shapley allocation (2003). 
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B. Proportional Allocation 
 

The second stream of CA literature focuses on proportional allocation (PA). PA 

methods are computationally simplistic compared to Shapley methods. This method 

allocates a fraction of the route cost to each customer on the route. Dror offers a 

proportional allocation method where all customers on a route are allocated equal costs 

(1990). Fairer proportional methods are those that allocate based on external factors. For 

example, in a collaborative transportation problem in the forestry industry, Frisk et al. 

allocate cost to customers based on their proportional demands (2010). This same study 

finds that the proportional method is more likely to be accepted in industry. A fundamental 

study by Fishburn and Pollak examines the allocation of cost on a multi-stop trip by 

airplane where each destination is allocated a cost based on their willingness to pay (1983).  

Nguyen et al. develop a model to consolidate transportation for suppliers of low-demand 

products in the agricultural industry in combination with a methodology to allocate costs 

proportional to the demand of the supplier (2014). Ozener and Ergun develop various cost 

allocation schemes for routes previously designed for minimal cost (2008). One scheme is 

a proportional method where costs are allocated to shippers proportional to the cost of the 

standalone routes. Sun et al. performs a comparative computational study of various 

allocation methods, including PA, on routes of 5 to 20 customers (2015). The study claims 

that PA has poor performance when considering fairness but provides a good tradeoff 

solution when considering practicality and computational efficiency. Studies also consider 

the allocation of emissions due to transportation among route participants. Özener develops 

a framework for allocating cost and emissions responsibilities to customers (2014). The 

research studies proportional models where distance and product amount are the factors for 
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allocation. Kirschstein and Bierwirth solve the TSP problem and allocate the route 

emissions proportional to the distance to each stop (2018).  

 Fields outside of transportation and logistics consider cost allocation as well. 

Henriet and Moulin consider the allocation of cost in a communication network and 

develop a model where cost is allocated to users proportional to their traffic, or usage in 

hours of the network (1996). Baroche et al. develop a model to allocate cost among users 

in a peer to peer electricity network and develop a proportional cost allocation policy based 

on so-called “electrical distance” between peers (2019). Moreover, in a 

manufacturing/remanufacturing setting, Toktay and Wei develop a model where the 

remanufacturing department assumes a fraction of manufacturing costs (2011). 

 Given that the proportional application method is simple and has been well 

accepted by a variety of industries, the current thesis will employ this method considering 

a wide range of factors (e.g., distance, shipment amount, proximity measure) in such 

proportional allocation of cost to customers. Fairness of the proportional allocation model 

is often a concern in literature according to Frisk et al (2010). To consider the fairness of 

the model, the methodology is integrated with machine learning techniques to methodically 

select proportionality parameters in this thesis. 

 

C. Machine Learning studies in Logistics and Transportation 
 

This literature review shows that a machine learning approach to this specific cost 

allocation problem is novel, however; the use of data science techniques including machine 

learning is studied in logistics applications. Ma et al. utilizes a data-driven approach to gain 
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understanding of ripple effects in traffic due to congestion using deep learning techniques 

(2015). Lin et al. also use deep learning techniques to predict delivery demand to build 

more efficient logistics models (2018). Similarly, Knoll et al. develop a methodology for 

predicting future inbound logistics using a generalized machine learning approach (2016). 

Another common problem addressed in machine learning literature is real-time 

identification of transportation mode using smart phone captured acceleration data. 

Shafique and Hato study this machine learning application by comparing the performance 

of models such as decision trees and random forests, which they find to perform best in 

predicting the transportation mode (2015). This thesis intends to supplement this field of 

research by providing an example of machine learning applied to a transportation and 

logistics problem. 
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III. PROBLEM STATEMENT 
 

This thesis develops a model to determine the cost impact of individual customers 

as well as to identify the significant factors of route-based transportation costs. The goal of 

the model is to fairly allocate route costs among customers on the route. The analysis 

requires historic route data consisting of several components. The first component is the 

cost per route, which includes mileage and labor costs. It is important to note at this stage 

that each route can be made up of many customers with different attributes on the route. 

This necessitates the second set of components for a route, the attributes of individual 

customers on a route. Examples of these customer characteristics include individual 

customer distance from the depot, projected customer duration from the depot, product 

amount, stop time at a customer, etc. A comprehensive explanation of these characteristics 

follows. Finally, a third component, route characteristics, is required and is derived from 

customer characteristics. 

 

A. Overview of Customer Characteristics 
 

1. Customer Distance For each customer on a route the distance from the starting 

location of the route, referred to as the depot, to the customer is used as a key characteristic 

of the customer. This distance is calculated as over-the-road distance. FIGURE 1 illustrates 

an example route that visits three customers. Their customer distance characteristics are 

denoted as D1, D2, and D3, respectively.  
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FIGURE 1 - Customer Distance Characteristic 

2. Customer Duration. This feature is aligned with the Customer Distance 

characteristic. It is the projected duration from the depot location to the customer location. 

It provides additional information not provided by the Customer Distance characteristic, 

namely information about traffic and congestion. FIGURE 1 logic applies to this feature as 

well.  

3. Customer Product Amount. For each customer on a route, this characteristic is 

equal to the quantity of product delivered to the customer. This can be measured in pounds, 

gallons, units, etc. depending on the business. 

4. Customer Stop Time. This characteristic is equal to duration of time spent 

stopped at the customer and is comprised of unloading time and waiting time.  

5. Customer Proximity. Proximity measures the closeness of each customer 

compared to the other customers on the route. The proximity measurement is found by first 

locating the centroid of all customers on the route and second calculating the distance from 

each customer to the centroid. In FIGURE 2, for each customer, Ci, on this example route 

the proximity metric is the distance from the customer to the centroid, i.e., P1, P2, P3, and 

P4 as noted in the figure.  
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FIGURE 2 - Customer Proximity Characteristic 

6. Customer Time Window. The customer time window characteristic is a measure 

of the flexibility of the delivery. For each customer, there is a time period during which the 

delivery has permission to be made. The customer time window metric is the total duration 

of this time window. A greater customer time window indicates that the customer is more 

flexible for the purpose of route planning and vice-versa.  

7. Customer Deliveries. This characteristic is a count of the number of deliveries 

per customer on the route. Each customer will be visited once per route, but the number of 

orders/SKUs/etc. will vary. The customer deliveries measurement describes the variety of 

the products being delivered to the customer as it distinguishes between different deliveries 

on the same route. 

The customer characteristics described above are commonly used characteristics in 

most cases, or “general route features”.   For some cases, though, additional “case specific” 

characteristics may be introduced, and they will be discussed in Section V as applied to 

two industry cases.  

B. Overview of Route Characteristics 
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 Route level characteristics, or features as they are called in machine learning, make 

up the third and final input required for the model. The route level features correspond to 

the customer level characteristic from all customers on the route.  In other words, one route 

observation corresponds to one set of route characteristics. For customer distance, customer 

duration, customer product amount, customer stop time, customer proximity, and customer 

deliveries the corresponding route-level characteristics are the sum of customer-level 

characteristics over all customers on the route. For customer time window the 

corresponding route-level characteristic is the average of the customer-level characteristic.  

A detailed description of the feature design will be discussed in Section IV. At a high-level 

the direct connection between the customer characteristic and the route feature is vital for 

the machine learning prediction model and the subsequent allocation of route cost among 

customers. 

C. Machine Learning 
 

After the customer and route characteristics are prepared, the route features are used 

as inputs in developing a machine learning model to determine the level of importance of 

each route feature in predicting the route cost. In this thesis, the methodology is to train 

and test a random forest machine learning model to predict the route cost from the route 

features. Unlike the conventional use of a predictive algorithm where the major output is 

the prediction,  in this research, the intended output of the prediction algorithm is the 

feature importance of each route feature, a number between 0 and 1. This importance index 

will be used as the weight assigned to each route feature, called “ feature weight,” all of 

which sum to 1. Subsequently, this feature weight will be used to proportionally allocate 

route cost to individual customers based on their customer-level characteristics. The feature 
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importance measurement calculates the decrease in node impurity and will be discussed in 

further detail in Section IV. 

 

D. Cost Allocation Algorithm 
 

 The final step of the model is to allocate the route costs among customers on the 

route. Components required for this step are route cost, customer characteristics, and 

feature importance weights. The methodology applies a proportional allocation algorithm 

to these inputs to produce the customer cost per route where customer costs on a route sum 

to the total route cost. FIGURE 3 shows an overview of the proposed methodology. 

 

 

FIGURE 3 - Methodology Flow Chart 
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IV. AN INTEGRATED PREDICTION AND COST ALLOCATION FRAMEWORK 
 

A. Preliminaries on Machine Learning 
 

The field of machine learning (ML) that this thesis considers is supervised machine 

learning. Supervised machine learning techniques develop a model to map a set of features 

(X data set) to a corresponding Y variable. Within supervised learning the thesis is focused 

on regression algorithms to predict a continuous Y variable. The three supervised machine 

learning algorithms considered are linear regression, regression trees, and random forest 

regression. For the algorithms, it is important to split data into a test and train set of data. 

A standard split, used in this thesis, designates that a randomly selected 80% of data be 

contained in the train set and the remaining 20% be contained in the test set. The train data 

set is used to develop the prediction model and the test data set is used to test the model on 

a separate, non-biased data set. Additionally, this thesis takes advantage of the output of 

feature importance in order to determine among multiple factors, related to the total route 

cost, (e.g., distance, shipment amount, stop time), which should be given higher weights 

than others.  

1. Regression Tree 
 

The regression tree is similar to the more common decision tree classifier but 

predicts a continuous variable instead of a discrete variable. The regression tree is made up 

of nodes (leaves) and splits (branches) where the top node of the tree contains all train data. 

The algorithm progresses by making true/false splits on the feature variables. The split 
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decisions are made by minimizing the mean square error (MSE) among potential splits at 

node n defined as  

𝑀𝑆𝐸(𝑛) =  
( )

∑ (𝑦(𝑖) −  𝑦 )   ∈ , 

where N(n) is the number of samples at node n, Tn is the train data subset at node n, y(i) is 

the actual value for observation i in Tn, and ŷn is the predicted value calculated from the 

mean of all observations at node n.  

See FIGURE 4 for a simplified example of a regression tree predicting route cost 

using features such as distance, shipment amount, and stop time duration, among others. 

Based on this sample regression tree, if the distance is less than or equal to 84 miles and 

the shipment amount is less than 500 gallons the predicted route cost is $230. In contrast, 

if travel distance is greater than 84 miles and stop time is greater than or equal to 150 

minutes, the predicted route cost is $430. On the other hand, if the distance is less than or 

equal to 84 and if the shipment amount is less than 500, then the predicted route cost is 

$230. This is intuitive as routes with longer travel distances and longer stop time durations 

will incur a greater cost. A regression tree in practice is much more complex, but the data-

driven results may still be intuitive.  
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FIGURE 4 - Example Regression Tree 

The regression tree makes splits based on the above-mentioned MSE, but additional 

hyperparameters play a role in the splits as well. The first hyperparameter available for 

tuning is the maximum depth parameter. This parameter indicates the maximum number 

of levels that the tree can traverse from the starting level. Tuning of this hyperparameter is 

important to prevent overfitting because as the allowable depth increases past a point, the 

performance of the model will generally decrease. This is because the model can 

specifically describe the train input data; but when tested with unseen data, the model will 

perform poorly. The minimum-samples-for-splitting parameter is another hyperparameter 

often considered. This parameter constrains the number of samples that must be present to 

split at an internal, or intermediate node. This parameter can lead to underfitting if the 

minimum samples of splitting is set too high because the model may be provided with 

limited information. Minimum samples at leaf is a third hyperparameter. This 

hyperparameter sets the minimum number of samples allowed at a leaf node, or a node at 

the bottom of the tree. This hyperparameter behaves like the previous parameter. 
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2. Random Forest Regression 
 

The random forest regression algorithm is an ensemble machine learning algorithm 

extended from the regression tree algorithm. The random forest model is a bagging 

technique that ensembles multiple regression trees in parallel. The prediction result of the 

random forest model is the mean prediction of the trees contained within it. A few benefits 

of this aggregate method are increased prediction accuracy, ability to process many input 

variables, and capability to handle large data sets. According to a fundamental study on 

random forest models, this algorithm is “highly accurate”, “robust to outliers”, and “gives 

useful internal estimates of error, strength, correlation, and variable importance” (Breiman, 

2001). In a comparative study of the random forest and decision tree algorithms applied to 

multiple data sets (Ali, et al., 2012), researchers determine that the random forest model 

has a higher level of performance than the decision tree model for large data sets. They 

find that the random forest model is a significantly more precise prediction tool. 

There are many methods for developing the individual regression trees within the 

random forest. The tree development in random forest models depends on the concepts of 

bootstrapping/bagging and the random subspace method (Xu, 2013). The random forest 

algorithm creates bootstrapped samples where subsets of data are sampled from the train 

data with replacement. Multiple regression trees can then be developed from the 

bootstrapped samples. In addition to bootstrapping, the random subspace method is used 

by selecting a random subset of features to use to develop each tree. Next the many 

regression trees must be ensembled to generate the prediction for each observation. The 

most common method to reconcile the results is to take the average prediction across all 
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trees. Additionally, more complex ensemble techniques are utilized in practice. Some 

literature address methods for bias correction (Xu, 2013). Other techniques ensemble trees 

based on seasonality and/or tree performance (Booth et al, 2014). 

 

B. Random Forest Prediction Model 
 

Based on the preliminary assessment of various machine learning methods like the 

regression tree and the random forest, this thesis continues with the random forest model 

as the machine learning component of the framework. The goal of the machine learning 

problem in this research is to determine the level of importance of various route features in 

predicting route cost. Therefore, route-level features must be developed, calculated, and 

selected as inputs to the model. 

1. Feature Development 
 

The next step in the prediction framework is the development of features calculated 

at the route level. The route features are derived from the customer characteristics 

discussed in Section III. There are two methods for calculating the route level feature: by 

summation  

𝑅 , =  ∑ 𝐶 , ,  , 

or by average 

𝑅 , =  
∑ , ,  , 
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where Ri,r is the route feature i for route r, Ci,c,r is the customer characteristic i for customer 

c on route r, and Nr is the number of customers visited on route r.  

The route level characteristics are designed as functions of their corresponding 

customer characteristics. TABLE I specifies the customer characteristics, corresponding 

route features, and the route features’ function formulation. All features are derived by 

summation except for Average of Customer Time Windows. The function is chosen based 

on the purpose of the route feature. Average of Customer Time Windows is an exception 

to the summation rule because the route feature is a measure of flexibility and greater 

values indicate a more flexible route. A summation of customer time windows would skew 

the feature result and incorrectly indicate that the route with more customers is more 

flexible than a route with few customers. For example, consider the sample routes in 

TABLE II. In this example, the average case is more representative of the measurement 

since both routes should result in equal flexibility. 

 

TABLE I 

TABLE OF CHARACTERISTICS AND FUNCTION OF DERIVATION 

Customer Characteristic (i) Route Feature (i) Function 
Customer Distance Sum of Customer Distances Summation 
Customer Duration Sum of Customer Durations Summation 
Customer Product Amount Total Product Amount Summation 
Customer Stop Time Total Customer Stop Time Summation 
Customer Proximity Sum of Customer Proximities Summation 
Customer Time Window Average of Customer Time 

Windows 
Average 

Customer Deliveries Total Deliveries Summation 
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TABLE II 

TIME WINDOW FUNCTION EXAMPLE 

 Route A Route B 
Customer 1 Time Window 10 mins 10 mins 
Customer 2 Time Window 10 mins 10 mins 
Customer 3 Time Window 10 mins 10 mins 
Customer 4 Time Window - 10 mins 
Route Feature with Summation 30 40 
Route Feature with Average 10 10 

 

 The two input components for the machine learning model are the route cost and 

the route characteristics. These two input components are used to fit models to the three 

machine learning models considered in this research: linear regression, regression trees, 

and random forest regression. From the models, the feature importance of each feature can 

be found and is used for the next step in this framework, cost allocation. The detailed results 

of the machine learning modeling are discussed in the Section V. 

2. Feature Selection 
 

The last step before modeling is to select the features to be used as inputs for the 

random forest regression model. In this thesis, a correlation analysis is performed on the 

features to identify overlapping features in order to eliminate redundant variables. Feature 

selection is especially important when modeling with simple machine learning models. 

Redundant features in more complex models, like random forest, are less likely to interfere 

with the results of the model and do not necessarily need to be eliminated.  Nonetheless, 
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this framework will identify and eliminate redundant variables using a correlation test in 

Section V. 

3. Modeling and Feature Importance 
 

The model is ensembled using the out-of-the box random forest regression model 

from Python’s scikit-learn ensemble package. The regression model takes the feature and 

predictor data from 80% of a dataset to develop the model. The random forest model in the 

current thesis only tunes the hyper-parameter of tree depth to provide high quality test 

results.  In preliminary studies, it was found that tuning other two hyper-parameters did not 

yield significantly different results thus was dropped in the main study. The output required 

from this model is the level of importance of each input feature between 1 and 0. The 

feature importance values are calculated using the pre-existing feature importance 

functionality in the scikit-learn package. The complex calculations behind this 

functionality combine the impurity measures at the nodes and the probability of reaching 

nodes, where train observations have a higher probability of reaching nodes earlier in a tree 

before many splits have been made. This generally means that more important features will 

be used to split earlier in the tree (the top of the tree). 

C. Cost Allocation Algorithm 
 

Next, this framework distributes route cost among customers using the ML results. 

The formulation utilizes a proportional allocation technique where customers are assigned 

a weighted cost based on their individual contribution to each feature, each feature’s 

contribution to total route cost, and each feature’s correlation to total route cost. Customer 

cost on a route is calculated using the following: 
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 𝐶 , =  𝑋 ∗ [(∑ , ,

∑ , ,
∗  𝑦 ∗

∑
) + (∑ , ,

∑ , ,
∗ (1 − 𝑦 ) ∗  

∑
)]      ∀ 𝑟, 𝑐 ∈ 𝑟 (1) 

and 

 𝑁 , , =  1 − , ,

∑ , ,
       ∀ 𝑟, 𝑐 ∈ 𝑟,  (2) 

 

where Cc,r is the cost allocated to customer c on route r. There is a set of significant features, 

𝑖 ∈ 𝐼, where each feature has a weight, Wi, between 0 and 1. It is  important to note that 

some features used to fit the model could be excluded from the allocation formulation due 

to insignificant importance. Therefore, the sum of Wi may not equal 1, so a weighted 

average of the importance weights is incorporated into the equation so that the entirety of 

the route cost is allocated. For each feature and customer on a route there is a customer 

characteristic value, Fi,c,r where customer c is visited on route r. Ni,c,r, calculated with  

Equation 2, is the helper variable for feature i when the correlation of feature i to route cost 

is negative. This variable essentially reverses the impact of the feature importance so that 

a feature with negative correlation to cost will impact the allocation fairly. The proportion 

of route cost is multiplied by the route cost, Xr, to determine the customer cost contribution 

per route. Additionally, the indicator variable yi denotes the correlation of feature i with 

route cost where 1 indicates a positive correlation and 0 indicates a negative correlation. 

This ensures that cost is allocated to customers dependent on both the magnitude of feature 

importance (Wi) but also direction of feature importance (yi). 

D. An Integrated Decision Support System 
 

The framework results in the calculation of a cost for each customer on a route. 

With this calculation, the opportunities for a decision support system are countless. A few 
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beneficial decision support concepts that can utilize this cost-to-serve result are showing 

data visualizations, predicting new customer costs to develop service agreements, and 

isolating opportunities for operational improvements.  

 The visualization of the cost-to-serve results can provide an overview of the cost of 

the transportation network, especially individual customers to upper management. Data 

aggregation techniques can highlight costly geographical regions and can provide insight 

about decisions such as network expansion or relocation. In addition, historical customer 

cost data developed by this framework can be used to predict the cost of new customers 

based on their characteristics. This can be performed by simply comparing the cost of 

customers with similar features to the potential customer or can be taken a step further with 

more advanced prediction methods. In this case, the results of this allocation model would 

be the predictor for tuning customer agreements.  

To continue, further data manipulations can provide insights into opportunities for 

operational improvements. For example, one analysis to perform is a customer grouping 

exercise to determine customers that have significantly higher costs than customers with 

whom them are grouped. In this thesis, the customer grouping is performed using the K-

nearest neighbors implemented with the Python Scikit-Learn package. The results of the 

decision support system analyses applied to two cases is discussed in more detail in Section 

V.
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V. COMPUTATIONAL RESULTS 
 

So far, this thesis has described in detail the context of the cost allocation problem 

and the framework for the solution. This computational results section will describe the 

model as applied to three simulated cases, show results of the framework on these cases, 

and provide insights into a few potential managerial uses of the cost allocation framework. 

Additionally, it will describe two industry cases, Company A and B, and will overview the 

application of the framework to the cases. Due to confidentiality restrictions, the results of 

these industry cases will not be discussed.  

A. Simulated Cases 
 

 To analyze the performance of this model, data is simulated for three cases: 

Baseline Case, Alternative 1, and Alterative 2. The Baseline Case is the case from which 

the other cases are systematically modified and eventually compared. Alternative 1 and 

Alterative 2 vary from Baseline based on the route cost calculation as described in 

TABLE III. Modifications are made to the route cost to serve as an experimental variable. 

The remainder of the data simulation acts as a control; all other parameters remain the 

same. The route cost variability allows the experimentation to check if the results of the 

machine learning model respond to changes as expected. The Baseline route cost is 

composed of hourly and mileage-based costs. Alternative 1 adds to the Baseline route 

cost by including the measure of customer proximity multiplied by a scaling factor of 

10%. This serves to penalize routes that contain more remote customers. Similarly, 

Alternative 2 adds a cost based on the amount of product. First, a tiered-pricing structure 

per pound is created where larger loads are assigned a lower rate per gallon. Next, the 
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product amount cost component is multiplied by a scaling factor of 1/6000, a smaller 

factor to allow for comparable values among the measurements since gallon values are 

larger than distance and duration values. Therefore, routes that deliver more product will 

be more costly but at a lower rate per gallon for Alternative 2. Therefore, it is 

hypothesized that the Sum of Customer Proximities route feature will be an important 

feature in Alternative 1 and the Total Product Amount route feature will be an important 

feature in Alternative 2. TABLE III also gives an overview of the size of the data sets for 

all cases.  

TABLE III  

DESCRIPTION OF SIMULATED CASES 

Simulated 
Case 

Route Cost Calculation Features Related 
to Route Cost 

# of 
Unique 
Customers 

# of 
Routes 

Baseline Route Distance ∙ Cost per 
Distance + Route Duration ∙ 
Cost per Duration 

Sum of Customer 
Distances, Sum of 
Customer 
Durations 

500 14,021 

Alternative 
1 

Route Distance ∙ Cost per 
Distance + Route Duration ∙ 
Cost per Duration + 
Sum of Customer 
Proximities ∙ .1  

Sum of Customer 
Distances, Sum of 
Customer 
Durations, Sum 
of Customer 
Proximities 

500 13,390 

Alternative 
2 

Route Distance ∙ Cost per 
Distance + Route Duration ∙ 
Cost per Duration + 
Total Product Amount ∙ 
Route Rate per Gallon 
 

Sum of Customer 
Distances, Sum of 
Customer 
Durations, Total 
Product Amount 

500 14,413 
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1. General and Case Specific Route Features 

Before analyzing the route features, the first step is to specify any additional 

features included in the analysis. The features introduced in Section III are the “general 

route features” which are standard for the prediction and the allocation. There are, however; 

additional “case specific route features” that can contribute to prediction power and to 

gaining an understanding of the network. The additional case-specific features can either 

be used to allocate costs (they differ per customer on the route) or cannot be used to allocate 

costs (the feature is the same across all customers on the route). In the simulated cases, all 

“case-specific features” are the same across customers on a route and do not have the 

potential to be used for cost allocation.  

There are two additional features included in the simulated cases. The department 

feature specifies what department/depot is responsible for the route. The department 

feature in these cases are distinguished by the geographical regions that they serve. Trailer 

type indicates the type of trailer/truck used to deliver product on the route.  

2. Feature Analysis 
 

 For the implementation of the proposed framework, an in-depth analysis of the 

route features is crucial. This includes eliminating redundant features and comparing the 

distribution of the selected features across both the test and the train data sets. The first step 

is to eliminate redundancies.  

This is performed using a correlation matrix analysis where the feature-to-feature 

correlation is calculated. The resulting correlation matrices (limited to a selection of 

significant interactions) is displayed in TABLE IV for the Baseline Case. From the 
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correlation matrix, it is evident that the customer distance and customer travel duration 

features are redundant, and one should be removed. Therefore, this analysis continues 

without the travel duration feature. The stop time feature is closely correlated with both 

product amount and the number of deliveries, but it is decided that all three features will 

still be included to maintain a variety of features. A similar conclusion is drawn from the 

correlation analysis for the two alternative cases.  

TABLE IV  

FEATURE-TO-FEATURE CORELATIONS FOR BASELINE 
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Route 
Deliveries 

1.00 0.79 0.97 0.92 0.81 0.80 0.81 0.11 

Route 
Trailer 
Capacity 

  1.00 0.84 0.85 0.66 0.64 0.66 -0.01 

Route 
Stop Time 

    1.00 0.98 0.79 0.79 0.79 0.12 

Route 
Product 
Amount 

      1.00 0.75 0.74 0.75 0.12 

Route 
Customer 
Distance 

        1.00 0.94 1.00 0.02 

Route 
Proximity 

          1.00 0.94 0.06 

Route 
Travel 
Duration 

            1.00 0.02 

Route 
Time 
Window 

              1.00 
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Next, feature analysis must compare the distributions of features across the test and 

train data. This is meant to ensure that the train and test data have similar distribution so 

that the model testing procedure is valid. The distribution analysis is performed using violin 

plots which graph the probability density of the feature values on the x axis vs. the feature 

values on the y-axis. The violin plot for a given feature can be compared visually across 

the test and train data sets. A visual analysis of the feature distributions show that the 

test/train split is sufficiently uniform across all pertinent features and the model can 

continue with the current data split. Major differences between all corresponding test/train 

plots highlight only differences in outliers. This type of difference can be disregarded 

because the robust nature of the random forest algorithm eliminates bias due to outliers. 

See  FIGURE 6 to Error! Reference source not found. FIGURE 10 for violin plots for 

the Baseline. The alternative cases show comparable results, and it can be concluded that 

the distribution of test and train data sets are similarly distributed.   

As an illustration, FIGURE 5 shows the violin plot for the Average of Customer 

Time Windows route feature. The violin plot shows a normally distributed route feature 

centered around 300 minutes, the most likely average stop time on a route for both the test 

and train data set.    
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FIGURE 5 - Violin plot of the Average of Customer Time Windows route feature for 

Baseline for (a) train data and (b) test data 
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FIGURE 6 - Violin plot of the Total Deliveries route feature for Baseline for (a) train 

data and (b) test data 

 

FIGURE 7 - Violin plot of the Total Customer Stop Time route feature for Baseline for 
(a) train data and (b) test data 
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FIGURE 8 - Violin plot of the Total Product Amount (Gallons) route feature for Baseline 

for (a) train data and (b) test data 

 

FIGURE 9 - Violin plot of the Sum of Customer Distances route feature for Baseline for 

(a) train data and (b) test data 
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FIGURE 10 - Violin plot of the Sum of Customer Proximities route feature for Baseline 

for (a) train data and (b) test data 

Finally, the correlation of each feature to the route cost must be considered. This is 

crucial to the cost allocation in order to ensure that customers are allocated cost fairly and 

dependent on how the route feature influences the route cost. FIGURE 11 shows the 

feature-to-route cost correlation for the baseline. The results of this correlation analysis 

show that most features are correlated positively with route cost. The only feature that is 

correlated in the negative direction is the Department - Nashville route feature. This 

indicates that routes originating from Nashville are generally cheaper than those from other 

departments. This conclusion does not affect the results of the allocation, however, because 

all customers on a single route originate from the same department. The correlation 

between route costs and various features (impacting the allocation) for Alternative 1 and 

Alternative 2 cases is similar to the baseline case. FIGURE 11 represents the yi input values 

for Equation 1. Since all features used for the allocation are positive, yi =1 ∀ i, for all three 

simulated cases.  
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FIGURE 11 - Feature correlation to route cost for Baseline 

 

3. Hyperparameter Tuning 
 

 Hyperparameter tuning was initially discussed in Section IV. This section will 

continue with the results of the hyperparameter tuning applied to the simulated cases. This 

thesis considers only the tree depth parameter applied to the random forest model. FIGURE 

12, FIGURE 13, and FIGURE 14 show the effect of the tree depth setting on the outcome 

of the predictions on both the train data and the test data for the Baseline, Alternative 1, 

and Alternative 2 respectively. Generally, as the tree depth increases the model 

performance of the train data increases, but a point may be reached where the performance 

using the test data decreases seen in FIGURE 12 or reaches a limit as seen in FIGURE 13. 

Therefore, it can be concluded that the maximum tree depth for all simulated cases should 

be approximately 10 to avoid overfitting.   



34 
 

 

FIGURE 12 - Baseline Tree Depth Tuning 

 

FIGURE 13 - Alternative 1 tree depth tuning 
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FIGURE 14 - Alternative 2 tree depth tuning 

4. Model Performance 
 

 The framework relies on the use of a prediction model, more specifically a machine 

learning model to determine the level of importance of each feature that contributes to the 

total route cost. The preliminary experimentation is done in choosing a suitable prediction 

technique between linear regression, decision tree regression and random forest regression, 

using data from three cases. The performance of the prediction is measured by the 

coefficient of determination of the prediction (R2). The calculation for the coefficient of 

determination is 

𝑅 = 1 −
∑ ( )

∑ ( )
 , 

where i is an observation, 𝑦  is the actual value of observation i, 𝑦 is the predicted value of 

i, and 𝑦 is the mean of all 𝑦 . FIGURE 15, FIGURE 16, and FIGURE 17 show the R2 results 

evaluated on both the test and train data sets for all three simulated cases. This evaluation 

places a higher importance on the results of the test score because of the removal of bias 



36 
 

between the model and data. As expected, the results show that the random forest 

regression model outperforms the linear regression and decision tree regression for all 

cases. It is interesting to note that the difference between the three models for the 

Alternative cases is small compared to the baseline. This can be explained because linearity 

is introduced by directly manipulating the route cost response variable.   

 

FIGURE 15 - Model performance for the Baseline case 

  

 

FIGURE 16 - Model performance for Alternative 1 
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FIGURE 17 - Model performance for Alternative 2 

 

5. Feature Importance 
 

 The evaluation of the levels of feature importance across the three simulated cases 

is the next step. The previous section confirmed the use of a random forest regression 

algorithm to determine these importance levels. The feature importance calculation, 

overviewed in Section IV, is provided in the SciKit learn package. The feature importance 

values for the Baseline, Alternative 1, and Alternative 2 cases are detailed in FIGURE 18, 

FIGURE 19, FIGURE 20, respectively. These figures show the level of importance for 

features in the model, which ranges between 0 and 1. If the level of importance is 

determined to be less than 1%, it is truncated for the purpose of this thesis because the 

impact on the cost allocation would be negligible. From these graphs, the feature 

importance values as part of the outputs of the random forest prediction model correctly 

portray the relationship between total route cost and respective features.  In addition, as the 

definition of the total route cost is carefully varied/controlled in Alterative 1 and 

Alternative 2, compared to the baseline case, the resulting feature importance values have 

changed as expected.  TABLE V shows the feature importance rankings of all features 
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across the three simulated cases. The italicized rankings are the features that are considered 

“important” and are used in the cost allocation.  

 The Baseline shows that the Sum of Customer Distances route feature is the most 

important followed by Total Deliveries, Sum of Customer Stop Time, and Sum of 

Customer Proximities. When comparing this to Alternative 1, the proximity feature 

becomes overwhelmingly important and displaces the distance and subsequent features. 

This is to be expected since proximity was included as a factor influencing route cost. The 

proximity feature becomes much more important because the scaling factor is exaggerated 

for the purposes of this demonstration. Recall that the proximity component of route cost 

makes up 10% of the cost and is directly related to route feature of the same name resulting 

in a more important feature.  

When comparing the Baseline to Alternative 2, the outcome is also as hypothesized. 

The product amount feature becomes important for the first time and displaces the other 

features. The introduction of this new important feature is expected because the product 

amount is used to calculate route cost in this scenario. The feature importance for product 

amount overwhelms the customer distance feature because of the exaggeration of the 

scaling factor. Recall that for the product amount component of route cost the scaling factor 

is 1/6000. The Sum of Customer Travel Distances and Total Deliveries features remain 

important, but the rest are now of negligible importance.  
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FIGURE 18 - Feature importance values for Baseline 

 

FIGURE 19 - Feature importance values for Alternative 1 

 

FIGURE 20 - Feature importance values for Alternative 2 
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TABLE V  

FEATURE IMPORTANCE RANKINGS 

Baseline Alternative 1 Alternative 2 
1.Sum of Customer Travel 

Distances 
1.Sum of Customer 

Proximities 
1. Total Product Amount 

2.Total Deliveries 2. Sum of Customer 
Distances 

2. Sum of Customer Travel 
Distances 

3.Total Customer Stop 
Time 

3. Total Deliveries 3. Total Deliveries 

4.Sum of Customer 
Proximities 

4. Total Customer Stop 
Time 

4. Total Customer Stop 
Time 

5.Total Product Amount 5. Total Product Amount 5. Sum of Customer 
Proximities 

6.Average of Customer 
Time Windows 

6. Average of Customer 
Time Windows 

6. Average of Customer 
Time Windows 

 

 

B. Overview of Industry Cases 
  

The methodology introduced in this thesis was applied at two industry cases. The 

first cost-to-serve industry case is applied to an oil and gas distribution company, Company 

A. Company A routes their vehicles from various starting depot locations to various 

customers and makes routing decisions using optimization techniques. This case considers 

three months of historic routing data to perform the cost allocation study using the 

framework presented in this thesis. During these three months, the case considers over 

3000 routes delivering over 150 different products to 3000 customers. The second case 

considers a much larger distribution network for a national distributor, Company B. The 

second case considers only one month of historic routing data. During this time the 

distributor manages over 30,000 routes visiting over 30,000 customers. The two cases 

introduce additional “case-specific features” to be considered in the models (TABLE VI). 
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The application of the framework shows performances comparable to the performance of 

simulated cases (FIGURE 21). With the real data, the random forest regression model 

performs significantly better than the other models compared to the results of the simulated 

cases (Baseline, Alternative 1, and Alternative 2). This further confirms the use of the 

random forest model to determine the feature importance levels.  

TABLE VI 

COMPANY A AND B SPECIFIC FEATURES 

Company A - Specific Features Company B - Specific Features 
Department Department 
Department type Route trailer capacity 
Route trailer capacity   
Inventory management type   
Trailer type   
Product type   

 

 

FIGURE 21 - Company A and B Model Performance 
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C. A Decision Support System Using the Cost Allocation Framework 

 The Cost Allocation Framework results in a customer route cost using Equation 1. 

This output can provide value to managerial decision making through the development of 

decision support systems. DSS analyses can provide information on customer and 

operational performance. Three analyses using the Cost Allocation Framework are 

described in the following sections. The first analysis visualizes average customer costs 

geographically, the second groups customers to identify costly customers, and the third 

provides a method for predicting the cost of new customers. From these three examples, 

the DSS can be extended based on firm needs using the previously presented framework. 

1. Visualization of Cost Allocation 
 

 One potential analysis involves the visualization of average customer cost on a map 

for spatial comparison. FIGURE 22 shows the network for the simulated Baseline case 

where each circle represents a customer and each grey diamond represents a depot location. 

The customer circles are colored by the average cost/gallon of product delivered where 

green represents low cost and red represents high cost. FIGURE 23 shows the network 

focusing only on customers serviced from the Atlanta department. The customer cost 

visualizations provide management with indications of customer costs. It is easy to see that 

customers located far from the depot result in a more costly allocation. This can provide 

insight into potential depot additions or relocations and can help to identify costly 

customers. 
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FIGURE 22 – Baseline case customer cost/gallon 

 

FIGURE 23 – Baseline case network focused on the Atlanta department colored by a 

customer’s average cost/gallon  

2. Customer Grouping 
 

 Another potential DSS feature derived from the cost allocation results is the 

identification of costly customers that show improvement potential. This can be performed 

using a grouping methodology. The grouping methodology first separates all customers 
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into groups based on the departments they are served by. Next, for each customer in a 

department the method finds the n (n =14 in this case) most similar customers using the K-

nearest neighbors algorithm based on their demand and distance from depot, called the 

customer group. The K-nearest neighbors algorithm uses the Euclidean Distance in this 

methodology. Once the customer groups are determined, the methodology calculates the 

average cost/gallon for each group. For each customer, the difference between the average 

cost/gallon of the customer and the average cost/gallon of the customer group is calculated. 

This allows management to identify individual customers that are not performing as 

expected (they have a large difference between customer and group average cost/gallon). 

For this DSS feature, an example will be shown for Company A allocation results.  

TABLE VII shows an example for Customer 1 and displays the group for Customer 

1. Customer 1 is the most costly customer of its group. One observation for this costly 

customer is that the customer on average received less product per delivery. In fact, this 

customer received small delivery sizes which required more trips than would be expected. 

Additionally, a measure of customer utilization is provided as well. On average, deliveries 

to Customer 1 only utilize 26% of the available tank storage capacity at the customers. This 

is an indication to management that an increased delivery size could increase the delivery 

efficiency to this customer by decreasing the number of trips to the customer.  
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TABLE VII 

CUSTOMER GROUPING EXAMPLE FOR CUSTOMER 1 

 

3. New Customer Pricing 
 

 The cost allocation data can also be used to predict costs for new customers. If 

customer features such as delivery quantities, distance from depot, and department are 

known, historic data can be queried to give a cost prediction for new customers entering 

an existing network. See FIGURE 24 for the prediction settings and FIGURE 25 for the 

results of the settings using data from the Baseline case..  
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4 0.60 -0.46 -1.02 -0.71 0.27 21 

5 0.32 -0.81 -0.79 -0.57 0.50 6 

6 -0.08 -0.81 1.07 -0.27 0.30 3 

7 -0.33 1.12 -0.09 -0.47 1.34 26 

8 -0.41 -0.89 1.07 0.58 0.61 1 

9 -0.48 -0.10 0.84 -0.49 0.64 13 

10 -0.51 -0.67 -1.25 -0.52 0.29 7 

11 -0.62 0.65 -1.49 0.06 0.39 9 

12 -0.79 0.11 -0.79 -0.33 0.44 11 

13 -0.79 0.06 -1.25 0.27 0.15 5 
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FIGURE 24 - Prediction settings for a new customer 

 

FIGURE 25 - Prediction results based on the prediction settings 

 This example shows what Baseline case can predict as the average cost/gallon, 

average cost/mile and average total cost for a new customer based on the historic data of 

existing customers and the prediction settings of the new customer. This information can 

be used to determine pricing structures and service agreements for new customers within 

the same network. For the example in FIGURE 24, if the average delivery size is increased 

to a range of 1,500 to 1,750 for a new customer, the Average Cost/Gallon decreases to 

$.0105. Managers can use this functionality to make decisions about pricing for a new 
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customer, or to provide incentives to existing customers for adjusting their service 

agreements, by increasing delivery sizes for example. 
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VI. CONCLUSION AND FUTURE RESEARCH 
 

A. Conclusion 

This thesis attempts to answer the question: what do individual customers cost the 

business when costs are tracked at the route level? This understudied cost allocation 

problem is driven by the lack of customer visibility when a transportation network is 

deigned optimally, and costs are shared among customers in a network. Improved data 

collection techniques and big data trends allow for granular visibility into customer cost 

utilizing this framework. 

In literature, cost allocation methods have been widely studied. Focused in two 

streams, researchers mostly investigate methods related to Shapley allocation and 

proportional allocation methods. While Shapley methods are considered fairer than 

proportional methods, the computational and theoretical complexity discourage this thesis 

from utilizing Shapley methods in order to provide a framework for managerial oversight  

The problem is addressed by (1) developing a high-level machine learning and cost 

allocation framework detailing the steps to derive a customer cost, (2) applying the 

framework to simulated and industry cases, and (3) providing a few example analyses, that 

can be applied to a DSS, utilizing the results of the allocation. Specifically, the framework 

presented in this thesis utilizes three inputs to generate the magnitude and direction of 

importance of various features in predicting route cost: (1) route-level cost, (2) route-level 

features, and (3) customer characteristics. The feature importance output is generated using 

the random forest algorithm which is shown to have the best performance when compared 

to linear regression and regression trees To continue, a cost allocation formula takes into 
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account (1) route cost, (2) feature importance output, and (3) customer characteristics to 

produce customer cost on a route.  

Application of the framework to simulated cases and industry cases show similar 

results and support the validity of the model. Random forest regression shows the greatest 

prediction power and is used to generate feature importance levels. The feature importance 

rankings generated for the simulated cases confirm the original hypothesis that certain 

variables would become importance after the route cost is manipulated.  

Lastly, the thesis provides examples of further analyses that can utilize the results 

of the cost allocation to aide management in decision making. The visualization of 

customer cost metrics, customer grouping and costly customer isolation, and new customer 

pricing are the three described analyses in this thesis. A case example provides an instance 

where the average delivery size to a customer should be increased to improve cost 

effectiveness. The opportunities for analyses using customer cost are numerous and should 

be further studied.  

B. Future research 

One potential improvement to this framework involves an advancement of the new 

customer pricing methodology. The cost allocation calculated values and customer 

characteristics could be utilized as machine learning model inputs to then develop a model 

to predict customer prices. This methodology would be more advanced then the historic 

data querying method. Regression models, decision tree regressors, and random forests 

could be studied. 
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