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Abstract 
 

This thesis investigates how additive manufacturing (AM) based on-demand part production can 

supplement or replace the traditional production and inventory in typical aerospace’s spare parts 

supply chain systems. This study focuses on the operational characteristics of AM and its impacts 

on the overall logistics of plant-level operations. To capture the microscopic operational aspects 

of the AM production, a discrete-event simulation based approach was adopted, with key AM 

operation resources (e.g. AM system, operator) and attributes (e.g. AM manufacturing speed, 

individual part characteristics and demands) accounted for in the modeling process. In addition, a 

benchmark warehouse inventory model was also established separately based on classic theories, 

which was subsequently utilized to create a cost/benefit analysis for the AM based part supply 

strategies versus the traditional strategies. The results from virtual experiments with these models 

were analyzed in order to gain an understanding of the operational characteristics (e.g., production 

cost, system utilization, lead time) as a function of various production policies such as 

machine/operator configurations and part prioritization. Data analysis shows cost savings for AM 

as an alternative to warehousing under high penalty scenarios. Results also indicate higher cost 

savings with the addition of extra machines over extra operators to meet capacity. Finally, analysis 

shows that reprioritizing orders waiting in a queue has higher savings when assessing due date and 

penalty outcomes. 
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I. Introduction 

Traditional production uses an assembly-line of machines, personnel, and transportation 

equipment to produce vast quantities of products and stock them in inventory until ready to be 

shipped. The objective of such push-based production and inventory has been to exploit economies 

of scale and to reduce lead times and prevent back orders, minimizing ripple effects to downstream 

customers.  However, in today’s on-demand just-in-time economy, this production and inventory 

practice is viewed as obsolete due to low customer responsiveness and system inefficiency. The 

emergence of additive manufacturing (AM) with the underlying ability of manufacturing on 

demand, is being regarded as a promising solution to address this challenge.  Up until now, the 

development of AM technologies has primarily focused on the perspectives of structural design 

and material property. Scientific investigation of the enterprise realization surrounding AM has 

been limited to manufacturing cost analysis, while largely ignoring the fact that this method of 

production is only an element of a larger supply chain.  

A. Additive Manufacturing (AM) 

A growing trend towards innovation and customization, with an expectation for high quality at a 

reasonable price is seen in almost every industry today. Product lifecycles have been shortened as 

technology rapidly evolves in an increasingly digital world [1]. With a movement towards 

globalization, companies are having to compete more often with foreign products. AM may prove 

to be a viable solution to produce innovative products at a reduced time to market, due to its 

geometric freedoms and on-demand production capabilities. Tie in the high technical and digital 

nature of this production method, and AM boasts the potential to become a cost-effective way to 

reshore manufacturing in countries like the US [2].  
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With current market size of over $7 billion and projected annual growth of over 20% [3], AM is 

anticipated to become a mainstream manufacturing technology with the potential to disrupt large 

industries (e.g., aerospace, automotive, consumer goods, healthcare). Therefore, economic aspects 

of AM in large scale production, as well as its optimization for both productivity and quality, will 

become critical. With an adequate understanding of the next-generation AM supply chain 

characteristics, customers, and suppliers at all levels of production will be capable of more 

intelligent decision making for their supply chain operations. The emergence of this on-demand 

production will transform existing supply chain design and operation paradigms and benefit a great 

range of industries and businesses. Adoption of AM in a broad range of production applications, 

accelerates advancement of this technology and its value benefiting society directly. 

In comparison with conventional manufacturing, AM enables designers to concentrate more on 

product properties as opposed to a design that complies with traditional manufacturing limitations 

[1]. The aerospace, automotive, and electronics industries have become the primary users of AM 

with the highest promise for profit via innovative designs. Still the critical factor associated with 

the increased usage of AM is the cost to implement.  

While cost models have been developed for additive, most have only incorporated direct costs of 

production, missing much of the impacts this technology exhibits on the supply chain. This 

absence in the literature is expected due to the novel characteristic of this technology’s on-demand 

production. Traditional manufacturing benefits from large scale production and utilizes inventory 

to ensure high service levels. As the AM costs models are still being developed this paper 

investigates the incorporation of other supply chain considerations, particularly AM’s impact on 

inventory, lead times, and customer responsiveness. In addition, AM-based production offers 

unique requirements for increasing operation efficiencies. In later sections this thesis investigates 
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how various strategies of machine/operator configurations, part prioritization, postponement, and 

other policies can improve production costs and customer responsiveness. 

B. Aerospace Spare Parts 

Spare parts used to support the aerospace industry’s maintenance, repair, and operations (MRO) 

services are critical, where the cost of grounded aircraft justifies innovative solutions to increase 

fleet availability [4]. For commercial airlines, the aftermarket parts sales are currently estimated 

to be $45 billion and a predicted CAGR (compound annual growth rate) of 7.63% over the next 3 

years [5]. However, there are large costs associated with providing these parts. In 2009 the U.S. 

military spent $104 billion on supplies, $70 billion on maintenance, and $20 billion on 

transportation to manage their spare parts supply chain, and ultimately ended the year with millions 

of units still in stock valued at over $94 billion [6].  

These after-sale parts often exhibit low demand yet are stored by OEMs in high quantities across 

distributed warehousing networks to ensure short lead times for customers [6]. As a result, this 

industry may benefit greatly from the inventory savings, shortened lead times, and high customer 

responsiveness promoted by AM’s on-demand production. Therefore, it is of significant practical 

values to investigate the potential implementation of AM production in the aerospace MRO spare 

parts industry as a demonstrative example of the potential AM offers on a low-demand, high 

penalty supply chain.  

In addition to covering the intended physical properties of Aerospace spare parts, AM-based 

production is ideal for these highly variable demands, essential to preventing prolonged aircraft 

grounding because of its ability to print on-demand with short production runs. The on-demand 

characteristic of AM would also provide a benefit on the entire supply chain by reducing inventory 



4 

 

and distribution costs. For industries like aerospace that could create large cost savings for their 

MRO services. 

II. Literature Review 

A. AM-based Production: Direct Costs 

In traditional manufacturing, the initial investment costs are often quite higher than AM. Injection 

molding or casting can be as high as millions of dollars for large parts. However, once fabricated 

this production exhibits an economy of scales relationship [7]. After the initial investment, 

production will only incur the cost of materials, which can be as low as fractions of a cent. In 

addition, a distinct characteristic of many mass-production processes is that the part production 

rate is high. Therefore, once production is initiated, large production volumes will significantly 

dilute the initial investment costs, driving the overall cost per part down. For AM, there is a similar 

initial investment for the purchase of a machine. Likewise, the cost of this purchase is shared 

among the production of parts. However, unlike these traditional production methods, AM 

machines are not unique to one pattern of part but can be used for many different designs that the 

machine building volume and technology can accommodate. This means that not only does AM 

avoid the need of art-specific dedicated tooling, but that the machine’s investment cost is shared 

across the many different products a manufacturer may produce, and for the many years of usage 

[1, 8]. In terms, of individual parts, this initial investment becomes less significant, turning the 

biggest cost factor into process specific costs. These costs include the cost of time, labor, and 

materials, but stay relatively constant independent to the production volume Figure 1 is a graphical 

representation of the relationship between traditional forms of production and AM production [9]. 

As Figure 1 shows, AM-based production is at an advantage when production volumes stay 
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relatively low. In fact, studies show that low to medium volume production is the current market 

where AM has the potential to be cost effective over traditional methods [7, 10]. 

 

Figure 1. Low volume AM cost analysis. 

Part complexity can also be accommodated in the AM process that fabricates parts layer by layer, 

where intricate designs and internal features can be introduced with ease [9]. For example, lattice 

structures, a matrix of unit cells, can be printed in series to form massive structures with the 

purpose of improving the per-mass-performance efficiency of a part. Producing lattice structures 

via traditional methods of injection molds, casting or machining would only be possible with some 

additional assembly, which would introduce large costs to a part. Part consolidation is also an 

example of how AM-based production can accommodate part complexity and decrease the overall 

cost per part [11]. Part consolidation is the process of taking existing part assemblies and 

consolidating them into a reduced number of sub-assemblies or even into single, fully assembled 

parts. This consolidation eliminates the cost of excess tooling designs, as well as the labor or 

machine costs for assembly. Figure 2, illustrates the cost associated with creating complex 

geometry using traditional methods versus AM-based production. As complexity increases there 

is a point where AM becomes cost justified over conventional manufacturing. This is because AM 

costs stay relatively constant regardless of the parts geometry, and as complexity continues to rise, 

the savings of switching to AM increase exponentially. 



6 

 

 

Figure 2. Complex geometry advantage of AM over traditional means of manufacturing. 

Cost reduction can also be achieved with software tools performing topology optimization. Part 

optimization is a major benefit associated with AM and the reason it is heavily employed in the 

aerospace industry in the production of lightweight and material efficient parts [2]. Aspects that 

the designer could be looking to minimize include material use, support requirements, and process-

technology feature limitations once target performance objectives such as safety, rigidity, or 

thermal residual stress have been met. Topology optimization employs various optimization search 

strategies achieve an optimal solution that maximizes the performance of a design under the 

functionality constraints specified by the user, typically resulting in the optimizing of material 

usage and layout (Figure 3). This leads to cost reductions of materials and build time, and in some 

cases even improved performance compared to the baseline product designs. 

 

Figure 3. The stages of topology optimization. 
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Many direct cost models have been proposed for evaluating the trade-offs between AM and 

traditional manufacturing that investigate direct costs (i.e. machine hours, material use, and labor). 

Among them machine costs are most often the main driver of part cost (~60-80%). This includes 

machine purchase, storage, energy usage, and labor hours to maintain and use. This was supported 

in data provided by a Lindemann et al study analyzing the cost of AM metal parts [12]. Even at 

higher building rates 3 times the current average for many material extrusion printers the labor 

savings of AM provided minimal decrease in the high costs of purchasing and maintaining a 

machine. 

Second to machine costs, materials are another large cost factor. AM feedstock is often 

significantly more expensive and often highly variable in price, as in the case of powder metals or 

ceramics. These powders must meet stringent standards of density, flowability, and particle size, 

among others, to ensure build quality, but that requires costly quality control from suppliers, and 

without industry regulation it can be difficult to determine actual product quality. A case study 

conducted by Atzeni et al showed a single scenario indicating a 10-fold increase in material cost 

when switching from traditional to additive production [13]. 

Another study conducted by Ruffo et al. investigating a Selective Lase Melting (SLM) process for 

low part volumes confirmed machine and material costs to be the main contributors to part cost, 

with some scenarios showing material costs to be the higher of the two [14]. While machine and 

material costs both contribute the most to overall cost of AM, Atzeni et al’s study also found that 

in comparison to low demand injection molded parts where the cost to procure a mold was high, 

AM was more economic. 

Post-processing, or the process of manipulating a builds’ physical properties to produce finished 

parts is another time consuming and expensive step of the AM process. Costs are typically large 
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in comparison to other cost factors due to the intrinsic property of AM that, unlike conventional 

production, does not produce “industrial grade” parts without additional post-processing (removal 

of support structures, surface finishing, heat treatments, etc.) [1, 2]. 

Another production related cost not yet modeled in literature is quality control, which in some 

applications like aerospace can be significant since parts must be FAA certified, and certification 

is made difficult with the high process variability associated with AM-based production [2].  

Current direct cost models tend to only address the investments of producing the traditionally 

manufactured equivalent of AM parts, and not on the potential cost savings of reduced material 

use and the prolonged life cycle during the after-sale of parts. In terms of sustainability, AM’s 

resource efficiency has been promoted from its first invention [15]. Compared to subtractive, AM 

is often less wasteful, even when support structures are required to ensure part quality. An example 

of how AM sustainability equates to real savings can be observed from the redesign of GE’s Leap 

engine fuel nozzles. Utilizing AM, the company was able to combine 20 separate parts into a single 

unit and print nozzles that were 25% lighter than the original parts [16]. In addition, AM often 

improves the mechanical properties of a part and has the added benefit of being able to repair, 

remanufacture, or refurbish worn out or broken parts. For AM this may correlate with fewer dollars 

spent on end of life care, or on replacement parts [17].  

Overall, research has shown the costs of AM depend mostly on build volume and height, whereas 

traditional manufacturing costs are often associated with part complexity and production length 

[4]. Additionally, since AM does not have the requirement of producing large quantities of a single 

part in order to redistribute the high investment costs of traditional tooling, it is better suited for 

low-medium volume demand. The technology also accommodates the production of non-identical 

parts in a single build giving AM an advantage when aggregating small part production like the 
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demands of the aerospace MRO spare parts industry. However, most of the available AM cost 

models have their limitations because they only incorporate direct costs of production. 

B. AM-based Production: Logistic Costs 

While it is important to be able to quantify the direct costs of AM-based production, these values 

are only the micro-level factors. To understand the full cost of AM, macro-level considerations of 

the entire supply chain need to be explored. These are logistical considerations of storage and 

distribution, which because of the on-demand nature AM promise the greatest potential for cost 

reduction. Reduced inventory, shortened lead times, and higher customer responsiveness are 

aspects of AM-based production being investigated. Combining these values with direct cost 

models will provide manufacturers a full picture of the supply chain’s overall production costs [2, 

18].  

Inventory levels are driven by the concern of customer stockouts in traditional manufacturing. 

Therefore production costs also include the storage of finished goods and additional purchasing of 

spare parts [19]. In warehousing, this inventory is commonly associated with 10-20% of total cost. 

AM provides on-demand production, eliminating in many cases the need for inventory.  

The on-demand nature of AM also provides for rapid fabrication of parts leading to shorter lead 

times. Juahar et al investigated the lead time savings by comparing AM material extrusion with 

wax pattern investment casting for two automotive parts (inlet manifold and rotor), showing a 54% 

and 58% (respectively) reduction in lead times [20]. In a well-distributed supply chain, where AM-

based production occurs in more remote or regional areas, shortened transportation times may 

provide a further reduction in lead times. A study on the biomedical implant supply chain for the 

state of Mississippi conducted by Emelogu et al, found a single AM facility located within the 
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state offered greater cost savings for parts than traditional manufacturing, and attributed the 

savings to the reduction in transportation and lead times [21]. 

Reduced lead times help to improve customer responsiveness. Traditionally, mass customization 

required a combination of product batching and shorter production runs. These steps included extra 

setup time for accommodating a tooling or die change. An example is the die changes used by the 

automotive industry to provide vehicle customization. These additional setups often translate into 

lost labor hours and lower productivity, and subsequently imposes a higher average costs on 

customized products [22]. AM, on the other hand, does not require tooling and offers a platform 

to produce highly variable parts within a single build, eliminating changeover costs. This makes 

customization feasible in medium-scale production because the results are a lower average cost 

and shortened delivery times for parts. The effects these customizable production runs have on 

lead times and customer responsiveness are explored in later sections. 

Previous research performed by Westerwheel et al, suggested the logistical savings of AM-based 

production in terms of shorter lead times and improved customer responsiveness was in fact 

nominal in comparison to investment costs (i.e. machine purchasing) at low-demand rates, as result 

of low machine utilization [17]. Atzeni and Salmishow further demonstrated the effects of machine 

utilization on the cost for laser powder bed fusion, noting a significant decrease when introducing 

accumulating parts within a single build [7]. Increasing from a line of individual parts to an array 

and eventually filling the entire build envelope indicated an exponential step-wise decaying effect 

on cost per part (Figure 4) [23]. 
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Figure 4. The realistic AM cost model. 

Baumers et al, discovered through experimentation on machine utilization there was an 

overstatement of 157% for the average cost per part when not adequately filling the printer’s 

capacity, resulting in the loss of a total potential production savings of 36-46% [24]. Machine 

utilization is AM’s form of economies of scale [25]. Therefore, the factors leading to machine 

utilization are imperative to the cost effectiveness of AM.  

A production allocation model proposed by Fera et al, provided a build time and total cost 

estimation, ultimately showing improvements in machine utilization through better part 

prioritization [26]. This was done by prioritizing small volume parts to fill the print bed to capacity. 

Other process parameters such as part orientation may also have significant effects on utilization. 

Alexander et al published an original model for increasing machine utilization through better 

orientation of parts built via layered manufacturing [27]. This study was expanded upon in the 

work of Rickenbacher et al, which considered simultaneous builds of SLM parts in their model 

indicating an even great effect on machine utilization [28]. 

The matter of increasing process efficiency and striking a balance between high utilization and 

quick production cycles is important in reducing AM-based production costs. Weller et al 

concluded from their industry study that AM’s flexibility and decentralized production was best 
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suited for markets with high demand uncertainty and product variety [29]. The aggregation of low-

demand aerospace spare parts is therefore a strong illustrative example of the potential for AM, as 

these parts exhibit the above characteristics and are simultaneously expensive to store and incur 

high stockout costs. 

C. Aerospace Spare Parts Supply Chain 

“Nothing is more expensive than an airliner on the ground.”[4]. Maintaining high reliability of a 

company’s air fleet requires speedy repair and maintenance cycles. Therefore these MRO activities 

require a high availability of spare parts to reduce a plane’s downtime [6]. There are sizeable costs 

associated with providing these aftermarket parts too.  

Aerospace MRO services are often completed following the manufacturer’s recommended 

scheduled maintenance. With proper planning companies can ensure minimal grounding time for 

aircraft, but a large portion of these services are also the result of an emergency part failure. In 

these cases, spare parts are required in a timely manner to complete repairs. The costs associated 

with a grounded aircraft permit higher spending on inventory and decentralized storage if it equates 

to faster maintenance and repair cycles. The penalty cost for a late part is more often significantly 

higher than the original part value because in this industry the impact of this portion of the supply 

chain transfers to all other parts (upstream and downstream). 

Upstream, spare part suppliers must deal with large safety stocks and higher costs for distribution 

to obtain these high service levels. The goal for suppliers has been to decrease production and 

delivery lead times, and increase inventory turnover [4]. The aerospace industry requires complex 

logistical solutions, involving manufacturing as well as distribution supply chains, where the focus 
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has begun to shift towards high value service, meaning aircraft that are in operating condition and 

demonstrate a higher availability [6]. 

The timely requirement for spare parts results in high inventory costs. For large commercial 

companies like Boeing that employ airplanes made up of 4 million parts or more, most of their 

inventory is comprised of parts that are infrequently needed [4]. Due to the unpredictable nature 

of these spare parts it can be costly to provide a high service level without also increasing safety 

stock. This problem is exacerbated for parts used in new products, where there is no historic data 

on the failure rates of each part. It is estimated that airlines hold up to 20% of excess inventory [4].  

Longer life cycles for these fleets also play a role in expensive storage costs with an added risk of 

unsold inventory. Engine manufacturers estimate a 5% increase year over year to cover the costs 

of after-sales components necessary for MRO activities throughout an engine model’s lifecycle 

(up to 25 years) [4], and in many cases this inventory may remain unsold as these planes are 

decommissioned. A common solution to cut costs is to utilize modular designs for planes, where 

a reduced number of common parts are used in several models. This can be beneficial in 

aggregating data for part forecasting but limits the freedoms of airlines manufacturers to optimize 

their planes and does not improve part lead times. Another solution employed by OEMs is to 

reduce the costs of storing parts by aggregating these products at more centralized warehouses, 

however this actually increases part lead times for customers served in remote regions [4].  

Downstream these issues have been treated with some airline companies choosing to support their 

own warehouses to increase the availability of their parts. These warehouses incur high inventory 

holding costs and require part forecasting to reduce in-house stockouts when emergency parts are 

needed [30]. When inventory levels at the customer warehouse hit a reorder point, a purchase order 

will need to be made to the OEM. Additionally, in the case of accidental stock outs customers will 
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need to order replacement parts through an OEM and incur the loss of time associated with the 

picking, packing, and shipping operations from their supplier. The same costs associated with the 

OEMs slow-movers or unsold inventory also plague the airlines choosing to stock their own 

warehouses. 

Another solution may be to produce parts on-demand. However, low volumes for these parts have 

made the costs of traditionally manufacturing these parts significantly higher due to the lack of 

economies of scale. In addition, these traditional methods rely require large manufacturing 

facilities and are not suitable for distributed production, meaning parts will still be delayed due to 

shipping [31]. 

D. AM and the Spare Parts Supply Chain 

AM-based production can support the physical properties of aerospace parts, which have high 

design complexity and require high mechanical strength. Often AM produced parts can even 

compete with the price of these traditionally manufactured parts, employing added cost reduction 

with better space usage and reductions in part weight, saving on material and fuel costs [29].  

AM is expected to provide these savings by way of demand aggregation, reduced inventory 

holding, reduced downtimes, and the ability to provide decentralized (distributed) production.  

There are other indirect benefits worth mentioning, including part individualization and part 

consolidation. Monolithic structures are prevalent in many AM designs, reducing the number of 

parts and assembly requirements in product manufacturing. This part consolidation results in cost 

reduction, as well as a simplified supply chain [2]. Fewer parts mean fewer suppliers for sourcing, 

tracking, assessing quality, storing in inventory, and transporting to customers.  
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The fundamental problem for supply chains is balancing supply with demand, which means relying 

on accurate forecasts. Problems of forecasting unpredictable spare part demands to be stocked at 

warehouses can be solved by aggregating production into sheer volume of parts to be printed on-

demand through AM technology [4]. This will transform the supply chain into a simple capacity 

problem with a network of distributed AM production sites used to balance regional customer 

demands. 

A stochastic dynamic programming model proposed by Knofius et al, found cost savings for AM 

use in spare parts supply despite a typically higher price per part, as a result of reduced stock and 

stock-out penalties [32]. The dilemma of stocking to meet demand and prevent stock outs, while 

also reducing purchasing and inventory holding costs means that OEMs must find optimal levels 

for their safety stock. With the on-demand nature of AM, this becomes obsolete, and although each 

individual part is slightly higher in costs, the savings benefit of reduced inventory outweighs this 

cost.  

A case study conducted by Westerwheel et al on the Royal Netherlands Army’s spare part supply 

found through a Markov decision process that AM on-demand production saw a 26% reduction in 

downtime for mission critical equipment [31]. AM not only improved customer responsiveness 

for these remote areas, but simultaneously reduced overall costs of receiving parts.  

For the private sector utilizing AM for slow moving parts in centralized distribution centers would 

eliminate a large portion of costs dedicated to inventory holding [6]. However, the remaining 

logistics costs of shipping these small quantity parts would still need to be subsidized by fast 

movers, unless this production is performed through distributed sites. 
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Attempting to decentralize AM production to better accommodate customer locations and reduce 

shipping costs, might however reduce the utilization of machines and limit the offset of high fixed 

costs for purchased machines and the necessary personnel employed to operate them. Therefore, 

if more parts can be identified as candidates for AM there will be an increase in the utilization of 

machines, which would result in situations such as one technician operating multiple machines, 

thus reducing the cost of labor for each part. Understanding the characteristics of distributed AM-

based production on the entire supply chain is imperative for realizing the cost benefit this solution 

may provide to the aerospace spare parts supply chain. 

1. Distributed Production 

Distributed on-demand production improves overall costs by utilizing more accurate information 

on regional demand, increasing production efficiency, and improving the supply chain network’s 

reliability. It may also provide lower capital investment for facilities, lower shipping costs, and 

lower inventory costs. Work conducted by researchers Pérès and Noyes, showed the feasibility of 

this concept noting. In addition, it was noted that the substantial decreases in penalty costs arise 

from the routing and supply times of spare parts [33]. While a single-part demand may still warrant 

the use of traditional manufacturing methods for cost effective and fast production, AM provides 

an attractive alternative for aggregated demands of many unique parts using distributed production 

sites.  

However, despite numerous advantages there is still a trade-for AM-based production in a supply 

chain, when factors such as all costs of personnel, transportation, inventory, material, downtime 

of aircraft, AM capital investment and depreciation are considered. To understand when this shift 

to distributed production became more cost effective than centralized production sites, a case study 

was conducted for the U.S. Navy’s F-18E/F/ Super Hornet fighter jet air cooling ducts spare part 
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supply [6]. Distributed and centralized scenarios were established and optimized using a Monte 

Carlo simulation to find the cheapest operating settings for each scenario. A non-linear relationship 

was associated with cost and the autonomy of AM (number of machines per worker). The resulting 

two main factors determining the trade-off were machine acquisition price and personnel cost. 

Distributed production performed better only when the machine acquisition price and personnel 

salaries were relatively low (<$65,000/unit and <$70,000/year, respectively). However, this 

disparity is a direct result of machine utilization between centralized and distributed production 

(95% and 25%, respectively). The study did not evaluate stochastic demand levels or the impact 

of downtime costs, as service levels were held constant. The variation in demand is crucial when 

evaluating the aerospace spare part supply chain.  

Other work related to this distributed supply chain by Durão et al, found autonomous capabilities 

will be a key driver of cost, especially the automation of in-process quality control [34] where a 

considerable amount of man-hours are spent to check for failures. These limitations of cost and 

autonomy for AM technologies have slowly improved as the technology has matured [6].  

2. Part Feasibility 

A review process like the one proposed by Walter et al, includes seven key steps for reviewing 

part eligibility for the AM spare part supply chain: technical analysis, business benefit, production 

cost analysis, capacity cost analysis, cost-tradeoff, AM use, and reevaluation of AM [4]. Technical 

feasibility relates to the limitations of the AM technology including building volume, intrinsic 

material properties and other considerations. The business benefit is clear, shorter lead times that 

lead to higher aircraft availability. Production costs need to be confirmed along with costs of 

providing the capacity of this production along the supply chain before analyzing the cost trade-

off. The assumption being that large and fast-moving parts will almost always be better suited for 
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mass production of traditional warehousing solutions. By contrast, small infrequent movers might 

benefit from the use of AM. In either case, the final step is to reevaluate the other steps as the costs 

and applications of the technology change.  

A business model needs to be established for investigating the investments associated with the 

purchase of machines, as well as the staffing and material requirements to maintain production. 

Finally, it will need to consider the costs of meeting customer demands including lead time 

variation and penalty of downtimes.  

As AM becomes more autonomous and exhibits shortened production cycles it will begin to 

provide a better alternative to warehousing, as it reduces both the production and logistics costs 

[6]. Further studies need to be made to understand how various AM configurations and settings 

impact overall cost and service to the customer. 

E. Simulation Models for Spare Parts Supply Chain 

Simulations have been widely used to model manufacturing systems in part due to their capability 

of analyzing complex systems and capturing the effect of local changes on the performance of the 

overall system. It is an effective analytical tool for solving problems that arise in manufacturing 

design and operation.  

Few business decisions are straightforward. Changes in one area of business impact other areas—

often in ways not anticipated. Business process simulation provides a method of evaluating the 

full implications of business decisions before they are put into practice. Discrete event simulation 

(DES) describes a process with a set of unique, specific events in time. The flexible, activity-based 

models are well suited for simulating a production process.  



19 

 

For the aerospace spare parts supply chain, inventory control is essential since excess inventory 

leads to high holding costs and stock outs can have a great impact on overall cost. Different from 

work-in-process (WIP) and finished product inventories, which are driven by production processes 

and customer demands, spare parts are kept in stock to support maintenance operations and to 

protect against equipment failures.  

Although this function is well understood by maintenance managers, many companies face the 

challenge of keeping stock of large inventories of these spares due to their excessive holding and 

obsolescence costs. Thus, effective cost analysis can be an important tool to evaluate the effects 

of stock control decisions related to spare parts. However, the difficulty in assessing good 

strategies for the management of spare parts lies in their specific nature, normally very slow-

moving parts with highly stochastic and erratic demands [74]. Therefore, simulations with their 

ability to model stochastic and probabilistic scenarios, offer a method for investigating a solution 

by evaluating the impacts on key performance measures and determining the best operational 

procedures and allocation of resources to minimize overall cost. 

1. AM On-demand Production Simulations 

Several publications have investigated AM-based production and point out the potential cost 

benefits compared to other common manufacturing techniques, within small lot sizes. Brody and 

Pureswaran  published a report which describes the combined impact of 3D manufacturing, 

intelligent robotics and open source electronics [35]. They analyzed the bills of materials down to 

the part, modeled the manufacturing and distribution of parts and applied a software defined supply 

chain. The model allowed changes to the requirements, scale, location, cost, etc. They found an 

average cost savings of 23%, due to improved economies of scale and the "supply chain" footprint 

(in terms of transportation fuel). This report was the most complete model found. However, it does 
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not directly look at the spare part problem, focusing only on the overall supply chain impact of 

this new technology. 

In 2014, Simkin and Wang [36] presented a cost-benefit analysis of finished parts. They applied 

this analysis through simulating the effects of changes to the AM parameter setup like what is 

presented in this work. However, their focus was again only on regular production. Specific 

logistical topics related to spare parts are not taken into consideration. 

Holmström et al [37] work does look at the spare parts industry and the concept of including AM 

into this supply chain. They compared distributed and centralized AM supply chains as a 

replacement of traditional warehousing and distribution solutions. They presented an example of 

deploying a distributed AM system in the aircraft spare parts supply chain, where significant 

reductions in holding cost with an improved service level were achieved as a result. They conclude 

that centralized AM, by specialized service providers, shows the biggest benefits at current state. 

However, they predict this will ultimately change to favor decentralized AM as this technology 

matures and costs continue to decrease. This means a shift of deploying AM technology closer to 

end users. Their article also recommends further research to find possible applications of AM and 

the setup in the supply chain, which this paper will cover. 

Other work by Hasan and Rennie [38] or Peng et al [30] strongly refer to the work of Holmström 

and extend the issue to the effects of AM on the supply chain for specific cases. Peng et al applies 

the Supply Chain Operations Reference Model (SCOR) for the aircraft spare part supply chain, 

and they conclude that AM is contributing to improvements in the industry, proving a strong 

interest in research related to this topic as it relates to aerospace. 
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To sum up, general research for common industrial situations is missing. Researchers have yet to 

show the results of altering an AM-based setup at the facility level on a decentralized network, and 

what impacts it would have along the rest of the supply chain. Furthermore, no simulation has been 

created to look directly at how this production setting can be optimized for meeting the needs of 

spare parts customers, like the aerospace industry. 

III. Research Objectives 

In a preliminary work, a framework of an AM production model was generated and using discrete 

event-based simulation various experiments evaluating unscheduled spare part production were 

performed [39]. The simulation results from the preliminary model revealed some unique 

behaviors of the AM supply chain system, such as the nonlinearity between arrival rates and time 

in system for parts, inspiring further investigation into other production characteristics, such as the 

utilizations and efficiencies of different resources and the applicability of existing supply chain 

operation strategies. On the other hand, various knowledge gaps were identified with the 

preliminary models, such as the lack of an identified system bottleneck, an inaccurate 

representation of emergency part demand generation, and the impacts of parameter settings on the 

downstream supply chain. Additional developments to the model were needed to determine the 

efficacy of AM for supply spare parts to the aerospace industry. The objective of this thesis is to 

enhance the robustness and representativeness of the preliminary model and utilize this new model 

to provide further insights into the impact of integrating AM in production. Of particular interests 

to this study were some of the fundamental understandings of the AM production operation 

characteristics such as lead time, capacity, resource bottlenecks, as well as the performance of this 

operation under various operational strategies employed in supply chain systems. This knowledge 

will not only help in establishing fundamental understandings of the AM supply chain but will also 
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enable well informed decision making in real world practice. More specifically, the research 

consists of three main objectives. 

Objective 1: Understanding the performance of AM on-demand production of spare 

parts for high-impact supply chain 

The objective aims to gain fundamental understanding of the cost and performance characteristics 

of AM for spare part production under high penalty levels that correspond to the significant 

downstream impacts the aerospace industry experiences for late order deliveries. This will include 

an in-depth analysis of machine utilization as it relates to AM service level and the direct and 

indirect costs associated with this method of production. Data analysis will be conducted for 

increased penalty rates to determine the optimal service level setting that reduces overall cost. 

Using the traditional warehousing solution as a baseline, the results will establish the relationships 

between the supply chain downstream impact (penalty), the demand rate, and the efficiency of 

AM’s on-demand production. 

Objective 2: Understanding AM-based on-demand production system characteristics 

A comprehensive simulation model will be established for the AM on-demand production system 

and utilized to capture system performance and the flow of the production orders. Comprehensive 

system operation characteristics of waiting time in queues, worker and machine utilization, and 

throughput rates will be analyzed through experimentation with part demand and various 

production configurations. The designed experiment will be able to evaluate both the efficiency 

and robustness of the AM on-demand operation for dealing with aerospace spare part demand. 
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Objective 3: Understanding the optimality of AM-based on-demand production via 

operational strategies 

This objective is to understand how AM on-demand production could be potentially optimized for 

the aerospace spare parts supply chain through use of some generic operational strategies. Optimal 

order prioritization strategies will be assessed based on their resulting effect on cost per part. Part 

characteristics will be altered to determine the trade-offs between different strategies. The results 

of the experiments will be collected and analyzed, and recommendations on optimal production 

strategies will be made.  

IV. Model Methodology 

A. AM Production Discrete Event Simulation 

To analyze the AM production scenarios a discrete event simulation (DES) is created in ARENA. 

DES models define discrete events occurring at instances in time and indicates changes in the state 

of entities or variables in that system. The ARENA software tool allows for complex logic that 

would not be possible in spreadsheet modeling. The ARENA AM Production Model illustrates a 

common AM-based production flow consisting of reception, queueing, batching, setup, 

calibration, preheating, printing, cool down, and post-processing steps. 

In addition, in order to generate stochastic parts demand, a separate order generation model is 

created in Simio, another DES tool. The Simio Order Generation Model allows for quick of the 

order list via random number generators in the software. The complex routing logic in Simio also 

allows for correlations between order attributes. The output of this model is then fed into the AM 

Production Model in Arena to replicate stochastic orders. 
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1. Order Generation Model 

As mentioned previously, a set of spare part orders are pre-generated for the AM Production 

model. This is done in Simio, see Appendix II. Simio Order Generation Model for a 

detailed description of the Simio DES model. The Order Generation Model classifies each entity 

into two order types, regular or emergency. It is common in inventory control to separate spare 

parts into classes based on priority [40]. Regular part orders represent a set of parts being ordered 

for scheduled maintenance, they follow a normal distribution and are assigned relatively low 

priorities, whereas emergency part orders represent part failures and follow a Poisson distribution 

and receive the highest priority. The parts in each order are also assigned four other attributes: 

allocated manufacturing time, volume, value, and demand (number of parts in the order). For the 

generation of regular spare part orders, the model follows Algorithm 1 (Appendix I. Algorithms 

for Creating Stochastic Part Orders). A similar algorithm (Algorithm 2) is used for creating 

emergency spare part orders, where the only difference is emergency part orders will always 

receive a priority level of 0 (the highest priority level). 

To generate orders, the model creates entities as either emergency or regular parts then assigns 

attributes to each order according to routing logic, then the values assigned to each order entity is 

recorded in an output table. 

Entity Arrivals 

Since, part order (emergency or regular) types follow a different arrival rate, they are separated. A 

random number generator is used for arriving entities. The interarrival time of regular orders 

follow a Normal distribution with a mean (μ) and a standard deviation (σ) defined in the model. 

Interarrival times for emergency orders follow an Exponential distribution with a defined mean 

(λ).  
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Assigning Attributes 

Once a part is created, the order entity, will be routed to assign steps using routing logic, based on 

the proportions and correlations specified in Table 1-Table 5, below. When an entity is being 

processed by a server it is assigned an attribute value using random number generators following 

distributions also shown in Table 1-Table 5. 

When assigning the allocated manufacturing time, volume, and demand attributes to regular spare 

part orders, the order is first routed into one of three levels: low, medium, and high (except priority 

0 for emergency orders), based on a proportion of total. Then, a value is assigned to the order that 

follows a Uniform distribution with a pre-defined range associated with each attribute and level. 

Table 1-Table 3, below, shows the proportion and ranges for each level of these three attributes. 

Table 1. The proportion of each level and their ranges for allocated manufacturing time. 

1. Allocated Manufacturing Time (hrs) 

Low [24,48] or 1-2 days 5% 

Medium [72,120] or 3-5 days 20% 

High [168,336] or 7-14 days 75% 

 
Table 2. The proportion of each level and their ranges for volume. 

2. Volume (mm3) 

Low [1000, 10000] 75% 

Medium [10001, 500000] 20% 

High [500001, 1000000] 5% 

 
Table 3. The proportion of each level and their ranges for demand. 

3. Demand (# of parts in one order) 

Low [1, 10] 5% 

Medium [11, 30] 20% 

High [31, 50] 75% 
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For emergency spare part orders, the only difference is these orders always receive the lowest 

range of allocated manufacturing time (24-48 hours) and are also assigned the lowest range of 

demand (1-10 parts). 

In order to create more realistic order sets, correlations between manufacturing time values and 

priority, as well as volume and part value, are considered. When assigning priority, the model 

algorithm first determines which of the three levels the allowed manufacturing time falls into (low, 

medium, or high). This of course, is neglected for emergency orders that are already assigned a 

priority level 0. 

• If the random value of allowed manufacturing time falls into its high value range 

[73,192], then the probability that the random value of priority obtains its low value 3 

is 80%.  

• If the random value of allowed manufacturing time falls into its medium value range 

[49,72], then the probability that the random value of priority obtains its medium value 

2 is 80%.  

• If the random value of allowed manufacturing time falls into its low value range [5,48], 

then the probability that the random value of priority obtains its high value 1 is 80%. 

Similarly, when assigning part value, the model algorithm first determines which of the three levels 

the order falls into. 

• If the random value of volume falls into its low volume range [1000,10000], then the 

probability that the random value of part value falls into its low value range [10,50] is 

80%.  
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• If the random value of volume falls into its medium value range [10001,500000], then 

the probability that the random value of part value falls into its medium value range 

[51,200] is 80%.  

• If the random value of volume falls into its high value range [500001,1000000], then 

the probability that the random value of part value falls into its high value range 

[201,1000] is 80%.   

Then, a quantity is assigned to these orders that follow a Uniform distribution with a pre-defined 

range associated for part value and order priority, as shown in Table 4-Table 5, below. 

Table 4. The ranges for each level of part value. 

4. Part Value ($) 

Low [10, 50] 

Medium [51, 200] 

High [201, 1000] 

 

Table 5. The ranges for each level of priority. 

 
 

 

 

Output 

Once the order entity has passed through the network, the attributes are recorded as rows in an 

output table (See Table 6. Outputs and their descriptions. below). For each simulation 1000-part 

orders are created of both regular and emergency parts and exported from the output table to a .csv 

file to be used in the AM-based Production model. 

 

5. Priority 

Low 3 

Medium 2 

High 1 

Highest (emergency) 0 
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Table 6. Outputs and their descriptions. 

 

2. AM Production Model 

The AM Production DES model is created in ARENA, see  

 

 

 

 

 

 

Appendix III. ARENA AM Production Model for a detailed description of the ARENA model. 

This model illustrates a typical laser powder bed fusion production process (see Figure 5). Though 

many parameter settings are manipulated in the subsequent case studies the structure and flow of 

the AM production process remains mostly the same. Part orders arrive in the system, they are 

received by an operator, and enter a queue. When a printer is available, orders may become batched 

6. Output Description 

Index Part order index (used to keep track of partial part orders during post-

analysis) 

Arrival Timestamp  Time order arrives (hr) based on algorithm. 

Part Type  Type of part (Emergency or Regular) in each order based on 

algorithm. 

Priority Level  Priority level (0, 1, 2, or 3) of order based on algorithm. 

Allocated Mfg Time  Allocated manufacturing time (hr) of the part order based on 

algorithm. 

Volume Volume (m3) of each part in order based on algorithm. 

Part Value Value ($) of each part in order based on algorithm. 

Demand Demand of parts (#) in order based on algorithm. 
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or postponed before being sent to an AM machine. A worker will then setup and preheat the 

machine, then orders will be printed and allowed to cool down before finally going through post-

processing and exiting the system.  

 

Figure 5. Laser Powder Bed Fusion Process. 

The only significant variations to this process occur when investigating a two-machine scenario, 

where orders flow through an additional set of logic steps to be sent to one of two AM machines 

for batching, postponement, printing, cooling, and post-processing. 

Order Arrivals 

ARENA uses the output file from the Order Generation Model created in Simio, or a deterministic 

part order file generated manually, to create entities and read in their attributes following the flow 

diagram below (Figure 6). Regular and emergency parts arrive and are assigned attributes, then 

received by an operator before being sent to the preparation station. 
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Figure 6. Order Arrival and Reception Steps. 

Reception 

After a part order (entity) arrives it is processed at reception. The processing time for receiving 

part orders and manipulating the CAD file for AM production is modeled with a triangular 

distribution using a range of 0.05 to 0.15 hours and a mode of 0.1 hours. Before reception starts a 

worker is requested. If no operator is available at the time of the request, then the order must wait 

to be processed. Each part order is assigned the current time before entering this step and a 

calculated total reception time immediately after exiting. This value is used in determining the 

operator’s utilization and cost.  

Queueing 

Next the entity is routed to the preparation station. This model exhibits the characteristics of a 

queueing system, where each machine can be viewed as a server and operators as a resource, seized 

for various steps in the process. Due to the variation in order arrivals and service times, a queue is 

inevitable. At the preparation station, entities will go through logic steps to decide if they must be 

queued. Figure 7 below, shows the decision steps (in diamonds). 
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Figure 7. Order Queueing Steps. 

Prioritization Strategy 

Before part orders are routed to a printer, the model verifies that the AM machine is not in the 

process of setting up, printing, cooling down, or post-processing (Figure 8).  If the machine is 

busy, entities are given new priority levels and placed in a queue. This is a crucial step in the 

model, allowing the system to make decisions on how to prioritize parts that will reduce late order 

penalties. 

 

Figure 8. Order Prioritization. 
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Batching / Order Separation 

Once the machine is idle again, part orders will go through another series of decisions before they 

can fill the printer. These steps ensure the machine is not overfilled. If a new order would exceed 

the printer’s capacity the model will first attempt to split the order to accommodate a portion of 

the job (Figure 9). If this occurs, the split portion order will be routed to the printer, while the 

remaining parts reenter the queue and wait to be prioritized for the next batch.  

 

Figure 9. Order Separation Steps. 

AM Station 

Once orders arrive at an AM station, they will begin a postponement period before a machine is 

setup, calibrated, and preheated. After these steps, parts are printed, allowed to cool, and then go 

through post-processing to become finished goods. These steps are illustrated in Figure 10, below.  

 

Figure 10. AM Station Steps. 
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Postponement Strategy 

The general purpose of postponement is to delay the actual processing of the orders to avoid 

running the AM machine when the order batches do not meet a certain scale, thus creating an 

inefficient use of the AM machine. Figure 10 shows the postponement strategy. For example, it 

may be desirable to wait until a batch can fill 90% of the machine’s capacity. This may delay the 

initial batch until more orders are received into the system. Other postponement strategies explored 

in this paper, include imposing a waiting period from the arrival of the first order, or a combination 

of ensuring both machine capacity and wait times meet their respective threshold values. These 

strategies are common in production and the model’s logic will help improve decision making to 

ensure parts are printed on time at the lowest cost. 

AM Setup, Calibration, and Preheating 

Once a batch has gone through postponement, the model will wait for the next available operator 

to begin the setup, calibration, and preheating of an AM machine. These steps are shown in Figure 

11. 

To replicate the time required to setup files for the machine, each order is individually assigned a 

random value following a triangular distribution with a minimum of 0.008 hours, a mode of 0.016 

and a maximum of 0.024 hours. This value is multiplied by the part demand of that order and then 

added to a rolling value for the entire print setup time. An additional calibration time is added to 

the total setup and follows another triangular distribution with a minimum of 0.05833, a mode of 

0.06667, and a maximum of 0.075 hours.  

It is known that for an 8,000,000 mm3 machine printing at full capacity, the powder feedstock 

would take roughly 1 hour to preheat. To maintain that ratio with respect to print volume a 
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preheating time of 125 (1/0.008m3) hours is multiplied by the total print volume of the batch (in 

m3) and added to the setup and calibration delay. 

 

Figure 11. AM Setup and Preheating Steps. 

Printing and Cool Down 

Finally, orders are ready to be printed. Printing speed associated with the powder material is 

multiplied by the entire print volume to determine the total print time. Once the build is complete, 

a cool down step is imposed to allow the build to settle into its final geometry, a crucial step in 

AM production. This cool down follows a normal distribution with a mean of 5 and a standard 

deviation of 1 hour. Finally, the orders are ready for post-processing (see Figure 12). 

 

Figure 12. AM Printing, Cool Down, and Post-Processing Steps. 

Post-Processing 

Post-processing is an important step in most AM processes to achieve desired physical properties 

of strength, surface finish, etc. It is a labor-intensive task and requires many worker hours. This 

process will begin after the model seizes the next available operator. To model the time to complete 

post-processing a random value is assigned to each order following a triangular distribution with 

a minimum time of 0.08, a mode of 0.5, and a maximum of 1.2 hours, and then multiplied by the 

order’s part demand. Parts leaving this step are now finished. 
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Output 

Once orders are complete, the model will calculate if the output time has exceeded the allocated 

manufacturing time, if this occurs the order will be penalized for the number of hours late (Figure 

13. Calculations and Output Steps.. Additional calculations are made based on the order attributes 

and recorded as rows in an output table (See Table 6. Outputs and their descriptions. below).  

 

Figure 13. Calculations and Output Steps. 
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Table 7. Outputs and their descriptions 

 

7. Output Description 

Index Part order index (used to keep track of partial part orders during post-

analysis) 

Arrival 

Timestamp  

Time order arrives (hr) based on Algorithms 1 and 2. 

Part Type  Type of part (Emergency or Regular) in each order based on algorithm. 

Priority Level  Priority level (0, 1, 2, or 3) of order based on algorithm. 

Allocated Mfg 

Time  

Allocated manufacturing time (hr) of the part order based on algorithm. 

Volume Volume (m3) of each part in order based on algorithm. 

Part Value Value ($) of each part in order based on algorithm. 

Demand Demand of parts (#) in order based on algorithm. 

Finish Time Time (hr) a whole or portion of a part order is completed. 

Consumed 

Material Cost 

The total volume of the part order (m3) multiplied by the density of the 

material (Ti6Al4: 4,430,000 g/m3) and by the cost of the material ($0.2/g) 

Consumed 

Energy Cost 

The total print time of a part order (hr) plus the total pre-heat time (hr), 

multiplied by the energy cost ($0.02/kWh) and the energy usage of the 

machine (400W).  

Print time is determined by taking the total volume of a part order (m3) 

and dividing it by the printer’s speed (0.000012m3/hr) 

Pre-heat time is determined by taking the total volume of the part order 

(m3) and multiplying it by a constant (1hr/0.008m3), as explained in AM 

Setup, Calibration, and Preheating. 

Operator Cost The total operator work time (hr) multiplied by the hourly rate of an 

operator ($70/hr). 

The total operator work time is the time spent receiving the original part 

order (hr, this is pro-rated if order is separated), plus the part order’s setup 

time (hr), and the post-process time (hr, proportion of parts in the batch 

multiplied by the total post-processing time for the batch). 

Penalty Cost This value will either be zero for any part orders completed on time, or the 

total time to manufacture (hr) minus the allocated time (hr), multiplied by 

the part’s value ($) and a constant penalty cost ($0.00001/hr). 

Total 

Maintenance Cost 

Annual Maintenance Cost ($50,000).  

*This is NOT included in the output table and must be added in post-

analysis. 

Total AM Cost Consumed Material Cost + Consumed Energy Cost + Operator Cost + 

Total Maintenance Cost + Penalty Cost 

AM Parts In The total number of parts that have entered the system at the current 

output time. 

AM Parts Out The total number of parts that have been completed at the current output 

time. 
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B. Warehouse Monte Carlo Simulation 

Unlike AM-based production, warehousing is a well-studied topic, and common rules of thumb 

and equations have been established to model the cost of implementing warehouse solutions. In 

order to provide a better analysis of the trade-off between warehousing and AM a Monte Carlo 

simulation is created in Excel. Monte Carlo simulations provide repeated random sampling to 

identify probability distributions for specified variables. A spreadsheet model can handle the 

warehouse scenarios given the simple logic of this option. A common warehouse setup is used to 

capture events such as purchasing, inventory holding, stockouts, and penalties for late deliveries. 

1. Warehouse Model 

The Excel Warehouse Model defines 100 SKUs (parts), where 80% are classified as regular parts 

representing those being ordered for scheduled maintenance, and 20% are categorized as 

emergency parts, or those being ordered as a result of part failures. The part value ($50) and 10% 

inventory holding costs are kept the same. 

Inventory 

A common inventory approach of stocking parts to fulfill predicted demand and achieve a desired 

service level is used to calculate the purchasing and inventory holding of parts. It is assumed for 

the warehouse scenarios that the predicted demand of each SKU is 100 parts per year. However, 

the demand distribution for regular part SKUs follows a normal distribution with a mean (μ) of 

100 parts/yr and a standard deviation (σ) of 20 parts, whereas emergency part SKUs follow a 

Poisson distribution with a rate (λ) of 100 parts/yr. 
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To achieve a desired service level, the model performs a safety stock (SS) calculation (see Error! 

Reference source not found. below). In this calculation a z-score defined by the service level (α) 

is multiplied by the standard deviation (σ) of demand. 

𝑆𝑆 =  𝑧∝ ∗ 𝜎                 (1) 

Stockouts 

In order to provide actual demands the model uses random number generation following the same 

distributions described for regular and emergency SKUs. Now the model can calculate stockouts, 

or the difference between the actual demand and SS if the demand is greater than inventory (See 

Error! Reference source not found.).  

𝑆𝑡𝑜𝑐𝑘𝑜𝑢𝑡𝑠 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 − 𝑆𝑆          (2) 

Cost Calculations 

There are only three costs calculated in the Warehouse Model: purchasing, inventory holding, and 

penalty. For purchasing costs the calculated SS (inventory) for each SKU is multiplied by part 

value (Error! Reference source not found.). Inventory holding is calculated by taking SS and 

multiplying by the inventory holding (Error! Reference source not found.). Using the previously 

calculated stockouts, a penalty cost is assessed based off days late for each part (Error! Reference 

source not found.). In the event of stockouts the days late of each part follows a uniform 

distribution with a range of 2 to 5 days. Finally, a total cost for the scenario is calculated (Error! 

Reference source not found.). 

𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 ($) = 𝑆𝑆 (𝑝𝑎𝑟𝑡𝑠) ∗ 𝑃𝑎𝑟𝑡 𝑉𝑎𝑙𝑢𝑒 ($50/𝑝𝑎𝑟𝑡)            (3) 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 ($) = 𝑆𝑆 (𝑝𝑎𝑟𝑡𝑠) ∗ 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 (10% 𝑜𝑓 𝑃𝑎𝑟𝑡 𝑉𝑎𝑙𝑢𝑒)    (4) 
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𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐶𝑜𝑠𝑡 ($) = 𝑆𝑡𝑜𝑐𝑘𝑜𝑢𝑡𝑠 (𝑝𝑎𝑟𝑡𝑠) ∗ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ($/𝑑𝑎𝑦)            (5) 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 ($) = 𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 ($) + 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 ($) +

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐶𝑜𝑠𝑡 ($)            (6) 

C. Experiment 1: 

This experiment looks to model a typical aerospace spare part supply chain to determine the cost 

trade-offs when selecting between a traditional warehousing solution or an AM-based production 

solution for satisfying demand for spare parts. 100 simulation trials are run with the Excel Monte 

Carlo model to calculate the warehousing operations costs, and the AM costs are averaged with 

five replications simulated in ARENA. In both models, a part list of 100 SKUs is given as demand. 

Of these, 80% are identified as scheduled maintenance parts, following a normal distribution for 

interarrival time. The remaining 20% are marked as emergency parts, meant to represent a part 

failure, and follow an Exponential distribution interarrival time.  

A total of 6 scenarios are produced, 3 for the warehouse and 3 for the AM spare part supply chain 

models. Each scenario represents a varying level of penalty related to the late delivery of a spare 

part. In the warehouse scenario if a stockout occurs, then a penalty of either 1x, 2x, or 10x is 

multiplied by the part’s value ($1,000) for each day late. In the AM scenarios, parts that do not 

meet the allocated manufacturing time are given a similar prorated penalty of the part’s value 

($1,000) based on hours late (1x, 2x, or 10x per 24 hours). See Error! Reference source not 

found., for details on how penalty is calculated.  

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ($) = (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 − 𝐴𝑙𝑙𝑜𝑤𝑒𝑑 𝑇𝑖𝑚𝑒) ∗ 𝑃𝑎𝑟𝑡 𝑉𝑎𝑙𝑢𝑒 ($) ∗ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 (7) 

Under each penalty scenario the level of service is compared to see what the total operating cost 

would be for each solution seeking a given service level. In the warehouse scenarios the service 
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level is calculated based on the percentage of stockouts, or whenever demand exceeds the 

inventory. In order to set the service levels in this warehouse model, a safety stock calculation is 

made following the normal and Poisson distributions (as described in the Warehouse Model 

section). 

The AM model calculates service level based on the percentage of late deliveries, or whenever a 

part exceeds its allocated manufacturing time. In order to achieve these service levels, the demand 

interarrival rates (not the distributions) are changed until the system performed at the desired level 

of service. 

Finally, cost per part is used to compare these two models, this ensures that no matter the actual 

demand of these stochastic models the variable and fixed costs are applied to all parts that enter 

the system. The costs given to the parts in the warehouse solution represent the part purchasing, 

inventory holding, and penalty for stockouts. In the AM solution each part incurs costs from 

machine purchasing ($1,000,000), machine maintenance ($25,000), material cost ($0.2/g), energy 

usage ($0.02/kWh), operator salaries ($300,000), and penalty (Error! Reference source not 

found.) for late delivery.  See Error! Reference source not found., for details on the total cost 

of AM production. 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑀 𝐶𝑜𝑠𝑡 ($) = 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑃𝑢𝑟𝑐ℎ𝑎𝑠𝑖𝑛𝑔 ($) + 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐶𝑜𝑠𝑡 ($/𝑔) +

𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑎𝑔𝑒 ($/𝑘𝑊ℎ) +  𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑆𝑎𝑙𝑎𝑟𝑦 ($) + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 ($)    (8) 

D. Experiment 2: 

For this experiment, simulations are run to capture the system performance of the AM-based 

production model, under various configurations. The AM Production Model built in ARENA 

illustrates a conventional laser powder bed fusion process and exhibits the characteristics of a 
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queueing system. In order to understand the effects of this queue on system outputs, such as 

utilization of the two resources (machine and worker) as well as the ultimate throughput and cost 

per part, the model is altered to accommodate four unique production configurations. 

These four configurations are one operator: one machine, two operators: one machine, one 

operator: two machines, and two operators: two machines. Operators are easily added to the model 

as an additional resource to be seized during the applicable steps as described in the AM Production 

Model. Adding an AM machine, however, requires additional logic. Orders must be able to route 

to the second machine, and therefore a simple routing rule is applied: incoming orders will always 

route to the next available machine. This model, therefore, resembles a two identical-server queue. 

Experiment 2 uses the same parameters for modeling aerospace spare part orders as Experiment 1. 

A part list of 100 SKUs, which contain 80% scheduled maintenance parts (normal distribution) 

and 20% emergency parts (Poisson), is read into the model at varying demand rates. Five 

replications are run and used in the average for the calculated utilizations, throughput, and costs 

described below. 

E. Experiment 3: 

Experiment 3 investigates scenarios with stochastic part demands settings by changing 

parameters described in Algorithms 1 and 2 for parts order generation. These baseline values 

were originally obtained from the previous work conducted by Zhang et al [39]. The order lists 

for regular and emergency parts were then created in the Simio Order Generation model. Part 

attribute values and distributions closely match actual production characteristics of a small 

aerospace manufacturer, making a good argument for the real-world application of the changes 

made in the model. 
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The objective of this experiment is to investigate how various prioritization strategies for part 

orders can affect the system performance and downstream impact on the aerospace supply chain. 

The AM Production Model allows for part prioritization, resulting in reordering (i.e. re-arranging 

sequence of orders) while in the queue. To understand the effects this reordering has on cost per 

part, the model simulates three different strategies: first come first serve (FCFS, baseline), 

earliest due date, and highest current penalty. FCFS is the default queueing discipline in any 

orderly queue and is straightforward, the first order to enter the queue is the first to exit. Earliest 

due date is achieved by assigning each order a new attribute. This due date attribute is created by 

subtracting the allowed manufacturing time attribute by the current time spent in the system, see 

Error! Reference source not found. These orders are then reordered in the queue based on the 

lowest (earliest) corresponding due date. 

𝐷𝑢𝑒 𝐷𝑎𝑡𝑒 = 𝐴𝑙𝑙𝑜𝑤𝑒𝑑 𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 + 𝐴𝑟𝑟𝑖𝑣𝑎𝑙)            (9) 

A similar attribute is given to orders to assess their current penalty for the highest penalty 

prioritization strategy. Current penalty is the same calculation as seen in Error! Reference 

source not found. with the “Penalty Factor” indicating 1 for each 24 hours passed and 

multiplied by the total demand of the order (number of parts), see Error! Reference source not 

found.. 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑒𝑛𝑎𝑙𝑡𝑦($) = (𝑇𝑁𝑂𝑊 − 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒) ∗ 𝑃𝑎𝑟𝑡 𝑉𝑎𝑙𝑢𝑒 ($) ∗ (
1

24
) ∗ 𝐷𝑒𝑚𝑎𝑛𝑑 (10) 

Experiment 3 also increases the system capacity to 12 times the current output. This value was 

determined through experimentation on utilization and total cost using the new stochastic order 

lists. To achieve this capacity increase, part volumes were scaled down by a factor of 12. This 

decreases the processing time for the volume-dependent steps of setup, preheating, and printing. 
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The model in this experiment exhibits the rate of production similar to a 12-machine 

configuration.  

Lastly, the model is run to completion of all part orders in the order list, a total of 1000 orders. 

Regular part orders make up 800 (80%) of that total and emergency 200 (20%). In addition, the 

baseline arrival rate of regular parts has an interarrival time following the normal distribution 

with a mean (μ) of 100 hours and a standard deviation (σ) of 5 hours, whereas the interarrival 

times emergency part orders follow an exponential distribution with a mean (1/λ) of 400 hours. 

V. Experimental Results 

A. Experiment 1: 

For this and two subsequent experiments, five replications for both options, i.e., AM production 

and warehousing, are performed. The statistics reported in this section there are the average of 

various output variables of either model. 

First, it is expected that under a low penalty (1x of part value) scenario, the major cost driver for 

the warehouse solution was inventory and part purchasing costs. On the other hand, for AM 

production, it was the initial machine purchasing cost that is the main driver for the system cost. 

Figure 14 shows that as service level increases the warehouse solution costs decrease until an 

inflection point is reached and then the penalty cost savings provide no additional benefit to the 

overall cost. In the latter scenario, inventory and purchasing costs continue to rise in order to 

achieve for higher service levels. For the AM option, Figure 15 shows that the AM operation 

characteristics are somewhat similar to the warehouse operation, that is, as the overall cost 

continues to improve at higher service levels until an inflection point is reached where increasing 

service level exhibits minimal cost savings. The difference with AM lays in the flattened slope in 
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total costs as the service level increases, indicating AM is able to operate efficiently and achieve 

on time deliveries reducing penalty. It’s also important to notice the substantial costs associated 

with fixed values of machine purchasing, machine maintenance, and operator salary costs. 

Furthermore, although demand rates increase saturating the system at lower service levels; values 

associated with these variable costs of material and energy are not substantial. The decreasing cost 

is therefore mostly attributed to the decreasing penalty cost of parts. 

 

Figure 14. Average Costs of the Warehouse Solution Under 1x Penalty. 
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Figure 15. Average Costs of the AM Solution Under 1x Penalty. 

Under both scenarios, as penalty level increases at low service levels it becomes the leading 

cost factor. As penalty costs increase the inventory holding and purchasing costs under the 

warehouse solution become insignificant, and the optimal service level to achieve the lowest cost 

per part shifts further to higher service levels. However, as the penalty savings gradually diminish 

at the extreme high end of service level, these inventory costs become important again and the cost 

per part increases once again (Figure 16). Likewise, for the AM solution, as penalty costs increase 

the fixed machine purchasing, machine maintenance, and operator salary costs also become less 

significant, and the point of efficiency shifts towards these higher service levels. However, the 

benefit of sharing these fixed costs among the number of parts outweighs the savings return of 

penalty at higher service levels, as the curve passes this point of efficiency (Figure 17).  
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Figure 16. Cost Per Part of Warehouse Solution Under Various Penalty Levels. 

 

Figure 17. Cost per Part of AM Solution Under Various Penalty Levels. 

Figure 18 demonstrates the comparison between the two options in terms of cost per part. 

For the warehousing option, it is estimated as the cost per part of procuring and storing the parts 

and for the AM option, as the cost per part of producing the parts. It is known that AM production 

is more expensive than other forms of production, except for low volume and complex parts like 

the ones analyzed in our case study. AM produced parts are typically more expensive compared 
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to the procurement of parts made via traditional manufacturing methods, but Figure 18 shows that 

when including the cost of inventory holding, AM becomes slightly less expensive at higher 

service levels. AM is unique in that the necessary powder material used in production is most often 

stored directly within the machine itself, providing negligible costs of holding this inventory. This 

shows then that the real costs benefits seen in the AM scenarios are not only from reduced penalties 

as a result of the on-demand nature of this production, but also in the possibly less expensive cost 

per part as warehouse inventory is expensive at higher service levels. Furthermore, Figure 19 

illustrates how AM cost per part is impacted by production speed. As the speed decreases and 

places a burden on the system, the cost per part for AM exponentially increases. It is noted that 

these results are independent on the spare part set used for the simulation and therefore should not 

be valued quantitatively. However, the trends established hold valid use in generalizable cases. 

 

Figure 18. Cost Per Part to Produce or Procure Parts for Various Service Levels. 
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Figure 19. Cost Per Part and Parts Produced at Varying AM Production Speeds. 

Finally, Figure 20 compare warehouse results with the AM solution under various penalty 

levels for late deliveries. It can be seen that the warehouse solution is significantly more expensive 

under high penalty levels with a slight increase in cost per part at higher service levels. AM is the 

least expensive option at all penalty levels and remains relatively flat regardless of penalty and 

service level. This cost trade-off shows for the two solutions AM is favorable in all scenarios, but 

especially with higher penalty scenarios. This is because the penalty costs are less severe at lower 

service levels where parts are still manufactured quicker than they can be delivered in the 

warehousing solution. This does not consider the extremes of an overburdened AM system. It’s 

important to note again the sensitivity of production speed (Figure 19). To achieve lower costs 

AM users will need to ensure not to exceed the capacity of their production to achieve costs low 

enough to compete with warehousing. 
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Figure 20. Cost Per Part of Warehouse and AM Solutions under Various Penalty Levels. 

 

B. Experiment 2: 

In this experiment, we study the effects of four configurations of the AM production with different 

levels of resource availability: 1 operator and 1 machine, 2 operators and 1 machine, 1 operator 

and 2 machines, and 2 operators and 2 machines. The average time waiting in queues matched the 

common exponential growth curve, which is commonly observed in classic queueing theory 

(Figure 21. Average Time in Queue for Various AM Production Configurations. For the baseline 

one operator and one machine configuration, the system appeared to reach capacity limit at 5,000 

parts per year. Adding an additional worker improved the waiting times significantly, however a 

larger reduction in waiting time occurred with an additional machine. 
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Figure 21. Average Time in Queue for Various AM Production Configurations 

Since the 2 operator and 2 machine configurations did not exhibit any increases in waiting times, 

more simulations were run to identify its capacity limit (Figure 22. Average Time in Queue for a 

2 Operator and 2 Machine Configuration. Only when demand rate increases past 12,000 

parts/year did the queue start to grow exponentially for this configuration. For 1 operator and 1 

machine this was around 5,000 parts/year. Therefore, doubling these two resources more than 

doubled the system’s capacity. This indicates a synergetic effect between operators and 

machines. 
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Figure 22. Average Time in Queue for a 2 Operator and 2 Machine Configuration 

Adding an additional worker reduced waiting times, but to understand the burden placed on system 

resources, worker and machine utilizations are also calculated for all four configurations. Operator 

utilization is provided as an output in the ARENA model. It is calculated as a percent of time 

operators are busy at seized servers. However, the machine utilization is only given for the percent 

of time spent printing part orders. Average times spent in queue are also collected as outputs of 

the ARENA model. Figure 23, shows the average worker utilization was the highest under the two 

machine configurations in comparison with the one machine setups, which intuitively makes sense 

as workers are required more often for machine setup. In addition, all configurations followed a 

similar slope, indicating at higher demand rates more utilization of the worker is required. Figure 

24, illustrates the average utilization of the machine while printing, and shows a difference between 

machine and worker utilization. There is only a slight increase in utilization for the given four 

scenarios as demand rates increase, implying that the manufacturing system adapted well to the 

increase of demand rate due to the order batching in place in the production process.  
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Figure 23. Average Worker Utilization for Various AM Production Configurations. 

 

Figure 24. Average Machine Utilization for Various AM Production Configurations. 

Although machine utilization appears lower than worker utilization, it should be noted that the 

machine utilization is calculated as the portion of time that machine is used in actual production. 
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This does not include the additional time spent waiting for an operator between machine steps such 

as setup, calibration, pre-heating, and post-processing. The latter, however, based on the 

observations in Experiment 2 account for roughly 30-50% of the total production time of the 

machine. Additional data analysis was conducted in order to find the average percentage of time a 

delay was caused by a worker or machine for each of the production configurations (Figure 25). 

The results show that machine capacity is the bottleneck of the production system. However, as 

demand rate increases and as worker utilization also increases (Figure 23) the percentage of delays 

begin to shift towards the worker. This is seen in all four configurations. When considering adding 

an additional worker or increasing the number of machines this data shows that the only significant 

difference in the percentage of delays is a decrease in worker attributable delays with the addition 

of a second worker. 

 

Figure 25. Average Percent of Delays Attributed to Workers or Machines for Various AM Production Configurations 

Table 8 shows the total time in hours for these attributable worker or machine delays under each 

configuration at varying demand rates. Smaller demand rates show the capacity limitation of 1 
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machine configurations, as the attributable hours of machine related delays are significantly 

higher. Similarly, for the 2 operators and 2 machines configuration at all demand rates, worker 

attributed delays make up the majority of waiting times, though for a smaller cumulative amount. 

Table 8. Worker and Machine Attributable Hours Delayed for Various AM Production Configurations. 

 

Throughput is another output given as parts out from the model and is averaged with five 

replications. Figure 26 shows how these system performances affect the actual production 

(throughput) of the system. It was noted that the waiting time in queue began to resemble 

exponential growth following a demand of 5,000 parts per year under the one operator and one 

machine configuration, resulting in a decrease in throughput. The two operator and one machine 

setup also seem to slope off around a demand of 7,000 parts per year. Based on the option of 

improving throughput by adding an additional worker or increasing the number of machines, while 

both increase throughput at higher demands, the larger benefit in average throughput is 

demonstrated with an additional machine with only marginal benefits for an additional worker. 

Demand Rate Worker Machine Worker Machine Worker Machine Worker Machine

10 0.28 4.38 0.01 5.14 0.62 3.46 0.00 3.35

20 1.31 4.81 0.15 4.59 1.16 4.46 0.11 4.12

30 3.37 6.01 0.67 5.18 1.59 3.61 0.26 4.06

40 7.25 8.25 1.77 6.44 3.12 2.67 0.67 3.02

50 17.92 14.42 3.66 8.52 4.66 2.20 1.06 2.63

60 78.61 54.14 7.54 12.88 6.85 1.79 1.40 2.25

1O1M 2O1M 1O2M 2O2M
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Figure 26. Average Throughput for Various AM Production Configurations 

We also evaluate how four configurations ultimately affect the average cost per part, which is the 

important bottom line for any service provider. An operator’s salary is different than the cost of 

purchasing and maintaining a machine. In addition, the penalty cost associated with these delayed 

parts significantly affect the cost of production, especially under high penalty scenarios being 

modeled here.  

The AM costs represent the same values used in Experiment 1. The same penalty cost calculations 

are used as before for the 1x (low) and 10x (highest) penalty scenarios (Equation 7). The other 

costs are $100,000 per operator salary (1 or 2), $1,000,000 per purchased machine (1 or 2), $25,000 

per machine for maintenance (1 or 2), $0.2 per gram of material and $0.02 per kWh of energy used 

in production (Equation 8). 

Figure 27 shows the average cost per part for the four configurations under a 1x penalty. For the 

one operator and one machine setup, the lost throughput and increased penalty for late orders, 
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significantly increase average cost per part. In order to lower cost an additional worker can be 

added. Even with the added salary the two operator and one machine configuration provide a lower 

average cost for higher demand rates, when the original configuration is burdened. The two 

machine options only become cost beneficial at the highest demand rates, when the one machine 

configuration assumes larger penalties. In addition, the combination of two operators and two 

machines yields very little benefit in comparison to the 1 operator and 2 machines configuration. 

 

Figure 27. Average Cost Per Part for Various AM Production Configurations (1x Penalty) 

A similar effect is seen in Figure 28 when the penalty cost of delayed cost is set to be ten times the 

baseline penalty. In this case, the benefit of adding a second machine appears to have an equivalent 

effect for higher penalty levels as an additional operator and becomes the better option at the 

highest demand rates. This implies that the two machine configurations are cost effective for a 

larger range of expected demands and might be the best option when considering expanding 

production capacity in anticipation for higher demands and higher penalty for late delivery. 
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Figure 28. Average Cost Per Part for Various AM Production Configurations (10x Penalty) 

C. Experiment 3: 

For this experiment the goal was to evaluate three different prioritization strategies for orders 

waiting in queue: FCFS, earliest due date, and highest current penalty. Recall that in the 

experiment setting, emergency part orders arrive as a Poisson process and are assigned low 

demands and low allowed manufacturing times in order to mimic the demand and attributes 

associated with a part failure for the aerospace industry. All other demand takes on the 

characteristics of normally scheduled maintenance part orders, where the arrivals follow a 

normal distribution and part attributes range significantly in value, volume, and allowed 

manufacturing time. These emergency part orders are unique and of the most interest as their 

arrivals are highly disruptive to the manufacturing flow because they occur randomly, and 

because the system must provide them higher priority in order to meet their allowed 

manufacturing times. The cost per part for each of these prioritization strategies under our 

baseline production settings is shown in Figure 29. Average Cost Per Part for Various 
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Prioritization Strategies.. Reordering parts based on current highest penalty showed the largest 

reduction in cost (roughly $6 per part) compared to FCFS. Sorting by earliest due date also saw a 

large improvement (roughly $5 per part). The total improvement was nearly $1 million in 

savings. This outcome is expected. Penalty is the highest cost factor under these conditions and 

therefore it provides the largest cost savings to prioritize parts based on their expected penalty. 

 

Figure 29. Average Cost Per Part for Various Prioritization Strategies. 

Next was to determine if the other strategy of earliest due date would ever become preferred over 

the penalty prioritization strategy. This was analyzed by increasing the arrival rate of emergency 

part orders by decreasing interarrival time from exponential with a mean of 400 hours down to 

300 hours (1.5x) and finally 200 hours (2x), see Figure 30. As arrival rates increased for 

emergency orders, the average cost per part for the penalty strategy also increased linearly. In 

contrast, FCFS and earliest due date began to exhibit a concave curve. This indicates that 

although parts were entering the system at a faster rate than before these two strategies were able 

to accommodate them. This would make sense as emergency part orders are very small, always 
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falling in the range of low part demand (1-10 parts per order) and requiring the quickest 

manufacturing times (24-48 hours). If these parts are prioritized, they can be completed in time 

of their due dates and save on penalty costs. The penalty strategy on the other hand, prioritizes 

not just on due date but also factors in order size and part value. These factors do not prioritize 

the emergency orders with low part demands, but instead prioritize large orders with high value 

parts. 

The difference shows a dramatic increase (roughly $32 per part, or $5 million total) between the 

earliest due date and the penalty prioritization strategies. It also noted that FCFS performed well 

under these conditions. The slope of this curve indicates that parts are still arriving relatively 

infrequently (normal mean of 100 hours, exponential rate of 200 hours) and parts are already 

entering the queue in order by their allowed manufacturing time (earliest due date). Therefore, 

this strategy is also preferred over the penalty prioritization.  

If emergency order rates increase, there will be a point where the best strategy for order 

prioritization becomes sorting orders in queue by their earliest due date. 
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Figure 30. Average Cost Per Part versus Emergency Arrival Rates for Various Prioritization Strategies. 

If emergency orders are arriving at a higher rate, then to understand when penalty will once 

again become the preferred prioritization strategy, the part value of emergency parts was 

increased to the highest value ($1,000 per part), see Figure 31. This increase resembles the high 

penalty cost for aerospace spare parts for a part failure and the results provide a good argument 

for penalty prioritization. 

As the arrival rate of emergency parts increases FCFS and earliest due date slope downward 

once again, but this time the penalty strategy also curves. From Figure 31, when arrival rate of 

emergency orders increases to twice the baseline, a larger reduction in cost (roughly $20 per part, 

or $2 million total) occurs with the penalty strategy than those with the FCFS and earliest due 

date strategies. This indicates that the part value of emergency orders now outweighs the large 

size and values of regular orders and the penalty strategy is better able to prioritize emergency 

orders. 
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Figure 31.Average Cost Per Part versus Emergency Arrival Rates for Various Prioritization Strategies with High 

Emergency Part Penalty. 

These strategies indicate that for low demand orders with short lead times (emergency parts), 

prioritizing by earliest due date will reduce cost per part. However, in cases were the distribution 

gap of part value and/or demand widens prioritizing by highest expected penalty is preferred. 

VI. Conclusions 

The development of the simulation model and the results of three main experiments provide a 

better understanding on the operational characteristics of AM and its impacts on the overall 

logistics at the plant-level for high-impact spare parts such as aerospace parts. The model was able 

to capture the microscopic operational aspects of the AM production considering key AM 

operation resources (e.g. AM system, operator) and attributes (e.g. AM manufacturing speed, 

individual part characteristics and demands). They address the four objectives of this thesis. 
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Objective 1) The ability of analyzing tradeoffs between cost and customer responsiveness was 

successfully demonstrated. This includes an analysis of each cost factor and the relationship 

between cost and various service levels at three different penalty rates (1x, 2x, and 10x).  

Experiment 1 showed between these the two approaches to supplying spare parts, i.e., AM and 

warehousing, AM is especially favorable with higher penalty scenarios like those exhibited in the 

aerospace supply chain. AM penalty costs are less severe at lower service levels where parts are 

still manufactured quicker than they can be delivered in the warehousing solution. In addition, 

Experiment 1 demonstrated how decreased production rates significantly increased cost per part 

and decreased output for the AM approach. In order to achieve lower costs and compete with the 

warehousing solution, AM users will need to ensure their demand, like most production facilities, 

does not to exceed the capacity of production. 

Objective 2) AM-based production characteristics (e.g. waiting time in queues, worker and 

machine utilization, throughput rate, and cost per part) were captured under four different 

production configurations: 1 operator and 1 machine, 2 operators and 1 machine, 1 operator and 2 

machines, and 2 operators and 2 machines.  

Results indicated the model represented a queueing system as waiting times grew exponentially at 

increasing demand rates. In addition, Experiment 2 showed a large reduction in waiting times with 

an additional worker, but an even larger reduction with an additional machine. Furthermore, the 

doubling of workers and machines showed a synergetic effect by more than doubling the system’s 

capacity. 

For utilization, better (higher) worker utilization was obtained when an additional machine is used. 

This implies workers completed more orders under the 2 machines configuration, which is 
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reflected in the additional throughput for these scenarios. In contrast, machine utilization showed 

little difference between the four configurations. We attribute this to the batching strategy in place 

in the AM production model, which helps to reduce burden placed on this resource. 

Throughput was also highest in the two machine configurations and this is consistent with the 

results of the queueing times and conclusions on utilization. Workers were better utilized, and 

orders spent less time in queues leading to increased output. 

Cost per part under low (1x) and high (10x) penalty factors demonstrated the cost savings for the 

investment of an additional worker and/or machine when capacity is beyond the 1 operator and 1 

machine limits. In addition, under the higher penalty scenario the 2 operators and 2 machines 

configuration provided the largest range of cost benefit.  

For the AM spare part supply chain, these results demonstrate a benefit in applying a conservative 

approach to matching production with demand, by investing in personnel and machines, especially 

when dealing with a high penalty supply chain like the aerospace spare parts industry. 

Objective 3) Three prioritization strategies (e.g. FCFS, earliest due date, and highest penalty) were 

successfully simulated and a trade-off between each was created. The results showed earliest due 

date was optimal for cost reduction with an increasing rate of low demand orders that allow short 

lead times (emergency parts). However, prioritizing based on highest expected penalty was 

optimal for cases with a wide distribution gap between part value and/or demand. The latter being 

a good representation of the aerospace spare parts supply chain with high penalty for late 

emergency parts. Overall, the significance in prioritization strategies was demonstrated with total 

savings of millions for the operation. 
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VII. Future Research 

This research studies, on the microscopic level, operational characteristics of AM-based 

production at the plant-level for aerospace spare parts, so that the efficiency on cost and 

customer responsiveness for AM can be evaluated against the warehousing alternative. Key AM 

operation resources (e.g. machine, operator) were accounted for in the modeling of various 

configurations. A benchmark warehouse inventory model was also established separately based 

on classic inventory theories, which was subsequently utilized to create a cost/benefit analysis 

for the AM based part supply strategies versus the traditional warehousing strategy.  

Experiments demonstrated the cost versus service level trade-off between warehousing and AM 

solutions to the aerospace spare parts supply chain. The current thesis used a simplistic Monte 

Carlo simulation for modeling the costs of the warehouse solution. Future may develop a 

simulation model for warehousing operations so that inventory measures such as demand rate, 

lead time, stock level and service level can be analyzed in more detail. Also, of interest is the 

effect of various transportation and inventory policies in the aerospace spare parts supply chain. 

The characteristics of the AM production model under the four configurations of varying 

operators and machines demonstrated the waiting time, utilization, throughput, and cost trade-

offs between adding additional operators and/or machines. This could be expanded with the 

inclusion of stochastic order demands and order prioritization. 

Likewise, the conclusions on order prioritization strategies for varying stochastic order lists 

could also be expanded to evaluate other operational strategies such as postponement, machine 

selection, operator scheduling, among others. These strategies, or policies, are common in 
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production facilities, and will become increasingly important as AM-based on-demand 

production is adopted as an alternative to warehousing solutions.  
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Appendix I. Algorithms for Creating Stochastic Part Orders 

Algorithm 1: Creating Regular Spare Part Orders with Attributes 
START 

1) Create Regular spare part entities with interarrival time following N(μ,σ) hours, where 

“N”=Normal 

a) Generate Allowed Manufacturing Time attribute 

i) Route 5% of the entities to the Low range of Allowed Manufacturing Time 

(1) Assign the part an Allowed Manufacturing Time ~U(24,48) hours, where 

“U”=Uniform 

ii) Route 20% of the entities to the Medium range of Allowed Manufacturing Time 

(1) Assign the part an Allowed Manufacturing Time ~U(72,120) hours, where 

“U”=Uniform 

iii) Route 75% of the entities to the High range of Allowed Manufacturing Time 

(1) Assign the part an Allowed Manufacturing Time ~U(168,336) hours, where 

“U”=Uniform 

b) Generate Priority Level Attribute considering correlation with allowed manufacturing 

time 

FOR entities with an Allowed Manufacturing Time in the Low range 

(1) Assign 80% a Priority Level of 1 

(2) Assign 10% a Priority Level of 2 

(3) Assign 10% a Priority Level of 3 

END FOR 

FOR entities with an Allowed Manufacturing Time in the Medium range 

(1) Assign 10% a Priority Level of 1 

(2) Assign 80% a Priority Level of 2 

(3) Assign 10% a Priority Level of 3 

END FOR 

FOR entities with an Allowed Manufacturing Time in the High range 

(1) Assign 10% a Priority Level of 1 

(2) Assign 10% a Priority Level of 2 

(3) Assign 80% a Priority Level of 3 

END FOR 

c) Generate Volume attribute considering correlation with part volume 

i) Route 75% of the entities to the Low range of Volume 

(1) Assign the part a Volume ~U(1000,10000) mm3, where “U”=Uniform 

ii) Route 20% of the entities to the Medium range of Volume 

(1) Assign the part a Volume ~U(10001, 500000) mm3, where “U”=Uniform 

iii) Route 5% of the entities to the High range of Volume 

(1) Assign the part a Volume ~U(500001, 1000000) mm3, where “U”=Uniform 

d) Generate Value attribute 

FOR entities with a Volume in the Low range 

i) Route 80% of the entities to the Low range of Value 

(1) Assign the part a Value ~U(10,50) USD, where “U”=Uniform 

ii) Route 10% of the entities to the Medium range of Value 

(1) Assign the part a Value ~U(51,200) USD, where “U”=Uniform 

iii) Route 10% of the entities to the High range of Volume 
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(1) Assign the part a Value ~U(201,1000) USD, where “U”=Uniform 

END FOR 

FOR entities with a Volume in the Medium range 

i) Route 10% of the entities to the Low range of Value 

(1) Assign the part a Value ~U(10,50) USD, where “U”=Uniform 

ii) Route 80% of the entities to the Medium range of Value 

(1) Assign the part a Value ~U(51,200) USD, where “U”=Uniform 

iii) Route 10% of the entities to the High range of Volume 

(1) Assign the part a Value ~U(201,1000) USD, where “U”=Uniform 

END FOR 

FOR entities with a Volume in the High range 

i) Route 10% of the entities to the Low range of Value 

(1) Assign the part a Value ~U(10,50) USD, where “U”=Uniform 

ii) Route 10% of the entities to the Medium range of Value 

(1) Assign the part a Value ~U(51,200) USD, where “U”=Uniform 

iii) Route 80% of the entities to the High range of Volume 

(1) Assign the part a Value ~U(201,1000) USD, where “U”=Uniform 

END FOR 

e) Generate Demand attribute 

i) Route 5% of entities to the Low range of Demand 

(1) Assign the part a Demand ~U(1,10) parts, “U”=Uniform 

ii) Route 20% of the entities to the Medium range of Demand 

(1) Assign the part a Demand ~U(11,30) parts, where “U”=Uniform 

iii) Route 75% of the entities to the High range of Demand 

(1) Assign the part a Demand ~U(31,50) parts, where “U”=Uniform 

END 

 

Algorithm 2: Creating Emergency Spare Part Orders with Attributes 
START 

1) Randomly generate Emergency spare part entities with interarrival time following E(λ) 

hours, where “E”=Exponential 

a) Assign Priority Level attribute value of 0 

b) Assign the part an Allowed Manufacturing Time ~U(24,48) hours, where 

“U”=Uniform 

c) Generate Volume attribute 

i) Route 75% of the entities to the Low range of Volume 

(1) Assign the part a Volume ~U(1000,10000) mm3, where “U”=Uniform 

ii) Route 20% of the entities to the Medium range of Volume 

(1) Assign the part a Volume ~U(10001,500000) mm3, where “U”=Uniform 

iii) Route 5% of the entities to the High range of Volume 

(1) Assign the part a Volume ~U(500001,1000000) mm3, where “U”=Uniform 

d) Generate Value attribute considering correlation with part volume 

FOR entities with a Volume in the Low range 

i) Route 80% of the entities to the Low range of Value 

(1) Assign the part a Value ~U(10,50) USD, where “U”=Uniform 
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ii) Route 10% of the entities to the Medium range of Value 

(1) Assign the part a Value ~U(51,200) USD, where “U”=Uniform 

iii) Route 10% of the entities to the High range of Volume 

(1) Assign the part a Value ~U(201,1000) USD, where “U”=Uniform 

END FOR 

FOR entities with a Volume in the Medium range 

i) Route 10% of the entities to the Low range of Value 

(1) Assign the part a Value ~U(10,50) USD, where “U”=Uniform 

ii) Route 80% of the entities to the Medium range of Value 

(1) Assign the part a Value ~U(51,200) USD, where “U”=Uniform 

iii) Route 10% of the entities to the High range of Volume 

(1) Assign the part a Value ~U(201,1000) USD, where “U”=Uniform 

END FOR 

FOR entities with a Volume in the High range 

i) Route 10% of the entities to the Low range of Value 

(1) Assign the part a Value ~U(10,50) USD, where “U”=Uniform 

ii) Route 10% of the entities to the Medium range of Value 

(1) Assign the part a Value ~U(51,200) USD, where “U”=Uniform 

iii) Route 80% of the entities to the High range of Volume 

(1) Assign the part a Value ~U(201,1000) USD, where “U”=Uniform 

END FOR 

e) Assign the part a Demand ~U(1,10) parts, where “U”=Uniform 

END 
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Appendix II. Simio Order Generation Model 

The Simio model for generating spare part orders, shown in Figure 32 below, links two source 

nodes to a network of servers that assign attributes to the order, before the order is finally destroyed 

at the sink node. It’s at the final sink node that part order data is captured in an output table. 

 
Figure 32. Simio model for generating spare part orders. 

Arrivals 

The two source nodes; “RegPart” and “EmergencyPart”, are associated with the type of part 

(regular or emergency) being created. Since, these part order types follow a different arrival rate, 

they are separated. The random function is used for both source nodes to generate the arrival time 

of these parts. An example source node for a regular spare part order with interarrival times that 

follows a Normal distribution with a mean (μ) of 75 hours and a standard deviation (σ) of 5 hrs, is 

shown in Figure 33. The math function, maximum, is used to ensure any randomly generated value 

less than zero will not be assigned, as this is possible with normal distributions with a range of (-

∞, ∞), and would result in an error in the model. Likewise, Figure 34, shows an example 

emergency part source node that follows a Poisson distribution with a mean (λ) of 75 hours. The 

Poisson distribution is always positive, so there is no need to include the maximum function. 
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Figure 33. An example regular part source node. 

 
Figure 34. An example emergency part source node. 

Attribute Level Proportioning 

Once a part is created the entity, will follow a connector (shown by the red lines with blue arrows) 

to a server node. This is where the proportions of total entity flow are introduced. Figure 35, shows 

how an example of a connector from the low level allowed manufacturing time server to a high 

priority level server. Following the two algorithms defined above, these attributes share a 

correlation, where 80% of total entities assigned a low allowed manufacturing time should be given 

a high priority level. This 80% proportion is specified in the routing logic, under selection weight. 

 
Figure 35. An example of the routing logic between two attribute servers. 

The model uses these connections to route entities based on the proportions and correlations 

specified in Algorithms 1 and 2 and shown in Tables 1-5.  
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Assigning Attribute Value  

When an entity is being processed by a server, it will trigger an add-on process that will then be 

assign an attribute value for that entity based on a given distribution. An example of the server 

add-on process associated with the high level allowed manufacturing time is shown in Figure 36 

below. All these add-on processes assign a value using the random function and a uniform 

distribution with the lower and upper limits, as outlined in Algorithms 1 and 2, and shown in 

Tables 1-5. 

 
Figure 36. An example of a server with the assign attribute add-on process. 

Output 

Once the entity (part order) has passed through the network, it is finally sent to the sink node. 

When the entity enters this node, it triggers the final add-on process that adds a row to an output 

table and displays the entity’s attributes. Figure 37, shows the add-on process for this step, and 

Figure 38 shows the output table that is generated after simulating the model. 

 
Figure 37. The add-on process for collecting final outputs. 
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Figure 38. An example output table showing part orders and their attributes. 

For each simulation 1000-part orders are created of both regular and emergency parts and exported 

from the output table to a .csv file to be used in the AM Supply Chain model. 
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Appendix III. ARENA AM Production Model 

Order Creation 

For this model it was decided to use ARENA’s random variable expressions to create entities 

following our desired distributions, typically normal r.v. for regular parts and Poisson r.v. for 

emergency parts. This entity generation is done through a create step, shown in Figure 39. 

 

Figure 39. An example create step for regular part orders. 

Since part attributes are pre-generated via a Simio file, this ARENA model simply pulls attribute 

data from the input file (.csv). This input file is the same output from the part order generation 

model, the only difference is that regular and emergency parts are separated into two files first. 

Figure 40 below, shows the linkage to the two Simio input file paths.  

 

Figure 40. Read In file links. 

A Read Write step then provide the link of a specific part order’s attribute to a newly created entity. 

The assigning of these attributes can be seen in Figure 41 below.  
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Figure 41. An example Read Write step. 

Reception 

After a part order (entity) has been created it will arrive at reception. The processing time for 

receiving part orders follows a triangular distribution with a range of 0.05 to 0.15 hours and a mode 

of 0.1 hours. Before processing, a worker is requested. If no operator is available at the time of the 

request the order must wait to be processed. The reception server is shown in Figure 42 below. 

The reception time is recorded for further calculation of operator cost. The next module “Route 

To AM” sends the order to the next step of order distribution. 

 

Figure 42. Reception process. 
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Queueing 

Next the entity is routed to the preparation station. This model exhibits the characteristics of a 

queueing system. Due to the variability of arrivals and service times, a queue is inevitable. At the 

AM routing station, entities will go through logic steps to decide if they must be queued. Figure 

43 below shows the decision steps (diamonds). 

 

Figure 43. AM preparation station routing logic. 

Prioritization Strategy 

If the machine is busy, then entities are given new priority levels and placed in a queue. Figure 44 

shows how the priority attribute is changed for orders entering the queue. This is a crucial step in 

the model, allowing the system to make decisions on how to prioritize parts that will reduce late 

orders. 

 

Figure 44. An example assign priority step. 



78 

 

Batching / Order Separation 

Once the machine is idle again, part orders will go through another series of decisions to fill the 

printer. These steps ensure enough space for the orders entering the printer. First, the model will 

check to see if the building volume left is enough to accommodate the whole order (Figure 45). If 

the building volume left inside the AM machine has enough to fulfill an entire order, the building 

volume left inside the AM machine is adjusted by subtracting the product of volume and demand 

for the order. If the printer’s capacity is reached the model will instead attempt to split the order. 

This smaller order will be routed to the printer, while the remaining parts reenter the queue and 

wait to be prioritized for the next batch. These steps are shown in more detail in Figure 46 below. 

 

Figure 45. An example building volume left decision step. 
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Figure 46. Batching and order separation steps. 

 

AM Setup, Calibration, and Preheating 

The next phase in the AM process involves waiting to activate the AM Machine, running 

calibration and setting up parameters, and preheating the machine. At this point, all orders are 

combined in order to calculate the value of the order, and the order setup time (Figure 47). The 

module “Hold To Activate AM Machine Setup”, shown in Figure 48, ensures not only the 

parameters setup and preheating steps are not currently running before sending out a new order for 

processing but also the queue here is sorted by production priority attribute for each order (lowest 

production priority attribute value first).  

The AM machine calibration and parameters setup is performed by the same operator as in 

previous reception process. The setup time is recorded for further calculation of operator cost. 

“AM Machine Preheating” is time (hrs) in which it takes to preheat the machine in order to run the 

AM process. Prior experience has found that a machine has volume 8,000,000 mm3 will take 

approximately one hour to finish preheating. To ensure this ratio is kept depending on the size of 

the machine, the preheating time is expressed as  
1

8,000,000 𝑚𝑚3
∗ 𝐴𝑀 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑉𝑜𝑙𝑢𝑚𝑒. The 
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baseline AM Machine volume is 9,000,000 mm3, which would result in a preheating time of 1.125 

hrs for a full build. In this study, we define the total order setup time as the summation of each 

order setup time and each order setup time is proportional to the demand for each order and a 

triangular expression which takes the order setup time anywhere from 0.008 to 0.024 hrs, with a 

mode time of 0.016 hrs. After the machine has finished preheating, the actual manufacturing 

process can begin. These steps are shown in Figure 49 below. 

 

Figure 47. Assign order value and setup step. 

 

Figure 48. Hold to activate AM machine setup step. 
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Figure 49. Order setup, calibration, and preheating steps. 

 

Printing and Cool Down 

The time it takes to complete the manufacturing process is calculated as the volume of the machine 

that is filled by the orders divided by the building speed (Figure 50). The less building volume left 

for AM machine, the longer it will take to finish the manufacturing process. If the machine is at 

full capacity, the manufacturing process will be significantly longer. After the AM machine has 

finished its process, a Hold module is added in order to mimic the batch processing of AM machine 

and a cool down period occurs before the machine is ready for more orders. The time of cool down 

process follows a normal distribution with a mean of 5 hrs and a standard deviation of 1 hr (Figure 

51). 
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Figure 50. AM Printing step. 

 

Figure 51. AM cool down step. 



83 

 

Post-Processing 

Once the machine has finished cooling down, it is marked as idle. The operator then performs a 

post-processing quality check on the batch of parts. The post processing process follows a 

triangular distribution where the minimum time is 0.08 hrs and maximum time is 1.2 hrs with a 

mode time of 0.5 hrs (Figure 52). Once the post-processing is complete, more orders can be sent 

to the AM machine for processing and results can be calculated per batch produced. Figure 53 

shows the process of AM manufacturing and post-processing. 

 

Figure 52. Post-processing step. 

 

Figure 53. AM printing, cool down, and post-process routing logic. 
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Output 

If the manufacturing time is less than the time it took to fulfill the order from order creation, there 

will be a late delivery. This results in a penalty for the order (Figure 54). If a portion of order is 

not delivered on time, the penalty will be applied to only this portion of order but not the entire 

order. The penalty for late delivery is by user. In this study, we set the value of penalty proportional 

to the order demand, part value and duration in the AM process. The greater the part value in order, 

the higher the demand of order and the longer duration the order exists in the AM process, the 

higher the penalty for the late delivery. Similar as production priority, the formula for calculating 

the penalty needs additional studies to determine the validity of such treatment in real-world.  

The “Consumption And Cost Update” module calculates several results such as total penalty, total 

operator cost, total maintenance cost, machine depreciation and total AM cost, etc. After the 

calculations are complete, the order is sent out for delivery and exits the system. The constant 

values and expression for attributes and variables in this study can be found in next part. 

 

Figure 54. Assign penalty step. 

 

 

 



85 

 

Appendix IV. Excel Warehouse Model 

The Excel Warehouse Model, shown in Figure 55, defines 100 SKUs, where 80% are manually 

classified as regular parts and 20% are categorized as emergency parts. Additionally, part value, 

inventory holding cost, penalty rate, predicted demand, and the standard deviation of that demand 

are all initially set, as well as the lookup table of the distribution of penalty days and . The service 

level is set through a Scenario Manager to test the resulting costs of various service levels. All 

other sells are calculated as follows. 

 

Figure 55. Excel Warehouse Model example trial. 

Inventory 

The demand distribution for regular part SKUs follows a normal distribution with a mean (μ) of 

100 parts/yr and a standard deviation (σ) of 20 parts. To create a function in Excel for calculating 

normal inventory based on the indicated service levels, the following function is used 

“=NORM.INV(probability, mean, standard deviation)”, where probability is the desired service 

level, mean is predicted demand, and the standard deviation of that demand.  

 Emergency part SKUs follow a Poisson distribution with a rate (λ) of 100 parts/yr. Excel, 

however, does not contain an inverse Poisson function, so a macro was created to achieve this 

purpose. Credit for the code created by MrExcel MVP who posted the original code on the site, 

https://www.mrexcel.com/board/threads/reverse-poisson.507508/ on April 15, 2015, see below. 

' shg 2011, 2012, 2014, 2015-0415 

https://www.mrexcel.com/board/threads/reverse-poisson.507508/
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' For a Poisson process with mean Mean, returns a three-element array: 

'   o The smallest integer N such that POISSON(N, Mean, True) >= Prob 

'   o The CDF for N-1 (which is < Prob) 

'   o The CDF for N (which is >= Prob) 

 

' E.g., POISSON(5, 10, TRUE) returns 0.067085962 

' PoissonInv(0.067085962, 10) returns 5 

 

' Returns a descriptive error if Prob <= 0 or Prob >= 1 

' If Mean >= 100, then uses a normal approximation 

 

Dim N             As Long     ' number of events 

Dim CDF           As Double   ' cumulative distribution function at N 

Dim CDFOld        As Double   ' CDF at N-1 

 

' These two variables are used to simplify the probability mass 

' function summation CDF = CDF + Exp(-Mean) * Mean ^ N / N! 

 

Dim dExpMean      As Double   ' =Exp(-Mean) 

Dim dK            As Double   ' incremental power & factorial 

 

If Prob <= 0 Or Prob >= 1 Then 

PoissonInv = "Prob ]0,1[" 

 

ElseIf Mean < 100 Then 

dExpMean = Exp(-Mean) 

dK = 1# 

CDF = dExpMean 

 

Do While CDF < Prob - 0.000000000000001 

CDFOld = CDF 

N = N + 1 
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dK = dK * Mean / N 

CDF = CDF + dExpMean * dK 

Loop 

 

PoissonInv = Array(N, CDFOld, CDF) 

 

Else 

' Plan B, for large means; approximate the Poisson as a normal distribution 

' http://en.wikipedia.org/wiki/Continuity_correction#Poisson 

Dim iInv        As Long 

 

With WorksheetFunction 

iInv = .Ceiling(.Norm_Inv(Prob, Mean, Sqr(Mean)) - 0.5, 1) 

PoissonInv = Array(iInv, _ 

.Norm_Dist(iInv - 0.5, Mean, Sqr(Mean), True), _ 

.Norm_Dist(iInv + 0.5, Mean, Sqr(Mean), True)) 

End With 

End If 

End Function 

The result is the function “=PoissonInv(probability, mean)”, where the probability is the desired 

service level, and mean is predicted demand. This value is used to calculate the inventory levels 

for emergency parts. 

Stockouts 

In order to provide actual demands, a random number generator following the same distributions 

described for regular and emergency SKUs is used. For normal the following function is used, 

“=NORM.INV(RAND(), mean, standard deviation)”, where this time the rand function is used to 

produce a random value for probability between 0 and 1. Likewise the Poisson function using the 

macro above is, “=PoissonInv(RAND(), mean)” with the same rand function used for probability. 
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Now the model can calculate stockouts, or the difference between the actual demand and SS if the 

demand is greater than inventory (See Error! Reference source not found.). For calculating days 

late based on the distribution provided a random value (r.v.) between 0 and 1 is used to refer to the 

days associated with that probability in “Penalty Days” lookup table. This is done using the 

following function, “VLOOKUP(lookup_table, table_array, col_index_num, TRUE)”, where the 

lookup_table is the “Penalty Days” table, the table array is the r.v., the col index num is the days 

column, and the TRUE range lookup is specified to find approximate matches. 

Cost Calculations 

Using the previously calculated stockout days, a penalty cost is assessed by multiplying days late 

and the penalty rate (Error! Reference source not found.). For purchasing costs the calculated 

SS for each SKU is multiplied by part value (Error! Reference source not found.). Inventory 

holding is calculated by taking SS and multiplying by the inventory holding (Error! Reference 

source not found.). Finally, a total cost for the scenario is calculated by summing up all these 

costs (Error! Reference source not found.). 

Replications 

Now the spreadsheet can be replicated in a Monte Carlo Simulation. This model takes the 

average costs of 100 replications to determine the outputs of various service levels under the 

penalty settings (Figure 56). 

 

Figure 56. Replication list for the Monte Carlo Simulation. 
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Scenarios 

Finally, to test the results of multiple scenarios of service level Excel’s Scenario Manager is 

used, where the service level cell is changed and the results of the 100 replications is provided in 

a report. Figure 57 shows the dialog box used to enter scenarios and an example summary report 

is shown in Figure 58. 

 

Figure 57. Excel Scenario Manager dialog box. 

 

Figure 58. Excel Scenario Summary example. 
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