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Flt3L Dependence Helps Define an Uncharacterized
Subset of Murine Cutaneous Dendritic Cells
Shamim A. Mollah1,6, Joseph S. Dobrin2,3,6, Rachel E. Feder2,3, Sze-Wah Tse4, Ines G. Matos2,3,
Cheolho Cheong4, Ralph M. Steinman2,3,{ and Niroshana Anandasabapathy2,3,5

Skin-derived dendritic cells (DCs) are potent antigen-presenting cells with critical roles in both adaptive
immunity and tolerance to self. Skin DCs carry antigens and constitutively migrate to the skin-draining lymph
nodes (LNs). In mice, Langerin–CD11b� dermal DCs are a low-frequency, heterogeneous, migratory DC subset
that traffics to LNs (Langerin–CD11b� migDCs). Here, we build on the observation that Langerin–CD11b�
migDCs are Fms-like tyrosine kinase 3 ligand (Flt3L) dependent and strongly Flt3L responsive, which may relate
them to classical DCs. Examination of DC capture of FITC from painted skin, DC isolation from skin explant
culture, and from the skin of CCR7 knockout mice, which accumulate migDCs, demonstrate these cells are
cutaneous residents. Langerin–CD11b� Flt3L-responsive DCs are largely CD24(þ ) and CX3CR1low and can be
depleted from Zbtb46-DTR mice, suggesting classical DC lineage. Langerin–CD11b� migDCs present antigen
with equal efficiency to other DC subsets ex vivo, including classical CD8a cDCs and LangerinþCD103þ dermal
DCs. Finally, transcriptome analysis suggests a close relationship with other skin DCs, and a lineage relationship
with other classical DCs. This work demonstrates that Langerin– CD11b� dermal DCs, a previously overlooked
cell subset, may be an important contributor to the cutaneous immune environment.

Journal of Investigative Dermatology (2014) 134, 1265–1275; doi:10.1038/jid.2013.515; published online 16 January 2014

INTRODUCTION
As the primary barrier between the body and the outside
world, the skin is a unique immune organ. The importance of
cutaneous immunity is demonstrated in several ways. First,
successful vaccination strategies rely on delivery of vaccine
antigens to the skin, including vaccinia (Liu et al., 2010) and
dermally delivered influenza (Kenney et al., 2004). Second,
innate immune adjuvants that act on the cutaneous immune
network (imiquimod, resiquimod) can lead to the regression of
lentigo maligna and superficial spreading of basal cell
carcinomas (Schon and Schon, 2008). Third, steady-state

immune surveillance is critical to prevent skin cancers, as
evidenced by the markedly increased incidence of neoplasia
observed in renal transplant recipients maintained on
immunosuppressive agents (Clark, 2010). Despite the
immune-responsive nature of skin cancers and potential for
skin-resident immune cells to mediate adaptive responses to
cancer and infection, therapies have not been generated
to prevent skin cancer formation. Improved understanding
of adaptive immunity in the cutaneous environment is
needed.

Adaptive cutaneous immunity depends on dendritic cells
(DCs) that abundantly populate the skin and skin-draining
lymph nodes (LNs). DCs are low-frequency hematopoietic
cells, specialized at antigen presentation. DCs educate T cells
to respond to tumor and microbial antigens, control the
developing immune response, and maintain long-term
immune memory to tumors and infections. In the noninflamed
state, human skin contains four known phenotypically distinct
subsets of DCs (Haniffa et al., 2012; Teunissen et al., 2012),
whereas murine skin contains five (Henri et al., 2010). These
DCs continuously migrate from skin to the draining LNs and
are collectively termed migratory dendritic cells (migDCs).
Given such phenotypic heterogeneity amongst skin DCs,
increasing efforts are aimed at identifying their functional
and developmental attributes and correlating these with well-
described DC subsets in other tissues.

Classical DCs are lymphoid and non-lymphoid DCs that
derive from pre-DCs originating from a common bone marrow
precursor (common DC precursor). The term classical is used
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to distinguish these populations from plasmacytoid DCs
(PDCs) (Merad et al., 2013) and monocyte-derived DCs,
which develop in the setting of inflammation. Classical DCs
broadly may be divided into CD11bþ and CD11b�
populations. Classical DCs that are LN- and spleen-resident
and are CD11b� also express CD8a and CD205 (termed
CD8aþ cDC), whereas CD11bþ LN- and spleen-resident
DCs lack expression of CD8a- (termed CD11bþ cDC). In
peripheral tissue such as skin, CD11b� and CD11bþ may
be additionally divided on the basis of other markers such as
CD103 and Langerin.

In draining LNs, cell-surface expression of CD11c and MHCII
is used to separate the three major DC groups: plasmacytoid
DCs, LN-resident classical DCs (cDCs), and migDCs. MigDCs
include some DCs of classical lineage that are CD11b� and
CD11bþ , such as LangerinþCD103þCD11b� DCs and
Langerin–CD11bþ DCs, respectively (Ginhoux et al., 2009).
MigDCs also include Langerhans cells (LCs) of the epidermis,
whose origin is distinct and which are not seeded from pre-
DCs, but derive instead from radio-resistant precursors (Helft
et al., 2010). Although an additional migratory population of
CD11b� cells was previously identified in skin (Langerin–
CD11b� ) (Henri et al., 2010), these cells have been largely
overlooked and incompletely characterized because they exist
in low abundance in other peripheral tissue such as the lung
and mucosa, although they comprise a significant fraction of
DCs from the skin.

Some DCs are functionally specialized at cross-presenta-
tion, the major pathway to present viral and tumor antigens.
These DCs have unique properties that make them attractive
cellular targets for vaccination (Poulin et al., 2010). When
mature, they are superior to cross-present exogenous antigens
on MHC I, ingest dead or dying cells, and produce IL-12 in
response to innate and T cell–derived cues (Yamazaki et al.,
2008; Shortman and Heath, 2010). In skin, Langerinþ
CD103þ DCs cross-present antigens, and CD8aþCD11b�
DCs, which also express the C-type lectin CD205 (CD8a DC),
cross-present antigens in lymphoid organs. In skin and other
epithelial tissue, CD103þ DCs cross-present antigens from
cytolytic viruses and epithelial pathogens (Bedoui et al., 2009)
including influenza (Helft et al., 2012), herpes virus (Bedoui
et al., 2009), and erosive candida (Igyarto et al., 2011). Several
lines of evidence suggest that other skin DCs beyond Langerinþ
CD103þ DCs may have an important role in priming to
vaccines and pathogens. Langerinþ CD103þ DCs are not
required in dermal vaccine administration (Flacher et al.,
2012). Furthermore, residual antigen presentation capacity to
cutaneous pathogens including erosive candida (Igyarto et al.,
2011) and vaccinia (Seneschal et al., 2013) is observed in the
absence of LangerinþCD103þ DCs. These data suggest that
another DC subset may cross-present antigens locally in the
skin and skin-draining LNs.

Flt3L, a DC hematopoietin, and its receptor (Flt3, FLK2)
regulate classical DC homeostasis of both DCs in lymphoid
organs and DCs at, or arriving from, peripheral tissue
(CD103þ DC in skin and lungs) (Waskow et al., 2008;
Liu et al., 2009). Migratory Langerinþ CD103þ DCs, CD8a
lymphoid resident cDCs, and human BDCA3þ cross-

presenting DCs share developmental dependence on Flt3L
(Ginhoux et al., 2009; Haniffa et al., 2012). Flt3L treatment
biases cDC development to cross-presenting DCs (Bozzacco
et al., 2010). Flt3L expansion of DCs has helped identify
very infrequent but functionally important DCs at epithelial
sites such as blood–brain barrier (Anandasabapathy et al.,
2011) and aortic intima (Choi et al., 2011). However, Flt3L
dependence has not been used to characterize infrequent DCs
in the skin or migDCs in the skin-draining LNs.

Here we analyze the cutaneous residence, migratory prop-
erties, developmental dependence, transcriptome, and func-
tional properties of a cutaneous Langerin–CD11b� migratory
DC subset (abbreviated Langerin– CD11b� migDC). Our
data suggest that this subset is heterogeneous but contains
highly Flt3L-responsive DCs with potent antigen-presentation
capacity. We demonstrate that Langerin–CD11b� migDCs
share many features with other classical Flt3L-dependent DCs.

RESULTS
Langerin–CD11b� migDCs are Flt3L dependent

We examined the expansion of migDC in the skin-draining
LNs of mice in the presence and absence of in vivo Flt3L
treatment. MigDCs can be gated as CD11cint and IAIE
(MHCII)hi and further divide into Langerinþ known DC
subsets including Langerinþ CD103þ DCs and Langerinþ
CD103� DCs (which include Langerhans cells). Langerin–
migDC subsets include Langerin–CD11bþ DCs and
Langerin–CD11b� DCs (Henri et al., 2010). (Figure 1a, and
gating in Supplementary Figure S1A online). In C57BL/6 mice
(Figure 1a) and Langerin GFP mice (Figure 1b) treated with
Flt3L, we observed a major expansion of LN migDCs within
the Langerin– compartment, comprising both CD11bþ and
CD11b� cells. This was intriguing because our lab and others
have shown a parallel expansion of CD11b� (CD8aþ ) and
CD11bþ (CD8a-) cDCs in lymphoid tissue after Flt3L treat-
ment (Bozzacco et al., 2010). LN DC subset numbers were
quantified from Flt3L-treated, untreated, and knockout mice
(Figure 1c). Langerin–CD11bþ and Langerin–CD11b� sub-
sets were expanded most significantly by Flt3L treatment. Flt3L
loss affected LangerinþCD103þ DCs, and Langerin–
CD11bþ and Langerin–CD11b� subsets.

CD11b� migDCs are skin-resident and traffic to the skin-
draining LNs

To ascertain whether Langerin–CD11b� cells migrated to the
LNs from skin, or were a contaminant from LN-resident
populations such as CD8a cDCs, we examined skin explants
in which DCs are directly isolated from the skin. CD11b�
cells were present and expanded with Flt3L in ‘‘crawlout’’ DC
isolation from skin (gating, Supplementary Figure S1B online).
We established this in several models: Flt3L doxycycline-
inducible mice (Manfra et al., 2003) (Figure 1d), recombinant
Flt3L-treated Langerin GFP mice (Figure 1e, Supplementary
Figure S1B online), recombinant Flt3L-treated C57Bl/6 mice
(Supplementary Figure S1C online), and Flt3L-secreting B16
tumor–treated mice (Supplementary Figure S1D online). In
cDCs, Flt3L creates bias to CD8a CD205þ cross-presenting
cDCs. Analysis of CD205þ expression on migDC explants
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revealed that Langerin–CD11b� DCs contained both
CD205high and CD205low cells in the steady state. However,
a higher percentage of CD11b� cells are CD205high after
treatment with Flt3L (Figure 1f).

Skin migDCs depend on CCR7 for migration to LNs (Forster
et al., 1999). To further validate that Langerin–CD11b� cells
in LNs have migrated from the skin, we examined CCR7� /�
mice treated with Flt3L versus untreated controls. Irrespective
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Figure 1. Flt3L dependence of migratory dendritic cell (DC) subsets, including Langerin–CD11b� DCs. (a) Schema of lymph node (LN) DCs from Flt3L-tumor-

treated versus C57Bl/6 (B6) control mice at day 13. PDCs (plasmacytoid DCs), cDCs (classical LN resident DCs), and migDCs (migratory DCs) are labeled.

(b) LN DC subsets Flt3L-treated (upper) versus untreated Langerin–GFP mice. (c) Quantification of migratory DCs from Flt3L-treated, control, Flt3L� /� mice

(quantified per skin-draining LN; error bars show mean ±SD of three individual mice per group, analyzed by an unpaired t-test). (d) Flt3L-induced expansion of

skin-resident DC subsets from ‘‘crawlout’’ skin explants of doxycycline-inducible Flt3L mice given 8 days of doxycycline in their drinking water (top) versus

untreated controls (bottom) (one representative experiment of two). (e) Quantification of DCs isolated from skin explant ‘‘crawlouts’’ of Flt3L-treated versus control

Langerin GFP reporter mice (pooled from the ears of three mice per experiment, one representative experiment of three). (f) aCD205þ staining of skin DC subsets

from explant cultures of doxycycline-treated (Flt3Lþ ) versus untreated (control) mice (pooled from n¼ 2 mice per condition).

SA Mollah et al.
Murine Flt3L Dependent Langerin�CD11b� Cutaneous DCs

www.jidonline.org 1267

http://www.jidonline.org


of Flt3L treatment, LNs from CCR7 knockout mice lack cells
within the CD11cintIAIEhi DC migratory gate (Figure 2a, upper
panel). MigDC subsets including CD11b� cells preferentially
accumulated in skin explants and expanded with Flt3L locally

in the skin (Figure 2a, lower panel). When FITC is applied with
a contact-sensitizing agent to the epidermis of mice, migDCs
rapidly transport FITC from skin to skin-draining LNs. FITC
label was present only in the IAIEhi migratory cells (Figure 2b).
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Examination of FITCþmigDCs versus all migDCs demon-
strated an enhanced representation of FITCþ Langerin–
CD11b� cells during inflammation and FITC painting. Several
populations of DCs transported FITC to the skin-draining LNs,
yet a greater fraction of Langerin–CD11b� and Langerin–
CD11bþDC subsets were present that labeled with FITC
when compared with all migDCs after FITC painting
(Figure 2b). These data suggest that Langerin–CD11b�DCs,
similar to other migDCs, can transport FITC from the skin to
the skin-draining LNs. To visualize Langerin–CD11b�DCs
directly in skin, immunofluorescence staining was performed
in Flt3L-treated and untreated mice. LCs were marked in
the epidermis (LangerinþCD11bþCD11cþ ). Contained
within dermal CD11cþ cells, we observed Langerin–
CD11bþ , Langerin–CD11b� , and LangerinþCD11b�DCs
(Figure 2c).

Langerin–CD11b�migDCs are heterogenous but contain a
Flt3L-responsive CD24hi CX3CR1low DC population

Given that CD205high- and CD205low-expressing cells were
present in the steady state within Langerin– CD11b�
migDCs, yet enhanced numbers of CD205high expressing cells

were noted after Flt3L treatment, we speculated that the
Langerin–CD11b� subset might be heterogeneous in the
steady state. To address this, we examined CD24 expression,
an additional marker for CD8a cDCs, on migDCs before and
after Flt3L treatment. We observed that Flt3L treatment
expands the percentage of Langerin–CD11b� cells expres-
sing CD24 in the LNs from B40% to B80%, with a more
modest and variable percentage expansion in skin (Figure 3a,
Supplementary Figure S1C-D online). We also noted that in
skin and LNs, an increase in the absolute number of Langerin–
CD11b�CD24þ cells occurred after Flt3L and a correspond-
ingly higher ratio of Langerin–CD11b�CD24þ cells in Flt3L
treated versus control mice (quantification, Supplementary
Figure S2 online). An increased percentage of CD24þ cells
after Flt3L was also observed on CD8aþ cross-presenting
cDCs in LNs. Langerinþ DC subsets have high CD24
expression, and CD11bþ DCs have lower CD24þ levels
at baseline. In CD11bþ migDCs, CD24þ percentage was
not markedly altered after Flt3L treatment in LNs and skin
(Figure 3a and Supplementary Figure S1C-D online). These
data suggest that Flt3L expands CD24þ Langerin–CD11b�
cells. In contrast, during FITC painting in the presence of a
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proinflammatory contact-sensitizing agent, we observe that
the expanded CD11b� population is predominantly CD24low

(Supplementary Figure S1E online).
To further investigate Langerin–CD11b� heterogeneity, we

examined the expression of CX3CR1 using CX3CR1-GFP
reporter mice (Jung et al., 2000). The chemokine receptor
CX3CR1 (fractaline) is abundantly expressed on CD11bþ LN-
resident cDCs and largely absent from the majority of CD8a
LN-resident cDCs, which helps distinguish these two subsets
(Figure 3b). The small fraction of CD8aþ DCs that express
CX3CR1 lack cDC capacity for IL-12 secretion, cross-presenta-
tion of antigen, and resemble CD8a cDCs (Bar-On et al.,
2010). After Flt3L treatment, CD8aþ CD24hi CX3CR1low cDCs
(red, upper) remain well distinguished from CD11bþ CD24low

CX3CR1hi cDCs (blue, upper) (Figure 3b). In the steady state,
Langerin–CD11b� cells are B50% CD24high CX3CR1low as
compared with Langerin–CD11bþ migDCs, which were pre-
dominantly CD24lowCX3CR1hi in the steady state (lower, left).
After Flt3L, 70% of Langerin–CD11b� migDCs became
CD24hi CX3CR1low, suggesting that Flt3L expands this popula-
tion selectively (lower, right). Collectively, these data suggest
that in the steady state Langerin–CD11b� cells are hetero-
geneous but Flt3L selectively expands a CD24hi CX3CR1low

subset, distinct from CD11bþ CD24low CX3CR1hi migDCs.

Langerin–CD11b� migDCs, similar to other cDCs, depend on
the transcription factor Zbtb46

To further characterize Langerin–CD11b� cells, we took
advantage of recently generated Zbtb46-diptheria toxin

receptor (DTR) mice, which allows specific depletion of cDCs
and their precursors, but does not affect PDCs, monocytes, or
macrophages (Meredith et al., 2012a,b; Satpathy et al., 2012).
At 24 and 48 hours post DT treatment, an overall gross reduc-
tion in total number of LN-resident cDCs was observed, as
expected (Figure 4a, gating Supplementary Figure S3A online).
MigDCs were also rapidly depleted (Figure 4b). Langerin–
CD11b� cells were efficiently depleted along with other
cDCs in the LNs (Figure 4b) and in skin (Figure 4c and
Supplementary Figure S3B online) with few residual cells left.
These data suggest that Langerin–CD11b� cells are a Zbtb46-
expressing classical DC subset that shares the same origin as
cDCs.

Langerin–CD11b� migDCs perform key DC functions

To further examine whether the Langerin–CD11b� subset
could perform key DC functions, we sorted CD8a LN-resident
cDCs and several migDC subsets from Langerin GFP mice
treated with Flt3L. We tested individual DC subsets (C57BL/6)
in the mixed leukocyte reaction (MLR) using T cells from
BALB/c mice. All DC types could effectively stimulate allo-
geneic T cells, including Langerin–CD11b� migDCs
(Figure 5a and b). In addition, we sorted and cultured DC
subsets with titrated doses of OVA protein and CD8þ OT-1
transgenic T cells. Again, Langerin–CD11b� DCs were
comparable to other LN-resident and migDC subsets at OVA
antigen presentation to CD8 T cells ex vivo (Figure 5c and d,
gating, and representative flow data Supplementary Figure S4
online). These data suggest that Langerin–CD11b� migDCs

LN cDC

0.0045 0.0003

5

4

3

2

1

1.5

1

0.5

0
LCs and

Langerin+
CD103–

2.5

2

LCs and
Langerin+
CD103–

C
el

l n
um

be
r 

(lo
g 1

0)

C
el

l n
um

be
r 

x 
10

3

0.0003 0.001 0.003

0 hours

24 hours

48 hours

LN migDC

5

4

3

2

C
el

l n
um

be
r 

(lo
g 1

0)

1
CD8α+ CD11b+

0.001

0 hours

24 hours

48 hours

Skin explant

WT
ZBTB46-DTR

Langerin+
CD103+

Langerin–
CD11b+

Langerin–
CD11b+

Langerin+
CD103+

Langerin–
CD11b+

Langerin–
CD11b–

a b

c

Figure 4. CD11b� migratory dendritic cells (DCs) are Zbtb46-dependent. (a) Lymph node (LN) classical (cDC) versus total migratory DCs (migDC) and (b)

migratory DC subset counts from skin-draining LNs after single-dose diptheria toxin (DT) versus PBS administration 24 or 48 hours before harvest (n¼ 3 mice per

time point, one representative experiment of three). (c) Skin explants pooled from three Zbtb46DTR versus C57BL/6 controls 24 hours after DT treatment (n¼ 3

mice pooled per group, one representative experiment of two).

SA Mollah et al.
Murine Flt3L Dependent Langerin�CD11b� Cutaneous DCs

1270 Journal of Investigative Dermatology (2014), Volume 134



perform equivalent antigen presentation of OVA to CD8þ
T cells when compared with other DCs, including CD8a and
CD103þ Langerinþ DCs.

Langerin–CD11b� migDCs relate closely to other skin DCs and
other cDCs, and express core DC signature genes

To further address the relationship of individual migDC
populations to each other and to cDCs in LNs, we performed
transcriptome analysis. We also included two additional
subsets of LN DCs in our analysis obtained from LPS-treated
mice: DC-SIGNþ monocyte-derived DCs and CD205þ DCs
(Cheong et al., 2010) and peritoneal macrophages. Using
principal component analysis (PCA), we identified four distinct
clusters (data not shown): one cluster was formed by migDC
subsets including Langerin CD103þDCs, Langerin–
CD11bþDCs, and Langerin–CD11b� DCs, consistent with
prior work suggesting that tissue DCs cluster together (Miller
et al., 2012). Hierarchy analysis (dendrogram) (Figure 6a)
revealed close relatedness of cutaneous Langerin–CD11bþ
and Langerin–CD11b� subsets to each other, and to
LangerinþCD103þ and CD8a cDCs when compared against
macrophages and LPS-treated DC subsets.

Recent studies have defined a ‘‘core-DC gene signature’’
when comparing multiple cDCs with macrophages (Miller
et al., 2012). By heat-map analysis, we analyzed the expres-
sion of many of these previously defined core DC genes in our
subsets, shown as a relative fold expression against
macrophages (Figure 6b). Many core DC genes including
Flt3, Ccr7, and Zbtb46 were upregulated in all DC subsets
examined, including Langerin–CD11b� migDCs. Heat-map
comparison of additional selected DC genes was also per-
formed across all populations (Figure 6c). These include Irf8,
Clec9A, Ly75 (CD205, Dec205), Stat3, Zbtb46, Flt3, and
Ccr7. Irf8, a transcription factor necessary for CD8a (and its
equivalents) lineage development (Seillet et al., 2013), was
observed at the highest expression intensity in CD8aþ and
LangerinþCD103þ and in CD205þ DCs despite LPS
treatment. CD11b� migDC levels of Irf8 were intermediate
but higher than in CD11bþ DCs, DC-Signþ LPS-treated
monocyte-derived DCs, and macrophages.

DISCUSSION
This study characterizes a previously identified skin-resident
subset of immune cells (Henri et al., 2010) that we now
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demonstrate as migDCs sharing many properties to cDCs,
including Flt3L and Zbtb46 dependence. The current study
builds on prior work in which Langerin–CD11b� DCs along
with several other subsets were isolated from skin and skin-
draining LNs of mice. Previously, Langerin–CD11b� DCs were
noted to share division and repopulation kinetics along with
other dermal DCs such as LangerinþCD103þ DCs, suggesting
a common precursor (Henri et al., 2010), yet they have been
largely overlooked given the cross-presenting properties of
LangerinþCD103þ DCs. Here we provide a dedicated
characterization of Langerin–CD11b� migDCs based on devel-
opmental, phenotypic, and functional DC criteria, establishing
these cells as a distinct DC subset by transcriptome analysis and
relating them to other Flt3L-dependent classical DC subsets,
distinct from monocytes and macrophages.

We establish that Langerin–CD11b� DCs are heteroge-
neous in the steady state but contain a highly Flt3L-dependent
and -responsive population. Markedly reduced dermal
Langerin– CD11bþ and Langerin–CD11b� DC subsets

were gated from LNs in Flt3L� /� mice. Flt3L treat-
ment preferentially expanded Langerin–CD11b� and
Langerin–CD11bþ dermal DC subsets in the LNs and in
the skin by crawlout explant. This may parallel spleen and
BM where Flt3L-expanded DCs consistently divide into
CD11bhi DC subsets (CD8a� cDC equivalents) and
CD11blow CD24hi SIRPalow-intermediate (CD8aþ cDC equiva-
lents) (Naik et al., 2005). Langerin–CD11b� Flt3L-responsive
DCs, similar to classical CD8aþCD11b� cDCs, are
CD24þ and CX3CR1low and are efficiently depleted in DT-
treated Zbtb46 DTR mice. Similar to other migDCs, we
determine that Langerin–CD11b� are CCR7 dependent,
are skin residents by explant and FITC painting, expand
locally in the skin in response to Flt3L, and may be visualized
in the dermis. Langerhans cells are radio-resistant, do not
express Flt3 (Ginhoux et al., 2012), and were not anticipated
to expand. These data suggest that Langerin– DCs comprise
the majority of the 14-fold Flt3L-based CD11cþ expansion
previously noted in the dermis (Esche et al., 1999).
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Although our study was conducted in mice, Flt3L depend-
ence and Flt3L expansion of local cutaneous DC subsets is of
particular importance to the cancer vaccine arena, as current
and prior translational efforts aim to deliver cancer antigens to
DC after subcutaneous administration of Flt3L.

We observed that Langerin–CD11b� DCs from mice
treated with Flt3L performed allo-MLR and cross-presentation
to OVA at equal efficiency to LN-resident cDCs. This
suggests an efficient role in antigen presentation and bona fide
DC function. This may be of significance to priming
against erosive candida and cytolytic viruses where
residual T-cell priming by DCs occurs even in the absence of
LangerinþCD103þ dermal DCs, yet no other DC
subset in skin has been identified as responsible for residual
priming. However, strictly ex vivo analysis of DC function is
somewhat limited by the fact that migDCs mature in
culture after leaving the skin, and distinct individual in vivo
roles of cutaneous DC subsets are still incompletely
characterized. Current models of acute DC depletion
(Langerin–DTR, CD11B�DTR, Zbtb46-DTR, and CD11c�
DTR) cannot selectively isolate Langerin–CD11b� migDCs at
this time; therefore, it will be difficult to immediately resolve
their in vivo role in mediating cutaneous immunity. It is
possible that, when licensed to prime, DC subset activity in
the skin could relate to specialization or nonredundant cover-
age of various pathogens. Differing susceptibility of DC subsets
to infection may permit discrete roles in antigen presentation,
as observed for tissue-resident CD103þ DCs versus alveolar
macrophages during influenza infection (Helft et al., 2012).

We have determined that migDC group together by hier-
archy clustering. These data suggest that three dermal DC
subsets are closely related at the transcriptome level to each
other and may suggest that tissue microenvironment affects
terminal DC differentiation. As such, LangerinþCD103þ
DCs group more closely with other migDCs than with their
lymphoid developmental and functional equivalents: CD8a
cDCs. Perhaps in the steady state, tissue-resident migDCs may
act in concert. Intriguingly, LN CD205þ cDCs from LPS-
treated mice cluster with LPS-treated DCs such as DC-SIGNþ
monocyte-derived DCs than to cDCs. The dominant gene
signatures relating these subsets in this context are likely
related to LPS treatment.

A lack of clarity surrounding the function and develop-
ment of diverse DC subsets present in the skin and skin
draining LN has long hindered the development of vaccines
and clinical therapeutics to skin cancer. This work suggests
that the previously overlooked Langerin–CD11b� DC subset
contains a distinct, previously uncharacterized Flt3L-respon-
sive migratory population with many properties of cDCs. As
such, Langerin–CD11b� DCs may serve as a potential target
of therapeutics aimed to enhance cutaneous immunity and as
a mediator of the cutaneous immune response.

MATERIALS AND METHODS
Tissue harvest and DC cell preparation

‘‘Flt3L-treated’’ mice were injected by the intraperitoneal (IP) route

with endotoxin-free (o0.0064 EU mg� 1), GMP-grade, recombinant

human Flt3L (Celldex) at 10mg per mouse per day, diluted in sterile

PBS versus sterile PBS-treated or untreated C57Bl/6 controls by IP

injection. ‘‘Tumor-treated’’ 8–12-week C57BL/6F or Langerin–GFP

mice were administered 5� 106 murine Flt3L-secreting B16 mela-

noma tumor cells by subcutaneous injection. Doxycycline-inducible

models of Flt3L induction have been previously characterized

(Manfra et al., 2003). At 10–14 days of IP injection of Flt3L,

B10 mm tumor size, or after 8–12 days of doxycycline addition to

drinking water, mice were killed. Skin-draining LNs (inguinal,

brachial, axillary, popliteal, and superficial cervical pooled) and

spleen were isolated from individual mice. LNs and spleen were

added to Collagenase D (400 U ml� 1, Roche) in Hanks’ Balanced Salt

Buffer (Gibco) solution. LNs were teased apart and spleens were

injected with this solution using a 22- to 23-gauge needle attached to

a 3-ml syringe, and incubated for 25 minutes at 37 1C (Steinman et al.,

1979). After incubation, 0.5 M EDTA was added to a final concen-

tration of 10 mM EDTA for disruption of DC:T-cell complexes, and the

sample was further incubated for 5 minutes at 37 1C. For spleen cell

preparation, ACK lysis of red cells was performed. Undigested fibrous

material was filtered through a 70-mm cell strainer. Subsequent

washed were performed with ice-cold PBS with 2% fetal calf serum

(FCS). For crawlout assay, individual ears were harvested, washed in

70% EtOH, and both sides of ear halves were split dermal side down

into R5-RPMI medium with 10% FCS. Crawlouts were harvested in 6-

well plates (one ear per well), leading to some variability in total cell

counts across explants. At 72 hours, cell suspensions were isolated

and filtered. The pellet was washed twice and incubated in Fc block

with 2% rat serum before cell surface marker antibody staining.

Mice

C57BL/6 mice (B6) were purchased from Taconic Labs or bred at

Rockefeller University. CCR7� /� mice were bred at Rockefeller

University after being purchased from Jackson Laboratory (Bar

Harbor, ME) and are described with respect to defects in the skin-

derived DC migration (Martin-Fontecha et al., 2003; Martin-Fontecha

et al., 2008). Langerin–GFP mice were generously provided by

Bernard Malissen, bred as homozygotes at Rockefeller University,

and have been previously described (Kissenpfennig et al., 2005).

CX3CR1-GFP mice were purchased from Jackson Laboratory and

previously described (Jung et al., 2000). Zbtb46-DTR mice were

generously provided by Matthew Meredith and Michel Nussenzweig.

Doxycycline-inducible Flt3L were kindly provided by Sergio Lira. All

mice were housed in specific pathogen-free conditions. Protocols

were approved by the Rockefeller University and Harvard University

Animal Care and Use Committees.

DC isolation
For allo-MLR, OVA presentation, and microarray RNA isolation, DC

subsets were sorted from 5–10 pooled Flt3L-treated Langerin–GFP

mice per experiment. Following size, live/dead, and exclusion criteria

(CD3, CD19, NK1.1 exclusion) DC subsets were sorted following the

general gating schema depicted in S1a. DC-SIGNþ and CD205þ
DCs were sorted from the skin-draining LNs of C57BL/6 mice

24 hours after intravenous injection of 5mg of LPS (Cheong et al.,

2010), and macrophages were isolated from the peritoneum.

Immunofluorescence

Back skin from Flt3L-treated (12 days) or -untreated C57BL/6 controls

was isolated and frozen in tissue-tek OCT (Sakura Finetek, Torrance,
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CA). Sections (6mm) were cut by cryomicrotome (Leica, Norcross,

GA) sectioning, air-dried, and fixed in ice-cold acetone. Sections

were pretreated with endogenous avidin/biotin block (Invitrogen,

Carlsbad, CA) and further blocked with 10% normal goat serum

(Jackson ImmunoResearch Laboratories). Sequential immunofluores-

cence staining was performed using anti-langerin (clone 929F3,

Dendritics, Lyon, France), anti-CD11b (clone M1/70; Biolegend,

San Diego, CA), and anti-CD11c (clone HL3, BD Biosciences,

San Jose, CA) with the appropriate secondary antibodies (anti-rat

IgG2a FITC (eBioscience, San Diego, CA), anti-rat IgG2b eFluor570

(eBioscience), and streptavidin-Alexa Fluor 647 (Invitrogen). Sections

were mounted with Vectashield with DAPI (Vector Labs, Burlingame,

CA). Images were acquired on a VS120 Whole Slide Scanner

(Olympus, Center Valley, PA) at � 10 magnification using the ASW

software and analyzed using the Olyvia software (Olympus).

Microarray analysis, normalization, and data analysis

RNA samples were prepared by standard methods using Trizol

(Invitrogen) and further purified using RNeasy MinElute cleanup

(QIAGEN, Valencia, CA). Purity analysis was performed by nanodrop

and Eukaryote Total RNA Pico Series II (Agilent). RNA was amplified

and hybridized on the Illumina MouseRef-8 v2.0 Expression Bead-

Chip. For subset analysis, at least three replicates were analyzed from

individual sorts to achieve statistical significance. Raw data from

Illumina single-color chips were analyzed with GeneSpring 12.5

(Agilent Technologies, Santa Clara, CA). Intensities below back-

ground were replaced with the average background over all samples.

Quantile normalization was applied to have a common distribution of

intensities, followed by log2 transformation. Normalized values were

baseline-transformed to the median of all samples. Normalized data

were filtered to eliminate probes with low expression with a

coefficient of variation of 40.5 in population samples. One-way

ANOVA was used to find statistically significant differences among

probes (P-values corrected with Benjamini–Hochberg false discovery

method set at Po0.05). All DC subsets were arranged by a

hierarchical clustering algorithm using normalized intensity values

and based on twofold change or greater of all genes (n¼ 8601). Heat

maps for the differential expressions of core DCs relative to macro-

phages (two-fold) were generated and analyzed (Figure 6c). For

selected DC genes of interest, heat maps of normalized intensity

values were generated (Figure 6d). All data sets have been deposited

at the National Center for Biotechnology Information/GSE53588.

Flow cytometry and gating

Cells were stained on ice in PBS with 2.0% (vol/vol) FCS. LSR II

(Becton Dickinson, Franklin Lakes, NJ) was used for multiparametric

flow cytometry of stained cell suspensions, followed by analysis with

the FlowJo software (TreeStar).

Antibodies, live/dead dye, CFSE, FITC painting, and staining
reagents

The following reagents were from BD Biosciences, eBioscience, or

Biolegend: anti-Langerin (eBioL31), anti-CD11c (N418), anti-CD4

(RM4-5), anti-CD8a (53-6.7), anti-CD11b (M1/70), anti-CD103 (2E7),

anti-Armenian Hamster IgG Isotype Control (eBio299Arm), anti-rat

IgG2a Isotype Control (eBR2a), anti-CD3 (500A2), anti-CD45

(30-F11), anti-CD205 (NLDC-145), anti-EPCAM (G8.8), anti-CD24

(M1/69), anti-F4/80 (BM8), anti-CD115 (AFS98), anti-PDCA1 (ebio927),

anti-Ly6c (HK1.4), anti-B220 (RA3-6B2), anti-I-A/I-E (M5/114.15.2),

anti-CD3 (17A2), anti-CD19 (eBio1D3), and anti-NK1.1 (PK136).

AQUA (L34957) was from Invitrogen. Cytofix/cytoperm kit was from

BD Biosciences. CFSE was from Sigma. Anti-CD205 (NLDC-145) was

produced in the Steinman lab and conjugated to Alexafluor 488 or 647.

Other reagents included PBS and FBS (Gibco-BRL), and ACK lysing

buffer (BioSource, Invitrogen, Carlsbad, CA). Staining with anti-Langerin

and anti-CD205 was performed with cell surface and intracellular label

as described (Cheong et al., 2007). For intracellular blocking, 2% rat

serum was diluted into perm/wash buffer. All extracellular staining was

performed in ice-cold PBS with 2% FCS. FITC painting was performed

on the flank with 1:1 1% FITC in acetone:Dibutyl phthalate (.5%

FITC final) for 16–30 hours before harvest.

OVA presentation

Endotoxin-free (o0.001 EUmg� 1) OVA was purchased from Hyglos

(Bernried, Germany). For all groups, equal total numbers of DC

subsets and CFSE-labeled T cells were cultured at a 1:10 ratio with

increasing concentrations of soluble OVA protein.

MLR

Allo-MLR was performed as previously described (Anandasabapathy

et al., 2011) from FACS-sorted LN-resident and migDC subsets

isolated from the skin-draining LNs.
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