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Abstract
Cytokines secreted from dendritic cells (DCs) play an important role in the regulation of T

helper (Th) cell differentiation and activation into effector cells. Therefore, controlling cyto-

kine secretion from DCs may potentially regulate Th differentiation/activation. DCs also

induce de-novo generation of regulatory T cells (Treg) that modulate the immune response.

In the current study we used the mixed leukocyte reaction (MLR) to investigate the effect of

allospecific Treg on IL-12, TNFα and IL-6 secretion by DCs. Treg cells were found to

markedly down-regulate IL-12 secretion from DCs following stimulation with TLR7/8 ago-

nist. This down-regulation of IL-12 was neither due to a direct suppression of its production

by the DCs nor a result of marked DC death. We found that IL-12 was rather actively con-

sumed by Treg cells. IL-12 consumption was mediated by a subpopulation of IL-12Rβ2-

expressing Treg cells and was dependent on MHC class-II expressed on dendritic cells.

Furthermore, IL-12 consumption by Tregs increased their suppressive effect on T cell prolif-

eration and Th1 activation. These results provide a new pathway of Th1 response regula-

tion where IL-12 secreted by DCs is consumed by a sub-population of IL-12Rβ2-expressing

Treg cells. Consumption of IL-12 by Tregs not only reduces the availability of IL-12 to Th

effector cells but also enhances the Treg immunosuppressive effect. This DC-induced IL-

12Rβ2-expressing Treg subpopulation may have a therapeutic advantage in suppressing

Th1 mediated autoimmunity.

Introduction
T cell differentiation into effector Th cells in response to an antigen is stimulated by DCs
together with cytokines. For example, for Th1 cell differentiation, DCs provide the IL-12
required by the Th cells [1–5]. The various types of Th cells provide resistance to different
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types of infection but also mediate unwanted reactions such as autoimmunity, allergy and
transplant rejection [6–8]. Therefore, regulating cytokine secretion from DCs would be impor-
tant in modulating Th cell activation and differentiation and subsequently to achieve remission
in some of these pathological conditions.

Naïve CD4+ cells can also be induced to become regulatory T cells (iTreg) upon stimulation
with an antigen presented by DCs in the presence of TGFβ [9, 10]. The combined presence of
TGFβ and all-trans-retinoic-acid (ATRA) enhances the induction of alloreactive Treg from the
polyclonal CD4+ T cells [11]. These de-novo-generated iTreg exert substantial specificity in
suppressing allogeneic DC both in culture and in a mouse model of graft vs. host disease [11].
Treg cells can inhibit T cell function by several mechanisms [12, 13], some of which require
direct Treg suppression of DCs. This suppression involves down-regulation of CD80 and
CD86 expression on DCs [14, 15] and up-regulation of its indoleamine 2,3-dioxygenase (IDO)
activity [16]. These effects of Treg on DCs are mediated by the co-inhibitory molecule CTLA-
4, [16, 17] a major molecule with which Treg regulate antigen presenting cell (APC) function
[18], and by a possible effect of IL-10 secreted from Treg [19]. However, the direct effect of
Treg in general and more specifically of iTreg on cytokine secretion by DCs is less well
established.

The MLR system enables both the induction of Treg from the polyclonal repertoire of
CD4+ T cell population and the evaluation of their specificity to the inducing allogeneic DCs
[11]. In the present study we used the MLR system [11] to investigate whether allospecific poly-
clonal iTreg cells can regulate DC secretion of IL-12, TNFα and IL-6, as well as its mechanism
and effect on the Th response.

Results and Discussion

DC-Induced Treg Cells Specifically Down-Regulate IL-12 Secreted from
DCs by Its Consumption
To determine if iTreg cells reduce cytokine secretion by DCs, we first used Balb/c DCs to
induce allospecific iTreg from C57Bl/6 (B6) Foxp3- CD4+ cells as described previously {[11],
and S1 Fig}. The iTreg were then incubated with fresh Balb/c DCs for 24 hrs, after which TLR
7/8 ligand Thiazoloquinolone (CL075, 3M002) was added for an additional 24 hrs. CL075
induced IL-12 release from DCs, but this was completely blocked when iTreg were added (Fig
1A). In contrast, TNFα release was only mildly reduced by adding iTreg (up to 30%, S2 Fig).

To test whether suppression of IL-12 production also occurred when iTreg were suppressing
an immune response, we added the iTreg to Balb/c DC along with fresh B6 CD4+ cells. The
MLR between B6 T cells and Balb/c DC produces a powerful immune response but does not
detectably result in IL-12 release unless CL075 was added (Fig 1B). The main source for IL-12
production and release into the medium was the DCs as expected (S3 Fig right and left). Addi-
tion of iTreg but not CD4+CD25-Foxp3- (DN) cells significantly down-regulated IL-12 secre-
tion in a dose dependent manner (Fig 1B). However, production of two other cytokines, TNFα
in response to CL075 and IL-6 in response to LPS, was only slightly reduced (~30%) following
the addition of iTreg (S4 Fig right and left). Thus, based on these results, one functional effect
of iTreg is to specifically suppress DC by reducing the level of secreted IL-12 in response to a
TLR7/8 agonist.

To evaluate the specificity of the suppressive function of iTreg on IL-12 secretion from DCs,
we generated iTreg cells by co-culturing B6 CD4+CD25-Foxp3- cells (double negative) with
either allo Balb/c DCs or SJL DCs in the presence of TGF-β and ATRA. The sorted
CD4+CD25+Foxp3+ cells (double positive), termed “iTreg anti Balb/c” (when induced with
Balb/c DCs) or “iTreg anti SJL” (when induced with SJL DCs), were shown previously to
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Fig 1. DC induced Treg specifically down-regulate IL-12 secreted from DC by its consumption. (A) Balb/c DCs were incubated (24hr) either alone or
with various ratio of C57Bl/6 iTreg that were induced with Balb/c DCs (iTreg anti Balb). CL075 (1 μg/ml) was added to the culture and 24 hr later the level of
secreted IL-12 was measured by ELISA. (B) Co-culture of Balb/c DCs and C57Bl/6 CD4+ T cells (MLR) was incubated alone or co-incubated with either anti-
Balb/c iTreg or CD25-Foxp3- (RFP-) (Double Negative, DN) cells for 24 hrs after which CL075 was added and IL-12 measured as in A. (C) Co-culture of
CD4+ T cells and either Balb/c DCs (left panel) or SJL DCs (right panel) were incubated alone or co-incubated with B6 iTreg cells induced with either Balb/c
DCs (iTreg anti Blab/c) or SJL DCs (iTreg anti SJL), after which CL075 was added and IL-12 was measured as in A. (D) IL-12p70 (800pg/ml) in culture
medium was incubated alone or with either DCs, CD4+ T cells, or iTreg alone or with a co-culture of DCs and either CD4+ or anti Balb iTreg. Levels of IL-12
that remained in the medium were measured 48hrs later by ELISA. [*, ** = compared to medium with IL-12, *** = compared to co-culture of DCs and
CD4+ in medium with IL-12]. (E) Time kinetics of IL-12 level in a medium added with either IL-12 alone or with DCs and anti- Balb iTreg. One representative
experiment of three is shown. The consumption assay is one representative out of 6. Error bars denote mean ± SD. *, *** = P < 0.05, ** = P<0.001.

doi:10.1371/journal.pone.0146412.g001
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specifically suppress an MLR induced by either Balb/c or SJL DCs [11]. Here we found that
simultaneously with suppression of T cell proliferation in the context of the MLR (data not
shown), the iTreg also down-regulated CL075-induced IL-12 secretion from DCs specifically.
These “iTreg anti Balb/c” cells down regulated CL075-induced IL-12 secretion from Balb/c
DCs more effectively than “iTreg anti SJL”, and vice versa for IL-12 secretion from SJL DCs.
(Fig 1C left and right, respectively). Specificity was further evidenced in the finding that “iTreg
anti Balb/c” significantly down-regulated the CL075-induced IL-12 secretion from Balb/c DCs,
but did not affect IL-12 secretion from B6 DCs (Fig 1C, S5 Fig). On the other hand, when
added to F1 (Balb/c X B6) DCs, “iTreg anti Balb/c” significantly down-regulated CL075-in-
duced IL-12 secretion in the same manner as it affected Balb/c (Fig 1C, S5 Fig). We conclude
that iTreg selected on allogeneic DC of one type, specifically suppress IL-12 from the same type
of DCs, in the presence of alloreactive T cells.

To understand more about the mechanism for iTreg suppression of IL-12 release from DCs,
we tested blocking antibodies to several components that are required for different aspects of
iTreg formation and function [12, 15, 17]. The antibodies were added to co-cultures of Balb/c
DC, anti Balb/c specific iTreg, and B6 MLR responsive T cells, along with CL075. Anti-MHC
class II mAbs (N22) abrogated the iTreg effect on IL-12 production, whereas the control ham-
ster Ig isotype did not (S6 Fig upper panel). In contrast, blockade of TGFβ (S6 Fig, right lower
panel) and blockade of CTLA4 (S6 Fig, left lower panel) or LFA-1 (data not shown), did not
restore IL-12 release into the culture medium. Thus, the capacity of iTreg to block IL-12 release
from DC is dependent on MHC II.

To assess if the down-regulation of IL-12 reflects increased dendritic cell death, as recently
reported in an in vivo model [20], we stained cultures of DCs and T cells incubated with or
without iTreg for viability. As shown in S7A Fig, co-incubation with iTreg decreased the num-
ber of live DCs by 30%. This reduction may explain the modest decrease in TNFα and IL-6
that we observed (S4 Fig), but seems unlikely to explain the almost 10 fold reduction in IL-12
secreted by DCs (Fig 1B).

To determine if the reduction in IL-12 measured from DC culture was due to suppression of
its synthesis, we looked directly at IL-12 transcription and intracellular IL-12. S7B and S7C Fig
demonstrate minimal changes in levels of IL-12 p40 mRNA and protein in the DCs. Thus, to
our surprise, the ability of iTreg to suppress IL-12 release is not likely due to the toxicity or
reduced IL-12 synthesis by DCs per se.

Given the above findings we searched for a new IL-12 control mechanism, whereby IL-12
would be consumed as a result of DC-iTreg interaction. We first added 800 pg/ml IL-12 to a
co-culture of DCs with either naïve CD4+ cells or iTreg in the absence of CL075 stimulation.
This is the concentration reliably secreted by DCs in our culture system stimulated by CL075
(Fig 1B). Addition of this amount of IL-12 to co-cultures of DCs and CD4+ T cells was fol-
lowed by a 3-fold reduction in IL-12 levels (201 pg/ml and 617 pg/ml with or without a co-cul-
ture of DCs and CD4+ T cells, respectively). However, addition of IL-12 to a co-culture of DCs
and iTreg cells resulted in a 12-fold reduction in IL-12 levels (50 pg/ml and 617 pg/ml with or
without a co-culture of DCs and iTreg cells, respectively). This 12-fold reduction required the
presence of both DCs and iTreg cells (Fig 1D), while each cell type alone resulted in either mild
or no reduction in the level of IL-12 (450 pg/ml and 647 pg/ml, respectively). To further sup-
port the notion of IL-12 consumption by iTreg cells we wanted to evaluate the time course of
removal of the added IL-12 from the media. The time required for IL-12 consumption was rela-
tively short, as a two fold reduction was achieved within 0.5–3 hrs of co-incubation of DCs and
iTreg cells in the IL-12 added media, and a maximum reduction of 10–12 fold after 12–24 hrs
(Fig 1E). A rough estimate of IL-12 consumed per cell was 0.0005 pg IL-12 per cell in 12 hrs or
~6 molecules/min/cell [(800 pg/ml - 50pg/ml) x 0.2 ml /300,000 cells = 0.0005 pg/cell]. On the
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other hand, iTreg cells alone or co-incubated with DCs did not reduce TNFα when added to
the medium (S8 Fig). The fact that the IL-12 level continues gradually and consistently to drop
over time to almost complete removal (Fig 1E), rules out the possibility of saturation of IL-12
binding, in which we would expect a “plateau effect” after an initial steep non-gradual decline.
However, the continued drop in IL-12 concentration support a possible mechanism of receptor
uptake and recycle.

IL-12 Consumption Is Mediated by Treg IL-12Rβ2 and Dependent on
DCMHC-Class-II
To test the possibility that IL-12 consumption was mediated by binding to IL-12R on the iTreg
cells, we compared iTreg and naïve CD4+ cells for IL-12R β1 and β2 mRNA expression by
RT-PCR. As shown in Fig 2A, iTreg cells sorted and analyzed immediately after their induction
had higher levels of IL-12Rβ1 and even more IL-12Rβ2 compared to naïve CD4+ cells. To pin-
point the IL-12R expressing cells, we sorted iTreg that were co-cultured overnight either alone
or with DCs, and compared their IL-12R expression to that of iTreg immediately after their
induction. When iTreg were incubated alone overnight, expression of mRNA was greatly
reduced for both IL-12R subunits, whereas iTreg cultured with DCs retained IL-12R mRNA
(Fig 2B). To prove that IL-12Rβ2 was responsible for IL-12 consumption, we compared iTreg
from IL-12Rβ2 KO mice (Foxp3-IRES-RFP (FIR) knock-in crossed with IL-12Rβ2 KO) to WT-
iTreg. Indeed, the IL-12Rβ2 KO-iTreg were unable to consume IL-12 (Fig 2C) whereas DCs
from IL-12Rβ2 KO mice incubated with WT iTreg were fully capable of inducing iTreg to con-
sume IL-12 (Fig 2D), ruling out the possibility that IL-12 was consumed by DCs.

To verify whether IL-12 consumption was dependent on an interaction with MHC class-II,
WT iTreg were incubated with DCs fromMHC-class-II-KO mice. Lack of MHC-II on DCs
abrogated the consumption of IL-12 achieved by iTreg incubated with WT-DCs (Fig 2E).
Taken together, these results demonstrate that MHC-II expression on DCs and IL-12Rβ2
expression on iTreg are essential for the IL-12 consumption mechanism by iTreg.

We next tested if DCs can induce naturally occurring Treg (nTreg) to consume IL-12. To
this end, we added IL-12 to a co-culture of Balb/c DCs with either freshly isolated
CD4+CD25+Foxp3+nTreg, or nTreg that were sorted after activation and expansion with allo-
geneic DCs in an MLR system as described [11]. We found that during the MLR, DC-activated
but not freshly isolated nTreg consumed IL-12 (Fig 2F), and much like DC-induced iTreg the
nTreg also up-regulated IL-12Rβ2 (Fig 2G).

IL-12Rβ2 Expressed on Authentic Treg Contribute to the Control of Th1
Response by Effector T Cells while Mediating IFNγ Secretion in a Stat4
Dependent Manner
To determine the importance of IL-12 consumption on the immune response, we added IL-12
(1000 pg/ml) to cultures of allo DCs (Balb/c) and CD4+ T cells (B6). In the absence of IL-12,
iTreg suppressed the MLR in a dose dependent manner (S9A Fig). Since IL-12 was shown to
increase T cell proliferation [21, 22], we expected a reduced suppression of pre-activated/effec-
tor T cell proliferation by iTreg in the presence of IL-12. However, the addition of IL-12 sur-
prisingly enhanced the inhibitory effect of the iTreg (S9A Fig upper and lower panel). Further,
this enhanced suppressive effect of iTreg in the presence of IL-12 was IL-12Rβ2 dependent.
Indeed, WT iTreg suppressed T cell proliferation (S9B Fig) and IFNγ secretion (Fig 3A) from
effector CD4+ cells several fold greater (2–3 and 3.5–5, respectively) than IL-12Rβ2 KO Treg.
Moreover, the suppressive effect of WT iTreg (IL-12Rβ2 expressing) in the presence of IL-12
on the total number of IFNγ effector CD4+ secreting cells was 2-fold greater than the effect on
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Fig 2. IL-12 consumption is mediated by Treg IL-12Rβ2 and dependent on DCMHC-Class-II. (A) RNA was isolated from either sorted naïve CD4+ T
cells (CD4+CD25-Foxp3-) or fresh iTreg (CD4+CD25+Foxp3+). Synthesized cDNA of IL-12Rβ1, β2 and β Actin was amplified with PCR. The Agarose gel
electrophoresis of the PCR products is shown. (B) As in A, but compared are PCR products from either fresh sorted iTreg, iTreg that were incubated
overnight (ON) with Balb/c DCs or iTreg that were incubated overnight alone. (C) As in Fig 1D but a culture of DCs and either WT or IL-12Rβ2 KO iTreg (both
induced with Balb/c DCs from CD4+CD25-Foxp3- cells as described before) was added to the medium containing IL-12. (* = compared to co-culture WT
iTreg and DCs in a medium of IL-12). (D) As in C but a culture of iTreg and either WT or IL-12Rβ2 KO Balb/c DCs was added to the medium containing IL-12.
(E) As in C but a culture of iTreg and either WT or MHC class-II KO DCs was added to the medium containing IL-12. (* = compared to co-culture of iTreg and
WT DCs in a medium of IL-12). (F) As in C but a culture of DCs and either fresh sorted non activated nTreg (CD4+CD25+Foxp3+) or nTreg that were sorted
after activation in co-culture with allo-Balb/c DC were added to a medium with IL-12. (* = compared to medium with IL-12, ** = compared to co-culture of DCs
and non-activated nTreg in medium with IL-12). (G) As in A, but non-activated to activated nTreg are compared. One representative experiment of three is
shown. Error bars denote mean ± SD. *, ** = P < 0.05.

doi:10.1371/journal.pone.0146412.g002
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Fig 3. IL-12Rβ2 expressed on authentic Treg contribute to the control of Th1 response in a Stat4 dependent manner. (A) MLR culture of Balb/c DCs
and sorted CFSE labeled effector CD4+CD25+Foxp3-cells (following naïve CD4+CD25- pre-activation with Balb/c DCs for 3 days) was incubated with IL-12
(1000 pg/ml) alone or with either WT or IL-12Rβ2 KO iTreg cells for 24 hrs, and the culture was stained and analyzed for IFNγ secreting cells by FACS. Error
bars denote mean ± SD. * = P < 0.05 (compared to WT) (B) Balb/c DCs were cultured with either WT or Stat4 KO sorted anti Balb/c iTreg. The culture was
either stimulated (left lower panels) or not stimulated (left upper panels) with IL-12, and 24 hrs later stained and analyzed (left panel) for IFNγ expressing Treg
cells (CD4+CD25+Foxp3+(RFP+) by FACS (absolute number in right upper panel), and for IFNγ secreted to the medium by ELISA (right lower panel). (C)

IL-12Rβ2-Expressing Treg and Regulation of Cytokines from DCs and T Cells
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the total number of proliferating cells [~10-fold (Fig 3A middle) versus ~5-fold (S9B Fig mid-
dle) reduction, respectively, compared to MLR with effector CD4+ cells]. These results support
a direct effect of Treg on effector Th1 response and IFNγ secretion beyond and possibly inde-
pendent of the suppression of effector CD4+ proliferation. Together, these results may suggest
that IL-12, a cytokine with effector immuno-stimulatory properties, gains suppressive function
in the presence of IL12Rβ2-expressing iTreg. Our results may also explain cases in which sin-
gle-nucleotide polymorphisms (SNPs) in IL-12, IL-12Rβ2, and Stat-4 were shown to increase
the risk for diseases such as primary biliary cirrhosis [23], in which Treg, and IL-12 are part of
the pathogenesis. This may raise the possibility that the presence of the same SNPs on IL-
12Rβ2 on iTreg abrogate their suppressive function.

IL-12 addition to a culture of nTreg cells was shown to induce IFNγ secretion through an
unclear pathway [24, 25]. To verify that iTreg (induced with DCs in MLR) can secrete IFNγ,
and to explore whether IFNγ secretion by iTreg is mediated via IL-12R expression, we studied
the stimulatory effect of this receptor on cytokine secretion by iTreg. As was shown recently
with nTreg [26], here we demonstrate that addition of IL-12 to a culture of DCs and allospecific
iTreg, induced marked up-regulation in IFNγ secretion fromWT iTreg but not from IL-12Rβ2
KO iTreg cells (S10 Fig). Stat4 and T-bet act independently and synergistically to drive expres-
sion of the signature inflammatory cytokine IFN-γ [27, 28]. While it was demonstrated that
Tbet+ nTreg undergo abortive Th1 cell differentiation due to the impaired expression of IL-12
receptor β2 [29], here we demonstrate that the IFNγ secretion from iTreg was dependent on
the transcription factor Stat-4 (Fig 3B) which resides downstream of the IL-12R signaling
pathway.

At this point we wanted to verify that the IL-12Rβ2-expressing cells are authentic Tregs and
not ex-Foxp3 effector T cells [30]. In the absence of a reliable antibody against IL-12Rβ2, a cul-
ture of WT iTreg cells incubated with DCs, were sorted for CD4+CD25+Foxp3+ (RFP+) single
cells. By analyzing single cells for the concomitant expression of IL-12Rβ2 and Foxp3 mRNA,
we could define a relatively abundant subpopulation (20–25%) of IL-12Rβ2 expressing Foxp3
+ iTreg cells in WT mice (Fig 3C).

Recent studies have shown that Foxp3+ Treg cells can functionally differentiate to acquire
the ability to specifically control Th1, Th2 or Th17 type inflammatory responses of certain T
helper types by modifying their expression of related transcription factors [31–33]. For exam-
ple, Treg that acquired T-bet expression have been shown to control Th1 responses, though by
a yet an unknown mechanism [31]. Here we show that a subpopulation of iTreg cells acquire
the expression of IL-12R thereby contributing to the regulation of Th1 responses. Interestingly,
this subpopulation of Treg cells uses the same receptor as effector Th1 cells in order to suppress
Th1 responses. Simultaneously, the effector Th1-suppressive iTreg secrete IFNγ (in a Stat4
dependent manner), a cytokine, that when secreted from Treg, was shown recently to be sup-
pressive in the context of graft versus host disease (GVHD) and transplant rejection [26, 34].
More specifically, Koenecke et al [26] have shown that only IFNγ-expressing and not IFNγ-
deficient Treg could suppress GVHD. Taken together, IFNγ produced by iTreg is dependent
on the IL-12/IL-12Rβ2/Stat4 pathway, and may further add to the suppression achieved by the
IL-12Rβb2.

WTCD4+CD25-Foxp3-(RFP-) were sorted, co-cultured with Balb/c DCs in the presence of TGFβ and ATRA. After 5 d CD4+CD25+Foxp3+(RFP+) cells
were sorted and re-cultured with Balb/c DCs for re-stimulation. After 18 hr CD4+CD25+Foxp3+(RFP+) cells were re-sorted as a single cell per well. Each
single cell was subjected to cDNA synthesis followed by nested PCR for the detection of Foxp3 and IL-12Rβ2 gene expression. The percent values for IL-
12Rβ2 RNA expressing iTreg cells amongst the Foxp3 RNA expressing iTreg cells, respectively from 2 independent experiments, are indicated above each
histogram.

doi:10.1371/journal.pone.0146412.g003
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In summary, we describe here a new pathway whereby DCs induce the expression of IL-12R
on a subpopulation of Treg cells, in an MHC class II dependent manner. This novel mecha-
nism contributes to the regulation of Th1 effector response by iTreg through the consumption
of IL-12, which in this milieu becomes a cytokine with an immunosuppressive outcome. These
DC-induced IL-12Rβ2-expressing Treg cells may have a significant therapeutic advantage in
Th1 mediated autoimmunity.

Material and Methods

Mice
6–8-wk-old female Balb/c H-2d, C57BL/6 CD45.1 H-2b, and SJL H-2s mice are from Taconic.
MHC class-II, IL-12Rβ2 knock-out, IL-12b (p40)-IRES-eGFP knock-in mice are from Jackson
laboratories. Foxp3-IRES-RFP (FIR) knock-in mice were a gift from R. Flavell (Yale University,
New Haven, CT; [35] and were crossed with IL-12Rβ2 knock-out mice (Jackson lab) for study-
ing IL-2Rβ2 knock-out CD4+Foxp3+(RFP+) cells. Stat-4 knock-out mice (Jackson lab) were
crossed with Foxp3-GFP knock-in mice (Jackson lab) for studying Stat-4 KO CD4+Foxp3
+(GFP+). Mice housing and husbandary was in Rockefeller University animal fascility, with
regular diet and caging. The study was approaved by institutional animal care and use commit-
tee of the Rockefeller University, and we followed its guidelines. All experiment were done ex-
vivo after euthanesia with CO2 according to the guidelines of our institute.

Antibodies and Reagents
All following conjugated Abs are from BD:APC conjugated anti–mouse CD25, -CD4, -CD45.1,
-CD11c, -IL-12p70; Alexa Fluor 700–conjugated anti-CD3, -CD4, and -CD11c; PE-conjugated
anti-CD3, -CD19, and -CD49b; FITC-conjugated anti-CD3, -CD19, -CD49b, and isotype con-
trol; biotin anti-CD4, -CD8, -DX5, -B220, -CD3, -CD11b, -Ly-6G, and -Ter119; and purified
anti-CD16/CD32 (2.4G2). CD11c and streptavidin beads (SA) fromMiltenyi Biotec; CFSE, live
dead fixable aqua, CL075, and LPS from Invitrogen; ATRA from Sigma-Aldrich; hTGF-β1,
anti–mouse TGF-β (1D11), anti-CTLA4, and Ig isotype control from R&D Systems.

T Cells and DCs
Non-CD4+ lymph node and spleen T cells were removed by MACS beads (Miltenyi Biotec)
after coating with biotin anti-CD8α, DX5, B220, CD3, CD11b, Ly-6G, and Ter119. Cells were
further purified with a FACSAria 2 sorter (BD) to>97%. Spleen CD11c+ DCs were partially
enriched with anti-CD11c beads (Miltenyi Biotec) and, where indicated, purified with a FAC-
SAria 2 (BD) cell sorter as CD11chighCD19−CD3−DX5−DCs (>95%).

De Novo In Vitro Induction of T Reg Cells in the Allo-MLR
CD4+ T cells from C57BL/6 Foxp3− RFP mice were sorted as CD4+CD25−RFP− cells. T cells
were then co-cultured for 5 d with fresh splenic Balb/c DCs, TGFβ and ATRA as described
[11]. Induction of CD4+CD25+RFP+ cells was analyzed by FACS (LSR-II; BD) and FlowJo soft-
ware (Tree Star) and sorted (FACSAria 2).

In Vitro IL-12 Induction, Suppression, Consumption and Measurement
DCs from either Balb/c, C57BL/6 or SJL mice were incubated for 24 hrs with either CL075
(1 μg/ml), or LPS (5μg/ml) alone or together with CD4+ T cells. Treg cells were added to the
culture for additional 24 hrs in various ratios. IL-12 p70 concentration in the supernatant was
measured with ELISA (eBioscience). Intracellular staining for IL-12p70 in DCs or T cells was
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analyzed by FACS (LSR-II; BD). For consumption assay, DCs, T cells, Treg cells co-incubated
or incubated alone for 24 hrs, were cultured with IL-12p70 (eBioscience) and concentration of
IL-12p70 remained in the medium was measured by ELISA.

In Vitro Suppression of T Cell Proliferation and IFNγ Secretion
Effector/activated CD45.1+ CD4+ CD25+ Foxp3- cells were induced from naïve CD4+ CD25-

in primary MLR co-culture with Balb/c DCs and then sorted, labeled with CFSE and co-cul-
tured with iT reg cells in round-bottom 96-well plates at the indicated ratios plus allo-DCs
(ratio of 1 DC to 3 CD45.1+ CD4+ T cells). After 3 d, proliferation and intracellular IFNγ were
assessed by FACS (LSR-II; BD) to determine CFSE diluted, live CD45.1+ T cells.

RTPCR for IL-12Rβ1, β2 and IL-12b
We used the Qiagen kit for RNA isolation from sorted Treg or DCs. SuperScript1 Reverse
Transcriptase (Invitrogen) was used synthesize cDNA, from which IL-12Rβ1, β2 and IL-12b
were amplified with PCR. An agarose gel electrophoresis of the PCR products was performed.

Single Cell Sort and Analysis
CD4+CD25+Foxp3+(RFP+) cells were sorted from a co-culture of WT iTreg and allo-DCs
into 96-well PCR plates (Eppendorf) containing 4μl/well of ice-cold 0.5× PBS supplemented
with 10 mM DTT, 8U RNAsin (Promega), and 3U RNAse Inhibitor (5Prime). cDNA was syn-
thesized as described [36], and nested PCR for IL-12Rβ2 and Foxp3 cDNA was performed.

The following primers were used to amplify gene-specific cDNA fragments from the single
cells: IL-12Rβ2 outer-down, 5’-CCC TTG GTA TGA CCT TGT TTG TCT GCA AGC-3’; IL-
12Rβ2 outer-up, 5’-GAT CCA GGC GAT TGC AAT TCT GAC GAT TGT CA-3’; IL-12Rβ2
inner-down, 5’-AAA AGA AGC CAC CAG TCC CAG TAT G-3’; IL-12Rβ2 inner-up, 5’-CTG
ACA GGT CAG ATT GTT TGG TCC A-3’; Foxp3 outer-down, 5’-TTC CAA GGT CGG GAC
CTG CGA AGT GGG G-3’; Foxp3 outer-up, 5’-GCA GAA GGT GGT GGG AGG CTG ATC
ATG GCT-3’; Foxp3 inner-down, 5’-ACA CCT CTT CTT CCT TGA ACC CCC TG-3’; Foxp3
inner-up, 5’-TCC AGT GGA CGC ACT TGG AGC ACA-3’.

Statistical data were analyzed using Student’s t test.

Supporting Information
S1 Fig. DCs generate de-novo CD4+ CD25+ Foxp3+ (RFP+) from a polyclonal T cell reper-
toire in the mixed leukocyte reaction (MLR). Sorted C57Bl/6 CD4+ CD25- Foxp3-(RFP-)
spleen cells were labeled with CFSE and cultured 5 d with Balb/c splenic CD11c+ DCs without
(left panel) or with (right panel) TGFb (20 ng/ml) and ATRA (10nM). Shown is the frequency
of induced CD4+ CD25+ Foxp3+ (RFP+) iTreg by FACS analysis on d5. One representative
experiment of three is shown. Adapted from “Dendritic cells induce antigen-specific regulatory
T cells that prevent graft versus host disease and persist in mice”. By Sela U et al, J. Exp.Med.
208:2489–2496.
(TIF)

S2 Fig. DC induced Treg have mild effect on TNFα secreted from DC. Balb/c DCs were
incubated (24hr) either alone or with various ratio of C57Bl/6 iTreg that were induced with
Balb/c DCs (iTreg anti Balb). Then the culture was added with CL075 (1 mg/ml) and 24 hr
later level of TNFα secreted to the medium was measured with ELISA. One representative
experiment of three is shown. Error bars denote mean ± SD. �, P< 0.05.
(TIF)
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S3 Fig. The main source for IL-12 in the MLR culture are DCs. Balb/c DCs or C57Bl/6
CD4+ T cells were cultured alone or together (MLR) and incubated alone or co-incubated with
CL075 (24 hr). Level of IL-12p70 secreted to the medium was measured by ELISA (left panel)
or the culture was stained, and analyzed by FACS for IL-12 positive T (CD3+CD4+) or den-
dritic (CD11c+) cells. One representative experiment of three is shown. Error bars denote
mean ± SD. � = comparing CL075 induced to non-induced DCs, P< 0.05, �� = comparing
CL075 induced to non-induced co-culture of DCs and CD4+ T cells. P< 0.05.
(TIF)

S4 Fig. DC induced Treg have mild effect on TNFα and IL-6 secreted fromMLR of CD4+ T
cells and DCs.MLR of Balb/c DCs and C57Bl/6 CD4+ T cells were incubated (24hr) either
alone or with various ratio of C57Bl/6 iTreg that were induced with Balb/c DCs (iTreg anti
Balb). Then, CL075 (left panel) or LPS (5 mg/ml, right panel) were added to the culture, and
24 hr later level of TNFα (left panel) or IL-6 (right panel) secreted to the medium was mea-
sured by ELISA. One representative experiment of three is shown. Error bars denote
mean ± SD. �, P< 0.05.
(TIF)

S5 Fig. DC induced Treg specifically down-regulate IL-12 secreted from allo-DCs. Balb/c,
C57Bl/6, or F1 (Balb/c X B6) DCs were incubated (24hr) either alone, with C57Bl/6 CD4+ T
cells or with C57Bl/6 CD4+ T cells together with various ratio of C57Bl/6 iTreg that were
induced with Balb/c DCs (iTreg anti Balb). Then CL075 was added to the culture, and 24 hr
later level of IL-12 secreted to the medium was compared by ELISA. One representative experi-
ment of three is shown. Error bars denote mean ± SD. �, P< 0.05 (comparing to DC+T+CL0
without iTreg).
(TIF)

S6 Fig. iTreg down-regulate CL075 induced IL-12 secreted from DCs in MHC class-II
dependent manner. Balb/c DCs were incubated (24hr) either alone, with C57Bl/6 CD4+ T
cells or with C57Bl/6 CD4+ T cells and C57Bl/6 iTreg at 1 to 1 ratio. Either anti-MHC-class II
(upper panel), anti-CTLA-4 (left lower panel), or anti-TGFβ (right lower panel) mAbs
(10mg/ml) or their isotype control (IC) were added or not to the culture containing the iTreg
cells. Then the culture was added with CL075 and 24 hr later level of IL-12 secreted to the
medium was compared with ELISA. One representative experiment of three is shown. Error
bars denote mean ± SD. �, P< 0.05 (compared to IC).
(TIF)

S7 Fig. The down-regulation of IL-12 secreted from DCs by iTreg is not due to marked DC
death nor inhibition of its production. (A) Co-culture of DCs and CD4+ T cells were incu-
bated either alone or co-incubated with iTreg cells for 36 hrs after which the culture was
stained for viability (aqua) and compared by FACS for live CD11c+ cells. (B) As in A, but the
cultured DCs (CD11c+) were sorted, and RNA was isolated. A gel of PCR products of IL-
12p40 cDNA is shown. (C) As in A, but DCs are from IL-12 p40 reporter C57Bl/6 mice, and
the culture was stimulated with CL075 and analyzed by FACS for IL-12 expressing DCs
(CD11c+). One representative experiment of three is shown.
(TIF)

S8 Fig. DC induced Treg cells have minor effect on consumption of TNFα from the
medium. TNFα (1000pg/ml) in culture medium was incubated alone or with either DCs,
CD4+ T cells, or iTreg alone or with a co-culture of DCs and either CD4+ or anti Balb iTreg.
After 48hrs level of TNFα that remained in the medium was measured by ELISA. One

IL-12Rβ2-Expressing Treg and Regulation of Cytokines from DCs and T Cells

PLOS ONE | DOI:10.1371/journal.pone.0146412 January 8, 2016 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146412.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146412.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146412.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146412.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146412.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146412.s008


representative experiment of three is shown.
(TIF)

S9 Fig. IL-12 enhances suppression of T cell proliferation by iTreg. (A) MLR culture of
Balb/c DCs and sorted CFSE labeled effector CD4+CD25+Foxp3-cells (following naïve
CD4+CD25- pre-activation with Balb/c DCs for 3 days) was incubated without or with IL-12
(1000 pg/ml) or various concentration of WT iTreg cells for 3 days and analyzed by FACS.
Absolute number (upper panel) of effector proliferating cells and their percent (lower panel)
out of the MLR (considered as 100%) are shown. (B) As in A, but the MLR culture was added
by either WT or IL-12Rβ2 KO iTreg cells. Absolute number (middle panel), percent of effector
proliferating cells (left panel) and FACS histogram of CFSE dilution (right panel), are shown.
One representative experiment of three is shown. Error bars denote mean ± SD. �, P< 0.05
(compared to WT iTreg).
(TIF)

S10 Fig. IL-12Rβ2 mediates IL-12 induced IFNγ secretion from iTreg. Balb/c DCs were cul-
tured with either WT or IL-12Rβ2 KO sorted anti Balb/c iTreg. The culture was either stimu-
lated (left lower panels) or not stimulated (left upper panels) with IL-12, and 24 hrs later
stained and analyzed (left panel) for IFNγ expressing Treg cells (CD4+CD25+Foxp3+(RFP+)
by FACS (absolute number in right upper panel), and for IFNγ secreted to the medium by
ELISA (right lower panel). One representative experiment of three is shown.
(TIF)

Acknowledgments
The authors are grateful to the Flow Cytometry Resource Center staff, headed by Svetlana
Mazel, to Klara Velinzon and Yelena Shatalina for help with cell sorting, to Anthony Rodriguez
for help with experiments, to Daniel Mucida for advice, and to Judy Adams for help with the
figures.

The authors declare no financial interests.

Author Contributions
Conceived and designed the experiments: US RMS. Performed the experiments: US CGP AP
PO SW. Analyzed the data: US CGP RMS. Contributed reagents/materials/analysis tools: CGP
VAF. Wrote the paper: US RMS VAF.

References
1. Macatonia S.E., Hosken N.A., Litton M., Vieira P., Hsieh C.S., Culpepper J.A., et al. 1995. Dendritic

cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol.
154:5071–5079. PMID: 7730613

2. Heufler C., Koch F., Stanzl U., Topar G., Wysocka M., Trinchieri G., et al. 1996. Interleukin-12 is pro-
duced by dendritic cells and mediates T helper 1 development as well as interferon-γ production by T
helper 1 cells. Eur. J. Immunol. 26:659–668. PMID: 8605935

3. Coquerelle C., and Moser M. 2010. DC subsets in positive and negative regulation of immunity. Immu-
nol. Rev. 234:317–334. doi: 10.1111/j.0105-2896.2009.00887.x PMID: 20193028

4. Zhou L., Chong M.M., and Littman D.R. 2009. Plasticity of CD4+ T cell lineage differentiation. Immun.
30:646–655.

5. Zhu J., Yamane H., and Paul W.E. 2010. Differentiation of effector CD4 T cell populations (*). Ann.
Rev. Immunol. 28:445–489.

6. Abbas A.K., Murphy K.M., and Sher A. 1996. Functional diversity of helper T lymphocytes. Nature
383:787–793. PMID: 8893001

IL-12Rβ2-Expressing Treg and Regulation of Cytokines from DCs and T Cells

PLOS ONE | DOI:10.1371/journal.pone.0146412 January 8, 2016 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146412.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146412.s010
http://www.ncbi.nlm.nih.gov/pubmed/7730613
http://www.ncbi.nlm.nih.gov/pubmed/8605935
http://dx.doi.org/10.1111/j.0105-2896.2009.00887.x
http://www.ncbi.nlm.nih.gov/pubmed/20193028
http://www.ncbi.nlm.nih.gov/pubmed/8893001


7. Bettelli E., Oukka M., and Kuchroo V.K. 2007. TH-17 cells in the circle of immunity and autoimmunity.
Nat. Immunol. 8:345–350. PMID: 17375096

8. Weaver C.T., Hatton R.D., Mangan P.R., and Harrington L.E. 2007. IL-17 family cytokines and the
expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25:821–852. PMID: 17201677

9. Coombes J.L., Siddiqui K.R., Arancibia-Carcamo C.V., Hall J., Sun C.M., Belkaid Y., et al. 2007. A func-
tionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β-
and retinoic acid-dependent mechanism. J. Exp. Med. 204:1757–1764. PMID: 17620361

10. Mucida D., Park Y., Kim G., Turovskaya O., Scott I., Kronenberg M., et al. 2007. Reciprocal TH17 and
regulatory T cell differentiation mediated by retinoic acid. Science 317:256–260. PMID: 17569825

11. Sela U., Olds P., Park A., Schlesinger S.J., and Steinman R.M. 2011. Dendritic cells induce antigen-
specific regulatory T cells that prevent graft versus host disease and persist in mice. J. Exp. Med.
208:2489–2496. doi: 10.1084/jem.20110466 PMID: 22084406

12. Tang Q., and Bluestone J.A. 2008. The Foxp3+ regulatory T cell: a jack of all trades, master of regula-
tion. Nat. Immunol. 9:239–244. doi: 10.1038/ni1572 PMID: 18285775

13. Shevach E.M. 2009. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity
30:636–645. doi: 10.1016/j.immuni.2009.04.010 PMID: 19464986

14. Dipaolo R.J., Brinster C., Davidson T.S., Andersson J., Glass D., and Shevach E.M. 2007. Autoanti-
gen-specific TGFβ-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells
from activating autoreactive T cells. J. Immunol. 179:4685–4693. PMID: 17878367

15. Tran D.Q., Glass D.D., Uzel G., Darnell D.A., Spalding C., Holland S.M., et al. 2009. Analysis of adhe-
sion molecules, target cells, and role of IL-2 in human FOXP3+ regulatory T cell suppressor function. J.
Immunol. 182:2929–2938. doi: 10.4049/jimmunol.0803827 PMID: 19234188

16. Grohmann U., Orabona C., Fallarino F., Vacca C., Calcinaro F., Falorni A., et al. 2002. CTLA-4-Ig regu-
lates tryptophan catabolism in vivo. Nat. Immunol. 3:1097–1101. PMID: 12368911

17. Wing K., Onishi Y., Prieto-Martin P., Yamaguchi T., Miyara M., Fehervari Z., et al. 2008. CTLA-4 control
over Foxp3+ regulatory T cell function. Science 322:271–275. doi: 10.1126/science.1160062 PMID:
18845758

18. Wing K., and Sakaguchi S. 2010. Regulatory T cells exert checks and balances on self tolerance and
autoimmunity. Nat. Immunol. 11:7–13. doi: 10.1038/ni.1818 PMID: 20016504

19. Shevach E.M., Thornton A.M. 2014. tTregs, pTregs, and iTregs: similarities and differences. Immunol
Rev. 259(1):88–102. doi: 10.1111/imr.12160 PMID: 24712461

20. Boissonnas A., Scholer-Dahirel A., Simon-Blancal V., Pace L., Valet F., Kissenpfennig A., et al. 2010.
Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes. Immunity
32:266–278. doi: 10.1016/j.immuni.2009.11.015 PMID: 20137985

21. Murphy E.E., Terres G., Macatonia S.E., Hsieh C.S., Mattson J., Lanier L., et al. 1994. B7 and interleu-
kin 12 cooperate for proliferation and interferon gamma production by mouse T helper clones that are
unresponsive to B7 costimulation. J. Exp. Med. 180:223–231. PMID: 7516409

22. Bertagnolli M.M., Lin B.Y., Young D., and Herrmann S.H. 1992. IL-12 augments antigen-dependent
proliferation of activated T lymphocytes. J. Immunol. 149:3778–3783. PMID: 1360994

23. Hirschfield G.M., Liu X., Xu C., Lu Y., Xie G., Gu X., et al. 2009. Primary biliary cirrhosis associated with
HLA, IL12A, and IL12RB2 variants. N. Engl. J. Med. 360:2544–2555. doi: 10.1056/NEJMoa0810440
PMID: 19458352

24. Oldenhove G., Bouladoux N., Wohlfert E.A., Hall J.A., Chou D., Dos Santos L., et al. 2009. Decrease of
Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity
31:772–786. doi: 10.1016/j.immuni.2009.10.001 PMID: 19896394

25. Dominguez-Villar M., Baecher-Allan C.M., and Hafler D.A. 2011. Identification of T helper type 1-like,
Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17:673–675. doi: 10.1038/nm.
2389 PMID: 21540856

26. Koenecke C., Lee C.W., ThammK., Föhse L., Schafferus M., Mittrücker H.W., et al. 2012. IFN-γ pro-
duction by allogeneic Foxp3+ regulatory T cells is essential for preventing experimental graft-versus-
host disease. J. Immunol. 189(6):2890–6 doi: 10.4049/jimmunol.1200413 PMID: 22869903

27. Thieu V.T., Yu Q., Chang H.C., Yeh N., Nguyen E.T., Sehra S., et al. 2008. Signal transducer and acti-
vator of transcription 4 is required for the transcription factor T-bet to promote T helper 1 cellfate deter-
mination. Immunity.; 29:679–690. doi: 10.1016/j.immuni.2008.08.017 PMID: 18993086

28. Wei L., Vahedi G., Sun H.W., WatfordW.T., Takatori H., Ramos H.L., et al. 2010. Discrete roles of
STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T
helper cell differentiation. Immunity.; 32:840–851. doi: 10.1016/j.immuni.2010.06.003 PMID:
20620946

IL-12Rβ2-Expressing Treg and Regulation of Cytokines from DCs and T Cells

PLOS ONE | DOI:10.1371/journal.pone.0146412 January 8, 2016 13 / 14

http://www.ncbi.nlm.nih.gov/pubmed/17375096
http://www.ncbi.nlm.nih.gov/pubmed/17201677
http://www.ncbi.nlm.nih.gov/pubmed/17620361
http://www.ncbi.nlm.nih.gov/pubmed/17569825
http://dx.doi.org/10.1084/jem.20110466
http://www.ncbi.nlm.nih.gov/pubmed/22084406
http://dx.doi.org/10.1038/ni1572
http://www.ncbi.nlm.nih.gov/pubmed/18285775
http://dx.doi.org/10.1016/j.immuni.2009.04.010
http://www.ncbi.nlm.nih.gov/pubmed/19464986
http://www.ncbi.nlm.nih.gov/pubmed/17878367
http://dx.doi.org/10.4049/jimmunol.0803827
http://www.ncbi.nlm.nih.gov/pubmed/19234188
http://www.ncbi.nlm.nih.gov/pubmed/12368911
http://dx.doi.org/10.1126/science.1160062
http://www.ncbi.nlm.nih.gov/pubmed/18845758
http://dx.doi.org/10.1038/ni.1818
http://www.ncbi.nlm.nih.gov/pubmed/20016504
http://dx.doi.org/10.1111/imr.12160
http://www.ncbi.nlm.nih.gov/pubmed/24712461
http://dx.doi.org/10.1016/j.immuni.2009.11.015
http://www.ncbi.nlm.nih.gov/pubmed/20137985
http://www.ncbi.nlm.nih.gov/pubmed/7516409
http://www.ncbi.nlm.nih.gov/pubmed/1360994
http://dx.doi.org/10.1056/NEJMoa0810440
http://www.ncbi.nlm.nih.gov/pubmed/19458352
http://dx.doi.org/10.1016/j.immuni.2009.10.001
http://www.ncbi.nlm.nih.gov/pubmed/19896394
http://dx.doi.org/10.1038/nm.2389
http://dx.doi.org/10.1038/nm.2389
http://www.ncbi.nlm.nih.gov/pubmed/21540856
http://dx.doi.org/10.4049/jimmunol.1200413
http://www.ncbi.nlm.nih.gov/pubmed/22869903
http://dx.doi.org/10.1016/j.immuni.2008.08.017
http://www.ncbi.nlm.nih.gov/pubmed/18993086
http://dx.doi.org/10.1016/j.immuni.2010.06.003
http://www.ncbi.nlm.nih.gov/pubmed/20620946


29. Koch M.A., Thomas K.R., Perdue N.R., Smigiel K.S., Srivastava S., Campbell D.J. 2012. T-bet(+) Treg
cells undergo abortive Th1 cell differentiation due to impaired expression of IL-12 receptor β2. Immu-
nity. 37(3):501–10. doi: 10.1016/j.immuni.2012.05.031 PMID: 22960221

30. Zhou X., Bailey-Bucktrout S.L., Jeker L.T., Penaranda C., Martinez-Llordella M., Ashby M., et al. 2009.
Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo.
Nature immunology 10:1000–1007. doi: 10.1038/ni.1774 PMID: 19633673

31. Koch M.A., Tucker-Heard G., Perdue N.R., Killebrew J.R., Urdahl K.B., and Campbell D.J. 2009. The
transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflamma-
tion. Nat. Immunol. 10:595–602. doi: 10.1038/ni.1731 PMID: 19412181

32. Zheng Y., Chaudhry A., Kas A., deRoos P., Kim J.M., Chu T.T., et al. 2009. Regulatory T-cell suppres-
sor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458:351–356. doi:
10.1038/nature07674 PMID: 19182775

33. Chaudhry A., Rudra D., Treuting P., Samstein R.M., Liang Y., Kas A., et al. 2009. CD4+ regulatory T
cells control TH17 responses in a stat3-dependent manner. Science 326.

34. Verma N.D., Hall BM, Plain K.M., Robinson C.M., Boyd R., Tran G.T., et al. 2014. Interleukin-12 (IL-
12p70) Promotes Induction of Highly Potent Th1-Like CD4(+)CD25(+) T Regulatory Cells That Inhibit
Allograft Rejection in Unmodified Recipients. Front Immunol. 9;5:190

35. Wan Y.Y., and Flavell R.A. 2005. Identifying Foxp3-expressing suppressor T cells with a bicistronic
reporter. Proc. Natl. Acad. Sci. USA 102:5126–5131. PMID: 15795373

36. Tiller T., Busse C.E., andWardemann H. 2009. Cloning and expression of murine Ig genes from single
B cells. Journal of immunological methods 350:183–193. doi: 10.1016/j.jim.2009.08.009 PMID:
19716372

IL-12Rβ2-Expressing Treg and Regulation of Cytokines from DCs and T Cells

PLOS ONE | DOI:10.1371/journal.pone.0146412 January 8, 2016 14 / 14

http://dx.doi.org/10.1016/j.immuni.2012.05.031
http://www.ncbi.nlm.nih.gov/pubmed/22960221
http://dx.doi.org/10.1038/ni.1774
http://www.ncbi.nlm.nih.gov/pubmed/19633673
http://dx.doi.org/10.1038/ni.1731
http://www.ncbi.nlm.nih.gov/pubmed/19412181
http://dx.doi.org/10.1038/nature07674
http://www.ncbi.nlm.nih.gov/pubmed/19182775
http://www.ncbi.nlm.nih.gov/pubmed/15795373
http://dx.doi.org/10.1016/j.jim.2009.08.009
http://www.ncbi.nlm.nih.gov/pubmed/19716372

	Dendritic cells induce a subpopulation of IL-12Rβ2-expressing treg that specifically consumes IL-12 to control Th1 responses
	/var/tmp/StampPDF/w0JgKBV3EM/tmp.1598028909.pdf.sHyuG

