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The Journal of Experimental Medicine

Direct Expansion of Functional CD25" CD4" Regulatory T
Cells by Antigen-processing Dendritic Cells
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Klara Velinzon,! Kayo Inaba,? and Ralph M. Steinman!

' Laboratory of Cellular Physiology and Immunology, and Chris Browne Center for Immunology and Immune
Diseases, The Rockefeller University, New York, NY 10021

2Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University,
Kyoto 606-8502, Japan

Abstract

An important pathway for immune tolerance is provided by thymic-derived CD25" CD4* T
cells that suppress other CD25~ autoimmune disease—inducing T cells. The antigen-presenting
cell (APC) requirements for the control of CD25% CD4* suppressor T cells remain to be iden-
tified, hampering their study in experimental and clinical situations. CD25* CD4* T cells are
classically anergic, unable to proliferate in response to mitogenic antibodies to the T cell recep-
tor complex. We now find that CD25* CD4* T cells can proliferate in the absence of added
cytokines in culture and in vivo when stimulated by antigen-loaded dendritic cells (DCs), es-
pecially mature DCs. With high doses of DCs in culture, CD25" CD4* and CD25~ CD4*
populations initially proliferate to a comparable extent. With current methods, one third of
the antigen-reactive T cell receptor transgenic T cells enter into cycle for an average of three
divisions in 3 d. The expansion of CD25%* CD4" T cells stops by day 5, in the absence or pres-
ence of exogenous interleukin (IL)-2, whereas CD25~ CD4* T cells continue to grow. CD257"
CD4* T cell growth requires DC-T cell contact and is partially dependent upon the production
of small amounts of IL-2 by the T cells and B7 costimulation by the DCs. After antigen-specific
expansion, the CD25% CD4* T cells retain their known surface features and actively suppress
CD25~ CD4* T cell proliferation to splenic APCs. DCs also can expand CD25" CD4* T cells
in the absence of specific antigen but in the presence of exogenous IL-2. In vivo, both steady
state and mature antigen-processing DCs induce proliferation of adoptively transferred CD25*
CD4* T cells. The capacity to expand CD25" CD4* T cells provides DCs with an additional
mechanism to regulate autoimmunity and other immune responses.
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Introduction

Evidence is accumulating that immunologic self-tolerance
in the periphery can be maintained by CD25" CD4" regu-
latory T cells, which constitute 5-10% of CD4" peripheral
T cells (1-6). CD25% CD4" suppressors also play important
roles during other immune responses, as in infection (7-9),
tumors (10, 11), transplants (12), and graft versus host dis-
ease (13). A classical feature of CD25% CD4* regulatory T
cells is that they are anergic upon TCR-mediated stimula-
tion in vitro, failing to undergo proliferation, yet they
suppress the activation and proliferation of other CD4* and
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CDS8* T cells (14-16). CD25" CD4* T cells can inhibit
IL-2 transcription by responder T cells and because of their
anergy, it is unclear how the numbers of regulatory T cells
are sustained and expanded (14-16). Nonetheless, CD25"
CD4* T cells are able to undergo homeostatic expansion
when transferred into lymphocyte-deficient hosts (17, 18).

Molecular mechanisms for the function of suppressive
CD25" CD4* T cells are being identified. Cytotoxic T
lymphocyte—associated antigen 4 (CTLA-4)* is expressed
and required for the activation of suppression (19, 20),

* Abbreviations used in this paper: BM-DC, BM-derived DC; CFSE, carboxy-
fluorescein diacetate succinimidyl ester; CTLA-4, cytotoxic T lympho-
cyte—associated antigen 4; GITR, glucocorticoid-induced TNF receptor;
PEC, peritoneal exudate cell; TGC, thioglycollate.
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whereas glucocorticoid-induced TNF receptor (GITR)
signaling of CD25" CD4" T cells renders them nonsup-
pressive (21, 22). The transcription factor, Foxp3, programs
the development of regulatory T cells (23-25). When DCs
are stimulated through Toll-like receptors, they can pro-
duce IL-6 and unknown soluble factor(s), rendering the
CD25~ CD4* T cells resistant to suppression by CD25F
CD4* T cells (26). However, the APCs that control the
expansion of the “anergic” but suppressive CD25% CD4™*
T cells remain to be identified, hampering their experi-
mental study and use in many of the important clinical
conditions summarized above.

We have now investigated the interaction between dif-
ferent types of APCs and CD25% CD4" regulatory T cells.
We find that CD25" CD4* T cells are not anergic, as long
as the cells are stimulated with DCs. In fact, the CD25%
CD4* T cells can proliferate in an antigen-specific manner
in vitro and in vivo for several days at a rate that is compa-
rable to that seen in CD25~ CD4* T cells. CD25* CD4+ T
cells expanded by mature DCs, retain high expression of
CTLA-4 and GITR, and are enriched in suppressor func-
tion. Importantly, CD25% CD4* T cells proliferate exten-
sively in response to DCs, processing protein antigens in
the steady state or after maturation in vivo in lymph nodes,
thereby providing DCs with another mechanism for their
emerging roles in the maintenance of peripheral immune
tolerance (27).

Materials and Methods

Mice. BALB/c and C57BL/6 mice were purchased from
Taconic Farms. OVA-specific, MHC class II-restricted, TCR
transgenic mice were DO11.10 (H-24; provided by Dr. P. Mar-
rack, National Jewish Medical and Research Center, Denver,
CO) and OT-II (H-2% provided by F. Carbone, University of
Melbourne, Parkville, Victoria/Australia). C57BL/6, CD80~/~
CD867/7, and IL-27/~ mice were from The Jackson Laboratory,
and BALB/c IL-27/~ mice were provided by Drs. M. and J. La-
faille (New York University, New York, NY). Specific patho-
gen-free mice of both sexes were used at 6-12 wk of age accord-
ing to institutional guidelines.

Antibodies and Reagents. mAbs for MHC class II (M5/114,
TIB120), B220 (RA3-6B2, TIB146), CD8 (3-155, TIB211),
CD4 (GK1.5, TIB207), CD3 (145-2C11, CRL1975), and HSA
(J11d, TIB183) were from American Type Culture Collection.
FITC-conjugated anti-CD25 (7D4), I-AY (AMS-32), Gr1 (RB6-
8C5), CD11c (HL3), and CD4 (H129.19), PE-anti-CD8a (53-
6.7), B220 (RA3-6B2), CD86 (GL1), and CTLA-4 (UC10-
4F10-11), biotinylated anti-CD25 (7D4), I-AP (AF6-120.1), I-A¢
(AMS-32), and mouse anti-human V(38 (BV8), APC-anti-
CD11c (HL3), CD62L (MEL-14), CD25 (PC61), and CD4
(RM4-5), and PE-streptavidin, CyChrome-streptavidin, and
PerCP streptavidin were from BD Biosciences. FITC- and bi-
otin-KJ1.26 antibody to the TCR of DO11.10 T cells was from
Caltag. Purified antibody to CD3 (145-2C11), CD25 (PC61),
CD49b/Pan NK cells (DX5), CD16/CD32 (2.4G2), and control
rat IgG were from BD Biosciences. We purchased biotin goat
anti-GITR and IFN-y from R&D Systems, rHu IL-2 from Chi-
ron Corp., anti-CD11¢, CD43, CD19, CD5, FITC, and PE mi-
crobeads from Miltenyi Biotec, carboxyfluorescein diacetate suc-

cinimidyl ester (CFSE) from Molecular Probes, and intracellular
staining kit for CTLA-4 and OptEIA™ kits for mouse I1L-2, IL-4,
IL-10, and IFN-y ELISA from BD Biosciences.

Proliferation Assays.  Spleen and lymph node cell suspensions
were depleted of J11d*, CD8%, and DX5" cells by panning. The
remaining CD4"-enriched cells were stained with antibodies to
CD4 and CD25 (7D4) and sorted on a FACS Vantage™ (BD
Biosciences) into CD25*% and CD25~ populations (>97% and
>99% pure). 10*T cells were cultured for 3 d with APCs, either
103=10*DCs or 510 X 10*fresh spleen cells (irradiated with 15—
20 Gy) in 96-well round-bottomed plates (Corning). 1 mg/ml
OVA protein was pulsed into the BM cultures for 16 h before
harvesting the DCs, or 1 pg/ml DO11.10 OVA 323-336 peptide
was added continuously to the APC—T cell cocultures. To assess
suppression by CD25% CD4* T cells, 5-10 X 10* whole spleen
cells were used to stimulate mixtures of 1-2 X 10* CD25~ and
1-2 X 10*CD25" CD4* T cells from DO11.10 or BALB/c mice
(14-16, 21). 5% vol/vol supernatant of 2C11 hybridoma cells se-
creting anti-CD3 antibody or 1 pg/ml purified antibody was
added for stimulation. [*H]thymidine uptake (1 wCi/well; NEN
Life Science Products) by proliferating lymphocytes was mea-
sured at 60-72 h. To assess the need for cell to cell contact,
CFSE-labeled T cells were placed on both sides of a transwell
chamber (Costar). The outer well contained DCs and T cells
(3 X 10° each) and anti-CD3 antibody to stimulate cell growth,
and the inner well had 5 X 10* T cells without or with either
anti-CD3 or 5 X 10*DCs to determine if soluble factors from the
outer well could drive T cell expansion.

BM-derived DCs (BM-DCs). These were prepared with GM-
CSF (28). In brief, BM cells were grown in RPMI 1640 contain-
ing 5% FCS and the supernatant (3% vol/vol) from J558L cells
was transduced with murine GM-CSF (provided by A. Lanzavec-
chia, Basel Institute, Basel, Switzerland). On day 5, OVA (Seika-
gaku), which contained <20 pg endotoxin/mg protein, was
added in some wells at 1 mg/ml with or without LPS (Sigma-
Aldrich) at 50 ng/ml for 16 h. On day 6, cells were collected and
washed with HBSS. After Fc block, the cells were stained with
FITC—anti-Grl mAb and PE-anti-CD86. After washing, the
cells were incubated with anti-FITC microbeads and put onto
MACS columns (Miltenyi Biotec) to eliminate residual Grl™
granulocytes. The negative cells were then incubated with anti—
PE-MACS beads and put onto MACS columns to provide
CD86Meh mature and CD86'°" immature DCs, which were irradi-
ated with 15-20 Gy. In some experiments the CD86"g" and
CDB86V DCs were sorted by flow cytometry with similar results.
For fixation, DCs were incubated with 0.75% paraformaldehyde
for 30 min on ice. To measure IL-2 production, fixed or non-
fixed DCs were cultured for 1 d with 0, 10, 100, or 1,000 ng/ml
LPS and the concentration of IL-2 was measured by ELISA.

Other APCs.  Spleen CD8~ and CD8* DCs were prepared as
previously described (29). Splenic B cells were prepared with
CD19*" MACS beads from spleen high density populations. Peri-
toneal exudate cells (PECs) were collected by washing the perito-
neal cavity with PBS. 4 d earlier, some mice were given thiogly-
collate (TGC; Difco). In some instances, 2 d after injection of
TGC, mice were given 100 U IFN-y i.p. to up-regulate MHC
class IT on the macrophages. Lymph node CD11c¢* DCs were iso-
lated with CD11c beads (29). For priming with CFA (Difco), a 1:1
emulsion of CFA and PBS was injected s.c. (50 pl/paw) and 5 d
later, lymph node CD11c* DCs were prepared.

Proliferation of CFSE-labeled CD25* and CD25~ CD4" T
Cells.  For in vitro studies, FACS®-purified CD25" or CD25~
CD4" T cells were incubated with 1 WM CFSE for 10 min at
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37°C and 10* T cells were cultured with OVA-pulsed or ~unpulsed
CD86" BM-DCs for 3 d before FACS® analysis for proliferation
(progressive halving of the CFSE label). Dead cells were gated
out with TOPRO-3 iodide (Molecular Probes) labeling. For in
vivo proliferation, CD25% or CD25~ CD4* T cells purified by
flow cytometry or by MACS were labeled with 5 wM CFSE, and
0.7-1.0 X 10°T cells were injected i.v. into BALB/c recipients.
1 d later, 2 X 105 OVA-pulsed or -unpulsed, LPS-matured mar-
row DCs (depleted of macrophages by adherence to plastic for
2 h) were injected s.c. in each paw. Alternatively, the mice were
given 25 g soluble endotoxin-free OVA into the paw. It is
known that DCs in the steady state are the major cell type pre-
senting OVA to T cells in the steady state (30).

Results

BM-DCs Stimulate CD25% CD4* T Cell Proliferation—
[PH]thymidine Uptake Studies. To follow the antigen-
dependent growth of CD25% and CD25~ CD4* T cells,
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we purified these populations from OVA-specific TCR
transgenic DO11.10 mice by FACS® (Fig. 1 A, top). This
step was the limiting one for the experiments, because only
2-3 X 10° purified CD25% CD4* T cells were obtained
from eight mice. When standard bulk populations of spleen cells
were tested as APCs, we found as expected from much ear-
lier work (beginning with references 14 and 15) that the
CD25* CD4" T cells were anergic or nonresponsive to
stimulation with anti-CD3 mitogenic antibody, whereas
the CD25~ CD4* T cells responded (Fig. 1 A, bottom).
Furthermore, mixtures of CD25% and CD25~ CD4%t T
cells were suppressed, failing to proliferate to anti-CD3
when spleen cells were the APCs (Fig. 1 A). In contrast,
when we tested DCs (even in low numbers) generated
from BM progenitors with GM-CSF, the CD25* CD4* T
cells were now responsive to anti-CD3, and suppression
was no longer evident in mixtures of CD25% and CD25~
CD4* T cells (Fig. 1 A). Strong responses were repeatedly
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Figure 1. DCs stimulate CD25" CD4" T cell growth. (A) 10* CD25" or CD25~ CD4* FACS®-purified (top) DO11.10 OVA-specific T cells were
cultured for 3d with 10° spleen APCs or 5 X 103 CD86" mature DCs and anti-CD3 mAb. [*’H]thymidine uptake was assessed (6072 h). (B) As in A, but
T cells were from two OVA-specific TCR transgenic mice, DO11.10 and OT-2, and the DCs were pulsed or not pulsed with 1 mg/ml OVA protein.
(C) CD25% CD4" T cells from wild-type BALB/c mice () proliferate in response to DCs presenting anti-CD3 (right) but not OVA (left). (D and E)
Day 6 marrow DCs were FACS® separated into mature CD86"#" and immature CD86' CD11c" subsets (D) and cultured with CD25* CD4* DO11.10
T cells (E) with OVA protein (1 mg/ml pulsed onto the DCs) or 1 wg/ml OVA 323-339 peptide continuously. One representative result of at least three

experiments is shown.
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observed with CD25" CD4* T cells from two different
OVA-specific transgenics, DO11.10 and OT-II, and over a
broad range of DC doses in the presence of OVA antigen
(Fig. 1 B). Non-TCR transgenic BALB/c T cells also re-
sponded to DCs presenting anti-CD3 but did not respond
to DCs presenting OVA, whereas DO11.10 T cells re-
sponded to both (Fig. 1 C), confirming that the responses
by OVA-reactive CD25% CD4" transgenic T cells were
antigen-specific.

To evaluate the effect of DC maturation on their capac-
ity to stimulate CD25% CD4" T cells, we sorted the BM-
DCs into mature and immature populations, expressing
high and low levels of the CD86 T cell costimulatory mol-
ecule, respectively (Fig. 1 D). Both were active, but the
mature CD86"e? DCs were better stimulators for T cell
proliferation when either OVA protein or preprocessed
peptide was the source of antigen (Fig. 1 E). Dose response

A CD86* BMDCs D011 CD4* B

+ -+ A

QVA-pulse CD25*  CD25™ DC

studies indicated that as little as 0.01 wg/ml peptide could
stimulate the proliferation of CD25" CD4* T cells signifi-
cantly (unpublished data). Also, the DCs were equally ac-
tive if they had been matured spontaneously (Fig. 1 D) or
in the presence of LPS (not depicted), the latter to increase
the yield of mature DCs. Therefore, CD25%* CD4* T cells
are not intrinsically unresponsive to TCR stimulation but
are able to proliferate to anti-CD3 and to antigen when
presented by DCs and in the absence of exogenous growth
factors like IL-2.

BM-DCs Stimulate CD25* CD4* T Cell Proliferation—
Extent of Cell Division. To certify the capacity of CD25"
CD4* T cells to proliferate to antigen-presenting DCs, we
documented their growth in two other ways. First, the
number of CD25% CD47 cells expanded about fivefold in
3-5 d in the presence of OVA antigen (Fig. 2 A, right) at
the same time that DNA synthesis was robust, 50-100 X

Figure 2. A large fraction of
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into multiple cell cycles by DCs.
(A) As in Fig. 1, but the kinetics
of proliferation ([*H]thymidine
and cell counts) were both fol-
lowed. (B) 10* CFSE-labeled T
cells were cultured for 3 d with
10* CD86™ mature BM-DCs ei-
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performed as follows. 10* CFSE-
labeled CD25" CD4* T cells
were cultured for 72 h with 1
mg/ml  OVA-pulsed CD86™
BMDCs (10%, and analyzed for
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In this experiment, 24,000 live
T cells were recovered, from
which the absolute T cell count
in each division peak at the time
of harvest could be calculated
(c). The absolute number of
original, or precursor, T cells re-
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2,665 + 234
3,737+ 40

7,335 +234
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a precursor frequency of 30%.

The number of progeny in each peak () minus the number of precursors giving rise to the progeny (d) gives the number of mitotic events (e). The sum
of these events represents the total number of cell divisions that occurred in the T cell subset by the time of harvest. (D) The experiment and calculation
in C was performed in a total of six experiments where the TCR stimulus was specific OVA antigen (n = 3) or anti-CD3 antibody (n = 3).
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10® cpm in cultures of 10* T cells (Fig. 2 A, left). However,
the CD25% CD4* T cells did not expand beyond the initial
3-5 d of culture, whereas CD25~ CD4™ cells expanded in a
sustained fashion (Fig. 2 A), the latter most likely because
of the production of large amounts of IL-2 as will be
shown below. We also added antigen-bearing DCs to
CD25" CD4* T cells that had been expanded previously
for 1 wk in culture, and again we observed a two- to three-
fold expansion in T cell numbers (not depicted).

We then compared the proliferation of CFSE-labeled
CD25" CD4" and CD25~ CD4* T cells. Both populations
underwent several cycles of cell division in 3 d (Fig. 2 B).
Using this data and the approach of Wells et al. (31), in six
experiments (three each using DCs to present anti-CD3
antibody or specific OVA antigen), we found that about
one third of the cultured CD25" CD4* T cells underwent
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at least one mitotic event during 3 d of culture (Fig. 2 D).
During the same time period, a similar frequency of the
CD25~ CD4* T cells entered cell cycle, but the number of
mitotic events was actually less (Fig. 2 D). We also verified
that the major CD62L* and minor CD62L" subsets of
CD25" CD4* T cells responded comparably to DC-OVA
(not depicted). Therefore, in the first 3 d of culture, both
CD25* CD4* and CD25~ CD4™ are stimulated by DCs to
enter cell cycle and expand significantly.

Partial IL-2 Dependence of DC-induced CD25* CD4* T
Cell Proliferation, Including IL-2—induced, Antigen-independent
Proliferation.  Because the CD25 marker for regulatory T
cells is a component of the IL-2 receptor, we tested the role
of IL-2 in our cultures. The addition of exogenous IL-2
only induced a minute response in the CD25" CD4* T
cells themselves (Fig. 3 A, top; note the units on the y axis).
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Figure 3. Role of IL-2 in CD25" CD4* T cell proliferation. (A) [*H]thymidine uptake by CD25% or CD25% CD4" T cells alone (top), or T cells
stimulated by CD86* DCs not pulsed (middle) or pulsed (bottom) with OVA protein = IL-2 or PC61 anti-IL-2R mAb. (B) As in A, but IL-2 effects on
[*H]thymidine uptake and cell counts were assessed with time. (C) As in A, but anti-IL-2R mAb or control rat IgG was added to CD25" CD4* T cells
stimulated with DCs from wild-type (WT) or IL-27/~ mice plus OVA peptide at 1 pg/ml for 3 d. The numbers above the bars indicate the amount of
IL-2 detected by ELISA in the same culture. (D) IL-2 production (ELISA) after stimulation with DC-OVA or DCs. Statistical significance was deter-

mined using the unpaired Student’s ¢ test. *, P < 0.01.
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However, IL-2 induced more significant proliferation of
CD25" CD4™, but not CD25~ CD4", T cells in the pres-
ence of DCs without OVA antigen, and this could be
blocked by anti-IL-2R antibody completely (Fig. 3 A,
middle). DCs with OVA stimulated CD25% CD4* T cell
growth 5-10-fold more vigorously than in the absence of
antigen (compare the y axes of Fig. 3 A, middle and bot-
tom). The response of CD25* CD4* T cells was enhanced
by low doses of exogenous IL-2 (Fig. 3 A). Proliferation in
the absence of IL-2 was partially blocked (52.0 = 9.3%,
n = 5) by anti-CD25 antibody, whereas IL-2 and anti—IL-
2R antibody had little or no effect on the responses of
CD25~ CD4™" T cells (Fig. 3 A, bottom). When the kinet-
ics of the response to exogenous IL-2 was monitored, the
stimulation of CD257 CD4" T cell growth was evident
primarily in the first 3-5 d in culture (Fig. 3 B, left). In
contrast, CD25~ CD4" T cells responded continuously for
1 wk to DCs, without any boost by exogenous IL-2 (Fig. 3
B, right). Thus, IL-2 enhances antigen-dependent and -inde-
pendent proliferation of CD25% CD4* T cells in response
to DCs.

CD25* CD4* T Cells Produce Low Levels of IL-2 in Re-
sponse to DCs, and Their Proliferation Is Partially Dependent on
B7 Costimulation. We first tested if the observed prolifera-
tive responses to DCs could be attributed to IL-2 made by
the DCs themselves, using DCs from IL-27/~ mice and al-

A ~ LiveDCs B

dehyde-fixed DCs. We confirmed the findings of Granucci
et al. (32) that DCs in the absence of T cells produced IL-2
upon stimulation and that this could be abolished by fixa-
tion of the DCs in paraformaldehyde (not depicted). DCs
from IL-27/~ mice (Fig. 3 C) were active in stimulating
CD25" CD4* T cells, and the growth was partially blocked
with anti-CD25 antibody (Fig. 3 C). We then measured
IL-2 production in the IL-27/~ DC-T cell cocultures be-
cause it is known that CD25% CD4" T cells do not pro-
duce detectable IL-2 in response to splenic APCs and
anti-CD3 (14, 15). However, we found that the culture
supernatants from CD25% CD4* T cells and OVA-DCs
from wild-type mice did contain some IL-2 by ELISA
(concentrations of IL-2 is shown above the bars in Fig. 3
C), but primarily in the first 3 d of the cultures and only at
a small fraction of the levels induced by DCs from CD25~
CD47* T cells (Fig. 3 D). IL-10 was undetectable by ELISA
in the culture supernatants of CD25% T cells stimulated by
DC-OVA (<40 pg/ml), and other cytokines like IFN-y
(<40 pg/ml) and IL-4 (<10 pg/ml) were also absent
(ELISA data is not depicted).

To assess the potential role of cell surface costimulators
on DCs, we tested if formaldehyde-fixed DCs could in-
duce T cell proliferation. Live DCs were more effective
than fixed DCs (Fig. 4 A, threefold higher doses of DCs
were used; Fig. 4 B) and anti—-IL-2R antibody could par-
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Figure 4. Membrane costimulation of CD25* CD4* T cells by DCs. (A) Comparison of T cell responses to live (top, T/DC ratio of 1:1) or formalde-
hyde-fixed (bottom, T/DC ratio of 1:3) CD86" mature marrow DCs plus DO11.10 peptide at 1 pg/ml for 3 d in the presence of the indicated concen-
trations of control and anti—IL-2R mAb. Statistical significance was determined using the unpaired Student’s f test. *, P < 0.01. (B) Same as A, but the
activity of aldehyde-fixed DCs were studied with DCs that were charged with OVA (DC-OVA) or not (DC), and then added to CD25" CD4* and
CD25~ CD4* T cells in the presence or absence of IL-2, with only the former subset responding to IL-2 in the absence of OVA (top left). (C) 10*
marrow DCs were generated from wild-type (WT) or CD80/CD86 knockout mice and matured in 50 ng/ml LPS before culture with 10* CD25* or
CD25~ CD4" T cells (purified from OT-II mice spleen and lymph node cells) for 3 d with or without 0.5 wg/ml OVA peptide. The degree of prolif-
eration was assessed by incorporation of [*H]thymidine for the last 12 h. One representative result of three independent experiments is shown.
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tially block T cell proliferation (Fig. 4 B). Nevertheless, al-
dehyde-fixed DCs stimulated the growth of CD25" CD4*
and CD257 CD4" T cells in the presence of OVA antigen.
In the absence of OVA but with IL-2, live and fixed DCs
also stimulated the growth of some CD25% CD4", but not
CD25~ CD4*, T cells (Fig. 4 B).

The activity of aldehyde-fixed DCs suggested that a
membrane-bound costimulatory molecule was contribut-
ing to the T cell response. In fact, DCs prepared from
mice genetically deleted of the CD80 and CD86 costimu-
latory molecules (also known as B7-1 and B7-2) were
only one third as efficient at stimulating the proliferation
of CD25% CD4* cells (Fig. 4 C). The proliferation of the
transgenic CD25~ CD4% T cells in parallel was actually
maintained with B7-deficient DCs in this system in
which the DC/T cell ratio was 1:1 (Fig. 4 C), but B7-
deficient DCs were less active with lower DC/T cell
ratios of 1:25 (not depicted). In sum, the response of
CD25%* CD4* T cells to antigen-bearing DCs is substan-
tially blocked by anti-CD25 antibody. The requisite IL-2
is produced in small amounts by the responding T cells,
and B7 costimulation contributes significantly to CD25*
CD4* T cell proliferation.

The Proliferation of CD25% CD4* T Cells Induced by
DCs Requires DC=T Cell Contact. Transwell experiments
were then performed to show the need for DC-T cell
contact in the proliferation of CD25" CD4* T cells.

These T cells, when cultured in the inner well with anti-
CD3 or DC only, could undergo at most a single cell divi-
sion whether or not the outer well was empty or con-
tained mixtures of CD25" CD4* T cells with both DC
and anti-CD3 antibody (Fig. 5, top). However, most
CD25%* CD4* T cells cultured together with DCs and
anti-CD3 divided two to five times (Fig. 5), indicating
that cell—cell contact with DCs was important for initiat-
ing their growth.

Retention of Suppressive Activity in CD25% CD4* T Cells
Expanded by DCs. It was important to verify that the
CD25" CD4* T cells retained their known phenotypic
markers and suppressive properties after DC-induced ex-
pansion, which was 3—10-fold in the absence and presence
of exogenous IL-2, respectively. In terms of phenotype, the
expanded CD25" CD4" T cells maintained higher expres-
sion of CTLA-4 and GITR (19-22) relative to CD25~
CD4* responders (Fig. 6 A). During expansion, expression
of CD62L (the lymph node homing receptor) decreased on
many of the CD25% CD4* T cells, but after 7 d of culture,
most cells expressed CD62L (not depicted), as is the case
for most regulatory T cells in lymphoid organs (33).
CD25~ CD4* T cells proliferating in response to DC-
OVA up-regulated expression of CD25, CTLA-4, and
GITR, and almost all cells had little or no CD62L at day 7
(Fig. 6 A and unpublished data). The percentage of CD25%
CD4" T cells expressing the KJ1.26 clonotypic TCR
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Figure 5. CD25% CD4" T cells must contact DCs to proliferate actively. CFSE-labeled CD25% CD4™ T cells (top) or CD25~ CD4™ T cells (bottom)
and the indicated stimuli were added to the inner and outer wells of transwell chambers, and the dilution of CFSE label per cell was followed by FACS®
after 3 d of culture. Dead cells were gated out by TOPRO-3 staining. One representative result of three independent experiments is shown.

241 Yamazaki et al.

0z0z 1snbny || uo Jasn Ausianiun Js|184ex00y Aq Jpd-GeZz86 L Wal/vye066/5£2/2/86 L /4pd-jone/wal/Bio ssaidnyy/:dpy wouy pspeojumoq



The Journal of Experimental Medicine

CD25*
A
CD25~ , /|
\. \
w oW W w ow' e W wt oW w W
CD25 CTLA4 GITR
C
T cells IH-TdR uptake (x10* cpm)
# CD25* CD25~ 0 9 b 3 4
1 - DO —
2 Dot -}
3 Dot pon |- DO11.10 peptide/ whole spleen
4 - Do —
5 DON -
g D011 DO1 [
7 - BABe [ F——
8 DO11 BALBc Anti-CD3/whole spleen

Figure 6.

B s 7d-cultured
with DC-OVA

KJ1.26

D 3H-TdR uptake (x104 cpm)
CD25* CD25™ 1 2 3 4
D L [rrrrrrrrprrrrrT
-~ + }_'_'
1.27 —
19 ——
Fresh 149
e F_‘—t:‘_1
1.27 *
Cultred 19
with DC-OvA 13
Cultured
with DC-OVA
+IL-2
1111 | 1 111 | 1 111 | 111 1 | 1 1

CD25% CD4" T cells expanded by mature BM-DCs retain phenotype and function. (A) Surface markers of CD25* CD4" and CD25~

CD4* T cells after 7-d expansion by mature CD86" DC-OVA (shaded histogram, isotype control). (B) As in A, but the expression of the KJ1.26 clono-
typic receptor in CD25% CD4" T cells is shown before and after 7 d of culture with DC-OVA. (C) 10*DO11.10 T cells were cultured for 7 d with an
equal number of OVA-pulsed CD86 marrow DCs. CD11c™ DCs were eliminated by MACS, and then the recovered T cells were used to respond to
5 X 10*splenic APCs, or to suppress fresh CD25~ CD4* T cells in the presence of 1 pg/ml OVA peptide (top) or anti-CD3 mAb (bottom). (D) CD25*
CD4* T cells purified from DO11.10 mice were expanded with OVA-pulsed mature DCs for 7 d as in C, with or without exogenous 100 U/ml IL-2.
Fresh or cultured CD25% CD4* T cells were then mixed with freshly isolated CD25~ CD4* T cells from DO11.10 mice at the indicated ratios and cul-
tured for 3 d. The degree of proliferation was assessed by incorporation of [*H]thymidine for the last 12 h. Representative results of three or more similar
experiments. Statistical significance was determined using the unpaired Student’s ¢ test. *, P < 0.01.

marker was enriched after expansion, 80 versus 60% ini-
tially, and the mean fluorescence for KJ1.26 expression in-
creased slightly (Fig. 6 B), indicating that DC-OVA were
selectively expanding OV A-specific cells.

When the functions of the expanded CD25" CD4* cells
were tested with whole spleen APCs, the T cells were in-
deed anergic upon challenge with OVA or anti-CD3 (Fig.
6 C, groups 2 and 5, respectively) in contrast to the robust
responses of CD25~ CD4* cells (Fig. 6 C, groups 1 and 4).
Furthermore, the expanded CD25% CD4" cells could ac-
tively suppress the responses of CD25~ CD4* cells to OVA
or anti-CD3 (Fig. 6 C, groups 3, 6, and 8). The CD25"
CD4* T cells expanded by DC-OVA were more active on
a per cell basis than freshly isolated CD25% CD4* T cells
when tested for their capacity to suppress OVA-specific T
cell responses (Fig. 6 D). These findings on the retained
phenotype and function of CD25" CD4* T cells also were
noted after expansion with DC-OVA plus IL-2 (Fig. 6 D,
bottom). In summary, after expansion by DCs, CD25*
CDA4* T cells express their characteristic markers and regu-
latory function.

Weak Stimulation of CD25% CD4* Suppressor T Cells
by Other Types of APCs. To compare the responses of
CD25% CD4* T cells to various sources of APCs, we first
examined DCs from different sites. Splenic CD8* and
CD8™ DC subsets were tested immediately upon isolation
or after maturation overnight with LPS. These stimulated
CD25" CD4" T cells but to a much lesser degree than
BM-DCs with either OVA protein or peptide as antigen
(Fig. 7, A and B). These cultured splenic DCs had similar
surface levels of CD80 and CD86 compared to the BM-
DCs (not depicted). However, both splenic- and mar-
row-derived DCs were comparably potent in stimulating
CD25~ CD4* T cells (Fig. 7 A). CD19* B cells stimulated
with LPS overnight could elicit some T cell proliferative
responses from CD25~ CD47 but not from CD25* CD4*
T cells (Fig. 7 A). Normal and TGC-elicited peritoneal
macrophages were weak stimulators of both CD25" and
CD25~ CD4* T cells, even when the macrophages were
taken from mice given IFN-y 1.p. to enhance expression of
antigen-presenting MHC class II products (Fig. 7 C). Be-
cause BM-DCs were generated in the presence of the in-
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flammatory cytokine GM-CSF and in the presence of
other phagocytes like neutrophils and macrophages, we
turned our attention to DCs from lymph nodes expanded
in the presence of an in vivo inflammatory stimulus, CFA.
The CD11c™ DCs from CFA-stimulated lymph nodes
were fourfold more numerous. On a per cell basis, CFA-
elicited lymph node DCs were stronger stimulators of the
growth of CD25% CD4* regulatory T cells, compared with
lymph node DCs in the steady state (Fig. 7 D). Therefore,
DCs seem to be the major APC capable of stimulating
CD25" CD4* T cell growth, but DCs acquire greater ac-
tivity under inflammatory conditions, either GM-CSF in
vitro or CFA in vivo.

CD25% CD4" Regulatory T Cells Can Be Expanded In
Vivo by Antigen-bearing Mature DCs.  To extend the find-
ings to the growth of CD25% CD4* T cells in vivo, we pu-
rified CD25% and CD25~ CD4* T cells from OV A-specific

A ~e- CD86" BMDCs

—A- SplCD11¢* CD8 DCs
— Spl CD11c* CD8* DCs
- SplCD19* Bcells

rCD25* CD25~
— 105F 3
E b
o
L
£t 3
[4v] E
s :
S
o
2103 .
T ;
102 L ] Ll MR
103 104 105 108 104 105
Number of APC / Culture
C -8 CD86" BMDCs
+3F Normal PEC
- TGCPEC
—A- TGC* IFNyPEC
105 CD25* r CD25~
=
o
KE)
(]
©
= 104t E
=S
x
e
i
&
108
1081 104 103] 104
Number of APC / Culture

TCR transgenic mice, labeled them with CFSE, injected
the T cells into naive BALB/c mice, and followed their
proliferation and distribution in response to challenge with
OVA antigen. In each of three experiments, CD25" CD4"*
T cells proliferated in the draining but not distal lymph
nodes (Fig. 8 A) and spleen (not depicted) of mice chal-
lenged with DC-OVA. As expected, DC-OVA also in-
duced extensive proliferation of CD25~ CD4* T cells in
lymph nodes draining the DC injection site (Fig. 8 A). The
proliferation was OVA antigen-dependent, being absent in
CD25% or CD25~ CD4* T cells when animals received
DCs that had not been exposed to OVA (Fig. 8 A). The
total number of clonotype (KJ1.26)-positive T cells recov-
ered upon stimulation with DC-OVA versus DC was in-
creased 8—10-fold when either CD25% or CD25~ CD4* T
cells were stimulated in vivo. However, the absolute num-
bers of clonotype-positive CD25% CD4* T cells in the
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Figure 7. CD25" CD4" T cells primarily proliferate to DCs as APCs. Proliferation was assessed by incorporation of [*H]thymidine for the last 12 h.
(A) 10* T cells were cultured for 3 d with BM-DCs, spleen CD8*, or CD8~ CD11¢* DCs matured by culture overnight in LPS, and CD19* B cells ma-
tured in LPS. The APCs were exposed to 1 mg/ml OVA before use. Data with APCs lacking OVA were <103 cpm and are omitted. (B) As in A, but
BM-DCs were compared with spleen CD8* or CD8~ CD11c™ DCs, either fresh immature cells or matured by culture overnight, along with 1 pg/ml
DO11.10 peptide. (C) As in A, but DCs were compared with macrophages, either PECs, TGC-elicited PEC, or IFN-y—treated TGC-PEC. (D) CD25*
CD4* T cells from DO11.10 mice were cultured for 3 d with lymph node CD11¢* DCs from untreated mice, or mice 5 d after CFA injection s.c. Rep-

resentative results from three similar experiments.
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lymphoid organs were always lower than expanded CD25~
CD47" T cells (unpublished data). Interestingly, the levels of
CD25 on the expanding CD25% CD4* regulatory T cells
were increased during their growth in vivo and were much
higher at day 3 than the CD25 expressed by responding
CD25~ CD4* T cells (Fig. 8). These results in mice repli-
cate the findings in vitro that DCs are able to expand
CD25* CD4* regulatory T cells.

To determine if DCs in vivo in the steady state could
stimulate the expansion of CD25% CD4* T cells, the latter
were adoptively transferred into mice followed by chal-
lenge with soluble OVA in the absence of any adjuvant or
inflammatory stimulus. It is known that DCs are the main
cell type that successfully captures and presents OVA for
stimulation of T cells (30). Again, the adoptively transferred
CD25* CD4* and CD25~ CD4* T cells each underwent
several cycles of cell division in vivo in the draining lymph
nodes in response to OVA (Fig. 8 B). As in the case of pro-
liferation stimulated by injected mature DCs, CD25%
CD4* T cells stimulated in the steady state continued to
express high levels of CD25, whereas their CD25~ CD4™*
counterparts had not yet up-regulated CD25 expression at
this time point (Fig. 8 B). Therefore, CD25" CD4* T cells,
and not contaminants in the adoptively transferred popula-
tions, proliferate to antigen-bearing DCs in the steady state
and after immigration from peripheral tissues.

A CD25+

Discussion

Our observations provide some new perspectives on the
function of CD25" CD4* T cells and DCs. These T cells
are known to suppress other T cells mediating autoimmu-
nity, graft rejection, graft versus host disease, and resistance
to tumors (for review see 1, 2, and 34), but CD25% CD4"
T cells have always exhibited anergy in experimental stud-
ies, being unable to expand in response to mitogens (14,
15) and specific antigens (14, 16, 18, 35-37) and unable to
produce IL-2 (14, 15). Previous work has used spleen cells
as APCs. Spleen cells are a mixture of many cell types, with
only ~1-1.5% being DCs, and the majority are in an im-
mature state (30). In contrast, when DCs are added in rela-
tively high numbers, CD25%" CD4* T cells proliferate ex-
tensively in an antigen-dependent fashion, even in the
absence of exogenous IL-2 (Figs. 1 and 2), which has had
to be used at high doses in all previous work to expand
these T cells in culture (14, 15). The expanded T cells, after
several cycles of cell division, retain their suppressor cell
phenotype and function (Fig. 6). The DCs are most active
when generated under inflammatory conditions, e.g., when
the DCs are derived from BM progenitors with GM-CSF
in vitro or after challenge with an inflammatory adjuvant
(CFA) in vivo, but other APCs like macrophages and B
cells seem unable to expand CD25* CD4* T cells (Fig. 7).
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One mechanism for DC function involves cell surface
molecule(s) on DCs because aldehyde-fixed DCs are active
in expanding CD25%* CD4" T cells and cell contact is es-
sential (Figs. 4 and 5). We find that CD80 and/or CD86
contribute substantially as costimulatory molecules, though
DCs that are deficient in both CD80 and CD86 still retain
some stimulatory function (Fig. 4 C) implying the exist-
ence of additional costimulators on these cells. The need
for CD80 and CD86 is consistent with the in vivo observa-
tion that blockade of these molecules in diabetes-prone
nonobese diabetic mice reduces regulatory T cells and en-
hances autoimmune disease (38).

Another mechanism of DC function involves the pro-
duction of soluble factors such as IL-2 (Fig. 3). We first
found that DCs from IL-27/~ mice could stimulate the ex-
pansion of CD25% CD4* T cells in the absence of exoge-
nous IL-2. This expansion could be blocked by ~50% with
anti-CD25 antibody and was accompanied by small
amounts of IL-2 release into the medium, presumably from
the T cells. These results are consistent with the in vivo
findings that IL-2 and CD25 are important for the mainte-
nance of peripheral CD25% CD4* T cells (39, 40). Again,
IL-2 blockade did not fully suppress the response of
CD25" CD4" T cells to DCs, so that additional growth
factors are likely to be important after an initial cell con-
tact—dependent activation by DCs (Fig. 5).

Although CD25" CD4" T cells are classically anergic to
TCR stimulation, they are known to proliferate under se-
lect circumstances. For example, it has just been reported
that LPS directly induces the proliferation of CD25% CD4*
T cells through Toll-like receptor 4 (41), but high doses of
LPS (10 pg/ml) are needed. In lymphopenic hosts, CD25*
CD4* T cells can undergo division (17), and this depends
upon MHC class II expressed by host cells (18), perhaps
expressed by DCs capturing self-antigens in the steady state
given our observations (Fig. 8 B). A 20-fold expansion of
CD25" CD4* T cells takes place over 7-9 wk after transfer
into newborn IL-2R 3—deficient mice (42). Our results in-
volve the transfer of CD25% CD4" T cells into intact adult
mice, followed by a rapid proliferative response to stimula-
tion by antigen processed by DCs (Fig. 8). These antigen-
dependent responses are not due to contaminating CD25~
CD4* T cells, which expressed much lower levels of CD25
when studied in parallel (Fig. 8).

We have used T cells from a TCR transgenic line that is
specific for a foreign antigen, OVA. However, CD25"
CD4* T cells with a high affinity for self-antigens can be
selected during development in the thymus (36). In TCR
transgenic mice, particularly the DO11.10 mice that we
studied, CD25" CD4" T cells express an endogenous
TCRa chain in addition to that expressed by the transgenic
TCR (35, 43). We presume that this endogenous TCR al-
lows for the selection of the CD25" CD4* T cells in the
thymus because these cells are not found when the trans-
gene is bred into a RAG knockout background (43). The
OVA-specific TCR allows the CD25* CD4* T cells from
these mice to suppress other T cells after stimulation with
OVA-specific peptide as previously described (14, 16, 18,
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35-37, 43), but a self-peptide acting on an endogenous
TCRa might be required to positively select the CD25%
CD47 fraction of DO11.10 T cells. Walker et al. (44) in
this issue report the proliferation of CD25" CD4* T cells
from DO11.10 mice in response to immunization with an-
tigen in Freund’s adjuvant in vivo. Interestingly, they find
that CD25% CD4* T cells from DO11.10 mice also re-
spond to OVA antigen expressed as a surrogate self-antigen
in tissue cells, consistent with our data that immature
steady-state DCs can capture antigens for stimulation of
CD25" CD4* T cells.

Importantly, maturing DCs are not subject to suppres-
sion by CD25" CD4% T cells (Fig. 1 A). It has recently
been reported that DCs stimulated via microbial ligands
can produce IL-6 and block the suppressive activity of
CD25" CD4* T cells (26). Our current data relate to the
expansion of CD25" CD4" T cells that can suppress re-
sponses in standard assay systems involving splenic APCs
rather than maturing DCs. The target for the action of the
suppressor T cells is not yet apparent and may include a less
stimulatory form of DC than the cells found in lymph
nodes in the steady state or BM cultures expanded with
GM-CSF. Nevertheless, in this issue, Oldenhove et al. (45)
have now considered the suppression of mature DC func-
tion in vivo. After eliminating CD25%7 CD4" T cells, they
find that mature DCs stimulate larger Th1 T cell and CTL
responses in vivo.

Our studies deal with mouse CD25" CD4* regulatory T
cells, but other reports have shown that their human coun-
terparts respond poorly to mature monocyte-derived DCs
in the allogeneic mixed leukocyte reaction (46—48). The
work with human cells has used lower DC/T cell ratios
(1:10) relative to our studies, as well as allogeneic responder
T cells rather than highly enriched antigen-specific TCR
transgenic T cells. In addition, the CD25* CD4* human
T cell populations have the capacity to produce IL-10,
whereas we do not detect this immunosuppressive cytokine
in our cocultures of DCs and CD25" CD4* T cells.

The observation that mature DCs actively expand sup-
pressive CD25" CD4* T cells provides a new mechanism
for DCs to avoid the induction of autoimmunity (27, 49).
Before infection, the thymus has already produced CD25*
CD4* T cells capable of regulating autoimmunity (for re-
view see 1, 2, and 34). We would like to suggest that these
T cells are able to expand in the periphery under several
circumstances. When DCs in lymph nodes are processing
and presenting self-antigens in the steady state (50-52), the
data in Fig. 8 B indicate that CD25" CD4" T cells would
undergo expansion. Likewise, when mature DCs are in-
ducing immune responses in the lymph node, with con-
comitant IL-2 production, bystander CD25" CD4" T cells
would be expected to expand, as indicated by the data in
Figs. 3, A and B, and 4 B. Additionally, when maturing
DCs are themselves presenting cognate self-antigens, thy-
mic-derived CD25% CD4* T cells would be expected to
expand vigorously (Figs. 1-4 and 8 A), and serve to sup-
press autoreactive responses by other APCs. These poten-
tial roles for DCs in controlling CD25* CD4* T cells have
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been identified here through the study of OVA-specific
TCR transgenic T cells. The relevance of the findings to
the control of bone fide autoimmunity and other immune
responses will now need to be pursued directly.
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