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Abstract

 

The initiation of cell-mediated immunity to Epstein-Barr virus (EBV) has been analyzed with
cells from EBV-seronegative blood donors in culture. The addition of dendritic cells (DCs) is
essential to prime naive T cells that recognize EBV-latent antigens in enzyme-linked immuno-
spot assays for interferon 

 

�

 

 secretion and eradicate transformed B cells in regression assays. In
contrast, DCs are not required to control the outgrowth of EBV-transformed B lymphocytes
from seropositive donors. Enriched CD4

 

�

 

 and CD8

 

�

 

 T cells mediate regression of EBV-
transformed cells in seronegative and seropositive donors, but the kinetics of T-dependent
regression occurs with much greater speed with seropositives. EBV infection of DCs cannot
be detected by reverse transcription–polymerase chain reaction with primers specific for
mRNA for the EBNA1 U and K exons. Instead, DCs capture B cell debris and generate T
cells specific for EBV latency antigens. We suggest that the cross-presentation of EBV-latent
antigens from infected B cells by DCs is required for the initiation of EBV-specific immune
control in vivo and that future EBV vaccine strategies should target viral antigens to DCs.

Key words: herpesvirus • regression assay • cross-priming • T cell • B cell

 

Introduction

 

Epstein-Barr virus (EBV) is a human 

 

�

 

–herpesvirus that
latently infects 

 

�

 

90% of the adult population. Primary
EBV infection in adolescents and adults can cause infec-
tious mononucleosis (IM), which can be associated with a
prolonged clinical course and significant morbidity. More
importantly, EBV has growth-transforming capabilities
and is associated with numerous malignancies. Virtually
all cases of undifferentiated nasopharyngeal carcinoma,
posttransplant lymphoproliferative disease (PTLD), and
endemic Burkitt’s lymphoma as well as half the cases of
Hodgkin’s disease (HD) are EBV positive (1). Passive immu-
notherapy with EBV-specific T cells has been used to
treat EBV-associated lymphoproliferative disorders (2, 3),
but it remains difficult to generate these T cells, especially
in unprimed EBV-negative children who receive trans-
plants from EBV-positive donors (4–6). Furthermore,
there is no vaccine to prevent EBV infection.

An intact immune system is capable of containing the
primary infection and preventing transformation of infected
B cells. Transformation is seen in patients when cellular
immunosurveillance is compromised pharmacologically,
by disease or congenital defects (1) and in vitro with the
expansion of lymphoblastoid cell lines (LCLs). In healthy

 

carriers, the presence of a protective, cellular immune response
to EBV correlates with in vitro regression of EBV-transformed
B cells. The outgrowth of EBV-transformed cells is con-
trolled and eliminated by virus-specific memory T cells in
EBV-seropositive donors (7–13). However, in EBV-naive
donors, the foci of transformed B cells proliferate due to a
lack of primed EBV-specific T cells in culture (7–9, 14,
15). Interestingly, LCL outgrowth in these assays is also
seen in patients with impaired EBV immune control leading
to nasopharyngeal carcinoma and X-linked lymphoprolif-
erative disease (16–19). Therefore, regression serves as an
indicator of protective immunity in EBV carriers as well
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as a reliable in vitro model of primary EBV infection in
seronegative donors.

The lack of T cell priming by EBV-infected B cells dur-
ing the course of the regression assay implies the involve-
ment of another antigen-presenting cell in the immune
control of the primary phase of EBV infection. Recently, it
has become evident that DCs are able to capture dying B
cells and present EBV latency antigens to CD4

 

�

 

 (20) and
CD8

 

�

 

 T cells (21). Furthermore, the strong CD4

 

�

 

 T cell
response to the EBNA1 antigen is of the Th1 phenotype
(22) and DCs are known to be strong stimulators of this
protective form of cell-mediated immunity (23–25). Here,
we show that addition of DCs to cocultures of EBV-
infected B and T cells from EBV-seronegative donors leads
to regression of LCL outgrowth. This effect is secondary to
DC priming of T cells specific for EBV latency antigens.
Although the DCs are not detectably infected with EBV by
RT-PCR, they can capture B cells and directly expand
EBV-reactive T cells, indicating a need for cross-presenta-
tion by DCs during the initiation of T cell–mediated anti-
viral responses in humans.

 

Materials and Methods

 

Dendritic, B, and T Cell Preparations. 

 

PBMCs were obtained
from leukocyte concentrates (New York Blood Center) and
blood from lab donors (the latter with informed consent) by Fi-
coll-Hypaque centrifugation (Amersham Biosciences). DCs were
prepared from blood monocytes as described previously (21). In
brief, CD14

 

�

 

 monocytes were MACS purified and cultured in
500 U/ml rhuIL-4 (R&D Systems) and 1,000 U/ml rhuGM-
CSF (Immunex) for 5–6 d. Where indicated, they were matured
two more days with 10 ng/ml IL-1

 

�

 

, 1,000 U/ml IL-6, 10 ng/
ml TNF

 

�

 

 (all obtained from R&D Systems), and 1 

 

�

 

g/ml PGE

 

2

 

(Sigma-Aldrich). For positive selection of CD19

 

�

 

, CD8

 

�

 

, and
CD4

 

�

 

 cells, CD14

 

�

 

 cells were treated with the appropriate
monoclonal antibody conjugated to magnetic microbeads (Mil-
tenyi Biotec) and MACS purified. Alternatively, B and CD4

 

�

 

 T
cells were sorted on a FACSVantage™ SE cell sorter before cocul-
ture; these maintained 99.5% purity during the coculture. T cells,
B cells, and DCs were used fresh or after cryopreservation in FCS
and 5% DMSO.

 

Evaluation of EBV Serostatus. 

 

ELISA kits for viral capsid anti-
gen and Epstein-Barr nuclear antigen 1 (Sigma-Aldrich) were
used on plasma. Donors were considered EBV seronegative if no
reactivity was detected against both antigens.

 

Cell Lines. 

 

We cultured the EBV

 

�

 

 B95-8 marmoset cell line
(26), EBV

 

�

 

 Ramos Burkitt’s lymphomal cells (27), EBV

 

�

 

 BJAB
B cell lymphoma (28), and the EBV

 

�

 

 HD-MY-Z Hodgkin’s cell
line (29) in RPMI 1640 fortified with 10% FCS, gentamicin, and
Hepes buffer.

 

Preparation of EBV Viral Stock and Mock Inocula. 

 

As de-
scribed previously (8), supernatant from EBV

 

�

 

 B95-8 cells con-
taining 

 

�

 

10

 

5

 

 transforming U/ml, and EBV

 

�

 

 BJAB cells, were
harvested and adjusted to 10 g NaCl and 8% (wt/vol) polyethyl-
ene glycol/liter (PEG-8000; Sigma-Aldrich). After overnight in-
cubation, the precipitate was collected at 7,500 revolutions/min.
Viral stocks were resuspended, aliquoted, and stored at 

 

�

 

70

 

	

 

C.
Alternatively, the EBV

 

�

 

 Ramos cell line and the EBV

 

�

 

 B95-8
LCLs were seeded at 2 

 




 

 10

 

5

 

/ml and cultured for 14 d without
refeeding. The cultures were collected, centrifuged at 1,800 revo-

 

lutions/min for 10 min, and the supernatant was passed through a
0.45-

 

�

 

m filter and frozen into aliquots.

 

T Cell Coculture. 

 

CD14

 

�

 

/CD19

 

�

 

 cells or PBMCs were
plated at 2 

 




 

 10

 

6

 

 cells/ml in RPMI 1640 fortified with 5% hu-
man serum, gentamicin, and Hepes buffer in 24-well plates in 1
ml/well. 1 ml of EBV or mock inoculum was added. B cells and
DCs were plated at a density of 10

 

5

 

 cells/ml. CD4

 

�

 

 or CD8

 

�

 

 T
cells were positively selected and plated at a concentration of 2 

 




 

10

 

6

 

/well as indicated. To recapitulate the ratio found in periph-
eral blood, the CD4

 

�

 

 cells were resuspended at 1.33 

 




 

 10

 

6

 

 cells/
ml and the CD8

 

�

 

 cells were resuspended at 6.67 

 




 

 10

 

5

 

 cells/ml
to give a total of 2 

 




 

 10

 

6

 

 cells/ml that were specified. Where in-
dicated, cyclosporin A (CSA) was added at 1 

 

�

 

g/ml, whereas
protein A–purified 

 

�

 

HLA class I (W6/32) or 

 

�

 

HLA class II
(IVA12) antibodies were added every second day at a final con-
centration of 50 

 

�

 

g/ml. For cross-priming experiments, mature
DCs from EBV-seropositive or -seronegative donors were gener-
ated from CD14

 

�

 

 cells. CD19

 

�

 

 cells were incubated for 24 h in 1
ml of supernatant from EBV

 

�

 

 B95-8 cells and were washed three
times before addition to the coculture. DCs were incubated for
24 h either in B95-8 supernatant or 1:2 with EBV-exposed
CD19

 

�

 

 cells. DCs were positively selected with 

 

�

 

CD11c-PE an-
tibody followed by 

 

�

 

PE microbeads with subsequent magnetic
positive selection. These were added 1:30 with 2 

 




 

 10

 

6

 

 autolo-
gous CD14

 

�

 

 CD19

 

�

 

 cells for 12 d. EBV specificity was tested
with IFN

 

�

 

 ELISPOT assays on 2 

 




 

 10

 

6

 

 cultured cells with 30:1
DCs infected with indicated vaccinia vectors or 10:1 with autolo-
gous LCL or EBV

 

�

 

 Hodgkin’s cell line, HD-MY-Z.

 

DC Infection with Recombinant Vaccinia Viruses (vv). 

 

Mature
DCs were infected with recombinant vaccinia vectors (vvTK

 

�

 

) as
a negative control or vaccinia vectors expressing EBV latency
(EBNA1, 2, 3A, 3B, 3C, LMP1, and LMP2A) and lytic (BMLF1)
antigens at a multiplicity of infection of 2 for 1 h at 37

 

	

 

C (provided
by M. Kurilla, Dupont Pharmaceuticals Corp., Wilmington, NC).
Vaccinia infection was verified at 6–12 h by intracellular staining
(30) using VV1-6B6 antibody to a vaccinia early protein followed
by FACS

 

®

 

 analysis. Infection of DCs was 40–60%.

 

FACS

 

®

 

 Staining for Transformed Cells and T Cell Subsets.

 

Cultures were harvested at the indicated time points and stained
with 

 

�

 

CD19-FITC (BD Biosciences), 

 

�

 

CD21-allophycocyanin
(BD Biosciences), 

 

�

 

TCR-V

 

�

 

13.1 (clone IMMU 222; Immuno-
tech), 

 

�

 

TCR-V

 

�

 

3 (clone CH92; Immunotech) antibodies, and

 

�

 

CD23-PE antibody (BD Biosciences) for 30 min on ice. Cells
were washed, fixed in 4% paraformaldehyde, and analyzed on a
FACSort™ (BD Biosciences).

 

ELISPOT Assay for IFN

 

�

 

- and IL-4–secreting Cells.

 

ELISPOT assays were performed on days 12–14 as described pre-
viously (22). 5 

 




 

 10

 

4

 

 cells/well or 2 

 




 

 10

 

6

 

 cells/well as indicated
were stimulated in duplicate or triplicate with the effector/DCs
ratio of 30:1 for 18 h. In some experiments, a ratio of 10:1 of cul-
tured cells and autologous LCLs or the EBV

 

�

 

 HD-MY-Z was
used. A response was considered significant if it was 10 spots
greater than the negative control and at least twice that of the
negative control.

 

DC Phagocytosis of EBV-infected and Uninfected B Cells.

 

CD19

 

�

 

 cells were incubated overnight in B95-8 or Ramos su-
pernatant, washed three times in RPMI 1640, stained with the
fluorescent dye PKH26 (Sigma-Aldrich), and added at a ratio of
1:1 with mature DCs. Cocultures were stained for CD11c FITC
(BD Biosciences) and examined on a FACScan™ as well as on a
deconvolution microscope (Olympus). FACS

 

®

 

 analysis was per-
formed by gating on large cells by forward scatter and exclusion
of autofluorescing cells in FL-3. Staining for deconvolution mi-
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croscopy was performed on cocultures after a 60-h incubation as
described previously (21).

 

RT-PCR for EBNA1. 

 

Mature DCs and CD19

 

�

 

 cells were
incubated for 14 d in either B95-8 or Ramos supernatant and
washed three times with RPMI 1640. RNA was purified from 5 

 




 

10

 

6

 

 cells using the RNeasy kit (QIAGEN). Reverse transcrip-
tion and PCR amplification were performed using One Step
RT-PCR kit (QIAGEN) in a total volume of 50 

 

�

 

l. Primers
used were as follows: EBNA1 (U exon), 5

 

�

 

-TTAGGAAGC-
GTTTCTTTGAGC-3

 

�

 

; EBNA1 (K exon), 5

 

�

 

-CATTTCCAG-
GTCCTGTACCT-3

 

�

 

 (31); and G3PDH positive control, 5

 

�

 

-
ACCACAGTCCATGCCATCAC-3

 

�

 

 and 5

 

�

 

-TCCACCACC-
CTGTTGCTGTA-3

 

�

 

. Tubes were loaded in a Biometra T3
thermocycler. Reactions were incubated at 50

 

	

 

C for 30 min for
reverse transcription reaction, followed by a 15-min incubation at
95

 

	

 

C. This was followed by denaturation at 95

 

	

 

C for 45 s, an-
nealing at 62	C for 45 s, and extension at 72	C for 1 min, re-
peated for 35 cycles. At the conclusion of the PCR was a final in-
cubation at 72	C for 10 min to complete the extension. PCR
products were run on a 1% agarose gel with 1 �g/ml ethidium
bromide. Bands were visualized using a gel doc (Bio-Rad Labo-
ratories).

Online Supplemental Material. Figs. S1 and S2 are available at
http://www.jem.org/cgi/content/full/jem.20030646/DC1. Fig.
S1 demonstrates that immature and mature DCs can prime EBV-
specific T cells in culture and initiate regression. Fig. S2 depicts
the kinetics of TCR-V�13+ and TCR-V�3+ CD4+ T cell sub-
sets in regression assays of EBV-seropositive and -seronegative
donors. Neither TCR-V� subset expands preferentially during
regression assays or is correlated with regression.

Results
DCs Are Required for Priming Naive T Cells to EBV Anti-

gens. To evaluate the hypothesis that DCs, rather than
EBV-infected B cells, are required to prime virus-specific
T cells, we set up cocultures of T cells with EBV-infected
or uninfected B cells (8) from four EBV-seronegative do-
nors in the presence (B � DC � T) or absence (B � T) of
mature DCs. After 12 d, the cultures were tested by
ELISPOT for responses to a panel of EBV latency antigens
(EBNA1, 2, 3A-C, LMP1, 2A) and the lytic antigen,
BMLF1. Day 12 was chosen because keyhole limpet
hemocyanin–pulsed DCs were capable of priming specific
CD4� T cell responses during this time period (32) and as
shown in Fig. 4, this is the time when regression of EBV
transformation is evident. To optimize ELISPOT assays,
we used DCs infected with the respective recombinant vv
as APCs. In all four EBV-seronegative donors, priming of
T cells occurred only in cultures that contained DCs (Fig.
1, A–D). Reactive T cells were of the Th1 type as demon-
strated by secretion of IFN� (Fig. 1, A–D) and no IL-4
(not depicted). The pattern of latency antigen recognition
was similar to that seen in healthy carriers of EBV (i.e., re-
liable recognition of EBNA1 and EBNA3s but minimal
recognition of LMP2A; reference 1). In all four donors, no
reactivity to any EBV latency antigens was seen on day 0 or
in the control cocultures of DCs with T cells and unin-
fected B cells (unpublished data). In the one seronegative
donor from our laboratory, responses were similar in mag-

nitude in four experiments (Fig. 1, A, G [donor 3], and H
[donor 2]). The addition of CD14� monocytes did not re-
sult in EBV-latent antigen-specific T cell priming (Fig. S1
B, available at http://www.jem.org/cgi/content/full/jem.
20030646/DC1), but populations of immature DCs or
mature DCs each could prime autologous LCL-specific T
cells (Fig. S1 B). In contrast to the findings with cells from
seronegative donors, DCs were not essential to expand
EBV-specific T cells from seropositive donors beyond that
seen with infected B and T cells (Fig. 1, E and F). How-
ever, DCs induced the expansion and/or survival of T cells

Figure 1. DCs are required for priming naive T cells to EBV anti-
gens. T cells and EBV-infected B cells from EBV-seronegative (A–D) and
-seropositive (E and F) donors were cultured in the presence (B � DC �
T) or the absence (B � T) of mature DCs for 12–14 d. Results shown
have the vector control, vvTK�, subtracted from the specific response,
where vvTK� responses were always �20 spots. A response was considered
meaningful if it was at least twice that of the negative control (vvTK�) as
well as 10 spots greater than the vvTK� background and is indicated with
an asterisk. (G) The seronegative B � DC � T cultures were also tested
against autologous LCLs and the EBV-negative HD cell line HD-MY-Z
by IFN� ELISPOT. (H) Two sources of EBNA1 were compared for
loading of DCs, recombinant vaccinia viruses (vv) leading to the expression
of Gly-Ala–deficient EBNA1 (vvE1) or recombinant EBNA1 protein
(rE1). DCs loaded with rPCNA (rP) or infected with vvTK� were used
as controls. The responses in A, G (donor 3), and H (donor 2) are repre-
sentative of four experiments with the same seronegative donor.
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for a broader panel of EBV latency antigens than B and T
cell mixtures alone. The EBV-specific T cells again dem-
onstrated a polarized Th1 phenotype with secretion of
IFN� and no IL-4 (unpublished data).

The recognition of EBV latency antigens by primed T
cells was confirmed by restimulating EBV-seronegative
B � DC � T cultures with autologous LCLs and the EBV-
negative HD cell line HD-MY-Z as a control in ELISPOT
assays (Fig. 1 G, left). Autologous EBV-transformed cell
lines from three EBV-seronegative donors elicited IFN�
secretion far above recognition of the EBV� HD control.
In the EBV-infected DCs, B and T cell cocultures of se-
ronegative donors, the responses of the sum of EBV anti-
gen–specific ELISPOTS, or the LCL-specific T cells,
amounted on average to 0.4% of the cells. We also verified
that the EBNA1 specific response with recombinant vv as
the antigenic formulation could also be detected with a dif-
ferent source of this EBV-latent antigen (Fig. 1 H). We
compared IFN� secretion by DC-primed, EBV-seronega-

tive cultures in response to DCs loaded with the immuno-
genic COOH-terminal domain of recombinant EBNA1
protein (from Escherichia coli; reference 22) and DCs in-
fected with vvEBNA1GA. Comparable T cell responses
were observed, and these were exclusively present in B �
DC � T cultures from EBV-seronegative donors. A re-
combinant control protein (rPCNA) purified by the same
method as rEBNA1 did not elicit any detectable responses
(Fig. 1 H). Therefore, the presence of DCs is sufficient to
prime T cells specific for several EBV latency antigens in
freshly transformed B cells and LCLs. In contrast, EBV-
specific memory T cells from healthy carriers can be ex-
panded in vitro by EBV-infected B cells, at least for some
latency antigens.

T Cells Primed by DCs In Vitro Control the Outgrowth of
LCLs in Cocultures. Next, we investigated whether
EBV-naive T cells from seronegative donors could mediate
regression of transformed B cells if the cultures were sup-
plemented with autologous DCs. Activated B cells, includ-
ing those undergoing EBV-associated transformation, ex-
press the activation marker, CD23, and consequently, the
percentage of transformed cells can be easily monitored by
FACS® (14, 15, 33, 34). We confirmed that CD23�-acti-
vated B cells expressed EBV-latent antigens by immunoflu-
orescence staining for EBNA1 (unpublished data).

When we analyzed our regression assays for the presence
of CD19�/CD23� B cells by flow cytometry in EBV-
seronegative donors, there was outgrowth of 20–38%
EBV-transformed B cells in the B � DC and B � T cocul-
tures, but not in the B � DC � T cocultures (Fig. 2, A–C).
In contrast, B � T cocultures from EBV-seropositive
donors had regressed without DCs (Fig. 2, D and E, cen-
ter). Immature and mature DCs induced similar regression
of EBV-transformed B cells in B � T cultures of EBV-
seronegative donors, but monocytes could not mediate re-
gression (Fig. S1 C). DCs could not induce regression in
the absence of T cells in cultures of both EBV-seropositive

Figure 2. T cells primed by DCs in vitro control LCL outgrowth. T cells
and EBV-infected B cells from EBV-seronegative (A–C) and -seropositive
(D and E) donors were cocultured in the presence (B � DC � T) or
absence (B � T) of mature DCs. After 18 d, cultures were collected and
examined for outgrowth of LCLs as demonstrated by CD23� and CD19�

double-positive cells quantified by FACS® analysis. Cocultures of B cells
and DCs alone (B � DC) were used as a control for B cell transformation.
Gates were set on transformed B cells by forward and side scatter and to
exclude autofluorescing cells in FL-3.

Figure 3. EBV-transformed B cell regression is sensitive to cyclosporin A
(CSA). EBV-infected B cells were cultured with autologous T cells from
EBV-seropositive (top row) or -seronegative donors (bottom row) without
(B � T) or with DCs (B � DC � T). To some of the cultures CSA was
added to suppress T cell reactivity. CD19�CD23� cells were evaluated by
FACS® staining 21 d after EBV infection and start of the coculture.
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and -seronegative donors (Fig. 2, A–E, left). No
CD19�CD23� B cell transformation was seen using EBV
mock-infected cells (unpublished data). The data in Fig. 2
are representative of six EBV-seronegative and three EBV-
seropositive donors.

To provide evidence that the observed regression was
mediated by T cells, we first used CSA to inhibit T cell re-
activity (35, 36). In B � DC � T cultures from both EBV-
seropositive and -negative donors, the addition of CSA led
to outgrowth of �30% of EBV-transformed B cells,
whereas without T cell inhibition, �1% CD19� CD23�

cells could be observed (Fig. 3). To the extent that CSA
specifically inhibits T cell function, these data indicate that
primed T cells mediate regression in B � DC � T cultures
from EBV-seronegative donors.

Different Kinetics of Regression in Cultures with Primary and
Secondary EBV-specific Immune Responses. Regression of
EBV-transformed B cells in B � DC � T cultures from
EBV-seronegative donors coincided with the time point
(days 12–14) at which we had assessed the T cell responses
in IFN� ELISPOT assays (Fig. 4). With seropositive do-
nors, CD19�CD23� B cells were detectable at day 3 after
infection in both B � T and B � DC � T cultures, but
their numbers were already markedly decreased compared
with cultures of seronegative donors. By day 6, EBV-trans-
formed B cells were further reduced and most had vanished
by day 11 (Fig. 4, top rows). In contrast, CD19�CD23� B
cells accumulated without obvious control in B � T cul-
tures from EBV-seronegative donors (Fig. 4, bottom rows).
In B � DC � T cultures of EBV-seronegative donors, the
first indication for regression was at day 11 (average of 24 �
4% in B � T vs. 7.2 � 3.8% in B � DC � T), and the
numbers decreased more markedly by day 14 (average of
29 � 11% in B � T vs. 4.5 � 3.5% in B � DC � T).
These experiments are representative for two EBV-sero-
negative and three EBV-seropositive donors. Therefore, T
cell reactivity reached protective levels around days 11–14
to control EBV transformation in cultures of EBV-sero-
negative donors.

Both CD4� and CD8� Lymphocytes Contribute to Regres-
sion of LCL Outgrowth. Once clinical manifestations of
IM are present, patients demonstrate a brisk cell-mediated
immune response, characterized by numerous atypical lym-
phocytes in the peripheral blood (1). A majority of these T
cells are CD8� with much smaller expansions in CD4� T
cells (37). To evaluate the contribution of CD4� and
CD8� T lymphocytes in the control of LCL outgrowth,
we performed regression assays with lymphocytes from
three EBV-seronegative donors positively selected for CD4
or CD8 expression. CD4�, CD8�, or a mixture of CD4�

and CD8� cells were cultured with EBV-infected B cells
and DCs for 18 d. After 18 d, CD4� cultures had �1%
contaminating CD8� T cells and CD8� cultures had �6%

Figure 4. Kinetics of EBV-mediated B cell transformation
in culture. EBV-infected B cells were cultured with au-
tologous T cells from EBV-seropositive (top two rows)
or -seronegative donors (bottom two rows) without (B �
T) or with DCs (B � DC � T). Aliquots of the cultures
were taken at the indicated time points, and CD19�CD23�

cells were quantified by FACS®.

Figure 5. CD4� and CD8� T cells contribute to LCL regression.
EBV-infected B cells and DCs were cultured with either CD4� T cells
(B � DC � CD4), CD8� T cells (B � DC � CD8), or a mixture of
both (B � DC � CD4 � CD8) from three EBV-seronegative donors
(A–C). Cultures were analyzed by FACS® after 18 d to identify LCLs as
CD19�/CD23� double-positive cells representing LCL outgrowth. Gates
were set on transformed B cells by forward and side scatter and to ex-
clude autofluorescing cells in FL-3.
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contaminating CD4� cells as analyzed by FACS® (unpub-
lished data). Cultures were evaluated for LCL outgrowth
by CD19� CD23� double staining. FACS® data in Fig. 5
from three different EBV-seronegative donors show LCL
regression in cultures with highly purified CD4� or CD8�

T cells alone or in the mixed CD4�/CD8� T cell cultures.
To further verify the contribution of CD4� and CD8� T
cells, we did additional studies by adding antibodies to
MHC class I or class II every 2 d to cultures of EBV-
infected PBMCs. Both the �HLA class I antibody W6/32
and the �HLA class II antibody IVA12 increased the yield
of CD19�CD23� B cells in EBV-infected PBMC cultures
of seropositive donors (unpublished data). The generation of
a protective response in both the CD8� and CD4� T cell
compartment reflects the conditions seen in patients recov-
ering from IM. Furthermore, the priming of both EBV-
specific CD4� as well as CD8� T cells most likely ensures
comprehensive and efficient immune control of latent EBV
infection.

Because transactivation of the human endogenous retro-
virus HERV-K18 by lytic EBV infection had been re-
ported recently and HERV-K18 encodes a superantigen
that stimulates TCR-V�13 expressing CD4� T cells (38,
39), we were concerned that low levels of lytic EBV infec-
tion in our regression cultures could trigger TCR-V�13–
carrying T cells and their expansion could contribute to
the regression of EBV-transformed B cells. However,
when we followed the kinetics of TCR-V�13 and control
TCR-V�3–expressing CD4� T cells in EBV-seropositive
and -seronegative regression cultures at days 0, 4, 11, 14,
and 20 (Fig. S2, available at http://www.jem.org/cgi/
content/full/jem.20030646/DC1), we found no selective
TCR-V�13 T cell expansion over TCR-V�3 T cell ex-
pansion at any of these time points. Moreover, we found
no correlation between TCR-V�13 T cell numbers and
regression of EBV-transformed B cells in our cultures (Fig.
2). Namely, we did not observe any V�13 T cell expan-
sion at day 4 in seropositive regression cultures, nor specif-
ically in regressing EBV-infected DCs, B, and T cell cocul-
tures of seronegative donors at day 11 and 14 in
comparison to unregressing B and T cell cocultures. Al-
though we cannot rule out that a low level of T cell stimu-
lation by the HERV-K18 encoded superantigen was
present in our regression cultures, we conclude from these
data that it probably contributes minimally to the observed
protection against EBV transformation.

DCs Phagocytize B Cell Fragments in the Presence or Absence
of EBV Infection. Uptake of cellular debris with subse-
quent processing and presentation of antigens by DCs has
been described for many infectious and tumor-derived anti-
gens (for reviews see references 40, 41). Therefore, we in-
vestigated uptake of EBV-infected B cells by DCs in our
cultures. After an overnight incubation in supernatants from
the B95-8 EBV-producing and Ramos EBV-negative cell
lines, B cells were stained with PKH26, a membrane stain.
These cells were cultured with DCs at 37	C and collected
after 30 min, 6 h, and 18 h. As a negative control, DCs and

B cells were incubated together at 4	C for 18 h; DCs were
stained for CD11c and analyzed by FACS® (Fig. 6 A) and
deconvolution microscopy (Fig. 6 B). The DCs took up B
cell fragments after EBV or mock infection equally well at
each of the specified time points of coculture (Fig. 6 A).
Deconvolution microscopy visualized many intracellular
vesicles with PKH26 stained B cell fragments (Fig. 6 B),
thereby excluding extracellular adherence as a possible ex-
planation for the double-positive cells seen in Fig. 6 A.
These observations provide evidence that DCs obtain EBV
latency antigens to prime naive T cells by taking up and
processing EBV-infected B cells, as shown previously for
continuous EBV-transformed cell lines (21, 42, 43).

DCs Exposed to EBV Do Not Express Detectable Levels of
EBV Latency Antigens. To further investigate the mecha-
nism of T cell priming by DCs, we examined the possibil-
ity of latent EBV infection of DCs. Though B cells were
the only cells directly exposed to the virus during the 24 h
incubation period, the possibilities of residual EBV virions
adhering to the surface of infected B cells or productive in-
fection with release of infectious virions in the coculture
could not be excluded. Using RT-PCR, we examined B
cells and DCs after 14 d of incubation in B95-8 supernatant
for the presence of EBNA1, using primers detecting the
BKRF1 mRNA transcript encoding the U and K exons
(31). EBNA1 mRNA is present in all forms of EBV la-
tency. In infected B cells, this mRNA transcript was
present at levels comparable to that seen in the LCL-posi-
tive control but was not present in the DCs (Fig. 7 A). No
EBNA1 mRNA transcript was detected in B cells or DCs
incubated in Ramos supernatant. Therefore, direct infec-

Figure 6. DCs phagocytize B cell fragments in the presence or absence
of EBV infection. CD19� cells were incubated overnight in the supernatant
from the B95-8 EBV� (� virus) and Ramos EBV� (� virus) cell lines.
CD19� cells were stained with PKH26 and added to autologous mature
DCs at a ratio of 1:1. After the specified time periods at the indicated
temperatures, cultures were collected and stained for CD11c and analyzed
by FACS® (A) and deconvolution microscopy (B). For FACS® analysis,
gates were set on large cells (forward scatter) and there was exclusion of
autofluorescing cells in FL-3.
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tion of DCs with subsequent production of EBV latency
antigens most likely is not the mechanism for DC priming
of naive T cells.

To further address the possibility of low level or inter-
mittent infection of DCs by EBV, we used a functional as-
say in which T cells were cocultured with DCs that had ei-
ther been directly exposed to EBV (Fig. 7 B, DCs alone,
white bar) or to EBV-infected B cells (Fig. 7 B, B + DC,
black bars). B cells were incubated with EBV virus for 24 h
and cocultured with DCs for an additional 24 h. CD11c�

cells were positively selected and cocultured with autolo-
gous T cells. If EBV infection of DCs was responsible for T
cell priming, or if sufficient EBV antigens were contained
in the virus preparation, one would expect to see EBV-
specific T cells in cultures containing DCs exposed to viral
particles. However, in agreement with our RT-PCR re-
sults, T cell priming was seen only in those cultures in
which DCs were incubated with EBV-infected B cells, but
not in the cultures containing EBV-exposed DCs (Fig. 7 B,
left) in two EBV-seronegative donors tested. These results
were further reinforced by experiments using blood from

EBV-seropositive donors. Again EBV-exposed DCs alone
did not expand EBV-specific memory T cells (Fig. 7 B,
right). We conclude that for significant expansion or prim-
ing of EBV-specific T cells to occur, DCs need to present
antigen derived from EBV-infected B cells.

Discussion
The importance of the T cell–mediated immune response

in the resolution of IM and control of EBV-latent infection
is highlighted in patients with T cell immunodeficiencies
(e.g., patients after bone marrow transplantation, in AIDS,
and in hereditary T cell disorders; references 44, 45). Not
only has functional T cell depletion been demonstrated to
be responsible for the development of EBV-associated ma-
lignancies, particularly PTLD, but adoptive transfer of
EBV-specific cytotoxic T cells is now used in the clinical
setting as treatment and prophylaxis against these tumors in
immunosuppressed patients (3). In this paper, we study cells
from EBV-seronegative donors to show that DCs can prime
T cells specific for a panel of EBV latency antigens (Fig. 1)
and are essential for the T-dependent regression of EBV
transformation in culture (Fig. 2). Although antigen-bearing
B cells are widely regarded as “professional” antigen pre-
senting cells, EBV-infected B cells fail to prime T cells and
fail to elicit regression when cells from seronegative individ-
uals are studied. DC cross-presentation of EBV antigens
from exogenous B cells (Fig. 6) seems critical for their func-
tion in inducing resistance to EBV transformation, because
direct infection of DCs is undetectable by both molecular
and immunologic assays (Fig. 7).

Our findings that DCs initiate protective EBV immunity
in culture have important implications clinically and im-
munologically. EBV-seronegative recipients of EBV� solid
organs have an increased likelihood of developing PTLD
(4, 6, 46). In EBV-seropositive patients with PTLD, EBV-
specific cytotoxic T lymphocytes for adoptive immuno-
therapy are easily expanded in vitro using autologous LCLs
(2, 3). However, in EBV-seronegative patients, current
protocols using autologous LCLs fail to efficiently prime
protective EBV-specific cytotoxic T cells without repeated
restimulations and the addition of rhIL-2 and rhIL-12 (5,
47). In this paper, we have shown that DCs within 12 d are
able to prime T cells that recognize a wide array of EBV la-
tency antigens (Fig. 1) and control the proliferation of
EBV-transformed B cells (Fig. 2). In contrast, a previous
work used DC preparations loaded with necrotic/apoptotic
LCLs as well as LCLs fused with DCs, but the DCs were
inferior to LCLs in priming of EBV-specific T cell re-
sponses from EBV-seronegative children (48). The differ-
ences in our work may lie in the antigenic formulation (co-
cultured freshly EBV-infected B cells), the responder T cell
population (adult vs. pediatric EBV-seronegative donors),
and the DC preparation. For example, we routinely detect
the CD83 maturation marker on 100% of our monocyte-
derived DCs, whereas Savoldo et al. reported 15–40% of
their DCs were CD83� (48). We believe that these differ-

Figure 7. DCs exposed to EBV do not express detectable levels of
EBV latency antigens. CD19� cells and mature DCs were cultured for 14
d in supernatant from the EBV� cell line, Ramos (Mock), or in B95-8
supernatant. RT-PCR was performed on mRNA derived from the cells
using primers spanning the U–K exon splice site of the mRNA for the
EBNA1 latency protein (A). Primer pairs for G3PDH were used as a positive
control for the reaction. PCR products were run on a 1% agarose gel. (B)
Mature DCs were incubated for 24 h in media containing concentrated
EBV viral stock (DC) or 1:2 with B cells infected with EBV for 24 h
before DC/B coculture (B � DC). DCs were positively selected using
anti-CD11c antibodies and cultured for 12 d with T cells from an EBV-
seronegative (B, left) or -seropositive donor (B, right). DCs, infected with
vaccinia vectors specific for the indicated EBV latency antigens, or EBV�

Ramos cells (negative control) and autologous LCLs were used to restimulate
antigen specific cells in IFN� ELISPOT assays. Results shown are representa-
tive of two EBV-seronegative donors (left) and four seropositive donors
(right). Results shown have the vector control, vvTK�, subtracted from
the specific response, and positive responses (*) were determined as in Fig. 1.
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ences might account for the higher efficiency of our DC
preparations in EBV-specific T cell priming.

We observed that on average 0.4% of cells in our regres-
sion cultures responded on day 12–14 to EBV-latent anti-
gens with IFN� secretion (Fig. 1; sum of individual EBV
specificities and reactivity against autologous LCLs). This
time point correlated with time of regression of EBV-trans-
formed B cells in B � DC � T cultures of EBV-seronega-
tive donors (Fig. 4). In cultures of EBV-seropositive do-
nors, regression of EBV-transformed B cells could be
detected much more quickly. Already at day 3, the cultures
contained fewer CD19� CD23� B cells than cultures of
EBV seronegative donors. This indicates that the frequency
of EBV-specific T cells in peripheral blood of EBV-sero-
positive donors is sufficient to control EBV transformation
rapidly in vitro. Most EBV specificities can be found at fre-
quencies of 0.01–0.1% in whole PBMCs (49–52). In total,
this corresponds roughly to the 0.4% we induced in our
cultures, and in both instances, regression was observed.
The yields of newly primed EBV-specific T cells in our
cultures probably underestimate the potential of DCs to
expand specific T cells after EBV infection in vivo, because
in lymph nodes, a large proportion of T cell repertoire cir-
culates by DCs and is able to be selected for priming.

We have not investigated the mechanisms required by
highly enriched CD4� and CD8� T cells to protect against
EBV transformation in culture, and regression in these as-
says may require additional events than the known cy-
tolytic capacities of these T cells. The effector mechanisms
of the primed CD4� and CD8� T cell populations were
not analyzed in this paper. However, both CD4� as well as
CD8� T cell clones have been reported to be efficient in
mediating EBV-transformed B cell regression (53–55). The
literature lists several effector functions of EBV-specific T
cells that could contribute to the regression of EBV-trans-
formed B cells. These include perforin–granzyme-mediated
lysis by CD8� T cells (56–58), Fas–FasL-mediated lysis by
CD4� T cells (59), and IFN� secretion by CD8� (55) and
probably also CD4� T cells.

To prime to EBV latency antigens, DCs must either take
up exogenous EBV antigens or endogenously generate
these proteins after productive infection with the virus.
The lack of detectable EBNA1 mRNA in EBV-exposed
DCs by RT-PCR (Fig. 7 A) coupled with the inability of
EBV-exposed DCs to prime or even expand EBV-specific
T cells (Fig. 7 B) argues against an immunologically rele-
vant DC infection by EBV. Therefore, we suggest that the
most likely mechanism of priming is via uptake of cellular
debris from EBV-infected B cells for processing and pre-
sentation to naive T cells. Immature and mature DCs were
both able to mediate regression and T cell priming in EBV-
seronegative cultures. This suggests to us that there is suffi-
cient DC maturation in the regression cultures to render
immature DCs immunogenic for T cell priming and that
our preparations of cytokine-matured DCs retain sufficient
endocytosis capacity (as demonstrated in Fig. 6) to take up
antigens for T cell priming.

There is additional compelling in vivo evidence that sup-
ports cross-presentation of EBV antigens to naive T cells
during primary infection. The evidence involves the EBV
latency antigen, EBNA1, which is protected from endoge-
nous processing onto MHC class I molecules for presenta-
tion to CD8� T cells by its Gly-Ala repeat sequence (60,
61). Because of this, EBV-infected B cells cannot stimulate,
much less prime, EBNA1-specific CD8� T cells. Never-
theless, up to 5% of peripheral blood CD8� T cells in
HLA-B*3501 patients with IM can be EBNA1 specific
(62). The inability of these CTLs to recognize autologous
LCLs confirms that EBV-transformed B cells do not load
EBNA1 epitopes onto MHC class I after endogenous pro-
cessing (62, 63). In contrast, DCs loaded with EBNA1 pro-
tein are lysed by these CTLs, indicating that EBNA1 pep-
tides can be exogenously processed and loaded onto MHC
class I molecules by DCs (62). Furthermore, DCs have
been shown to expand CD8� T cells specific for other EBV
latency antigens after cross-presentation of dying LCLs (21).
Therefore, the generation of EBV immunity in culture and
probably in infected individuals utilizes the capacity of DCs
to process or cross-present other cells that die during infec-
tion (64), in this case, B cells, killed by lytic EBV infection,
might induce both CD4� and CD8� T cell responses. The
in vitro regression assays that we have used here are cur-
rently the most direct ex vivo manifestation of protection
against transformation. To the extent that these findings are
indicative of protection in vivo, EBV is an example of a
human pathogen that would require cross-presentation by
DCs to be efficiently controlled by the immune system.

Understanding the normal sequence of events necessary
to control primary and latent EBV infections should benefit
the development of novel immune-based therapies for pa-
tients with EBV-associated malignancies. In EBV-seroneg-
ative patients, especially in the pediatric population, EBV-
latent antigen-bearing DCs can be used in vivo or ex vivo
to prime naive T cells. Additionally in tumor-bearing
adults, active immunization with DCs might be used to
augment waning EBV immune responses or to realign re-
sponses to the more protective Th1 type. Our results sug-
gest that future EBV vaccine strategies target EBV antigens
to mature DCs, thereby exploiting their specialized roles in
initiating protective immunity.
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